WO2020088635A1 - 铝合金材料、铝合金成型件及其制备方法和终端设备 - Google Patents

铝合金材料、铝合金成型件及其制备方法和终端设备 Download PDF

Info

Publication number
WO2020088635A1
WO2020088635A1 PCT/CN2019/114965 CN2019114965W WO2020088635A1 WO 2020088635 A1 WO2020088635 A1 WO 2020088635A1 CN 2019114965 W CN2019114965 W CN 2019114965W WO 2020088635 A1 WO2020088635 A1 WO 2020088635A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy material
mass percentage
molded part
specifically
Prior art date
Application number
PCT/CN2019/114965
Other languages
English (en)
French (fr)
Inventor
王榕
黄礼忠
吴志兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811483015.2A external-priority patent/CN111118356A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020088635A1 publication Critical patent/WO2020088635A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Definitions

  • the present application relates to the technical field of aluminum alloy materials, in particular to an aluminum alloy material, aluminum alloy molded parts, a preparation method thereof, and terminal equipment.
  • Aluminum alloy is a material conducive to the lightweight of equipment. By adjusting the different composition of various elements of aluminum alloy, aluminum alloy can have different properties of high thermal conductivity, high electrical conductivity, high yield strength, high tensile strength, corrosion resistance, high toughness, high hardness and so on. It is widely used in the fields of communications, automobiles, transportation, power and aerospace, especially the production of built-in structural parts for handheld mobile terminals. With the continuous development of science and technology, the requirements of high and new technology for materials are becoming higher and higher. In the past, a single performance could no longer meet the technological development requirements. Existing aluminum alloy materials not only have strict requirements on their basic chemical composition, but also need to meet various special use requirements, taking into account a variety of properties.
  • the mass percentage of each component in its aluminum alloy is: Zn: 10wt% 30wt%; Si: 5.0wt% 8.0wt%; Cu: 3.0wt% 5.0wt%; Mn: 0.1wt% 1.0wt%; Ti: 0.1wt% 0.5wt%; RE: 0.05wt% 0.2wt%; the balance is Al and inevitable Of impurities.
  • the prepared aluminum alloy significantly improves the yield strength of the aluminum alloy material. It is suitable for die-casting ultra-thin mobile phone midplanes and other internal components, and is a widely used aluminum alloy material.
  • the elongation of the aluminum alloy is low, with an average value of about 1.5% (a year-on-year decrease of 50% compared to the international brand ADC12), and the actual use of the system material has a natural aging phenomenon, and the elongation will also decrease over time.
  • the present application provides an aluminum alloy material, an aluminum alloy molded part, a preparation method thereof, and terminal equipment, which can improve the yield strength and corresponding elongation of the aluminum alloy material, and improve the bending resistance of products made of aluminum alloy materials.
  • the present application provides an aluminum alloy material, the mass percentage of each component in the aluminum alloy material is:
  • the remainder is Al and impurities, where the impurities are less than or equal to 0.5%.
  • the aluminum alloy material provided by the present application improves the yield strength and corresponding elongation of the aluminum alloy material, and is beneficial to improve the bending resistance of products made of aluminum alloy materials.
  • the burning loss ratio of strengthening elements is small, the probability of hot cracking of die casting is small, and the performance is more stable.
  • the mass percentage of aluminum alloy material Zn provided in this application is: 11.5% -13%, and the mass percentage of Si is specifically: 6-12%, which is conducive to reducing the density and cost of aluminum alloy materials and further improving aluminum alloy materials fluidity.
  • Zn has a high solid solubility in the aluminum alloy melt. After die-casting, a severe non-equilibrium solidification process, the casting will have a natural aging phenomenon, and the yield strength will increase with time and extend. The rate will drop.
  • the Zn mass percentage is 11.5% -13%, taking into account the strength and elongation of the aluminum alloy material in the state of use after natural aging.
  • Si plays a role in improving fluidity and eutectic strengthening in aluminum alloys. If the Si content is too high, free Si hard spots are easily formed, which increases the difficulty of casting casting. Therefore, in this embodiment, the mass percentage of Si is specifically: 6-12%. While improving the fluidity and the effect of eutectic strengthening, it is not easy to form free Si hard points, reducing the difficulty of casting casting.
  • Cu can form strengthening phases such as solid solution Al2Cu, Al5Cu2Mg8Si6 in aluminum alloy, which improves the tensile strength and hardness of aluminum alloy.
  • strengthening phases such as solid solution Al2Cu, Al5Cu2Mg8Si6 in aluminum alloy, which improves the tensile strength and hardness of aluminum alloy.
  • the mass percentage of Cu is specifically: 1.5-6%.
  • the mass percentage of Fe is specifically: 0.1% to 1%, in order to balance the fluidity of the aluminum alloy and avoid the aluminum alloy from sticking to the mold.
  • the mass percentage of Fe is specifically: 0.1% to 1%, in order to balance the fluidity of the aluminum alloy and avoid the aluminum alloy from sticking to the mold.
  • Mn reacts with Fe to form AlFeMnSi phase, and the ratio of Fe and Mn affects the morphology and size of the iron-rich phase. Therefore, in this application, the mass percentage of Mn is specifically: 0.1% -2%, reducing the ratio of Fe and Mn The morphology and size of the iron-rich phase are affected.
  • the mass percentage of Mg is specifically: 0.1 to 2%.
  • the mass percentage of Zn is specifically: 11.5-12.5%.
  • the mass percentage of Si is specifically: 6.5-11.1%.
  • the mass percentage of Cu is specifically: 2 to 5.5%.
  • the mass percentage of Fe is specifically: 0.2 to 0.9%.
  • the mass percentage of Mn is specifically: 0.2 to 1.9%.
  • the mass percentage of the Mg is specifically: 0.2 to 1.9%.
  • the aluminum alloy material provided in this application further includes Ti, and Ti is less than or equal to 0.02%.
  • the aluminum alloy material provided in this application further includes Sr, and Sr is less than or equal to 0.02%.
  • the present application provides an aluminum alloy molded part made of the aluminum alloy material provided in the first aspect of the present application.
  • the present application provides a method for preparing an aluminum alloy molded part, including the following steps:
  • aluminum ingots and silicon are added to the furnace. After the aluminum ingots and silicon are dissolved, zinc, copper, iron and manganese are added for smelting. After refining and slag removal, magnesium is added for smelting and degassing After processing, processing and forming to obtain aluminum alloy molded parts;
  • the mass percentage of each component in the aluminum alloy molded part is:
  • the remainder is Al and impurities, where the impurities are less than or equal to 0.5%.
  • the method for preparing an aluminum alloy molded part provided by the present application specifically includes:
  • the method for preparing an aluminum alloy molded part provided by the present application, after adding magnesium for smelting further includes:
  • the method for preparing an aluminum alloy molded part provided by the present application, after adding magnesium for smelting further includes:
  • the method for preparing an aluminum alloy molded part provided by the present application is pressure casting, gravity casting, low pressure casting, squeeze casting, liquid die forging, or semi-solid molding casting.
  • the present application provides a terminal device including a housing, and a power supply circuit and a functional circuit located in the housing, the power supply circuit supplies power to the functional circuit, and the housing includes a front A shell, a middle frame, a bracket or a middle plate, and the front shell, the middle frame, a bracket and / or a middle plate are processed and formed by using the aluminum alloy material provided in the first aspect of the present application.
  • the terminal device provided by the present application further includes a metal decoration piece, and the metal decoration piece is formed by using the aluminum alloy material provided in the first aspect of the application.
  • the aluminum alloy material, aluminum alloy molded part, preparation method and terminal equipment provided by the present application improve the yield strength and corresponding elongation of the aluminum alloy material, which is beneficial to improve the bending resistance of products made of aluminum alloy material.
  • the burning loss ratio of strengthening elements is small, the probability of hot cracking of die casting is small, and the performance is more stable.
  • the combination of the components and their contents in the aluminum alloy material provided in the examples of the present application makes the aluminum alloy material have a yield strength of 200-250 MPa, which can meet the bending requirements of mobile terminal die-casting structural parts and is greater than the international standard aluminum alloy material yield Strength 150-180MPa.
