WO2018076165A1 - 一种易切削黄铜合金及其制造方法 - Google Patents
一种易切削黄铜合金及其制造方法 Download PDFInfo
- Publication number
- WO2018076165A1 WO2018076165A1 PCT/CN2016/103198 CN2016103198W WO2018076165A1 WO 2018076165 A1 WO2018076165 A1 WO 2018076165A1 CN 2016103198 W CN2016103198 W CN 2016103198W WO 2018076165 A1 WO2018076165 A1 WO 2018076165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- free
- raw materials
- cutting brass
- brass alloy
- boron
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Definitions
- the present invention relates to the field of brass alloys, and more particularly to a free-cutting brass alloy and a method of manufacturing the same.
- Lead-free free-cutting brass is a brass alloy with a certain amount of bismuth, tin, aluminum, antimony and arsenic based on copper and zinc. It has lead cutting performance comparable to that of lead brass and its anti-dezincification performance is achieved. AS2345 Standard, excellent forging processing performance.
- the bismuth brass materials that have been developed and used at present are mainly cast rods and extruded rods, mainly because the solid solubility of bismuth in copper is extremely low, and segregation of components tends to occur during the smelting process, which affects the internal quality of the ingot.
- the brittle film is often distributed on the grain boundary of brass, which not only produces hot brittleness, but also produces cold brittleness, which is easy to cause cracking during cold and hot processing, and has insufficient resistance to dezincification, which makes its application constrained. . Therefore, in order to avoid the disadvantages existing in the prior art, it is necessary to make improvements to the prior art.
- the object of the present invention is to overcome the shortcomings and deficiencies in the prior art, and to provide a process capable of improving processing performance and dezincification resistance and preventing cracking during processing. Free cutting brass alloy.
- Another object of the present invention is to provide a method of manufacturing a free-cutting brass.
- a free-cutting brass alloy consisting of: 62% ⁇ 65% copper, 0.01% ⁇ 0.15% iron, 0.2% ⁇ 0.6% tin, 0.2% ⁇ 0.6% aluminum, 0.02% ⁇ 0.2% nickel, 0.06% ⁇ 0.15% arsenic, 0.3% ⁇ 1.2% bismuth, 0.03% ⁇ 0.15% bismuth, 0.0005% ⁇ 0.0025% boron, 34% ⁇ 37% zinc and 0.01% ⁇ 0.1% mixed rare earth modifier.
- the free-cutting brass alloy comprises, by weight percentage: 62% copper, 0.15% iron, 0.6% tin, 0.6% aluminum, 0.2% nickel, 0.15% arsenic, 1% bismuth, 0.15% bismuth, 0.002% boron, 35.098% zinc, and 0.05% Mixed rare earth modifier.
- the mixed rare earth modifier includes ruthenium, osmium and selenium.
- the impurity content of the free-cutting brass alloy is less than or equal to 0.2% of the total weight of the free-cutting brass alloy.
- the cadmium content in the impurities is less than or equal to 0.01% of the total weight of the free-cutting brass alloy.
- a method for manufacturing a free-cutting brass alloy comprising the steps of:
- Annealing temperature is 580 °C ⁇ 600 °C
- annealing time is 50min ⁇ 70min.
- the extrusion speed of the step (4) is 15 mm/s to 35 mm/s, and the extrusion ratio is 15 to 45. .
- the boron content of the copper boron alloy in the step (2) is 5%
- the boron content of the aluminum boron alloy is 3%
- the arsenic content of the copper arsenic alloy is 25%.
- the present invention is added by adding The mixed rare earth modifier changes the metallographic structure of the bismuth brass, improves the mechanical properties of the bismuth brass, eliminates the cracking of the extruded rod during processing, has the cutting performance comparable to lead brass, improves the forging forming process performance, and has Excellent resistance to dezincification .
