WO2018069976A1 - ターゲット供給装置 - Google Patents
ターゲット供給装置 Download PDFInfo
- Publication number
- WO2018069976A1 WO2018069976A1 PCT/JP2016/080142 JP2016080142W WO2018069976A1 WO 2018069976 A1 WO2018069976 A1 WO 2018069976A1 JP 2016080142 W JP2016080142 W JP 2016080142W WO 2018069976 A1 WO2018069976 A1 WO 2018069976A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibrator
- nozzle
- target
- unit
- supply device
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 87
- 230000008859 change Effects 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims description 91
- 238000003384 imaging method Methods 0.000 claims description 56
- 238000005286 illumination Methods 0.000 claims description 40
- 238000000034 method Methods 0.000 description 60
- 230000008569 process Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 19
- 230000003287 optical effect Effects 0.000 description 16
- 239000013077 target material Substances 0.000 description 15
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000009471 action Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000005469 synchrotron radiation Effects 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
- H05G2/001—Production of X-ray radiation generated from plasma
- H05G2/008—Production of X-ray radiation generated from plasma involving an energy-carrying beam in the process of plasma generation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
- G03F7/70033—Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/7015—Details of optical elements
- G03F7/70166—Capillary or channel elements, e.g. nested extreme ultraviolet [EUV] mirrors or shells, optical fibers or light guides
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/0005—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
- H02N2/001—Driving devices, e.g. vibrators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
- H05G2/001—Production of X-ray radiation generated from plasma
- H05G2/003—Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
- H05G2/006—Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state details of the ejection system, e.g. constructional details of the nozzle
Definitions
- This disclosure relates to a target supply device.
- an LPP Laser Produced Plasma
- DPP discharge Produced Plasma
- a target supply device includes a nozzle that outputs a target, a plurality of vibrators including a first vibrator that vibrates the nozzle, and a detection unit that detects a change in the state of the target output from the nozzle. And a vibrator switching unit that switches the vibrator that vibrates the nozzle from the first vibrator to another vibrator different from the first vibrator included in the plurality of vibrators, and the output from the nozzle detected by the detection unit. And a control unit that controls switching of a vibrator that vibrates the nozzle based on a change in the state of the target.
- a target supply device includes a nozzle that outputs a target, a plurality of vibrators including a second vibrator that vibrates the nozzle, and a third vibrator that detects vibration of the nozzle, A detection signal representing vibration is output, and the detection unit including the third vibrator and the vibrator that vibrates the nozzle are transferred from the second vibrator to another vibrator different from the second vibrator included in the plurality of vibrators.
- the target supply device includes a transducer switching unit that switches and a control unit that controls switching of a transducer that vibrates a nozzle based on a detection signal output from the detection unit.
- a target supply device includes a nozzle that outputs a target, a plurality of vibrators including a fourth vibrator that vibrates the nozzle, a detection signal that detects the vibration of the nozzle and represents the vibration of the nozzle. Output from the fourth vibrator, a vibrator switching section that switches the vibrator from the fourth vibrator to another vibrator different from the fourth vibrator included in the plurality of vibrators, and the detector. And a control unit that controls switching of the vibrator that vibrates the nozzle based on the detection signal.
- a target supply device includes a nozzle that outputs a target, a plurality of vibrators including a fifth vibrator that vibrates the nozzle, and a vibration frequency measurement unit that measures the vibration frequency of the fifth vibrator. Or a detection unit including at least one of a vibration period measurement unit that measures a vibration period of the fifth vibrator, and a vibrator that vibrates the nozzle from the fifth vibrator to the fifth vibrator included in the plurality of vibrators.
- the vibrator that vibrates the nozzle is changed to another vibrator different from the fifth vibrator by the vibrator switching unit.
- switching A control unit, a target supply device provided with a When the number of vibrations of the fifth vibrator measured by the vibration frequency measurement unit reaches a specified value of the predetermined vibration frequency, or by the vibration period measurement unit, the vibrator that vibrates the nozzle is changed to another vibrator different from the fifth vibrator by the vibrator switching unit.
- FIG. 1 is a diagram schematically showing a configuration of an exemplary LPP type EUV light generation system.
- FIG. 2 is a partial cross-sectional view showing a configuration of an EUV light generation system applicable to the embodiment of the present disclosure.
- FIG. 3 is a diagram illustrating a configuration example of the target position measurement sensor illustrated in FIG. 2 and a configuration example of the target image measurement sensor.
- FIG. 4 is a diagram illustrating an example of an image captured by the first imaging device illustrated in FIG.
- FIG. 5 is a diagram illustrating an example of an image captured by the second imaging device illustrated in FIG.
- FIG. 6 is a diagram illustrating an example of an image captured by the third imaging device illustrated in FIG.
- FIG. 7 is a block diagram schematically showing the configuration of the EUV light generation system according to the first embodiment.
