WO2018070701A1 - 젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법 - Google Patents

젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법 Download PDF

Info

Publication number
WO2018070701A1
WO2018070701A1 PCT/KR2017/010646 KR2017010646W WO2018070701A1 WO 2018070701 A1 WO2018070701 A1 WO 2018070701A1 KR 2017010646 W KR2017010646 W KR 2017010646W WO 2018070701 A1 WO2018070701 A1 WO 2018070701A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
unit cell
secondary battery
separator
region
Prior art date
Application number
PCT/KR2017/010646
Other languages
English (en)
French (fr)
Inventor
이상균
조주현
김덕회
구자훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170123465A external-priority patent/KR102111105B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL17859633.4T priority Critical patent/PL3396767T3/pl
Priority to CN201780008189.0A priority patent/CN108604702B/zh
Priority to EP17859633.4A priority patent/EP3396767B1/en
Priority to US16/066,757 priority patent/US10804560B2/en
Priority to ES17859633T priority patent/ES2928898T3/es
Publication of WO2018070701A1 publication Critical patent/WO2018070701A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery cell with improved wettability and a method of manufacturing the same, and more particularly, to a secondary battery cell with improved wettability through an adhesive force control between a separator and an electrode and a method of manufacturing the same.
  • the adhesion at the anode / separator interface is stronger, and thus, the wettability tends to be more prominent, and thus, the performance of the secondary battery is inevitably deteriorated.
  • an object of the present invention is to enable smooth discharge of the gas generated in the secondary battery in the formation process.
  • a unit cell including: a central electrode having a first polarity; A pair of separators each laminated on both surfaces of the center electrode; And an upper electrode and a lower electrode each laminated on the pair of separators and having a second polarity, wherein the separators have a patterned adhesive force.
  • the separator may include a first region having a first adhesive force; And a second region having an adhesive force lower than the first adhesive force.
  • the first region may be a plasma treated region, and the second region may be a region not subjected to plasma treatment.
  • the manufacturing method of a unit cell according to an embodiment of the present invention for solving the above technical problem, the step of supplying a central electrode; Supplying separators on both sides of the center electrode; Treating plasma on the surface of the separator, but performing plasma treatment on a portion of the separator and preventing plasma treatment on the remaining region; Supplying an upper electrode and a lower electrode on the separator; And performing lamination so that each of the center electrode, the upper electrode, and the lower electrode is adhered to the separator.
  • the laminating may include: applying heat on the upper electrode and the lower electrode; And compressing by applying pressure on the upper electrode and the lower electrode to which heat is applied.
  • the method of manufacturing a unit cell for a secondary battery may further include cutting each of the supplied central electrode, upper electrode, lower electrode, and separator to a predetermined length.
  • the method of manufacturing a unit cell for a secondary battery may further include inspecting and discharging the unit cell for a secondary battery in which lamination is completed.
  • the electrolyte wettability at the electrode / separation membrane interface is improved, resulting in performance improvement of the secondary battery.
  • FIG 1 and 2 are views illustrating a unit cell for a secondary battery according to an embodiment of the present invention.
  • 3 and 4 are views showing a positive electrode and a negative electrode applied to the unit cell for a secondary battery according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing a facility for manufacturing a unit cell for a secondary battery according to the present invention.
  • FIG. 6 is a view showing a plasma processing apparatus used for manufacturing a unit cell for a secondary battery according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a mask applied to the plasma processing apparatus illustrated in FIG. 6.
  • FIG. 8 is a view illustrating a wettability test result of a conventional unit cell for a secondary battery.
  • FIG. 9 is a view showing the wettability test results of the unit cell for a secondary battery according to an embodiment of the present invention.
  • FIG. 1 and 2 are views showing a unit cell for a secondary battery according to an embodiment of the present invention
  • Figures 3 and 4 are views showing a positive electrode and a negative electrode applied to the unit cell for a secondary battery according to an embodiment of the present invention.
  • a unit cell for a secondary battery may include a center electrode having a first polarity, a pair of separators 3 laminated on both surfaces of the center electrode, and An upper electrode and a lower electrode are laminated on the pair of separators and have a second polarity opposite to the first polarity.
  • bicells The unit cells configured such that the electrodes located at the outermost sides have the same polarity with each other are commonly referred to as bicells.
  • a unit cell of the bicell type includes a bipolar bicell having an upper electrode and a lower electrode as the anode 1, and a central electrode as the cathode 2, and as shown in FIG. 2.
  • the upper electrode and the lower electrode may be categorized into a cathode type bicell including the cathode 2 and the center electrode composed of the anode 1.
  • a secondary battery constructed using such a bicell may have a form in which a bipolar bipolar cell and a negative bipolar cell are alternately stacked with a separator interposed therebetween.
  • a simple stacking method, a stacking / folding method, or the like may be applied.
  • the positive electrode 1 applied to the unit cell for a secondary battery includes a positive electrode current collector 1 a and a positive electrode active material 1 b laminated on the surface thereof. It consists of.
  • the cathode current collector 1a a foil made of aluminum, nickel, or a material in which they are combined may be used.
  • cathode active material 1b conventional cathode active materials that may be used in the cathode of a secondary battery in the art may be used, and non-limiting examples thereof include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4.
  • the negative electrode 2 applied to the unit cell for a secondary battery includes a negative electrode current collector 2a and a negative electrode active material 2b laminated on the surface thereof, as shown in FIG. 4. It consists of a form.
  • the negative electrode current collector 2a a foil made of stainless steel, nickel, copper, titanium, or an alloy thereof may be used.
  • negative electrode active material 2b conventional negative electrode active materials that may be used in the negative electrode of a secondary battery in the art may be used, and non-limiting examples thereof include carbon such as non-graphitizable carbon and graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me' Al, B, P, Si, a group 1, 2, 3 element of the periodic table, a halogen, a metal complex oxide of 0 ⁇ x ⁇ 1;1 ⁇ y ⁇ 3;1 ⁇ z ⁇ 8; Lithium metal; Lithium alloys; Silicon-based alloys; Tin-based alloys; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO
  • the separator 3 interposed between the anode 1 and the cathode 2 may be implemented in a form including a porous coating layer formed on one or both sides of the porous polymer substrate.
  • the porous polymer substrate used for the separator 3 is not particularly limited as long as it is a porous polymer substrate having a planar shape that is usually applied to a secondary battery.
  • Such porous polymer substrates are low density polyethylene, linear low density polyethylene, polyethylene terephthalate, high density polyethylene, propylene homopolymer, polypropylene random copolymer, poly1-butene, poly4-methyl-1-pentene, ethylene-propylene random copolymer , Ethylene 1-butene random copolymer, propylene 1-butene random copolymer, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide ( polyamide, polycarbonate, polyimide, polyetheretherketone, polyaryletherketone, polyetherimide, polyamideimide, polybenzimidazole polybenzimidazole, polyethersulfone, polyphenylenoxide eoxide), cyclic olefin
