WO2018074845A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2018074845A1
WO2018074845A1 PCT/KR2017/011537 KR2017011537W WO2018074845A1 WO 2018074845 A1 WO2018074845 A1 WO 2018074845A1 KR 2017011537 W KR2017011537 W KR 2017011537W WO 2018074845 A1 WO2018074845 A1 WO 2018074845A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
independently
light emitting
Prior art date
Application number
PCT/KR2017/011537
Other languages
English (en)
French (fr)
Inventor
장분재
이동훈
허정오
강민영
허동욱
한미연
정민우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17859336.4A priority Critical patent/EP3373353B1/en
Priority to CN201910694364.7A priority patent/CN110492011B/zh
Priority to JP2018519717A priority patent/JP6478259B2/ja
Priority to US15/767,296 priority patent/US10461259B2/en
Priority to CN201780003783.0A priority patent/CN108352449B/zh
Publication of WO2018074845A1 publication Critical patent/WO2018074845A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure

Definitions

  • the present invention relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent brightness, driving voltage and response speed characteristics, many studies have been conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode.
  • the organic layer is often formed of a multi-layered structure composed of different materials.
  • the organic material layer may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.
  • the present invention provides the following organic light emitting device:
  • the power efficiency improving layer includes a compound represented by the following formula (1),
  • the gray improving insect includes a compound represented by Formula 2, an organic light emitting device:
  • An and Ar 2 are each independently a substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S,
  • L are each independently a direct bond, or a substituted or unsubstituted C 6 -60 arylene,
  • A are each independently a substituted or substituted or unsubstituted C 6 -60 arylene having a meta- or ortho- linking group
  • Each B is independently a substituted or unsubstituted C 6 -60 aryl; Or C 2 -60 heteroaryl including one or more substituted or unsubstituted 0 N, Si, and S atoms,
  • 1 is an integer from 0 to 2
  • a is an integer of 1 or 2
  • b is an integer of 1 or 2
  • Ar 3 and Ar 4 are each independently substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl comprising one or more 3 ⁇ 4 of 0, N, Si, and S,
  • P are each independently a direct bond or a substituted or unsubstituted C 6 -60 arylene
  • Each Q is independently a substituted or substituted or unsubstituted C 6 -60 arylene having a para (a) linking group
  • Each R is, independently, substituted or unsubstituted C 6 -60 aryl; Or C 2 —60 heteroaryl including at least one of substituted or unsubstituted 0 N, Si, and S, p is an integer from 0 to 2,
  • q is an integer of 1 or 2
  • r is an integer of 1 or 2.
  • the organic light emitting device described above is excellent in driving voltage, efficiency and lifespan. [Brief Description of Drawings]
  • FIG. 1 shows a substrate 1, an anode 2, a hole transport layer 3, a light emitting layer 4, a power efficiency improving layer 5, and a gray level improving layer 6.
  • Example 3 is a graph showing changes in efficiency according to currents of the organic light emitting diodes of Example 1 and Comparative Example 1 of the present invention.
  • substituted or unsubstituted is deuterium; halogen; nitrile; nitro, hydroxy, carbonyl; ester, imide; amino; phosphine oxide; alkoxy; aryloxy; Alkylthioxy group; arylthioxy group; alkyl sulfoxy group; aryl sulfoxy group; silyl group; boron group; alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; alkylaryl group; ' alkylamine group; aral Or substituted or unsubstituted with one or more substituents selected from the group consisting of a chelamine group, a heteroarylamine group, an arylamine group, an arylphosphine group, or a heterocyclic group containing one or more of N,
  • substituted or unsubstituted two or more substituents of the substituents exemplified may be a biphenyl group.
  • the carbonyl group of the carbonyl group is not particularly limited, but is preferably 1 to 40.
  • the compound may be a compound having the following structure, but is not limited thereto. It doesn't happen.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the silyl group includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like.
  • the boron group specifically includes, but is not limited to, trimethylboron group, triethylboron group, t-butyldimethylboron group, triphenylboron group, phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromide or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl sec-butyl, 1_methyl-butyl, 1-ethyl-butyl, pentyl and n— Pentyl, isopentyl, neopentyl, tert—penttip., Nuclear chamber, n-nuclear chamber, 1-methylpentyl, 2-methylpentyl, 4-methyl-2—pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl ⁇ n-heptyl, 1-methylnuclear, cyclopentylmethyl, cyclonuxylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylnuclear, 2-
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1-part Tenyl, 1, 3—Butadienyl, Allyl, 1-phenylvinyl- 1 ⁇ yl, 2-phenylvinyl- 1-yl, 2, 2-diphenylvinyl-1-yl, 2-phenyl-2- (naphthyl ⁇ 1-yl) vinyl-1-yl, 2 , 2-bis (diphenyl-1-yl) vinyl— 1-yl, stilbenyl group, styrenyl group and the like, but is not limited to these.
  • the cycloalkyl group is not particularly limited, but preferably 3 to 60 carbon atoms, according to one embodiment. Carbon number of the said cycloalkyl group is 3-30. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto.
  • As said polycyclic aryl group a naphthyl group, anthracenyl group, a phenanthryl group. Pyrenyl group. Perylyl group. It may be a cryenyl group, a fluorenyl group and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
  • the heterocyclic group is a heterocyclic group containing one or more of 0, N, Si, and S as a dissimilar element, and the carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyr group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group and acri Dill group, pyridazine group, pyrazinyl group, quinolinyl group.
  • Quinazolin group quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzoimidazole group benzo Thiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthrol ine, isoxazolyl group thiadiazolyl group, phenothiazinyl group, dibenzofuranyl group, etc.
  • the present invention is not limited thereto.
  • the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the alkyl group described above.
  • the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group.
  • the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above.
  • the arylene is a divalent group
  • the description of the aryl group described above may be applied.
  • the heteroarylene is a divalent group
  • the description of the aforementioned heterocyclic group may be applied.
  • the hydrocarbon ring is not a monovalent group, and two substituents are Except as formed by bonding, the description of the aforementioned aryl group or cycloalkyl group may be applied.
  • the heterocyclic group is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding.
  • the present invention provides the following organic light emitting device:
  • the organic light emitting device includes a power efficiency improving layer and a gray level improving layer, and has a feature of improving driving , voltage, effect, and lifetime of the organic light emitting device.
  • the first electrode and the second electrode used in the present invention are electrodes used in an organic light emitting device, for example, the first electrode is an anode and the second electrode is a cathode, or the first electrode is a cathode, The second electrode is an anode.
  • the anode material a material having a large work function is generally preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (IT0), zinc oxide (IZ0); ⁇ : ⁇ 1 or SN0 2 : A combination of a metal and an oxide such as Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (? £ 0 1), polypyrrole and polyaniline, but only It is not limited. It is preferable that the negative electrode material is a material having a small work function to facilitate electron injection into an organic material insect.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium lithium gadolinium, aluminum, silver, tin and lead or alloys thereof; Multi-layered materials such as LiF / Al or Li0 2 / Al are included, but are not limited thereto.
  • a hole injection layer may be further included on the anode.
  • the hole injection layer is made of a hole injection material, has a capability of transporting holes as a hole injection material has a hole injection effect at the anode, an excellent hole injection effect to the light emitting layer or the light emitting material, and The compound which prevents the movement to an electron injection layer or an electron injection material, and is excellent in thin film formation ability is preferable.
  • the HOMO highest occupied molecular orbital) of the hole injection material is preferably between the work function of the anode material and the HOMO of the surrounding organic layer.
  • the hole injection material Metal porphyr, oligothiophene, arylamine-based organics, nucleonitrile-nucleated azatriphenylene-based organics, quinacridone-based organics, perylene-based organics, anthraquinones And polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • Hole transport layer is not limited thereto.