  • FIG. 1 is a flowchart of a method for preparing an aluminum alloy molded part provided by an embodiment of the present application.
  • Aluminum alloy is a material conducive to the lightweight of equipment. By adjusting the different composition of various elements of aluminum alloy, aluminum alloy can have different properties of high thermal conductivity, high electrical conductivity, high yield strength, high tensile strength, corrosion resistance, high toughness, high hardness and so on. It is widely used in the fields of communications, automobiles, transportation, power and aerospace, especially the production of built-in structural parts for handheld mobile terminals. With the continuous development of science and technology, the requirements of high and new technology for materials are becoming higher and higher. In the past, a single performance could no longer meet the technological development requirements. Existing aluminum alloy materials not only have strict requirements on their basic chemical composition, but also need to meet various special use requirements, taking into account a variety of properties.
  • the elongation of the aluminum alloy is low, with an average value of about 1.5% (a year-on-year decrease of 50% compared to the international brand ADC12), and the actual use of the system material has a natural aging phenomenon, and the elongation will also decrease over time.
  • the material thickness is often extremely thin. The die-casting process makes the structural parts often have unavoidable impurity defects. Materials with low elongation tend to cause serious problems of stress cracking of structural parts.
  • the embodiments of the present application provide an aluminum alloy material, an aluminum alloy molded part, a preparation method thereof, and a terminal device.
  • the mass percentage of each component in the aluminum alloy material is: Zn: 11.5-13%; Si: 6-12%; Fe: 0.1-1%; Cu: 1.5-6%; Mn: 0.1-2%; Mg : 0.1 ⁇ 2%; the rest are Al and impurities.
  • the Zn mass percentage is selected to be 11.5% -13%, taking into account the strength and elongation of the aluminum alloy material in the state of use after natural aging.
  • the mass percentage of Si is specifically: 6-12%.
  • the mass percentage of Cu is specifically: 1.5-6%.
  • an embodiment of the present application provides an aluminum alloy material, and the mass percentage of each component in the aluminum alloy material is:
  • the remainder is Al and impurities, where the impurities are less than or equal to 0.5%.
  • Zn has a high solid solubility in the aluminum alloy melt. After die-casting, a severe non-equilibrium solidification process, the casting will have a natural aging phenomenon, and the yield strength will increase with time and extend. The rate will drop.
  • the Zn mass percentage is 11.5% -13%, taking into account the strength and elongation of the aluminum alloy material in the state of use after natural aging.
  • the mass percentage of Zn is specifically: 11.5-12.5%.
  • the mass percentage of Zn is specifically: 12%.
  • Si plays a role in improving fluidity and eutectic strengthening in aluminum alloys. If the Si content is too high, free Si hard spots are easily formed, which increases the difficulty of casting casting. Therefore, in this embodiment, the mass percentage of Si is specifically: 6-12%. While improving the fluidity and the effect of eutectic strengthening, it is not easy to form free Si hard points, reducing the difficulty of casting casting.
  • the mass percentage of Si is specifically: 6.5-11.1%.
  • the mass percentage of Si is specifically: 9%.
  • Cu can form strengthening phases such as solid solution Al 2 Cu, Al 5 Cu 2 Mg 8 Si 6 in aluminum alloy, which improves the tensile strength and hardness of aluminum alloy. Corrosion resistance is reduced.
  • the mass percentage of Cu is specifically: 1.5-6%.
  • the mass percentage of Cu is specifically: 2 to 5.5%.
  • the mass percentage of Cu is specifically: 3.5%.
  • the mass percentage of Fe is specifically: 0.1% -1%, in order to balance the fluidity of the aluminum alloy and avoid the aluminum alloy from sticking to the mold.
  • the mass percentage of Fe is specifically: 0.2-0.9%.
  • the mass percentage of Fe is specifically: 0.5%.
  • the mass percentage of Mn is specifically: 0.1% -2%, reducing the ratio of Fe and Mn Influence on the morphology and size of the iron-rich phase.
  • the mass percentage of Mn is specifically: 0.2 to 1.9%.
  • the mass percentage of Mn is specifically: 1%.
  • the mass percentage of Mg is specifically: 0.1 to 2%.
  • the mass percentage of Mg is specifically: 0.2 to 1.9%.
  • the mass percentage of Mg is specifically: 1%.
  • the aluminum alloy material provided in the embodiments of the present application further includes Ti, and Ti is less than or equal to 0.02%.
  • the aluminum alloy material provided in the embodiments of the present application further includes Sr, and Sr is less than or equal to 0.02%.
  • adding Ti-containing additives and Sr-containing additives during the preparation of aluminum alloy materials can effectively refine the crystal grains while purifying the melt, and improve the corrosion resistance and comprehensive mechanical properties of the material.
  • the aluminum alloy material provided by the embodiments of the present application improves the yield strength and corresponding elongation of the aluminum alloy material, and is beneficial to improve the bending resistance of products made of aluminum alloy materials.
  • the burning loss ratio of strengthening elements is small, the probability of hot cracking of die casting is small, and the performance is more stable.
  • the combination of the components and their contents in the aluminum alloy material provided in the examples of the present application makes the aluminum alloy material have a yield strength of 200-250 MPa, which can meet the bending requirements of mobile terminal die-casting structural parts and is greater than the international standard aluminum alloy material yield Strength 150-180MPa.
  • the elongation rate of the aluminum alloy material provided in the examples of the present application is 2-2.5%, while the elongation rate of the existing die-cast aluminum aluminum alloy is 1.5%, which is 30-50% higher than that of the existing die-cast aluminum aluminum alloy.
  • the mass percentage of Zn of the aluminum alloy material provided by the examples of the present application is specifically: 11.5% -13%, and the mass percentage of Si is specifically: 6-12%, which is conducive to reducing the density and cost of the aluminum alloy material and further improving the aluminum Alloy fluidity.
  • the aluminum alloy material provided by the embodiment of the present application has a raw material cost of 16-17 yuan / kg, which is 6 yuan / kg lower than that of the current high-strength material.
  • the embodiments of the present application provide an aluminum alloy molded part made of the aluminum alloy material provided by the embodiments of the present application.
  • the aluminum alloy molded parts provided in the embodiments of the present application may be a front case, a middle frame, a metal decorative part, a bracket, a middle plate, or other handheld mobile terminal structural parts of a handheld mobile terminal, or structural parts of other terminal devices, for example, wearable Products, PC & tablet, smart home terminals and other terminal devices that can improve the bending resistance of aluminum alloys, to distinguish them from other existing aluminum alloy materials, improve the yield strength and corresponding elongation of aluminum alloys, and help to improve aluminum The bending resistance of the whole machine of alloy moldings.
  • the aluminum alloy molded parts provided in the embodiments of the present application have a structural member cost reduced by 0.6-0.7 yuan / pcs compared with the current high strength.
  • FIG. 1 is a flowchart of a method for preparing an aluminum alloy molded part provided by an embodiment of the present application. As shown in FIG. 1, an embodiment of the present application provides a method for preparing an aluminum alloy molded part, including the following steps:
  • aluminum ingots and silicon are added to the furnace. After the aluminum ingots and silicon are dissolved, zinc, copper, iron and manganese are added for smelting. After refining and slag removal, magnesium is added for smelting and degassing After processing, processing and forming to obtain aluminum alloy molded parts;
  • the mass percentage of each component in the aluminum alloy molded part is:
  • the remainder is Al and impurities, where the impurities are less than or equal to 0.5%.
  • the preparation method of the aluminum alloy molded part adopts the existing conventional process, and also includes the conventional operation of removing impurities, etc.
  • each process parameter is not limited. After the internal feeding, the stirring operation is carried out so that the materials can be evenly mixed.
  • the degassing treatment specifically includes: using nitrogen gas for the degassing treatment.
  • magnesium for smelting it also includes adding titanium-containing additives.
