WO2018074075A1 - フィラメント3次元結合体 - Google Patents

フィラメント3次元結合体 Download PDF

Info

Publication number
WO2018074075A1
WO2018074075A1 PCT/JP2017/031231 JP2017031231W WO2018074075A1 WO 2018074075 A1 WO2018074075 A1 WO 2018074075A1 JP 2017031231 W JP2017031231 W JP 2017031231W WO 2018074075 A1 WO2018074075 A1 WO 2018074075A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
loop structure
structure layer
dimensional
honeycomb
Prior art date
Application number
PCT/JP2017/031231
Other languages
English (en)
French (fr)
Inventor
水野 晃
昌和 小島
Original Assignee
株式会社エアウィーヴ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エアウィーヴ filed Critical 株式会社エアウィーヴ
Priority to JP2018546180A priority Critical patent/JP6644161B2/ja
Publication of WO2018074075A1 publication Critical patent/WO2018074075A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/07Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments otherwise than in a plane, e.g. in a tubular way
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to a filament three-dimensional joined body that can be used for forming a mattress or the like.
  • Patent Document 1 discloses a method for producing such a filament three-dimensional bonded body.
  • a plurality of molten filaments are formed by extruding a molten thermoplastic resin vertically downward from a plurality of nozzles arranged horizontally. Furthermore, by dropping the molten filament group into the cooling water, a loop is formed using the buoyancy of water, and a plurality of molten filaments formed in a loop are fused and bonded three-dimensionally to produce a three-dimensional filament combination. Is done.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a three-dimensional filament bonded body in which the filaments are not easily broken at the central portion in the thickness direction even when a local load or the like is applied.
  • the filament three-dimensional bonded body according to the present invention is a filament three-dimensional bonded body in which a plurality of filaments are three-dimensionally fusion bonded, and has a configuration in which a honeycomb loop structure layer is formed in a region including a central portion in the thickness direction. To do. According to this configuration, even when a local load or the like is applied, it is possible to make it difficult for the filaments to be disconnected at the central portion in the thickness direction.
  • the “honeycomb loop structure layer” is a layer in which a multilayer multi-row honeycomb loop structure is mainly formed.
  • a random loop structure layer and a honeycomb loop structure layer may be formed in order from the end in the thickness direction toward the center. According to this configuration, it is difficult to cut the filaments in the central portion in the thickness direction, and it is easy to obtain a soft sleeping comfort.
  • the “random loop structure layer” is a layer in which a random loop structure is mainly formed.
  • a high-density layer having a filament density higher than that of the random loop structure layer and the honeycomb loop structure layer may be formed on the end side in the thickness direction of the random loop structure layer.
  • the surface layer that is the high-density layer, the random loop structure layer, and the honeycomb loop structure layer are formed adjacently in order from the both ends in the thickness direction toward the center. It is good also as a structure.
  • the configuration described above may be configured such that the number density of filaments in the random loop structure layer is larger than the number density of filaments in the honeycomb loop structure layer. According to this configuration, in the random loop structure layer located on the surface side of the honeycomb loop structure layer, it is possible to suppress the filament bonding point density from becoming extremely low.
  • the diameter of the filament of the random loop structure layer may be smaller than the diameter of the filament of the honeycomb loop structure layer. According to this configuration, it is possible to prevent the filament density from becoming excessively high in the random loop structure layer and to prevent the sleeping comfort from becoming stiff.
  • the three-dimensional filament bonded body according to the present invention even when a local load or the like is applied, it is possible to make it difficult to break the filament bond at the central portion in the thickness direction.
  • FIG. 2 is an A-A ′ sectional view of the manufacturing apparatus 1 shown in FIG. 1. It is a schematic block diagram of the thickness control part 22 vicinity shown in FIG. It is a top view of the nozzle part 17 shown in FIG. It is explanatory drawing regarding the relationship between the diameter of a molten filament, and a loop diameter. It is explanatory drawing regarding the relationship between the temperature (or viscosity) of a molten filament, and a loop diameter. It is explanatory drawing regarding the relationship between take-off speed ratio and loop pitch. It is explanatory drawing regarding the difference of a random loop structure and a honeycomb loop structure.
  • FIG. 2 is a schematic diagram conceptually showing a multilayer multi-row honeycomb loop structure.
  • 1 is a schematic cross-sectional view of a filament three-dimensional bonded body 100 of the present embodiment.
  • 2 is a photograph of a cross section of an example of a filament three-dimensional bonded body 100.
  • 4 is a photograph of a honeycomb loop structure portion cut out and photographed for one example of a filament three-dimensional bonded body 100.
  • FIG. It is the photograph which cut out and image
  • FIG. It is a top view of the nozzle part 117 which concerns on other embodiment. It is explanatory drawing regarding the case where a local load is received in a thick filament three-dimensional coupling body.
  • FIG. 1 is a schematic configuration diagram of the manufacturing apparatus 1.
  • 2 is a cross-sectional view taken along the line AA ′ of the manufacturing apparatus 1 shown in FIG. 1
  • FIG. 3 is a schematic configuration diagram in the vicinity of the thickness regulating portion 22 shown in FIG.
  • the manufacturing apparatus 1 is configured by cooling and solidifying the molten filament supply device 10 that discharges the molten filament group 2 composed of a plurality of molten filaments in the vertical direction and the plurality of molten filaments in a three-dimensional fusion bond.
  • a three-dimensional joined body forming apparatus 20 is provided that forms a three-dimensional filament joined body in which molten filaments are three-dimensionally fused and joined.
  • the molten filament supply device 10 includes a pressure melting unit 11 (extruder) and a die 12.
  • the pressure melting unit 11 includes a material charging unit 13 (hopper), a screw 14, a screw motor 15, a screw heater 16, and a plurality of temperature sensors (not shown).
  • a cylinder 11a for conveying the thermoplastic resin supplied from the material charging unit 13 while heating and melting is formed inside the pressure melting unit 11, and a screw 14 is rotatably accommodated therein.
  • a filament discharge portion 11b for discharging the thermoplastic resin toward the die 12 is formed at the downstream end portion of the cylinder 11a.
  • the die 12 includes a nozzle portion 17 having a plurality of nozzle holes, a plurality of die heaters 18a to 18f, and a plurality of temperature sensors (not shown). Inside the die 12, a guide channel 12 a that guides the molten thermoplastic resin discharged from the filament discharge portion 11 b of the heating and melting portion 11 to the nozzle portion 17 is formed.
  • the three-dimensional joined body forming apparatus 20 is an apparatus for forming a filament three-dimensional joined body by performing fusion bonding and cooling solidification of the molten filament group 2 supplied from the molten filament supply apparatus 10.
  • the three-dimensional joined body forming apparatus 20 includes a cooling water tank 21 that stores cooling water for cooling the molten filament group 2, a thickness regulating unit 22 that forms a three-dimensional coupling while regulating the thickness of the molten filament group 2, a conveyor unit 24, And a plurality of conveying rollers 25a to 25h.
  • the thickness restricting portion 22 is composed of a pair of receiving plates 22a and 22b formed of a metal plate, and they are arranged to face each other with a predetermined gap therebetween.
  • the pair of receiving plates 22a and 22b are arranged substantially symmetrically with respect to a symmetry plane (the normal direction coincides with the front-rear direction) located between them.
  • the receiving plates 22a and 22b respectively have inclined surfaces 22a1 and 22b1 that are downwardly inclined so as to approach the symmetry plane, and vertical surfaces 22a2 and 22b2 that extend vertically downward from their lower ends.
  • Each joint point (joint line extending in the left-right direction) of the inclined surfaces 22a1, 22b1 and the vertical surfaces 22a2, 22b2 is disposed so as to substantially coincide with the water surface of the cooling water stored in the cooling water tank 21.
  • a water supply port (not shown) is provided upstream of the inclined surfaces 22a1 and 22b1, and a water film is formed on the surfaces of the inclined surfaces 22a1 and 22b1.
  • the molten filaments in the vicinity of both end portions in the thickness direction of the molten filament group are received by the inclined surfaces 22a1, 22b1, and then guided between the vertical surfaces 22a2, 22b2 so as to slide on the inclined surfaces. Is cooled and solidified to form a high-density surface layer (surface layer at the end in the thickness direction of the filament three-dimensional bonded body) at the same time as fusion bonding.
  • the conveyor unit 24 is composed of a pair of transport conveyors 24a and 24b (a pair of slat conveyors), and in the front-rear direction with a gap corresponding to the thickness of the filament three-dimensional combination body below the pair of receiving plates 22a and 22b. It arrange
  • the conveyors 24a and 24b drive the filament three-dimensional combination 3 that has been sent from the thickness regulating portion 22 to the gap to be conveyed downward.
  • the driving speed of the conveyors 24a and 24b (conveying speed of the filament three-dimensional combination) is set to a speed slower than the falling speed of the molten filament because a loop of the molten filament is not formed when the falling speed of the molten filament is equal to or higher than that.
  • the repulsive force is determined according to the specifications of the mattress, cushion, etc. in which the filament three-dimensional combination is used, but is usually set to about 5 to 20% with respect to the falling speed of the molten filament.
  • the specific form of the transport conveyors 24a and 24b is not particularly limited as long as the transport surface is a smooth transport member, and a conveyor using a metal mesh belt or a plastic modular chain may be used.
  • the conveying conveyors 24a and 24b are preferably provided in accordance with the outer peripheral shape of the filament three-dimensional combination so as to be in contact with the entire outer peripheral surface parallel to the conveying direction of the filament three-dimensional combination.