  • the porous coating layer is formed on one side or both sides of the porous polymer substrate, the inorganic particles are connected and fixed by the binder polymer for the porous coating layer, the micro-pores due to the interstitial volume between the inorganic particles Formed.
  • the binder polymer for the porous coating layer is excellent in binding strength with inorganic particles, and is not particularly limited as long as it is a component that is not easily dissolved by the electrolyte solution.
  • Non-limiting examples of compounds usable as binder polymers for porous coating layers include polyvinylidene fluoride-co-hexafluoro propylene (PVDF-co-HFP), polyvinylidene fluoride-trichloroethylene ( polyvinylidene fluoride-co-trichloro ethylene, polyvinylidene fluoride-co-chlorotrifluoro ethylene, polymethyl methacrylate, polyacrylonitrile, polyvinyl Pyrrolidone (polyvinylpyrrolidone), polyvinylacetate, ethylene vinyl acetate copolymer (polyethylene-co-vinyl acetate), polyethylene oxide, cellulose acetate, cellulose acetate butyrate ), Cellulose acetate propionate tate
  • the secondary cell unit cell according to an embodiment of the present invention, at the interface between the positive electrode 1 and the separator 3 and / or the interface between the negative electrode 2 and the separator 3 is formed with the same adhesive force as a whole It has no patterned adhesion.
  • the interface between the electrodes 1 and 2 and the separator 3 has different adhesive strengths for each region, and thus the adhesion between the electrodes 1 and 2 and the separator 3 differs for each region. The method will be described in more detail with reference to FIGS. 5 and 6 below.
  • FIG. 5 is a schematic view showing a facility for manufacturing a unit cell for a secondary battery according to the present invention
  • FIG. 6 is a view showing a plasma processing apparatus used for manufacturing a unit cell for a secondary battery according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a mask applied to the plasma processing apparatus illustrated in FIG. 6.
  • supplying a central electrode P1, supplying separators S1 and S2, and performing a plasma treatment may be performed.
  • the supplying of the center electrode P1 is a step of supplying the central electrode P1 having a long fabric shape wound on the center electrode supply roll 11.
  • the separator (S1, S2) supply step is a step of supplying the separation membrane (S1, S2) of the long fabric shape wound on each of the separator supply roll (12, 13) on both sides of the central electrode (P1).
  • plasma treatment is performed on the surfaces of the separation membranes S1 and S2 by using the plasma processing apparatus 16 to modify the surfaces of the separation membranes S1 and S2 and the electrodes P1, P2 and P3.
  • a step of performing a patterned plasma treatment to increase the adhesive strength of the separator, but to prevent the plasma treatment is performed on a portion of the surface of the separators S1 and S2 and the plasma treatment is not performed on the remaining regions.
  • the supplying of the upper electrode P2 and the lower electrode P3 is performed by using the electrode supply rolls 12 and 13 on the separation membranes S1 and S2 on which plasma treatment is performed, and forming the upper electrode P2 and the lower fabric. It is a step of supplying the electrode P3.
  • the lamination step may include a lower electrode (P2), a separator (S2), a center electrode (P1), a separator (S1), and an upper electrode (P1), which are sequentially stacked from the lower layer. Lamination is performed to bond the membrane interface.
  • the lamination step may include a heating step of applying heat using the heater 17 on the upper electrode P2 and the lower electrode P3 disposed on the separators S1 and S2, and the upper electrode P2 and the lower part of the applied heat. And compressing the electrodes between the electrodes and the separator by applying pressure using the lamination rolls 18 on the electrodes P3.
  • each of the supplied central electrodes P1, P2, P3 and the separators S1, S2 may be previously cut using the cutters 19, 20, 21, and 22.
  • the method may further include cutting to a predetermined length.
  • the manufacturing process of the unit cell for secondary batteries may further include inspecting and discharging the secondary cell unit cells completed by lamination.
  • the inspection of the unit cell means an inspection of whether foreign matter exists between the electrode and the separation membrane, whether the unit cell is made to the correct size, or the like, in the lamination process for manufacturing the unit cell.
  • the plasma processing apparatus applied to the present invention includes a power supply unit 16a and an electrode unit 16b, and a patterned plasma is formed between the electrode unit 16b and the separator S1.
  • a mask M is provided that is applied to perform the process.
  • the mask M passes through a plasma treatment in order to prevent a plasma treatment of a portion of the surface of the separation film S1 and a plasma treatment of the remaining regions. It is composed of a first region (M1) that can be made and a second region (M2) that can not pass through the plasma.
  • the surface of the separation membrane S1 is strongly modified with the electrode during the lamination by performing surface modification by the plasma treatment.
  • the portion facing the second region is not subjected to plasma treatment, and thus relatively weakly adheres to the electrode during lamination.
  • the pattern of the mask M shown in FIG. 7 is merely exemplary, and the pattern of the mask M for realizing a patterned adhesive force may be variously formed.
  • the interface between the separator S1 subjected to the plasma treatment using the mask M and the electrode includes a region where the adhesive force is strong and a region where the adhesive force is relatively weak.
  • an electrolyte is filled together with a unit cell in the case.
  • the unit cell according to the exemplary embodiment of the present invention has a region in which adhesion strength between the separator and the electrode is relatively weak, and thus the adhesion strength is increased. Impregnation of the electrolyte through the weak area can be made quickly, thereby bringing about an improvement in the performance of the secondary battery.
  • the manufacturing conditions of the unit cell for a secondary battery according to the present invention are as follows:
  • SRS separator composition: PVDF + Al 2 O 2 ) manufactured using PP fabric is used.
  • Plasma treatment is performed at 2-4.5 kV, 10-30 kHz.
  • the conventional secondary cell unit cells (FIG. 8) and the secondary cell unit cells (FIG. 9) according to an embodiment of the present invention may have a wettability with respect to an electrolyte. It can be seen that there is a big difference.
  • the region in which the electrolyte solution is impregnated to a higher region corresponds to a region in which the adhesion of the electrode / separation membrane is relatively lower than the surroundings because plasma treatment is not performed due to masking during plasma treatment.
  • the adhesion between materials can be classified into chemical adhesion and mechanical interlocking.
  • the improvement of adhesion by plasma treatment as in the present invention is a phenomenon caused by enhanced chemical adhesion.
  • Types of chemical adhesion include electrostatic attraction, chemical absorption, chemical bonding, and the like.
  • plasma treatment is performed on a part of the surface of the separator as in the present invention.
  • Chemical Absorption, Chemical Bonding, etc. are strengthened.
  • the adhesive strength is relatively low, so that the impregnation of the electrolyte in the region is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 일 실시예에 따른 단위 셀은, 제1 극성을 갖는 중앙 전극; 상기 중앙 전극의 양 면 상에 각각 라미네이션 되는 한 쌍의 분리막; 및 상기 한 쌍의 분리막 상에 각각 라미네이션 되며 제2 극성을 갖는 상부 전극 및 하부 전극;을 포함하며, 상기 분리막은 패턴화된 접착력을 갖는다.