  • magnesium for smelting it also includes adding strontium-containing additives.
  • Degassing the metal solution with nitrogen and adding Ti-containing additives and Sr-containing additives can effectively refine the crystal grains while purifying the melt and improve the corrosion resistance and comprehensive mechanical properties of the material.
  • the method for preparing an aluminum alloy molded part provided by the present application is processed by pressure casting, gravity casting, low pressure casting, squeeze casting, liquid die forging or semi-solid molding casting.
  • pressure casting including ordinary cold chamber die casting, ordinary hot chamber die casting.
  • the aluminum ingot and silicon are added into the furnace, and heated to melt to obtain the first metal solution, and the temperature of the first metal solution is 800-880 ° C.
  • Zinc, copper, iron and manganese are added to the first metal solution for smelting to melt to obtain the second metal solution, and the temperature of the second metal solution is reduced to 720-780 ° C.
  • the refining agent is added during refining, and the refining agent and the weight of the refining agent commonly used in the prior art refining are used, and this embodiment is not limited herein.
  • processing can be:
  • the fourth metal solution is taken into the cavity of the die-casting mold by the manipulator of the die-casting machine to obtain aluminum alloy molded parts, and the aluminum alloy molded parts are taken out by the manipulator. 300 °C.
  • the preparation method of the aluminum alloy molded part provided by the embodiment of the present application has a simple process, and the prepared aluminum alloy molded part improves the yield strength and corresponding elongation of the aluminum alloy, which is beneficial to improve the bending resistance of the aluminum alloy molded part .
  • an embodiment of the present application provides a terminal device, including a housing, and a power supply circuit and a functional circuit located in the housing, the power supply circuit supplies power to the functional circuit, and the housing includes a front case, a middle frame, and a bracket for supporting Or the middle plate, the front shell, the middle frame, the bracket and / or the middle plate are formed by using the aluminum alloy material provided in the first aspect of the present application.
  • the terminal device provided by the embodiment of the present application further includes a metal decorative part, and the metal decorative part is processed and formed by using the aluminum alloy material provided in the first aspect of the present application.
  • the terminal device provided in the embodiments of the present application may be a front case, a middle frame, a metal decorative part, a bracket, a middle plate or other handheld mobile terminal structural parts of a handheld mobile terminal, or structural parts of other terminal devices, such as wearable products, PC & tablet, smart home terminal and other terminal devices that can use aluminum alloy to improve the bending resistance to distinguish it from other existing aluminum alloy materials, improve the yield strength and corresponding elongation of aluminum alloy, help to improve the terminal equipment Machine bending performance.
  • a method for preparing an aluminum alloy molded part includes the following steps:
  • the rest is Al.
  • the temperature of the first metal solution is 800 ° C.
  • the above-mentioned prepared zinc, copper, iron and manganese are added to the first metal solution for smelting to melt to obtain the second metal solution, and the temperature of the second metal solution is reduced to 780 ° C.
  • Nitrogen gas is used for degassing refining and slag removal of the second metal solution, and a refining agent is added during refining.
  • the third metal solution After degassing the third metal solution, it is poured into an aluminum ingot, and the poured aluminum ingot is put into a clean crucible furnace body, and fully heated and dissolved to obtain a fourth metal solution.
  • the fourth metal solution is taken by the die-casting machine manipulator to the cavity of the die-casting mold for die-casting to obtain an aluminum alloy molded part, and the aluminum alloy molded part is taken out by the manipulator. .
  • a method for preparing an aluminum alloy molded part includes the following steps:
  • the rest is Al.
  • the temperature of the first metal solution is 880 ° C.
  • the above-mentioned prepared zinc, copper, iron and manganese are added to the first metal solution for smelting to melt it to obtain a second metal solution, and the temperature of the second metal solution is reduced to 720 ° C.
  • Nitrogen gas is used for degassing refining and slag removal of the second metal solution, and a refining agent is added during refining.
  • the third metal solution After degassing the third metal solution, it is poured into an aluminum ingot, and the poured aluminum ingot is put into a clean crucible furnace body, and fully heated and dissolved to obtain a fourth metal solution.
  • the fourth metal solution is taken by the die casting machine manipulator to the cavity of the die casting mold for die casting to obtain aluminum alloy molded parts, and the aluminum alloy molded parts are taken out by the manipulator. .
  • a method for preparing an aluminum alloy molded part includes the following steps:
  • the rest is Al.
  • the temperature of the first metal solution is 840 ° C.
  • the above-mentioned prepared zinc, copper, iron and manganese are added to the first metal solution for smelting to melt it to obtain a second metal solution, and the temperature of the second metal solution is reduced to 760 ° C.
  • Nitrogen gas is used for degassing refining and slag removal of the second metal solution, and a refining agent is added during refining.
  • the third metal solution After degassing the third metal solution, it is poured into an aluminum ingot, and the poured aluminum ingot is put into a clean crucible furnace body, and fully heated and dissolved to obtain a fourth metal solution.
  • the fourth metal solution is taken into the cavity of the die-casting mold by the manipulator of the die-casting machine, and die-casting is obtained to obtain the aluminum alloy molded part. .
  • a method for preparing an aluminum alloy molded part includes the following steps:
  • the rest is Al.
  • the temperature of the first metal solution is 860 ° C.
  • the above-mentioned prepared zinc, copper, iron and manganese are added to the first metal solution for smelting to melt it to obtain a second metal solution, and the temperature of the second metal solution is reduced to 740 ° C.
  • Nitrogen gas is used for degassing refining and slag removal of the second metal solution, and a refining agent is added during refining.
  • the third metal solution After degassing the third metal solution, it is poured into an aluminum ingot, and the poured aluminum ingot is put into a clean crucible furnace body, and fully heated and dissolved to obtain a fourth metal solution.
  • the fourth metal solution is taken into the cavity of the die-casting mold by the manipulator of the die-casting machine to obtain aluminum alloy molded parts, and the aluminum alloy molded parts are taken out by the manipulator, wherein the mold temperature of the die-casting mold is 260 °C .
  • a method for preparing an aluminum alloy molded part includes the following steps:
  • the rest is Al.
  • the temperature of the first metal solution is 820 ° C.
  • Zinc, copper, iron and manganese prepared above are added to the first metal solution for smelting and melting to obtain a second metal solution, and the temperature of the second metal solution is lowered by 770 ° C.
  • Nitrogen gas is used for degassing refining and slag removal of the second metal solution, and a refining agent is added during refining.
  • the third metal solution After degassing the third metal solution, it is poured into an aluminum ingot, and the poured aluminum ingot is put into a clean crucible furnace body, and fully heated and dissolved to obtain a fourth metal solution.
  • the fourth metal solution is taken into the cavity of the die-casting mold by the manipulator of the die-casting machine to obtain the aluminum alloy molded part, and the aluminum alloy molded part is taken out by the manipulator, wherein the mold temperature of the die-casting mold is 280 °C .
  • the effect embodiment is a beneficial effect that strongly supports the embodiment of the present application, and provides an effect embodiment as follows, for evaluating the performance of the product provided by the embodiment of the present application.
  • the alloy prepared in Examples 1 to 5 of this application and ADC12 alloy were die-cast respectively to obtain a communication housing communication product. According to the requirements of GB / T228, standard tensile mechanic test pieces were cut from the product and tested on a tensile testing machine The mechanical properties are shown in Table 1.
  • the alloy prepared in Examples 1 to 5 of the present application and the ADC12 alloy are respectively die-cast to obtain a complex thin-walled communication casing.
  • all of the first to fifth embodiments can be die-casted, and the products are not filled, not filled, die, or obvious cracks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