  • the hole transport layer used in the present invention is a layer for receiving holes from the hole injection layer formed on the anode or the anode and transporting holes to the light emitting layer, and transporting holes from the anode or the hole injection layer with a hole transport material to the light emitting layer.
  • Suitable materials are those with high mobility for holes. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the light emitting material included in the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transporting layer and the electron transporting material, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • the light emitting layer may include a host material and a dopant material.
  • the host material is a condensed aromatic ring derivative or a heterocyclic containing compound. Specifically, as the condensed aromatic ring derivative, anthracene.
  • hetero a ring-containing compound is a carbazole derivative, a dibenzofuran derivative, ladder, furan compounds, pyrimidine derivatives, etc.
  • the present invention is not limited thereto.
  • the compound represented by the following Chemical Formula 3 is preferable as the host of the light emitting layer.
  • Ri 4 and R 15 are each independently substituted or unsubstituted C 6 -60 aryl.
  • the dopant material examples include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene and periplanthene having an arylamino group, and styrylamine compounds may be substituted or unsubstituted. Wherein at least one arylvinyl group is substituted for arylamine .
  • a substituent selected from the group consisting of aryl, silyl, alkyl, cycloalkyl and arylamino groups is substituted or unsubstituted.
  • aryl, silyl, alkyl, cycloalkyl and arylamino groups is substituted or unsubstituted.
  • styrylamine, Styryl diamine, styryl triamine, styryl tetraamine and the like but is not limited thereto.
  • the metal complex includes an rhythm complex, a platinum complex, and the like, but is not limited thereto. Power Efficiency Improvement Layer
  • PEEL refers to a layer which is formed on the light emitting charge and improves the mobility of electrons to improve the power efficiency of the organic light emitting device.
  • a compound represented by Chemical Formula 1 is used as a material of the power efficiency improving layer.
  • A is each independently selected from the group consisting of:
  • An and Ar 2 are each independently phenyl, biphenylrin, or naphthyl.
  • L is a single bond or phenylene.
  • B is any one selected from the group consisting of:
  • R 4 to Re are each independently hydrogen; heavy hydrogen; Halogen: cyano: nitro; Amino; Substituted or unsubstituted C 0 alkyl: d-60 haloalkyl: substituted or unsubstituted d- ⁇ haloalkoxy: substituted or unsubstituted C 3 — 60 cycloalkyl; Substituted or unsubstituted C 2 - 60 alkenyl: substituted or unsubstituted C 6 - 60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl comprising one or more of 0, N, Si and S,
  • X is CR 7 R 8 .
  • R 7 and R s are each independently a (60 alkyl or C 6 - to form a ring 60 - 60 aryl ttodeun 0 7 3 ⁇ 4 in case R 7 and R 8 is C 6 together.
  • k is an integer of 0-2.
  • 1, a and b are 1.
  • Representative examples of the compound represented by Formula 1 are as follows:
  • the triplet energy of the compound represented by Formula 1 is preferably above.
  • the present invention provides a method for producing a compound represented by the formula, for example, Reaction Scheme 1 below.
  • the reaction formula 1 is a reaction for preparing a compound represented by the formula (1) by reacting the compound represented by the formula (1) and the compound represented by the formula (1) as a Suzuki coupling reaction.
  • Halogen preferably. Bromo or chloro
  • X ′′ is B (0H) 2 .
  • the manufacturing method may be more specific in the production examples to be described later.
  • the compound represented by the formula (1) the electron mobility is greater than the compound represented by the formula (2) used in the tone enhancement layer as described later.
  • the Gradion Enhancement Layer is formed on the power efficiency improving layer to improve the mobility of electrons, thereby improving the power S rate of the organic light emitting diode. -Be shy.
  • the compound represented by the formula (2) is used as a material for the additive gray-grading improving insect.
  • each Q is independently selected from the group consisting of:
  • Y is CR'iR '2, S, or 0,
  • R'i and R '2 are each independently d- 60 alkyl, or C 6 -60 aryl, or R' and R '2 together form a C 6 6 60 aromatic ring.
  • p is a single bond or phenylene.
  • R is any one selected from the group consisting of
  • Rg to R u are each independently hydrogen; Deuterium; Halogen; Cyano; Nitro; Amino; Substituted or unsubstituted d— 60 alkyl; d- 60 haloalkyl; Substituted or unsubstituted d-60 haloalkoxy; Substituted or unsubstituted C 3 -60 cycloalkyl; A substituted or unsubstituted C 2 -60 alkenyl group; Substituted or unsubstituted C 6 -60 aryl; Or substituted or unsubstituted C 2 -60 heteroaryl including one or more of 0, N, Si, and S, X 'is CR 12 R 13 , NR12, S, or 0, and R 12 and R 13 Are each independently d-
  • R 12 and R 13 together form a C 6 -60 aromatic ring
  • s is an integer of 0-2.
  • p, q and r are one.
  • Representative examples of the compound represented by Formula 2 are as follows:
  • the triplet energy of the compound represented by Formula 2 is preferably 2.2 or more.
  • the present invention provides a method for producing a compound represented by the above formula, such as Banung 2 below.
  • the reaction formula 2 is a reaction for producing a compound represented by the formula (2) by reacting a compound represented by the formula (2) with a compound represented by the formula (2) 'as a Suzuki coupling reaction.
  • X ' is halogen (preferably bromo or chloro); X " is B (0H) 2.
  • the manufacturing method can be more specific in the manufacturing examples described later.
  • the gray-level improvement layer may further include an electron transporting material.
  • a material capable of injecting electrons well from the electron into the light emitting layer a material having high mobility to electrons is suitable, for example, an Al complex of 8—hydroxyquinoline; a complex containing Alq 3 ; an organic radical compound; Flavone-metal complexes and the like, but are not limited thereto.
  • the gradation improving layer may further include an n-type dopant.
  • the n-type dopant may be included in an amount of 20 to 80 wt% of the gradation improving layer.
  • the n-type dopant is not limited as long as it is used in an organic light emitting device, and for example, a compound represented by Chemical Formula 4 may be used:
  • A3 is hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted Alkyl thioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkylsulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heterocyclic group,
  • the curve represents the bond and two or three atoms necessary to form a five or six membered ring with M, which atoms are unsubstituted or substituted with one or two or more of the same substituents as A, and
  • M is an alkali metal or alkaline earth metal.
  • the compound represented by Chemical Formula 4 is represented by the following Chemical Formula 4-1 or 4-2:
  • Formula 4-1 and 4-2 are each independently hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkylthioxy group; Substituted or unsubstituted arylthioxy group; Substituted or unsubstituted alkyl sulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substituted or unsubstituted aryl group; And
  • the structure is hydrogen; heavy hydrogen; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted alkoxy group; Substituted or unsubstituted aryloxy group; Substituted or unsubstituted alkyl thioxy group; Substituted or unsubstituted aralthioxy group, substituted or unsubstituted alkylsulfoxy group; Substituted or unsubstituted aryl sulfoxy group; Substituted or unsubstituted alkenyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted boron group; Substituted or unsubstituted aryl group; And it may be substituted or unsubstit
  • the organic light emitting diode according to the present invention may further include an electron injection layer between the gray enhancement layer and the cathode.
  • the electron injection layer is from the electrode
  • a layer that injects electrons has the ability to transport electrons, has the effect of electron injection from the cathode, excellent electron injection effect to the light emitting layer or light emitting material, and prevents the excitons generated in the light emitting layer from moving to the hole injection Moreover, the compound excellent in the thin film formation ability is preferable.
  • the material that can be used as the electron injection layer fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preore Nilidene methane, anthrone and the like, derivatives thereof, metal complex compounds and nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto. 8 -hydroxyquinolinato lithium as said metal complex compound.
