WO2010008188A2 - 다중 전원 혼합형 증폭기 - Google Patents

다중 전원 혼합형 증폭기 Download PDF

Info

Publication number
WO2010008188A2
WO2010008188A2 PCT/KR2009/003874 KR2009003874W WO2010008188A2 WO 2010008188 A2 WO2010008188 A2 WO 2010008188A2 KR 2009003874 W KR2009003874 W KR 2009003874W WO 2010008188 A2 WO2010008188 A2 WO 2010008188A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power supply
supply voltage
nth
unit
Prior art date
Application number
PCT/KR2009/003874
Other languages
English (en)
French (fr)
Other versions
WO2010008188A3 (ko
Inventor
이상욱
김성훈
권주몽
정인택
김남인
Original Assignee
(주)디라직
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)디라직 filed Critical (주)디라직
Publication of WO2010008188A2 publication Critical patent/WO2010008188A2/ko
Publication of WO2010008188A3 publication Critical patent/WO2010008188A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2173Class D power amplifiers; Switching amplifiers of the bridge type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/301CMOS common drain output SEPP amplifiers
    • H03F3/3016CMOS common drain output SEPP amplifiers with symmetrical driving of the end stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3066Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor the collectors of complementary power transistors being connected to the output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/462Indexing scheme relating to amplifiers the current being sensed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/78A comparator being used in a controlling circuit of an amplifier