一种铝合金材料、铝合金成型件及其制备方法和终端设备。铝合金材料中各组分的质量百分比为:Zn:11.5~13%;Si:6~12%;Fe:0.1~1%;Cu:1.5~6%;Mn:0.1~2%;Mg:0.1~2%;其余为Al和杂质,其中,杂质小于或等于0.5%。上述铝合金材料、铝合金成型件及其制备方法和终端设备,能提升铝合金材料的屈服强度和对应的延伸率,改善采用铝合金材料材质的产品的抗弯性。

Description

铝合金材料、铝合金成型件及其制备方法和终端设备
本申请要求于2018年12月05日提交中国国家知识产权局、申请号为201811483015.2、发明名称为“铝合金材料、铝合金成型件及其制备方法和终端设备”的中国专利申请的优先权,和2018年11月01日提交中国国家知识产权局、申请号为201811293384.5、发明名称为“一种手持移动终端金属结构件用高性能压铸铝合金”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及铝合金材料技术领域,尤其涉及一种铝合金材料、铝合金成型件及其制备方法和终端设备。
背景技术
铝合金是一种有利于设备轻量化的材料。通过调节铝合金各种元素成分的不同,铝合金可以分别具有高导热、高导电率、高屈服强度、高抗拉强度、抗腐蚀、高韧性、高硬度等不同的性能。被广泛用于通讯、汽车、交通运输、动力和航天航空等领域,特别是手持移动终端内置结构件的生产。随着科技的不断发展,高新技术对于材料的要求也越来越高。以往单一的性能已经无法满足技术的发展要求。现有铝合金材料不但对其基本的化学成分有严格的要求,还需要满足各种特殊的使用要求,兼顾多种性能。在这些性能之中,有些甚至是以往被认为相互存在一定的矛盾的。针对不同的材料使用特点,按其本身特定的要求,对材料中各种成分及其性能进行合理调配、优化,使之创造出所对应的一种新的铝合金材料是目前乃至今后一段发展时期的客观需要。
申请号:201410554545.7,公告号:CN104264020A,申请名称为《一种高强度铝合金材料及其制备方法》的专利,其铝合金中各组分得质量百分比为:Zn:10wt%30wt%;Si:5.0wt%8.0wt%;Cu:3.0wt%5.0wt%;Mn:0.1wt%1.0wt%;Ti:0.1wt%0.5wt%;RE:0.05wt%0.2wt%;余量为Al和不可避免的杂质。制得的铝合金显著提高了铝合金材料的屈服强度。适用于压铸极薄的手机中板等内构件产品,是一种用途较广的铝合金材料。
但是,该铝合金延伸率偏低,平均值1.5左右%(同比国际牌号ADC12下降50%),且实际运用中该体系材料存在自然时效现象,延伸率还会随着时间推移有降低趋势。
发明内容
本申请提供一种铝合金材料、铝合金成型件及其制备方法和终端设备,能提升铝合金材料的屈服强度和对应的延伸率,改善采用铝合金材料材质的产品的抗弯性。
第一方面,本申请提供一种铝合金材料,所述铝合金材料中各组分的质量百分比为:
Zn:11.5~13%;
Si:6~12%;
Fe:0.1~1%;
Cu:1.5~6%;
Mn:0.1~2%;
Mg:0.1~2%;
其余为Al和杂质,其中,杂质小于或等于0.5%。
本申请提供的铝合金材料,提升了铝合金材料的屈服强度和对应的延伸率,有利于改善采用铝合金材料材质的产品的抗弯性。在压铸生产中,强化元素烧损比例小,压铸热裂概率小,性能更稳定。本申请提供的铝合金材料Zn的质量百分比具体为:11.5%-13%,而Si的质量百分比具体为:6~12%,有利于降低铝合金材料密度和成本的同时,进一步提升铝合金材料流动性。
Zn作为主要的固溶强化元素在铝合金熔体中固溶度很大,而经过压铸这一剧烈的非平衡凝固过程后,铸件会出现自然时效现象,屈服强度会随时间推移增加,而延伸率会下降。本申请选择Zn质量百分比为11.5%-13%,兼顾铝合金材料自然时效后在使用状态下的强度和延伸率。
Si在铝合金中起到提升流动性和共晶强化的作用,若Si含量过高,容易形成游离的Si硬质点,增加铸件切削的难度。因此,本实施例中,Si的质量百分比具体为:6~12%,在提升流动性和共晶强化的作用的同时,不易形成游离的Si硬质点,减小铸件切削的难度。
Cu在铝合金中可以形成诸如固溶体Al2Cu、Al5Cu2Mg8Si6等强化相,提高了铝合金的抗拉强度和硬度,但由于Cu电极电位的影响,含量过高易引起铸件耐蚀性降低。为了兼顾铝合金的高强度和耐蚀性,本申请中,Cu的质量百分比具体为:1.5~6%。
Fe在铝合金中易反应形成Al3Fe、Al9Fe2Si2、Al5Fesi、Al12Fe3Si等相;其中Al9Fe2Si2针状相硬且脆;当Fe含量很低的时候,铝合金对模具粘连情况严重,Fe含量过高之后片针状相增加铝合金流动性会变差。因此,本申请中,Fe的质量百分比具体为:0.1%-1%,以兼顾铝合金的流动性和避免铝合金粘连模具。
Fe在铝合金中易反应形成Al3Fe、Al9Fe2Si2、Al5Fesi、Al12Fe3Si等相;其中Al9Fe2Si2针状相硬且脆;当Fe含量很低的时候,铝合金对模具粘连情况严重,Fe含量过高之后片针状相增加铝合金流动性会变差。因此,本申请中,Fe的质量百分比具体为:0.1%-1%,以兼顾铝合金的流动性和避免铝合金粘连模具。
Mn会和Fe反应生成AlFeMnSi相,且Fe和Mn比例影响富铁相的形态和尺寸,因此,因此,本申请中,Mn的质量百分比具体为:0.1%-2%,降低Fe和Mn比例对富铁相的形态和尺寸影响。
少量的Mg加入即可形成Mg2Si,提升铝合金的力学性能,但含量过高会引起铝合金 铸件延伸率的下降。为了兼顾铝合金的力学性能和延伸率,本实施例中,Mg的质量百分比具体为:0.1~2%。
作为一种可选的方式,本申请提供的铝合金材料,所述Zn的质量百分比具体为:11.5~12.5%。
作为一种可选的方式,本申请提供的铝合金材料,所述Si的质量百分比具体为:6.5~11.5%。
作为一种可选的方式,本申请提供的铝合金材料,所述Cu的质量百分比具体为:2~5.5%。
作为一种可选的方式,本申请提供的铝合金材料,所述Fe的质量百分比具体为:0.2~0.9%。
作为一种可选的方式,本申请提供的铝合金材料,所述Mn的质量百分比具体为:0.2~1.9%。
作为一种可选的方式,本申请提供的铝合金材料,所述Mg的质量百分比具体为:0.2~1.9%。
作为一种可选的方式,本申请提供的铝合金材料,还包含Ti,Ti小于或等于0.02%。
作为一种可选的方式,本申请提供的铝合金材料,还包含Sr,Sr小于或等于0.02%。
第二方面,本申请提供一种铝合金成型件,采用本申请第一方面提供的铝合金材料制成。
第三方面,本申请提供一种铝合金成型件的制备方法,包括如下步骤:
按照铝合金材料的组分配比,在熔炉中加入铝锭和硅,铝锭和硅溶化后再加入锌、铜、铁和锰进行熔炼,在经精炼和除渣,加入镁进行熔炼,除气处理后,加工成型,得到铝合金成型件;
其中所述铝合金成型件中各组分的质量百分比为:
Zn:11.5~13%;
Si:6~12%;
Fe:0.1~1%;
Cu:1.5~6%;
Mn:0.1~2%;
Mg:0.1~2%;
其余为Al和杂质,其中,杂质小于或等于0.5%。
作为一种可选的方式,本申请提供的铝合金成型件的制备方法,所述除气处理具体包括:
采用氮气进行除气处理。
作为一种可选的方式,本申请提供的铝合金成型件的制备方法,所述加入镁进行熔炼之后,还包括;
加入含钛添加剂。
作为一种可选的方式,本申请提供的铝合金成型件的制备方法,所述加入镁进行熔炼之后,还包括;
加入含锶添加剂。
作为一种可选的方式,本申请提供的铝合金成型件的制备方法,所述加工成型的方式为压力铸造、重力铸造、低压铸造、挤压铸造、液态模锻或半固态成型铸造。
第四方面,本申请提供一种终端设备,包括壳体、以及位于所述壳体内的供电电路和功能电路,所述供电电路为所述功能电路供电,所述壳体包括起支撑作用的前壳、中框、支架或中板,所述前壳、中框、支架和/或中板采用本申请第一方面提供的铝合金材料加工成型。
作为一种可选的方式,本申请提供的终端设备,所述终端设备还包括金属装饰件,所述金属装饰件采用本申请第一方面提供的铝合金材料加工成型。
本申请提供的铝合金材料、铝合金成型件及其制备方法和终端设备,提升了铝合金材料的屈服强度和对应的延伸率,有利于改善采用铝合金材料材质的产品的抗弯性。在压铸生产中,强化元素烧损比例小,压铸热裂概率小,性能更稳定。本申请实施例提供的铝合金材料中各组分以及其含量的联合作用,使铝合金材料屈服强度为200-250Mpa,能满足移动终端压铸结构件抗弯要求,大于国际标准的铝合金材料屈服强度150-180MPa。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作以简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的铝合金成型件的制备方法的流程图。