  • FIGS. 1 and 2 The structure of the organic light emitting device according to the present invention is illustrated in FIGS. 1 and 2.
  • 1 shows a substrate 1, an anode 2, a hole transport layer 3, a light emitting layer 4, a power efficiency improving layer 5, and a gray level improving layer 6.
  • 2 shows the substrate 1, the anode 2, the hole transport layer 3, the light emitting layer 4, the power efficiency improving layer 5, the gray improving insect 6, the electron injection layer 8 and the cathode 7
  • An example of an organic light emitting device is shown.
  • the organic light emitting device according to the present invention sequentially the above-described configuration It can manufacture by laminating
  • PVD physical vapor deposition deposition
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the light emitting layer may be formed of a host and a dopant not only by vacuum deposition but also by solution coating.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, etc., but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate (W0 2003/012890).
  • the manufacturing method is not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a bottom emission type, or a double side emission type according to a material used.
  • Equation 1 is satisfied.
  • a glass substrate coated with a thin film having an indium tin oxide (IT0) thickness of 1300 A was placed in distilled water in which detergent was dissolved and ultrasonically cleaned.
  • Fischer Co. product was used as a detergent and distilled water was filtered secondly as a filter of Millipore Co. product as distilled water.
  • the ultrasonic cleaning was performed twice with distilled water for 10 minutes.
  • isopropyl alcohol isopropyl alcohol. Ultrasonic washing with a solvent of acetone and methanol was carried out, dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • the following compound HI-A was vacuum deposited to a thickness of 600 A on the prepared ITO transparent electrode to form a hole injection insect.
  • the following compound HAT—CN (50A) and the following compound HT—A (600A) were sequentially vacuum deposited on the hole injection layer to form a hole transport layer.
  • the following compound BH and BD were vacuum deposited on the hole transport layer at a weight ratio of 25: 1 to form a light emitting layer at a thickness of 200 A.
  • Compound 1-1 prepared above was vacuum deposited to a thickness of 50 A on the emission layer to form a power efficiency improvement layer.
  • the compound 2-1 and the LiQ (8-hydroxyquinolato lithium) compound were formed in a 1: 1 weight ratio to form a gray enhancement layer having a thickness of 300A.
  • Aluminum was deposited to have a thickness of (LiF) and 1,000 A to form a cathode.
  • the deposition rate of the organic material was maintained at 4 ⁇ 0.9 A / sec
  • the lithium fluoride of the cathode was maintained at 0.3 A / sec
  • the aluminum was maintained at the deposition rate of 2 A / sec.
  • the organic light emitting device was manufactured while maintaining 7 to 5 ⁇ 10 torr. Examples 2 to 16
  • the organic light emitting device was manufactured by the same method as Example 1, except that Compound 1-1 and Compound 2-1 were used instead of the compounds shown in Table 1 below. Comparative Examples 1 to 4
  • the organic light emitting device was manufactured by the same method as Example 1, but using Compound 1-1 and Compound 2-1, instead of Compound 1-1, respectively.
  • the ET-1-A compound is as follows.
  • the organic light emitting device manufactured by the above-described method was measured for driving voltage and luminous efficiency at a current density of 0.1 mA / cm 2 or 10 mA / cm 2 , and 90% of the initial luminance at a current density of 20 mA / cm 2 .
  • the time to become (T90) was measured. The results are shown in Table 1 below.
  • Table 2 shows a comparison of the efficiency differences at the current densities of 0.1 mA / cm 2 and 10 mA / cm 2 measured previously.
  • the 0LED element is a current driving element, and luminance (ni t) according to the current density is linear.
  • the efficiency change according to the luminance (ni t) at least, the color expression according to the display panel brightness appears evenly. If the efficiency change according to the luminance nit becomes large, the color of the panel changes depending on the luminance, which causes the panel defect.
  • the gray level improvement layer (GEL) and the power efficiency of the present invention are solved.
  • the application of PEELs simultaneously results in less than 10% change in efficiency due to luminance, while at the same time making high efficiency long life devices.
  • 3 is a graph showing changes in efficiency according to currents in Example 1 and Comparative Example 1. FIG. As shown in FIG.
  • Example 1 shows a small change in efficiency at 0.1 niA / cm 2 and 10 mA / cm 2 to within 10%
  • Comparative Example 1 shows 0.1 mA / cm 2 and 10 mA /. It can be seen that the change in efficiency in cm 2 is more than 10%.
  • the difference between the maximum efficiency value and the minimum value is 60% in Comparative Example 1. It can confirm that it appears as above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 구동 전압, 효율 및 수명이 개선된 유기발광 소자 제공한다.

Description

【발명의 명칭】
유기 발광 소자
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 10월 18일자 한국 특허 출원 제 10-2016-
0135296호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
【배경기술】
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기 에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 웅답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자와 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 액시톤 (exci ton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 상기와 같은 유기 발광 소자에서, 구동 전압, 효율 및 수명이 개선된 유기 발광 소자의 개발이 지속적으로 요구되고 있다.
【선행기술문헌】
【특허문헌】 (특허문헌 0001) 한국특허 공개번호 제 10-2000-0051826호
【발명의 내용]
【해결하려는 과제】
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
【과제의 해결 수단】
본 발명은 하기의 유기 발광 소자를 제공한다:
제 1 전극;
정공수송층;
발광층;
전력 효율 개선층;
계조 개선층; 및
제 2 전극을 포함하고,
상기 전력 효율 개선층은 하기 화학식 1로 표시되는 화합물을 포함하고,
상기 계조 개선충은 하기 화학식 2로 표시되는 화합물을 포함하는, 유기 발광 소자:
[화학식 1]
Figure imgf000003_0001
상기 화학식 1에서,
An 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
L은 각각 독립적으로, 직접 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
A는 각각 독립적으로, 메타 (meta-) 또는 오르쏘 (ortho-) 연결기를 가지는 치환또는 치환 또는 비치환된 C6-60 아릴렌이고, B는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0 N, Si 및 S 증 1개 이상을 포함하는 C2-60 헤테로아릴이고,
1은 0 내지 2의 정수이고,
a는 1 또는 2의 정수이고, '
b는 1 또는 2의 정수이고,
[화학식 2]
Figure imgf000004_0001
상기 화학식 2에서,
Ar3 및 Ar4는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0 , N, Si 및 S 중 1개 이상 ¾ 포함하는 C2-60 헤테로아릴이고,
P는 각각 독립적으로, 직접 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Q는 각각 독립적으로, 파라 (par a-) 연결기를 가지는 치환 또는 치환 또는 비치환된 C6-60 아릴렌이고,
R은 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비차환된 0 N, Si 및 S 중 1개 이상을 포함하는 C260 헤테로아릴이고, p은 0 내지 2의 정수이고,
q는 1 또는 2의 정수이고,
r는 1 또는 2의 정수이다. '
【발명의 효과】
상술한 유기 발광 소자는, 구동 전압, 효율 및 수명이 우수하다. 【도면의 간단한 설명】
. 도 1은, 기판 ( 1), 양극 (2), 정공수송층 (3), 발광층 (4) , 전력 효율 개선층 (5) , 계조 개선층 (6) . 및 음극 (7)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는, 기판 ( 1), 양극 (2), 정공수송층 (3), 발광층 (4) , 전력 효율 개선층 (5) , 계조 개선층 (6), 전자주입층 (8) 및 음극 (7)으로 이루어진 유기 발광 소자의 예를 .도시한 것이다.
도 3은, 본 발명의 실시예 1 및 비교예 1의 유기 발광 소자의 전류에 따른 효율 변화를 나타내는 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서, 는 다른 치환기에 연결되는 결합을 의미한다. 본 명세서에서 "치환 또는 비치환된'' 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; '알킬아민기 ; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N , 0 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나. 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기 "는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나 이에 한정되는 것은 아니다.