  • the transport conveyors 24a and 24b are not brought into contact with both ends (corresponding to the side walls of the mattress) of the filament three-dimensional combination. You may make it convey only near the central part with uniform thickness.
  • a plurality of transport rollers 25a to 25h for transporting the filament three-dimensional combined body to the outside of the cooling water tank 21 are provided on the downstream side in the transport direction of the transport conveyors 24a and 24b.
  • the thickness regulating section 22, the conveyor section 24, and the plurality of transport rollers 25a to 25h are driven by a drive motor and a drive gear (not shown) to transport the molten filament group 2 or the filament three-dimensional joined body 3.
  • the driving speed can be adjusted by a predetermined operation or the like, and the conveyance speed (take-off speed) of the filament three-dimensional bonded body can be adjusted.
  • the filament three-dimensional bonded body 3 is sufficiently cooled by cooling water, conveyed to the outside of the cooling water tank 21, and cut at an appropriate length, whereby the filament three-dimensional bonded body 3 used for manufacturing a mattress or the like is used. 100 (see FIG. 11 etc.) is obtained.
  • the length direction of the filament three-dimensional combination (3, 100) corresponds to the conveyance direction of the filament three-dimensional combination by the conveyance conveyors 24a, 24b or the like (up and down direction when passing through the thickness regulating portion 22).
  • the thickness direction corresponds to the direction in which each of the pair of thickness regulating portions 22 is opposed (the front-rear direction when passing through the thickness regulating portion 22), and the width direction is the direction orthogonal to the length direction and the thickness direction (thickness regulating). Corresponding to the right and left direction when passing through the section 22.
  • FIG. 4 is a plan view (viewed from below) of the nozzle portion 17 shown in FIG.
  • the nozzle portion 17 is a substantially rectangular parallelepiped metal thick plate in which a plurality of nozzles (circular opening portions) 17a are formed, and is provided at the lower portion of the die 12 corresponding to the most downstream portion of the guide channel 12a.
  • the nozzles 17a in the present embodiment are circular openings having a nozzle diameter of 1 mm, and are arranged in a staggered manner with a nozzle pitch of 10 mm. That is, the distance between the adjacent nozzles 17a is 10 mm, and six other nozzles 17a (10 mm apart from the one nozzle 17a, respectively) around the one nozzle 17a excluding the one disposed on the end side. Each nozzle 17a is arranged so that there is a position shifted by 60 ° about the one nozzle 17a. By arranging the nozzles 17a in a staggered manner in this way, a multilayer multi-row honeycomb loop structure described later can be easily formed.
  • the nozzle diameter, nozzle pitch, nozzle shape, and nozzle arrangement can be adjusted as appropriate based on the specifications of the repulsive force and compression height ratio of the filament three-dimensional combination.
  • thermoplastic resin examples include polyolefin resins such as polyethylene and polypropylene, polyester resins, polyamide resins, polyvinyl chloride resins and polystyrene resins, and styrene.
  • Thermoplastic elastomers such as a series elastomer, a vinyl chloride elastomer, an olefin elastomer, a urethane elastomer, a polyester elastomer, a nitrile elastomer, a polyamide elastomer, and a fluorine elastomer can be used.
  • thermoplastic resin supplied from the material input unit 13 is heated and melted in the cylinder 11a, and then supplied as a molten thermoplastic resin from the filament discharge unit 11b to the guide passage 12a of the die 12.
  • the molten thermoplastic resin is discharged from the plurality of nozzles 17a in the nozzle portion 17 toward the three-dimensional joined body forming apparatus 20 as a molten filament group 2 composed of a plurality of molten filaments.
  • Each filament of resin that constitutes a filament three-dimensional combination forms a loop structure such as a random loop structure or a honeycomb loop structure, and the formation is related to the manufacturing conditions of the filament three-dimensional combination. Yes. Hereinafter, formation of these loop structures will be described in detail.
  • a loop (hereinafter referred to as a “filament loop”) that spreads in the horizontal direction by dropping the molten filament from each nozzle (corresponding to each nozzle 17a of the present embodiment) into the cooling water. Is formed by the buoyancy of water.
  • the spread of the filament loop (loop diameter, which is the diameter of the loop) is larger than the distance between adjacent nozzles (nozzle pitch).
  • melt filament with a large loop diameter not only a melt filament discharged from an adjacent nozzle but also a melt filament discharged from a non-adjacent nozzle (a nozzle at a distance) is fusion-bonded, A random loop structure (details will become clear from the following description) found in a general filament three-dimensional combination is formed.
  • FIG. 5 is a schematic diagram conceptually showing the relationship between the diameter of the molten filament and the loop diameter
  • FIG. 6 is a schematic diagram conceptually showing the relationship between the temperature and viscosity of the molten filament and the loop diameter.
  • A1 is a filament loop formed when the diameter of the molten filament is 0.8 mm
  • A2 is a filament loop formed when the diameter of the molten filament is 1.2 mm
  • A3 is a filament loop.
  • the filament loops formed when the diameter is 2 mm are conceptually shown.
  • B1 is a filament loop formed when the temperature of the molten filament is relatively high (when the viscosity is relatively low), and B2 is a case where the temperature of the molten filament is lower than that of B1 (the viscosity is low).
  • B3 conceptually shows a filament loop formed when the temperature of the molten filament is lower (when the viscosity is high) than B2.
  • the average loop diameter is adjusted by the flexibility when the molten filament is poured into the cooling water (the heating temperature of the molten filament is adjusted). It can be adjusted by changing the parameters of melt viscosity or melt filament thickness (melt filament diameter adjusted by the diameter of the nozzle opening).
  • the loop diameter of the molten filament can be reduced, and when the diameter of the molten filament is increased, the loop diameter of the molten filament can be increased. Conversely, the melt viscosity of the filament can be increased to increase the loop diameter, or the melt filament diameter can be decreased to reduce the loop diameter.
  • FIG. 7 is a schematic diagram conceptually showing the relationship between the take-up speed ratio and the loop pitch.
  • “Loop pitch” is the distance traveled during one rotation of the loop of the molten filament
  • C1 is a filament loop formed when the take-up speed ratio is 20%
  • C2 is a filament loop formed when the take-up speed ratio is 15%
  • C3 is a take-up speed ratio.
  • the filament loop formed when 10% is conceptually shown
  • C4 conceptually shows the filament loop formed when the take-off speed ratio is 5%.
  • the loop pitch is approximately proportional to the take-up speed ratio, and the smaller the take-up speed ratio, the smaller the loop pitch.
  • the take-off speed ratio becomes smaller than a certain value, a loop diameter and a loop pitch that are remarkably smaller than the loop diameter and the loop pitch estimated by the proportional relationship are formed, and at the same time, a cylindrical filament loop is formed.
  • Applicants have found that a honeycomb loop structure laminated in parallel is formed.
  • FIG. 8 is a top view conceptually showing the difference between the random loop structure and the honeycomb loop structure
  • FIG. 9 is a side view conceptually showing the difference between the random loop structure and the honeycomb loop structure.
  • 8A and 9A show a random loop structure
  • FIGS. 8B and 9B show a honeycomb loop structure.
  • the formation mechanism of the honeycomb loop structure is as follows.
  • a cylindrical wall (actually a high porosity) is formed to suppress the spread of the adjacent melt filament loop, and the loop diameter becomes small.
  • the loop diameter is reduced, the molten filament, which is restricted from spreading in the horizontal direction, forms a loop within a limited loop diameter, thereby reducing the loop pitch.
  • the loop diameter decreases until the loop diameter of the plurality of molten filaments becomes substantially equal to the nozzle pitch, and as a result, it is estimated that a honeycomb loop structure with a uniform loop shape is formed.
  • the loop diameter of the random loop structure is larger than the nozzle pitch, but the loop diameter of the honeycomb loop structure is substantially equal to the nozzle pitch.
  • the loop diameter is increased again due to some trigger, and the loop pitch is increased accordingly, and the random loop structure is easily returned.
  • the shape of the filament loop tends to be a random loop structure, so that the honeycomb loop structure is difficult to form.
  • the random loop structure a region where the filament density is significantly reduced locally or the filament bonding point density is extremely low may be formed.
  • the high-density surface layer by increasing the filament density and filament bonding point density of the surface layer, it is possible to compensate for the disadvantages of such a random loop structure and at the same time provide a soft sleeping comfort by increasing the loop diameter. It is possible to take advantage of the random loop structure.
  • FIG. 10 is a schematic diagram conceptually showing a multilayer multi-row honeycomb loop structure.
  • a honeycomb loop structure is preferentially formed by further reducing the take-up speed ratio or by further increasing the heating temperature of the molten filament to lower the melt viscosity. Under the condition that the honeycomb loop structure is preferentially formed, a multilayer multi-row honeycomb loop structure is formed. If the temperature of the molten filament is too high (melt viscosity is too small), a small loop having a loop diameter less than the nozzle pitch is formed, and thus it becomes difficult to form a honeycomb loop structure.
  • the “multilayered multi-row honeycomb loop structure” indicates a structure in which cylindrical filament loops (honeycomb loop structures) having a loop diameter substantially equal to the nozzle pitch are laminated in three or more rows and three filaments 3
  • the number of loops arranged continuously in the thickness direction of the three-dimensional combination is defined as a layer, and the number of loops consecutively arranged in the width direction of the three-dimensional combination of filaments is defined as a column.
  • the number of laminated layers is not particularly limited, but is usually limited by the thickness of the filament three-dimensional combination and is 20 layers or less.
  • a filament three-dimensional combination in which a high-density surface layer is formed multiple layers are arranged near both ends in the thickness direction of the filament three-dimensional combination in which a high-density surface layer is formed (specifically, within 2 cm from the end).