具体实施方式
下面将结合本申请实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
铝合金是一种有利于设备轻量化的材料。通过调节铝合金各种元素成分的不同,铝合金可以分别具有高导热、高导电率、高屈服强度、高抗拉强度、抗腐蚀、高韧性、高硬度等不同的性能。被广泛用于通讯、汽车、交通运输、动力和航天航空等领域,特别是手持移动终端内置结构件的生产。随着科技的不断发展,高新技术对于材料的要求也越来越高。以往单一的性能已经无法满足技术的发展要求。现有铝合金材料不但对其基本的化学成分有严格的要求,还需要满足各种特殊的使用要求,兼顾多种性能。在这些性能之中,有些甚至是以往被认为相互存在一定的矛盾的。针对不同的材料使用特点, 按其本身特定的要求,对材料中各种成分及其性能进行合理调配、优化,使之创造出所对应的一种新的铝合金材料是目前乃至今后一段发展时期的客观需要。
申请号:201410554545.7,公告号:CN104264020A,申请名称为《一种高强度铝合金材料及其制备方法》的专利,其铝合金中各组分得质量百分比为:Zn:10wt%-30wt%;Si:5.0wt%-8.0wt%;Cu:3.0wt%-5.0wt%;Mn:0.1wt%-1.0wt%;Ti:0.1wt%-0.5wt%;RE:0.05wt%-0.2wt%;余量为Al和不可避免的杂质。制得的铝合金显著提高了铝合金材料的屈服强度。适用于压铸极薄的手机中板等内构件产品,是一种用途较广的铝合金材料。
但是,该铝合金延伸率偏低,平均值1.5左右%(同比国际牌号ADC12下降50%),且实际运用中该体系材料存在自然时效现象,延伸率还会随着时间推移有降低趋势。作为移动终端压铸结构件,往往料厚极薄,压铸工艺使得结构件中往往会有不可避免的杂质缺陷,延伸率偏低的材料容易引发结构件受力开裂的严重问题。
为了解决上述问题,本申请实施例提供一种铝合金材料、铝合金成型件及其制备方法和终端设备。其中,铝合金材料中各组分的质量百分比为:Zn:11.5~13%;Si:6~12%;Fe:0.1~1%;Cu:1.5~6%;Mn:0.1~2%;Mg:0.1~2%;其余为Al和杂质。选择Zn质量百分比为11.5%-13%,兼顾铝合金材料自然时效后在使用状态下的强度和延伸率。Si的质量百分比具体为:6~12%,在提升流动性和共晶强化的作用的同时,不易形成游离的Si硬质点,减小铸件切削的难度。为了兼顾铝合金的高强度和耐蚀性,本实施例中,Cu的质量百分比具体为:1.5~6%。本申请实施例提供的铝合金材料中各组分以及其含量的联合作用,提升了铝合金材料的屈服强度和对应的延伸率,有利于改善采用铝合金材料材质的产品的抗弯性。
下面结合具体实施例对本申请进行详细说明。
第一方面,本申请实施例提供一种铝合金材料,铝合金材料中各组分的质量百分比为:
Zn:11.5~13%;
Si:6~12%;
Fe:0.1~1%;
Cu:1.5~6%;
Mn:0.1~2%;
Mg:0.1~2%;
其余为Al和杂质,其中,杂质小于或等于0.5%。
Zn作为主要的固溶强化元素在铝合金熔体中固溶度很大,而经过压铸这一剧烈的非平衡凝固过程后,铸件会出现自然时效现象,屈服强度会随时间推移增加,而延伸率会下降。本实施例选择Zn质量百分比为11.5%-13%,兼顾铝合金材料自然时效后在使用状态下的强度和延伸率。
为了进一步提升了铝合金材料的屈服强度和对应的延伸率,本申请实施例提供的铝合金材料,Zn的质量百分比具体为:11.5~12.5%。
在具体实现时,Zn的质量百分比具体为:12%。
Si在铝合金中起到提升流动性和共晶强化的作用,若Si含量过高,容易形成游离 的Si硬质点,增加铸件切削的难度。因此,本实施例中,Si的质量百分比具体为:6~12%,在提升流动性和共晶强化的作用的同时,不易形成游离的Si硬质点,减小铸件切削的难度。
具体的,本申请实施例提供的铝合金材料,Si的质量百分比具体为:6.5~11.5%。
在具体实现时,Si的质量百分比具体为:9%。
Cu在铝合金中可以形成诸如固溶体Al 2Cu、Al 5Cu 2Mg 8Si 6等强化相,提高了铝合金的抗拉强度和硬度,但由于Cu电极电位的影响,含量过高易引起铸件耐蚀性降低。为了兼顾铝合金的高强度和耐蚀性,本实施例中,Cu的质量百分比具体为:1.5~6%。
具体的,本申请实施例提供的铝合金材料,Cu的质量百分比具体为:2~5.5%。
在具体实现时,Cu的质量百分比具体为:3.5%。
Fe在铝合金中易反应形成Al 3Fe、Al 9Fe 2Si 2、Al 5Fesi、Al 12Fe 3Si等相;其中Al 9Fe 2Si 2针状相硬且脆;当Fe含量很低的时候,铝合金对模具粘连情况严重,Fe含量过高之后片针状相增加铝合金流动性会变差。因此,本实施例中,Fe的质量百分比具体为:0.1%-1%,以兼顾铝合金的流动性和避免铝合金粘连模具。
具体的,本申请实施例提供的铝合金材料,Fe的质量百分比具体为:0.2~0.9%。
在具体实现时,Fe的质量百分比具体为:0.5%。
Mn会和Fe反应生成AlFeMnSi相,且Fe和Mn比例影响富铁相的形态和尺寸,因此,因此,本实施例中,Mn的质量百分比具体为:0.1%-2%,降低Fe和Mn比例对富铁相的形态和尺寸影响。
具体的,本申请实施例提供的铝合金材料,Mn的质量百分比具体为:0.2~1.9%。
在具体实现时,Mn的质量百分比具体为:1%。
少量的Mg加入即可形成Mg 2Si,提升铝合金的力学性能,但含量过高会引起铝合金铸件延伸率的下降。为了兼顾铝合金的力学性能和延伸率,本实施例中,Mg的质量百分比具体为:0.1~2%。
具体的,本申请实施例提供的铝合金材料,Mg的质量百分比具体为:0.2~1.9%。
在具体实现时,Mg的质量百分比具体为:1%。
作为一种可选的方式,本申请实施例提供的铝合金材料,还包含Ti,Ti小于或等于0.02%。
作为一种可选的方式,本申请实施例提供的铝合金材料,还包含Sr,Sr小于或等于0.02%。
具体的,在铝合金材料的制备过程中,加入含Ti添加剂和含Sr添加剂,能有效在净化熔体的同时细化晶粒,提升材料的耐蚀性和综合力学性能。
本申请实施例提供的铝合金材料,提升了铝合金材料的屈服强度和对应的延伸率,有利于改善采用铝合金材料材质的产品的抗弯性。在压铸生产中,强化元素烧损比例小,压铸热裂概率小,性能更稳定。
本申请实施例提供的铝合金材料中各组分以及其含量的联合作用,使铝合金材料屈服强度为200-250Mpa,能满足移动终端压铸结构件抗弯要求,大于国际标准的铝合金材料屈服强度150-180MPa。
本申请实施例提供的铝合金材料延伸率为2-2.5%,而现有的压铸铝铝合金延伸率为 1.5%,较现有的压铸铝铝合金延伸率提升30-50%。
本申请实施例提供的铝合金材料Zn的质量百分比具体为:11.5%-13%,而Si的质量百分比具体为:6~12%,有利于降低铝合金材料密度和成本的同时,进一步提升铝合金材料流动性。
本申请实施例提供的铝合金材料,原材料成本为16-17元/kg,较现高强度材料成本降低6元/kg。
第二方面,本申请实施例提供一种铝合金成型件,采用本申请实施例提供的铝合金材料制成。
本申请实施例提供的铝合金成型件,可以是手持移动终端的前壳、中框、金属装饰件、支架、中板或其它手持移动终端结构件,或其它终端设备的结构件,例如,穿戴产品、PC&平板、智能家庭终端等一切能用铝合金改善抗弯性能的终端设备,以区别于其它现有的铝合金材料,提升了铝合金的屈服强度和对应的延伸率,有利于改善铝合金成型件整机抗弯性能。
本申请实施例提供的铝合金成型件,结构件成本较现高强度降低0.6-0.7元/pcs。
第三方面,图1为本申请实施例提供的铝合金成型件的制备方法的流程图。如图1所示,本申请实施例提供一种铝合金成型件的制备方法,包括如下步骤:
按照铝合金材料的组分配比,在熔炉中加入铝锭和硅,铝锭和硅溶化后再加入锌、铜、铁和锰进行熔炼,在经精炼和除渣,加入镁进行熔炼,除气处理后,加工成型,得到铝合金成型件;
其中铝合金成型件中各组分的质量百分比为:
Zn:11.5~13%;
Si:6~12%;
Fe:0.1~1%;
Cu:1.5~6%;
Mn:0.1~2%;
Mg:0.1~2%;
其余为Al和杂质,其中,杂质小于或等于0.5%。
本申请实施例中,铝合金成型件的制备方法采用现有常规工艺,还包括常规除杂等做操,本申请实施例中对各工艺参数不作限定。内次加料后,均进行搅拌操作,以使材料能均匀混合。
在本申请实施例中,除气处理具体包括:采用氮气进行除气处理。