Figure imgf000006_0001
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000006_0002
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000006_0003
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브름 또는 요오드가 있다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert—부틸 sec-부틸, 1_메틸-부틸, 1—에틸-부틸, 펜틸, n—펜틸, 이소펜틸, 네오펜틸, tert—펜팁., 핵실, n-핵실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸 -2—펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸ᅳ n-헵틸, 1-메틸핵실, 사이클로펜틸메틸,사이클로핵틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸핵실, 2-프로필펜틸, n-노닐, 2 , 2-디메틸헵틸, 1—에틸-프로필, 1,1- 디메틸-프로필, 이소핵실, 2-메틸펜틸, 4-메틸핵실, 5—메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1—프로페닐, 이소프로페닐, 1ᅳ부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸 -1-부테닐, 1,3—부타디에닐, 알릴, 1-페닐비닐— 1ᅳ일, 2—페닐비닐— 1-일, 2 , 2-디페닐비닐 -1-일, 2-페닐 -2- (나프틸ᅳ 1-일)비닐 -1-일, 2,2-비스 (디페닐 -1-일)비닐— 1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면. 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2 , 3- 디메틸사이클로펜틸, ᅵ사이클로핵실, 3-메틸사이클로핵실, 4ᅳ 메틸사이클로핵실, 2 , 3-디메틸사이클로핵실, 3,4,5-트리메틸사이클로핵실, 4-tert-부틸사이클로핵실. 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아:릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기. 파이레닐기. 페릴레닐기. 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure imgf000009_0001
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 헤테로고리기는 이종 원소로 0 , N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서 , 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피를기 , 이미다졸기, 티아졸기 , 옥사졸기 , 옥사디아졸기, 트리아졸기 , 피리딜기, 비피리딜기 , 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기. 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기 , 피리도 피리미디닐기 , 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기 벤조퓨라닐기, 페난쓰를린기 (phenanthrol ine) , 이소옥사졸릴기 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기 , 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 발명은 하기의 유기 발광 소자를 제공한다:
제 1 전극; 정공수송층; 발광층; 전력 효율 개선층; 계조 개선층; 및 제 2 전극을 포함하고, 상기 전력 효율 개선층은 상기 화학식 1로 표시되는 화합물을 포함하고, 상기 계조 개선층은 상기 화학식 2로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다. 본 발명에 따른 유기 발광 소자는, 전력 효율 개선층 및 계조 개선층을 포함하여, 유기 발광 소자의 구동'전압, 효을 및 수명을 향상시킬 수 있는 특징이 있다. 이하, 각 구성 별로 본 발명을 상세히 설명한다. 제 1 전극 및 제 2 전극
본 발명에서 사용되는 게 1 전극 및 제 2 전극은, 유기 발광 소자에서 사용되는 전극으로서, 일례로 상기 제 1 전극은 양극이고 상기 제 2 전극은 음극이거나, 또는 상기 제 1 전극은 음극이고, 상기 제 2 전극은 양극이다. 상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물 ( IT0) , 인듬아연 산화물 ( IZ0)과 같은 금속 산화물; ΖηΟ:Α1 또는 SN02 : Sb와 같은 금속과 산화물의 조합; 폴리 (3- 메틸티오펜) , 폴리 [3,4-(에틸렌—1,2—디옥시 )티오펜] (?£0 1) , 폴리피를 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물충으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨 리튬 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 Li02/Al과 같은 다층 구조 물질 둥이 있으나, 이들에만 한정되는 것은 아니다. 또한, 상기 양극 상에는 정공 주입층이 추가로 포함될 수 있다. 상기 정공 주입층은 정공 주입 물질로 이루어져 있으며, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO highest occupied molecular orbi tal )가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는,. 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다. 정공수송층
본 발명에서 사용되는 정공수송층은 양극 또는 양극 상에 형성된 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 발광층
상기 발광충에 포함되는 발광 물질로는 정공 수송층과 전자 수송충으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다ᅳ 구체적인 예로 8-히드록시—퀴놀린 알루미늄 착물 (Alq3) ; 카르바졸 계열 화합물; 이량체화 스티릴 (dimer i zed styryl ) 화합물; BAlq ; 10- 히드록시벤조 퀴놀린 -금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리 (P-페닐렌비닐렌) (PPV) 계열의 고분자; 스피로 (spi ro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 발광층은 호스트 재료 및 도편트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센. 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형' 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 특히, 상기 발광층의 호스트로는 하기 화학식 3으로 표시되는 화합물이 바람직하다.
[화학식 3]
Figure imgf000013_0001
상기 화학식 3에서,
Ri4 및 R15는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴이다.
Figure imgf000013_0002
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화.합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듬 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 전력 효율 개선층
상기 전력 효율 개선증 (Power Ef f i c iency Enhancement Layer;
PEEL)은 발광충 상에 형성되어, 전자의 이동도를 개선하여 유기 발광 소자의 전력 효율을 개선하는 역할을 하는 층을 의미한다. 특히, 본 발명에서는 상기 전력 효율 개선층의 재료로 상기 화학식 1로 표시되는 화합물을 사용한다. 바람직하게는, A는 각각 독립적으로, 하기로 구성되는—군으로부터 선택되 어느 하나이다.
Figure imgf000014_0001
바람직하게는, An 및 Ar2는 각각 독립적으로, 페닐, 비페닐린, 또는 나프틸이다ᅳ 바람직하게는, L은 단일 결합, 또는 페닐렌이다. 바람직하게는, B는 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure imgf000015_0001
상기에서,
R4 내지 Re는 각각 독립적으로, 수소; 중수소; 할로겐: 시아노: 니트로 ; 아미노; 치환 또는 비치환된 C 0 알킬 : d-60 할로알킬 : 치환 또는 비치환된 d-ω 할로알콕시: 치환 또는 비치환된 C360 사이클로알킬; 치환 또는 비치환된 C2-60 알케닐기 : 치환 또는 비치환된 C6-60 아릴 ; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
X는 CR7R8. NR7, S. 또는 0이고. R7 및 Rs은 각각 독립적으로 ( 60 알킬 또는 C6-60 아릴. 또든 07¾인 경우 R7 및 R8가 함께 C6-60 방향족 고리를 형성하고.
k는 0 내지 2의 정수이다. 바람직하게는, 1 , a 및 b는 1이다. 상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure imgf000016_0001
Figure imgf000016_0002
또한, 상기 화학식 1로 표시되는 화합물의 삼중항 에너지는 이상인 것이 바람직하다. 또한, 본 발명은 일례로 하기 반응식 1과 같은 상기 화학식 표시되는 화합물의 제조 방법을 제공한다.