Description

젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법
본 발명은 젖음성이 향상된 이차전지용 셀 및 그 제조방법에 관한 것으로서, 좀 더 구체적으로는, 분리막과 전극 사이의 접착력 조절을 통해 젖음성이 향상된 이차전지용 셀 및 그 제조방법에 관한 것이다.
본 출원은 2016년 10월 10일 자로 출원된 한국 특허출원번호 제10-2016-0130780호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
또한, 본 출원은 2017년 09월 25일 자로 출원된 한국 특허출원번호 제10-2017-0123465호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
종래의 폴리머 셀 제조 공정에서는 공정성을 위해 바이셀(bicell)들을 일정 온도/압력으로 라미네이션 하기 때문에, 전극과 분리막 사이의 계면에서의 젖음성(wettability)이 저하되는 문제점이 있었다.
즉, 전극과 분리막 사이의 계면에서의 접착력이 일정하여 전극/분리막 사이가 전체적으로 균일하게 완전히 밀착되어 있는 경우에는, 전극과 분리막 사이로 전해액이 스며들기가 어려워 이차전지의 성능이 완전하게 발휘될 수 없게 된다.
특히, 동일 공정 조건이라면, 양극/분리막 계면에서의 접착력이 더욱 강해, 이로 인한 젖음성의 저하가 더욱 두드러진 경향이 있으며, 이로 인한 이차전지의 성능 저하 역시 두드러질 수 밖에 없는 문제점이 있다.
또한, 이처럼 전극/분리막 계면 사이의 접착력이 전체적으로 일정하게 높은 경우에는, 이차전지의 제조과정에서 진행되는 포메이션 공정(formation process)에 있어서 발생되는 가스의 원활한 배출이 어려운 문제점 역시 존재하게 되며, 이로 인해 가스가 원활히 배출되지 못하는 경우에는 리튬 플레이팅(Li plating) 현상이 발생될 수 있는 문제점 역시 존재하게 된다.
본 발명은, 상술한 문제점을 고려하여 창안된 것으로서, 이차전지의 제작에 이용되는 단위 셀에 있어서, 전극과 분리막 사이의 접착력이 일부 약하거나 접착되지 않는 영역이 존재하도록 함으로써 전해액의 젖음성이 향상되도록 하는 한편, 포메이션 공정에 있어서 이차전지 내부에 발생된 가스의 원활한 배출 또한 가능하게 하는 것을 일 목적으로 한다.
다만, 본 발명이 해결하고자 하는 기술적 과제는 상술한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래에 기재된 발명의 설명으로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상술한 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 단위 셀은, 제1 극성을 갖는 중앙 전극; 상기 중앙 전극의 양 면 상에 각각 라미네이션 되는 한 쌍의 분리막; 및 상기 한 쌍의 분리막 상에 각각 라미네이션 되며 제2 극성을 갖는 상부 전극 및 하부 전극;을 포함하며, 상기 분리막은 패턴화된 접착력을 갖는다.
상기 분리막은, 제1 접착력을 갖는 제1 영역; 및 상기 제1 접착력보다 낮은 접착력을 갖는 제2 영역;을 포함할 수 있다.
상기 제1 영역은 플라즈마 처리된 영역이고, 상기 제2 영역은 플라즈마 처리가 이루어지지 않은 영역일 수 있다.
한편, 상술한 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 단위 셀의 제조방법은, 중앙 전극을 공급하는 단계; 상기 중앙 전극의 양 면 상에 분리막을 공급하는 단계; 상기 분리막의 표면에 플라즈마를 처리하되, 일부 영역은 플라즈마 처리가 이루어지고 나머지 영역에는 플라즈마 처리가 이루어지지 않도록 하는 단계; 상기 분리막 상에 상부 전극 및 하부 전극을 공급하는 단계; 및 상기 중앙 전극, 상부 전극 및 하부 전극 각각이 상기 분리막에 접착되도록 라미네이션을 수행하는 단계;를 포함한다.
상기 라미네이션을 수행하는 단계는, 상기 상부 전극 및 하부 전극 상에 열을 가하는 단계; 및 열이 가해진 상기 상부 전극 및 하부 전극 상에 압력을 가하여 압착하는 단계;를 포함할 수 있다.
상기 이차전지용 단위 셀의 제조방법은, 상기 공급된 상기 중앙 전극, 상부 전극, 하부 전극 및 분리막 각각을 미리 정해진 길이로 컷팅하는 단계를 더 포함할 수 있다.
상기 이차전지용 단위 셀의 제조방법은, 라미네이션이 완료된 이차전지용 단위 셀을 검사 및 배출하는 단계를 더 포함할 수 있다.
본 발명의 일 측면에 따르면, 전극/분리막 계면에서의 전해액 젖음성이 향상되어 이차전지의 성능 향상을 가져오게 된다.
본 발명의 다른 측면에 따르면, 이차전지의 제조과정에서 이루어지는 포메이션 공정에 있어서, 이차전지의 내부에 발생된 가스의 원활한 제거가 가능하게 된다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1 및 도 2는 본 발명의 실시예에 따른 이차전지용 단위 셀을 나타내는 도면이다.
도 3 및 도 4는 본 발명의 실시예에 따른 이차전지용 단위 셀에 적용되는 양극 및 음극을 나타내는 도면이다.
도 5는 본 발명에 따른 이차전지용 단위 셀을 제조하기 위한 설비를 나타내는 개략도이다.
도 6은 본 발명의 실시예에 따른 이차전지용 단위 셀의 제조에 이용되는 플라즈마 처리 장치를 나타내는 도면이다.
도 7은 도 6에 도시된 플라즈마 처리 장치에 적용되는 마스크를 나타내는 도면이다.