Definitions

  • the present invention relates to a multi-power mixed amplifier, and more particularly, to a multi-power mixed amplifier that can improve efficiency by varying the power supplied to the mixed amplifier according to the magnitude of the output voltage using the multi-power.
  • the analog type linear amplifier has low distortion at the output and faithful to the sound source (high fidelity characteristic). Thanks to this characteristic, the analog type linear amplifier has been mainly used as an acoustic amplifier.
  • analog type linear amplifiers can be classified into Class A, Class B and Class AB according to the output circuit structure and bias current.
  • analog type linear amplifier has the advantage of high fidelity, it has a disadvantage of being heavy and bulky because it is not efficient and needs a large heat sink to solve the heat dissipation problem.
  • the switching amplifier 100 includes a switch unit 140 and a filter unit 150 at an output terminal.
  • the switch unit 140 may be implemented as a semiconductor switch and performs a pulse width modulation (PWM) operation.
  • the filter unit 150 may be implemented as an LC low pass filter including an inductor and a capacitor. The filter unit 150 performs low pass filtering on the pulse width modulated signal by the switch unit 140 to restore the acoustic signal.
  • the switching amplifier restores the pulse width modulated signal to the acoustic signal by lowpass filtering, the switching amplifier has an excellent energy efficiency compared to the linear amplifier.
  • the class-D switching amplifier has a severe distortion compared to the linear amplifier due to the switching distortion due to the switching operation, and thus the sound quality is degraded, resulting in poor fidelity.
  • hybrid acoustic amplifiers combining linear and switching amplifiers have been proposed.
  • the hybrid amplifier has the high fidelity characteristics of the linear amplifier in terms of sound quality and the high efficiency characteristics of the switching amplifier in terms of efficiency.
  • the hybrid amplifier 200 is a block diagram of a hybrid amplifier.
  • the hybrid amplifier 200 has a structure in which a linear amplifier operating as an independent voltage source and a switching amplifier in the form of a slave current source dependent on the linear amplifier are combined. At this time, the switching amplifier supplies current to the output in such a manner that switching is controlled by the output current Ia of the linear amplifier.
  • the linear amplification unit 210 amplifies the input signal such that the output signal is fed back and the input signal through the feedback unit 270 to reduce distortion at the output.
  • the detector 220 detects the linear current Ia output from the linear amplifier 210 and transmits the linear current Ia to the comparator 230.
  • the comparator 230 outputs a control signal for preventing the linear current Ia from exceeding a predetermined range by using the information of the linear current Ia transmitted through the sensing unit 220.
  • the gate driver 240 receives a control signal from the comparator 230 and outputs a gate driving signal for driving the switch 250.
  • the switch unit 250 includes one or more switches.
  • the switch of the switch unit 250 outputs a square wave whose pulse width is modulated by repeating on-off according to a gate driving signal.
  • the filter unit 260 low-pass filters the pulse width modulated square wave to restore the output signal of the audible frequency band.
  • 3 is an operating waveform at each stage of the hybrid amplifier.
  • the sensing voltage Vsen sensed by outputting the linear current Ia also increases in the same phase and shape as the linear current Ia.
  • the output of the comparator 240 is inverted from high to low, and accordingly, the high side switch of the switch unit 250 is applied. M1 is turned on and the switching current Id starts to increase.
  • the switching current Id starts to increase, the linear current Ia and the sensing voltage Vsen start to decrease. Thereafter, when the sensing voltage Vsen is smaller than the negative hysteresis voltage set in the comparator 230, the output of the comparator 230 is inverted from low to high, and accordingly, the low side switch M2 of the switch unit 250 is applied. ) Is turned on and the switching voltage Vd switches from high to low, the switching current Id decreases, and the linear current Ia and the sensing voltage Vsen again increase to the positive hysteresis voltage of the comparator 230. . As this process occurs repeatedly, the switching amplifier 235 repeats the switching operation. That is, unlike the general class D switching amplifier performs the switching operation by the oscillator circuit, the hybrid amplifier shown in FIG. 2 performs oscillation through the above-described process.
  • the linear current Ia is equal in magnitude and opposite in phase to the ripple component of the switching current Id
  • the linear current Ia and the switching current Id are added to the speaker load 290.
  • the output current Io flowing in is compensated for by switching ripple and distortion, and the distortion in the output current Io becomes small as in the linear amplifier.
  • the magnitude of the switching ripple of the linear current Ia is limited to the hysteresis range set in the comparator 230 and most of the current of the output current Io is supplied from the efficient switching amplifier 215, the efficiency is switched. As high as with the amplifier.
  • the switching current Id is the same as the output current Io, and the linear current Ia includes only the current corresponding to the ripple component of the switching current Id. It can be seen that the amplifier is more efficient than the linear amplifier and the distortion distortion is improved by compensating the switching distortion compared to the class D switching amplifier.
  • the hybrid amplifier has higher efficiency than the linear amplifier when the output level is above a predetermined level, but the current corresponding to the ripple component of the switching current (Id) continues from the linear amplifier of the mixed amplifier even during the idle period or low output.
  • Id the switching current
  • the losses in the linear amplifiers included in the mixed amplifier at rest or at low power are greater than those in conventional linear amplifiers and the efficiency is lower.
  • the loss in the linear amplifier of the hybrid amplifier cannot be ignored, and thus the overall efficiency of the hybrid amplifier is also lowered.
  • An object of the present invention is to provide a multi-power mixed amplifier that can improve the efficiency by reducing the loss of the linear amplifier by varying the power supplied to the mixed amplifier according to the size of the output voltage using multiple power supplies.
  • the multi-power hybrid amplifier according to the first exemplary embodiment of the present invention for achieving the above technical problem includes a linear amplifier unit, a first sensing unit, a second sensing unit, a comparator, a gate driver, a switch unit, and a filter unit.
  • the linear amplifier unit amplifies the input signal and outputs a linear current so that the input signal and the feedback signal feedback the output signal are the same.
  • the first sensing unit senses the linear current and outputs a first sensing signal.
  • the second sensing unit senses the output signal and outputs a second sensing signal.
  • the comparator compares the first sensing signal with the first reference signal to output a first control signal, and compares the second sensing signal with the second reference signal to the Nth reference signal to compare the second control signal to the Nth control signal.
  • Outputs The gate driver outputs a first drive control signal to an Nth drive control signal in response to the first control signal to the Nth control signal.
  • the switch unit outputs a switching signal in a manner of switching and transferring the first power source voltage to the Nth power source voltage in response to the first drive control signal to the Nth drive control signal.
  • the filter unit filters the switching signal and outputs the output signal.
  • the second detection signal may include at least one of a level detection signal corresponding to the level of the output signal and a slope detection signal corresponding to the slope of the output signal, wherein the second detection unit, the output signal And a level detector configured to detect a level of the signal and output the level detection signal, and a tilt detector configured to detect a slope of the output signal and output the tilt detection signal.
  • the comparison unit includes a first sub comparison unit to the N-th sub comparison unit, the first sub comparison unit compares the first detection signal and the first reference signal to output the first control signal, the first The second sub comparing unit to the N th sub comparing unit compares the second sensing signal with the second reference signal to the Nth reference signal and outputs the second control signal to the Nth control signal.
  • the second detection signal may include a level detection signal corresponding to a level of the output signal, and a slope detection signal corresponding to a slope of the output signal, and the second sub to Nth sub-comparison units may be configured as the level. At least one of a sensing signal and the tilt sensing signal is compared with the second reference signal to the Nth reference signal.
  • the second reference signal to the Nth reference signal may include a second reference level signal, an Nth reference slope signal, and an Nth reference level signal to an Nth reference slope signal, respectively.
  • the N-th sub-comparison unit compares the level detection signal with the second reference level signal to the Nth reference level signal, respectively, and corresponds to the second reference slope signal to the Nth reference slope signal corresponding to the slope detection signal. Compare.
  • the switch unit includes a first sub-switch unit to the N-th sub-switch unit for switching the first power supply voltage to the N-th power supply voltage in response to the first drive control signal to the N-th drive control signal.
  • first sub-switch part to the N-th sub-switch part are connected to each other in a cascade manner and are connected to the filter part in a cascade manner.
  • the first power supply voltage to the N-th power supply voltage includes a first positive power supply voltage and the first negative power supply voltage and the first negative power supply voltage and the same level of the N-level positive power supply voltage and the N-th negative power supply voltage, respectively
  • the first sub-switch The first through Nth sub-switches include a first positive power switch corresponding to the first positive power supply voltage and a first negative power supply voltage, a first negative power supply switch and a first negative power supply switch corresponding to the Nth positive power supply voltage and the Nth negative power supply voltage, respectively.
  • N-th negative power switch includes a first positive power switch corresponding to the first positive power supply voltage and a first negative power supply voltage, a first negative power supply switch and a first negative power supply switch corresponding to the Nth positive power supply voltage and the Nth negative power supply voltage, respectively.
  • the comparator outputs a first control signal to an Nth control signal for turning on the corresponding sub-switch part when the first detection signal and the second detection signal are larger.
  • the second sensing unit may further be configured to filter the switching signal to generate a filtering signal corresponding to the output signal, and then detect the filtering signal to output the second sensing signal.
  • the multi-power mixed amplifier according to the first embodiment may further include a reference signal generator for generating the second reference signal to the N-th reference signal.
  • the multi-power hybrid amplifier according to the first embodiment may further include a power supply voltage generator for generating the first power supply voltage to the N-th power supply voltage.
  • N is preferably 2 or more.
  • the multi-power mixed amplifier according to the second embodiment of the present invention for achieving the above technical problem includes a linear amplifier, a detector, a comparator, a gate driver, a switch, and a filter.
  • the linear amplifier unit amplifies the input signal and outputs a linear current so that the input signal and the feedback signal feedback the output signal are the same.
  • the sensing unit senses the linear current and outputs a detection signal.
  • the comparator compares the detection signal with the first reference signal to the Nth reference signal and outputs the first control signal to the Nth control signal.
  • the gate driver outputs a first drive control signal to an Nth drive control signal in response to the first control signal to the Nth control signal.
  • the switch unit outputs a switching signal in a manner of switching and transferring the first power source voltage to the Nth power source voltage in response to the first drive control signal to the Nth drive control signal.
  • the filter unit includes a filter unit for filtering the switching signal to output the output signal.
  • the comparison unit includes a first sub-comparison unit to the N-th sub-comparison unit for outputting the first control signal to the N-th control signal by comparing the detection signal and the first reference signal to the N-th reference signal, respectively.
  • the switch unit includes a first sub-switch unit to the N-th sub-switch unit for switching the first power supply voltage to the N-th power supply voltage in response to the first drive control signal to the N-th drive control signal.
  • the first sub-switch part to the N-th sub-switch part may be connected to each other in a cascade manner and connected to the filter part in a cascade manner, or the first sub-switch part to the N-th sub-switch part may be connected in parallel with the filter part. Can be.
  • the first power supply voltage to the Nth power supply voltage may include a first positive power supply voltage and a first negative power supply voltage having the same level, and an Nth positive power supply voltage and an Nth negative power supply voltage having the same level, respectively, and the first sub-switch
  • the first through Nth sub-switches include a first positive power switch corresponding to the first positive power supply voltage and a first negative power supply voltage, a first negative power supply switch and a first negative power supply switch corresponding to the Nth positive power supply voltage and the Nth negative power supply voltage, respectively.
  • N-th negative power switch is a first positive power switch corresponding to the first positive power supply voltage and a first negative power supply voltage having the same level, respectively.
  • the comparison unit when the detection signal is larger, the comparison unit outputs a first control signal to an N-th control signal for turning on the corresponding sub-switch unit.
  • the multi-power mixed amplifier according to the second embodiment may further include a power supply voltage generator for generating the first power supply voltage to the Nth power supply voltage.
  • N is preferably 2 or more.
  • a multi-power hybrid amplifier includes a linear amplifier unit, a switching amplifier unit, and a linear power supply control unit.
  • the linear amplifier unit amplifies the input signal and outputs a linear current so that the input signal and the feedback signal feedback the output signal are the same.
  • the switching amplifier unit generates a switching signal by switching a switching power supply voltage such that the first sensing signal generated by sensing the linear current is maintained within a range of a reference signal, and filters the switching signal to output an output signal.
  • the linear power controller controls the linear power voltage applied to the linear amplifier unit in response to the third detection signal generated by sensing the output signal.
  • the linear power controller includes a detector, a comparator, a gate driver, and a switch.
  • the sensing unit detects the output signal and outputs the second detection signal.
  • the comparator compares the third sensing signal with the second reference signal to the Nth reference signal, and outputs the second control signal to the Nth control signal.
  • the gate driver outputs a second drive control signal to an Nth drive control signal in response to the second control signal to the Nth control signal.
  • the power switch unit outputs the linear power supply voltage in a manner by switching the first linear power supply voltage to the Nth linear power supply voltage in response to the second driving control signal to the Nth driving control signal.
  • the comparator may further include a second sub comparison unit to an N th sub comparison unit configured to output the second control signal to the Nth control signal by comparing the third detection signal with the second reference signal to the Nth reference signal, respectively.
  • the power switch unit may include: a first sub switch unit configured to switch the first linear power supply voltage to be transferred, and the second linear power supply voltage to the Nth linear power supply in response to the second drive control signal to the Nth drive control signal. And a second sub-switch part to an N-th sub-switch part for switching and transferring voltage.
  • the first sub-switch part to the N-th sub-switch part are connected to each other in a cascade manner.
  • the first linear power supply voltage to the N-th linear power supply voltage may each include a first positive power supply voltage and a first negative power supply voltage having the same level, and an Nth positive power supply voltage and an Nth negative power supply voltage having the same level.
  • the sub-switch part to the N-th sub-switch part respectively include a first positive power supply switch and a first negative power supply switch corresponding to the first positive power supply voltage and the first negative power supply voltage, and an Nth corresponding to the Nth positive power supply voltage and the Nth negative power supply voltage. It includes a positive power switch and an Nth negative power switch.
  • the comparison unit outputs a second control signal to an N-th control signal for turning on the corresponding sub-switch unit when the third detection signal is larger.
  • the sensing unit may further be configured to filter the switching signal to generate a filtering signal corresponding to the output signal, and then detect the filtering signal to output the third detection signal.
  • the linear power supply controller may further include a reference signal generator configured to generate the second to Nth reference signals.
  • the linear power supply controller may further include a power supply voltage generator configured to generate the first to Nth linear power supply voltages.
  • the linear power supply control unit may be configured to include a switch unit and an offset unit.
  • the switch unit outputs the linear power supply voltage in a manner of switching and transferring the first linear power supply voltage to the N-th linear power supply voltage.
  • the offset unit uses the predetermined offset voltage to switch the first linear power supply voltage to the Nth linear power supply voltage so that the first linear power supply voltage to the Nth linear power supply voltage are transmitted when the output voltage is out of the threshold voltage range. To control.
  • the switch unit may include: a first sub switch unit configured to switch the first linear power supply voltage and to deliver the switch; and a second sub switch switching and transferring the second linear power supply voltage to the Nth linear power supply voltage in response to the offset voltage. Part to N-th sub-switch part.
  • first sub-switch portion to the N-th sub-switch portion is preferably connected to each other in a cascade manner.
  • the first linear power supply voltage to the N-th linear power supply voltage may each include a first positive power supply voltage and a first negative power supply voltage having the same level, and an Nth positive power supply voltage and an Nth negative power supply voltage having the same level.
  • the sub-switch part to the N-th sub-switch part correspond to the first positive power supply voltage and the first negative power supply voltage and the first negative power supply switch and the first negative power supply switch to the Nth positive power supply voltage and the Nth negative power supply voltage respectively.
  • a switch and an Nth negative power switch may be used to the Nth negative power supply voltage.
  • N is preferably two or more.
  • the multi-power mixed amplifier according to the fourth embodiment of the present invention for achieving the above technical problem includes a linear amplifier unit, a switching amplifier unit, and a linear power supply control unit.
  • the linear amplifier unit amplifies the input signal and outputs a linear current so that the input signal and the feedback signal feedback the output signal are the same.
  • the switching amplifier unit switches the first switching power supply voltage to the Nth switching power supply voltage according to the first sensing signal generated by sensing the linear current and the second sensing signal generated by sensing the output signal, and transmits the switching signal. And outputs an output signal by filtering the switching signal.
  • the linear power controller controls the linear power voltage applied to the linear amplifier unit in response to the third detection signal generated by sensing the output signal.
  • the switching amplifier unit may include a first detector, a second detector, a comparator, a gate driver, a switch, and a filter.
  • the first sensing unit senses the linear current and outputs the first sensing signal.
  • the second sensing unit senses the output signal and outputs the second sensing signal.
  • the comparator compares the first sensing signal with the first reference signal to output a first control signal, and compares the second sensing signal with the second reference signal to the Nth reference signal to compare the second control signal to the Nth control signal.
  • the gate driver outputs a first drive control signal to an Nth drive control signal in response to the first control signal to the Nth control signal.
  • the switch unit outputs the switching signal in a manner of switching and transferring the first switching power supply voltage to the Nth switching power supply voltage in response to the first driving control signal to the Nth driving control signal.
  • the filter unit filters the switching signal and outputs the output signal.
  • the multi-power mixed amplifier according to the fifth embodiment of the present invention for achieving the above technical problem includes a linear amplifier unit, a switching amplifier unit, and a linear power supply control unit.
  • the linear amplifier unit amplifies the input signal and outputs a linear current so that the input signal and the feedback signal feedback the output signal are the same.
  • the switching amplifier unit generates a switching signal by switching the first switching power supply voltage to the Nth switching power supply voltage according to the first sensing signal generated by sensing the linear current, and filters the switching signal to generate an output signal.
  • Output The linear power controller controls the linear power voltage applied to the linear amplifier unit in response to the third detection signal generated by sensing the output signal.
  • the switching amplifier unit may include a detector, a comparator, a gate driver, a switch, and a filter.
  • the sensing unit senses the linear current and outputs a detection signal.
  • the comparator compares the detection signal with the first reference signal to the Nth reference signal and outputs the first control signal to the Nth control signal.
  • the gate driver outputs a first drive control signal to an Nth drive control signal in response to the first control signal to the Nth control signal.
  • the switch unit outputs the switching signal in a manner of switching and transferring the first switching power supply voltage to the Nth switching power supply voltage in response to the first driving control signal to the Nth driving control signal.
  • the filter unit filters the switching signal and outputs the output signal.
  • the switching amplifier according to the sixth embodiment of the present invention for achieving the above technical problem includes a first sensing unit, a second sensing unit, a comparator, a gate driver, a switch unit, and a filter unit.
  • the first sensing unit senses an input signal and outputs a first sensing signal.
  • the second sensing unit senses the output signal and outputs a second sensing signal.
  • the comparator compares the first sensing signal with the first reference signal to output a first control signal, and compares the second sensing signal with the second reference signal to the Nth reference signal to compare the second control signal to the Nth control signal.
  • the gate driver outputs a first driving control signal to an Nth driving control signal in response to the first control signal to the Nth control signal.
  • the switch unit outputs a switching signal in a manner of switching and transferring the first power source voltage to the Nth power source voltage in response to the first drive control signal to the Nth drive control signal.
  • the filter unit filters the switching signal and outputs the output signal.
  • the multi-power hybrid amplifier according to the present invention can improve efficiency by reducing the loss of the linear amplifier by varying the power supplied to the multi-power hybrid amplifier according to the magnitude of the output voltage using the multi-power. There is an advantage.
  • 1 is a configuration diagram of a switching amplifier.
  • FIG. 2 is a block diagram of a hybrid amplifier.
  • 3 is an operating waveform at each stage of the hybrid amplifier.
  • FIG. 5 is a configuration diagram of a multi-power hybrid amplifier according to a first embodiment of the present invention.
  • FIG. 6 is a detailed configuration diagram of the multi-power hybrid amplifier of FIG. 5.
  • FIG. 7 is an exemplary circuit diagram of a first embodiment in which a power supply voltage is supplied in two stages.
  • FIG. 8 is an exemplary circuit diagram of a level detector and a tilt detector of the second detector.
  • FIG. 9 is an operating waveform for a signal at each stage of the multiple power mixer type amplifier of FIG. 7 when the output frequency is a typical band at the audible frequency.
  • FIG. 10 is an operating waveform of a signal at each stage of the multi-power mixed amplifier of FIG. 7 when the output frequency is several kHz or more and 10 kHz or less.
  • FIG. 11 is an operating waveform of a signal at each stage of the multiple power mixed amplifier of FIG. 7 when the output frequency is high in the vicinity of 20 kHz.
  • FIG. 12 is a block diagram of a multi-power hybrid amplifier according to a second embodiment of the present invention.
  • FIG. 13 is a configuration diagram of another embodiment of the multi-power mixed amplifier according to the second embodiment of the present invention.
  • FIG. 14 is a detailed block diagram of the multi-power hybrid amplifier of FIG. 12.
  • FIG. 15 is a switching waveform at each stage according to the magnitude of the output level in the circuit diagram shown in FIG. 14 when the output voltage is within a range of ⁇ Vdd1.
  • FIG. 16 is a switching waveform at each stage according to the magnitude of the output level in the circuit diagram shown in FIG. 14 when the output voltage exceeds + Vdd1.
  • 17 is a switching waveform at each stage according to the magnitude of the output level in the circuit diagram shown in FIG. 14 when the output voltage exceeds -Vdd1 in the downward direction.
  • FIG. 18 is a configuration diagram of a multi-power hybrid amplifier according to a third embodiment of the present invention.
  • FIG. 19 is a detailed block diagram of the multi-power hybrid amplifier of FIG. 18.
  • 20 is an exemplary circuit diagram of a multi-power mixed amplifier according to a third embodiment of the present invention.
  • 21 is an operating waveform at each stage of the circuit of FIG.
  • FIG. 22 shows operational waveforms between the circuits of FIG.
  • Fig. 23 is a circuit diagram of another example of the third embodiment of the present invention.
  • 24 is a configuration diagram of a multi-power mixed amplifier according to a fourth embodiment of the present invention.
  • 25 is a configuration diagram of a multi-power mixed amplifier according to a fifth embodiment of the present invention.
  • 26 is a configuration diagram of a switching amplifier to which the present invention is applied.
  • Equation 1 Since the loss of a multi-supply mixed amplifier is mostly caused by the inefficient linear amplifier, the loss in the linear amplifier must be reduced to improve the efficiency by reducing the loss.
  • the loss of the linear amplifier is given by Equation 1.
  • Vaa is a power supply voltage supplied to the linear amplifier
  • Iav is a bias current flowing in the linear amplifier, which is equal to the average of the absolute values of the linear current Ia output from the linear amplifier to the speaker.
  • the linear current Ia is only inverted in phase with the switching current Id, the magnitude is the same. Therefore, when the bias current Iav is obtained using the switching current Id, Equation 2 is obtained.
  • Vdd is a power supply voltage supplied to the switching amplifier and is equal to the voltage across the inductor L constituting the filter unit included in the switching amplifier
  • ⁇ t is a time when the voltage is applied to the inductor and the half period of the switching frequency same.
  • the present invention by varying at least one of the power supply voltage (Vaa) of the linear amplifier portion or the power supply voltage (Vdd) of the switching amplifier portion according to the output loss of the linear amplifier portion during the idle period or low output without an input signal Can be reduced.
  • the present invention can be implemented in the first to fifth embodiments according to the method of controlling the power supply voltage.
  • the first and second embodiments are implemented in a form of varying the power supply voltage Vdd applied to the switching amplifier
  • the third embodiment is a form of varying the power supply voltage Vaa applied to the linear amplifier.
  • the fourth embodiment and the fifth embodiment combine the first embodiment, the second embodiment, and the third embodiment to vary the power supply voltage Vdd of the switching amplifier and the power supply voltage Vaa of the linear amplifier. It is implemented in the form of. Each embodiment is explained in full detail.
  • FIG. 5 is a configuration diagram of a multi-power hybrid amplifier according to a first embodiment of the present invention.
  • the voltage lower than the reference level is greater than the switching amplifier. The method of applying the power supply voltage is used.
  • the multi-power mixed amplifier 500 includes a linear amplifier unit, a first sensing unit 520, a second sensing unit 570, a comparator 530, a gate driver 540, and a switch unit 550. ), And a filter unit 560.
  • the linear amplifier unit includes a linear amplifier 510 and a feedback unit 590.
  • the linear amplifier unit amplifies an input signal to output a linear current so that the input signal is the same as the feedback signal feedbacking the output signal Vo.
  • the first sensing unit 520 detects the output current of the linear amplifier 510 (that is, the linear current output from the linear amplifier 510) to generate a first sensing signal, and compares the first sensing signal with the comparator ( 530).
  • the second detection unit 570 detects an output signal Vo (that is, an output voltage) output from the filter unit 560 to the speaker load 595, generates a second detection signal, and generates a second detection signal. Output to the comparator 530.
  • the comparator 530 outputs the first control signal by comparing the first sensing signal with the first reference signal, and compares the second reference signal to the Nth reference signal corresponding to the second sensing signal to the second control signal.
  • the Nth control signal is output.
  • the gate driver 540 outputs a corresponding first drive control signal to N-th drive control signal in response to the first control signal to the N-th control signal.
  • the switch unit 550 outputs the switching signal in a manner of switching and transmitting the corresponding first power source voltage to the Nth power source voltage in response to the first driving control signal to the Nth driving control signal.
  • the filter unit 560 filters the switching signal and outputs an output signal.
  • FIG. 6 is a detailed configuration diagram of the multi-power hybrid amplifier of FIG. 5.
  • the multi-power mixed amplifier 500 reduces the loss in the linear amplifier 510 in a manner of switching and transmitting power voltages divided into N stages according to the output voltage Vo. Improve the efficiency of the amplifier.
  • the comparator 530, the gate driver 540, and the switch unit 550 may also be formed in N stages so as to correspond to the power supply voltages. In the following, unless otherwise specified, components and signals having the same sub-number will operate correspondingly.
  • the comparison unit 530 includes first sub comparing unit 530_1 to N-th sub comparing unit 530_N.
  • the first sub comparing unit 530_1 compares the first detection signal with the first reference signal and outputs a first control signal.
  • the first sub comparator 530_1 has the same function as the comparator in the conventional hybrid amplifier, and therefore, the first reference signal is preferably a hysteresis voltage peaked inside the first sub comparator 530_1.
  • the second sub comparing unit 530_2 to the Nth sub comparing unit 530_N compares the second sensing signal with the second reference level signal Vr2 to the Nth reference level signal Vrn to compare the second control signal to the Nth. Output a control signal.
  • the comparator 530 outputs a first control signal to an N-th control signal for turning on the corresponding sub switch units 550_1 to 550_N when the first detection signal and the second detection signal are larger. That is, the second sub comparing unit 530_2 to the N th sub comparing unit 530_N compare the second sensing signal and the second reference signal Vr2 to the Nth reference signal Vrn, respectively. When the second reference signal Vr2 to the N th reference signal Vrn is exceeded, the sub switch parts 550_2 to 550_N corresponding to the sub comparison parts 530_2 to 530_N are supplied to the first switch part in a turn-on manner. The power supply voltage is regulated.
  • the Nth sub-switch part 550_N should be turned on.
  • the N-th western comparison part 530_N is the Nth sub-switch part.
  • the N-th control signal for turning on 550_N is output.
  • the second detection signal may include at least one of a level detection signal corresponding to the level of the output signal Vo and a slope detection signal corresponding to the slope of the output signal Vo.
  • the second detector 570 further detects the slope of the output voltage Vo in addition to detecting the level of the output voltage Vo. You may.
  • the second detection unit 570 may include a level detection unit 571 that detects a level of an output signal and outputs the level detection signal, and a tilt detection unit that detects a slope of the output signal and outputs a tilt detection signal ( 573).
  • the second sub comparing unit 530_2 to the N-th sub comparing unit 530_N may compare at least one of the level detection signal and the slope detection signal with the second reference signal Vr2 to the Nth reference signal Vrn, respectively.
  • the level detection signal and the slope detection signal may be compared with a reference signal having the same value, or may be compared with a reference signal having a different value.