- a free-cutting brass alloy consisting of: 62% ⁇ 65% copper, 0.01% ⁇ 0.15% iron, 0.2% ⁇ 0.6% tin, 0.2% ⁇ 0.6% aluminum, 0.02% ⁇ 0.2% nickel, 0.06% ⁇ 0.15% arsenic, 0.3% ⁇ 1.2% bismuth, 0.03% ⁇ 0.15% bismuth, 0.0005% ⁇ 0.0025% boron, 34% ⁇ 37% zinc and 0.01% ⁇ 0.1% mixed rare earth modifier.
- the free-cutting brass alloy comprises, by weight percentage: 62% copper, 0.15% iron, 0.6% Tin, 0.6% aluminum, 0.2% nickel, 0.15% arsenic, 1% bismuth, 0.15% bismuth, 0.002% boron, 35.098% zinc, and 0.05% Mixed rare earth modifier.
- Mixed rare earth modifiers include lanthanum, cerium and selenium. Rare metals in mixed rare earth modifiers It has a good function of degassing, purifying and refining the molten brass metal, and has the effect of refining and modifying the metal structure.
- the mixed rare earth modifier is added to the bismuth brass melt for a certain degree of modification. The processing performance of the tin-tin brass alloy product is improved, and the extrusion rod production process suitable for large-scale production of smelting, horizontal continuous casting, hot extrusion, and finished annealing.
- the impurity content of the free-cutting brass alloy is less than or equal to 0.2% of the total weight of the free-cutting brass alloy .
- the cadmium content in the impurities is less than or equal to 0.01% of the total weight of the free-cutting brass alloy.
- a method for manufacturing a free-cutting brass alloy comprising the steps of:
- the temperature is turned into a refining agent for slag refining; the rare earth modifier is further charged, and the mixture is smelted and stirred uniformly; the heat preservation and slag removal are performed; the boron content of the copper boron alloy is 5%, and the boron content of the aluminum boron alloy is 3%. , the arsenic content of copper arsenic alloy is 25%;
- Extrusion the spindle is heated to 600 ° C ⁇ 750 ° C for hot extrusion to obtain an extruded tube or extruded rod; extrusion speed is 15 Mm / s ⁇ 35mm / s, extrusion ratio is 15 ⁇ 45.
- Annealing temperature is 580 °C ⁇ 600 °C
- annealing time is 50min ⁇ 70min.
- the mixed rare earth modifier can change the metallographic structure of the bismuth brass, effectively refine the grain, remove the grain boundary impurities, reduce the segregation of the alloy chemical composition, precipitate the hard rare earth strengthening phase, and eliminate the ⁇ -brittle film distribution in the brass crystal.
- the spheroidal granules are dispersed, and the intermediate annealing causes re-melting and agglomeration of the ruthenium of the matrix, which also promotes the spheroidal distribution of the spheroids.