도 8은 종래의 이차전지용 단위 셀에 대한 젖음성 시험 결과를 나타내는 도면이다.
도 9는 본 발명의 실시예에 따른 이차전지용 단위 셀에 대한 젖음성 시험 결과를 나타내는 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일부 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
먼저, 도 1 내지 도 4를 참조하여, 본 발명의 일 실시예에 따른 이차전지용 단위 셀의 구조를 설명하기로 한다.
도 1 및 도 2는 본 발명의 실시예에 따른 이차전지용 단위 셀을 나타내는 도면이고, 도 3 및 도 4는 본 발명의 실시예에 따른 이차전지용 단위 셀에 적용되는 양극 및 음극을 나타내는 도면이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 이차전지용 단위 셀은, 제1 극성을 갖는 중앙 전극, 중앙 전극의 양 면 상에 각각 라미네이션 되는 한 쌍의 분리막(3), 그리고 한 쌍의 분리막 상에 각각 라미네이션 되며 제1 극성과는 반대되는 제2 극성을 갖는 상부 전극 및 하부 전극을 포함한다.
이처럼 최 외곽에 위치하는 전극이 서로 동일 극성을 갖도록 구성되는 단위 셀을 통상 바이셀(bicell)이라고 부른다.
이러한 바이셀 타입의 단위 셀은, 도 1에 도시된 바와 같이 상부 전극과 하부 전극이 양극(1)이고, 중앙 전극이 음극(2)으로 이루어지는 양극형 바이셀과, 도 2에 도시된 바와 같이 상부 전극과 하부 전극이 음극(2)이고, 중앙 전극이 양극(1)으로 이루어지는 음극형 바이셀로 구분될 수 있다.
이러한 바이셀을 이용하여 구성된 이차전지는, 양극형 바이셀과 음극형 바이셀이 그 사이에 분리막을 개재한 상태로 교호적으로 적층된 형태를 가질 수 있다. 이러한 바이셀들의 적층 방식으로는 단순 적층 방식, 스택/폴딩 방식 등이 적용될 수 있다.
본 발명의 일 실시예에 따른 이차전지용 단위 셀에 적용되는 양극(1)은, 도 3에 도시된 바와 같이, 양극 집전체(1a) 및 그 표면에 라미네이팅 되는 양극 활물질(1b)을 포함하는 형태로 구성된다.
상기 양극 집전체(1a)로는, 알루미늄, 니켈 또는 이들이 조합된 물질 등으로 이루어지는 호일(foil)이 이용될 수 있다.
상기 양극 활물질(1b)로는, 당 업계에서 이차전지의 양극에 이용될 수 있는 통상적인 양극 활물질들이 이용될 수 있으며, 그 비제한적인 예로는, LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, a+b+c=1), LiNi1 - YCoYO2, LiCo1-YMnYO2, LiNi1 - YMnYO2 (여기서, 0≤Y<1), Li(NiaCobMnc)O4 (0<a<2, 0<b<2, a+b+c=2), LiMn2 - ZNiZO4, LiMn2 - ZCoZO4 (여기서, 0<Z<2), LiCoPO4, LiFePO4 및 이들의 혼합물 등이 있다.
또한, 본 발명의 일 실시예에 따른 이차전지용 단위 셀에 적용되는 음극(2)은, 도 4에 도시된 바와 같이, 음극 집전체(2a) 및 그 표면에 라미네이팅 되는 음극 활물질(2b)을 포함하는 형태로 구성된다.
상기 음극 집전체(2a)로는, 스테인레스강, 니켈, 구리, 티탄 또는 이들의 합금 등으로 이루어지는 호일(foil)이 이용될 수 있다.
상기 음극 활물질(2b)로는, 당 업계에서 이차전지의 음극에 이용될 수 있는 통상적인 음극 활물질들이 이용될 수 있으며, 그 비제한적인 예로는, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1 - xMe'yOz(Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8)의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni계 재료 등을 사용할 수 있다.
한편, 상기 양극(1) 및 음극(2) 사이에 개재되는 분리막(3)은, 다공성 고분자 기재의 일 면 또는 양 면에 형성된 다공성 코팅층을 포함하는 형태로 구현될 수 있다.
상기 분리막(3)에 이용되는 다공성 고분자 기재는, 통상적으로 이차전지에 적용되는 평면 형태의 다공성 고분자 기재라면 특별히 한정되지는 않는다. 이러한 다공성 고분자 기재는, 저밀도 폴리에틸렌, 선상 저밀도 폴리에틸렌, 폴리에틸렌테레프탈레이트, 고밀도 폴리에틸렌, 프로필렌 단독중합체, 폴리프로필렌 랜덤 공중합체, 폴리1-부텐, 폴리4-메틸-1-펜텐, 에틸렌?프로필렌 랜덤 공중합체, 에틸렌?1-부텐 랜덤 공중합체, 프로필렌?1-부텐 랜덤 공중합체, 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate), 폴리에스테르(polyester), 폴리아세탈(polyacetal), 폴리아미드(polyamide), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리아릴에테르케톤(polyaryletherketone), 폴리에테르이미드(polyetherimide), 폴리아미드이미드(polyamideimide), 폴리벤지미다졸(polybenzimidazole), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 사이클릭 올레핀 코폴리머(cyclic olefin copolymer), 폴리페닐렌설파이드(polyphenylenesulfide) 및 폴리에틸렌나프탈렌(polyethylenenaphthalene)으로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물로부터 형성될 수 있다. 상기 다공성 고분자 기재는 필름 또는 부직포의 형태일 수 있다.