  • the second reference signal Vr2 to the Nth reference signal Vrn may include the second reference level signal, the Nth reference level signal, and the second reference slope signal to the Nth reference slope signal, respectively.
  • the second sub-comparison unit 530_2 to the N-th sub-comparison unit 530_N compare the level detection signal with the corresponding second reference level signal to the Nth reference level signal, respectively, and the slope reference signal corresponds to the second reference slope. The signal is compared with the N-th reference gradient signal.
  • the corresponding reference level signal and the reference slope signal may be the same or different in magnitude.
  • the switch unit 550 corresponds to the second power source voltage to the Nth power source in response to the second drive control signal to the Nth drive control signal corresponding to the second comparison unit to the Nth comparison unit from the second sensing unit.
  • the second sub switch unit 550_2 to the Nth sub switch unit 550_N for switching the first power supply voltage and transferring the first power supply voltage to the first switch unit;
  • a first switch unit for switching to a power supply voltage supplied from the second switch unit to the Nth switch unit in response to the first drive control signal from the first comparison unit.
  • the second sub-switch unit 550_2 to the N-th sub-switch unit 550_N may be connected to each other in a cascade manner, or may be connected in parallel to each other to supply a power voltage to the first switch unit. have.
  • the second sensing unit 570 may sense the switching signal Vd and output the second sensing signal. That is, the voltage sensed by the second detector 570 in the filter unit 560 may be an output voltage Vo output to the speaker load 595 connected to the rear end of the filter unit 560, or the switch unit 550. In some embodiments, the switching voltage Vd may be applied to the front end of the filter unit 560. When the voltage detected by the second detector 570 is the switching voltage Vd, the second detector 570 low-pass filters the switching voltage Vd to the output voltage Vo. The corresponding voltage will be obtained.
  • the multi-power mixed amplifier may further include a reference signal generator 535 for generating second reference signals Vr2 to Nth reference signals Vrn, and reference signals.
  • the generator 535 includes a second sub reference signal generator 535_2 for generating a second reference signal Vr2, and an N-th sub reference signal generator 535_N for generating an N th reference signal Vrn. do.
  • the reference signal generated by the reference level generator 535 may include a level reference signal and a slope reference signal having different values with respect to the level detection signal and the slope detection signal, and the level reference signal and the slope of the same value. It may also include a reference signal.
  • the multi-power hybrid amplifier may further include a power supply voltage generator 580 for generating the first to Nth power supply voltages.
  • N is preferably 2 or more.
  • the first power source voltage to the Nth power source voltage may include the first positive power source voltage and the first negative power source voltage and the first negative power source voltage to the same level as the Nth positive power source voltage and the Nth negative power source voltage, respectively.
  • the first sub-switch part 550_1 to the N-th sub-switch part 550_N each include a first positive power supply switch and a first negative power supply switch corresponding to the first positive power supply voltage and the first negative power supply voltage, respectively, to the Nth positive power supply.
  • an Nth positive power switch and an Nth negative power switch corresponding to the voltage and the Nth negative power supply voltage.
  • the first switch unit includes a first positive power switch M1 and a first negative power switch M2, and includes a first positive power supply voltage (+ Vdd1) and a first positive power supply from the power supply unit 580 through the switches S1 and S2.
  • the negative power supply voltage (-Vdd1) is supplied.
  • the second switch unit includes a second positive power switch M3 and a second negative power switch M4 and receives a second positive power supply voltage (+ Vdd2) and a second negative power supply voltage (-Vdd2) from the power supply unit.
  • the absolute value of the second positive power supply voltage (+ Vdd2) and the second negative power supply voltage (-Vdd2) is preferably larger than the absolute value of the first positive power supply voltage and the first negative power supply voltage (+ Vdd1 and -Vdd1).
  • the first comparator 730_1 generates a switching waveform with hysteresis in accordance with the output signal (ie, the linear current Ia) of the linear amplifier 710 like the comparator of the conventional hybrid amplifier.
  • the second comparators 730_21 and 730_22 output control signals for controlling on / off of the second switch unit according to the level detection signal and / or the slope detection signal of the second detection signal.
  • the second comparison units 730_21 and 730_22 output control signals for controlling the second positive power switch M3 and the second negative power switch M4, respectively.
  • the second detection unit 770 detects the level of the output voltage Vo from the filter unit 760 and the slope detection signal Vslope which detects the slope of the output voltage Vo.
  • the second comparison unit 730_21 and 730_22 may compare the positive reference level Vr + and the negative reference level Vr ⁇ generated by the reference level generator 735 with the level detection signal Vo.sen and the slope detection signal Vslope. Compare.
  • the second comparison unit 730_21, 730_22 Outputs a control signal for turning on the corresponding second positive power switch M3 or the second negative power switch M4, and thus is absolute than the first positive power supply voltage and the first negative power supply voltage (+ Vdd1 and -Vdd1).
  • the second positive power supply voltage (+ Vdd2) and the second negative power supply voltage (-Vdd2) having larger magnitudes of + Vdd2 and -Vdd2 are supplied to the first switch unit.
  • FIG. 7 illustrates a configuration in which the level detection signal Vo.sen and the slope detection signal Vslope of the second detection unit 770 are compared with the same reference level Vr in the second comparison units 730_21 and 730_22. It is. However, in the first embodiment of the present invention, although the level detection signal Vo.sen and the slope detection signal Vslope of the second detection unit are compared with the same reference level Vr, the level detection signal Vo.sen is shown. And the slope detection signal Vslope may be compared with respect to different reference levels.
  • FIG. 8 is an exemplary circuit diagram of a level detector and a tilt detector of the second detector.
  • the level detector is implemented as a resistor distribution circuit
  • the slope detector is implemented as a differential circuit using a resistor R and a capacitor C.
  • the tilt detection unit may implement a differential circuit using an operational amplifier, and those skilled in the art may make various modifications.
  • FIG. 9 is a case where the output frequency is a typical band at an audible frequency. Typically, this band corresponds to a band of 1 kHz or several kHz or less.
  • the reference voltage for varying the power supply voltage applied to the switch unit 550 is set to the positive threshold voltage (Vth +) and the negative threshold voltage (Vth-) for positive and negative and correspondingly the reference voltage is positive reference voltage (Vr +) Assume that they are set to and the negative reference voltage (Vr-), respectively.
  • the level sensing signal Vo.sen that detects the output voltage Vo is also the positive reference voltage Vr + and the negative reference.
  • the voltage is present between the voltages Vr ⁇ so that the second switch unit 550_2 is turned off and the switching voltage Vd is switched to a size of ⁇ Vdd1.
  • the ripple component of the switching current Id and the linear current Ia are reduced, so that the loss of the linear amplifier 510 is reduced.
  • the level detecting signal Vo. Sen in the second comparison unit 530_2 is also referred to as the positive reference level Vr + or the like.
  • the negative reference level Vr- is exceeded (corresponding to A to B or C to D in FIG. 9), and the high level is supplied to the gate voltage HH-G or LL-G of the second switch unit 550_2. (See Figure 9). Accordingly, the second switch unit 550_2 is turned on so that ⁇ Vdd2 is supplied to the first switch unit 550_1, which may be output with an amplitude greater than ⁇ Vdd1.
  • Figure 9 is a case for the low range of several kHz or less, in this case, since the slope of the output signal Vo is not large, the second switch unit 550_2 due to the slope detection signal Vslope will not be turned on.
  • ⁇ Vdd2 larger than ⁇ Vdd1 may be supplied to the first switch unit 550_1 to increase the current of the switching amplifier faster.
  • 11 is a waveform corresponding to the case where the output frequency is a high range around 20kHz.
  • the slope of the output signal Vo is steep, so the current must be generated quickly. Therefore, when the slope detection signal Vslope of the output signal Vo is turned on, the second switch unit 550_2 is turned on, thereby rapidly increasing or decreasing the current of the switching amplifier.
  • the second embodiment of the present invention controls the switch unit using only the first detection unit that detects the output current of the linear amplifier.
  • 12 is a block diagram of a multi-power hybrid amplifier according to a second embodiment of the present invention.
  • the multi-power mixed amplifier 1200 includes a linear amplifier, a detector 1220, a comparator 1230, a gate driver 1240, a switch 1250, and a filter 1260.
  • the detector 1220 detects the linear current Ia output from the linear amplifier 1210 and outputs a detection signal.
  • the comparator 1230 compares the sensing signal with the first reference signals to the N th reference signals and outputs corresponding first to N th control signals.
  • the gate driver 1240 outputs the first driving control signal to the Nth driving control signal in response to the first control signal to the Nth control signal.
  • the switch unit 1250 outputs a switching signal in a manner of switching and transferring the first power source voltage to the Nth power source voltage in response to the first driving control signal to the Nth driving control signal.
  • the filter unit 1260 filters the switching signal and outputs an output signal.
  • the comparison unit 1230 compares the sensing signal with the first reference signals to the Nth reference signals, and outputs the first control signals to the Nth control signals, respectively, and outputs the first control signals to the Nth control signals, respectively. ).
  • the detection signal is transmitted to the first sub comparing unit 1230_1 to the Nth sub comparing unit 1230_N included in the comparing unit 1230.
  • the first reference signal to the Nth reference signal are hysteresis voltages set for each of the first sub-comparison part 1230_1 to the N-th sub-comparison part 1230_N. At this time, each hysteresis voltage amplitude may be set identically or differently.
  • the comparator 1230 outputs the first control signal to the Nth control signal for turning on the sub-switch part according to the magnitude of the detection signal.
  • the switch unit 1250 is the first sub-switch unit 1250_1 to the N-th sub-switch unit for switching and transmitting the first power source voltage to the Nth power source voltage in response to the first drive control signal to the Nth drive control signal. (1250_N). As shown in FIG. 12, the first sub switch unit 1250_1 to the Nth sub switch unit 1250_N may be connected to the filter unit 1260 in parallel.
  • FIG. 13 is a configuration diagram of another embodiment of the multi-power hybrid amplifier according to the second embodiment of the present invention, wherein the first sub-switch part 1250_1 to the N-th sub-switch part 1250_N are cascaded. May be connected.
  • the multi-power mixed amplifier 1260 may further include a power supply voltage generator 1270 for generating a first power supply voltage to an Nth power supply voltage.
  • the first to Nth power voltages of different levels generated by the power supply voltage generator 1270 are supplied to the first sub switch unit 1250_1 to the Nth sub switch unit 1250_N.
  • N is preferably 2 or more.
  • the first power supply voltage to the N-th power supply voltage includes the first positive power supply voltage and the second negative power supply voltage and the same level of the N-th positive power supply voltage and the N-th negative power supply voltage, respectively, the first sub-switch unit ( 1250_1) to Nth sub-switch part 1250_N correspond to the first positive power switch and the first negative power switch corresponding to the first positive power supply voltage and the first negative power supply voltage, respectively, to the Nth positive power supply voltage and the Nth negative power supply voltage. And an Nth positive power switch and an Nth negative power switch.
  • the multi-power hybrid amplifier of FIG. 12 will be described with reference to FIG. 14.
  • FIG. 14 is a detailed configuration diagram of the multi-power hybrid amplifier of FIG. 12.
  • the first switch unit includes a first positive power switch M1 and a first negative power switch M2, and the first positive power voltage (+) from the power supply unit 1470 through the switches S1 and S2.
  • Vdd1) and the first negative power supply voltage (-Vdd1) are supplied.
  • the second switch unit includes a second positive power switch M3 and a second negative power switch M4, and has an absolute value greater than the first positive power supply voltage (+ Vdd1) and the first negative power supply voltage (-Vdd1) from the power supply.
  • the second positive power supply voltage (+ Vdd2) and the second negative power supply voltage (-Vdd2) are supplied.
  • the first comparator 1430 has a hysteresis voltage C + with a positive and negative symmetry around the base potential, like the comparator of a conventional hybrid amplifier, and according to the linear current Ia of the linear amplifier 1410.
  • a first control signal for controlling the switch unit is output.
  • the second comparison unit outputs a control signal for controlling the second positive voltage switch M3, and the second comparison unit outputs a control signal for controlling the negative voltage switch M4 ( ⁇ ). ).
  • the hysteresis voltages H + and L + of the second comparator are set such that their DC voltages are shifted in the positive or negative direction, respectively, so that the output voltage Vo is within the power supply voltage ⁇ Vdd1 range.
  • the switching level of the switching voltage Vd becomes ⁇ Vdd1.
  • the amplitude is reduced and the ripple component Ia of the switching current Id is small, thereby reducing the power loss.
  • the second switch part When the output voltage Vo is out of the range of the power supply voltage ⁇ Vdd1, the range of the linear current and the detection signal Vsen is outside the hysteresis range of the first comparator and the hysteresis voltage H + of the second comparator (+) or zero.
  • the second switch part When reaching the level of the hysteresis voltage L + of the second comparison part (-), the second switch part is turned on accordingly to switch the switching voltage to a level of + Vdd2 or -Vdd2.
  • the power switches S1 and S2 function to supply the power voltages + Vdd1 and -Vdd1 to the first switch unit, and the gate voltages of the power switches S1 and S2 are each of the two power switches M3 of the second switch unit. And when the inverted voltage of the gate voltage of the negative power switch M4 is applied to each other so that S1 is turned off in a section where M3 is turned on and S2 is turned off in a section where M4 is turned on, the switching voltage Vd reaches + Vdd2 or -Vdd2. Allow to ascend or descend.
  • FIG. 15 to 17 are switching waveforms at each stage according to the magnitude of the output level in the circuit diagram shown in FIG. 14.
  • FIG. 15 is a waveform when the output voltage is within a range of ⁇ Vdd1.
  • the switching operation occurs only in the first comparator and the first switch part, and The second switch part corresponding thereto is turned off. Therefore, the switching voltage Vd is switched to ⁇ Vdd1 to reduce the ripple current and the linear current Ia, thereby reducing the loss of the linear amplifier.
  • Fig. 16 is a waveform when the output voltage exceeds + Vdd1.
  • the level detection signal Vsen sensing the linear current Ia is also hysteresis C + of the first comparison unit. Outside of the range of), the second comparison unit (+) and the second positive power switch M3 corresponding thereto are turned on.
  • the second positive power switch M3 of the second switch unit When the second positive power switch M3 of the second switch unit is turned on, the linear current Ia decreases, and when the hysteresis H + of the second comparison unit + is reached, the second positive power switch M3 is turned off and the linear current (Ia) increases again and the second positive power switch M3 is turned on again.
  • the first positive power switch M1 of the first switch unit maintains the turn-on state and the positive power switch M3 of the second switch unit performs a switching operation in a section in which the output voltage is greater than + Vdd1.
  • the switching voltage Vd switches from + Vdd1 to + Vdd2 instead of -Vdd1, so that the switching amplitude is kept small so that the ripple component of the switching current Id is maintained even when the power supply voltage increases from + Vdd1 to + Vdd2.
  • FIG. 17 is a waveform when the output voltage exceeds -Vdd1 in the downward direction, which is opposite to FIG.
  • the level detection signal Vsen that detects the linear current Ia is also suppressed.
  • the first comparator's hysteresis C + is out of the range, and the second comparator (-) and the second negative power switch M4 corresponding thereto are turned on.
  • the second negative power switch M4 of the second switch unit is turned on, the linear current Ia increases to reach the hysteresis L + of the second comparison unit ( ⁇ ), and the second negative power switch M4 is turned on.
  • the present invention reduces the loss of the linear amplification unit in the idle state or low output state without an input signal by varying at least one of the power supply voltage Vaa of the linear amplification unit or the power supply voltage Vdd of the switching amplification unit according to the output.
  • the first and second embodiments vary the power supply voltage Vdd applied to the switching amplifier
  • the third embodiment varies the power supply voltage Vaa applied to the linear amplifier. It features. In the third embodiment, since the level of the output voltage is sensed by the filter unit and the power supply voltage applied to the linear amplifier unit is adjusted according to the magnitude of the level, it can be seen that the configuration is similar to the first embodiment of the present invention.
  • FIG. 18 is a configuration diagram of a multi-power hybrid amplifier according to a third embodiment of the present invention. As shown in FIG. 18, the third embodiment of the present invention is linear according to the third sensing unit 1850 for sensing the level of the output voltage Vo from the filter unit 1839 and the signal detected by the sensing unit. A configuration of varying the power input to the amplifier section is used.
  • the multi-power mixed amplifier 1800 includes a linear amplifier unit 1810, a switching amplifier unit 1830, and a linear power supply controller 1860.
  • the linear amplifier unit 1810 amplifies the input signal to output a linear current such that the input signal and the feedback signal feedbacking the output signal Vo are the same.
  • the switching amplifier unit 1830 generates a switching signal by switching the switching power supply voltage so that the first sensing signal generated by sensing the linear current is maintained within the range of the reference signal, and filters the switching signal to output the output signal. Since operations of the linear amplifier unit 1810 and the switching amplifier unit 1830 are similar to those of the conventional hybrid amplifier, detailed description thereof will be omitted.
  • the linear power controller controls the linear power voltage applied to the linear amplifier in response to the third sensing signal generated by sensing the output signal.
  • FIG. 19 the configuration of FIG. 18 will be described in detail with reference to FIG. 19.
  • FIG. 19 is a detailed block diagram of the multi-power hybrid amplifier of FIG. 18.
  • the linear power supply voltage divided into N stages is supplied to the switch unit 1875, and the switch unit 1875 corresponds to the first sub-switch unit 1875_1 of the N stage corresponding to the number of steps of the linear power supply voltage.
  • the comparison unit 1871 also includes N-th second sub-comparison unit 1871_2 to N-th sub-comparison unit 1187_N.
  • the linear power supply controller 1860 includes a detector 1850, a comparator 1871, a gate driver 1873, and a switch 1875.
  • the detector 1850 detects the output signal Vo and outputs a third detection signal.
  • the comparator 1871 compares the third sensing signal with the second reference signal to the Nth reference signal, and outputs the second control signal to the Nth control signal. At this time, the comparator 1871 outputs a second control signal to an Nth control signal for turning on the corresponding sub-switch part when the third detection signal is greater than at least one reference signal.
  • the gate driver 1873 may include a second drive control signal, an Nth drive control signal, and a third sensing signal for turning on the power source second switch unit or the power source N switch unit in response to the second control signal to the Nth control signal.
  • the first driving signal corresponding to the case smaller than the reference signal is output.
  • the switch unit 1875 switches and transmits the second linear power supply voltage to the Nth linear power supply voltage in response to the basic linear power supply voltage in response to the first driving control signal and the second driving control signal to the Nth driving control signal. Outputs the linear power supply voltage.
  • the comparison unit 1831 compares a third sensing signal with the second reference signals to the Nth reference signals, and outputs second control signals to Nth control signals, respectively, and compares the second sub-comparison unit 1187_2 to the Nth sub-comparison. Section 1187_N.
  • the switch unit 1875 includes first sub switch units 1875_1 to N-th sub switch units 1775_N.
  • the first sub switch unit 1875_1 to the Nth sub switch unit 1775_N switch and transmit the first linear power supply voltage to the Nth linear power supply voltage in response to the first drive control signal to the Nth drive control signal.
  • the first sub switch unit 1875_1 to the Nth sub switch unit 1775_N may be connected to each other in a cascade manner or may be connected in parallel to each other to supply a linear power supply voltage with a linear amplifier.
  • the first linear power supply voltage to the Nth linear power supply voltage each include a first positive power supply voltage and a first negative power supply voltage having the same level, and a Nth positive power supply voltage and an Nth negative power supply voltage having the same level, and the first sub-switch.
  • the first through Nth sub-switches include a first positive power switch corresponding to the first positive power supply voltage and a first negative power supply voltage, a first negative power supply switch and a first negative power supply switch corresponding to the Nth positive power supply voltage and the Nth negative power supply voltage, respectively. N-th negative power switch.
  • the detector 1850 may further be configured to filter the switching signal to generate a filtering signal corresponding to the output signal, and then detect the filtering signal to output the third detection signal.
  • the linear power supply controller 1860 may further include a reference signal generator 1877 for generating the second to Nth reference signals.
  • the multi-power mixed amplifier 1800 of FIG. 18 may further include a power supply voltage generator 1890 for generating a first linear power supply voltage to an Nth linear power supply voltage, and the power supply voltage generator 1890 may include a switching amplifier unit. A switching power supply voltage supplied to 1830 may be generated.
  • FIG. 20 is an exemplary circuit diagram of a multi-power mixed amplifier according to a third exemplary embodiment of the present invention.
  • a power supply voltage applied to the linear amplifier is divided into two stages.
  • the first sub-switch part may be implemented with diodes D1 and D2.
  • the linear amplifier 2011 receives the first positive sub power supply voltage + Vaa1 and the first negative sub power supply voltage ⁇ Vaa1 having the magnitudes of + Vaa1 and ⁇ Vaa1 from the power supply 2090. Supplied via D1 and D2).
  • the second sub-switch part includes a positive power switch M3 and a negative power switch M4, and has a greater absolute value than the first positive sub power supply voltage (+ Vaa1) and the first negative sub power supply voltage (-Vaa1).
  • the two sub-power supply voltage (+ Vaa2) and the second negative sub-power supply voltage (-Vaa2) are supplied from the power supply unit.
  • the second comparison unit outputs a control signal for controlling the second sub switch unit.
  • the level sensing signal Vo. Sen at which the level of the output voltage Vo is sensed by the sensing unit 2050 is compared with the second reference signal Var + or Var ⁇ provided from the reference level generator in the second comparator. .
  • the second positive power switch M3 of the second switch unit is turned on to supply the second positive sub power supply voltage (+ Vaa2) to the linear amplifier 2011. Is supplied.
  • the second sound power switch M4 of the second switch unit is turned on to supply the second sound power supply voltage (-Vaa2) to the linear amplifier 2011. ) Is supplied.
  • the positive power switch or the negative power switch when the level detection signal Vo.sen is out of the range of the reference level, the positive power switch or the negative power switch is turned on so that the power voltage is changed from the first positive linear power supply voltage (+ Vaa1) to the second positive linear power supply voltage ( Only the case where the voltage increases to + Vaa2 or decreases from the first negative power supply voltage -Vaa1 to the second negative power supply voltage -Vaa2 is illustrated. However, in order to further reduce the loss, as shown by the thick dashed line in FIG. 21, the second positive power switch M3 is turned on so that the bilinear power supply voltage of the linear amplifier 2011 is changed from the first bilinear power supply voltage (+ Vaa1).
  • the first negative linear power supply voltage (-Vaa1) When it is changed to the second positive linear power supply voltage (+ Vaa2), the first negative linear power supply voltage (-Vaa1) is also raised to the base potential, or the negative power switch M4 is turned on so that the negative linear power supply of the linear amplification unit 2011 is turned on.
  • the voltage is changed from the first negative power supply voltage (-Vaa1) to the second negative power supply voltage (-Vaa2), in synchronization with this, the first two wire power supply voltage (+ Vaa1) is also lowered to the base potential or a similar potential. You may want to consider a lower configuration.
  • the linear power supply voltage of the linear amplification unit may be lowered to ⁇ Vaa1 lower than + Vaa2 in a pause state without an input signal or a low output condition with low output voltage. This reduces the losses in the linear amplifier and improves efficiency.
  • the linear power supply controller may be implemented in other forms. Another form of implementation is described below with reference to FIGS. 22-23.
  • the third embodiment of the present invention adjusts the power supply voltage of the linear amplification unit according to the output voltage, in the case where the output voltage Vo is out of the ranges of the threshold voltages Vth + and Vth ⁇ , the sections A to B or C to FIG. 21.
  • the power applied to the linear amplifier may be applied in the shape of a square wave varying from ⁇ Vaa1 to ⁇ Vaa2. In this case, however, a sudden change in the power supply may cause an oscillation due to a sudden change in the power supply voltage when the output transistor induces noise in the output amplifier or the phase loop of the feedback loop is insufficient.
  • the power applied to the linear amplification unit as shown in FIG. It is necessary to control the voltage (VA) to change smoothly at regular intervals from the output voltage (Vo).
  • the configuration shown in FIG. 23 is used, which is a modification of the basic configuration of the third embodiment shown in FIG.
  • FIG. 23 is a circuit diagram of another example of the third embodiment of the present invention, and FIG. 22 is an operating waveform between the circuits of FIG.
  • the linear power supply control unit may include a switch unit 2350 and an offset unit 2370.
  • the switch unit 2350 outputs a linear power supply voltage in a manner of switching and transferring the first linear power supply voltage to the N-th linear power supply voltage.
  • the offset unit 2370 uses a predetermined offset voltage so that when the output voltage is out of the threshold voltage range, a voltage obtained by adding a predetermined offset voltage to the output voltage is transferred from the second linear power supply voltage to the Nth linear power supply voltage to the linear amplifier unit. The switching of the first linear power supply voltage to the N-th linear power supply voltage is controlled.
  • the switch unit 2350 includes a first sub switch unit to an Nth sub switch unit.
  • the first sub-switch part to the N-th sub-switch part switch and transmit the first linear power supply voltage to the N-th linear power supply voltage in response to the offset voltage. It is preferable that the first sub-switch part to the N-th sub-switch part are connected to each other in a cascade manner.
  • the first linear power supply voltage to the Nth linear power supply voltage respectively include a first positive power supply voltage and a first negative power supply voltage having the same level, and a Nth positive power supply voltage and an Nth negative power supply voltage having the same level, respectively
  • the switch unit to the N-th sub-switch unit respectively include a first positive power switch and a first negative power switch corresponding to the first positive power supply voltage and the first negative power supply voltage, and an Nth positive power switch corresponding to the Nth positive power supply voltage and the Nth negative power supply voltage. And an Nth negative power switch.
  • the first sub-switch portions D1 and D2 are automatically turned off and the second sub-switch portion (that is, the power transistor Q3 or Q4). )) Is automatically conducted so that the sensing unit 1850 of FIG. 18 is not necessary in the circuit of FIG.
  • the interval between the output voltage Vo and the power supply voltage ( ⁇ VA) of the linear amplifier in the A to B section or the C to D section in which the output voltage Vo is outside the range of the threshold voltages Vth + and Vth- is shown in FIG.
  • the offset voltage of the illustrated (direct current) offset portion can be adjusted.
  • the negative power supply voltage (-VA) is also raised to the base potential level at -Vaa1 or the negative power supply.
  • the positive power supply voltage (+ VA) is lowered from + Vaa1 to the base potential level or similar potential in synchronism with the transistor Q4 conducting.
  • N is preferably 2 or more.
  • the loss of the linear amplification unit in the idle state or low output without an input signal can be reduced by changing at least one of the power supply voltage Vaa of the linear amplification unit or the power supply voltage Vdd of the switching amplification unit according to the output.
  • the first to third embodiments described above use a configuration in which one of the power supply voltage Vaa of the linear amplifier and the power supply voltage Vdd of the switching amplifier is varied according to the output, wherein the first and second embodiments are used.
  • An example uses a configuration for varying the power supply voltage Vdd applied to the switching amplifier
  • a third embodiment uses a configuration for varying the power supply voltage Vaa applied to the linear amplifier.
  • the power supply voltage Vdd of the switching amplifier and the power supply voltage Vaa of the linear amplifier are combined by combining the first or second embodiment and the third embodiment. ) Is used to vary the configuration together. By using this combined configuration, the loss of the linear amplification will be further reduced and the efficiency will be further improved.
  • FIG. 24 is a configuration diagram of a multi-power mixed amplifier according to a fourth embodiment of the present invention.
  • the present invention when the value is smaller than the reference level according to the level or slope of the output voltage Vo, the present invention employs a configuration in which a voltage lower than the reference level is applied to the power supply voltage of the switching amplifier.
  • the first embodiment of the present invention and the third embodiment of the present invention varying the power supply voltage Vaa applied to the linear amplification unit according to the level of the output voltage Vo. Therefore, since the structure and specific operation and function of the fourth embodiment of the present invention will be easily understood by those skilled in the art from the above descriptions of the first and third embodiments, a detailed description of the fourth embodiment will be omitted.
  • the third embodiment used in the fourth embodiment may be the configuration and operation shown in FIGS. 20 and 21, or may be the configuration and operation shown in FIGS. 22 and 23.
  • the fifth embodiment of the present invention is the second embodiment using the configuration of controlling the switch unit using only the signal sensed by the first sensing unit for sensing the output current of the linear amplification unit, and at the level of the output voltage Vo. Accordingly, the third embodiment employs a configuration in which the power supply voltage Vaa applied to the linear amplification unit is varied.
  • the second embodiment used in the fifth embodiment of the present invention may be the configuration shown in FIG. 12 in which the switch portion is connected in parallel to the filter portion, or may be the configuration shown in FIG. 13 connected in a cascade manner.
  • the third embodiment used in the fifth embodiment may be the configuration and operation shown in FIGS.
  • FIGS. 22 and 23 may be the configuration and operation shown in FIGS. 22 and 23.
  • the structure and specific operation and function of the fourth embodiment of the present invention will be easily understood by those skilled in the art from the above descriptions of the first and third embodiments, and thus the detailed description of the fourth embodiment will be omitted.
  • FIG. 26 is a configuration diagram of a switching amplifier to which the present invention is applied. As shown in FIG. 26, only the switching amplifier is separated and the idea of the present invention may be applied to the switching amplifier by varying the power supply voltage applied from the power supply according to the output voltage Vo.
  • Switching amplifiers have lower losses and higher efficiency than linear amplifiers, but if the power supply voltage is controlled according to the output, the switching amplifier can achieve higher efficiency and the ripple component included in the output voltage delivered to the speaker due to the smaller ripple current. As it becomes smaller, there is an advantage that the design of the filter part is relatively easy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Multimedia (AREA)
  • Amplifiers (AREA)