Figure imgf000017_0001
상기 반웅식 1은, 스즈키 커플링 반웅으로서 , 상기 화학식 1 '로 표시되는 화합물과 상기 화학식 1"로 표시되는 화합물을 반웅시켜, 상기 화학식 1로 표시되는 화합물을 제조하는 반응이다. 상기 X '는 할로겐 (바람직하게는. 브로모 또는 클로로)이고, 상기 X"는 B(0H)2이다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. 또한, 상기 화학식 1로 표시되는 화합물은, 후술할 바와 같은 계조 개선층에 사용되는 화학식 2로 표시되는 화합물에 비하여 전자 이동도가 크다. 계조 개선층
상기 계조 개선층 (Gradat ion Enhancement Layer; GEL)은 전력 효율 개선층 상에 형성되어, 전자의 이동도를 개선하여 유기 발광 소자의 전력 S율을 _개_선ᅳ하—는 역할을 하는 층을 의 -미ᅳ한다. 특하, 본 발명에서는 상가 계조 개선충의 재료로 상기 화학식 2로 표시되는 화합물을 사용한다. 바람직하게는ᅳ Q는 각각 독립적으로ᅳ 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure imgf000018_0001
Figure imgf000018_0002
상기에서,
Y는 CR'iR' 2, S, 또는 0이고,
R'i 및 R' 2은 각각 독립적으로, d-60 알킬, 또는 C6-60 아릴, 또는 R' 및 R' 2가 함께 C660 방향족 고리를 형성한다. 바람직하게는, p는 단일 결합, 또는 페닐렌이다. 바람직하게는, R은 하기로 구성되는 군으로부터 선택되는 어느 하나이
Figure imgf000018_0003
상기에서,
Rg 내지 Ru는 각각 독립적으로, 수소 ; 중수소 ; 할로겐 ; 시아노 ; 니트로 ; 아미노; 치환 또는 비치환된 d— 60 알킬 ; d-60 할로알킬 ; 치환 또는 비치환된 d-60 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C2-60 알케닐기; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 해테로아릴이고, X '는 CR12R13 , NR12 , S , 또는 0이고, R12 및 R13은 각각 독립적으로 d-
60 알킬, 또는 C660 아릴, 또는 0 21½인 경우 R12 및 R13가 함께 C6-60 방향족 고리를 형성하고,
s는 0 내지 2의 정수이다. 바람직하게는, p , q 및 r은 1이다. 상기 화학식 2로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure imgf000020_0001
또한, 상기 화학식 2로 표시되는 화합물의 삼중항 에너지는 2.2 이상인 것이 바람직하다. 또한, 본 발명은 일례로 하기 반웅식 2와 같은 상기 화학식 표시되는 화합물의 제조 방법을 제공한다.
[반웅식 2]
Figure imgf000021_0001
상기 반웅식 2는, 스즈키 커플링 반응으로서 ᅳ 상기 화학식 2 '로 표시되는 화합물과 상기 화학식 2' '로 표시되는 화합물을 반응시켜, 상기 화학식 2로 표시되는 화합물을 제조하는 반응이다. 상기 X '는 할로겐 (바람직하게는, 브로모 또는 클로로)이고, 상기 . X"는 B(0H)2이다. 상기 제조 방법은 후술할 제조예에서 보다구체화될 수 있다. 또한, 상기 계조 개선층은 전자 수송.물질을 추가로 포함할 수 있다. 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8—히드록시퀴놀린의 A1 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본 -금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
. 또한, 상기 계조 개선층은 n-형 도펀트를 추가로 포함할 수 있다ᅳ 이 경우, 상기 n—형 도펀트는, 상기 계조 개선층의 20 내지 80 중량 %로 포함될 수 있다. 상기 n-형 도판트는 유기 발광 소자에 사용되는 것이면 제한되지 않으며, 일례로 하기 화학식 4로 표시되는 화합물을 사용할 수 있다:
]
Figure imgf000021_0002
상기 화학식 4에서,
A3은 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기 ; 치환 또는 비치환된 시클로알킬기 ; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아릴기 ; 또는 치환 또는 비치환된 헤테로고리기이고,
곡선은 M을 갖는 5원 또는 6원 고리를 형성하는데 필요한 결합 및 2 또는 3개의 원자를 나타내고, 상기 원자는 1 또는 2 이상의 A의 정의와 동일한 치환기로 치환 또는 비치환되며,
M은 알칼리 금속 또는 알칼리 토금속이다. 바람직하게는, 상기 화학식 4로 표시되는 화합물은, 하기 화학식 4-1 또는 4-2로 표시된다:
Figure imgf000022_0001
상기 화학식 4-1 및 4-2에서,
M은 화학식 4에서 정의한 바와 동일하고,
화학식 4-1 및 4— 2는 각각 독립적으로 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기 ; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기; 치환 또는 비치환된 아릴티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택되는 1 또는 2 이상의 치환기로 치환 또는 비치환되거나, 인접하는 치환기가 서로 결합하여 치환 또는 비치환된 탄화수소 고리 또는 치환 또는 비치환된 헤테로고리를 형성한다 . 바람직하게는 상기 화학식 4로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure imgf000023_0001
22 정정용지 규칙 제 91조 ISAKR
Figure imgf000024_0001
상기 구조는 수소; 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 알콕시기; 치환 또는 비치환된 아릴옥시기; 치환 또는 비치환된 알킬티옥시기 ; 치환 또는 비치환된 아랄티옥시기; 치환 또는 비치환된 알킬술폭시기; 치환 또는 비치환된 아릴술폭시기; 치환 또는 비치환된 알케닐기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 붕소기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택되는 1 또는 2 이상의 치환기로 치환 또는 비치환될 수 있다. 전자주입층
본 발명에 따른 유기 발광 소자는 상기 계조 개선층과 음극 사이에 전자주입층을 추가로 포함할 수 있다. 상기 전자주입층은 전극으로부터
23 91조 ISA KR 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입충에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 상기 전자주입층으로 사용될 수 있는 물질의 구체적인 예로는, 플루오레논 , 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸 , 옥사다이아졸, 트리아졸, 이미다졸 , 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬. 비스 (8- 하이드록시퀴놀리나토)아연, 비스 (8ᅳ하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간, 트리스 (8-하이드록시퀴놀리나토)알루미늄, 트리스 (2-메틸 -8-하이드록시퀴놀리나토)알루미늄, 트리스 (8- 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, 비스 (2-메틸ᅳ 8- 퀴놀리나토)클로로갈륨, 비스 ( 2-메틸 -8-퀴놀리나토) ( 0-크레졸라토)갈륨, 비스 (2—메틸 -8-퀴놀리나토) ( 1-나프를라토)알루미늄, 비스 (2-메틸 -8- 퀴놀리나토) (2-나프를라토)갈륨 등이 있으나, 이에 한정되지 않는다. 유기 발광소자
본 발명에 따른 유기 발광 소자의 구조를 도 1 및 2에 예시하였다. 도 1은, 기판 ( 1), 양극 (2), 정공수송층 (3) , 발광층 (4) , 전력 효율 개선층 (5) , 계조 개선층 (6) . 및 음극 (7)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 도 2는, 기판 ( 1) , 양극 (2), 정공수송층 (3) , 발광층 (4), 전력 효율 개선층 (5), 계조 개선충 (6), 전자주입층 (8) 및 음극 (7)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법 (sput ter ing)이나 전자빔 증발법 (e— beam evaporat ion)과 같은 PVD(physi cal Vapor Deposi t ion)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (W0 2003/012890) . 다만, 제조 방법이 이에 한정되는 것은 아니다. 한편 , 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. 또한, 본 발명에 따른 유기 발광 소자에 0. 1 mA/cni2의 전류 밀도에서 측정한 발광 효율 (Ef fo. 및 10 niA/cm2 전류 밀도에서 측정한 발광 효율 (Ef f10)이 하기 수학식 1을 만족한다.
[수학식 1]
(Ef f10 - Ef fo. i) I Ef fo.i < 0.20 상기와 같이, 전류 밀도에 따른 효율 변화가 적어 패널 불량을 방지하고 또한 장수명을 나타낼 수 있게 된다. 상술한 본 발명의 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다. [제조예]
Figure imgf000027_0001
A-1 B-1 1-1 상기 화합물 A-K10 g, 29.8 mmol) 및 상기 화합물 B-l(25.9 g, 59.6 mmol)을 다이옥산 (150 mL)에 투입하였다. 2M K3P04(100 mL), Pd(dba)2(1.2 g), 및 PCy3(1.2 g)을 투입한 후, 6시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄을로 재결정하여 상기 화합물 1-1을 제조하였다 (15.6 g, 수율 66%, MS:[M+H]+= 793).