상기 다공성 코팅층은, 다공성 고분자 기재의 일면 또는 양면에 형성되어 있으며, 다공성 코팅층용 바인더 고분자에 의해 무기물 입자가 연결 및 고정되어 있고 무기물 입자간의 인터스티셜 볼륨(interstitial volume)으로 인해 마이크로 단위의 기공이 형성되어 있다.
다공성 코팅층용 바인더 고분자는 무기물 입자와의 결합력이 우수하며, 전해액에 의해 쉽게 용해되지 않는 성분이라면 특별히 제한되지 않는다. 다공성 코팅층용 바인더 고분자로 사용가능한 화합물의 비제한적인 예로 폴리비닐리덴 플루오라이드-헥사플루오로 프로필렌(polyvinylidene fluoride-co-hexafluoro propylene, PVDF-co-HFP), 폴리비닐리덴 플루오라이드-트리클로로 에틸렌(polyvinylidene fluoride-co-trichloro ethylene), 폴리비닐리덴 플루오라이드-클로로트리플루오로 에틸렌(polyvinylidene fluoride-co-chlorotrifluoro ethylene), 폴리메틸 메타크릴레이트(polymethyl methacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 에틸렌 비닐아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드(polyethylene oxide), 셀룰로오스 아세테이트(cellulose acetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸 풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알코올(cyanoethylpolyvinylalcohol), 시아노에틸 셀룰로오스(cyanoethyl cellulose), 시아노에틸 수크로오스(cyanoethyl sucrose), 풀루란(pullulan), 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose, CMC), 아크릴로니트릴-스티렌-부타디엔 공중합체(acrylonitrile-styrene-butadiene copolymer), 폴리이미드(polyimide), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile) 및 스티렌 부타디엔 고무(styrene butadiene rubber, SBR)로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
한편, 본 발명의 일 실시예에 따른 이차전지용 단위 셀은, 양극(1)과 분리막(3)의 계면 및/또는 음극(2)과 분리막(3)의 계면에 있어서, 접착력이 전체적으로 동일하게 형성되어 있지 않으며, 패턴화된 접착력을 갖는다. 즉, 전극(1,2)과 분리막(3)의 계면은, 영역별로 다른 접착력을 가짐으로써 전극(1,2)과 분리막(3) 사이의 밀착도가 영역별로 다른데, 이러한 패턴화된 접착력의 형성 방법에 대해서는 이하 도 5 및 도 6을 참조하여 보다 상세히 기술하기로 한다.
다음은, 도 5 내지 도 7을 참조하여, 본 발명의 일 실시예에 따른 단위 셀의 제조공정을 살펴보기로 한다.
도 5는 본 발명에 따른 이차전지용 단위 셀을 제조하기 위한 설비를 나타내는 개략도이고, 도 6은 본 발명의 실시예에 따른 이차전지용 단위 셀의 제조에 이용되는 플라즈마 처리 장치를 나타내는 도면이며, 도 7은 도 6에 도시된 플라즈마 처리 장치에 적용되는 마스크를 나타내는 도면이다.
먼저, 도 5를 참조하면, 본 발명의 일 실시예에 따른 단위 셀의 제조공정은, 중앙 전극(P1)을 공급하는 단계, 분리막(S1,S2)을 공급하는 단계, 플라즈마 처리를 수행하는 단계, 상부 전극(P2)과 하부 전극(P3)을 공급하는 단계, 및 라미네이션 단계를 포함한다.
상기 중앙 전극(P1)을 공급하는 단계는, 중앙 전극 공급 롤(11)에 감겨진 긴 원단 형태의 중앙 전극(P1)을 공급하는 단계이다.
상기 분리막(S1,S2) 공급 단계는, 분리막 공급 롤(12,13) 각각에 감겨진 긴 원단 형태의 분리막(S1,S2)을 중앙 전극(P1)의 양 면 상에 공급하는 단계이다.
상기 플라즈마 처리 단계는, 공급되는 분리막(S1,S2)의 표면에 플라즈마 처리장치(16)를 이용하여 플라즈마 처리를 함으로써 분리막(S1,S2)의 표면 개질을 통해 전극(P1,P2,P3)과의 접착력을 높이되, 분리막(S1,S2) 표면의 일부 영역은 플라즈마 처리가 이루어지고 나머지 영역에는 플라즈마 처리가 이루어지지 않도록 하는 패턴화된 플라즈마 처리를 수행하는 단계이다.
상기 상부 전극(P2)과 하부 전극(P3) 공급 단계는, 플라즈마 처리가 이루어진 분리막(S1,S2) 상에 전극 공급 롤(12,13)을 이용하여 긴 원단 형태의 상부 전극(P2) 및 하부 전극(P3)을 공급하는 단계이다.
상기 라미네이션 단계는, 하부층으로부터 순차적으로 적층된 하부 전극(P2)/분리막(S2)/중앙 전극(P1)/분리막(S1)/상부 전극(P1)으로 이루어진 적층체에 있어서, 서로 이웃하는 전극/분리막 계면이 접착되도록 하기 위해 라미네이션을 수행하는 단계이다. 이러한 라미네이션 단계는, 분리막(S1,S2) 상에 놓여진 상부 전극(P2) 및 하부 전극(P3) 상에 히터(17)를 이용하여 열을 가하는 가열 단계 및 열이 가해진 상부 전극(P2) 및 하부 전극(P3) 상에 라미네이션 롤(18)을 이용하여 압력을 가함으로써 각 전극과 분리막 사이를 압착시키는 압착 단계를 포함한다.