进一步的,加入镁进行熔炼之后,还包括;加入含钛添加剂。
进一步的,加入镁进行熔炼之后,还包括;加入含锶添加剂。
采用氮气对金属溶液进行除气并加入含Ti添加剂和含Sr添加剂,能有效在净化熔体的同时细化晶粒,提升材料的耐蚀性和综合力学性能。
在具体实现时,本申请提供的铝合金成型件的制备方法,加工成型的方式为压力铸造、重力铸造、低压铸造、挤压铸造、液态模锻或半固态成型铸造。
其中,压力铸造、包括普通冷室压铸、普通热室压铸。
具体的,加工成型之后,经过20天以内的自然时效,即可达到高屈服强度性能。
其中,在熔炉中加入铝锭和硅,加热使其融化得到第一金属溶液,第一金属溶液的温度为800~880℃。
在第一金属溶液内加入锌、铜、铁和锰进行熔炼,使其融化得到第二金属溶液,将第二金属溶液的温度降至720~780℃。
其中,在精炼时加入精炼剂,采用现有技术精炼中常用的精炼剂及精炼剂的重量,本实施例在此不作限定。
在第二金属溶液内加入镁进行熔炼,得到第三金属溶液;
具体的,加工成型可以为:
将第三金属溶液除气处理后浇注成铝锭;
将浇注的铝锭投入干净的坩埚炉体,并进行充分加热溶解得到第四金属溶液;
清理炉面浮渣后,通过压铸机机械手取第四金属溶液至压铸模具的型腔中进行压铸,得到铝合金成型件,经机械手取出铝合金成型件,其中,压铸模具的模温为200~300℃。
本申请实施例提供的铝合金成型件的制备方法,工艺简单,制备得到的铝合金成型件,提升了铝合金的屈服强度和对应的延伸率,有利于改善铝合金成型件整机抗弯性能。
第四方面,本申请实施例提供一种终端设备,包括壳体、以及位于壳体内的供电电路和功能电路,供电电路为功能电路供电,壳体包括起支撑作用的前壳、中框、支架或中板,前壳、中框、支架和/或中板采用本申请第一方面提供的铝合金材料加工成型。
进一步的,本申请实施例提供的终端设备,终端设备还包括金属装饰件,金属装饰件采用本申请第一方面提供的铝合金材料加工成型。
本申请实施例提供的终端设备,可以是手持移动终端的前壳、中框、金属装饰件、支架、中板或其它手持移动终端结构件,或其它终端设备的结构件,例如,穿戴产品、PC&平板、智能家庭终端等一切能用铝合金改善抗弯性能的终端设备,以区别于其它现有的铝合金材料,提升了铝合金的屈服强度和对应的延伸率,有利于改善终端设备整机抗弯性能。
下面分多个实施例对本申请进行进一步说明。本申请实施例不限定于以下的具体实施例。
实施例一
一种铝合金成型件的制备方法,包括如下步骤:
按照各组分占铝合金材料总质量百分比配料:
Zn:11.5%;
Si:12%;
Fe:1%;
Cu:1.5%;
Mn:0.9%;
Mg:0.9%;
其余为Al。
将上述配好的铝锭和硅加入熔炉中,加热至铝锭和硅溶化后得到第一金属溶液,第一金属溶液的温度为800℃。
在第一金属溶液内加入上述配好的锌、铜、铁和锰进行熔炼,使其融化得到第二金属溶液,将第二金属溶液的温度降至780℃。
采用氮气对第二金属溶液进行除气精炼和除渣,在精炼时加入精炼剂。
再在第二金属溶液内加入上述配好的镁进行熔炼,同时加入0.02%钛元素添加剂,加入0.02%锶元素添加剂,得到第三金属溶液。
将第三金属溶液除气处理后浇注成铝锭,将浇注的铝锭投入干净的坩埚炉体,并进行充分加热溶解得到第四金属溶液。
清理炉面浮渣后,通过压铸机机械手取第四金属溶液至压铸模具的型腔中进行压铸,得到铝合金成型件,经机械手取出铝合金成型件,其中,压铸模具的模温为200℃。
实施例二
一种铝合金成型件的制备方法,包括如下步骤:
按照各组分占铝合金材料总质量百分比配料:
Zn:12%;
Si:11.5%;
Fe:0.1%;
Cu:6%;
Mn:2%;
Mg:2%;
其余为Al。
将上述配好的铝锭和硅加入熔炉中,加热至铝锭和硅溶化后得到第一金属溶液,第一金属溶液的温度为880℃。
在第一金属溶液内加入上述配好的锌、铜、铁和锰进行熔炼,使其融化得到第二金属溶液,将第二金属溶液的温度降至720℃。
采用氮气对第二金属溶液进行除气精炼和除渣,在精炼时加入精炼剂。
再在第二金属溶液内加入上述配好的镁进行熔炼,同时加入0.01%钛元素添加剂,加入0.01%锶元素添加剂,得到第三金属溶液。
将第三金属溶液除气处理后浇注成铝锭,将浇注的铝锭投入干净的坩埚炉体,并进行充分加热溶解得到第四金属溶液。
清理炉面浮渣后,通过压铸机机械手取第四金属溶液至压铸模具的型腔中进行压铸,得到铝合金成型件,经机械手取出铝合金成型件,其中,压铸模具的模温为300℃。
实施例三
一种铝合金成型件的制备方法,包括如下步骤:
按照各组分占铝合金材料总质量百分比配料:
Zn:12.5%;
Si:9%;
Fe:0.5%;
Cu:2%;
Mn:0.2%;
Mg:0.2%;
其余为Al。
将上述配好的铝锭和硅加入熔炉中,加热至铝锭和硅溶化后得到第一金属溶液,第一金属溶液的温度为840℃。
在第一金属溶液内加入上述配好的锌、铜、铁和锰进行熔炼,使其融化得到第二金属溶液,将第二金属溶液的温度降至760℃。
采用氮气对第二金属溶液进行除气精炼和除渣,在精炼时加入精炼剂。
再在第二金属溶液内加入上述配好的镁进行熔炼,同时加入0.015%钛元素添加剂,加入0.015%锶元素添加剂,得到第三金属溶液。
将第三金属溶液除气处理后浇注成铝锭,将浇注的铝锭投入干净的坩埚炉体,并进行充分加热溶解得到第四金属溶液。
清理炉面浮渣后,通过压铸机机械手取第四金属溶液至压铸模具的型腔中进行压铸,得到铝合金成型件,经机械手取出铝合金成型件,其中,压铸模具的模温为250℃。
实施例四
一种铝合金成型件的制备方法,包括如下步骤:
按照各组分占铝合金材料总质量百分比配料:
Zn:13%;
Si:6.5%;
Fe:0.9%;
Cu:5.5%;
Mn:0.1%;
Mg:0.1%;
其余为Al。
将上述配好的铝锭和硅加入熔炉中,加热至铝锭和硅溶化后得到第一金属溶液,第一金属溶液的温度为860℃。
在第一金属溶液内加入上述配好的锌、铜、铁和锰进行熔炼,使其融化得到第二金属溶液,将第二金属溶液的温度降至740℃。
采用氮气对第二金属溶液进行除气精炼和除渣,在精炼时加入精炼剂。
再在第二金属溶液内加入上述配好的镁进行熔炼,同时加入0.01%钛元素添加剂,加入0.01%锶元素添加剂,得到第三金属溶液。
将第三金属溶液除气处理后浇注成铝锭,将浇注的铝锭投入干净的坩埚炉体,并进行充分加热溶解得到第四金属溶液。
清理炉面浮渣后,通过压铸机机械手取第四金属溶液至压铸模具的型腔中进行压铸,得到铝合金成型件,经机械手取出铝合金成型件,其中,压铸模具的模温为260℃。
实施例五
一种铝合金成型件的制备方法,包括如下步骤:
按照各组分占铝合金材料总质量百分比配料:
Zn:12.7%;
Si:6%;
Fe:0.6%;
Cu:3.5%;
Mn:1%;
Mg:1%;
其余为Al。
将上述配好的铝锭和硅加入熔炉中,加热至铝锭和硅溶化后得到第一金属溶液,第一金属溶液的温度为820℃。
在第一金属溶液内加入上述配好的锌、铜、铁和锰进行熔炼,使其融化得到第二金属溶液,将第二金属溶液的温度降770℃。
采用氮气对第二金属溶液进行除气精炼和除渣,在精炼时加入精炼剂。
再在第二金属溶液内加入上述配好的镁进行熔炼,同时加入0.02%钛元素添加剂,加入0.02%锶元素添加剂,得到第三金属溶液。
将第三金属溶液除气处理后浇注成铝锭,将浇注的铝锭投入干净的坩埚炉体,并进行充分加热溶解得到第四金属溶液。
清理炉面浮渣后,通过压铸机机械手取第四金属溶液至压铸模具的型腔中进行压铸,得到铝合金成型件,经机械手取出铝合金成型件,其中,压铸模具的模温为280℃。
效果实施例为有力支持本申请实施例的有益效果,提供效果实施例如下,用于评测本申请实施例提供的产品的性能。
1、力学性能
将本申请实施例一至实施例五制备的的合金,以及ADC12合金分别压铸获得某通讯壳体通讯产品,按照GB/T228的要求从产品上切取标准拉伸力学试片,在拉伸试验机上测试力学性能,结果如表1所示。
表1各合金的力学性能
合金牌号 屈服强度(Mpa) 延伸率(%)
实施例一 250 2.3
实施例二 245 2
实施例三 200 2.3
实施例四 230 2.5
实施例五 220 2
ADC12 180 1.8
表1的结果表明,和常用的压铸铝合金相比,本申请实施例的铝合金具有一定的力学特性。
2、成型性能
将本申请实施例一至实施例五制备的的合金和ADC12合金分别压铸得到复杂薄壁通讯壳体。在和ADC12共用一套浇注系统的情况下,实施例一至五均可以压铸成型,产品均无填充不饱满、拉模具,或明显裂纹现象。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特 征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (17)