  • the honeycomb loop structure does not need to be formed, and may be formed at the central portion in the thickness direction of the filament three-dimensional joined body.
  • multilayer multi-row honeycomb loop structure a form that is continuously formed (a multi-layer multi-row honeycomb loop structure continues from end to end in the length direction of the filament three-dimensional joined body) or intermittently And the like are formed (a multilayer multi-row honeycomb loop structure and a random loop structure are alternately formed in the length direction of the filament three-dimensional bonded body).
  • the multilayer multi-row honeycomb loop structure becomes easier to form as the take-off speed ratio is smaller. Therefore, in order to stably form a multilayer multi-row honeycomb loop structure, a desired repulsive force (filament) is obtained after temporarily reducing the take-off speed ratio to stably form the multilayer multi-row honeycomb loop structure.
  • a method of gradually increasing the take-up speed ratio until the take-up speed ratio at which (density) is obtained is preferable. As a result, a multilayer multi-row honeycomb loop structure can be formed more stably than when production is started without changing the take-off speed ratio.
  • the drop speed required for calculating the take-off speed ratio can be determined by spraying a colorant (preferably pigment powder) on the falling molten filament and directly measuring the speed. Uses a glass rod coated with colorant powder, and after attaching the colorant to the molten filament falling from the nozzle, the colorant is again attached to the molten filament after 10 seconds and discharged in 10 seconds. The falling speed of the molten filament per second was calculated from the length of the molten filament.
  • a colorant preferably pigment powder
  • FIG. 11 is a schematic cross-sectional view of a filament three-dimensional combined body 100 according to the present embodiment.
  • the filament three-dimensional bonded body 100 can be manufactured by the manufacturing apparatus 1 described above.
  • FIG. 12 is a photograph of a cross section of an example of the filament three-dimensional bonded body 100.
  • FIG. 13A is a photograph taken by cutting out a portion of the honeycomb loop structure (honeycomb loop structure layer 100c) in the filament three-dimensional joined body.
  • FIG. 13B is a photograph taken by cutting out a portion of the random loop structure (random loop structure layer 100b) in the filament three-dimensional combination.
  • the filament three-dimensional combination 100 is formed on the both sides of the thickness direction in the thickness direction, and the high density surface layer 100a having relatively high filament density formed on both ends in the thickness direction and adjacent to the high density surface layer 100a. It has a random loop structure layer 100b and a honeycomb loop structure layer 100c formed on the central side in the thickness direction adjacent to the random loop structure layer 100b.
  • the high-density surface layer 100a, the random loop structure layer 100b, and the honeycomb loop structure layer 100c are formed adjacently in order from the both ends in the thickness direction toward the center.
  • the thickness (dimension in the thickness direction) of the filament three-dimensional bonded body 100 is not particularly limited, but is, for example, 5 cm to 30 cm.
  • the present invention is particularly useful in such a thick filament three-dimensional combination.
  • the thickness of the honeycomb loop structure layer 100c is set to about 1 ⁇ 2 of the thickness of the filament three-dimensional combination 100, and the thickness of the random loop structure layer 100b on both sides thereof is set to the filament three-dimensional combination 100, respectively. It can be set to about 1/4 of the thickness.
  • the high-density surface layer 100a is formed using the inclined surfaces 22a1 and 22b1. That is, the molten filament discharged from the nozzle 17a in the vicinity of both ends in the front-rear direction (melted filament in the vicinity of both ends in the thickness direction of the molten filament group 2) is received by the inclined surfaces 22a1 and 22b1, and is closer to the center in the thickness direction. Since it is led between the vertical surfaces 22a2 and 22b2, the molten filaments at both ends are densified. This portion is cooled and solidified by the cooling water in the cooling water tank 21, thereby forming a high-density surface layer 100a having a high density.
  • the high-density surface layer 100a has a filament density higher than that of the random loop structure layer 100b and the honeycomb loop structure layer 100c, and by forming such a layer on the surface, deformation of the filament three-dimensional bonded body 100 is prevented as much as possible. It can be suppressed.
  • the random loop structure layer 100b is a region (layer) in which the random loop structure is mainly formed, and is a cross section (including a thickness direction and a width direction of the filament three-dimensional combination) in which the transport direction during manufacture is a normal direction. Yes, hereinafter referred to as “horizontal section”), this is an area where a plurality of filament loops having a loop diameter substantially equal to the nozzle pitch are not formed adjacent to each other.
  • the honeycomb loop structure layer 100c is a region (layer) in which a multilayer multi-row honeycomb loop structure is mainly formed, and a plurality of filament loops having a loop diameter substantially equal to the nozzle pitch are formed adjacent to each other in a horizontal section. It is an area.
  • a method for discriminating the multilayer multi-row honeycomb loop structure there is a method of discriminating whether or not a filament loop having a loop diameter substantially equal to the nozzle pitch is formed in the horizontal section.
  • the occupation area ratio for sufficiently obtaining this effect is preferably 50% or more and 100% or less, and more preferably 80% or more and 100% or less.
  • the occupied area ratio of the multilayer multi-row honeycomb loop structure is about 80%, and there is no occurrence of a portion where the bonding point density is extremely small, and the stable filament density And the junction density is obtained.
  • the filament three-dimensional bonded body 100 is obtained by three-dimensionally fusing and bonding a plurality of filaments, and the honeycomb loop structure layer 100c is formed in a region including the central portion in the thickness direction. Has been. Therefore, even when a local load as shown in FIG. 15 is applied, the filaments are less likely to be disconnected at the central portion in the thickness direction than when the central portion in the thickness direction is formed with a random loop structure.
  • the random loop structure layer 100b and the honeycomb loop structure layer 100c are formed in order from the thickness direction end portion side to the center portion side. For this reason, the filaments are hardly broken at the central portion in the thickness direction, and a soft sleeping feeling by the random loop structure layer 100b can be obtained. Even if the random loop structure layer 100b is not formed, there is no change in the effect that the filaments are not easily broken by the honeycomb loop structure layer 100c.
  • the manufacturing conditions such as the honeycomb loop structure is formed in the central portion in the thickness direction of the filament three-dimensional bonded body (the above-described take-up speed ratio). Etc.) may be adjusted to form a three-dimensional filament combination.
  • the honeycomb loop structure layer 100c is formed at the center in the thickness direction, and the high density surface layers 100a are formed at both ends in the thickness direction by the action of the inclined surfaces 22a1 and 22b1.
  • the shape of the filament loop tends to be a random loop structure in the vicinity of the surface layer in the thickness direction.
  • a random loop structure layer 100b is formed between 100a.
  • a honeycomb loop structure layer is easily formed near the center in the thickness direction, and a random loop structure layer is easily formed near both ends in the thickness direction. You may make it change part of manufacturing conditions positively by the center part vicinity and both end part vicinity.
  • the random structure layer is formed so that the nozzle diameter corresponding to the vicinity of both ends in the thickness direction is relatively increased without changing the nozzle pitch, and the loop diameter in the vicinity of both ends in the thickness direction is increased. You may make it easy to form.
  • Nozzle Part According to Other Embodiments
  • the nozzle part 17 of the manufacturing apparatus 1 by changing the size of the nozzle 17a, the nozzle pitch, etc., it is possible to adjust the characteristics of each filament constituting the filament three-dimensional combination.
  • a nozzle portion 117 shown in FIG. 14 (plan view) will be described.
  • the nozzle part 117 is a substantially rectangular parallelepiped metal thick plate in which a plurality of nozzles 117a (circular openings) are formed, and is provided in the lower part of the die 12 corresponding to the most downstream part of the guide channel 12a.
  • a large diameter nozzle group 117a1 having a relatively large nozzle diameter and nozzle pitch
  • a small diameter nozzle group 117a2, 117a3 having a relatively small nozzle diameter and nozzle pitch.
  • the large-diameter nozzle group 117a1 is near the center in the thickness direction (mainly the region where the honeycomb loop structure layer is formed), and the small-diameter nozzle groups 17a2 and 17a3 are near the both ends in the thickness direction (mainly the random loop structure layer is formed).
  • Area In the large diameter nozzle group 117a, the nozzle diameter is set to 1.5 mm and the nozzle pitch is set to 15 mm.
  • the small diameter nozzle groups 17a2 and 17a3 the nozzle diameter is set to 1 mm and the nozzle pitch is set to 10 mm. .
  • the high-density surface layer 100a, the random loop structure layer 100b, and the honeycomb loop structure layer 100c are sequentially adjacent from the both ends in the thickness direction toward the center portion.
  • the filament three-dimensional combination body 100 (see FIG. 11) formed in this way is still obtained. Therefore, it is possible to enjoy the respective effects provided by providing these layers (100a to 100c).
  • the filament density (the number of filaments per unit volume) of the random loop structure layer 100b is set to be honeycomb. It becomes larger than the number density of filaments of the loop structure layer 100c. Therefore, it is possible to suppress the filament bonding point density from becoming extremely low in the vicinity of the high-density surface layer 100a where the random loop structure layer 100b is located.
  • the filament diameter of the random loop structure layer 100b is equal to the diameter of the filament of the honeycomb loop structure layer 100c. Smaller. Therefore, it is possible to prevent the filament density from becoming too high in the vicinity of the high-density surface layer 100a where the random loop structure layer 100b is located, and to prevent the sleeping comfort from becoming hard.
  • the present invention can be used for a filament three-dimensional combination used in, for example, a mattress, a pillow, or a cushion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