Figure imgf000027_0002
상기 화합물 A-2(10 g' 23.8 mmol) 및 상기 화합물 B-2(8.63 g, 23.8 mmol)을 다이옥산 (150 niL)에 투입하였다. 2M 3P04(100 mL), Pd(dba)2(0.6 g), 및 PCy3(0.6 g)을 투입한 후, 10시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 1ᅳ2를 제조하였다 (12.5 g, 수율 75%, MS:[M+H]+= 702).
Figure imgf000028_0001
상기 화합물 A-3(10 g, 23.8 mmol) 및 상기 화합물 B-3(8.58 g, 23.8 mmol)을 다이옥산 (150 mL)에 투입하였다. 2M K3P04(100 niL), Pd(dba)2(0.6 g), 및 PCy3(0.6 g)을 투입한 후, 12시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 1-3을 제조하였다 (11.3 g, 수율 71%, MS:[M+H]+= 670).
Figure imgf000028_0002
상기 화합물 A-4(10 g, 17.5 mmol) 및 상기 화합물 B-4(4.69 g, 17.5 瞧 ol)을 테트라하이드로퓨란 (150 mL l 투입하였다. 2M K2C03(100 mL), Pd(dba)2(0.6 g), 및 PCy3(0.6 g)을 투입한 후, 6시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 1—4를 제조하였다 (9.69 g, 수율 82%. MS:[M+H]+= 676).
Figure imgf000029_0001
상기 화합물 A-5(10 g, 37.3 mmol) 및 상기 화합물 B-5(l그 9 g, 37.3 mmol)을 테트라하이드로퓨란 (150 mL)에 투입하였다. 2M K2C03(100 mL) , Pd(dba)2(0.6 g), 및 PCy3(0.6 g)을 투입한 후, 8시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로. 재결정하여 상기 화합물 1-5를 제조하였다 (17.3 g, 수을 79%, MS:[M+H]+= 586).
Figure imgf000029_0002
A-6 B-6 1-6
상기 화합물 A-6(10 g, 23.8 mmol) 및 상기 화합물 B-6(5.67 g, 23.8 隱 ol)을 다이옥산 (150 mL)에 투입하였다. 2M 3P04(100 mL), Pd(dba)2(0.6 g), 및 PCy3(0.6 g)을 투입한 후, 16시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 '에탄올로 재결정하여 상기 화합물 1-6을 제조하였다 (10.3 g, 수율 75%, MS:[M+H]+= 578).
Figure imgf000030_0001
상기 화합물 C-K10 g, 26.3 mmol) 및 상기 화합물 D-l(18.1 g, 52.6 隱 ol)을 다이옥산 (150 mL)에 투입하였다. 2M 3P04(100 mL), Pd(dba)2(1.2 g), 및 PCy3(1.2 g)을 투입한 후, 15시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 2—1을 제조하였다 (13.9 g, 수율 Ί1 , MS:[M+H]+= 743).
Figure imgf000030_0002
상기 화합물 02(10 g, 21.3 mmol) 및 상기 화합물 D-2(4.75 g, 52.6 隱 ol)을 다이옥산 (150 mL)에 투입하였다. 2M 3P04(100 mL), Pd(clba)2(0.6 g), 및 PCy3(0.6 g)을 투입한 후, 13시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 2-2를 제조하였다 (9.53 g, 수율 73%, MS:[M+H]+= 613). 제조예 2-3: 화합물 2-3의 제조
Figure imgf000031_0001
상기 화합물 03(10 g, 18.3 mmol) 및 상기 화합물 E 2.69 g, 18.3 醒 ol)을 다이옥산 (150 mL)에 투입하였다. 2M K3P04(100 mL), Pd(dba)2(0.6 g). 및 PCy3(0.6 g)을 투입한 후, 10시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 2-3을 제조하였다 (7.40 g, 수율 66%, MS:[M+H]+= 613).
Figure imgf000031_0002
C-4 D-4 2-4 상기 화합물 C— 4(7 g, 23.5 mmol) 및 상기 화합물 D-4(13.2 g, 23.5 隨 ol)을 테트라하이드로퓨란 (150 mL)에 투입하였다. 2M K2C03(100 mL). Pd(dba)2(0.6 g), 및 PCy3(0.6 g)을 투입한 후, 5시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 2— 4를 제조하였다 (11.2 g, 수율 73%, MS:[M+H] = 653).
Figure imgf000032_0001
2-5
상기 화합물 C-5(7 g, 24.5 mmol) 및 상기 화합물 D_5(21.3 g, 49.0 隱 ol)을 다이옥산 (150 mL)에 투입하였다. 2M 3P04(100 mL), Pd(dba)2(l.l g), 및 PCy3(l.l g)을 투입한 .후, 10시간 동안 교반 및 환류하였다. 상온으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 2-5를 제조하였다 (12.0 g, 수율 75%, MS:[M+H]+= 653) .
Figure imgf000032_0002
상기 화합물 06(10 g, 24.5 mmol) 및 상기 화합물 D— 6(21.3 g, 49.0 隱 ol)을 자일렌 (150 mL)에 투입하였다. NaOtBu(10 g) 및 Pd(PtBu3)2(0.3 g)을 투입한 후, 10시간 동안 교반 및 환류하였다. 상은으로 식힌 후 여과하여 생성된 고체를 클로로포름과 에탄올로 재결정하여 상기 화합물 2- 6을 제조하였다 (10.3 g, 수율 70%, MS:[M+H]+= 601).
[실시예]
실시예 1
IT0( indium tin oxide)가 1300A의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이 때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으며ᅳ 증류수로는 밀리포어사 (Millipore Co.) 제품의 필터 (Filter)로 2차로 걸러진 증류수를 사용하였다. IT0를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜. 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 상기와 같이 준비된 ITO투명 전극 위에 하기 화합물 HI-A를 600 A의 두께로 진공 증착하여 정공 주입충을 형성하였다. 상기 정공 주입층 위에 하기 화합물 HAT— CN(50A) 및 하기 화합물 HT— A(600A)를 순차적으로 진공 증착하여 정공 수송층을 형성하였다. 이어서, 상기 정공 수송층 위에 막 두께 200 A으로 하기 화합물 BH와 BD를 25:1의 중량비로 진공 증착하여 발광층을 형성하였다. 상기 발광층 위에 앞서 제조한 화합물 1-1을 50 A 두께로 진공 증착하여 전력효율 개선층을 형성하였다. 상기 전력효율 개선층 위에 상기 화합물 2-1과 LiQ(8-hydroxyquinolato lithium) 화합물을 1:1 중량비로 300A의 두께로 계조 개선층을 형성하였다ᅳ 상기 계조 개선층 위에 순차적으로 10A 두께로 리튬 플루라이드 (LiF)와 1,000A 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure imgf000034_0001
상기의 과정에서 유기물의 증착속도는 으 4 ~ 0.9 A/sec를 유지하였고, 음극의 리튬플루오라이드는 0.3 A/sec, 알루미늄은 2 A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1X10—7 내지 5X10 torr를 유지하여, 유기 발광 소자를 제작하였다ᅳ 실시예 2 내지 16
상기 실시예 1과 동일한 방법으로 제조하되 , 상기 화합물 1-1과 상기 화합물 2-1 대신 각각 하기 표 1에 기재된 화합물을 사용하여, 유기 발광 소자를 제조하였다. 비교예 1 내지 4
상기 실시예 1과 동일한 방법으로 제조하되, 상기 화합물 1—1과 상기 화합물 2-1 대신 각각 하기 표 1에 기재된 화합물을 사용하여, 유기 발광 소자를 제조하였다. 하기 표 1에서, ET— 1-A 화합물은 하기와 같다.