한편, 상기 이차전지용 단위 셀의 제조공정은, 공급된 원단 형태의 중앙 전극들(P1,P2,P3) 및 분리막(S1,S2) 각각을 컷터(19,20,21,22)를 이용하여 미리 정해진 길이로 컷팅하는 단계를 더 포함할 수 있다.
또한, 도면에 도시되지는 않았으나, 상기 이차전지용 단위 셀의 제조공정은, 라미네이션이 완료되어 완성된 이차전지용 단위 셀을 검사 및 배출하는 단계를 더 포함할 수도 있다.
여기서, 단위 셀의 검사는, 단위 셀의 제조를 위한 적층 공정에 있어서, 전극과 분리막 사이에 이물질이 존재하는지 여부, 단위 셀이 정확한 사이즈로 만들어졌는지 여부 등에 대한 검사를 의미하는 것이다.
한편, 도 6 및 도 7을 참조하면, 플라즈마 처리장치의 구성이 좀 더 상세히 나타나 있다. 즉, 도 6을 참조하면, 본 발명에 적용되는 플라즈마 처리 장치는, 전원부(16a) 및 전극부(16b)를 포함하여 구성되며, 전극부(16b)와 분리막(S1) 사이에는 패턴화된 플라즈마 처리를 수행하기 위해 적용되는 마스크(M)가 구비된다.
도 6 및 7을 참조하면, 상기 마스크(M)는, 분리막(S1)의 표면의 일부 영역에 대해서는 플라즈마 처리가 이루어지고, 그 외의 나머지 영역에 대해서는 플라즈마 처리가 이루어지지 않도록 하기 위해, 플라즈마가 통과될 수 있는 제1 영역(M1) 및 플라즈마가 통과될 수 없는 제2 영역(M2)으로 구성된다.
즉, 상기 분리막(S1)이 표면에 있어서, 플라즈마 처리 시에 상기 제1 영역(M1)과 대면하는 부분은 플라즈마 처리에 의한 표면 개질이 이루어짐으로서 라미네이션 시에 전극과 강한 접착이 이루어지게 되는 반면, 제2 영역과 대면하는 부분은 플라즈마 처리가 이루어지지 않아 라미네이션 시에 전극과 상대적으로 약한 접착이 이루어지게 된다. 다만, 도 7에 도시된 마스크(M)의 패턴은 예시적인 것일 뿐이며, 패턴화된 접착력 실현을 위한 마스크(M)의 패턴은 다양하게 형성될 수 있는 것이다.
이처럼, 마스크(M)를 이용한 플라즈마 처리가 이루어진 분리막(S1)과 전극 사이의 계면은, 접착력이 강한 영역과 상대적으로 접착력이 약한 영역을 포함하게 된다. 단위 셀을 이용하여 이차전지를 제조함에 있어서 케이스 내에는 단위 셀과 함께 전해액이 충진되는데, 본 발명의 일 실시예에 따른 단위 셀은 분리막과 전극 간의 접착력이 상대적으로 약한 영역을 가짐으로써 이처럼 접착력이 약한 영역을 통한 전해액 함침이 빠르게 이루어질 수 있으며, 이로써 이차전지의 성능 향상을 가져올 수 있다.
한편, 본 발명에 따른 이차전지용 단위 셀의 제조 조건은 아래와 같다:
(1). (이용된 분리막 정보):
PP 재질의 원단을 이용하여 제조된 SRS 분리막(조성: PVDF+Al2O2)이 이용됨.
(2). (플라즈마 처리 조건):
2-4.5kV, 10-30kHz 조건으로 플라즈마 처리가 수행됨.
(3). (플라즈마 처리에 따른 효과를 입증하기 위한 실험 방법):
제조된 바이셀(bicell)을 전해액 내에 일정 깊이(5mm 이하)만큼 담근 상태에서 위치별로 전해액에 젖은 영역의 높이를 비교함.
도 8 및 도 9에 나타난 젖음성을 나타내는 도면을 상호 비교해 보면, 종래의 이차전지용 단위 셀(도 8)과 본 발명의 일 실시예에 따른 이차전지용 단위 셀(도 9)는 전해액에 대한 젖음성에 있어서 큰 차이가 있음을 알 수 있다.
즉, 종래의 단위 셀을 이용한 전해액 함침 실험에서는 하단으로부터 대략 5.5~6.0mm 의 높이로 전해액 함침이 발생된 반면(도 8), 본 발명의 일 실시예에 따른 단위 셀을 이용한 전해액 함침 실험에서는 하단으로부터 대략 6mm의 높이로 전해액 함침이 발생된 영역과 그보다 훨씬 더 높은 영역(하단으로부터 대략 18~26mm 지점)까지 전해액 함침이 발생된 영역 공존함을 확인할 수 있다.
이처럼, 더 높은 영역까지 전해액 함침이 이루어진 영역은, 플라즈마 처리 시에 마스킹으로 인해 플라즈마 처리가 이루어지지 않아 주변보다 상대적으로 전극/분리막 계면의 접착력이 떨어지는 영역에 해당하는 것이다.
즉, 물질 간의 접착은, 화학적 접착(chemical Adhesion)과 기계적 접착(Mechanical Interlocking)으로 나눌 수 있는데, 본원발명과 같이 플라즈마 처리에 의한 접착력 향상은 이 중 화학적 접착력이 강화되어 발생되는 현상이다. 화학적 접착의 종류로는, 정전기적 인력, 화학적 흡착(Chemical Absorption), 화학적 결합(Chemical bonding) 등을 들 수 있는데, 본 발명에서와 같이 분리막의 표면 중 일부에 플라즈마 처리가 수행되는 경우, 플라즈마 처리가 이루어진 영역은, 예를 들어, C-H, C=C, C-C 와 같은 본딩 구조가 C-O, C=O, O-C-O, O-C=O 와 같은 본딩 구조로 바뀌는 등의 표면개질로 인해 이러한 정전기적 인력, 화학적 흡착(Chemical Absorption), 화학적 결합(Chemical bonding) 등이 강화되는 것이다. 반면, 이러한 플라즈마 처리가 이루어지지 않은 영역은, 상대적으로 접착력이 떨어져, 해당 영역에서 전해액의 함침성이 향상되는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (7)