複数のフィラメント同士が立体的に融着結合したフィラメント3次元結合体であって、厚み方向中央部を含む領域にハニカムループ構造層が形成されたフィラメント3次元結合体とする。これにより、局所的荷重等が加わった際にも、厚み方向中央部においてフィラメントの結合が切れ難いフィラメント3次元結合体が提供可能となる。

Description

フィラメント3次元結合体
 本発明は、マットレス等の形成に利用可能なフィラメント3次元結合体に関する。
 熱可塑性樹脂からなるフィラメントどうしを3次元的に融着結合させて得られるフィラメント3次元結合体を、クッション材として用いた高反発マットレスが注目されてきている。例えば特許文献1には、このようなフィラメント3次元結合体の製造方法が開示されている。
 特許文献1に開示された方法によれば、水平に配置された複数のノズルから溶融状態の熱可塑性樹脂を鉛直方向下向きに押し出すことにより、複数の溶融フィラメントが形成される。更にその溶融フィラメント群を冷却水中に落下させることにより、水の浮力を用いてループを形成し、ループ形成した複数の溶融フィラメントどうしを3次元的に融着結合させてフィラメント3次元結合体が製造される。
特開2010-154965号公報
 しかしながら、特許文献1に開示された製造方法でフィラメント3次元結合体を製造する場合、フィラメント3次元結合体の厚み方向両端部においては、フィラメント密度(単位体積あたりのフィラメントの重さ)とフィラメント結合点密度(単位体積当たりのフィラメントどうしの結合点の数)が大きい平滑な高密度表面層が形成される一方で、フィラメント3次元結合体の厚み方向中央部においては、複数の溶融フィラメントがランダムなループを形成しながら融着結合するため、フィラメントの形状や密度が一定でない結合構造(ランダムループ構造)が形成される。ランダムループ構造においては、そのランダムさによって、ごくわずかな確率で、フィラメント結合点密度が極端に低くなる領域が形成されることがある。
 特に、厚み方向両端部に高密度表面層を有する厚みが5cm以上の厚手のフィラメント3次元結合体において局所的な荷重を受けた場合、図15に例示するように、厚み方向両端部にあるフィラメント密度(およびフィラメント結合点密度)の高い高密度表面層の近傍では、フィラメントの伸びが抑制される一方で、厚み方向中央部付近(両端から2cm以上中央部よりの箇所)においては、フィラメントは水平方向に伸ばされ易い。その際、この厚み方向中央部において、フィラメント結合点密度が極端に低くなる領域が存在すれると、フィラメントどうしの融着結合が切れて、その部分の反発力が低下するといった課題があった。
 本発明は上記課題に鑑み、局所的荷重等が加わった際にも、厚み方向中央部においてフィラメントの結合が切れ難いフィラメント3次元結合体の提供を目的とする。
 本発明に係るフィラメント3次元結合体は、複数のフィラメント同士が立体的に融着結合したフィラメント3次元結合体であって、厚み方向中央部を含む領域にハニカムループ構造層が形成された構成とする。本構成によれば、局所的荷重等が加わった際にも、厚み方向中央部においてフィラメントの結合を切れ難くすることが可能となる。なお「ハニカムループ構造層」は、多層多列ハニカムループ構造が主として形成される層である。
 また上記構成としてより具体的には、ランダムループ構造層とハニカムループ構造層とが、厚み方向端部側から中央部側に向けて順に形成された構成としてもよい。本構成によれば、厚み方向中央部においてフィラメントの結合を切れ難くするとともに、軟らかい寝心地を得ることが容易となる。なお「ランダムループ構造層」は、ランダムループ構造が主として形成される層である。
 また上記構成において、前記ランダムループ構造層および前記ハニカムループ構造層よりもフィラメント密度の高い高密度層が、前記ランダムループ構造層よりも厚み方向端部側に形成された構成としてもよい。本構成によれば、ランダムループ構造層やハニカムループ構造層よりも表面側に高密度層を形成し、フィラメント3次元結合体の型崩れ等を極力抑えることが可能となる。また上記構成としてより具体的には、前記高密度層である表面層、前記ランダムループ構造層、および前記ハニカムループ構造層が、厚み方向両端部から中央部へ向けて順に隣接して形成された構成としてもよい。
 また上記構成としてより具体的には、前記ランダムループ構造層のフィラメントの本数密度が、前記ハニカムループ構造層のフィラメントの本数密度より大きい構成としてもよい。本構成によれば、ハニカムループ構造層より表面側に位置するランダムループ構造層において、フィラメント結合点密度が極端に低くなることを抑えることができる。
 また当該構成としてより具体的には、前記ランダムループ構造層のフィラメントの直径が、前記ハニカムループ構造層のフィラメントの直径より小さい構成としてもよい。本構成によれば、ランダムループ構造層においてフィラメント密度が高くなり過ぎないようにし、寝心地が硬くなるのを抑えることが可能となる。
 本発明に係るフィラメント3次元結合体によれば、局所的荷重等が加わった際にも、厚み方向中央部においてフィラメントの結合を切れ難くすることが可能となる。
本実施形態に係る製造装置1の概略的な構成図である。 図1に示す製造装置1のA-A’断面矢視図である。 図1に示す厚み規制部22近傍の概略的な構成図である。 図1に示すノズル部17の平面図である。 溶融フィラメントの直径とループ径との関係に関する説明図である。 溶融フィラメントの温度(または粘度)とループ径との関係に関する説明図である。 引取り速度比とループピッチとの関係に関する説明図である。 ランダムループ構造とハニカムループ構造の違いに関する説明図である。 ランダムループ構造とハニカムループ構造の違いに関する説明図である。 多層多列ハニカムループ構造を概念的に示す模式図である。 本実施形態のフィラメント3次元結合体100の概略的な断面図である。 フィラメント3次元結合体100の一実施例の断面の撮影写真である。 フィラメント3次元結合体100の一実施例についてハニカムループ構造の部分を切り出して撮影した写真である。 フィラメント3次元結合体100の一実施例についてランダムループ構造の部分を切り出して撮影した写真である。 他の実施形態に係るノズル部117の平面図である。 厚手のフィラメント3次元結合体において局所的な荷重を受けた場合に関する説明図である。
 本発明の実施形態について図面を参照しながら以下に説明する。なお、以下の説明における上下、左右、および前後の各方向(互いに直交する方向)は図1等に示す通りである。下方向は鉛直下向きに一致し、前後および左右方向は水平方向に含まれる。
1.フィラメント3次元結合体製造装置
 まず、本実施形態に係るフィラメント3次元結合体を製造する製造装置(フィラメント3次元結合体製造装置)の一例について説明する。図1は、当該製造装置1の概略的な構成図である。図2は、図1に示す製造装置1のA-A’断面矢視図であり、図3は、図1に示す厚み規制部22近傍の概略的な構成図である。
 製造装置1は、複数の溶融フィラメントからなる溶融フィラメント群2を鉛直方向下方へ排出する溶融フィラメント供給装置10と、複数の溶融フィラメントどうしを3次元的に融着結合させながら冷却固化させることにより、溶融フィラメント同士が3次元的に融着結合したフィラメント3次元結合体を形成する3次元結合体形成装置20を備える。
 溶融フィラメント供給装置10は、加圧溶融部11(押出機)とダイ12を含む。加圧溶融部11は、材料投入部13(ホッパー)、スクリュー14、スクリューモーター15、スクリューヒーター16、および図示しない複数の温度センサーを含む。
 加圧溶融部11の内部には、材料投入部13から供給された熱可塑性樹脂を加熱溶融しながら搬送するためのシリンダー11aが形成されており、スクリュー14が回転可能に収容されている。シリンダー11aの下流側端部には熱可塑性樹脂をダイ12に向けて排出するためのフィラメント排出部11bが形成されている。
 ダイ12は、複数のノズル孔が形成されたノズル部17、複数のダイヒーター18a~18f、および図示しない複数の温度センサーを含む。ダイ12の内部には、加熱溶融部11のフィラメント排出部11bから排出された溶融熱可塑性樹脂をノズル部17に導く導流路12aが形成されている。
 3次元結合体形成装置20は、溶融フィラメント供給装置10から供給される溶融フィラメント群2の融着結合と冷却固化を行い、フィラメント3次元結合体を形成する装置である。3次元結合体形成装置20は、溶融フィラメント群2を冷却する冷却水を貯留する冷却水槽21、溶融フィラメント群2の厚みを規制しながら3次元結合を形成させる厚み規制部22、コンベア部24、および複数の搬送ローラ25a~25hを含む。