  1. 一种铝合金材料,其特征在于,所述铝合金材料中各组分的质量百分比为:
    Zn:11.5~13%;
    Si:6~12%;
    Fe:0.1~1%;
    Cu:1.5~6%;
    Mn:0.1~2%;
    Mg:0.1~2%;
    其余为Al和杂质,其中,杂质小于或等于0.5%。
  2. 根据权利要求1所述的铝合金材料,其特征在于,所述Zn的质量百分比具体为:11.5~12.5%。
  3. 根据权利要求1所述的铝合金材料,其特征在于,所述Si的质量百分比具体为:6.5~11.5%。
  4. 根据权利要求1所述的铝合金材料,其特征在于,所述Cu的质量百分比具体为:2~5.5%。
  5. 根据权利要求1所述的铝合金材料,其特征在于,所述Fe的质量百分比具体为:0.2~0.9%。
  6. 根据权利要求1所述的铝合金材料,其特征在于,所述Mn的质量百分比具体为:0.2~1.9%。
  7. 根据权利要求1所述的铝合金材料,其特征在于,所述Mg的质量百分比具体为:0.2~1.9%。
  8. 根据权利要求1-7任一项所述的铝合金材料,其特征在于,还包含Ti,Ti小于或等于0.02%。
  9. 根据权利要求1-7任一项所述的铝合金材料,其特征在于,还包含Sr,Sr小于或等于0.02%。
  10. 一种铝合金成型件,其特征在于,采用权利要求1-9任一项所述的铝合金材料制成。
  11. 一种铝合金成型件的制备方法,其特征在于,包括如下步骤:
    按照铝合金材料的组分配比,在熔炉中加入铝锭和硅,铝锭和硅溶化后再加入锌、铜、铁和锰进行熔炼,在经精炼和除渣,加入镁进行熔炼,除气处理后,加工成型,得到铝合金成型件;
    其中所述铝合金成型件中各组分的质量百分比为:
    Zn:11.5~13%;
    Si:6~12%;
    Fe:0.1~1%;
    Cu:1.5~6%;
    Mn:0.1~2%;
    Mg:0.1~2%;
    其余为Al和杂质,其中,杂质小于或等于0.5%。
  12. 根据权利要求11所述的铝合金成型件的制备方法,其特征在于,所述除气处理具体包括:
    采用氮气进行除气处理。
  13. 根据权利要求11所述的铝合金成型件的制备方法,其特征在于,所述加入镁进行熔炼之后,还包括;
    加入含钛添加剂。
  14. 根据权利要求11所述的铝合金成型件的制备方法,其特征在于,所述加入镁进行熔炼,还包括;
    加入含锶添加剂。
  15. 根据权利要求11所述的铝合金成型件的制备方法,其特征在于,所述加工成型的方式为压力铸造、重力铸造、低压铸造、挤压铸造、液态模锻或半固态成型铸造。
  16. 一种终端设备,包括壳体、以及位于所述壳体内的供电电路和功能电路,所述供电电路为所述功能电路供电,所述壳体包括起支撑作用的前壳、中框、支架或中板,其特征在于,所述前壳、中框、支架和/或中板采用权利要求1-9任一项所述的铝合金材料加工成型。
  17. 根据权利要求16所述的终端设备,所述终端设备还包括金属装饰件,其特征在于,所述金属装饰件采用权利要求1-9任一项所述的铝合金材料加工成型。
PCT/CN2019/114965 2018-11-01 2019-11-01 铝合金材料、铝合金成型件及其制备方法和终端设备 WO2020088635A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811293384 2018-11-01
CN201811293384.5 2018-11-01
CN201811483015.2 2018-12-05
CN201811483015.2A CN111118356A (zh) 2018-11-01 2018-12-05 铝合金材料、铝合金成型件及其制备方法和终端设备