Abstract

다중 전원 혼합형 증폭기가 개시된다. 본 발명에 따른 다중 전원 혼합형 증폭기는 선형앰프부, 제1감지부, 제2감지부, 비교부, 게이트 구동부, 스위치부, 및 필터부를 포함한다. 선형앰프부는 입력신호와, 출력신호를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력한다. 제1감지부는 상기 선형전류를 감지하여 제1감지신호를 출력한다. 제2감지부는 상기 출력신호를 감지하여 제2감지신호를 출력한다. 비교부는 상기 제1감지신호와 제1기준신호를 비교하여 제1제어신호를 출력하고, 상기 제2감지신호와 제2기준신호 내지 제N기준신호를 비교하여 제2제어신호 내지 제N제어신호를 출력한다. 게이트 구동부는 상기 제1제어신호 내지 상기 제N제어신호에 응답하여 제1구동제어신호 내지 제N구동제어신호를 출력한다. 스위치부는 상기 제1구동제어신호 내지 제N구동제어신호에 응답하여, 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 방식으로 스위칭신호를 출력한다. 필터부는 상기 스위칭신호를 필터링하여 상기 출력신호를 출력한다. 본 발명에 따른 다중 전원 혼합형 증폭기는 다중 전원을 이용하여 출력전압의 크기에 따라 다중 전원 혼합형 증폭기에 공급되는 전원을 다르게 함으로써 선형증폭부의 손실을 줄여 효율을 개선할 수 있는 할 수 있는 장점이 있다.