- the transformation of the metallographic structure makes the mechanical properties of the bismuth brass effectively improved. Improves the mechanical properties of the bismuth brass, prevents the extruded rod from cracking during processing, and has cutting performance comparable to or close to lead brass.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
一种易切削黄铜合金及其制造方法,铜合金按重量百分比包括:62%~65%的铜、0.01%~0.15%的铁、0.2%~0.6%的锡、0.2%~0.6%的铝、0.02%~0.2%的镍、0.06%~0.15%砷、0.3%~1.2%的铋、0.03%~0.15%的锑、0.0005%~0.0025%的硼、34%~37%的锌及0.01%~0.1%的混合稀土变质剂。
Description
技术领域
本发明涉及黄铜合金领域,具体涉及 一种易切削黄铜合金及其制造方法 。
背景技术
无铅易切削黄铜是以铜锌为基础加入一定量铋、锡、铝、锑、砷的黄铜合金,以铋代铅,其切削性能与铅黄铜相当或接近,抗脱锌性能达到 AS2345
标准,锻压加工性能优良。然而,目前已开发使用的铋黄铜材是以铸棒和挤制棒为主,主要是由于铋在铜中固溶度极低,熔炼过程中易产生成分偏析,影响铸锭内部质量。铋常呈脆性薄膜分布在黄铜晶界上,既产生热脆性,又产生冷脆性,易于导致冷、热加工时开裂,抗脱锌性不足,使其应用受到约束
。 因此,为了避免现有技术中存在的缺点,有必要对现有技术做出改进。
发明内容
本发明的目的在于克服现有技术中的缺点与不足,提供一种能提高加工性能及抗脱锌性能、防止加工易开裂的
易切削黄铜合金 。
本发明的另一个目的在于,提供一种易切削黄铜的制造方法。
本发明是通过以下的技术方案实现的:
一种易切削黄铜合金,按重量百分比包括: 62%~65% 的铜、 0.01%~0.15% 的铁、
0.2%~0.6% 的锡、 0.2%~0.6% 的铝、 0.02%~0.2% 的镍、 0.06%~0.15% 砷、 0.3%~1.2% 的铋、
0.03%~0.15% 的锑、 0.0005%~0.0025% 的硼、 34%~37% 的锌及 0.01%~0.1% 的混合稀土变质剂。
进一步, 所述易切削黄铜合金按重量百分比包括: 62% 的铜、 0.15% 的铁、 0.6% 的锡、
0.6% 的铝、 0.2% 的镍、 0.15% 砷、 1% 的铋、 0.15% 的锑、 0.002% 的硼、 35.098% 的锌及 0.05%
的混合稀土变质剂。
进一步, 所述混合稀土变质剂包括铈、镧及硒。
进一步, 所述易切削黄铜合金的杂质含量小于或等于易切削黄铜合金总重量的 0.2% 。
进一步, 所述杂质中的镉含量小于等于易切削黄铜合金总重量的 0.01% 。
一种易切削黄铜合金的制造方法,包括以下步骤:
( 1 )配料:按重量百分比称取原材料;
( 2 )熔炼:先分批投入铜原材料和锌原材料的 50%
,进行熔炼;再投入铜硼合金原材料和铝硼合金原材料;再投入余下的 50%
的锌原材料、铋原材料、锡原材料、锑原材料、铝原材料及镍原材料,进行熔炼;再投入铜砷合金原材料,进行熔炼,搅拌 5min~10min
,然后升温投入精炼剂进行除渣精炼;再投入混合稀土变质剂,进行熔炼、搅拌均匀;静置保温和除渣;
( 3 )连铸:保温进行水平连铸圆锭,铸造速度为 5 m/h~8m/h ,把圆锭锯切成锭子;
( 4 )挤压:把锭子加热至 600 ℃~ 750 ℃进行热挤压得到挤制管或挤制棒。
( 5 )退火:退火温度为 580 ℃~ 600 ℃,退火时间为 50min~70min 。
进一步, 所述步骤( 4 )的挤压速度为 15 mm/s ~ 35mm/s ,挤压比为 15 ~ 45
。
进一步, 所述步骤( 2 )中的铜硼合金的硼含量为 5% ,铝硼合金的硼含量为 3% ,铜砷合金的砷含量为
25% 。
相对于现有技术,本发明通过添加
混合稀土变质剂改变铋黄铜金相组织,提高了铋黄铜力学性能较,消除挤制棒在使用加工时开裂,具有与铅黄铜相当的切削性能,提高了锻压成型加工性能,并具有优良的抗脱锌性能
。
具体实施方式
下面将结合本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种易切削黄铜合金,按重量百分比包括: 62%~65% 的铜、 0.01%~0.15% 的铁、