  1. 제1 극성을 갖는 중앙 전극;
    상기 중앙 전극의 양 면 상에 각각 라미네이션 되는 한 쌍의 분리막; 및
    상기 한 쌍의 분리막 상에 각각 라미네이션 되며 제2 극성을 갖는 상부 전극 및 하부 전극;
    을 포함하며,
    상기 분리막은 패턴화된 접착력을 갖는 이차전지용 단위 셀.
  2. 제1항에 있어서,
    상기 분리막은,
    제1 접착력을 갖는 제1 영역; 및
    상기 제1 접착력보다 낮은 접착력을 갖는 제2 영역;
    을 포함하는 것을 특징으로 하는 이차전지용 단위 셀.
  3. 제2항에 있어서,
    상기 제1 영역은 플라즈마 처리된 영역이고, 상기 제2 영역은 플라즈마 처리가 이루어지지 않은 영역인 것을 특징으로 하는 이차전지용 단위 셀.
  4. 중앙 전극을 공급하는 단계;
    상기 중앙 전극의 양 면 상에 분리막을 공급하는 단계;
    상기 분리막의 표면에 플라즈마를 처리하되, 일부 영역은 플라즈마 처리가 이루어지고 나머지 영역에는 플라즈마 처리가 이루어지지 않도록 하는 단계;
    상기 분리막 상에 상부 전극 및 하부 전극을 공급하는 단계; 및
    상기 중앙 전극, 상부 전극 및 하부 전극 각각이 상기 분리막에 접착되도록 라미네이션을 수행하는 단계;
    를 포함하는 이차전지용 단위 셀의 제조방법.
  5. 제4항에 있어서,
    상기 라미네이션을 수행하는 단계는,
    상기 상부 전극 및 하부 전극 상에 열을 가하는 단계; 및
    열이 가해진 상기 상부 전극 및 하부 전극 상에 압력을 가하여 압착하는 단계;
    를 포함하는 것을 특징으로 하는 이차전지용 단위 셀의 제조방법.
  6. 제3항에 있어서,
    상기 이차전지용 단위 셀의 제조방법은,
    상기 공급된 상기 중앙 전극, 상부 전극, 하부 전극 및 분리막 각각을 미리 정해진 길이로 컷팅하는 단계를 더 포함하는 것을 특징으로 하는 이차전지용 단위 셀의 제조방법.
  7. 제3항에 있어서,
    상기 이차전지용 단위 셀의 제조방법은,
    라미네이션이 완료된 이차전지용 단위 셀을 검사 및 배출하는 단계를 더 포함하는 것을 특징으로 하는 이차전지용 단위 셀의 제조방법.
PCT/KR2017/010646 2016-10-10 2017-09-26 젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법 WO2018070701A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL17859633.4T PL3396767T3 (pl) 2016-10-10 2017-09-26 Ogniwo jednostkowe do baterii akumulatorowej o zwiększonej zwilżalności i sposób jego wytwarzania
CN201780008189.0A CN108604702B (zh) 2016-10-10 2017-09-26 具有改善的润湿性的二次电池用单元电池及其制造方法
EP17859633.4A EP3396767B1 (en) 2016-10-10 2017-09-26 Unit cell for secondary battery with improved wettability and method for manufacturing the same
US16/066,757 US10804560B2 (en) 2016-10-10 2017-09-26 Unit cell for secondary battery with improved wettability and method for manufacturing the same
ES17859633T ES2928898T3 (es) 2016-10-10 2017-09-26 Celda unitaria para batería secundaria con humectabilidad mejorada y procedimiento para fabricar la misma