- FIG. 8 is a flowchart showing a procedure of a vibrator switching method applied to the EUV light generation system according to the first embodiment.
- FIG. 9 is a block diagram schematically showing a configuration of an EUV light generation system according to the second embodiment.
- FIG. 10 is a diagram illustrating an example of a voltage waveform of an electromotive force generated by the vibrator used as the vibration sensor illustrated in FIG.
- FIG. 11 is a flowchart showing a procedure of a transducer switching method applied to the EUV light generation system supply apparatus according to the second embodiment.
- FIG. 12 is a block diagram schematically showing a configuration of an EUV light generation system according to the third embodiment.
- FIG. 13 is a flowchart showing a procedure of a vibrator switching method applied to the EUV light generation system according to the third embodiment.
- FIG. 14 is a block diagram schematically showing a configuration of an EUV light generation system according to the fourth embodiment.
- FIG. 15 is a flowchart showing a procedure of a first example of a vibrator switching method applied to the EUV light generation system according to the fourth embodiment.
- FIG. 16 is a flowchart showing the procedure of a second example of the vibrator switching method applied to the EUV light generation system according to the fourth embodiment.
- FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation system.
- the EUV light generation apparatus 1 may be used with at least one laser apparatus 3.
- a system including the EUV light generation apparatus 1 and the laser apparatus 3 is referred to as an EUV light generation system 11.
- the EUV light generation apparatus 1 includes a chamber 2 and a target supply unit 26.
- the chamber 2 is a container that can be sealed.
- the target supply unit 26 is configured to supply a target material into the chamber 2, and is attached so as to penetrate the wall of the chamber 2, for example.
- the material of the target substance output from the target supply unit 26 may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
- the wall of the chamber 2 is provided with at least one through hole.
- the through hole is closed by the window 21, and the pulse laser beam 32 output from the laser device 3 is transmitted through the window 21.
- an EUV collector mirror 23 having a spheroidal reflecting surface is disposed.
- the EUV collector mirror 23 has first and second focal points.
- the EUV collector mirror 23 may be disposed, for example, such that the first focal point thereof is located in the plasma generation region 25 and the second focal point thereof is located in an intermediate focusing point (IF) 292.
- IF intermediate focusing point
- a through hole 24 is provided at the center of the EUV collector mirror 23, and the pulse laser beam 33 passes through the through hole 24.
- the EUV light generation apparatus 1 includes an EUV light generation controller 5, a target sensor 4, and the like.
- the target sensor 4 is configured to detect one or more of the presence, trajectory, position, and speed of the target 27.
- the target sensor 4 may have an imaging function.
- the EUV light generation apparatus 1 includes a connection portion 29 that allows communication between the inside of the chamber 2 and the inside of the exposure apparatus 6. Inside the connecting portion 29, a wall 291 having an aperture 293 is provided. The wall 291 is arranged such that its aperture 293 is located at the second focal position of the EUV collector mirror 23.
- the EUV light generation apparatus 1 includes a laser light transmission device 34, a laser light focusing mirror 22, a target recovery unit 28 for recovering the target 27, and the like.
- the laser light transmission device 34 includes an optical element for defining the transmission state of the laser light and an actuator for adjusting the position, posture, and the like of the optical element.
- the pulsed laser beam 31 output from the laser device 3 passes through the window 21 as the pulsed laser beam 32 through the laser beam transmission device 34 and enters the chamber 2.
- the pulsed laser light 32 travels in the chamber 2 along at least one laser light path, is reflected by the laser light focusing mirror 22, and is irradiated onto at least one target 27 as pulsed laser light 33.
- the target supply unit 26 is configured to output a target 27 formed of the target material toward the plasma generation region 25 inside the chamber 2.
- the target 27 is irradiated with at least one pulse included in the pulse laser beam 33.
- the target 27 irradiated with the pulse laser beam is turned into plasma, and radiation light 251 is emitted from the plasma.
- the EUV light 252 included in the radiation light 251 is selectively reflected by the EUV collector mirror 23.
- the EUV light 252 reflected by the EUV collector mirror 23 is condensed at the intermediate condensing point 292 and output to the exposure device 6.
- a single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
- the EUV light generation controller 5 is configured to control the entire EUV light generation system 11.
- the EUV light generation controller 5 is configured to process the detection result of the target sensor 4. Based on the detection result of the target sensor 4, the EUV light generation controller 5 is configured to control, for example, the oscillation timing of the laser device 3, the irradiation direction of the pulse laser light 32, the focusing position of the pulse laser light 33, and the like. Also good.
- the various controls described above are merely examples, and other controls may be added as necessary.
- Target is an object to be irradiated with laser light introduced into a chamber.
- the “target supply unit” is a device for supplying a target material such as molten tin used for generating EUV light into the chamber in the form of droplets.