Figure imgf000035_0001
ET-1-A 실험예
전술한 방법으로 제조한 유기 발광 소자를 0. 1 mA/cm2 또는 10 mA/cm2 의 전류밀도에서 구동전압과 발광 효율을 측정하였고, 20 mA/cm2의 전류밀도에서 초기 휘도 대비 90%가 되는 시간 (T90)을 측정하였다. 그 결과를 하기 표 1에 나타내었다.
【표 1]
Figure imgf000035_0002
하기 표 2는 앞서 측정한 전류 밀도 0. 1 mA/cm2 및 10 mA/cm2에서의 효율 차이를 비교하여 나타내었다. 【표 2】
Figure imgf000036_0001
0LED 소자는 전류 구동 소자이며, 전류밀도에 따른 휘도 (ni t )가 선형으로 나타난다. 이러한 0LED 소자에서 휘도 (ni t )에 따른 효율의 변화 : 작아야 디스플레이 패널 밝기에 따른 색표현이 고르게 나타나게 된다. 휘도 (ni t )에 따른 효율의 변화가 크게 되면 패널에서의 색이 휘도에 따라 변하게 나타나게 되어 패널 불량의 원인이 된다ᅳ 이러한 문제를 해결하기 위하여 본 발명에서의 계조 개선층 (GEL)과 전력효율 개선충 (PEEL)을 동시에 적용하면 휘도에 따른 효율의 변화가 10% 미만으로 나타나는 동시에 고효율 장수명 소자를 만들 수 있다. 도 3은 실시예 1과 비교예 1에서의 전류에 따른 효율 변화를 나타내는 그래프이다. 도 3에 나타난 바와 같이, 실시예 1은 0. 1 niA/cm2 및 10 mA/cm2에서의 효율 변화가 10% 이내로 작게 나타나며, 비교예 1은 0. 1 mA/cm2 및 10 mA/cm2에서의 효율 변화가 10% 이상 차이가 나타나는 것을 확인할 수 있다. 효율 최대값과 최소값의 차이는 비교예 1에세 60% 이상으로 나타나는 것을 확인할 수 있다. 본 발명에서의 전력효율 개선층과 계조 개선층을 동시에 사용하는 경우 휘도에 따른 디스플레이 패널의 색변화를 최소화할 수 있으며, 또한 수명도 증가하는 것을 확인할 수 있다. 【부호의 설명】
1 : 기판 양극
3: 정공수송층 발광층
5: 전력 효율 개선층 계조 개선 ¾
7: 음극 전자주입층

Claims

【특허청구범위】 【청구항 11 화학식 1로 표시되는 화합물을 포함하고, 상기 계조 개선층은 하기 화학식 2로 표시되는 화합물을 포함하는, 유기 발광 소자:
[화학식 1]
Figure imgf000038_0001
상기 화학식 1에서,
An 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C660 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
L은 각각 독립적으로, 직접 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
A는 각각 독립적으로, 메타 (meta-) 또는 오르쏘 (ortho-) 연결기를 가지는 치환 또는 치환 또는 비치환된 C6-60 아릴렌이고,
B는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, 1은 0 내지 2의 정수이고,
a는 1 또는 2의 정수이고,
b는 1 또는 2의 정수이고,
Figure imgf000039_0001
상기 화학식 2에서,
Ar3 및 Ar4는 각각 독립적으로/치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
P는 각각 독립적으로 , 직접 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
Q는 각각 독립적으로. 파라 (paraᅳ) 연결기를 가지는 치환 또는 치환 또는 비치환된 C6-60 아릴렌이고,
R은 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, p은 0 내지 2의 장수이고,
q는 1 또는 2의 정수이고,
r는 1 또는 2의 정수이다.
【청구항 2】
거 U항에 있어서,
A는 각각 득립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나인,
Figure imgf000039_0002
【청구항 3]
거 U항에 있어서,
A 및 Ar2는 각각 독립적으로, 페닐, 비페닐린, 또는 나프틸인,
Figure imgf000040_0001
상기에서 ,
R4 내지 R6는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로 ; 아미노; 치환 또는 비치환된 d-60 알킬 ; d-60 할로알킬 ; 치환 또는 비치환된 d-60 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C2-60 알케닐기 ; 치환 또는 비치환된 C660 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, X는 CR7R8, NR7, S, 또는 0이고, R7 및 R8은 각각 독립적으로 d-so 알킬, 또는 C6-60 아릴, 또는 CR7R8인 경우 R7 및 ¾가 함께 C6-60 방향족 고리를 형성하고,
k는 0 내지 2의 정수이다.
【청구항 6】
제 1항에 있어서,
Q는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나인,
Figure imgf000041_0001
상기에서,
Y는 CR'^'s, S, 또는 0이고,
R'i 및 R'2은 각각 독립적으로, d-60 알킬, 또는 C6-60 아릴,' 또는 및 R'2가 함께 C6-60 방향족 고리를 형성한다.
【청구항 7]
제 1항에 있어서,
P는 단일 결합, 또는 페닐렌인,
유기 발광 소자.
【청구항 8】
제 1항에 있어서,
R은 하기로 구성되는 군으로부터 선택되는 어느 하나인
Figure imgf000042_0001
상기에서,
내지 Rn는 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로 ; 아미노; 치환 또는 비치환된 d— 60 알킬 ; d-60 할로알킬 ; 치환 또는 비치환된 d-60 할로알콕시; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C2-60 알케닐기; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, X '는 CR12R13 , NR12 , .S , 또는 0이고, R12 및 R13은 각각 독립적으로 d- 60 알킬, 또는 C6-60 아릴, 또는 0½1½인 경우 R12 및 R13가 함께 C6-60 방향족 고리를 형성하고,
s는 0 내지 2의 정수이다.
【청구항 9】
제 1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
유기 발광 소자:
Figure imgf000044_0001
【청구항 10]
저 U항에 있어서,
상기 화학식 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
Figure imgf000045_0001
【청구항 HI
제 1항에 있어서,
상기 유기 발광 소자에 0.1 mA/cm2의 전류 밀도에서 측정한 효율 (Effo. 및 10 mA/cm2 전류 밀도에서 측정한 발광 효율 (Eff10)어 수학식 1을 만족하는, 유기 발광 소자:
[수학식 1]
(Effio - Effo.i) I Effo.i < 0.20
【청구항 12】
제 1항에 있어서,
상기 전력 효율 개선층의 전자이동도가 상기 계조 개선층의 전자이동도보다 큰,
유기 발광 소자.
【청구항 13]
제 1항에 있어서,
상기 전력효율 개선층 및 계조 개선층의 삼증항 에너지가 2.2 eV 이상인,
유기 발광 소자.