 厚み規制部22は、金属板で形成される2枚で一対の受け板22a、22bで構成され、それらは所定の間隙を設けて前後に対向するように配置される。一対の受け板22a、22bは、これらの間に位置する対称面(法線方向が前後方向に一致する)を基準としてほぼ対称に配置されている。受け板22a、22bは、それぞれ当該対称面へ近づくように下り傾斜となる傾斜面22a1、22b1と、これらの下端から鉛直下方へ伸びる鉛直面22a2、22b2を有する。傾斜面22a1、22b1と鉛直面22a2、22b2の各接合点(左右方向に伸びる接合線)は、冷却水槽21に貯留される冷却水の水面と略一致するように配設されている。
 傾斜面22a1、22b1の上流部には図示しない給水口が設けられており、傾斜面22a1、22b1の表面に水膜が形成されるようになっている。溶融フィラメント群の厚み方向両端部近傍の溶融フィラメントは、傾斜面22a1、22b1により受け止められた後、その傾斜をスライドするようにして鉛直面22a2、22b2の間に導かれ、冷却水槽21の冷却水によって冷却固化されて、融着結合すると同時に平滑な高密度表面層(フィラメント3次元結合体の厚み方向端部の表面層)を形成する。
 コンベア部24は、一対の搬送コンベア24a、24b(一対のスラットコンベア)で構成され、一対の受け板22a、22bの下方において、フィラメント3次元結合体の厚みに対応する隙間を空けて前後方向に対向するように配設されている。搬送コンベア24a、24bは、厚み規制部22から当該隙間に送られてきたフィラメント3次元結合体3を、下方へ搬送するように駆動する。搬送コンベア24a、24bの駆動速度(フィラメント3次元結合体の搬送速度)は、溶融フィラメントの落下速度と同等以上になると溶融フィラメントのループが形成されないため、溶融フィラメントの落下速度より遅い速度に設定される。
 搬送コンベア24a、24bの移動速度が遅い程、溶融フィラメントの密度が高くなり、反発力の高い高密度のフィラメント3次元結合体が形成される。反発力はフィラメント3次元結合体が使用されるマットレスやクッション等の仕様に応じて決められるが、通常、溶融フィラメントの落下速度に対して5~20%程度に設定される。搬送コンベア24a、24bの具体的形態については、搬送面が平滑な搬送部材であれば特に制限はなく、金属メッシュベルトやプラスチックモジュラーチェーンを用いたコンベアなどを用いてもよい。
 搬送コンベア24a、24bは、フィラメント3次元結合体の搬送方向に平行な外周面の全面に接触するように、フィラメント3次元結合体の外周形状に合わせて設けることが望ましい。但し、このようにすると搬送コンベア24a、24bの機構が複雑化することを考慮し、搬送コンベア24a、24bをフィラメント3次元結合体の両端部(マットレス側壁部に該当)には接触させずに、厚みの均一な中央部付近だけに接触させて搬送するようにしてもよい。搬送コンベア24a、24bの搬送方向下流側には、フィラメント3次元結合体を冷却水槽21の外側にまで搬送する複数の搬送ローラ25a~25hが設けられている。
 厚み規制部22、コンベア部24および複数の搬送ローラ25a~25hは、図示しない駆動モーターおよび駆動ギアによって駆動され、溶融フィラメント群2またはフィラメント3次元結合体3を搬送する。当該駆動の速度は所定の操作等によって調節可能であり、フィラメント3次元結合体の搬送速度(引取り速度)を調節することが可能である。フィラメント3次元結合体3は、冷却水により十分に冷却されて冷却水槽21の外側にまで搬送され、適度な長さで切断されることにより、マットレス等の製造に使用されるフィラメント3次元結合体100(図11等を参照)が得られる。
 なお、フィラメント3次元結合体(3、100)について、長さ方向は、搬送コンベア24a、24b等によるフィラメント3次元結合体の搬送方向(厚み規制部22を通る時点での上下方向)に対応し、厚み方向は、一対の厚み規制部22それぞれが対向する方向(厚み規制部22を通る時点での前後方向)に対応し、幅方向は、長さ方向と厚み方向に直交する方向(厚み規制部22を通る時点での左右方向)に対応する。
 図4は、図1に示すノズル部17の平面図(下側から見た図)である。ノズル部17は、複数のノズル(円形開口部)17aが形成された略直方体の金属製の厚板であり、導流路12aの最下流部にあたるダイ12の下部に設けられている。
 本実施形態における各ノズル17aは、ノズル径1mmである円形開口部とし、ノズルピッチ10mmで千鳥状に配設している。すなわち、隣合うノズル17a同士の距離は10mmであり、端側に配設されたものを除く一のノズル17aの周囲に、それぞれ当該一のノズル17aから10mm離れた6個の他のノズル17a(当該一のノズル17aを中心として60°ずつずれた位置にある)が存在するように、各ノズル17aが配設されている。このように千鳥状にノズル17aを配設することにより、後述する多層多列ハニカムループ構造が形成し易くなる。フィラメント3次元結合体の反発力や圧縮時高さ率の仕様に基づき、ノズル径やノズルピッチ、あるいはノズル形状やノズル配置を適宜調整することができる。
 本実施形態でフィラメント3次元結合体の材料として用いることのできる熱可塑性樹脂として、たとえば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリ塩化ビニル樹脂およびポリスチレン樹脂や、スチレン系エラストマー、塩ビ系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ポリアミド系エラストマー、フッ素系エラストマー等の熱可塑性エラストマーなどを用いることができる。
 材料投入部13から供給された熱可塑性樹脂は、シリンダー11a内で加熱溶融された後、溶融熱可塑性樹脂としてフィラメント排出部11bからダイ12の導流路12aに供給される。この溶融した熱可塑性樹脂は、ノズル部17における複数のノズル17aから、複数の溶融フィラメントからなる溶融フィラメント群2として3次元結合体形成装置20に向けて排出される。
2.フィラメントのループ構造
 フィラメント3次元結合体を構成する樹脂のフィラメントそれぞれは、ランダムループ構造やハニカムループ構造といったループ構造を形成し、その形成には、フィラメント3次元結合体の製造条件等が関係している。以下、これらのループ構造の形成について詳細に説明する。
 フィラメント3次元結合体の製造過程においては、各ノズル(本実施形態の各ノズル17aに相当)から溶融フィラメントを冷却水中に落下させて、水平方向に広がるループ(以下、「フィラメントループ」と称する)を水の浮力によって形成させる。通常、そのフィラメントループの広がり(当該ループの直径であるループ径)は、隣接するノズル間距離(ノズルピッチ)よりも大きくなる。ループ径の大きな溶融フィラメントを形成することにより、隣接するノズルから排出された溶融フィラメントのみならず、隣接していないノズル(距離の離れたノズル)から排出された溶融フィラメントとも融着結合して、一般的なフィラメント3次元結合体に見られるランダムループ構造(詳しくは後述の説明により明らかとなる)が形成される。
 図5は、溶融フィラメントの直径とループ径との関係を概念的に示す模式図であり、図6は、溶融フィラメントの温度および粘度とループ径との関係を概念的に示す模式図である。なお図5において、A1は溶融フィラメントの直径が0.8mmの場合に形成されるフィラメントループを、A2は溶融フィラメントの直径が1.2mmの場合に形成されるフィラメントループを、A3は溶融フィラメントの直径が2mmの場合に形成されるフィラメントループを、それぞれ概念的に示している。また図6において、B1は溶融フィラメントの温度が比較的高い場合(粘度が比較的低い場合)に形成されるフィラメントループを、B2はB1の場合に比べて溶融フィラメントの温度が低い場合(粘度が高い場合)に形成されるフィラメントループを、B3はB2の場合に比べて溶融フィラメントの温度が低い場合(粘度が高い場合)に形成されるフィラメントループを、それぞれ概念的に示している。
 溶融フィラメントのループ径は一定ではないものの、図5および図6に示すように、平均的なループ径は、溶融フィラメントの冷却水中への投入時における柔軟性(溶融フィラメントの加熱温度により調整される溶融粘度)或いは溶融フィラメントの太さ(ノズルの開口部の直径で調整される溶融フィラメントの直径)のパラメータを変えることにより調整可能である。
 加熱温度を高くしてフィラメントの溶融粘度を低くすると、溶融フィラメントのループ径を小さくすることができ、溶融フィラメントの直径を大きくすると、溶融フィラメントのループ径を大きくすることができる。また逆に、フィラメントの溶融粘度を高くして当該ループ径を大きくすることや、溶融フィラメントの直径を小さくして当該ループ径を小さくすることも可能である。