- Droplet is a form of the target substance output to the inside of the chamber.
- the target supply unit includes a vibrator that vibrates the nozzle. By supplying an electrical signal having a frequency corresponding to the cycle for generating the target to the vibrator, the target supply unit outputs a target in the form of a uniform droplet from the nozzle.
- an electrical signal supplied to the vibrator may be described as a drive voltage.
- the target supply unit has only one vibrator to be driven, if the vibrator fails, the vibrator does not operate normally. As a result, it becomes difficult for the target supply unit to generate a target in the form of a uniform droplet.
- the part has a lifetime.
- FIG. 2 is a partial cross-sectional view illustrating a configuration of an EUV light generation system applicable to the embodiment of the present disclosure.
- the chamber 2 shown in FIG. 2 includes a laser focusing optical system 22a, an EUV focusing mirror holder 81, an EUV focusing mirror holder holding plate 82, and a target recovery unit 28.
- the laser condensing optical system 22a includes a high reflection off-axis paraboloid mirror 221, a high reflection flat mirror 222, a laser condensing optical system holding plate 83, and a stage 84 that can move in the X, Y, and Z directions. And.
- the laser condensing optical system 22 a is arranged so that the condensing position of the laser condensing optical system 22 a coincides with the plasma generation region 25.
- “Match” may include a “substantial match” that may be considered to be a match although it is strictly different.
- the high reflection off-axis parabolic mirror 221 is supported by the first holder 223.
- the high reflection flat mirror 222 is supported by the second holder 224.
- the target recovery unit 28 is disposed on an extension line of the trajectory of the target 27. The target recovery unit 28 recovers the target material that has passed through the plasma generation region 25.
- the laser beam transmission device 34 shown in FIG. 2 includes a first high reflection mirror 34a and a second high reflection mirror 34b.
- the pulse laser beam 31 emitted from the laser device 3 is incident on the first high reflection mirror 34a.
- the pulse laser beam 32 reflected by the first high reflection mirror 34a is incident on the second high reflection mirror 34b.
- the pulse laser beam 32 reflected by the second high reflection mirror 34b is introduced into the chamber 2 through the first window 21a.
- the first window 21a shown in FIG. 2 corresponds to the window 21 shown in FIG.
- the target supply unit 26 illustrated in FIG. 2 includes a tank unit 260, a nozzle member 266, a pressure regulator 120, a heater 141, a first vibrator 111a, a second vibrator 111b, a piezo power source 112, Stage 114.
- tin that is the target material 271 is stored.
- the material of the tank part 260 may be a material having low reactivity with tin. Molybdenum may be applied as the material of the tank part 260.
- the nozzle member 266 has a nozzle hole 267 having a diameter of 3 to 6 micrometers.
- the material of the nozzle member 266 may be a material having low reactivity with tin. Molybdenum may be applied as the material of the nozzle member 266.
- the target supply unit 26 may include a nozzle holder for fixing the nozzle member 266 to the bottom of the tank unit 260. The illustration of the nozzle holder is omitted.
- the material of the nozzle holder may be a material having low reactivity with tin. Molybdenum may be applied as the material of the nozzle holder.
- a surface seal may be provided between the nozzle member 266 and a nozzle holder (not shown). A surface seal may be provided between the tank portion 260 and the nozzle member 266.
- the pressure regulator 120 is connected to an inert gas cylinder.
- the cylinder is not shown. Argon may be applied as the inert gas.
- the gas piping between the cylinder and the pressure regulator 120 is provided with a valve that can be controlled by the pressure regulator 120. Illustration of gas piping and valves is omitted.
- the pressure regulator 120 communicates with the inside of the tank unit 260 through the introduction pipe 131.
- the pressure regulator 120 may introduce an inert gas supplied from a cylinder (not shown) through the introduction pipe 131 into the tank unit 260.
- the heater 141 is electrically connected to the heater power supply.
- the heater power supply is connected to the temperature controller so as to be able to transmit electrical signals.
- the heater power supply and temperature controller are not shown.
- the heater power supply may supply power to the heater according to control from the temperature controller.
- the heater 141 is disposed so as to heat the target material 271 inside the tank unit 260.
- the heater 141 may be disposed on the outer surface of the tank unit 260.
- a temperature sensor is attached to either the tank unit 260 or a nozzle holder (not shown). The illustration of the temperature sensor is omitted. A temperature sensor may be arrange
- the temperature sensor is connected to the temperature controller via an introduction terminal provided on the partition wall of the chamber 2 so as to be able to transmit electric signals.
- the introduction terminal is not shown.
- the introduction terminal may maintain the airtightness of the chamber 2 and electrically insulate the electrical connection line between the temperature sensor and the temperature controller from the chamber 2.