Publications (1)

Publication Number Publication Date
WO2020088635A1 true WO2020088635A1 (zh) 2020-05-07

Family

ID=70462120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114965 WO2020088635A1 (zh) 2018-11-01 2019-11-01 铝合金材料、铝合金成型件及其制备方法和终端设备

Country Status (1)

Country Link
WO (1) WO2020088635A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111979456A (zh) * 2020-08-25 2020-11-24 肇庆南都再生铝业有限公司 一种含Zn的中强高韧压铸铝合金及其制备方法
CN113046607A (zh) * 2021-03-16 2021-06-29 郑州大学 一种高硬高导热多元合金及其制备方法
CN113215425A (zh) * 2021-05-07 2021-08-06 铜陵市大明玛钢有限责任公司 一种合金衬板生产时去杂工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152552A (ja) * 1997-11-14 1999-06-08 Nisso Kinzoku Kagaku Kk Al−Zn−Si系合金の加工方法
US5954897A (en) * 1994-08-18 1999-09-21 Nisso Metalochemical Co., Ltd. Die-casting aluminum base alloy for a bearing of ball joint apparatus, heat treatment thereof and ball joint apparatus using the same
CN102433472A (zh) * 2011-12-15 2012-05-02 贵州华科铝材料工程技术研究有限公司 一种高强度铝合金及其熔炼和铸造方法
CN103952609A (zh) * 2014-05-12 2014-07-30 马鸿斌 一种新型高锌铝合金及其制备方法
CN105296818A (zh) * 2014-08-01 2016-02-03 比亚迪股份有限公司 一种铝合金及其制备方法和应用
CN106282697A (zh) * 2015-06-05 2017-01-04 Sj技术股份有限公司 压铸用铝合金组合物、利用其的铸造品及制造方法
CN108130456A (zh) * 2017-12-22 2018-06-08 广州致远新材料科技有限公司 一种高导热压铸铝合金材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954897A (en) * 1994-08-18 1999-09-21 Nisso Metalochemical Co., Ltd. Die-casting aluminum base alloy for a bearing of ball joint apparatus, heat treatment thereof and ball joint apparatus using the same
JPH11152552A (ja) * 1997-11-14 1999-06-08 Nisso Kinzoku Kagaku Kk Al−Zn−Si系合金の加工方法
CN102433472A (zh) * 2011-12-15 2012-05-02 贵州华科铝材料工程技术研究有限公司 一种高强度铝合金及其熔炼和铸造方法
CN103952609A (zh) * 2014-05-12 2014-07-30 马鸿斌 一种新型高锌铝合金及其制备方法
CN105296818A (zh) * 2014-08-01 2016-02-03 比亚迪股份有限公司 一种铝合金及其制备方法和应用
CN106282697A (zh) * 2015-06-05 2017-01-04 Sj技术股份有限公司 压铸用铝合金组合物、利用其的铸造品及制造方法
CN108130456A (zh) * 2017-12-22 2018-06-08 广州致远新材料科技有限公司 一种高导热压铸铝合金材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111979456A (zh) * 2020-08-25 2020-11-24 肇庆南都再生铝业有限公司 一种含Zn的中强高韧压铸铝合金及其制备方法
CN113046607A (zh) * 2021-03-16 2021-06-29 郑州大学 一种高硬高导热多元合金及其制备方法
CN113046607B (zh) * 2021-03-16 2022-03-04 郑州大学 一种高硬高导热多元合金及其制备方法
CN113215425A (zh) * 2021-05-07 2021-08-06 铜陵市大明玛钢有限责任公司 一种合金衬板生产时去杂工艺

Similar Documents

Publication Publication Date Title
WO2020088635A1 (zh) 铝合金材料、铝合金成型件及其制备方法和终端设备
WO2021218273A1 (zh) 一种用再生铝生产的高导热压铸铝合金材料及其制备方法
CN107829000B (zh) 一种压铸铝合金材料及其制备方法
CN111155000A (zh) 一种用于压铸薄壁件的急速热处理强化高强韧铝合金材料及其制备方法和应用
CN108118197B (zh) 一种高导热压铸铝合金材料的制备方法
CN110144499B (zh) 一种用于5g通迅基站壳体的压铸铝合金及其制备方法
EP3954798B1 (en) Die-cast aluminum alloy, preparation method therefor, and structural member for communication product
WO2016082502A1 (zh) 一种铝合金材料、铝合金成型件及其制备方法
CN109487107B (zh) 一种兼具富铁相变质的铸造铝合金的复合变质剂及其变质方法
KR101606525B1 (ko) 내식성이 개선된 다이캐스팅용 알루미늄 합금
CN111519071A (zh) 一种超短时效特性显著的新型高强韧压铸铝合金及其制备方法
US20230332277A1 (en) Aluminum alloy and aluminum alloy structural member
CN111118356A (zh) 铝合金材料、铝合金成型件及其制备方法和终端设备
CN108048768B (zh) 挤压铸造铝合金的热处理方法及挤压铸造铝合金材料
KR20200084684A (ko) 도어록 다이캐스팅용 알루미늄 합금 및 그 제조방법
CN114231793B (zh) 一种重力铸造锌合金
KR20120129458A (ko) 박육 제품용 고강도 다이캐스팅 알루미늄 합금
CN113862529B (zh) 一种铝合金及其制备方法
CN115491558A (zh) 一种压铸镁合金及其制备方法和应用
CN116411208A (zh) 一种压铸铝合金及其制备方法
CN113046606B (zh) 铝合金及其制备方法和铝合金结构件
CN108070755B (zh) 一种含钐和钇的耐腐蚀压铸铝合金的制备方法
CN112575234A (zh) 一种5g手机用高导热高强韧耐腐蚀的铝合金及制造方法
WO2020103227A1 (zh) 一种具有高散热性能的稀土镁合金材料及其制备方法
CN110629081A (zh) 新型耐热高强度高塑性耐腐蚀Al-Cu-Mg-Zn-Ti系铝合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19878530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19878530

Country of ref document: EP

Kind code of ref document: A1