0.2%~0.6% 的锡、 0.2%~0.6% 的铝、 0.02%~0.2% 的镍、 0.06%~0.15% 砷、 0.3%~1.2% 的铋、
0.03%~0.15% 的锑、 0.0005%~0.0025% 的硼、 34%~37% 的锌及 0.01%~0.1% 的混合稀土变质剂。
作为一种具体实施方式,易切削黄铜合金按重量百分比包括: 62% 的铜、 0.15% 的铁、 0.6%
的锡、 0.6% 的铝、 0.2% 的镍、 0.15% 砷、 1% 的铋、 0.15% 的锑、 0.002% 的硼、 35.098% 的锌及 0.05%
的混合稀土变质剂。
混合稀土变质剂包括铈、镧及硒。 混合稀土变质剂 中的稀有金属
对黄铜金属熔液具有较好的除气、净化、精炼作用,对金属组织有细化、改性的作用,通过将混合稀土变质剂按一定比例添加到铋黄铜熔液中作变质处理,提高了铋锡黄铜合金产品的加工性能,适于大规模生产的熔炼、水平连铸、热挤压、成品退火的挤制棒生产工艺。
易切削黄铜合金的杂质含量小于或等于易切削黄铜合金总重量的 0.2%
。杂质中的镉含量小于等于易切削黄铜合金总重量的 0.01% 。
一种易切削黄铜合金的制造方法,包括以下步骤:
( 1 )配料:按重量百分比称取原材料;
( 2 )熔炼:先分批投入铜原材料和锌原材料的 50%
,进行熔炼;再投入铜硼合金原材料和铝硼合金原材料;再投入余下的 50%
的锌原材料、铋原材料、锡原材料、锑原材料、铝原材料及镍原材料,进行熔炼;再投入铜砷原材料,进行熔炼,搅拌 5min~10min
,然后升温投入精炼剂进行除渣精炼;再投入混合稀土变质剂,进行熔炼、搅拌均匀;静置保温和除渣;铜硼合金的硼含量为 5% ,铝硼合金的硼含量为 3%
,铜砷合金的砷含量为 25% ;
( 3 )连铸:保温进行水平连铸圆锭,铸造速度为 5 m/h~8m/h ,把圆锭锯切成锭子;
( 4 )挤压:把锭子加热至 600 ℃~ 750 ℃进行热挤压得到挤制管或挤制棒;挤压速度为 15
mm/s ~ 35mm/s ,挤压比为 15 ~ 45 。
( 5 )退火:退火温度为 580 ℃~ 600 ℃,退火时间为 50min~70min 。
混合稀土变质剂能够改变铋黄铜金相组织特征,有效细化晶粒,清除晶界杂质,减小合金化学成分偏析,析出硬质的稀土强化相,消除铋呈脆性薄膜分布在黄铜晶界上,使之球化粒状弥散分布,中间退火使基体的铋发生了重熔和团聚,也促进铋球化粒状分布,金相组织特征的转变使得铋黄铜的力学性能得到有效提高,有效提高了铋黄铜力学性能,防止挤制棒在使用加工时开裂,具有与铅黄铜相当或接近的切削性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (8)
- 一种易切削黄铜合金,其特征在于:按重量百分比包括:62%~65%的铜、0.01%~0.15%的铁、0.2%~0.6%的锡、0.2%~0.6%的铝、0.02%~0.2%的镍、0.06%~0.15%砷、0.3%~1.2%的铋、0.03%~0.15%的锑、0.0005%~0.0025%的硼、34%~37%的锌及0.01%~0.1%的混合稀土变质剂。
- 根据权利要求1所述的易切削黄铜合金,其特征在于:所述易切削黄铜合金按重量百分比包括:62%的铜、0.15%的铁、0.6%的锡、0.6%的铝、0.2%的镍、0.15%砷、1%的铋、0.15%的锑、0.002%的硼、35.098%的锌及0.05%的混合稀土变质剂。
- 根据权利要求1所述的易切削黄铜合金,其特征在于:所述混合稀土变质剂包括铈、镧及硒。
- 根据权利要求1所述的易切削黄铜合金,其特征在于:所述易切削黄铜合金的杂质含量小于或等于易切削黄铜合金总重量的0.2%。
- 根据权利要求4所述的易切削黄铜合金,其特征在于:所述杂质中的镉含量小于等于易切削黄铜合金总重量的0.01%。
- 如权利要求1至5任一项所述的一种易切削黄铜合金的制造方法,包括以下步骤:(1)配料:按重量百分比称取原材料;(2)熔炼:先分批投入铜原材料和锌原材料的50%,进行熔炼;再投入铜硼合金原材料和铝硼合金原材料;再投入余下的50%的锌原材料、铋原材料、锡原材料、锑原材料、铝原材料及镍原材料,进行熔炼;再投入铜砷合金原材料,进行熔炼,搅拌5min~10min,然后升温投入精炼剂进行除渣精炼;再投入混合稀土变质剂,进行熔炼、搅拌均匀;静置保温和除渣;(3)连铸:保温进行水平连铸圆锭,铸造速度为5 m/h~8m/h,把圆锭锯切成锭子;(4)挤压:把锭子加热至600℃~750℃进行热挤压得到挤制管或挤制棒。(5)退火:退火温度为580℃~600℃,退火时间为50min~70min。