Description

다중 전원 혼합형 증폭기
본 발명은 다중 전원 혼합형 증폭기에 관한 것으로서, 특히 다중 전원을 이용하여 출력전압의 크기에 따라 혼합형 증폭기에 공급되는 전원을 다르게 함으로써 효율을 개선할 수 있는 다중 전원 혼합형 증폭기에 관한 것이다.
음향증폭기는 음원을 증폭하여 출력할 때 뛰어난 선형성을 가져야 한다. 아날로그 타입의 선형증폭기는 출력에 왜곡이 적고 음원에 충실한 특성(고충실도 특성)을 가지며, 이러한 특성 덕분에 종래에는 아날로그 타입의 선형증폭기가 음향증폭기로 주로 사용되었다.
이러한 아날로그 타입의 선형증폭기는 출력 회로 구조와 바이어스 전류에 따라 A급, B급, AB급으로 분류될 수 있다. 그러나 아날로그 타입의 선형증폭기는 고충실도라는 장점을 갖는 반면, 효율이 좋지 않고 방열문제를 해결하기 위한 큰 방열판이 필요하기 때문에 무겁고 부피가 커지는 단점이 있다.
이러한 선형증폭기의 단점 때문에 스위칭 동작을 하는 스위칭증폭기(D급 증폭기)가 음향증폭기로 사용되기도 한다. 도 1은 스위칭증폭기의 구성도이다. 도 1에 도시된 바와 같이, 스위칭증폭기(100)는 출력단에 스위치부(140)와 필터부(150)를 포함한다. 스위치부(140)는 반도체 스위치로 구현될 수 있으며, 펄스 폭 변조(Pulse Width Modulateio: PWM) 동작을 수행한다. 필터부(150)는 인덕터와 커패시터로 이루어지는 LC 저역통과 필터로 구현될 수 있으며, 스위치부(140)에서 펄스 폭 변조된 신호를 저역통과 필터링하여 음향신호로 복원한다.
상술한 바와 같이, 스위칭증폭기는 펄스 폭 변조된 신호를 저역통과 필터링하여 음향신호로 복원하므로, 선형증폭기에 비해 에너지 효율이 월등히 우수한 장점을 갖는다. 그러나 D급 스위칭증폭기는 스위칭 동작에 기인하는 스위칭 왜곡으로 인해 선형증폭기에 비해 왜곡이 심하게 발생하고 이에 따라 음질이 저하되어, 결국 충실도가 떨어지는 단점이 있다.
선형증폭기와 스위칭증폭기의 단점을 극복하기 위해서, 선형증폭기와 스위칭증폭기를 결합한 혼합형 음향증폭기가 제안되었다. 혼합형 증폭기는 음질 측면에서는 선형증폭기의 고충실도 특성을 갖고, 효율 측면에서는 스위칭증폭기의 고효율 특성을 갖는다.
도 2는 혼합형 증폭기의 구성도이다. 혼합형 증폭기(200)는 독립 전압원으로 동작하는 선형증폭기와, 선형증폭기에 종속되는 종속 전류원 형태의 스위칭증폭기가 결합되는 구조를 갖는다. 이 때 스위칭증폭기는 선형증폭기의 출력전류(Ia)에 의하여 스위칭이 제어되는 방식으로 출력에 전류를 공급한다.
도 2를 참조하면, 선형증폭부(210)는 궤환부(270)를 통하여 출력신호가 궤환된 궤환신호와 입력신호가 같아지도록 입력신호를 증폭함으로써 출력에서의 왜곡을 감소시키는 기능을 한다. 감지부(220)는 선형증폭부(210)에서 출력되는 선형전류(Ia)를 감지하여 비교부(230)에 전달한다. 비교부(230)는 감지부(220)를 통하여 전송된 선형전류(Ia)의 정보를 이용하여 선형전류(Ia)가 소정의 범위를 넘지 않도록 하기 위한 제어신호를 출력한다.
게이트 구동부(240)는 비교부(230)로부터 제어신호를 수신하여 스위치부(250)를 구동시키기 위한 게이트 구동신호를 출력한다. 스위치부(250)는 하나 이상의 스위치를 포함하는데, 스위치부(250)의 스위치는 게이트구동신호에 따라 온-오프를 반복함으로써 펄스 폭이 변조된 구형파를 출력한다. 필터부(260)는 펄스 폭 변조된 구형파를 저역통과 필터링하여 가청주파수대의 출력신호를 복원한다.
도 3은 혼합형 증폭기의 각 단에서의 동작 파형이다. 먼저 선형증폭기(210)에서 출력으로 흐르는 선형전류(Ia)가 증가하기 시작하면, 선형전류(Ia)를 감지하여 출력되는 센싱전압(Vsen)도 선형전류(Ia)와 동일한 위상과 모양으로 증가하기 시작한다. 그 후 센싱전압(Vsen)의 값이 비교부(230)에 설정된 양의 히스테리시스 전압을 초과하면 비교부(240)의 출력은 하이에서 로우로 반전되고, 이에 따라 스위치부(250)의 하이측 스위치(M1)이 턴온되어 스위칭전류(Id)가 증가하기 시작한다.
한편 스위칭전류(Id)가 증가하기 시작하면, 선형전류(Ia)와 센싱전압(Vsen)은 감소하기 시작한다. 그 후 센싱전압(Vsen)이 비교부(230)에 설정된 음의 히스테리시스 전압보다 작아지면 비교부(230)의 출력이 로우에서 하이로 반전되며, 이에 따라 스위치부(250)의 로우측 스위치(M2)가 턴온되어 스위칭전압(Vd)이 하이에서 로우로 스위칭되면 스위칭전류(Id)가 감소하고 선형전류(Ia)와 센싱전압(Vsen)이 다시 비교부(230)의 양의 히스테리시스 전압까지 증가한다. 이러한 과정이 반복적으로 일어남으로써 스위칭증폭부(235)는 스위칭 동작을 반복한다. 즉 일반적인 D급 스위칭증폭기가 발진회로에 의하여 스위칭 동작을 하는 것과 달리, 도 2에 도시된 혼합형 증폭기는 상술한 과정을 거쳐 자려발진을 한다.
도 3에 도시된 바와 같이, 선형전류(Ia)는 스위칭전류(Id)의 리플성분과 크기는 같고 위상은 반대이므로, 선형전류(Ia)와 스위칭전류(Id)가 더해져서 스피커 부하(290)로 흐르는 출력전류(Io)는 스위칭 리플과 왜곡이 보상되며, 출력전류(Io)에서의 왜곡은 선형증폭기에서와 같이 작아지게 된다. 또한 선형전류(Ia)의 스위칭 리플의 크기는 비교부(230)에 설정된 히스테리시스 범위로 제한되고 출력전류(Io)의 대부분의 전류는 효율이 좋은 스위칭증폭부(215)에서 공급되므로, 효율은 스위칭증폭기에서와 같이 높아지게 된다.
도 4는 혼합형 증폭기의 실험파형이다. 사인파 형태의 출력전압(Vo)에 대하여 스위칭전류(Id)는 출력전류(Io)와 같은 사인파 형태이고, 선형전류(Ia)는 스위칭전류(Id)의 리플성분에 해당하는 전류만 포함하므로, 혼합형 증폭기는 선형증폭기에 비해 효율이 좋고 D급 스위칭증폭기에 비해 스위칭 왜곡이 보상되어 왜곡 특성이 향상되는 것을 알 수 있다.
그러나 혼합형 증폭기는 출력 레벨이 소정의 레벨 이상인 경우 선형증폭기에 비해 높은 효율을 가지나, 출력이 없는 휴지기나 저출력 시에도 혼합형 증폭기의 선형증폭부로부터 스위칭전류(Id)의 리플 성분에 해당하는 전류가 계속 흐르므로, 휴지기 또는 저출력 시 혼합형 증폭부에 포함되는 선형증폭부에서의 손실은 통상적인 선형증폭기에서의 손실보다 더 크고 효율은 더 낮아지게 된다. 즉 전원이 공급되고 대기시간이 긴 경우 혼합형 증폭기의 선형증폭부에서의 손실은 무시할 수 없고, 이에 따라 상대적으로 혼합형 증폭기의 전체효율도 낮아지게 된다.
본 발명이 이루고자하는 기술적 과제는 다중 전원을 이용하여 출력전압의 크기에 따라 혼합형 증폭기에 공급되는 전원을 다르게 함으로써 선형증폭부의 손실을 줄여 효율을 개선할 수 있는 다중 전원 혼합형 증폭기를 제공하는데 있다.
상기 기술적 과제를 달성하기 위한 본 발명의 제1실시예에 따른 다중 전원 혼합형 증폭기는 선형앰프부, 제1감지부, 제2감지부, 비교부, 게이트 구동부, 스위치부, 및 필터부를 포함한다. 선형앰프부는 입력신호와, 출력신호를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력한다. 제1감지부는 상기 선형전류를 감지하여 제1감지신호를 출력한다. 제2감지부는 상기 출력신호를 감지하여 제2감지신호를 출력한다. 비교부는 상기 제1감지신호와 제1기준신호를 비교하여 제1제어신호를 출력하고, 상기 제2감지신호와 제2기준신호 내지 제N기준신호를 비교하여 제2제어신호 내지 제N제어신호를 출력한다. 게이트 구동부는 상기 제1제어신호 내지 상기 제N제어신호에 응답하여 제1구동제어신호 내지 제N구동제어신호를 출력한다. 스위치부는 상기 제1구동제어신호 내지 제N구동제어신호에 응답하여, 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 방식으로 스위칭신호를 출력한다. 필터부는 상기 스위칭신호를 필터링하여 상기 출력신호를 출력한다.
이때, 상기 제2감지신호는 상기 출력신호의 레벨에 대응하는 레벨 감지신호와, 상기 출력신호의 기울기에 대응하는 기울기 감지신호 중 적어도 하나를 포함할 수 있으며, 상기 제2감지부는, 상기 출력신호의 레벨을 감지하여 상기 레벨 감지신호를 출력하는 레벨 감지부, 및 상기 출력신호의 기울기를 감지하여 상기 기울기 감지신호를 출력하는 기울기 감지부를 포함할 수 있다.
한편, 상기 비교부는 제1서브비교부 내지 제N서브비교부를 포함하며, 상기 제1서브비교부는 상기 제1감지신호와 상기 제1기준신호를 비교하여 상기 제1제어신호를 출력하고, 상기 제2서브비교부 내지 제N서브비교부는 상기 제2감지신호와 상기 제2기준신호 내지 상기 제N기준신호를 비교하여 상기 제2제어신호 내지 상기 제N제어신호를 출력한다.
또한, 상기 제2감지신호는 상기 출력신호의 레벨에 대응하는 레벨 감지신호와, 상기 출력신호의 기울기에 대응하는 기울기 감지신호를 포함하며, 상기 제2서브비교부 내지 제N서브비교부는 상기 레벨 감지신호와 상기 기울기 감지신호 중 적어도 하나를 상기 제2기준신호 내지 상기 제N기준신호와 비교한다.
또한, 상기 제2기준신호 내지 상기 제N기준신호는 각각 제2기준레벨신호와 제N기준기울기신호, 내지 제N 기준레벨신호 내지 제N기준기울기신호를 포함하며, 상기 제2서브비교부 내지 상기 제N서브비교부는 각각 상기 레벨 감지신호를 상기 제2기준레벨신호 내지 상기 제N기준레벨신호와 비교하고, 상기 기울기 감지신호를 대응하는 상기 제2기준기울기신호 내지 상기 제N기준기울기신호와 비교한다.
한편, 상기 스위치부는 상기 제1구동제어신호 내지 제N구동제어신호에 응답하여 상기 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 제1서브스위치부 내지 제N서브스위치부를 포함한다.
또한, 상기 제1서브스위치부 내지 제N서브스위치부는 서로 캐스케이드(casecade) 방식으로 연결되어 상기 필터부와 캐스케이드 방식으로 연결된다.
한편, 상기 제1전원전압 내지 제N전원전압은 각각 동일한 레벨의 제1양전원전압과 제1음전원전압 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함하며, 상기 제1서브스위치부 내지 제N서브스위치부는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함한다.
한편, 상기 비교부는, 상기 제1감지신호 및 제2감지신호가 더 큰 경우 대응하는 상기 서브스위치부를 턴온시키기 위한 제1제어신호 내지 제N제어신호를 출력한다.
한편, 상기 제2감지부는 상기 스위칭신호를 필터링하여 상기 출력신호에 대응하는 필터링신호를 발생한 후, 상기 필터링신호를 감지하여 상기 제2감지신호를 출력하도록 더 구성될 수 있다.
한편, 제1실시예에 따른 다중 전원 혼합형 증폭기는 상기 제2기준신호 내지 제N 기준신호를 발생하는 기준신호 발생부를 더 포함할 수 있다.
한편, 제1실시예에 따른 다중 전원 혼합형 증폭기는 상기 제1전원전압 내지 제N전원전압을 발생하는 전원전압 발생부를 더 포함할 수 있다.
한편, 제1실시예에서, 상기 N은 2 이상인 것이 바람직하다.
상기 기술적 과제를 달성하기 위한 본 발명의 제2실시예에 따른 다중 전원 혼합형 증폭기는 선형앰프부, 감지부, 비교부, 게이트 구동부, 스위치부, 및 필터부를 포함한다. 선형앰프부는 입력신호와, 출력신호를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력한다. 감지부는 상기 선형전류를 감지하여 감지신호를 출력한다. 비교부는 상기 감지신호와 제1기준신호 내지 제N기준신호를 비교하여 제1제어신호 내지 제N제어신호를 출력한다. 게이트 구동부는 상기 제1제어신호 내지 상기 제N제어신호에 응답하여 제1구동제어신호 내지 제N구동제어신호를 출력한다. 스위치부는 상기 제1구동제어신호 내지 제N구동제어신호에 응답하여, 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 방식으로 스위칭신호를 출력한다. 필터부는 상기 스위칭신호를 필터링하여 상기 출력신호를 출력하는 필터부를 포함한다.
한편, 상기 비교부는 상기 감지신호와 상기 제1기준신호 내지 제N기준신호를 비교하여 상기 제1제어신호 내지 상기 제N제어신호를 각각 출력하는 제1서브비교부 내지 제N서브비교부를 포함한다.
한편, 상기 스위치부는 상기 제1구동제어신호 내지 제N구동제어신호에 응답하여 상기 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 제1서브스위치부 내지 제N서브스위치부를 포함한다.
또한, 상기 제1서브스위치부 내지 제N서브스위치부는 서로 캐스케이드 방식으로 연결되어 상기 필터부와 캐스케이드 방식으로 연결되거나, 또는 상기 제1서브스위치부 내지 제N서브스위치부는 상기 필터부와 병렬로 연결될 수 있다.
또한, 상기 제1전원전압 내지 제N전원전압은 각각 동일한 레벨의 제1양전원전압과 제1음전원전압 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함하며, 상기 제1서브스위치부 내지 제N서브스위치부는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함한다.
한편, 상기 비교부는, 상기 감지신호가 더 큰 경우 대응하는 상기 서브스위치부를 턴온시키기 위한 제1제어신호 내지 제N제어신호를 출력한다.
한편 제2실시예에 따른 다중 전원 혼합형 증폭기는 상기 제1전원전압 내지 제N전원전압을 발생하는 전원전압 발생부를 더 포함할 수 있다.
한편, 제2실시예에서, 상기 N은 2 이상인 것이 바람직하다.
상기 기술적 과제를 달성하기 위한 본 발명의 제3실시예에 따른 다중 전원 혼합형 증폭기는 선형앰프부, 스위칭앰프부, 및 선형전원제어부를 포함한다. 선형앰프부는 입력신호와, 출력신호를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력한다. 스위칭앰프부는 상기 선형전류를 감지하여 생성된 제1감지신호가 기준신호의 범위 안에서 유지되도록 스위칭전원전압을 스위칭시켜 스위칭신호를 생성하고, 상기 스위칭신호를 필터링하여 출력신호를 출력한다. 선형전원제어부는 상기 출력신호를 감지하여 생성된 제3감지신호에 응답하여 상기 선형앰프부로 인가되는 선형전원전압을 제어한다.
한편, 상기 선형전원제어부는 감지부, 비교부, 게이트 구동부, 및 스위치부를 포함한다. 감지부는 상기 출력신호를 감지하여 상기 제2감지신호를 출력한다. 비교부는 상기 제3감지신호와 제2기준신호 내지 제N기준신호를 비교하여 제2제어신호 내지 제N제어신호를 출력한다. 게이트 구동부는 상기 제2제어신호 내지 상기 제N제어신호에 응답하여 제2구동제어신호 내지 제N구동제어신호를 출력한다. 전원스위치부는 상기 제2구동제어신호 내지 제N구동제어신호에 응답하여, 제1선형전원전압 내지 제N선형전원전압을 스위칭하여 방식으로 상기 선형전원전압을 출력한다.
또한, 상기 비교부는 상기 제3감지신호와 상기 제2기준신호 내지 제N기준신호를 비교하여 상기 제2제어신호 내지 상기 제N제어신호를 각각 출력하는 제2서브비교부 내지 제N서브비교부를 포함한다.
또한, 전원스위치부는, 상기 제1선형전원전압을 스위칭하여 전달하는 제1서브스위치부, 및 상기 제2구동제어신호 내지 제N구동제어신호에 응답하여 상기 제2선형전원전압 내지 제N선형전원전압을 스위칭하여 전달하는 제2서브스위치부 내지 제N서브스위치부를 포함한다.
이때, 상기 제1서브스위치부 내지 제N서브스위치부는 서로 캐스케이드 방식으로 연결되는 것이 바람직하다.
또한, 상기 제1선형전원전압 내지 제N선형전원전압은 각각 동일한 레벨의 제1양전원전압과 제1음전원전압 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함하며, 상기 제1서브스위치부 내지 제N서브스위치부는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치, 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함한다.
또한, 상기 비교부는, 상기 제3감지신호가 더 큰 경우 대응하는 상기 서브스위치부를 턴온시키기 위한 제2제어신호 내지 제N제어신호를 출력한다.
또한, 상기 감지부는 상기 스위칭신호를 필터링하여 상기 출력신호에 대응하는 필터링신호를 발생한 후, 상기 필터링신호를 감지하여 상기 제3감지신호를 출력하도록 더 구성될 수 있다.
또한, 상기 선형전원제어부는 상기 제2기준신호 내지 제N기준신호을 발생하는 기준신호 발생부를 더 포함할 수 있다.
또한, 상기 선형전원제어부는 상기 제1선형전원전압 내지 제N선형전원전압을 발생하는 전원전압 발생부를 더 포함할 수 있다.
한편, 본 발명의 제3실시예에서, 상기 선형전원제어부는 스위치부 및 오프셋부를 포함하도록 구성될 수도 있다. 스위치부는 제1선형전원전압 내지 제N선형전원전압을 스위칭하여 전달하는 방식으로 상기 선형전원전압을 출력한다. 오프셋부는 소정의 오프셋 전압을 이용하여, 상기 출력전압이 문턱전압범위를 벗어나는 경우 상기 제1선형전원전압 내지 제N선형전원전압이 전달되도록 상기 제1선형전원전압 내지 상기 제N선형전원전압의 스위칭을 제어한다.
또한, 상기 스위치부는, 상기 제1선형전원전압 스위칭하여 전달하는 제1서브스위치부, 및 상기 오프셋 전압에 응답하여 상기 제2선형전원전압 내지 제N선형전원전압을 스위칭하여 전달하는 제2서브스위치부 내지 제N서브스위치부를 포함한다.
또한 상기 제1서브스위치부 내지 제N서브스위치부는 서로 캐스케이드 방식으로 연결되는 것이 바람직하다.
또한, 상기 제1선형전원전압 내지 제N선형전원전압은 각각 동일한 레벨의 제1양전원전압과 제1음전원전압 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함하며, 상기 제1서브스위치부 내지 제N서브스위치부는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함한다.
한편, 본 발명의 제3실시예에서 N은 2 이상인 것이 바람직하다.
상기 기술적 과제를 달성하기 위한 본 발명의 제4실시예에 따른 다중 전원 혼합형 증폭기는 선형앰프부, 스위칭앰프부, 및 선형전원제어부를 포함한다. 선형앰프부는 입력신호와, 출력신호를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력한다. 스위칭앰프부는 상기 선형전류를 감지하여 생성된 제1감지신호와 상기 출력신호를 감지하여 생성된 제2감지신호에 따라 제1스위칭전원전압 내지 제N스위칭전원전압을 스위칭시켜 전달하는 방식으로 스위칭신호를 생성하고, 상기 스위칭신호를 필터링하여 출력신호를 출력한다. 선형전원제어부는 상기 출력신호를 감지하여 생성된 제3감지신호에 응답하여 상기 선형앰프부로 인가되는 선형전원전압을 제어한다. 또한 상기 스위칭앰프부는 제1감지부, 제2감지부, 비교부, 게이트 구동부, 스위치부, 및 필터부를 포함한다. 제1감지부는 상기 선형전류를 감지하여 상기 제1감지신호를 출력한다. 제2감지부는 상기 출력신호를 감지하여 상기 제2감지신호를 출력한다. 비교부는 상기 제1감지신호와 제1기준신호를 비교하여 제1제어신호를 출력하고, 상기 제2감지신호와 제2기준신호 내지 제N기준신호를 비교하여 제2제어신호 내지 제N제어신호를 출력한다. 게이트 구동부는 상기 제1제어신호 내지 상기 제N제어신호에 응답하여 제1구동제어신호 내지 제N구동제어신호를 출력한다. 스위치부는 상기 제1구동제어신호 내지 제N구동제어신호에 응답하여, 상기 제1스위칭전원전압 내지 상기 제N스위칭전원전압을 스위칭하여 전달하는 방식으로 상기 스위칭신호를 출력한다. 필터부는 상기 스위칭신호를 필터링하여 상기 출력신호를 출력한다.
상기 기술적 과제를 달성하기 위한 본 발명의 제5실시예에 따른 다중 전원 혼합형 증폭기는 선형앰프부, 스위칭앰프부, 및 선형전원제어부를 포함한다. 선형앰프부는 입력신호와, 출력신호를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력한다. 스위칭앰프부는 상기 선형전류를 감지하여 생성된 제1감지신호에 따라 제1스위칭전원전압 내지 제N스위칭전원전압을 스위칭시켜 전달하는 방식으로 스위칭신호를 생성하고, 상기 스위칭신호를 필터링하여 출력신호를 출력한다. 선형전원제어부는 상기 출력신호를 감지하여 생성된 제3감지신호에 응답하여 상기 선형앰프부로 인가되는 선형전원전압을 제어한다. 또한 상기 스위칭앰프부는 감지부, 비교부, 게이트 구동부, 스위치부, 및 필터부를 포함한다. 감지부는 상기 선형전류를 감지하여 감지신호를 출력한다. 비교부는 상기 감지신호와 제1기준신호 내지 제N기준신호를 비교하여 제1제어신호 내지 제N제어신호를 출력한다. 게이트 구동부는 상기 제1제어신호 내지 상기 제N제어신호에 응답하여 제1구동제어신호 내지 제N구동제어신호를 출력한다. 스위치부는 상기 제1구동제어신호 내지 제N구동제어신호에 응답하여, 상기 제1스위칭전원전압 내지 상기 제N스위칭전원전압을 스위칭하여 전달하는 방식으로 상기 스위칭신호를 출력한다. 필터부는 상기 스위칭신호를 필터링하여 상기 출력신호를 출력한다.
상기 기술적 과제를 달성하기 위한 본 발명의 제6실시예에 따른 스위칭증폭기는 제1감지부, 제2감지부, 비교부, 게이트 구동부, 스위치부, 및 필터부를 포함한다. 제1감지부는 입력신호를 감지하여 제1감지신호를 출력한다. 제2감지부는 상기 출력신호를 감지하여 제2감지신호를 출력한다. 비교부는 상기 제1감지신호와 제1기준신호를 비교하여 제1제어신호를 출력하고, 상기 제2감지신호와 제2기준신호 내지 제N기준신호를 비교하여 제2제어신호 내지 제N제어신호를 출력한다 게이트 구동부는 상기 제1제어신호 내지 상기 제N제어신호에 응답하여 제1구동제어신호 내지 제N구동제어신호를 출력한다. 스위치부는 상기 제1구동제어신호 내지 제N구동제어신호에 응답하여, 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 방식으로 스위칭신호를 출력한다. 필터부는 상기 스위칭신호를 필터링하여 상기 출력신호를 출력한다.
상술한 바와 같이 본 발명에 따른 다중 전원 혼합형 증폭기는 다중 전원을 이용하여 출력전압의 크기에 따라 다중 전원 혼합형 증폭기에 공급되는 전원을 다르게 함으로써 선형증폭부의 손실을 줄여 효율을 개선할 수 있는 할 수 있는 장점이 있다.
도 1은 스위칭증폭기의 구성도이다.
도 2는 혼합형 증폭기의 구성도이다.
도 3은 혼합형 증폭기의 각 단에서의 동작 파형이다.
도 4는 혼합형 증폭기의 실험파형이다.
도 5는 본 발명의 제 1 실시예에 따른 다중 전원 혼합형 증폭기의 구성도이다.
도 6은 도 5의 다중 전원 혼합형 증폭기의 상세 구성도이다.
도 7은 전원전압이 2단계로 나뉘어 공급되는 제1실시예에 대한 예시 회로도이다.
도 8은 제2감지부의 레벨 감지부와 기울기 감지부에 대한 예시 회로도이다.
도 9는 출력주파수가 가청주파수에서 통상적인 대역인 경우 도 7의 다중 전원 혼합형 증폭기의 각 단에서의 신호에 대한 동작파형이다.
도 10은 출력주파수가 수 kHz 이상 10kHz 이하 정도의 중고역의 경우 도 7의 다중 전원 혼합형 증폭기의 각 단에서의 신호에 대한 동작파형이다.
도 11은 출력주파수가 20kHz 근방의 고역일 경우도 7의 다중 전원 혼합형 증폭기의 각 단에서의 신호에 대한 동작파형이다.
도 12는 본 발명의 제2실시예에 따른 다중 전원 혼합형 증폭기의 구성도이다.
도 13은 본 발명의 제2실시예에 따른 다중 전원 혼합형 증폭기의 다른 형태의 구현예에 대한 구성도이다.
도 14는 도 12의 다중 전원 혼합형 증폭기의 상세 구성도이다.
도 15는 출력전압이 ± Vdd1의 범위 내에 있을 때의 도 14에 도시된 회로도에서 출력 레벨의 크기에 따른 각 단에서의 스위칭 파형이다.
도 16은 출력전압이 +Vdd1을 초과했을 때의 도 14에 도시된 회로도에서 출력 레벨의 크기에 따른 각 단에서의 스위칭 파형이다.
도 17은 출력전압이 -Vdd1을 아랫방향으로 초과했을 때의 도 14에 도시된 회로도에서 출력 레벨의 크기에 따른 각 단에서의 스위칭 파형이다.
도 18은 본 발명의 제3실시예에 따른 다중 전원 혼합형 증폭기의 구성도이다.
도 19는 도 18의 다중 전원 혼합형 증폭기의 상세 구성도이다.
도 20은 본 발명의 제3실시예에 따른 다중 전원 혼합형 증폭기에 대한 예시 회로도이다.
도 21은 도 20의 회로의 각 단에서의 동작파형이다.
도 22는 도 23의 회로의 각 간에서의 동작파형이다.
도 23은 본 발명의 제3실시예의 다른 예에 대한 회로도이다.
도 24는 본 발명의 제4실시예에 따른 다중 전원 혼합형 증폭기의 구성도이다.
도 25는 본 발명의 제5실시예에 따른 다중 전원 혼합형 증폭기의 구성도이다.
도 26은 본 발명이 적용된 스위칭증폭기의 구성도이다.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 도면에 기재된 내용을 참조하여야 한다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.
다중 전원 혼합형 증폭기의 손실은 효율이 좋지 않은 선형증폭부에서 대부분 발생하므로, 손실을 줄여 효율을 개선하기 위해서는 선형증폭부에서의 손실을 줄여야 한다. 선형증폭부의 손실은 [수학식 1]과 같이 주어진다.
[수학식 1]
Pa = Vaa·Iav
여기에서 Vaa는 선형증폭부에 공급되는 전원전압이고, Iav는 선형증폭부에 흐르는 바이어스전류로 선형증폭부에서 스피커로 출력되는 선형전류(Ia)의 절대값의 평균과 같다. 또한 선형전류(Ia)는 스위칭전류(Id)와 위상만 반전되어 있을 뿐 크기는 같으므로, 스위칭전류(Id)를 이용하여 바이어스전류(Iav)를 구하면 [수학식 2]와 같다.
[수학식 2]
Figure PCTKR2009003874-appb-I000001
여기에서 Vdd는 스위칭증폭부에 공급되는 전원전압으로 스위칭증폭부에 포함되는 필터부를 구성하는 인덕터(L)의 양단에 걸리는 전압과 같고, Δt는 인덕터에 전압이 인가되는 시간으로 스위칭 주파수의 반주기와 같다. [수학식 1]을 참조하면, 선형증폭부에서의 손실(Pa)을 줄이기 위해서는 선형증폭부의 전원전압(Vaa) 또는 바이어스전류(Iav) 중에서 적어도 하나를 줄여야 한다.
이때, 바이어스전류(Iav)를 줄이기 위해서는, 스위칭 주파수를 증가시켜서 Δt를 줄이는 것은 소자의 속도와 지연시간 때문에 한계가 있고, 음향증폭기는 20 내지 20kHz의 가청주파수에 있어서 10kHz 이상의 높은 가청주파수에 대해서도 스위칭전류를 무리 없이 공급하여야 하므로 인덕터(L)를 증가시키는 것도 어느 정도 한계가 있으므로, 바이어스전류(Iav)를 감소시키기 위해서 스위칭증폭부에 공급되는 전원전압을 줄일 필요가 있다. 즉 선형증폭부의 전원전압(Vaa) 또는 스위칭증폭부의 전원전압(Vdd) 중 적어도 하나를 감소시킴으로써 선형증폭부에서의 손실(Pa)을 줄일 수 있다는 것을 알 수 있다.
상술한 내용을 바탕으로, 본 발명은, 출력에 따라 선형증폭부의 전원전압(Vaa) 또는 스위칭증폭부의 전원전압(Vdd) 중에서 적어도 하나를 가변시킴으로써 입력신호가 없는 휴지기 또는 저출력 시 선형증폭부의 손실을 감소시킬 수 있다. 이러한 본 발명은 전원전압을 제어하는 방법에 따라 제 1 실시예 내지 제 5 실시예로 구현될 수 있다.
제 1 실시예와 제2 실시예는 스위칭증폭부에 인가되는 전원전압(Vdd)을 가변시키는 형태로 구현되고, 제 3 실시예는 선형증폭부에 인가되는 전원전압(Vaa)을 가변시키는 형태로 구현되고, 제 4 실시예와 제5 실시예는 제 1 실시예 또는 제 2 실시예와 제3 실시예를 결합하여 스위칭증폭부의 전원전압(Vdd)과 선형증폭부의 전원전압(Vaa)을 함께 가변시키는 형태로 구현된다. 각각의 실시예에 대해 상세히 설명한다.
(제 1 실시예)
도 5는 본 발명의 제 1 실시예에 따른 다중 전원 혼합형 증폭기의 구성도이다. 본 발명의 제 1 실시예는 스피커 부하로의 출력전압(Vo)의 레벨 또는 출력전압(Vo)의 기울기에 따라 그 값이 기준레벨보다 작을 때는 기준레벨보다 클 때보다 더 낮은 전압을 스위칭 증폭부의 전원전압으로 인가하는 방식을 이용한다.
도 5를 참조하면, 다중 전원 혼합형 증폭기(500)는 선형앰프부, 제1감지부(520), 제2감지부(570), 비교부(530), 게이트 구동부(540), 스위치부(550), 및 필터부(560)를 포함한다. 선형앰프부는 선형증폭부(510) 및 궤환부(590)를 포함하며, 입력신호와, 출력신호(Vo)를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자(이하 당업자라 함)라면 선형앰프부의 동작에 대해 용이하게 이해할 수 있을 것이므로, 이에 대한 상세한 설명은 생략한다.
제1감지부(520)는 선형증폭부(510)의 출력전류(즉 선형증폭부(510)로부터 출력되는 선형전류)를 감지하여 제1감지신호를 생성하고, 제1감지신호를 비교부(530)로 출력한다. 제2감지부(570)는, 필터부(560)에서 스피커 부하(595)로 출력되는 출력신호(Vo)(즉, 출력전압)를 감지하여 제2감지신호를 생성하고, 제2감지신호를 비교부(530)로 출력한다.
비교부(530)는 제1감지신호와 제1기준신호를 비교하여 제1제어신호를 출력하고, 제2감지신호와 대응하는 제2기준신호 내지 제N기준신호를 비교하여 제2제어신호 내지 제N제어신호를 출력한다.
게이트 구동부(540)는 제1제어신호 내지 제N제어신호에 응답하여 대응하는 제1구동제어신호 내지 제N구동제어신호를 출력한다. 스위치부(550)는 제1구동제어신호 내지 제N구동제어신호에 응답하여, 대응하는 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 방식으로 스위칭신호를 출력한다. 필터부(560)는 스위칭신호를 필터링하여 출력신호를 출력한다. 이하에서는 도 6을 참조하여 제1실시예의 상세 구성에 대해 설명한다.
도 6은 도 5의 다중 전원 혼합형 증폭기의 상세 구성도이다. 본 발명의 제1실시예에 따른 다중 전원 혼합형 증폭기(500)는 출력전압(Vo)에 따라 N 단계로 나누어진 전원전압들을 스위칭시켜 전달하는 방식으로 선형증폭부(510)에서의 손실을 줄임으로써 증폭기의 효율을 개선시킨다. N 단계로 나누어진 전원전압들을 스위칭시키기 위해서, 비교부(530), 게이트 구동부(540), 스위치부(550) 또한 전원전압들에 대응하도록 N 단으로 이루어지는 것이 바람직하다. 이하에서는 특별히 언급하지 않는 한, 동일한 서브 번호를 갖는 구성요소와 신호들끼리 대응하여 동작하는 것으로 한다.
먼저, 비교부(530)는 제1서브비교부(530_1) 내지 제N서브비교부(530_N)를 포함한다. 제1서브비교부(530_1)는 제1감지신호와 제1기준신호를 비교하여 제1제어신호를 출력한다. 제1서브비교부(530_1)는 통상적인 혼합형 증폭기에서의 비교부와 동일한 기능을 하며, 따라서 제1기준신호는 제1서브비교부(530_1) 내부에 절정된 히스테리시스 전압인 것이 바람직하다. 제2서브비교부(530_2) 내지 제N서브비교부(530_N)는 제2감지신호와 제2기준레벨신호(Vr2) 내지 제N기준레벨신호(Vrn)를 비교하여 제2제어신호 내지 제N제어신호를 출력한다.
비교부(530)는, 제1감지신호 및 제2감지신호가 더 큰 경우 대응하는 서브스위치부(550_1 내지 550_N)를 턴온시키기 위한 제1제어신호 내지 제N제어신호를 출력한다. 즉 제2서브비교부(530_2) 내지 제N서브비교부(530_N)는 각각 제2감지신호와 제2기준신호(Vr2) 내지 제N기준신호(Vrn)를 비교하는데, 제2감지신호가 제2기준신호(Vr2) 내지 제N기준신호(Vrn)를 초과하는 경우, 서브비교부(530_2 내지 530_N)에 대응하는 서브스위치부(550_2 내지 550_N)가 턴온되는 방식으로 제1스위치부에 공급되는 전원전압이 조절된다.
예를 들어, 제2감지신호가 제N기준신호(Vrn)를 초과하는 경우, 제N서브스위치부(550_N)가 턴온되어야 하는데, 이 때 제N서부비교부(530_N)는 제N서브스위치부(550_N)가 턴온되도록 하는 제N제어신호를 출력한다.
한편, 본 발명의 제1실시예에서, 제2감지신호는 출력신호(Vo)의 레벨에 대응하는 레벨 감지신호와, 출력신호(Vo)의 기울기에 대응하는 기울기 감지신호 중 적어도 하나를 포함할 수 있다. 즉 제 2 감지부(570)는 고역의 가청주파수에 대한 스위칭전류(Id)의 위상지연을 보상하기 위해, 출력전압(Vo)의 레벨을 감지하는 것 이외에 출력전압(Vo)의 기울기를 더 감지할 수도 있다.
이 경우 제2감지부(570)는, 출력신호의 레벨을 감지하여 상기 레벨 감지신호를 출력하는 레벨 감지부(571), 및 출력신호의 기울기를 감지하여 기울기 감지신호를 출력하는 기울기 감지부(573)를 포함할 수 있다. 제2서브비교부(530_2) 내지 제N서브비교부(530_N)는 각각 레벨 감지신호와 기울기 감지신호 중 적어도 하나를 제2기준신호(Vr2) 내지 제N기준신호(Vrn)와 비교할 수 있는데, 이 때 레벨 감지신호와 기울기 감지신호는 같은 값의 기준신호와 비교될 수도 있으나, 다른 값의 기준신호와 비교될 수도 있다.
좀 더 구체적으로 설명하면, 제2기준신호(Vr2) 내지 제N기준신호(Vrn)는 각각 제2기준레벨신호 내지 제N기준레벨신호 와 제2기준기울기신호 내지 제N기준기울기신호를 포함할 수 있다. 제2서브비교부(530_2) 내지 제N서브비교부(530_N)는 각각 레벨 감지신호를 대응하는 제2기준레벨신호 내지 제N기준레벨신호와 비교하고, 기울기 감지신호를 대응하는 제2기준기울기신호 내지 제N기준기울기신호와 비교한다. 앞서 설명한 바와 같이, 대응하는 기준레벨신호와 기준기울기신호는 그 크기가 서로 같을 수도 있고 다를 수도 있다.