PCT/KR2017/011537 2016-10-18 2017-10-18 유기 발광 소자 WO2018074845A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17859336.4A EP3373353B1 (en) 2016-10-18 2017-10-18 Organic light-emitting element
CN201910694364.7A CN110492011B (zh) 2016-10-18 2017-10-18 有机发光器件
JP2018519717A JP6478259B2 (ja) 2016-10-18 2017-10-18 有機発光素子
US15/767,296 US10461259B2 (en) 2016-10-18 2017-10-18 Organic light emitting device
CN201780003783.0A CN108352449B (zh) 2016-10-18 2017-10-18 有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160135296 2016-10-18
KR10-2016-0135296 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018074845A1 true WO2018074845A1 (ko) 2018-04-26

Family

ID=62019564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011537 WO2018074845A1 (ko) 2016-10-18 2017-10-18 유기 발광 소자

Country Status (7)

Country Link
US (1) US10461259B2 (ko)
EP (1) EP3373353B1 (ko)
JP (1) JP6478259B2 (ko)
KR (1) KR101995992B1 (ko)
CN (2) CN110492011B (ko)
TW (1) TWI666204B (ko)
WO (1) WO2018074845A1 (ko)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151733A1 (ko) * 2018-02-02 2019-08-08 주식회사 엘지화학 유기 발광 소자
JP2021143126A (ja) * 2018-04-13 2021-09-24 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器
KR102204548B1 (ko) * 2018-06-08 2021-01-19 주식회사 엘지화학 유기 발광 소자
KR102209934B1 (ko) * 2018-07-24 2021-02-01 주식회사 엘지화학 유기 발광 소자
WO2020050585A1 (ko) * 2018-09-03 2020-03-12 주식회사 엘지화학 유기 발광 소자
CN109273616B (zh) * 2018-09-11 2020-10-09 长春海谱润斯科技有限公司 一种有机发光器件
KR102252291B1 (ko) * 2018-09-21 2021-05-14 주식회사 엘지화학 유기 발광 소자
EP3667753A3 (en) * 2018-12-14 2020-12-23 Novaled GmbH Organic light emitting device and a compound for use therein
US11374177B2 (en) 2019-01-23 2022-06-28 Soulbrain Co., Ltd. Compound and organic light emitting device comprising the same
KR102019923B1 (ko) * 2019-01-23 2019-09-11 솔브레인 주식회사 화합물 및 이를 포함하는 유기 발광 소자
WO2020209310A1 (ja) * 2019-04-08 2020-10-15 出光興産株式会社 有機エレクトロルミネッセンス素子及びそれを備える電子機器
US11634445B2 (en) 2019-05-21 2023-04-25 Universal Display Corporation Organic electroluminescent materials and devices
JP2020189836A (ja) * 2019-05-21 2020-11-26 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
KR20210048735A (ko) * 2019-10-24 2021-05-04 롬엔드하스전자재료코리아유한회사 복수 종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
CN113519073B (zh) * 2019-11-11 2024-03-05 株式会社Lg化学 有机发光器件
KR102500431B1 (ko) * 2019-11-18 2023-02-16 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN114901719B (zh) * 2020-03-27 2024-03-05 株式会社Lg化学 聚合物和包含其的有机发光器件
CN113097400B (zh) * 2021-04-06 2024-05-07 京东方科技集团股份有限公司 一种有机发光二极管结构和显示装置
EP4099412A1 (en) 2021-06-03 2022-12-07 Novaled GmbH An organic electroluminescent device and a compound for use therein
CN115160157A (zh) * 2022-07-27 2022-10-11 京东方科技集团股份有限公司 功能层材料、发光器件、发光基板及发光装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2003012890A2 (de) 2001-07-20 2003-02-13 Novaled Gmbh Lichtemittierendes bauelement mit organischen schichten
JP2012204793A (ja) * 2011-03-28 2012-10-22 Sony Corp 有機電界発光素子および表示装置
KR20160019846A (ko) * 2014-08-12 2016-02-22 주식회사 엘지화학 유기 발광 소자
KR20160039492A (ko) * 2014-10-01 2016-04-11 가톨릭대학교 산학협력단 유기 광전자 소자용 화합물 및 이를 포함하는 유기 광전자 소자
KR20160076010A (ko) * 2014-12-19 2016-06-30 삼성디스플레이 주식회사 유기 발광 소자
KR20160078237A (ko) * 2014-12-24 2016-07-04 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225467B1 (en) 2000-01-21 2001-05-01 Xerox Corporation Electroluminescent (EL) devices
US7169482B2 (en) * 2002-07-26 2007-01-30 Lg.Philips Lcd Co., Ltd. Display device with anthracene and triazine derivatives
US20070176167A1 (en) * 2006-01-27 2007-08-02 General Electric Company Method of making organic light emitting devices
KR20120011445A (ko) * 2010-07-29 2012-02-08 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20120042633A (ko) * 2010-08-27 2012-05-03 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20120052879A (ko) 2010-11-16 2012-05-24 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
WO2014010824A1 (ko) 2012-07-13 2014-01-16 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
KR101499356B1 (ko) * 2013-06-28 2015-03-05 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
KR101742359B1 (ko) 2013-12-27 2017-05-31 주식회사 두산 유기 전계 발광 소자
KR20150093440A (ko) 2014-02-07 2015-08-18 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR101537500B1 (ko) 2014-04-04 2015-07-20 주식회사 엘지화학 유기 발광 소자
JP6890975B2 (ja) * 2014-05-05 2021-06-18 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子のための材料
KR102273047B1 (ko) * 2014-06-30 2021-07-06 삼성디스플레이 주식회사 유기 발광 소자
KR102417121B1 (ko) 2014-10-17 2022-07-06 삼성디스플레이 주식회사 유기 발광 소자
KR101818581B1 (ko) * 2014-10-31 2018-01-15 삼성에스디아이 주식회사 유기 광전자 소자 및 표시 장치
KR101670906B1 (ko) 2014-10-31 2016-10-31 (주)더블유에스 포스포릴기가 결합된 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
KR20160060569A (ko) 2014-11-20 2016-05-30 롬엔드하스전자재료코리아유한회사 복수종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
CN105968062B (zh) * 2016-07-25 2019-04-30 上海道亦化工科技有限公司 含有1,2,4-三嗪基团的化合物及其有机电致发光器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2003012890A2 (de) 2001-07-20 2003-02-13 Novaled Gmbh Lichtemittierendes bauelement mit organischen schichten
JP2012204793A (ja) * 2011-03-28 2012-10-22 Sony Corp 有機電界発光素子および表示装置
KR20160019846A (ko) * 2014-08-12 2016-02-22 주식회사 엘지화학 유기 발광 소자
KR20160039492A (ko) * 2014-10-01 2016-04-11 가톨릭대학교 산학협력단 유기 광전자 소자용 화합물 및 이를 포함하는 유기 광전자 소자
KR20160076010A (ko) * 2014-12-19 2016-06-30 삼성디스플레이 주식회사 유기 발광 소자
KR20160078237A (ko) * 2014-12-24 2016-07-04 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3373353A4

Also Published As

Publication number Publication date
JP2018536281A (ja) 2018-12-06
CN110492011B (zh) 2022-03-22
EP3373353A4 (en) 2019-01-02
CN110492011A (zh) 2019-11-22
KR101995992B1 (ko) 2019-07-03
CN108352449A (zh) 2018-07-31
US10461259B2 (en) 2019-10-29
JP6478259B2 (ja) 2019-03-06
TWI666204B (zh) 2019-07-21
KR20180042818A (ko) 2018-04-26
US20190067591A1 (en) 2019-02-28
EP3373353A1 (en) 2018-09-12
EP3373353B1 (en) 2021-12-01
TW201815769A (zh) 2018-05-01
CN108352449B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2018074845A1 (ko) 유기 발광 소자
KR101978453B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
JP2019525463A (ja) 有機発光素子
KR102494473B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
JP2020510652A (ja) 新規な化合物およびこれを用いた有機発光素子
KR102078301B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018216887A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
JP7124260B2 (ja) 有機金属化合物およびこれを含む有機発光素子
KR102069310B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20190027708A (ko) 신규한 페난트렌 화합물 및 이를 이용한 유기발광 소자
WO2018135798A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR102032954B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
KR20200020582A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR101876678B1 (ko) 카바졸계 화합물 및 이를 포함하는 유기 발광 소자
KR20190122547A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102486518B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102583027B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102474920B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR101951378B1 (ko) 아민계 화합물 및 이를 포함하는 유기 발광 소자
KR20200011733A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102663116B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102511933B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20190096228A (ko) 유기 발광 소자
KR102663117B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102680021B1 (ko) 신규한 화합물 및 이를 포함한 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018519717

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE