WO2018070270A1 - 電力変換装置およびこれを用いたシステム - Google Patents

電力変換装置およびこれを用いたシステム Download PDF

Info

Publication number
WO2018070270A1
WO2018070270A1 PCT/JP2017/035475 JP2017035475W WO2018070270A1 WO 2018070270 A1 WO2018070270 A1 WO 2018070270A1 JP 2017035475 W JP2017035475 W JP 2017035475W WO 2018070270 A1 WO2018070270 A1 WO 2018070270A1
Authority
WO
WIPO (PCT)
Prior art keywords
lower arms
power conversion
load
conversion device
arms
Prior art date
Application number
PCT/JP2017/035475
Other languages
English (en)
French (fr)
Inventor
渉 初瀬
小山 昌喜
修平 永田
鈴木 尚礼
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112017004591.6T priority Critical patent/DE112017004591T5/de
Priority to CN201780062630.3A priority patent/CN109845083B/zh
Priority to US16/339,468 priority patent/US11171576B2/en
Publication of WO2018070270A1 publication Critical patent/WO2018070270A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/5388Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with asymmetrical configuration of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device and a system using the same.
  • Patent Document 1 discloses a main circuit of an inverter having a configuration in which two high-speed switching elements are connected in series in one set and two low-speed switching elements are connected in series in another set. Has been.
  • Patent Document 1 no consideration is given to reducing the loss generated in each semiconductor element by making the resistance characteristic of each semiconductor element suitable in consideration of the load characteristic of the device controlled by the power conversion device.
  • the present invention provides a power conversion device and a system using the power conversion device that can improve the efficiency of equipment controlled by the power conversion device while reducing the loss of each semiconductor element in the power conversion circuit.
  • a power converter includes a DC power source, and a full bridge circuit having a first upper and lower arm and a second upper and lower arm, each having an upper element and a lower element, A power conversion device in which the first upper and lower arms and the second upper and lower arms can be electrically connected to a device, wherein an upper element of the first upper and lower arms and a lower element of the second upper and lower arms The ON resistance is smaller than the ON resistance of the lower element of the first upper and lower arms and the upper element of the second upper and lower arms.
  • a system using the power conversion device of the present invention includes a DC power supply, and a full bridge circuit having a first upper and lower arm and a second upper and lower arm, each having an upper element and a lower element, The ON resistance of the upper element of one upper and lower arm and the lower element of the second upper and lower arm is lower than the ON resistance of the lower element of the first upper and lower arm and the upper element of the second upper and lower arm.
  • the first load When the upper element and the lower element of the second upper and lower arm are ON, the first load responds, and the lower element of the first upper and lower arm and the upper element of the second upper and lower arm are ON. In the state, the first Characterized in that it responds at the second load smaller than the load.
  • FIG. 1 is an overall schematic configuration diagram of a system including a power conversion device 1 and a compressor 3 according to a first embodiment of the present invention.
  • the compressor 3 is a device that uses a linear motor as a drive source.
  • Each of the linear motor and the compressor 3 is electrically connected to the power conversion device 1, and is an example of a system using the power conversion device 1.
  • the power conversion device 1 includes a power conversion circuit 11, a control unit 12, and a DC power source 13.
  • the compressor 3 slides on the bottomed cylindrical cylinder 31 and the inner side surface of the cylinder 31 to change the internal volume surrounded by the cylinder 31 and its own surface (front end surface) facing the bottom surface of the cylinder 31.
  • a linear motor is constituted by a winding 33 wound around a magnetic body and a mover 34 having one end connected to the piston 32.
  • the mover 34 is provided with a permanent magnet (not shown). Yes.
  • the power conversion circuit 11 converts DC power supplied from the DC power supply 13 into AC power and outputs the AC power to the compressor 3.
  • the power conversion circuit 11 is a single phase and has two sets of upper and lower arms in which two semiconductor elements are connected in series. More specifically, a first upper and lower arm in which the semiconductor element 111 and the semiconductor element 112 are connected in series and a second upper and lower arm in which the semiconductor element 113 and the semiconductor element 114 are connected in series are connected in parallel. A full bridge circuit is formed.
  • the semiconductor element 111 and the semiconductor element 113 are connected to the positive side of the DC power supply 13, and the semiconductor element 112 and the semiconductor element 114 are connected to the negative side of the DC power supply 13.
  • One end of the winding 33 of the compressor 3 is connected to the wiring connecting the semiconductor element 111 and the semiconductor element 112 (between the semiconductor element 111 and the semiconductor element 112), and the wiring connecting the semiconductor element 113 and the semiconductor element 114.
  • the other end of the winding 33 of the compressor 3 is connected between the semiconductor element 113 and the semiconductor element 114.
  • a semiconductor element connected to the positive side of the DC power supply 13 is also referred to as an upper element, and a semiconductor element connected to the negative side is also referred to as a lower element.
  • the control unit 12 controls the power conversion circuit 11 based on the motor current flowing through the winding 33.
  • the power conversion circuit 11 outputs AC power to the winding 33.
  • the mover 34 has at least one or more permanent magnets, and reciprocates in response to the AC magnetic flux generated by the winding 33 in response to the output of the power conversion circuit 11.
  • the cylinder 31 has a valve (not shown) capable of withdrawing fluid (working fluid) into and out of the inner volume portion.
  • coolant is used as a fluid (working fluid) is demonstrated as an example.
  • FIG. 2 is a schematic diagram for explaining the relationship between the current flowing through the power conversion device 1 and the compressor 3 constituting the system shown in FIG. 1 and the load of the compressor 3 accompanying the compression of the fluid (working fluid).
  • the gaseous refrigerant that is a fluid (working fluid) is compressed or expanded as the piston 32 reciprocates.
  • the work (load) required for compression or expansion of such a gas (working fluid) gas refrigerant is different, and generally, the compression load (first load) is the expansion (suction) load (second load). Greater than.
  • the thrust of the linear motor required for compression is larger than the thrust of the linear motor required for expansion (suction)
  • the direction of the current that flows when obtaining the thrust of the linear motor during compression is referred to as a positive direction
  • the direction of the current that flows when obtaining the thrust of the linear motor during expansion (suction) is referred to as a negative direction.
  • the first load (compression load) and the second load (expansion load) do not have to be constant throughout the generation time of these loads. For example, as the time average value of one cycle, the first load As long as the load (compression load) is larger than the second load (expansion load).
  • the semiconductor element that is diagonally opposite (positioned diagonally to each other) is switched on and off to flow through the winding 33 wound around the magnetic body.
  • the direction of the current can be switched.
  • two semiconductor elements 111 (upper elements of the first upper and lower arms) opposite to each other (located on diagonal lines) and the semiconductor element 114 By turning on the lower elements of the second upper and lower arms, and turning off the remaining semiconductor elements 112 (lower elements of the first upper and lower arms) and the semiconductor elements 113 (upper elements of the second upper and lower arms). Assume that the current flowing through the winding 33 is in the positive direction.
  • the two semiconductor elements 112 lower elements of the first upper and lower arms
  • the semiconductor elements 113 upper elements of the second upper and lower arms opposite to each other (located diagonally to each other) and the semiconductor elements 113 (upper elements of the second upper and lower arms) are turned on.
  • the current flowing through the winding 33 is in the negative direction by turning off the semiconductor element 111 (the upper element of the first upper and lower arms) and the semiconductor element 114 (the lower element of the second upper and lower arms).
  • the semiconductor element 111 (the upper element of the first upper and lower arms) and the semiconductor element 114 (the lower side of the second upper and lower arms)
  • the ON time ratio of the element is made higher than the ON time ratio of the semiconductor element 112 (the lower element of the first upper and lower arms) and the semiconductor element 113 (the upper element of the second upper and lower arms), so that the semiconductor element 111 ( The motor current flowing through the upper element of the first upper and lower arms and the semiconductor element 114 (lower element of the second upper and lower arm) is converted into the semiconductor element 112 (lower element of the first upper and lower arm) and the semiconductor element 113 (first element).
  • the power conversion device 1 including the single-phase power conversion circuit 11 connected to devices having different current amounts suitable for the positive direction and the negative direction is diagonally opposite (on the diagonal lines with respect to each other). Current is concentrated in the semiconductor element (located).
  • FIG. 3 is a diagram showing schematic characteristics with respect to current of switching loss and conduction loss of a MOS (Metal-Oxide-Semiconductor) type element which is a kind of semiconductor element.
  • the switching loss (SW loss) indicated by the solid line is a loss generated by switching of the semiconductor element and has a substantially linear relationship with the motor current.
  • the conduction loss (conduction loss) indicated by the alternate long and short dash line is a loss caused by resistance (ON resistance) when the semiconductor element is energized, and has a relationship proportional to the square of the motor current.
  • SW loss switching loss
  • conduction loss conduction loss
  • FIG. 4 is a diagram showing a schematic characteristic with respect to the current of the total loss obtained by adding the switching loss (SW loss) and the conduction loss (conduction loss) of the MOS type element.
  • SW loss switching loss
  • conduction loss conduction loss
  • FIG. 4 among the MOS elements, a semiconductor element having a low SW loss is indicated by a solid line, and a semiconductor element having a low conduction loss is indicated by a one-dot chain line.
  • the region where the current is small the region where the motor current corresponding to the second load (expansion load) exists
  • the total loss of the low SW loss semiconductor element is small
  • the region where the current is large corresponding to the first load (compression load)
  • the total loss of the semiconductor element with low conduction loss is small.
  • the graph shape illustrated in FIG. 4 is usually qualitatively maintained even if the ON / OFF ratio of the element is changed. For this reason, the semiconductor element 111 (the upper element of the first upper and lower arms) and the semiconductor element 114 (the lower element of the second upper and lower arms) and the semiconductor element 112 (the first upper and lower arms) have a current concentration.
  • the lower element of the upper and lower arms) and the semiconductor element 113 include the semiconductor element 111 (the upper element of the first upper and lower arm) and the semiconductor element 114 (the lower element of the second upper and lower arm).
  • the ON resistance value and SW loss value of the semiconductor element also depend on the thickness of the semiconductor element and the chip area.
  • the total loss of the semiconductor element 111 (the upper element of the first upper and lower arms) and the semiconductor element 114 (the lower element of the second upper and lower arms) corresponds to the first load (compressive load).
  • the amount of current required to generate the thrust of the linear motor is smaller than that of the semiconductor element 112 (lower element of the first upper and lower arms) and the semiconductor element 113 (upper element of the second upper and lower arms), and the second load (expansion).
  • the amount of current required to generate the thrust of the linear motor corresponding to the load) is larger than that of the semiconductor element 111 (the upper element of the first upper and lower arms) and the semiconductor element 114 (the lower element of the second upper and lower arms). It is preferable to select a combination of various semiconductor element types.
  • the first load (compression load) and the second load (expansion load) may be considered as a compression load and an expansion load in a steady state.
  • the steady state refers to, for example, a state where the flow rate of the gaseous refrigerant entering and exiting the compression chamber is maintained substantially constant for 5 seconds or more.
  • a power conversion device capable of increasing the efficiency of equipment controlled by the power conversion device while reducing the loss of each semiconductor element in the power conversion circuit, and a system using the same Can be provided.
  • the power conversion device 1 of the present embodiment it is possible to suppress loss of each semiconductor element and drive the compressor 3 that is single-phase driven with high efficiency.
  • Example 2 The configuration of Example 2 is the same as that of Example 1 except for the following points.
  • the power conversion device 1 includes a MOS element and an IGBT (Insulated Gate Bipolar Transistor) element. More specifically, instead of the MOS semiconductor element 111 (the upper element of the first upper and lower arms) and the semiconductor element 114 (the lower element of the second upper and lower arms) that are turned on when a positive current flows.
  • the IGBT type semiconductor element 115 (the upper element of the first upper and lower arms) and the IGBT type semiconductor element 116 (the lower element of the second upper and lower arms) are used.
  • FIG. 5 is an overall schematic configuration diagram of a system including the power conversion device 1 and the compressor 3 according to the present embodiment
  • FIG. 6 is a diagram illustrating schematic characteristics with respect to current of switching loss and conduction loss of a MOS type element and an IGBT type element.
  • the MOS type element indicated by the solid line has a switching loss (SW loss) that is substantially linear to the motor current and a conduction loss that is proportional to the square of the motor current, as described above. (Conduction loss).
  • the IGBT type element indicated by the alternate long and short dash line has a substantially linear relationship with respect to the motor current because the switching loss (SW loss) occurs on the same principle as the MOS type element.
  • the conduction loss is a loss generated by the forward voltage due to the diode, and therefore has a substantially linear relationship with the motor current, unlike the case of the MOS type element.
  • FIG. 7 is a diagram showing a schematic characteristic with respect to current of the total loss obtained by adding the switching loss (SW loss) and the conduction loss (conduction loss) of each of the MOS type element and the IGBT type element.
  • SW loss switching loss
  • conduction loss conduction loss
  • the total loss of the IGBT type element indicated by the one-dot chain line is more than the total loss of the MOS type element indicated by the solid line. small. Therefore, in this embodiment, as shown in FIG. 5, as the semiconductor elements of the power conversion circuit 11, the semiconductor element 115 (the upper element of the first upper and lower arms) and the semiconductor element 116 (second element) in which current concentration occurs.
  • the IGBT element is applied to the lower element of the upper and lower arms of the semiconductor element 112 (the lower element of the first upper and lower arm) and the semiconductor element 113 (the upper element of the second upper and lower arm) where current concentration does not occur. ) Is a MOS type element. This makes it possible to reduce the total loss.
  • the IGBT type element another element that causes conduction loss due to a forward voltage by a diode may be used.
  • a power conversion device capable of increasing the efficiency of equipment controlled by the power conversion device while reducing the loss of each semiconductor element in the power conversion circuit, and a system using the same Can be provided.
  • the power conversion device 1 of the present embodiment it is possible to suppress loss of each semiconductor element and drive the compressor 3 that is single-phase driven with high efficiency.
  • the system which consists of the power converter device 1 and the compressor 3 of Example 1 or Example 2 mentioned above is the compression for pumping a refrigerant in an air conditioner including a heat exchanger functioning as a condenser or an evaporator. Applicable to the machine. Further, the system including the power conversion device 1 and the compressor 3 according to the first embodiment or the second embodiment can be applied to a compressor that compresses a working fluid in order to adjust the vehicle height in the air suspension.
  • system including the power conversion device 1 and the compressor 3 according to the first embodiment or the second embodiment can also be applied to a compressor that pumps liquid refrigerant in a refrigerator having a condenser and an evaporator.
  • the compressor 3 is described as an example of a device that is electrically connected to the power conversion device 1 that constitutes the system.
  • the present invention is not limited to this.
  • a device that is electrically connected to the power conversion device 1 shown in the first embodiment and the second embodiment described above a device whose load fluctuates in an operating state or an operating state, particularly a gas phase, a liquid phase, or a gas.
  • the present invention can be similarly applied to an apparatus for controlling a liquid mixed phase, a viscous fluid, or the like.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the technical idea of the present application.
  • SYMBOLS 1 Power converter device, 11 ... Power converter circuit (full bridge circuit), 111-116 ... Semiconductor element, 12 ... Control part, 13 ... DC power supply, 3 ... Compressor , 31 ... cylinder, 32 ... piston, 33 ... winding, 34 ... mover

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換回路における各半導体素子の損失を低減しつつ、電力変換装置により制御される機器の高効率化を可能とする電力変換装置およびこれを用いたシステムを提供する。直流電源と、それぞれ上側素子及び下側素子を有する第1の上下アーム及び第2の上下アームと、を有するフルブリッジ回路と、を備え、第1の上下アーム及び第2の上下アームが、機器に電気的に接続可能な電力変換装置であって、第1の上下アームの上側素子及び第2の上下アームの下側素子のON抵抗は、第1上下アームの下側素子及び第2上下アームの上側素子のON抵抗よりも小さい。

Description

電力変換装置およびこれを用いたシステム
 本発明は、電力変換装置およびこれを用いたシステムに関する。
 電力変換装置を用いて圧縮機を制御する方法が知られている。電力変換装置は、半導体素子を複数有し得るが、2種以上の素子を用いることで電力変換装置の高効率化を図る構成が提案されている。 
 特許文献1には、2組の上下アームのうち、1つの組では高速スイッチング素子を2個直列接続し、別の組では低速スイッチング素子を2個直列接続する構成を備えるインバータの主回路が開示されている。
特開昭63-262062号公報
 しかしながら、特許文献1は、各半導体素子の抵抗特性について、電力変換装置が制御する機器の負荷特性を考慮して好適にすることで、各半導体素子で発生する損失を低減することについて何ら考慮されていない。 
 そこで、本発明は、電力変換回路における各半導体素子の損失を低減しつつ、電力変換装置により制御される機器の高効率化を可能とする電力変換装置およびこれを用いたシステムを提供する。
 上記課題を解決するため、本発明の電力変換装置は、直流電源と、それぞれ上側素子及び下側素子を有する第1の上下アーム及び第2の上下アームを有するフルブリッジ回路と、を備え、前記第1の上下アーム及び前記第2の上下アームが、機器に電気的に接続可能な電力変換装置であって、前記第1の上下アームの上側素子及び前記第2の上下アームの下側素子のON抵抗は、前記第1の上下アームの下側素子及び前記第2の上下アームの上側素子のON抵抗よりも小さいことを特徴とする。 
 また、本発明の電力変換装置を用いたシステムは、直流電源と、それぞれ上側素子及び下側素子を有する第1の上下アーム及び第2の上下アームを有するフルブリッジ回路と、を備え、前記第1の上下アームの上側素子及び前記第2の上下アームの下側素子のON抵抗は、前記第1の上下アームの下側素子及び前記第2の上下アームの上側素子のON抵抗よりも小さい電力変換装置と、前記電力変換装置の前記第1の上下アーム及び前記第2の上下アームに電気的に接続される機器と、を備えるシステムであって、前記機器は、前記第1の上下アームの上側素子及び前記第2の上下アームの下側素子がONの状態では、第1の負荷で応答し、前記第1の上下アームの下側素子及び前記第2の上下アームの上側素子がONの状態では、前記第1の負荷よりも小さい第2の負荷で応答することを特徴とする。
 本発明によれば、電力変換回路における各半導体素子の損失を低減しつつ、電力変換装置により制御される機器の高効率化を可能とする電力変換装置およびこれを用いたシステムを提供することが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例に係る実施例1の電力変換装置及び圧縮機よりなるシステムの全体概略構成図である。 図1に示すシステムを構成する電力変換装置及び圧縮機を流れる電流と、作動流体の圧縮に伴う圧縮機の負荷との関係を説明する概略図である。 MOS型素子のスイッチング損失と導通損失の電流に対する概略特性を示す図である。 MOS型素子の総合損失の電流に対する概略特性を示す図である。 本発明の他の実施例に係る実施例2の電力変換装置及び圧縮機よりなるシステムの全体概略構成図である。 MOS型素子とIGBT素子のスイッチング損失と導通損失の電流に対する概略特性を示す図である。 MOS型素子とIGBT素子の電流に対する概略特性を示す図である。
 以下、添付の図面を適宜参照しつつ、本発明の実施例を詳細に説明する。同様の構成要素には同様の符号を付し、重複する説明を省略する。 
 また、以下では、システムを構成する、電力変換装置に電気的に接続される機器として、圧縮機を一例に説明する。
 [電力変換装置1及び圧縮機3] 
 図1は、本発明の一実施例に係る実施例1の電力変換装置1及び圧縮機3よりなるシステムの全体概略構成図である。図1に示すように、圧縮機3は、リニアモータを駆動源とする機器である。リニアモータ及び圧縮機3はそれぞれ電力変換装置1に電気的に接続しており、電力変換装置1を用いたシステムの一例である。 
 電力変換装置1は、電力変換回路11、制御部12、及び直流電源13を有する。 
 圧縮機3は、有底筒状のシリンダ31、シリンダ31の内側側面を摺動して、シリンダ31とシリンダ31の底面に対向する自身の面(先端面)にて囲まれる内容積を変動させることが可能なピストン32、磁性体に捲回された巻線33、及び、ピストン32に一端が接続される可動子34を有する。なお、磁性体に捲回された巻線33、及び、ピストン32に一端が接続される可動子34にてリニアモータが構成され、可動子34には永久磁石(図示せず)が設けられている。
 電力変換回路11は、直流電源13から供給される直流電力を交流電力に変換して、圧縮機3に出力する。電力変換回路11は単相であり、2つの半導体素子が直列に接続した上下アームを2組有している。より具体的には、半導体素子111及び半導体素子112が直列に接続した第1の上下アームと、半導体素子113及び半導体素子114が直列に接続した第2の上下アームとが並列に接続することでフルブリッジ回路を形成している。
また、半導体素子111及び半導体素子113は、直流電源13の正側に接続しており、半導体素子112及び半導体素子114は、直流電源13の負側に接続している。半導体素子111と半導体素子112を接続する配線(半導体素子111と半導体素子112の間)には圧縮機3の巻線33の一端が接続しており、半導体素子113と半導体素子114を接続する配線(半導体素子113と半導体素子114の間)には圧縮機3の巻線33の他端が接続している。なお、直流電源13の正側に接続している半導体素子を上側素子と、負側に接続している半導体素子を下側素子とも呼称する。
 制御部12は、巻線33を流れるモータ電流に基づいて電力変換回路11を制御する。
電力変換回路11は、巻線33に交流電力を出力する。 
 可動子34は、少なくとも1つ以上の永久磁石を有しており、電力変換回路11の出力を受けて巻線33が発する交流磁束に応じて往復動する。可動子34の往復動に伴ってピストン32が往復動し、シリンダ31の内容積が増減する。シリンダ31は、内容積部分に流体(作動流体)を出し入れ可能な弁(図示せず)を有している。シリンダ31、ピストン32、及び弁(図示せず)については、種々公知の物を用いることができる。以下では、流体(作動流体)として気体の冷媒を用いる場合を一例として説明する。
 図2は、図1に示すシステムを構成する電力変換装置1及び圧縮機3を流れる電流と、流体(作動流体)の圧縮に伴う圧縮機3の負荷との関係を説明する概略図である。圧縮機3を駆動すると、ピストン32の往復動に伴って流体(作動流体)である気体冷媒が圧縮又は膨張する。このような流体(作動流体)である気体冷媒の圧縮又は膨張にそれぞれ必要な仕事量(負荷)は異なり、一般に、圧縮負荷(第1の負荷)が膨張(吸込)負荷(第2の負荷)より大きい。すなわち、圧縮に要するリニアモータの推力の方が膨張(吸込)に要するリニアモータの推力より大きいため、圧縮時のモータ電流を膨張(吸込)時のモータ電流より大きくすることが好ましい。以下では、圧縮時のリニアモータの推力を得る際に流れる電流の向きを正方向、膨張(吸込)時のリニアモータの推力を得る際に流れる電流の向きを負方向と呼称する。なお、第1の負荷(圧縮負荷)及び第2の負荷(膨張負荷)はそれぞれ、これらの負荷の発生の全時間を通じて一定である必要はなく、例えば、1周期の時間平均値として、第1の負荷(圧縮負荷)が第2の負荷(膨張負荷)より大きければよい。
 単相である電力変換回路11(フルブリッジ回路)では、斜向かいの(相互に対角線上に位置する)半導体素子のON/OFFを切り替えることで、磁性体に捲回された巻線33を流れる電流の向きを切り替えることができる。本実施例では、電力変換回路11の半導体素子111~114のうち、斜向かいの(相互に対角線上に位置する)2つの半導体素子111(第1の上下アームの上側素子)及び半導体素子114(第2の上下アームの下側素子)をONにし、残りの半導体素子112(第1の上下アームの下側素子)及び半導体素子113(第2の上下アームの上側素子)をOFFにすることで巻線33を流れる電流が正方向であるとする。また、斜向かいの(相互に対角線上に位置する)2つの半導体素子112(第1の上下アームの下側素子)及び半導体素子113(第2の上下アームの上側素子)をONにし、残りの半導体素子111(第1の上下アームの上側素子)及び半導体素子114(第2の上下アームの下側素子)をOFFにすることで巻線33を流れる電流が負方向であるとする。
 圧縮負荷(第1の負荷)が膨張負荷(第2の負荷)より大きいことに着目すると、半導体素子111(第1の上下アームの上側素子)及び半導体素子114(第2の上下アームの下側素子)のON時間比を、半導体素子112(第1の上下アームの下側素子)及び半導体素子113(第2の上下アームの上側素子)のON時間比より高くすることで、半導体素子111(第1の上下アームの上側素子)及び半導体素子114(第2の上下アームの下側素子)に流れるモータ電流を、半導体素子112(第1の上下アームの下側素子)及び半導体素子113(第2の上下アームの上側素子)に流れるモータ電流より大きくすることが好ましい。このようにすると、半導体素子111(第1の上下アームの上側素子)及び半導体素子114(第2の上下アームの下側素子)に電流が集中し、半導体素子112(第1の上下アームの下側素子)及び半導体素子113(第2の上下アームの上側素子)に流れる電流量は小さい値となる(図2では、モータ電流の大きさを白抜き矢印の大きさで示している)。このように本実施例では、正方向及び負方向それぞれに好適な電流量が異なる機器に接続された単相の電力変換回路11を備える電力変換装置1について、斜向かいの(相互に対角線上に位置する)半導体素子に電流が集中することになる。
 [半導体素子の特性] 
 図3は、半導体素子の一種であるMOS(Metal―Oxide―Semiconductor)型素子のスイッチング損失と導通損失それぞれの、電流に対する概略特性を示す図である。実線で示されるスイッチング損失(SW損)は半導体素子のスイッチングにより発生する損失であり、モータ電流に対して略線形の関係となる。一点鎖線で示される導通損失(導通損)は半導体素子の通電時の抵抗(ON抵抗)により発生する損失であり、モータ電流の二乗に比例する関係となる。
 MOS型素子では、スイッチング損失(SW損)の低減と導通損失(導通損)の低減とがトレードオフの関係にあることが知られている。MOS型素子のON抵抗を小さくする(電流の二乗に乗ずる係数を小さくする)には、例えばチップサイズを大きくすることが求められるが、こうするとMOS型素子に流れる電荷の量が増えるため、スイッチング損失(SW損)が増加するためである。
 図4は、MOS型素子のスイッチング損失(SW損)と導通損失(導通損)とを合計した総合損失の電流に対する概略特性を示す図である。図4には、MOS型素子のうち、低SW損の半導体素子を実線で、低導通損の半導体素子を一点鎖線で示している。電流が小さい領域(第2の負荷(膨張負荷)に対応するモータ電流の存在領域)では低SW損の半導体素子の総合損失が小さく、電流が大きな領域(第1の負荷(圧縮負荷)に対応するモータ電流の存在領域)では低導通損の半導体素子の総合損失が小さい。なお、図4に例示するグラフ形状は、素子のON/OFF比を変更しても、通常、定性的には保たれる。  このため、電流の集中が発生する半導体素子111(第1の上下アームの上側素子)及び半導体素子114(第2の上下アームの下側素子)には、半導体素子112(第1の上下アームの下側素子)及び半導体素子113(第2の上下アームの上側素子)よりも低導通損(低ON抵抗)となる種類の半導体素子を適用し、電流の集中が発生しない半導体素子112(第1の上下アームの下側素子)及び半導体素子113(第2の上下アームの上側素子)には、半導体素子111(第1の上下アームの上側素子)及び半導体素子114(第2の上下アームの下側素子)よりも低SW損失となる半導体素子を適用することで、電力変換回路11全体の総合損失の低減を図ることが可能となる。なお、半導体素子のON抵抗値やSW損失値は、半導体素子の厚さやチップ面積にも依存する。
 より具体的には、半導体素子111(第1の上下アームの上側素子)及び半導体素子114(第2の上下アームの下側素子)の総合損失が、第1の負荷(圧縮負荷)に対応するリニアモータの推力の発生に要する電流量においては半導体素子112(第1の上下アームの下側素子)及び半導体素子113(第2の上下アームの上側素子)よりも小さく、第2の負荷(膨張負荷)に対応するリニアモータの推力の発生に要する電流量においては半導体素子111(第1の上下アームの上側素子)及び半導体素子114(第2の上下アームの下側素子)よりも大きくなるような半導体素子の種類の組合せを選択することが好ましい。
 なお、圧縮機3については、第1の負荷(圧縮負荷)及び第2の負荷(膨張負荷)それぞれを、定常状態における圧縮負荷及び膨張負荷と考えてもよい。ここで定常状態とは、例えば、圧縮室内に出入りする気体冷媒の流量が5秒間以上略一定に維持された状態をいう。
 以上のとおり、本実施例によれば、電力変換回路における各半導体素子の損失を低減しつつ、電力変換装置により制御される機器の高効率化を可能とする電力変換装置およびこれを用いたシステムを提供することが可能となる。 
 また、具体的には、本実施例の電力変換装置1を用いることで各半導体素子の損失を抑え、単相駆動する圧縮機3を高効率に駆動することが可能となる。
 実施例2の構成は、下記の点を除き実施例1と同様である。本実施例は、MOS型素子とIGBT(Insulated Gate Bipolar Transistor)型素子とを電力変換装置1が有する。より具体的には、正方向の電流を流す際にONとなるMOS型の半導体素子111(第1の上下アームの上側素子)及び半導体素子114(第2の上下アームの下側素子)に代えて、IGBT型の半導体素子115(第1の上下アームの上側素子)及びIGBT型の半導体素子116(第2の上下アームの下側素子)を使用している。
 図5は本実施例の電力変換装置1及び圧縮機3よりなるシステムの全体概略構成図、図6はMOS型素子とIGBT型素子のスイッチング損失と導通損失の電流に対する概略特性を示す図である。 
 図6に示すように、実線で示されるMOS型素子は上述のように、モータ電流に対して略線形の関係となるスイッチング損失(SW損)、モータ電流の二乗に比例する関係を有する導通損失(導通損)となる。一点鎖線で示されるIGBT型素子は、スイッチング損失(SW損)についてはMOS型素子と同様の原理で生ずるため、モータ電流に対して略線形の関係となる。しかし、導通損失(導通損)についてはダイオードによる順方向電圧により発生する損失のため、MOS型素子の場合と異なり、モータ電流に対して略線形の関係となる。
 図7は、MOS型素子及びIGBT型素子それぞれのスイッチング損失(SW損)と導通損失(導通損)を合計した総合損失の電流に対する概略特性を示す図である。図7に示すように、電流が小さい領域(第2の負荷(膨張負荷)に対応するモータ電流の存在領域)では、実線で示したMOS型素子の総合損失は一点鎖線で示したIGBT型素子の総合損失より小さい。一方、電流が大きな領域(第1の負荷(圧縮負荷)に対応するモータ電流の存在領域)では、一点鎖線で示したIGBT型素子の総合損失は、実線で示したMOS型素子の総合損失より小さい。 
 このため、本実施例では、図5に示すように、電力変換回路11の半導体素子として、電流の集中が発生する半導体素子115(第1の上下アームの上側素子)及び半導体素子116(第2の上下アームの下側素子)にはIGBT型素子を適用し、電流の集中が発生しない半導体素子112(第1の上下アームの下側素子)及び半導体素子113(第2の上下アームの上側素子)にはMOS型素子を適用している。こうすることで総合損失の低減を図ることが可能となる。なお、IGBT型素子に代えて、ダイオードによる順方向電圧により導通損失が生ずる他の素子にしてもよい。
 以上のとおり、本実施例によれば、電力変換回路における各半導体素子の損失を低減しつつ、電力変換装置により制御される機器の高効率化を可能とする電力変換装置およびこれを用いたシステムを提供することが可能となる。 
 また、具体的には、本実施例の電力変換装置1を用いることで各半導体素子の損失を抑え、単相駆動する圧縮機3を高効率に駆動することが可能となる。
 なお、上述の実施例1又は実施例2の電力変換装置1及び圧縮機3よりなるシステムは、凝縮器又は蒸発器として機能する熱交換器を備える空気調和器において、冷媒を圧送するための圧縮機に適用できる。 
 また、実施例1又は実施例2の電力変換装置1及び圧縮機3よりなるシステムは、エアサスペンションにおいて車高を調整するために作動流体を圧縮する圧縮機に適用できる。
 更にまた、実施例1又は実施例2の電力変換装置1及び圧縮機3よりなるシステムは、凝縮器及び蒸発器を有する冷蔵庫において、液冷媒を圧送する圧縮機にも適用可能である。
 なお、上述の実施例1及び実施例2では、システムを構成する、電力変換装置1に電気的に接続される機器として、圧縮機3を一例として説明したが、これに限られるものでは無い。上述の実施例1及び実施例2に示した電力変換装置1に電気的に接続される機器として、運転状態又は稼働状態において負荷が変動するような機器、特に、気相、液相、又は気液混合相、粘性を有する流体等を制御する機器等においても同様に適用可能である。
なお、本発明は上記した実施例に限定されるものではなく、本願の技術的思想に反しない範囲で様々な変形を施すことができる。たとえば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、公知の構成の追加・削除・置換をすることが可能である。
1・・・電力変換装置,11・・・電力変換回路(フルブリッジ回路),111~116・・・半導体素子,12 ・・・制御部,13・・・直流電源,3 ・・・圧縮機,31・・・シリンダ,32・・・ピストン,33・・・巻線,34・・・可動子

Claims (12)

  1.  直流電源と、
     それぞれ上側素子及び下側素子を有する第1の上下アーム及び第2の上下アームと、を有するフルブリッジ回路と、を備え、
     前記第1の上下アーム及び前記第2の上下アームが、機器に電気的に接続可能な電力変換装置であって、
     前記第1の上下アームの上側素子及び前記第2の上下アームの下側素子のON抵抗は、前記第1の上下アームの下側素子及び前記第2の上下アームの上側素子のON抵抗よりも小さいことを特徴とする電力変換装置。
  2.  前記第1の上下アームの下側素子及び前記第2の上下アームの上側素子のスイッチング損失は、前記第1の上下アームの上側素子及び前記第2の上下アームの下側素子のスイッチング損失よりも小さいことを特徴とする請求項1に記載の電力変換装置。
  3.  前記第1の上下アームの下側素子及び前記第2の上下アームの上側素子は、MOS型素子であり、
     前記第1の上下アームの上側素子及び前記第2の上下アームの下側素子は、ダイオードによる順方向電圧により導通損失が生ずる素子であることを特徴とする請求項1に記載の電力変換装置。
  4.  前記第1の上下アームの下側素子及び前記第2の上下アームの上側素子は、MOS型素子であり、
     前記第1の上下アームの上側素子及び前記第2の上下アームの下側素子は、ダイオードによる順方向電圧により導通損失が生ずる素子であることを特徴とする請求項2に記載の電力変換装置。
  5.  請求項1に記載の電力変換装置と、該電力変換装置に接続した機器と、を備えるシステムであって、
     前記機器は、
     前記第1の上下アームの上側素子及び前記第2の上下アームの下側素子がONの状態では、第1の負荷で応答し、
     前記第1の上下アームの下側素子及び前記第2の上下アームの上側素子がONの状態では、前記第1の負荷よりも小さい第2の負荷で応答することを特徴とするシステム。
  6.  請求項2に記載の電力変換装置と、該電力変換装置に接続した機器と、を備えるシステムであって、
     前記機器は、
     前記第1の上下アームの上側素子及び前記第2の上下アームの下側素子がONの状態では、第1の負荷で応答し、
     前記第1の上下アームの下側素子及び前記第2の上下アームの上側素子がONの状態では、前記第1の負荷よりも小さい第2の負荷で応答することを特徴とするシステム。
  7.  請求項3に記載の電力変換装置と、該電力変換装置に接続した機器と、を備えるシステムであって、
     前記機器は、
     前記第1の上下アームの上側素子及び前記第2の上下アームの下側素子がONの状態では、第1の負荷で応答し、
     前記第1の上下アームの下側素子及び前記第2の上下アームの上側素子がONの状態では、前記第1の負荷よりも小さい第2の負荷で応答することを特徴とするシステム。
  8.  請求項4に記載の電力変換装置と、該電力変換装置に接続した機器と、を備えるシステムであって、
     前記機器は、
     前記第1の上下アームの上側素子及び前記第2の上下アームの下側素子がONの状態では、第1の負荷で応答し、
     前記第1の上下アームの下側素子及び前記第2の上下アームの上側素子がONの状態では、前記第1の負荷よりも小さい第2の負荷で応答することを特徴とするシステム。
  9.  前記機器は、
     往復動により流体を圧縮及び膨張させるピストンと、
     前記電力変換装置に電気的に接続した巻線と、を有する圧縮機であることを特徴とする請求項5に記載のシステム。
  10.  前記機器は、
     往復動により流体を圧縮及び膨張させるピストンと、
     前記電力変換装置に電気的に接続した巻線と、を有する圧縮機であることを特徴とする請求項6に記載のシステム。
  11.  前記機器は、
     往復動により流体を圧縮及び膨張させるピストンと、
     前記電力変換装置に電気的に接続した巻線と、を有する圧縮機であることを特徴とする請求項7に記載のシステム。
  12.  前記機器は、
     往復動により流体を圧縮及び膨張させるピストンと、
     前記電力変換装置に電気的に接続した巻線と、を有する圧縮機であることを特徴とする請求項8に記載のシステム。
PCT/JP2017/035475 2016-10-12 2017-09-29 電力変換装置およびこれを用いたシステム WO2018070270A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017004591.6T DE112017004591T5 (de) 2016-10-12 2017-09-29 Leistungsumsetzungsvorrichtung und System, das sie verwendet
CN201780062630.3A CN109845083B (zh) 2016-10-12 2017-09-29 电力转换装置及使用该装置的电力转换系统
US16/339,468 US11171576B2 (en) 2016-10-12 2017-09-29 Power conversion device and system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-200529 2016-10-12
JP2016200529A JP6731325B2 (ja) 2016-10-12 2016-10-12 電力変換装置およびこれを用いたシステム

Publications (1)

Publication Number Publication Date
WO2018070270A1 true WO2018070270A1 (ja) 2018-04-19

Family

ID=61905371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035475 WO2018070270A1 (ja) 2016-10-12 2017-09-29 電力変換装置およびこれを用いたシステム

Country Status (5)

Country Link
US (1) US11171576B2 (ja)
JP (1) JP6731325B2 (ja)
CN (1) CN109845083B (ja)
DE (1) DE112017004591T5 (ja)
WO (1) WO2018070270A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197173A (ja) * 1987-10-06 1989-04-14 Semiconductor Res Found 高周波pwmフルブリッジ電力変換装置
JPH04150794A (ja) * 1990-10-11 1992-05-25 Hitachi Ltd ブリッジ型駆動回路およびそれを用いた磁気ディスク装置
JP2001073944A (ja) * 1999-09-07 2001-03-21 Matsushita Electric Ind Co Ltd リニアコンプレッサーの駆動装置
JP2006060985A (ja) * 2004-08-24 2006-03-02 Sharp Corp 交流電力生成装置ならびにそれが用られたリニアモータおよびスターリング冷凍機
JP2008237016A (ja) * 2008-04-25 2008-10-02 Daikin Ind Ltd リニアコンプレッサ駆動装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910000543B1 (ko) 1987-03-24 1991-01-26 자이당호오징 한도오다이 겡큐 싱고오가이 Pwm 전력변환장치
JPS63262062A (ja) 1987-04-17 1988-10-28 Fuji Electric Co Ltd インバ−タの主回路
JPH01133582A (ja) * 1987-11-16 1989-05-25 Sharp Corp 空気調和機
US5749226A (en) * 1993-02-12 1998-05-12 Ohio University Microminiature stirling cycle cryocoolers and engines
US6175199B1 (en) * 1999-09-30 2001-01-16 Osram Sylvania Inc. Magnetically deflected arc lamp
ITVI20020145A1 (it) * 2002-07-02 2004-01-02 Comefri Spa Ripartitore antirumore e antivortice
GB0221154D0 (en) * 2002-09-12 2002-10-23 Switched Reluctance Drives Ltd A circuit for use with switched reluctance machines
JPWO2005052347A1 (ja) * 2003-11-28 2007-06-21 株式会社日立製作所 ディーゼルエンジンのegr制御装置およびモータ駆動式スロットル弁装置
JP4565879B2 (ja) * 2004-04-19 2010-10-20 ルネサスエレクトロニクス株式会社 半導体装置
JP2009506743A (ja) * 2005-08-25 2009-02-12 コンサーク コーポレイション パルス幅変調電力インバータ出力制御
KR101466402B1 (ko) * 2008-02-20 2014-12-11 엘지전자 주식회사 리니어 압축기
GB2480620A (en) * 2010-05-25 2011-11-30 Energy2Trade Oy Reactive Power Management
CN103204082B (zh) * 2012-01-13 2015-10-21 深圳市汇川技术股份有限公司 电动汽车dc/dc控制器
JP6368523B2 (ja) 2014-04-16 2018-08-01 日立アプライアンス株式会社 モータ制御装置
CN204464968U (zh) 2014-12-31 2015-07-08 深圳市振华微电子有限公司 基于厚膜工艺的过流保护电路、开关电源电路及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0197173A (ja) * 1987-10-06 1989-04-14 Semiconductor Res Found 高周波pwmフルブリッジ電力変換装置
JPH04150794A (ja) * 1990-10-11 1992-05-25 Hitachi Ltd ブリッジ型駆動回路およびそれを用いた磁気ディスク装置
JP2001073944A (ja) * 1999-09-07 2001-03-21 Matsushita Electric Ind Co Ltd リニアコンプレッサーの駆動装置
JP2006060985A (ja) * 2004-08-24 2006-03-02 Sharp Corp 交流電力生成装置ならびにそれが用られたリニアモータおよびスターリング冷凍機
JP2008237016A (ja) * 2008-04-25 2008-10-02 Daikin Ind Ltd リニアコンプレッサ駆動装置

Also Published As

Publication number Publication date
JP6731325B2 (ja) 2020-07-29
US20190238066A1 (en) 2019-08-01
US11171576B2 (en) 2021-11-09
CN109845083A (zh) 2019-06-04
JP2018064341A (ja) 2018-04-19
DE112017004591T5 (de) 2019-06-19
CN109845083B (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
JP5444381B2 (ja) 可変速駆動装置内の直流リンクをプリチャージするシステム
TWI304876B (en) Variable speed drive for a chiller system with a switched reluctance motor
US9590540B2 (en) Hybrid pulse width modulation method for variable speed drive
US8855474B2 (en) Inhibiting compressor backspin via a condenser motor
WO2017152573A1 (zh) 空调器及其压缩机的停机控制方法和装置
JP2008061414A (ja) 電力変換装置
US20170170770A1 (en) Power conversion apparatus and air-conditioning apparatus including the power conversion apparatus
TW200536249A (en) System and method for increasing output horsepower and efficiency in a motor
JP6522228B2 (ja) 直流電源装置および冷凍サイクル適用機器
KR101772083B1 (ko) 압축기 제어 장치 및 이를 포함한 냉장고
WO2018070270A1 (ja) 電力変換装置およびこれを用いたシステム
CN112211811B (zh) 往复式压缩机的运转控制装置
US20220006408A1 (en) Motor drive apparatus and cooling apparatus
JPWO2020066028A1 (ja) モータ駆動装置及び空気調和機
JP2008061411A (ja) 電力変換装置
JP6749078B2 (ja) 電力変換装置及びこれを用いた電源システム
JPWO2012017753A1 (ja) 電力変換装置
JP7086016B2 (ja) 電力変換装置、モータ駆動装置、冷凍サイクル装置、送風機、空調機器、冷凍機器
KR100393803B1 (ko) 왕복동식 압축기의 운전제어장치
JP2017128412A (ja) リフティングマグネット作業機械
JP2006038432A (ja) 圧縮機制御方法及び冷媒圧縮装置並びに空気調和機及びその制御方法
JP2004522400A (ja) 直流負荷制御装置
JP2005351262A (ja) 往復動式圧縮機の運転制御装置及びその方法
KR100451225B1 (ko) 왕복동식 압축기를 이용한 냉장고의 운전제어방법
JP2013143796A (ja) インバータ制御回路およびそれを用いた空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17859596

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17859596

Country of ref document: EP

Kind code of ref document: A1