한편, 스위치부(550)는 제 2감지부로 부터의 제2비교부 내지 제N비교부에 대응하는 제2구동제어신호 내지 제N구동제어신호에 응답하여 대응하는 제2전원전압 내지 제N전원전압 또는 제2구동제어신호 내지 제N구동제어신호가 없을시에는 제1전원전압을 스위칭하여 제1스위치부로 전달하는 제2서브스위치부(550_2)내지 제N서브스위치부(550_N)와, 제1비교부로 부터의 제1구동제어신호에 대응하여 제2스위치부내지 제N스위치부로부터 공급되는 전원 전압으로 스위칭하는 제1스위치부를 포함한다. 도 6에 도시된 바와 같이, 제2서브스위치부(550_2) 내지 제N서브스위치부(550_N)는 서로 캐스케이드(cascade) 방식으로 연결될 수도 있고, 서로 병렬연결하여 제1스위치부로 전원 전압을 공급할수도 있다.
제2감지부(570)는 출력신호(Vo)를 감지하여 제2감지신호를 출력하는 대신, 스위칭신호(Vd)를 감지하여 제2감지신호를 출력할 수도 있다. 즉 제 2 감지부(570)가 필터부(560)에서 감지하는 전압은 필터부(560)의 후단에 연결된 스피커 부하(595)로 출력되는 출력전압(Vo)일 수도 있고, 스위치부(550)에서 필터부(560)의 전단에 인가되는 스위칭전압(Vd)일 수도 있다. 제 2 감지부(570)가 필터부(560)에서 감지하는 전압이 스위칭전압(Vd)일 경우, 제 2 감지부(570)는 스위칭전압(Vd)를 저역통과 필터링하여 출력전압(Vo)에 대응하는 전압을 얻을 수 있을 것이다.
한편, 본 발명의 제1실시예에서, 다중 전원 혼합형 증폭기는 제2기준신호(Vr2) 내지 제N기준신호(Vrn)를 발생하는 기준신호 발생부(535)를 더 포함할 수 있으며, 기준신호 발생부(535)는 제2기준신호(Vr2)를 발생하는 제2서브기준신호발생부(535_2), 내지 제N기준신호(Vrn)를 발생하는 제N서브기준신호발생부(535_N)를 포함한다. 한편 기준레벨 생성부(535)에서 발생되는 기준신호는, 레벨 감지신호와 기울기 감지신호에 대해 서로 다른 값의 레벨기준신호와 기울기기준신호를 포함할 수 있으며, 서로 같은 값의 레벨기준신호와 기울기기준신호를 포함할 수도 있다.
또한, 본 발명의 제1실시예에서 다중 전원 혼합형 증폭기는 제1전원전압 내지 제N전원전압을 발생하는 전원전압 발생부(580)를 더 포함할 수 있다. 또한 본 발명의 제1실시예에서, N은 2 이상인 것이 바람직하다.
도 6을 참조하면, 제1전원전압 내지 제N전원전압은 각각 동일한 레벨의 제1양전원전압과 제1음전원전압 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함할 수 있다. 이 경우, 제1서브스위치부(550_1) 내지 제N서브스위치부(550_N)는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치, 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함한다.
도 7은 전원전압이 2단계로 나뉘어 공급되는 제1실시예에 대한 예시 회로도이다. 제1스위치부는 제1양전원스위치스(M1)과 제1음전원스위치(M2)를 포함하며, 스위치(S1과 S2)를 통하여 전원공급부(580)로부터 제1양전원전압(+Vdd1)과 제1음전원전압(-Vdd1)을 공급받는다. 제2스위치부는 제2양전원스위치(M3)과 제2음전원스위치(M4)를 포함하고 전원공급부로부터 제2양전원전압(+Vdd2)과 제2음전원전압(-Vdd2)을 공급받는다. 이 때 제2양전원전압(+Vdd2)과 제2음전원전압(-Vdd2)의 절대값은 제1양전원전압과 제1음전원전압(+Vdd1과 -Vdd1)의 절대값보다 큰 것이 바람직하다.
제1비교부(730_1)는 통상적인 혼합형 증폭기의 비교부와 같이 선형증폭부(710)의 출력신호(즉, 선형전류(Ia))에 따라 히스테리시스를 갖고 스위칭 파형을 생성한다. 제2비교부(730_21, 730_22)는 제2감지신호의 레벨 감지신호 및/또는 기울기 감지신호에 따라 제2스위치부의 온-오프를 제어하기 위한 제어신호를 출력한다. 또한 제2비교부(730_21, 730_22)는 제2양전원스위치(M3) 및 제2음전원스위치(M4)를 각각 제어하기 위한 제어신호를 출력한다.
제2감지부(770)는 필터부(760)로부터의 출력전압(Vo)의 레벨을 감지한 레벨감지신호(Vo.sen)와 출력전압(Vo)의 기울기를 감지한 기울기감지신호(Vslope)를 제2비교부(730_21, 730_22)에 전달한다. 제2비교부(730_21, 730_22)는 기준레벨생성부(735)에서 생성된 양기준레벨(Vr+)과 음기준레벨(Vr-)을 레벨 감지신호(Vo.sen) 및 기울기 감지신호(Vslope)와 비교한다.
레벨 감지신호(Vo.sen)와 기울기 감지신호(Vslope) 중 적어도 하나라도 양기준레벨(Vr+)을 위로 초과하거나 음기준레벨(Vr-)를 아래로 초과하면, 제2비교부(730_21, 730_22)는 대응하는 제2양전원스위치(M3) 또는 제2음전원스위치(M4)를 턴온시키기 위한 제어신호를 출력하며, 이에 따라 제1양전원전압과 제1음전원전압(+Vdd1과 -Vdd1)보다 절대값이 더 큰 +Vdd2 및 -Vdd2의 크기를 갖는 제2양전원전압(+Vdd2)과 제2음전원전압(-Vdd2)이 제1스위치부에 공급된다.
도 7에서는, 제2비교부(730_21, 730_22)에서 제2감지부(770)의 레벨 감지신호(Vo.sen)와 기울기 감지신호(Vslope)가 동일한 기준레벨(Vr)과 비교되는 구성을 도시되어 있다. 그러나 본 발명의 제1실시예에서는 제2감지부의 레벨 감지신호(Vo.sen)와 기울기 감지신호(Vslope)에 대하여 동일한 기준레벨 Vr과 비교하는 구성을 보이고 있으나, 레벨 감지신호(Vo.sen)와 기울기 감지신호(Vslope)가 각각 다른 기준레벨에 대하여 비교될 수도 있을 것이다.
도 8은 제2감지부의 레벨 감지부와 기울기 감지부에 대한 예시 회로도이다. 도 8에서, 레벨 감지부는 저항 분배회로로 구현되어 있고, 기울기 감지부는 저항(R)과 커패시터(C)를 이용한 미분회로로 구현되어 있다. 한편 기울기 감지부는 연산증폭기를 이용한 미분회로를 구현될 수도 있으며, 당업자라면 누구나 다양하게 변형할 수도 있을 것이다.
도 9 내지 도 11은 도 7의 다중 전원 혼합형 증폭기의 각 단에서의 신호에 대한 동작파형이다. 먼저 도 9는 출력주파수가 가청주파수에서 통상적인 대역인 경우로, 통상적으로 이 대역은 1kHz 또는 수 kHz 이하의 대역에 해당한다. 스위치부(550)에 인가되는 전원전압을 가변하는 기준이 되는 전압은 양과 음에 대하여 양임계전압(Vth+)과 음임계전압(Vth-)로 설정하고 이에 대응하여 기준전압을 양기준전압(Vr+)와 음기준전압(Vr-)으로 각각 설정한 것으로 가정한다.
출력전압(Vo)이 양임계전압(Vth+)과 음임계전압(Vth-) 사이에 있는 경우, 출력전압(Vo)을 감지한 레벨 감지신호(Vo.sen)도 양기준전압(Vr+)과 음기준전압(Vr-) 사이에 존재하게 되어 제2스위치부(550_2)는 오프되고 스위칭전압(Vd)는 ± Vdd1의 크기로 스위칭하게 된다. 이에 따라 스위칭전류(Id)의 리플성분 및 선형전류(Ia)가 작아지게 되어 선형증폭부(510)의 손실은 줄어든다.
한편, 출력전압(Vo)가 양임계전압(Vth+) 또는 음임계전압(Vth-)을 초과하는 경우, 제2비교부(530_2)에서 레벨 감지신호(Vo.sen)도 양기준레벨(Vr+) 또는 음기준레벨(Vr-)를 초과하게 되어(도 9의 A~B 또는 C~D에 해당) 제2스위치부(550_2)의 게이트 전압(HH-G 또는 LL-G)로 하이레벨이 공급된다(도 9 참조). 이에 따라 제2스위치부(550_2)가 턴온되어 제1스위치부(550_1)에는 ± Vdd2가 공급되며, 결국 ± Vdd1 보다 큰 진폭으로 출력될 수도 있다.
한편, 도 9는 수 kHz 이하의 저역에 대한 경우로, 이 경우 출력신호(Vo)의 기울기가 크지 않으므로 기울기 감지신호(Vslope)로 인한 제2스위치부(550_2)가 턴온되지는 않을 것이다.
도 10은 출력주파수가 수 kHz 이상 10kHz 이하 정도의 중고역의 경우에 해당하는 파형이다. 이 경우, 기울기 감지신호(Vslope)는 저역의 경우에서보다 커지게 되므로 레벨 감지신호(Vo.sen)에 의해서 제2스위치부(550_2)가 턴온되는 시점보다 더 이른 시점에 제2스위치부(550_2)가 턴온된다. 이에 따라 제1스위치부(550_1)에 ± Vdd1보다 더 큰 ± Vdd2가 공급되어 스위칭증폭부의 전류를 더 빨리 끌어 올릴 수 있을 것이다.
도 11은 출력주파수가 20kHz 근방의 고역일 경우에 해당하는 파형이다. 이 경우, 출력신호(Vo)의 레벨이 양임계전압(Vth+)과 음임계전압(Vth-) 사이의 범위라 할지라도 출력신호(Vo)의 기울기는 급하기 때문에 전류 또한 빠르게 생성되어야 한다. 따라서 출력신호(Vo)의 기울기 감지신호(Vslope)를 이용하면 제2스위치부(550_2)는 턴온되며, 이에 따라 스위칭증폭부의 전류를 빠르게 상승 또는 하강시킬 수 있을 것이다.
(제 2 실시예)
본 발명의 제2실시예는 제1실시예와 달리 선형증폭부의 출력전류를 감지하는 제1감지부만 이용하여 스위치부를 제어한다. 도 12는 본 발명의 제2실시예에 따른 다중 전원 혼합형 증폭기의 구성도이다. 다중 전원 혼합형 증폭기(1200)는 선형앰프부, 감지부(1220), 비교부(1230), 게이트 구동부(1240), 스위치부(1250), 및 필터부(1260)를 포함한다.
감지부(1220)는 선형증폭부(1210)로부터 출력되는 선형전류(Ia)를 감지하여 감지신호를 출력한다. 비교부(1230)는 감지신호와 제1기준신호 내지 제N기준신호를 비교하여 대응하는 제1제어신호 내지 제N제어신호를 출력한다.
게이트 구동부(1240)는 제1제어신호 내지 제N제어신호에 응답하여 제1구동제어신호 내지 제N구동제어신호를 출력한다. 스위치부(1250)는 제1구동제어신호 내지 제N구동제어신호에 응답하여, 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 방식으로 스위칭신호를 출력한다. 필터부(1260)는 스위칭신호를 필터링하여 출력신호를 출력한다. 이하 도 12를 참조하여 좀 더 상세히 설명한다.
비교부(1230)는 감지신호와 제1기준신호 내지 제N기준신호를 비교하여 제1제어신호 내지 제N제어신호를 각각 출력하는 제1서브비교부(1230_1) 내지 제N서브비교부(1230_N)를 포함한다. 감지신호는 비교부(1230)에 포함되는 제1서브비교부(1230_1) 내지 제N서브비교부(1230_N)로 각각 전달된다. 본 발명의 제2실시예에서 제1기준신호 내지 제N기준신호는 각각의 제1서브비교부(1230_1) 내지 제N서브비교부(1230_N)에 대해 설정된 히스테리시스 전압인 것이 바람직하다. 이 때 각각의 히스테리시스 전압 진폭은 동일하게 설정될 수도 있고 서로 다르게 설정될 수도 있을 것이다. 이 때 비교부(1230)는, 감지신호의 크기에 따라 서브스위치부를 턴온시키기 위한 제1제어신호 내지 제N제어신호를 출력한다.
한편, 스위치부(1250)는 제1구동제어신호 내지 제N구동제어신호에 응답하여 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 제1서브스위치부(1250_1) 내지 제N서브스위치부(1250_N)를 포함한다. 도 12에 도시된 바와 같이, 제1서브스위치부(1250_1) 내지 제N서브스위치부(1250_N)는 필터부(1260)에 병렬 형태로 연결될 수 있다.
한편, 도 13은 본 발명의 제2실시예에 따른 다중 전원 혼합형 증폭기의 다른 형태의 구현예에 대한 구성도로, 제1서브스위치부(1250_1) 내지 제N서브스위치부(1250_N)가 캐스케이드 방식으로 연결될 수도 있다.
또한, 본 발명의 제2실시예에서, 다중 전원 혼합형 증폭기(1260)는 제1전원전압 내지 제N전원전압을 발생하는 전원전압 발생부(1270)를 더 포함할 수 있다. 전원전압 발생부(1270)에서 발생된 각각 다른 레벨의 제1전원전압 내지 제N전원전압은 제1서브스위치부(1250_1) 내지 제N서브스위치부(1250_N)로 공급된다. 한편 본 발명의 제2실시예에서, N은 2 이상인 것이 바람직하다.
한편, 제1전원전압 내지 제N전원전압은 각각 동일한 레벨의 제1양전원전압과 제2음전원전압 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함하며, 제1서브스위치부(1250_1) 내지 제N서브스위치부(1250_N)는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치, 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함한다. 이하 도 14를 참조하여 도 12의 다중 전원 혼합형 증폭기의 상세 구성에 대해 설명한다.
도 14는 도 12의 다중 전원 혼합형 증폭기의 상세 구성도로, 도 14에서는 2 단계로 나뉘어 전원전압이 공급하는 경우의 예시 회로도이다. 도 14를 참조하면, 제1스위치부는 제1양전원스위치(M1)와 제1음전원스위치(M2)를 포함하며, 스위치(S1과 S2)를 통하여 전원공급부(1470)로부터 제1양전원전압(+Vdd1)과 제1음전원전압(-Vdd1)을 공급받는다. 제2스위치부는 제2양전원스위치(M3)와 제2음전원스위치(M4)를 포함하며, 전원공급부로부터 제1양전원전압(+Vdd1)과 제1음전원전압(-Vdd1)보다 더 큰 절대값을 갖는 제2양전원전압(+Vdd2)과 제2음전원전압(-Vdd2)을 공급받는다.
제1비교부(1430)는 통상적인 혼합형 증폭기의 비교부와 같이 기저전위를 중심으로 양음이 대칭인 히스테리시스 전압(C+)를 가지며, 선형증폭부(1410)의 선형전류(Ia)에 따라 제1스위치부를 제어하기 위한 제1제어신호를 출력한다. 제2비교부는 제2양전압스위치(M3)를 제어하기 위한 제어신호를 출력하는 제2비교부(+)와 음전압스위치(M4)를 제어하기 위한 제어신호를 출력하는 제2비교부(-)를 포함한다.
제2비교부의 히스테리시스 전압(H+ 및 L+)는 그 중심전압이 각각 양 또는 음의 방향으로 직류레벨이 옮겨지도록 설정됨으로써, 출력전압(Vo)이 전원전압 ± Vdd1 범위 내인 경우에 제1비교부와 제1스위치부만을 스위칭시켜 스위칭전압(Vd)의 스위칭레벨이 ± Vdd1로 된다. 이에 따라 진폭이 작아지고 스위칭전류(Id)의 리플성분(Ia)가 작아져서 전력 손실이 작아진다.
출력전압(Vo)가 전원전압 ± Vdd1의 범위를 벗어나는 경우에 선형전류 및 감지신호(Vsen)의 범위가 제1비교부의 히스테리시스 범위를 벗어나 제2비교부(+)의 히스테리시스 전압(H+) 또는 제2비교부(-)의 히스테리시스 전압(L+)의 레벨까지 도달하면, 이에 따라 제2스위치부를 턴온시켜 +Vdd2 또는 -Vdd2의 레벨로 스위칭전압이 전환된다.
전원스위치(S1 및 S2)는 전원전압(+Vdd1 및 -Vdd1)을 제1스위치부에 공급하는 기능을 하며, 전원스위치(S1 및 S2)의 게이트 전압 각각은 제2스위치부의 양전원스위치(M3) 및 음전원스위치(M4)의 게이트 전압의 반전된 전압이 각각 인가되어 M3가 턴온되는 구간에서는 S1이 턴오프되고 M4가 턴온되는 구간에서는 S2가 턴오프되어 스위칭 전압 Vd가 +Vdd2 또는 -Vdd2까지 상승 또는 하강할 수 있도록 한다.
도 15 내지 도 17은 도 14에 도시된 회로도에서 출력 레벨의 크기에 따른 각 단에서의 스위칭 파형이으로, 먼저 도 15는 출력전압이 ± Vdd1의 범위 내에 있을 때의 파형이다. 도 15에서는, 선형전류(Ia)를 감지한 레벨 감지신호(Vsen)가 제1비교부의 히스테리시스(C+)의 범위 내에 있으므로 스위칭 동작은 제1비교부 및 제1스위치부에서만 일어나고 제2비교부와 이에 대응하는 제2스위치부는 오프된다. 따라서 스위칭전압(Vd)는 ± Vdd1로 스위칭을 하여 리플전류와 선형전류(Ia)를 감소시키므로 선형증폭부의 손실은 줄어든다.
도 16은 출력전압이 +Vdd1을 초과했을 때의 파형이다. 도 16에서 제1양전원스위치(M1)가 턴온되었음에도 부족한 출력전류를 보상하기 위하여 선형전류(Ia)는 상승하므로 선형전류(Ia)를 감지한 레벨 감지신호(Vsen)도 제1비교부의 히스테리시스(C+)의 범위를 벗어나 제2비교부(+)와 이에 대응하는 제2양전원스위치(M3)를 턴온시킨다.
제2스위치부의 제2양전원스위치(M3)가 턴온되면 선형전류(Ia)는 감소하여 제2비교부(+)의 히스테리시스(H+)에 도달하면 제2양전원스위치(M3)는 턴오프되고 선형전류(Ia)는 다시 증가하여 제2양전원스위치(M3)가 다시 턴온된다. 이러한 동작에 의하여 출력전압이 +Vdd1보다 큰 구간에서는 제1스위치부의 제1양전원스위치(M1)는 턴온 상태를 계속 유지하고 제2스위치부의 양전원스위치(M3)는 스위칭 동작을 하게 된다. 이 경우에 스위칭전압(Vd)는 -Vdd1이 아닌 +Vdd1에서 +Vdd2의 범위로 스위칭하므로 스위칭 진폭을 작게 유지하여 전원전압이 +Vdd1에서 +Vdd2로 증가한 경우에도 스위칭 전류(Id)의 리플성분을 작게 유지할 수 있는 장점이 있다.
도 17은 출력전압이 -Vdd1을 아랫방향으로 초과했을 때의 파형으로, 도 16과는 반대임을 알 수 있다. 이 경우에 제1음전원스위치부(M2)가 턴온되었음에도 부족한 출력전류를 보상하기 위하여 선형전류(Ia)는 음의 방향으로 증가하므로 선형전류(Ia)를 감지한 레벨 감지신호(Vsen)도 제1비교부의 히스테리시스(C+)의 범위를 아래로 벗어나게 되고, 제2비교부(-)와 이에 대응하는 제2음전원스위치(M4)를 턴온시킨다. 제2스위치부의 제2음전원스위치(M4)가 턴온되면 선형전류(Ia)는 증가하여 제2비교부(-)의 히스테리시스(L+)에 도달하게 되며, 제2음전원스위치(M4)는 턴오프되고 선형전류(Ia)는 다시 감소하여 제2음전원스위치(M4)를 다시 턴온시킨다. 이러한 동작에 의하여 출력전압(Vo)이 -Vdd1보다 작은 구간에서는 제1스위치부의 제1음전원스위치(M2)는 턴온 상태를 계속 유지하고 제2스위치부의 제2음전원스위치(M4)가 스위칭 동작을 하게 된다. 이 경우 스위칭전압(Vd)는 +Vdd1이 아닌 -Vdd1에서 -Vdd2의 범위로 스위칭하므로 스위칭 진폭을 작게 유지하여 전원전압이 -Vdd1에서 -Vdd2로 변경된 경우에도 스위칭 전류(Id)의 리플성분을 작게 유지할 수 있는 장점이 있다.
(제 3 실시예)
상술한 바와 같이, 본 발명은 출력에 따라 선형증폭부의 전원전압 Vaa 또는 스위칭증폭부의 전원전압 Vdd 중에서 적어도 하나 이상을 가변시킴으로써 입력신호가 없는 휴지기 또는 저출력시의 선형증폭부의 손실을 종래의 경우보다 감소시킬 수 있다. 제1실시예와 제2실시예가 스위칭증폭부에 인가되는 전원전압(Vdd)를 가변시키는 것을 특징으로 하는 반면, 제3실실시예는 선형증폭부에 인가되는 전원전압(Vaa)를 가변시키는 것을 특징으로 한다. 제3실시예에서는 필터부로부터 출력전압의 레벨을 감지하여 그 레벨의 크기에 따라 선형증폭부로 인가되는 전원전압을 조절하므로, 본 발명의 제1 실시예와 구성이 유사함을 알 수 있다.
도 18은 본 발명의 제3실시예에 따른 다중 전원 혼합형 증폭기의 구성도이다. 도 18에 도시된 바와 같이, 본 발명의 제3실시예는 필터부(1839)로부터의 출력전압(Vo)의 레벨을 감지하는 제3감지부(1850)와 감지부에서 감지된 신호에 따라 선형증폭부에 입력되는 전원을 가변시키는 구성을 이용한다.
다중 전원 혼합형 증폭기(1800)는 선형앰프부(1810), 스위칭앰프부(1830), 및 선형전원제어부(1860)를 포함한다. 선형앰프부(1810)는 입력신호와, 출력신호(Vo)를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력한다. 스위칭앰프부(1830)는 선형전류를 감지하여 생성된 제1감지신호가 기준신호의 범위 안에서 유지되도록 스위칭전원전압을 스위칭시켜 스위칭신호를 생성하고, 스위칭신호를 필터링하여 출력신호를 출력한다. 선형앰프부(1810)와 스위칭앰프부(1830)의 동작은 통상적인 혼합형 증폭기에서의 동작과 유사하므로, 이에 대한 구체적인 설명은 생략한다. 선형전원제어부는 출력신호를 감지하여 생성된 제3감지신호에 응답하여 선형앰프부로 인가되는 선형전원전압을 제어한다. 이하 도 19를 참조하여 도 18의 구성에 대해 상세히 설명한다.
도 19는 도 18의 다중 전원 혼합형 증폭기의 상세 구성도이다. 도 19에 도시된 바와 같이 N단계로 나뉘어진 선형전원전압이 스위치부(1875)로 공급되고 스위치부(1875)는 선형전원전압의 단계 수에 대응하여 N 단의 제1서브스위치부(1875_1) 내지 제N 서브스위치부(1875_N)를 포함한다. 또한 선형전원전압 및 스위치부에 대응하여 비교부(1871)도 N 단의 제2서브비교부(1871_2) 내지 제N서브비교부(1871_N)를 포함한다.
선형전원제어부(1860)는 감지부(1850), 비교부(1871), 게이트 구동부(1873), 및 스위치부(1875)를 포함한다. 감지부(1850)는 출력신호(Vo)를 감지하여 제3감지신호를 출력한다. 비교부(1871)는 제3감지신호와 제2기준신호 내지 제N기준신호를 비교하여 제2제어신호 내지 제N제어신호를 출력한다. 이 때 비교부(1871)는, 제3감지신호가 적어도 하나의 기준신호어도 보다 더 큰 경우 대응하는 서브스위치부를 턴온시키기 위한 제2제어신호 내지 제N제어신호를 출력한다.
게이트 구동부(1873)는 제2제어신호 내지 제N제어신호에 응답하여 전원제2스위치부 내지 전원제N스위치부를 턴온 하기위한 제2구동제어신호 내지 제N구동제어신호 와 제3감지신호가 어떤 기준신호보다도 작은 경우에 대응하는 제1구동신호를 출력한다. 스위치부(1875)는 제1구동제어신호에 응답하는기본선형전원전압 및, 제2구동제어신호 내지 제N구동제어신호에 응답하여, 제2선형전원전압 내지 제N선형전원전압을 스위칭하여 전달하는 방식으로 선형전원전압을 출력한다.
비교부(1871)는 제3감지신호와 상기 제2기준신호 내지 제N기준신호를 비교하여 제2제어신호 내지 제N제어신호를 각각 출력하는 제2서브비교부(1871_2) 내지 제N서브비교부(1871_N)를 포함한다. 스위치부(1875)는, 제1서브스위치부(1875_1) 내지 제N서브스위치부(1875_N)를 포함한다. 제1서브스위치부(1875_1) 내지 제N서브스위치부(1875_N)는 제1구동제어신호 내지 제N구동제어신호에 응답하여 제1선형전원전압 내지 제N선형전원전압을 스위칭하여 전달한다. 제1서브스위치부(1875_1) 내지 제N서브스위치부(1875_N)는 서로 캐스케이드 방식으로 연결될 수도 있고 서로 병렬연결되어 선형앰프로 선형 전원 전압을 공급할 수도 있다.
제1선형전원전압 내지 제N선형전원전압은 각각 동일한 레벨의 제1양전원전압과 제1음전원전압, 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함하며, 및 제1서브스위치부 내지 제N서브스위치부는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함한다.
한편, 감지부(1850)는 스위칭신호를 필터링하여 출력신호에 대응하는 필터링신호를 발생한 후, 필터링신호를 감지하여 제3감지신호를 출력하도록 더 구성될 수 있다. 또한 선형전원제어부(1860)는 제2기준신호 내지 제N기준신호을 발생하는 기준신호 발생부(1877)를 더 포함할 수 있다. 도 18의 다중 전원 혼합형 증폭기(1800)는 제1선형전원전압 내지 제N선형전원전압을 발생하는 전원전압 발생부(1890)를 더 포함할 수 있는데, 전원전압 발생부(1890)는 스위칭 앰프부(1830)로 공급되는 스위칭전원전압을 발생할 수도 있다. 본 발명의 제3실시예의 상세한 동작에 대해서는 도 20의 회로도를 참조하여 이하에서 설명한다.
도 20은 본 발명의 제3실시예에 따른 다중 전원 혼합형 증폭기에 대한 예시 회로도로, 도 20에서 선형증폭부에 인가되는 전원전압은 2단계로 나뉘어 공급된다. 제1서브스위치부는 다이오드(D1 및 D2)로 구현될 수 있다. 선형증폭부(2011)는 전원공급부(2090)로부터 +Vaa1과 -Vaa1의 크기를 갖는 제1양서브전원전압(+Vaa1)과 제1음서브전원전압(-Vaa1)을 제1서브스위치부(D1 및 D2)를 통하여 공급받는다.
제2서브스위치부는 양전원스위치(M3)와 음전원스위치(M4)를 포함하며, 제1양서브전원전압(+Vaa1)과 제1음서브전원전압(-Vaa1)보다 더 큰 절대값을 갖는 제2양서브전원전압(+Vaa2)과 제2음서브전원전압(-Vaa2)을 전원공급부로부터 공급받는다. 한편 제2비교부는 제2서브스위치부를 제어하기 위한 제어신호를 출력한다. 이하 도 21의 파형을 참조하여 도 20의 회로의 상세한 동작에 대해 설명한다.
도 21은 도 20의 회로의 각 단에서의 동작파형이다. 감지부(2050)에 의하여 출력전압(Vo)의 레벨이 감지된 레벨 감지신호(Vo.sen)는 제2비교부에서 기준레벨 생성부로부터 제공된 제2기준신호(Var+ 또는 Var-)와 비교된다. 비교 결과, 레벨 감지신호(Vo.sen)가 양기준레벨(Var+)보다 크면 제2스위치부의 제2양전원스위치(M3)가 턴온되어 선형증폭부(2011)에 제2양서브전원전압(+Vaa2)이 공급된다. 레벨 감지신호(Vo.sen)가 음기준레벨(Var-)보다 작으면 제2스위치부의 제2음전원스위치(M4)가 턴온되어 선형증폭부(2011)에 제2음선형전원전압(-Vaa2)이 공급된다.
도 21에서는 레벨 감지신호(Vo.sen)가 기준레벨의 범위를 벗어나는 경우에 양전원스위치 또는 음전원스위치가 턴온되어 전원전압이 제1양선형전원전압(+Vaa1)에서 제2양선형전원전압(+Vaa2)으로 증가되거나 제1음선형전원전압(-Vaa1)에서 제2음선형전원전압(-Vaa2)로 감소되는 경우만 도시되어 있다. 그러나 손실을 좀 더 줄이기 위해서는 도 21의 굵은 점선으로 표시된 바와 같이, 제2양전원스위치(M3)가 턴온되어 선형증폭부(2011)의 양선형전원전압이 제1양선형전원전압(+Vaa1)에서 제2양선형전원전압(+Vaa2)으로 변경될 때 제1음선형전원전압(-Vaa1)도 기저전위로 올리거나, 음전원스위치(M4)가 턴온되어 선형증폭부(2011)의 음선형전원전압이 제1음선형전원전압(-Vaa1)에서 제2음선형전원전압(-Vaa2)로 변경될 때 이에 동기하여 제1양선형전원전압(+Vaa1)도 기저전위로 내리거나 이와 유사한 전위로 낮추는 구성을 고려해 볼 수도 있다.
도 20 내지 도 21을 참조하여 상술한 바와 같이, 본 발명의 제3실시예에 따르면 입력신호가 없는 휴지기나 출력전압이 낮은 저출력 조건에서 선형증폭부의 선형전원전압을 + Vaa2보다 낮은 - Vaa1으로 낮출 수 있으므로 선형증폭기의 손실을 줄여 효율을 향상시킬 수 있다.
한편, 본 발명의 제3실시예에서는 선형전원제어부가 다른 형태로 구현될 수도 있다. 다른 형태의 구현에 대해 도 22 내지 도 23을 참조하여 이하에서 설명한다.
출력전압에 따라 선형증폭부의 전원전압을 조절하는 본 발명의 제3 실시예는 출력전압(Vo)이 문턱전압(Vth+와 Vth-)의 범위를 벗어나는 경우에 도 21의 A~B 구간 또는 C~D 구간에 나타난 바와 같이 선형증폭부에 인가되는 전원을 ± Vaa1에서 ± Vaa2로 변화하는 구형파 형상으로 인가할 수도 있다. 그러나 이 경우, 전원의 급격한 변화는 선형증폭부의 출력 트랜지스터를 타고 출력부에 노이즈를 유발하거나 궤환루프의 위상여유가 충분하지 않은 경우에는 전원전압의 급격한 변화로 인해 발진을 초래할 우려가 있다.
따라서, 이러한 우려를 예방하기 위해서는 출력전압(Vo)가 문턱전압(Vth+와 Vth-)의 범위를 벗어나는 A~B 구간 또는 C~D 구간에서 도 22에 도시된 바와 같이 선형증폭부에 인가되는 전원전압(± VA)을 출력전압(Vo)과 일정한 간격을 갖고 부드럽게 변화하도록 제어할 필요가 있다. 이를 위해 도 18에 도시된 제3 실시예의 기본구성을 변형한 도 23에 도시된 구성을 이용한다.
도 23은 본 발명의 제3실시예의 다른 예에 대한 회로도이고, 도 22는 도 23의 회로의 각 간에서의 동작파형이다. 제3실시예의 다른 예에 따른 다중 전원 혼합형 증폭기(2300)에서, 선형전원제어부는 스위치부(2350), 및 오프셋부(2370)를 포함할 수 있다. 스위치부(2350)는 제1선형전원전압 내지 제N선형전원전압을 스위칭하여 전달하는 방식으로 선형전원전압을 출력한다. 오프셋부(2370)는 소정의 오프셋 전압을 이용하여, 출력전압이 문턱전압범위를 벗어나는 경우 출력전압에 소정의 오프셋 전압이 더해진 전압이제2선형전원전압 내지 제N선형전원전압으로부터 선형앰프부로 전달되도록 제1선형전원전압 내지 상기 제N선형전원전압의 스위칭을 제어한다.
스위치부(2350)는 제1서브스위치부 내지 제N서브스위치부를 포함한다. 제1서브스위치부 내지 제N서브스위치부는 오프셋 전압에 응답하여 제1선형전원전압 내지 제N선형전원전압을 스위칭하여 전달한다. 제1서브스위치부 내지 제N서브스위치부는 서로 캐스케이드 방식으로 연결되는 것이 바람직하다.
또한, 제1선형전원전압 내지 제N선형전원전압은 각각 동일한 레벨의 제1양전원전압과 제1음전원전압, 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함하며, 제1서브스위치부 내지 제N서브스위치부는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함한다. 이하 도 22 내지 도 23을 참조하여 도 23의 회로에 대해 상세히 설명한다.
출력전압(Vo)이 문턱전압(Vth+와 Vth-)의 범위를 벗어나는 경우, 제1서브스위치부(D1,D2)는 자동으로 턴 오프되고 제2서브스위치부(즉, 전원 트랜지스터(Q3또는 Q4))는 자동으로 도통하므로 도 23의 회로에서는 도 18의 감지부(1850)가 필요없다. 출력전압(Vo)이 문턱전압(Vth+와 Vth-)의 범위를 벗어나는 A~B 구간 또는 C~D 구간에서 출력전압(Vo)과 선형증폭부의 전원전압(± VA) 사이의 간격은 도 23에 도시된 (직류)오프셋부의 오프셋 전압으로 조절할 수 있다.
이 경우에도 손실을 좀 더 줄이기 위해서, 도 22의 굵은 점선으로 표시된 바와 같이 양의 전원 트랜지스터(Q3)가 도통할 때 음전원전압(-VA)도 -Vaa1에서 기저전위 레벨로 올리거나 음의 전원 트랜지스터(Q4)가 도통할 때 이에 동기하여 양의 전원전압(+VA)도 +Vaa1에서 기저전위 레벨 또는 이와 유사한 전위로 낮추는 구성을 고려해 볼 수도 있을 것이다. 또한 제3실시예에서, N은 2 이상인 것이 바람직하다.
본 발명은 출력에 따라 선형증폭부의 전원전압(Vaa) 또는 스위칭증폭부의 전원전압(Vdd) 중에서 적어도 하나를 가변시킴으로써 입력신호가 없는 휴지기 또는 저출력시의 선형증폭부의 손실을 종래의 경우보다 감소시킬 수 있다. 상술한 제1 내지 제3 실시예는 출력에 따라 선형증폭부의 전원전압(Vaa) 또는 스위칭증폭부의 전원전압(Vdd) 중에서 하나를 가변시키는 구성을 이용하는 것으로, 그 중에서 제1실시예와 제2실시예는 스위칭증폭부에 인가되는 전원전압(Vdd)를 가변시키는 구성을 이용하고, 제3실시예는 선형증폭부에 인가되는 전원전압(Vaa)를 가변시키는 구성을 이용한다.
이하에서는 설명할 본 발명의 제4실시예와 제5실시예는 제1실시예 또는 제2실시예와 제3실시예를 결합하여 스위칭증폭부의 전원전압(Vdd)와 선형증폭부의 전원전압(Vaa)를 함께 가변시키는 구성을 이용한다. 이렇게 결합된 구성을 이용함으로써 선형증폭부의 손실은 더욱 감소될 것이며, 효율 또한 한층 개선될 것이다.
(제 4 실시예)
도 24는 본 발명의 제4실시예에 따른 다중 전원 혼합형 증폭기의 구성도이다. 본 발명의 제4실시예는, 출력전압(Vo)의 레벨 또는 기울기에 따라 그 값이 기준레벨보다 작을 때는 기준레벨보다 클 때보다 더 낮은 전압을 스위칭 증폭부의 전원전압으로 인가하는 구성을 이용하는 본 발명의 제1실시예와, 출력전압(Vo)의 레벨에 따라 선형증폭부에 인가되는 전원전압(Vaa)을 가변시키는 본 발명의 제3실시예를 결합한 것이다. 따라서 본 발명의 제4실시예의 구성 및 구체적인 동작과 기능은 제1실시예와 제3실시예에 대한 상술한 설명으로부터 당업자가 용이하게 이해할 수 있을 것이므로 제4실시예에 대한 구체적인 설명은 생략한다. 한편 제4실시예에 이용되는 제3실시예는 도 20 및 도 21에 도시된 구성 및 동작일 수도 있고, 도 22 및 도 23에 도시된 구성 및 동작일 수도 있다.
(제 5 실시예)
도 25는 본 발명의 제5실시예에 따른 다중 전원 혼합형 증폭기의 구성도이다. 본 발명의 제5실시예는, 선형증폭부의 출력전류를 감지하는 제1감지부에 의해 감지된 신호만을 이용하여 스위치부를 제어하는 구성을 이용하는 제2실시예와, 출력전압(Vo)의 레벨에 따라 선형증폭부에 인가되는 전원전압(Vaa)를 가변시키는 구성을 이용하는 제3실시예를 결합한 것이다. 본 발명의 제5실시예에 이용되는 제2실시예는 스위치부가 필터부에 병렬로 접속되는 도 12에 도시된 구성일 수도 있고, 케스케이드 방식으로 연결되는 도 13에 도시된 구성일 수도 있다. 또한 제5실시예에 이용되는 제3실시예는 도 20 및 도 21에 도시된 구성 및 동작일 수도 있고, 도 22 및 도 23에 도시된 구성 및 동작일 수도 있다. 본 발명의 제4실시예의 구성 및 구체적인 동작과 기능은 제1실시예와 제3실시예에 대한 상술한 설명으로부터 당업자가 용이하게 이해할 수 있을 것이므로 제4실시예에 대한 구체적인 설명은 생략한다.
지금까지는 선형증폭부와 스위칭증폭부가 결합된 다중 전원 혼합형 증폭기에 대해 설명하였으나, 본 발명 기술적 사상은 스위칭증폭기에 대해서도 적용될 수 있다. 도 26은 본 발명이 적용된 스위칭증폭기의 구성도이다. 도 26에 도시된 바와 같이, 스위칭증폭부만 따라 분리되어 있으며, 출력전압(Vo)에 따라 전원공급부로부터 인가되는 전원전압을 가변시킴으로써 본 발명의 사상이 스위칭증폭기에 적용되도록 할 수 있을 것이다.
스위칭증폭기는 선형증폭기에 비하여 손실이 적고 효율이 높지만, 출력에 따라 전원전압을 제어해 주면, 더욱 높은 효율을 달성할 수 있을 뿐만 아니라 리플전류가 작아져서 스피커에 전달되는 출력전압에 포함되는 리플성분도 작아지므로 필터부의 설계가 상대적으로 쉬워지는 장점이 있다.
이상에서와 같이 도면과 명세서에서 최적 실시예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (38)