 図7は、引取り速度比とループピッチとの関係を概念的に示す模式図である。「ループピッチ」は、溶融フィラメントのループが1回転する間に進む距離であり、「引取り速度比」は、冷却水への溶融フィラメントの落下速度V1に対するフィラメント3次元結合体の引取り速度V2(搬送コンベアの搬送速度)の比(=V2/V1)である。なお図7において、C1は引取り速度比が20%の場合に形成されるフィラメントループを、C2は引取り速度比が15%の場合に形成されるフィラメントループを、C3は引取り速度比が10%の場合に形成されるフィラメントループを、C4は引取り速度比が5%の場合に形成されるフィラメントループを、それぞれ概念的に示している。
 図7に示すように、ループピッチは引取り速度比に概ね比例し、引取り速度比が小さいほどループピッチも小さくなる。ところが、引取り速度比がある一定の値より小さくなると、上記比例関係で推定されるループ径やループピッチに比べて著しく小さいループ径やループピッチが形成されると同時に、円筒形状のフィラメントループが平行に積層したハニカムループ構造が形成されることを出願人は見出した。
 ランダムループ構造とハニカムループ構造の違いについて、図8および図9を参照しながら説明する。図8は、ランダムループ構造とハニカムループ構造の違いを概念的に示す上面図であり、図9は、ランダムループ構造とハニカムループ構造の違いを概念的に示す側面図である。図8(A)および図9(A)はランダムループ構造を示し、図8(B)および図9(B)はハニカムループ構造を示している。
 ハニカムループ構造の形成メカニズムは次のとおりである。引取り速度比がある値より小さくなると、隣接する溶融フィラメントのループの広がりを抑えるような円筒状の壁(実際には空隙率が高い)が形成され、ループ径が小さくなると推定される。ループ径が小さくなると、水平方向へ広がることを規制された溶融フィラメントは限られたループ径の中でループを形成することでループピッチが短くなる。最終的には複数の溶融フィラメントのループ径がノズルピッチと略同等になるまで、ループ径は小さくなり、その結果、ループ形状の揃ったハニカムループ構造が形成されると推定される。通常、ランダムループ構造のループ径はノズルピッチより大きいが、ハニカムループ構造のループ径はノズルピッチと略同等である。ただし、ハニカムループ構造が一旦形成されたとしても、何かのきっかけにより再びループ径が大きくなり、それに伴ってループピッチが長くなりランダムループ構造に戻りやすい。
 また、厚み方向表面層近傍においては、フィラメントループの形状がランダムループ構造になりやすいため、ハニカムループ構造が形成され難い。ランダムループ構造では、フィラメント密度が局所的に著しく低下したり、フィラメント結合点密度が極端に低くなる領域が形成されることがある。しかし表面層のフィラメント密度とフィラメント結合点密度を高くして高密度表面層を形成することにより、このようなランダムループ構造の欠点を補うと同時に、ループ径が大きくなることによる軟らかい寝心地が得られるというランダムループ構造の利点を活かすことが可能である。
 図10は、多層多列ハニカムループ構造を概念的に示す模式図である。引取り速度比をさらに小さくする、もしくは、溶融フィラメントの加熱温度をさらに上げて溶融粘度を下げることにより、優先的にハニカムループ構造が形成されるようになる。優先的にハニカムループ構造が形成される条件においては、多層多列ハニカムループ構造が形成される。なお、溶融フィラメントの温度を高く(溶融粘度を小さく)し過ぎると、ループ径がノズルピッチ未満の小さいループが形成されるのでハニカムループ構造は形成され難くなる。
 なお本願において「多層多列ハニカムループ構造」は、ループ径がノズルピッチと略同等となる円筒形状のフィラメントループ(ハニカムループ構造)が3層3列以上に積層した構造のことを示し、フィラメント3次元結合体厚み方向に連続して並ぶループの数を層とし、フィラメント3次元結合体幅方向に連続して並ぶループの数を列とする。積層の層数は特に制限されないが、通常、フィラメント3次元結合体の厚みにより制限され20層以下となる。
 高密度表面層が形成されるフィラメント3次元結合体においては、高密度表面層が形成されるフィラメント3次元結合体の厚み方向両端部近傍(具体的には端部から2cm以内)に多層多列ハニカムループ構造が形成される必要はなく、フィラメント3次元結合体の厚み方向中央部に形成されていればよい。なお、多層多列ハニカムループ構造の形態としては、連続的に形成される(フィラメント3次元結合体の長さ方向において、端から端まで多層多列ハニカムループ構造が続く)形態や、断続的に形成される(フィラメント3次元結合体の長さ方向において、多層多列ハニカムループ構造とランダムループ構造が交互に形成される)形態等が挙げられる。
 多層多列ハニカムループ構造は、引取り速度比が小さい程、形成されやすくなる。そのため多層多列ハニカムループ構造を安定的に形成するためには、引取り速度比を一時的に遅くして、多層多列ハニカムループ構造を安定的に形成させた後、所望の反発力(フィラメント密度)が得られる引取り速度比になるまで、徐々に引取り速度比を上昇させる方法が好ましい。これにより、引取り速度比を変えずに製造を開始した場合より安定的に多層多列ハニカムループ構造が形成される。
 なお、引取り速度比の算出に必要な落下速度は、落下する溶融フィラメントに着色剤(顔料粉末が好ましい)を吹き付けてマーキングし、そのスピードを直接測定する方法が利用できるが、本実施形態においては、着色剤の粉末を塗したガラス棒を用いて、ノズルから落下する溶融フィラメントに着色剤を付着させた後、再度10秒後に溶融フィラメントに着色剤を付着させて、10秒間で排出される溶融フィラメントの長さから、1秒あたりの溶融フィラメントの落下速度を算出した。
3.フィラメント3次元結合体
 図11は、本実施形態に係るフィラメント3次元結合体100の概略的な断面図である。フィラメント3次元結合体100は、先述した製造装置1により製造可能である。また図12は、フィラメント3次元結合体100の一実施例の断面を撮影した写真である。また図13Aは、当該フィラメント3次元結合体におけるハニカムループ構造の部分(ハニカムループ構造層100c)を切り出して撮影した写真である。また図13Bは、当該フィラメント3次元結合体におけるランダムループ構造の部分(ランダムループ構造層100b)を切り出して撮影した写真である。なおこれらの写真には、内容が理解容易となるように適切な画像処理を施している。
 フィラメント3次元結合体100は、厚み方向両端部に形成されるフィラメント密度が相対的に高い高密度表面層100aと、それら高密度表面層100aにそれぞれ隣接して厚み方向中央部側に形成されるランダムループ構造層100bと、それらランダムループ構造層100bに隣接して厚み方向中央部側に形成されるハニカムループ構造層100cとを有する。
 すなわちフィラメント3次元結合体100は、高密度表面層100a、ランダムループ構造層100b、およびハニカムループ構造層100cが、厚み方向両端部から中央部へ向けて順に隣接して形成されている。なおフィラメント3次元結合体100の厚さ(厚み方向寸法)については特に限定されないが、例えば5cm~30cmとされる。本発明は、この程度の厚手のフィラメント3次元結合体において特に有用である。また一例として、ハニカムループ構造層100cの厚さを、フィラメント3次元結合体100の厚さの1/2程度とし、その両側のランダムループ構造層100bの厚さを、それぞれフィラメント3次元結合体100の厚さの1/4程度とすることができる。
 高密度表面層100aは、既に説明したとおり、傾斜面22a1、22b1を利用して形成される。すなわち、前後方向両端部近傍のノズル17aから排出された溶融フィラメント(溶融フィラメント群2の厚み方向両端部近傍の溶融フィラメント)は、傾斜面22a1、22b1により受け止められた後、厚み方向中央寄りである鉛直面22a2、22b2の間に導かれるため、両端部の溶融フィラメントは高密度化される。この部分が冷却水槽21の冷却水によって冷却固化されることにより、高密度である高密度表面層100aが形成される。高密度表面層100aは、ランダムループ構造層100bおよびハニカムループ構造層100cよりもフィラメント密度が高く、このような層が表面に形成されることにより、フィラメント3次元結合体100の型崩れ等は極力抑えられる。
 ランダムループ構造層100bは、ランダムループ構造が主として形成される領域(層)であり、製造時における搬送方向を法線方向とする断面(フィラメント3次元結合体の厚み方向と幅方向を含む断面であり、以下「水平断面」とする)において、ノズルピッチと略同等のループ径であるフィラメントループが複数個隣接して形成されていない領域である。例えば、ランダムループ構造層100bにおいて、ランダムループ構造が占有する占有面積率、すなわち、水平断面の総面積S1に対するランダムループ構造が占有する総面積S2の比(=S2/S1)は50%以上である。