- 根据权利要求6所述的易切削黄铜合金的制造方法,其特征在于:所述步骤(4)的挤压速度为15 mm/s~35mm/s,挤压比为15~45。
- 根据权利要求6所述的易切削黄铜合金的制造方法,其特征在于:所述步骤(2)中的铜硼合金的硼含量为5%,铝硼合金的硼含量为3%,铜砷合金的砷含量为25%。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/103198 WO2018076165A1 (zh) | 2016-10-25 | 2016-10-25 | 一种易切削黄铜合金及其制造方法 |
CN201680027395.1A CN107980068A (zh) | 2016-10-25 | 2016-10-25 | 一种易切削黄铜合金及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/103198 WO2018076165A1 (zh) | 2016-10-25 | 2016-10-25 | 一种易切削黄铜合金及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018076165A1 true WO2018076165A1 (zh) | 2018-05-03 |
Family
ID=62005199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/103198 WO2018076165A1 (zh) | 2016-10-25 | 2016-10-25 | 一种易切削黄铜合金及其制造方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107980068A (zh) |
WO (1) | WO2018076165A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112570993A (zh) * | 2020-12-04 | 2021-03-30 | 无锡通伟电力设备有限公司 | 一种导电铜母线的加工方法 |
CN115261665A (zh) * | 2022-06-22 | 2022-11-01 | 昆明冶金研究院有限公司北京分公司 | 铜铁磷系合金用变质剂、其制备方法及应用 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109666819B (zh) * | 2019-01-24 | 2020-09-22 | 浙江高澳卫浴有限公司 | 无铅抗脱锌铜合金材料制得的阀芯组件 |
CN112342428A (zh) * | 2020-10-23 | 2021-02-09 | 开平大昌铜材有限公司 | 一种dzr铜及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0642596A1 (de) * | 1992-06-02 | 1995-03-15 | Hetzel Metalle Gmbh | Messinglegierung. |
CN1521281A (zh) * | 2003-02-13 | 2004-08-18 | ͬ�Ϳ�ҵ��ʽ���� | 耐脱锌性优良的铜基合金 |
KR20140035578A (ko) * | 2012-09-14 | 2014-03-24 | 노인국 | 무연 황동 괴 및 그 제조방법 |
CN105821240A (zh) * | 2015-01-28 | 2016-08-03 | Toto株式会社 | 铸造性及耐腐蚀性优异的黄铜 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1035561C (zh) * | 1992-12-04 | 1997-08-06 | 梦境有限公司 | 黄铜合金及其在制备饮水装置中的应用 |
CN103484710A (zh) * | 2012-09-05 | 2014-01-01 | 阮伟光 | 含微量稀土的铋黄铜合金拉制棒及其制造方法 |
CN103509967B (zh) * | 2013-01-22 | 2016-04-27 | 阮媛清 | 一种重力铸造专用dzr环保黄铜合金锭及其制作工艺 |
-
2016
- 2016-10-25 WO PCT/CN2016/103198 patent/WO2018076165A1/zh active Application Filing
- 2016-10-25 CN CN201680027395.1A patent/CN107980068A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0642596A1 (de) * | 1992-06-02 | 1995-03-15 | Hetzel Metalle Gmbh | Messinglegierung. |