  1. 입력신호와, 출력신호를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력하는 선형앰프부;
    상기 선형전류를 감지하여 제1감지신호를 출력하는 제1감지부;
    상기 출력신호를 감지하여 제2감지신호를 출력하는 제2감지부;
    상기 제1감지신호와 제1기준신호를 비교하여 제1제어신호를 출력하고, 상기 제2감지신호와 제2기준신호 내지 제N기준신호를 비교하여 제2제어신호 내지 제N제어신호를 출력하는 비교부;
    상기 제1제어신호 내지 상기 제N제어신호에 응답하여 제1구동제어신호 내지 제N구동제어신호를 출력하는 게이트 구동부;
    상기 제1구동제어신호 내지 제N구동제어신호에 응답하여, 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 방식으로 스위칭신호를 출력하는 스위치부; 및
    상기 스위칭신호를 필터링하여 상기 출력신호를 출력하는 필터부를 포함하며,
    상기 제2감지신호는 상기 출력신호의 레벨에 대응하는 레벨 감지신호와, 상기 출력신호의 기울기에 대응하는 기울기 감지신호 중 적어도 하나를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  2. 제1항에 있어서, 상기 제2감지부는,
    상기 출력신호의 레벨을 감지하여 상기 레벨 감지신호를 출력하는 레벨 감지부; 및
    상기 출력신호의 기울기를 감지하여 상기 기울기 감지신호를 출력하는 기울기 감지부를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  3. 제1항에 있어서,
    상기 비교부는 제1서브비교부 내지 제N서브비교부를 포함하며,
    상기 제1서브비교부는 상기 제1감지신호와 상기 제1기준신호를 비교하여 상기 제1제어신호를 출력하고, 상기 제2서브비교부 내지 제N서브비교부는 상기 제2감지신호와 상기 제2기준신호 내지 상기 제N기준신호를 비교하여 상기 제2제어신호 내지 상기 제N제어신호를 출력하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  4. 제3항에 있어서,
    상기 제2감지신호는 상기 출력신호의 레벨에 대응하는 레벨 감지신호와, 상기 출력신호의 기울기에 대응하는 기울기 감지신호를 포함하며,
    상기 제2서브비교부 내지 제N서브비교부는 상기 레벨 감지신호와 상기 기울기 감지신호 중 적어도 하나를 상기 제2기준신호 내지 상기 제N기준신호와 비교하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  5. 제4항에 있어서,
    상기 제2기준신호 내지 상기 제N기준신호는 각각 제2기준레벨신호와 제2기준기울기신호, 내지 제N 기준레벨신호 와 제N기준기울기신호를 포함하며,
    상기 제2서브비교부 내지 상기 제N서브비교부는 각각 상기 레벨 감지신호를 상기 제2기준레벨신호 내지 상기 제N기준레벨신호와 비교하고, 상기 기울기 감지신호를 대응하는 상기 제2기준기울기신호 내지 상기 제N기준기울기신호와 비교하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  6. 제1항에 있어서,
    상기 스위치부는 상기 제1구동제어신호 내지 제N구동제어신호에 응답하여 상기 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 제1서브스위치부 내지 제N서브스위치부를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  7. 제6항에 있어서,
    상기 제2서브스위치부 내지 제N서브스위치부는 서로 캐스케이드(cascade) 방식으로 연결 또는 병렬 연결되는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  8. 제6항에 있어서,
    상기 제1전원전압 내지 제N전원전압은 각각 동일한 레벨의 제1양전원전압과 제1음전원전압 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함하며,
    상기 제1서브스위치부 내지 제N서브스위치부는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  9. 제6항에 있어서,
    상기 비교부는, 상기 제1감지신호 및 제2감지신호가 제1기준신호 내지 제N기준신호의 범위를 벗어나는 경우 이에 대응하는 상기 제1 내지 제N서브스위치부를 턴온시키기 위한 제1제어신호 내지 제N제어신호를 출력하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  10. 제1항에 있어서, 상기 제2감지부는 상기 스위칭신호를 필터링하여 상기 출력신호에 대응하는 필터링신호를 발생한 후, 상기 필터링신호를 감지하여 상기 제2감지신호를 출력하도록 더 구성되는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  11. 제1항에 있어서,
    상기 제2기준신호 내지 제N기준신호를 발생하는 기준신호 발생부를 더 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  12. 제1항에 있어서,
    상기 제1전원전압 내지 제N전원전압을 발생하는 전원전압 발생부를 더 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  13. 제1항에 있어서, 상기 N은 2 이상인 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  14. 입력신호와, 출력신호를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력하는 선형앰프부;
    상기 선형전류를 감지하여 감지신호를 출력하는 감지부;
    상기 감지신호와 제1기준신호 내지 제N기준신호를 비교하여 제1제어신호 내지 제N제어신호를 출력하는 비교부;
    상기 제1제어신호 내지 상기 제N제어신호에 응답하여 제1구동제어신호 내지 제N구동제어신호를 출력하는 게이트 구동부;
    상기 제1구동제어신호 내지 제N구동제어신호에 응답하여, 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 방식으로 스위칭신호를 출력하는 스위치부; 및
    상기 스위칭신호를 필터링하여 상기 출력신호를 출력하는 필터부를 포함하며,
    상기 비교부는 상기 감지신호와 상기 제1기준신호 내지 제N기준신호를 비교하여 상기 제1제어신호 내지 상기 제N제어신호를 각각 출력하는 제1서브비교부 내지 제N서브비교부를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  15. 제14항에 있어서,
    상기 스위치부는 상기 제1구동제어신호 내지 제N구동제어신호에 응답하여 상기 제1전원전압 내지 제N전원전압을 스위칭하여 전달하는 제1서브스위치부 내지 제N서브스위치부를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  16. 제15항에 있어서,
    상기 제1서브스위치부 내지 제N서브스위치부는 서로 캐스케이드 방식으로 연결되어 상기 필터부와 캐스케이드 방식으로 연결되는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  17. 제15항에 있어서,
    상기 제1서브스위치부 내지 제N서브스위치부는 상기 필터부와 병렬로 연결되는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  18. 제15항에 있어서,
    상기 제1전원전압 내지 제N전원전압은 각각 동일한 레벨의 제1양전원전압과 제1음전원전압 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함하며,
    상기 제1서브스위치부 내지 제N서브스위치부는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  19. 제115항에 있어서,
    상기 비교부는, 상기 감지신호가 상기 제1기준신호 내지 제N기준신호의 범위를 벗어나는 경우 이에 대응하여 상기 제1내지 제N서브스위치부를 턴온시키기 위한 제1제어신호 내지 제N제어신호를 출력하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  20. 제14항에 있어서,
    상기 제1전원전압 내지 제N전원전압을 발생하는 전원전압 발생부를 더 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  21. 제14항에 있어서, 상기 N은 2 이상인 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  22. 입력신호와, 출력신호를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력하는 선형앰프부;
    상기 선형전류를 감지하여 생성된 제1감지신호가 기준 범위 안에서 유지되도록 스위칭전원전압을 스위칭시켜 스위칭신호를 생성하고, 상기 스위칭신호를 필터링하여 출력신호를 출력하는 스위칭앰프부; 및
    상기 출력신호를 감지하여 생성된 제2감지신호에 응답하여 상기 선형앰프부로 인가되는 선형전원전압을 제어하는 선형전원제어부를 포함하며,
    상기 선형전원제어부는,
    상기 출력신호를 감지하여 상기 제2감지신호를 출력하는 감지부;
    상기 제2감지신호와 제2기준신호 내지 제N기준신호를 비교하여 제2제어신호 내지 제N제어신호를 출력하는 비교부;
    상기 제2제어신호 내지 상기 제N제어신호에 응답하여 제2구동제어신호 내지 제N구동제어신호를 출력하는 게이트 구동부; 및
    상기 제2구동제어신호 내지 제N구동제어신호에 응답하여, 제1선형전원전압 내지 제N선형전원전압을 스위칭하여 전달하는 방식으로 상기 선형전원전압을 출력하는 스위치부를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  23. 제22항에 있어서,
    상기 비교부는 상기 제2감지신호와 상기 제2기준신호 내지 제N기준신호를 비교하여 상기 제2제어신호 내지 상기 제N제어신호를 각각 출력하는 제2서브비교부 내지 제N서브비교부를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  24. 제22항에 있어서, 상기 스위치부는,
    상기 제1선형전원전압을 스위칭하여 전달하는 제1서브스위치부; 및
    상기 제2구동제어신호 내지 제N구동제어신호에 응답하여 상기 제2선형전원전압 내지 제N선형전원전압을 스위칭하여 전달하는 제2서브스위치부 내지 제N서브스위치부를 포함하되 상기 제1서브스위치부는 상기 제2 내지 제N서브스위치부가 턴온되지 않는 경우에 턴온되는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  25. 제24항에 있어서,
    상기 제1서브스위치부 내지 제N서브스위치부는 서로 캐스케이드 또는 병렬 방식으로 연결되는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  26. 제24항에 있어서,
    상기 제1선형전원전압 내지 제N선형전원전압은 각각 동일한 레벨의 제1양전원전압과 제1음전원전압 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함하며,
    상기 제1서브스위치부 내지 제N서브스위치부는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치, 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  27. 제24항에 있어서,
    상기 비교부는, 상기 제2감지신호가 상기 제2 내지 제N 기준신호의 범위를 벗어나는 경우 이에 대응하여 상기 제2 내지 제N서브스위치부를 턴온시키기 위한 제2제어신호 내지 제N제어신호를 출력하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  28. 제22항에 있어서,
    상기 감지부는 상기 스위칭신호를 필터링하여 상기 출력신호에 대응하는 필터링신호를 발생한 후, 상기 필터링신호를 감지하여 상기 제2감지신호를 출력하도록 더 구성되는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  29. 제22항에 있어서,
    상기 선형전원제어부는 상기 제2기준신호 내지 제N기준신호를 발생하는 기준신호 발생부를 더 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  30. 제22항에 있어서,
    상기 제1선형전원전압 내지 제N선형전원전압, 및 상기 스위칭전원전압을 발생하는 전원전압 발생부를 더 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  31. 제22항에 있어서, 상기 N은 2 이상인 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  32. 제22항에 있어서, 상기 선형전원제어부는,
    제1선형전원전압 내지 제N선형전원전압을 스위칭하여 전달하는 방식으로 상기 선형전원전압을 출력하는 스위치부; 및
    소정의 오프셋 전압을 이용하여, 상기 출력 신호의 전압이 문턱전압범위를 벗어나는 경우 상기 출력 신호의 전압에 상기 오프셋 전압이 더해진 전압이 상기 제2 내지 제N선형전원전압으로부터 선형앰프부로 전달되도록 제어하는 오프셋부를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  33. 제32항에 있어서, 상기 스위치부는,
    상기 제1선형전원전압 스위칭하여 전달하는 제1서브스위치부; 및
    상기 오프셋 전압에 응답하여 상기 제2선형전원전압 내지 제N선형전원전압을 스위칭하여 전달하는 제2서브스위치부 내지 제N서브스위치부를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  34. 제33항에 있어서,
    상기 제1서브스위치부 내지 제N서브스위치부는 서로 캐스케이드 방식으로 연결되는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  35. 제33항에 있어서,
    상기 제1선형전원전압 내지 제N선형전원전압은 각각 동일한 레벨의 제1양전원전압과 제1음전원전압 내지 동일한 레벨의 제N양전원전압과 제N음전원전압을 포함하며,
    상기 제1서브스위치부 내지 제N서브스위치부는 각각 제1양전원전압과 제1음전원전압에 대응하는 제1양전원스위치와 제1음전원스위치 내지 제N양전원전압과 제N음전원전압에 대응하는 제N양전원스위치와 제N음전원스위치를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  36. 제32항에 있어서, 상기 N은 2 이상인 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  37. 입력신호와, 출력신호를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력하는 선형앰프부;
    상기 선형전류를 감지하여 생성된 제1감지신호와 상기 출력신호를 감지하여 생성된 제2감지신호에 따라 제1스위칭전원전압 내지 제N스위칭전원전압을 스위칭시켜 전달하는 방식으로 스위칭신호를 생성하고, 상기 스위칭신호를 필터링하여 출력신호를 출력하는 스위칭앰프부; 및
    상기 출력신호를 감지하여 생성된 제3감지신호에 응답하여 상기 선형앰프부로 인가되는 선형전원전압을 제어하는 선형전원제어부를 포함하며,
    상기 스위칭 앰프부는,
    상기 선형전류를 감지하여 상기 제1감지신호를 출력하는 제1감지부;
    상기 출력신호를 감지하여 상기 제2감지신호를 출력하는 제2감지부;
    상기 제1감지신호와 제1기준신호를 비교하여 제1제어신호를 출력하고, 상기 제2감지신호와 제2기준신호 내지 제N기준신호를 비교하여 제2제어신호 내지 제N제어신호를 출력하는 비교부;
    상기 제1제어신호 내지 상기 제N제어신호에 응답하여 제1구동제어신호 내지 제N구동제어신호를 출력하는 게이트 구동부;
    상기 제1구동제어신호 내지 제N구동제어신호에 응답하여, 상기 제1스위칭전원전압 내지 상기 제N스위칭전원전압을 스위칭하여 전달하는 방식으로 상기 스위칭신호를 출력하는 스위치부;
    상기 스위칭신호를 필터링하여 상기 출력신호를 출력하는 필터부를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
  38. 입력신호와, 출력신호를 궤환시킨 궤환신호가 같아지도록 입력신호를 증폭하여 선형전류를 출력하는 선형앰프부;
    상기 선형전류를 감지하여 생성된 제1감지신호에 따라 제1스위칭전원전압 내지 제N스위칭전원전압을 스위칭시켜 전달하는 방식으로 스위칭신호를 생성하고, 상기 스위칭신호를 필터링하여 출력신호를 출력하는 스위칭앰프부; 및
    상기 출력신호를 감지하여 생성된 제3감지신호에 응답하여 상기 선형앰프부로 인가되는 선형전원전압을 제어하는 선형전원제어부를 포함하며,
    상기 스위칭앰프부는,
    상기 선형전류를 감지하여 상기 제1감지신호를 출력하는 감지부;
    상기 제1감지신호와 제1기준신호 내지 제N기준신호를 비교하여 제1제어신호 내지 제N제어신호를 출력하는 비교부;
    상기 제1제어신호 내지 상기 제N제어신호에 응답하여 제1구동제어신호 내지 제N구동제어신호를 출력하는 게이트 구동부;
    상기 제1구동제어신호 내지 제N구동제어신호에 응답하여, 상기 제1스위칭전원전압 내지 상기 제N스위칭전원전압을 스위칭하여 전달하는 방식으로 상기 스위칭신호를 출력하는 스위치부; 및
    상기 스위칭신호를 필터링하여 상기 출력신호를 출력하는 필터부를 포함하는 것을 특징으로 하는 다중 전원 혼합형 증폭기.
PCT/KR2009/003874 2008-07-18 2009-07-15 다중 전원 혼합형 증폭기 WO2010008188A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080070000A KR100881155B1 (ko) 2008-07-18 2008-07-18 다중 전원 혼합형 증폭기
KR10-2008-0070000 2008-07-18