 ハニカムループ構造層100cは、多層多列ハニカムループ構造が主として形成される領域(層)であり、水平断面において、ノズルピッチと略同等のループ径であるフィラメントループが複数個隣接して形成されている領域である。
 多層多列ハニカムループ構造の判別方法としては、水平断面において、ノズルピッチと略同等のループ径であるフィラメントループが形成されているか否かで判別する方法が挙げられる。このようなループ径のフィラメントループが占有する占有面積率、すなわち、水平断面の総面積S3に対するノズルピッチと略同等のループ径であるフィラメントループが占有する総面積S4の比(=S4/S3)が大きい程、結合点密度が局所的に著しく小さくなる現象の発生を抑えることができ、ハニカムループ構造に基づく効果(結合点密度が局所的に著しく小さくなる現象が発生し難いことから、伸ばされる力が加わってもフィラメント同士の結合が切れ難くなる効果等)が得られる。
 この効果を十分に得るための上記占有面積率としては、50%以上100%以下であることが好ましく、80%以上100%以下であることがさらに好ましい。なお、図12に示すハニカムループ構造層においては、多層多列ハニカムループ構造の占有面積率は約80%となっており、結合点密度が著しく小さい箇所の発生は認められず、安定したフィラメント密度と結合点密度が得られている。
 以上のように、本実施形態に係るフィラメント3次元結合体100は、複数のフィラメント同士が立体的に融着結合したものであって、厚み方向中央部を含む領域にハニカムループ構造層100cが形成されている。そのため、図15に示すような局所的荷重が加わった際にも、厚み方向中央部がランダムループ構造で形成された場合に比べ、厚み方向中央部においてフィラメントの結合が切れ難くなっている。
 更にフィラメント3次元結合体100では、ランダムループ構造層100bとハニカムループ構造層100cとが、厚み方向端部側から中央部側に向けて順に形成されている。そのため、厚み方向中央部においてフィラメントの結合が切れ難くなっているとともに、ランダムループ構造層100bによる軟らかい寝心地が得られるようになっている。なお、仮にランダムループ構造層100bが形成されないとしても、ハニカムループ構造層100cによるフィラメントの結合が切れ難くなるという効果が得られることには変わりがない。
 製造装置1を用いてフィラメント3次元結合体100を製造するにあたっては、例えば、フィラメント3次元結合体の厚み方向中央部にハニカムループ構造が形成されるように製造条件等(先述した引取り速度比など)を調整して、フィラメント3次元結合体を形成すれば良い。このようにすれば、厚み方向中央部にハニカムループ構造層100cが形成され、傾斜面22a1、22b1の作用により厚み方向両端には高密度表面層100aが形成される。
 更に、厚み方向中央部にハニカムループ構造が形成されるようにしても、厚み方向表面層近傍においてはフィラメントループの形状がランダムループ構造になりやすいことから、ハニカムループ構造層100cと高密度表面層100aの間にはランダムループ構造層100bが形成される。その結果、高密度表面層100a、ランダムループ構造層100b、およびハニカムループ構造層100cが、厚み方向両端部から中央部へ向けて順に隣接して形成されたフィラメント3次元結合体100が得られることになる。
 なお、フィラメント3次元結合体100を製造する手法として、厚み方向中央部近傍にハニカムループ構造層が形成され易く、厚み方向両端部近傍にランダムループ構造層が形成され易くなるように、厚み方向の中央部近傍と両端部近傍とで製造条件の一部を積極的に変えるようにしても良い。例えばノズル部17の構成について、ノズルピッチを変えずに厚み方向の両端部近傍に対応するノズル径を相対的に大きくし、厚み方向両端部近傍のループ径が大きくなるようにしてランダム構造層が形成され易くなるようにしても良い。
4.他の実施形態に係るノズル部
 製造装置1のノズル部17において、ノズル17aのサイズやノズルピッチ等を変えることにより、フィラメント3次元結合体を構成する各フィラメントの特性を調節することが可能である。この場合のノズルの一例(図4に示すノズル17の他の実施形態)として、図14(平面図)に示すノズル部117を挙げて説明する。ノズル部117は、複数のノズル117a(円形開口部)が形成された略直方体の金属製の厚板であり、導流路12aの最下流部にあたるダイ12の下部に設けられている。
 ノズル部117に形成される複数のノズル117a(ノズル群)として、相対的にノズル径とノズルピッチが大きい大径ノズル群117a1と、相対的にノズル径とノズルピッチが小さい小径ノズル群117a2、117a3が設けられている。大径ノズル群117a1は厚み方向中央部近傍(主に、ハニカムループ構造層が形成される領域)に、小径ノズル群17a2、17a3は厚み方向両端部近傍(主に、ランダムループ構造層が形成される領域)に、それぞれ設けられている。大径ノズル群117aにおいては、ノズル径が1.5mmに、ノズルピッチが15mmにそれぞれ設定され、小径ノズル群17a2、17a3においては、ノズル径が1mmに、ノズルピッチが10mmにそれぞれ設定されている。
 ノズル部117aを適用した製造装置1を用いる本実施形態においても、高密度表面層100a、ランダムループ構造層100b、およびハニカムループ構造層100cが、厚み方向両端部から中央部へ向けて順に隣接して形成されたフィラメント3次元結合体100(図11を参照)が得られることには変わりはない。そのため、これらの各層(100a~100c)を設けたことによる各効果を享受することが可能である。
 更に本実施形態では、大径ノズル群117a1よりも小径ノズル群117a2、117a3の方がノズルピッチが小さいため、ランダムループ構造層100bのフィラメントの本数密度(単位体積あたりのフィラメントの本数)が、ハニカムループ構造層100cのフィラメントの本数密度より大きくなる。そのため、ランダムループ構造層100bの位置する高密度表面層100aの近傍において、フィラメント結合点密度が極端に低くなることを抑えることができる。
 なお、単にランダムループ構造層100bのフィラメントの本数密度を大きくする場合は、ランダムループ構造層100bのフィラメント密度が高くなり過ぎて、寝心地が硬く(反発力が過度に高く)なる虞がある。この点、本実施形態では、大径ノズル群117a1よりも小径ノズル群117a2、117a3の方がノズル径が小さいため、ランダムループ構造層100bのフィラメントの直径が、ハニカムループ構造層100cのフィラメントの直径より小さくなる。そのため、ランダムループ構造層100bの位置する高密度表面層100aの近傍においてフィラメント密度が高くなり過ぎないようにし、寝心地が硬くなるのを抑えることが可能である。
 以上、本発明の実施形態について説明したが、本発明の構成は上記実施形態に限られず、発明の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の技術的範囲は、上記実施形態の説明ではなく、特許請求の範囲によって示されるものであり、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
 本発明は、例えばマットレス、枕、或いはクッション等に使用されるフィラメント3次元結合体に利用可能である。
 1   ・・・   製造装置(フィラメント3次元結合体製造装置)
 2   ・・・   溶融フィラメント群
 3   ・・・   フィラメント3次元結合体(切断前)
 10  ・・・   溶融フィラメント供給装置
 11  ・・・   加圧溶融部
 11a ・・・   シリンダー
 11b ・・・   フィラメント排出部
 12  ・・・   ダイ
 12a ・・・   導流路
 13  ・・・   材料投入部
 14  ・・・   スクリュー
 15  ・・・   スクリューモーター
 16  ・・・   スクリューヒーター
 17、117   ・・・   ノズル部
 17a、117a ・・・   ノズル
 18a~18f  ・・・  ダイヒーター
 20  ・・・   3次元結合体形成装置
 21  ・・・   冷却水槽
 22  ・・・   厚み規制部
 22a、22b ・・・  受け板
 24  ・・・      コンベア部
 24a、24b ・・・  搬送コンベア
 25a~25h ・・・  搬送ローラ
 100     ・・・  フィラメント3次元結合体(切断後)
 100a    ・・・  高密度表面層
 100b    ・・・  ランダムループ構造層
 100c    ・・・  ハニカムループ構造層