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160130780 2016-10-10
KR10-2016-0130780 2016-10-10
KR1020170123465A KR102111105B1 (ko) 2016-10-10 2017-09-25 젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법
KR10-2017-0123465 2017-09-25

Publications (1)

Publication Number Publication Date
WO2018070701A1 true WO2018070701A1 (ko) 2018-04-19

Family

ID=61905401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010646 WO2018070701A1 (ko) 2016-10-10 2017-09-26 젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법

Country Status (4)

Country Link
ES (1) ES2928898T3 (ko)
HU (1) HUE059998T2 (ko)
PL (1) PL3396767T3 (ko)
WO (1) WO2018070701A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219305A (zh) * 2019-01-02 2021-01-12 株式会社Lg化学 制造单元电池的设备和方法
CN113646937A (zh) * 2019-03-06 2021-11-12 株式会社Lg新能源 制造电池的设备和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020011491A (ko) * 2000-08-02 2002-02-09 롤페스 요하네스 게라투스 알베르투스 세퍼레이터와 전극을 본딩하는 방법
KR20120111078A (ko) * 2011-03-31 2012-10-10 주식회사 엘지화학 전극조립체의 제조방법 및 이를 이용하여 생산되는 전극조립체
KR101578265B1 (ko) * 2013-02-26 2015-12-16 주식회사 엘지화학 안정성이 향상된 이차전지용 바이셀 및 그 제조방법
KR20160028730A (ko) * 2014-09-04 2016-03-14 주식회사 엘지화학 기본 단위체 제조 장치 및 전극 조립체의 제조 방법
KR101625602B1 (ko) * 2015-10-28 2016-05-30 주식회사 케이엠지 전사코팅법을 이용한 연속 이차전지 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020011491A (ko) * 2000-08-02 2002-02-09 롤페스 요하네스 게라투스 알베르투스 세퍼레이터와 전극을 본딩하는 방법
KR20120111078A (ko) * 2011-03-31 2012-10-10 주식회사 엘지화학 전극조립체의 제조방법 및 이를 이용하여 생산되는 전극조립체
KR101578265B1 (ko) * 2013-02-26 2015-12-16 주식회사 엘지화학 안정성이 향상된 이차전지용 바이셀 및 그 제조방법
KR20160028730A (ko) * 2014-09-04 2016-03-14 주식회사 엘지화학 기본 단위체 제조 장치 및 전극 조립체의 제조 방법
KR101625602B1 (ko) * 2015-10-28 2016-05-30 주식회사 케이엠지 전사코팅법을 이용한 연속 이차전지 제조방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219305A (zh) * 2019-01-02 2021-01-12 株式会社Lg化学 制造单元电池的设备和方法
EP3790094A4 (en) * 2019-01-02 2021-08-04 Lg Chem, Ltd. APPARATUS AND METHOD FOR MANUFACTURING UNIT CELLS
US11824152B2 (en) 2019-01-02 2023-11-21 Lg Energy Solution, Ltd. Apparatus and method for manufacturing unit cell
CN112219305B (zh) * 2019-01-02 2024-04-30 株式会社Lg新能源 制造单元电池的设备和方法
CN113646937A (zh) * 2019-03-06 2021-11-12 株式会社Lg新能源 制造电池的设备和方法
CN113646937B (zh) * 2019-03-06 2024-02-23 株式会社Lg新能源 制造电池的设备和方法

Also Published As

Publication number Publication date
HUE059998T2 (hu) 2023-01-28
ES2928898T3 (es) 2022-11-23
PL3396767T3 (pl) 2023-01-23

Similar Documents

Publication Publication Date Title
US10115950B2 (en) Method of preparing separator for lithium secondary battery, separator prepared therefrom, and lithium secondary battery comprising the same
KR102111105B1 (ko) 젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법
WO2012138039A4 (ko) 세퍼레이터 및 이를 구비하는 전기화학소자
WO2009096671A2 (en) Separator for progressing united force to electrode and electrochemical containing the same
KR101745631B1 (ko) 평균입경이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법
EP2899776B1 (en) Method of manufacturing a separator for a lithium secondary battery
WO2011043587A2 (ko) 전지용 전극조립체 및 그 제조방법
WO2015065127A1 (ko) 스택-폴딩형 전극 조립체
WO2014084681A1 (ko) 표면 특성이 다른 무기물 입자의 이중 다공성 코팅층을 포함하는 이차전지용 분리막, 이를 포함하는 이차전지, 및 상기 분리막의 제조방법
WO2018147714A1 (ko) 접착층을 구비한 리튬 이차전지용 분리막
WO2015065119A1 (ko) 양극 집전체에 간헐적 무지부가 형성된 젤리 롤 형태 전극 조립체를 가진 이차전지
US11133560B2 (en) Insulating tape and li-ion battery adopting the same
KR101446163B1 (ko) 접착력이 개선된 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2013137575A1 (ko) 신규한 구조의 전극조립체 및 이를 포함하는 전지셀
KR20160054936A (ko) 분리막, 분리막-전극 복합체 및 이를 포함하는 전기화학소자
KR20170032722A (ko) 안전성이 향상된 세퍼레이터 및 이를 포함하는 각형 이차전지
KR20140082261A (ko) 삼층 분리막, 이를 포함하는 전기화학소자, 및 상기 분리막의 제조방법
WO2018070701A1 (ko) 젖음성이 향상된 이차전지용 단위 셀 및 그 제조방법
WO2013002496A2 (ko) 절연부재가 장착된 이차전지
KR20170025159A (ko) 엠보싱 층을 구비한 세퍼레이터 및 이를 포함하는 리튬이차전지
WO2016111606A1 (ko) 열확산성 분리막 및 이를 포함하는 이차전지
WO2018030810A1 (ko) 전극과 분리막이 부분 결착된 전극조립체
KR102153008B1 (ko) 분리막-바인더층 복합체 및 이를 포함하는 이차전지 제조방법
KR101507499B1 (ko) 이차전지용 전극조립체
KR20200129650A (ko) 단위 셀 제조 장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017859633

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017859633

Country of ref document: EP

Effective date: 20180724

NENP Non-entry into the national phase

Ref country code: DE