CN1521281A (zh) * | 2003-02-13 | 2004-08-18 | ͬ�Ϳ�ҵ��ʽ���� | 耐脱锌性优良的铜基合金 |
KR20140035578A (ko) * | 2012-09-14 | 2014-03-24 | 노인국 | 무연 황동 괴 및 그 제조방법 |
CN105821240A (zh) * | 2015-01-28 | 2016-08-03 | Toto株式会社 | 铸造性及耐腐蚀性优异的黄铜 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112570993A (zh) * | 2020-12-04 | 2021-03-30 | 无锡通伟电力设备有限公司 | 一种导电铜母线的加工方法 |
CN112570993B (zh) * | 2020-12-04 | 2024-01-30 | 无锡通伟电力设备有限公司 | 一种导电铜母线的加工方法 |
CN115261665A (zh) * | 2022-06-22 | 2022-11-01 | 昆明冶金研究院有限公司北京分公司 | 铜铁磷系合金用变质剂、其制备方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN107980068A (zh) | 2018-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018076165A1 (zh) | 一种易切削黄铜合金及其制造方法 | |
CN110983128A (zh) | 一种高强耐热变形铝合金及其制备方法 | |
CN113774259B (zh) | 一种Al-Cu-Mg合金及消除有害含铁相的方法 | |
WO2018076161A1 (zh) | 一种黄铜合金及其制造方法 | |
CN103484710A (zh) | 含微量稀土的铋黄铜合金拉制棒及其制造方法 | |
CN105154729B (zh) | 铸造铝‑锌‑镁‑铜‑钽合金及其制备方法 | |
CN103484712A (zh) | 含微量稀土的铋黄铜合金拉制管及其制造方法 | |
WO2020088635A1 (zh) | 铝合金材料、铝合金成型件及其制备方法和终端设备 | |
US3698965A (en) | High conductivity,high strength copper alloys | |
CN111394632B (zh) | 一种钆钐稀土镁合金及其制备方法 | |
CN104946948A (zh) | 一种高弹性模量的铸造镁合金及其制备方法 | |
CN115449683B (zh) | 一种镁合金及其制备方法 | |
CN110669969A (zh) | 一种低稀土高强铝合金及其制备方法 | |
CN108220731B (zh) | 一种多元耐热镁合金及其制备方法 | |
CN104109774A (zh) | 一种环保无铅黄铜及其制造方法 | |
CN111020328B (zh) | 一种兼具高导热和电磁屏蔽性能的低成本镁合金及其制备加工方法 | |
CN104988371A (zh) | 适于砂型铸造的稀土镁合金及其制备方法 | |
KR101133500B1 (ko) | 골드칼라를 구현하는 동합금의 제조 방법 | |
CN116411208A (zh) | 一种压铸铝合金及其制备方法 | |
CN109811162B (zh) | 一种含锑的稀土镁合金及其制备方法 | |
CN112795827A (zh) | 一种含长周期堆垛有序相的稀土高导热镁合金及其制备方法 | |
CN102690973A (zh) | 一种无铅易切削黄铜合金及其制备方法 | |
US3573110A (en) | Process for obtaining high conductivity copper alloys | |
TWI781858B (zh) | 高熱傳導鋁合金之製造方法及其製品 | |
CN108411148B (zh) | 一种高流动性抗变色铸造银基合金和制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16919939 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16919939 Country of ref document: EP Kind code of ref document: A1 |