Claims (6)

  1.  複数のフィラメント同士が立体的に融着結合したフィラメント3次元結合体であって、
     厚み方向中央部を含む領域にハニカムループ構造層が形成されたことを特徴とするフィラメント3次元結合体。
  2.  ランダムループ構造層とハニカムループ構造層とが、厚み方向端部側から中央部側に向けて順に形成されたことを特徴とする請求項1に記載のフィラメント3次元結合体。
  3.  前記ランダムループ構造層および前記ハニカムループ構造層よりもフィラメント密度の高い高密度層が、前記ランダムループ構造層よりも厚み方向端部側に形成されたことを特徴とする請求項2に記載のフィラメント3次元結合体。
  4.  前記高密度層である表面層、前記ランダムループ構造層、および前記ハニカムループ構造層が、厚み方向端部から中央部へ向けて順に隣接して形成されたことを特徴とする請求項3に記載のフィラメント3次元結合体。
  5.  前記ランダムループ構造層のフィラメントの本数密度が、前記ハニカムループ構造層のフィラメントの本数密度より大きいことを特徴とする請求項3または請求項4に記載のフィラメント3次元結合体。
  6.  前記ランダムループ構造層のフィラメントの直径が、前記ハニカムループ構造層のフィラメントの直径より小さいことを特徴とする請求項5に記載のフィラメント3次元結合体。
     
PCT/JP2017/031231 2016-10-17 2017-08-30 フィラメント3次元結合体 WO2018074075A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018546180A JP6644161B2 (ja) 2016-10-17 2017-08-30 フィラメント3次元結合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-203270 2016-10-17
JP2016203270 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018074075A1 true WO2018074075A1 (ja) 2018-04-26

Family

ID=62018957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031231 WO2018074075A1 (ja) 2016-10-17 2017-08-30 フィラメント3次元結合体

Country Status (2)

Country Link
JP (1) JP6644161B2 (ja)
WO (1) WO2018074075A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021177A (ja) * 2019-07-29 2021-02-18 リッチコミュニケーションズ株式会社 立体網状構造体の製造装置及び製造方法
JP2021051214A (ja) * 2019-09-25 2021-04-01 株式会社ジンズホールディングス アイウエア及びテンプル

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852152A (en) * 1968-03-21 1974-12-03 Akzona Inc Resilient cushion
JPS5531222B1 (ja) * 1968-11-26 1980-08-16
JPH0732517A (ja) * 1993-07-21 1995-02-03 Toyobo Co Ltd 立体3次元構造集合体
JPH09189022A (ja) * 1996-01-11 1997-07-22 Toyobo Co Ltd 立体3次元構造集合体およびその製造方法
WO2001068967A1 (fr) * 2000-03-15 2001-09-20 C-Eng Co.,Ltd. Structure tridimensionnelle du type filet, procede et dispositif pour la production de ladite structure
WO2017168771A1 (ja) * 2016-04-01 2017-10-05 株式会社エアウィーヴマニュファクチャリング フィラメント3次元結合体製造装置およびフィラメント3次元結合体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852152A (en) * 1968-03-21 1974-12-03 Akzona Inc Resilient cushion
JPS5531222B1 (ja) * 1968-11-26 1980-08-16
JPH0732517A (ja) * 1993-07-21 1995-02-03 Toyobo Co Ltd 立体3次元構造集合体
JPH09189022A (ja) * 1996-01-11 1997-07-22 Toyobo Co Ltd 立体3次元構造集合体およびその製造方法
WO2001068967A1 (fr) * 2000-03-15 2001-09-20 C-Eng Co.,Ltd. Structure tridimensionnelle du type filet, procede et dispositif pour la production de ladite structure
WO2017168771A1 (ja) * 2016-04-01 2017-10-05 株式会社エアウィーヴマニュファクチャリング フィラメント3次元結合体製造装置およびフィラメント3次元結合体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021177A (ja) * 2019-07-29 2021-02-18 リッチコミュニケーションズ株式会社 立体網状構造体の製造装置及び製造方法
JP2021051214A (ja) * 2019-09-25 2021-04-01 株式会社ジンズホールディングス アイウエア及びテンプル
JP7039538B2 (ja) 2019-09-25 2022-03-22 株式会社ジンズホールディングス アイウエア及びテンプル

Also Published As

Publication number Publication date
JPWO2018074075A1 (ja) 2019-04-04
JP6644161B2 (ja) 2020-02-12

Similar Documents

Publication Publication Date Title
JP6783584B2 (ja) フィラメント3次元結合体製造装置
JP6596585B2 (ja) フィラメント3次元結合体製造装置、及びフィラメント3次元結合体製造方法
US9440390B2 (en) Apparatus and method for manufacturing three-dimensional net-like structure
WO2018074075A1 (ja) フィラメント3次元結合体
JP5959033B2 (ja) 立体網状構造体の製造方法および立体網状構造体の製造装置
JP6909823B2 (ja) フィラメント3次元結合体製造装置およびフィラメント3次元結合体の製造方法
JP5855736B2 (ja) 立体網状構造体製造装置及び立体網状構造体製造方法
TW201634240A (zh) 三維成型裝置、改質體供應器、成型物及成型物的製造方法
JP2017065154A (ja) 三次元造形物及びその造形方法
JP6574897B2 (ja) フィラメント3次元結合体製造装置およびフィラメント3次元結合体の製造方法
KR101222548B1 (ko) 단사가 접착된 시트의 제조 장치 및 방법
US20230012165A1 (en) Seamless printing in fused-filament fabrication of additive manufacturing
JP7270533B2 (ja) クッション体の製造方法、製造装置、およびクッション体
JP6586030B2 (ja) フィラメント3次元結合体製造装置
WO2022097435A1 (ja) クッション体およびその製造方法
JP7101737B2 (ja) フィラメント3次元結合体製造装置
WO2024071296A1 (ja) フィラメント3次元結合体の製造装置
JP6664239B2 (ja) フィラメント3次元結合体製造装置、及びフィラメント3次元結合体
JP2024078332A (ja) フィラメント3次元結合体の製造装置
JP2022105364A (ja) フィラメント3次元結合体の製造装置、フィラメント3次元結合体、およびその製造方法
JP7013061B1 (ja) 履物の製造方法及び履物の製造装置
WO2023132308A1 (ja) 枕用クッションおよび枕用クッションの製造方法
JP6777747B2 (ja) マットレス芯材およびベッド用マットレス
KR101476036B1 (ko) 미립자의 충전방법 및 충전장치
JP6689962B2 (ja) フィラメント3次元結合体製造装置、及びフィラメント3次元結合体製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862766

Country of ref document: EP

Kind code of ref document: A1