Publications (2)

Publication Number Publication Date
WO2010008188A2 true WO2010008188A2 (ko) 2010-01-21
WO2010008188A3 WO2010008188A3 (ko) 2010-05-14

Family

ID=40680929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/003874 WO2010008188A2 (ko) 2008-07-18 2009-07-15 다중 전원 혼합형 증폭기

Country Status (2)

Country Link
KR (1) KR100881155B1 (ko)
WO (1) WO2010008188A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682851A (zh) * 2020-08-13 2020-09-18 成都嘉纳海威科技有限责任公司 一种5g通信抗失配宽带低噪声放大器
WO2022185029A1 (en) * 2021-03-02 2022-09-09 Cirrus Logic International Semiconductor Limited Amplifier circuitry

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515930B1 (ko) * 2013-06-04 2015-05-04 포항공과대학교 산학협력단 스위치 전류의 조절을 이용한 고효율 포락선 증폭기를 위한 장치 및 방법.
KR101550836B1 (ko) 2015-02-16 2015-09-07 (주)디라직 크로스오버 왜곡을 개선한 전원단과 증폭단을 통합한 음향 증폭기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050016200A (ko) * 2003-08-07 2005-02-21 가부시키가이샤 엔티티 도코모 전력 증폭기
KR20070032308A (ko) * 2004-06-04 2007-03-21 실리콘 파워 디바이스 에이피에스 전력 증폭기 및 펄스 폭 변조된 증폭기
US20070146080A1 (en) * 2005-12-28 2007-06-28 Passave Ltd. Burst-Mode TIA (Trans-Impedance Amplifier)
US20070247219A1 (en) * 2006-04-07 2007-10-25 Jesus Rodriguez Manuel D Switching power amplifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600891A (en) * 1984-08-21 1986-07-15 Peavey Electronics Corporation Digital audio amplifier having a high power output level and low distortion
US6311046B1 (en) * 1998-04-02 2001-10-30 Ericsson Inc. Linear amplification systems and methods using more than two constant length vectors
US7319763B2 (en) 2001-07-11 2008-01-15 American Technology Corporation Power amplification for parametric loudspeakers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050016200A (ko) * 2003-08-07 2005-02-21 가부시키가이샤 엔티티 도코모 전력 증폭기
KR20070032308A (ko) * 2004-06-04 2007-03-21 실리콘 파워 디바이스 에이피에스 전력 증폭기 및 펄스 폭 변조된 증폭기
US20070146080A1 (en) * 2005-12-28 2007-06-28 Passave Ltd. Burst-Mode TIA (Trans-Impedance Amplifier)
US20070247219A1 (en) * 2006-04-07 2007-10-25 Jesus Rodriguez Manuel D Switching power amplifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682851A (zh) * 2020-08-13 2020-09-18 成都嘉纳海威科技有限责任公司 一种5g通信抗失配宽带低噪声放大器
WO2022185029A1 (en) * 2021-03-02 2022-09-09 Cirrus Logic International Semiconductor Limited Amplifier circuitry
US11552609B2 (en) 2021-03-02 2023-01-10 Cirrus Logic, Inc. Amplifier circuitry
GB2618683A (en) * 2021-03-02 2023-11-15 Cirrus Logic Int Semiconductor Ltd Amplifier circuitry

Also Published As

Publication number Publication date
WO2010008188A3 (ko) 2010-05-14
KR100881155B1 (ko) 2009-02-13

Similar Documents

Publication Publication Date Title
WO2011013906A2 (ko) 발광 장치를 위한 조광 장치
WO2015060556A1 (ko) 전력 증폭 장치 및 방법
WO2010008188A2 (ko) 다중 전원 혼합형 증폭기
WO2015020416A1 (en) Apparatus and method for wireless power reception
WO2015037949A1 (ko) 충전 제어 장치, 충전 제어 방법 및 이를 구비한 무선전력 수신장치
WO2020171663A1 (ko) 무선 전력 전송 장치 및 이를 구비하는 전자 기기
WO2012111969A2 (en) Apparatus and method for high efficiency variable power transmission
WO2018208057A1 (ko) 전도성 노이즈 억제 장치, 전력 변환 장치 및 모터 장치
WO2021040184A1 (ko) 코일 구동 장치
WO2014098279A1 (ko) 수신단의 유효 로드저항 변조를 이용하여 효율과 전달전력을 향상시키는 무선전력수신 장치
WO2018236088A1 (ko) 전원 공급 장치 및 부하에 전원을 공급하는 방법
WO2017131345A1 (ko) 무선 전력 공급 방법 및 그를 위한 장치
WO2017052132A1 (ko) 무선 전력 송신기
WO2017183759A1 (ko) 교류전원의 위상각 제어를 이용한 데이터 통신 방법 및 장치
WO2013151290A1 (ko) 전력 공급 장치, 무선전력 송신장치 및 전력 공급 방법
WO2015180136A1 (zh) 调光开关及其调光方法
WO2021225375A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2021225373A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2012161528A2 (ko) 엘이디 구동 제어 장치 및 이의 구동 전류 제어 방법
US6995609B2 (en) Switching circuit and digital power amplifier
WO2021225347A1 (ko) 벅 컨버터를 포함하는 오디오 전자 장치 및 그의 동작 방법
WO2017135523A9 (ko) 대기 전력 제어 기능을 구비한 전원 공급 장치 및 그 전원 공급 방법
WO2021194302A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2021010598A1 (en) Electronic apparatus, control method thereof and display apparatus
WO2019071684A1 (zh) 电位转换电路及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09798091

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09798091

Country of ref document: EP

Kind code of ref document: A2