- the piezo power source 112 is connected to the EUV light generation controller 5 so as to be able to transmit electrical signals.
- the piezo power supply 112 is electrically connected to the electrode of the first vibrator 111a and the electrode of the second vibrator 111b via an introduction terminal provided on the partition wall of the chamber 2. Illustration of the electrode of the first vibrator 111a, the electrode of the second vibrator 111b, and the introduction terminal is omitted.
- the introduction terminal may maintain the airtightness of the chamber 2 and electrically insulate the electrical connection line between the piezoelectric power source 112 and the electrode of the first vibrator 111a and the electrode of the second vibrator 111b from the chamber 2.
- the first vibrator 111a and the second vibrator 111b may be provided on the side surface of the nozzle member 266.
- the first vibrator 111a and the second vibrator 111b may be arranged so as to have a line-symmetric relationship with respect to an axis passing through the center of the nozzle hole 267.
- Piezo elements may be applied to the first vibrator 111a and the second vibrator 111b.
- the piezo element may be a piezoelectric member that vibrates in response to an external electric signal.
- the piezoelectric element may be a piezoelectric element using lead zirconate titanate.
- the pressure regulator 120 and the temperature controller are connected to the EUV light generation controller 5 so as to be able to transmit electrical signals.
- the pressure regulator 120 and the temperature controller operate according to the control of the EUV light generation controller 5.
- the inside of the tank part 260 may communicate with the nozzle hole 267 via a target flow path provided at the bottom of the tank part 260.
- the target flow path may include a filter for filtering the target material 271 that circulates. Illustration of the target channel and the filter is omitted.
- the stage 114 is disposed at a position where the tank part 260 and the nozzle member 266 can be moved in a plane parallel to the XZ plane.
- the stage 114 is connected to the EUV light generation controller 5 so as to be able to transmit electrical signals.
- the stage 114 moves the positions of the tank part 260 and the nozzle member 266 with respect to the position of the chamber 2 in a plane parallel to the XZ plane in accordance with the control of the EUV light generation controller 5.
- the EUV light generation apparatus 1 shown in FIG. 2 includes a timing sensor 4a.
- the timing sensor 4 a is disposed at a position where it is detected that the target 27 has passed at the detection position P before the target 27 reaches the plasma generation region 25.
- the timing sensor 4a outputs a passage timing signal indicating the timing at which the target 27 has passed the detection position P.
- the timing sensor 4 a includes an illumination unit 200 and a light receiving unit 202.
- the illumination unit 200 and the light receiving unit 202 are arranged on both sides of the passing region of the target 27 with the trajectory of the target 27 interposed therebetween.
- the illumination unit 200 includes a light source 204 and an illumination optical system 206.
- the illumination unit 200 is disposed at a position where illumination light can be irradiated to the inside of the chamber 2 via the second window 21 b provided in the partition wall of the chamber 2.
- the illumination light emitted from the light source 204 is applied to the trajectory of the target 27 through the illumination optical system 206 and the second window 21b.
- the light receiving unit 202 includes a light receiving optical system 208 and an optical sensor 210.
- the light receiving unit 202 is disposed at a position where the illumination light emitted from the illumination unit 200 is possible via the third window 21c.
- the illumination light that has entered through the third window 21 c reaches the optical sensor 210 through the light receiving optical system 208.
- the optical sensor 210 outputs a detection signal of the target 27 according to the amount of received illumination light.
- the timing sensor 4a is connected to the EUV light generation controller 5 so as to be able to transmit electrical signals.
- the timing sensor 4 a is a detection signal output from the optical sensor 210, and outputs a detection signal representing the timing at which the target 27 has passed the detection position P to the EUV light generation controller 5.
- the target position measurement sensor 4b shown in FIG. The position of the trajectory of the target 27 that has passed the detection position P of the target position measurement sensor 4b may be detected.
- the target image measurement sensor 4c may be arranged toward the plasma generation region 25.
- the target image measurement sensor 4c may acquire an image of the target 27 that has passed the detection position P.
- the target position measurement sensor 4b and the target image measurement sensor 4c are connected to the EUV light generation controller 5 so as to be able to transmit electrical signals.
- the target position measurement sensor 4 b may output a detection signal indicating the position of the trajectory of the target 27 to the EUV light generation controller 5.
- the target image measurement sensor 4 c may output a detection signal representing the image of the target 27 to the EUV light generation controller 5.
- the target position measurement sensor 4b may include a second illumination unit and an imaging device such as a CCD camera. In FIG. 2, the second illumination unit and the imaging device are not shown.
- the second illumination unit is illustrated with reference numeral 280 in FIG.
- the imaging device is shown in FIG. 3 with reference numerals 282 and 284.
- the target position measurement sensor 4b shown in FIG. 2 captures a reflected image of illumination light from the target 27.
- a plurality of imaging devices may be provided, and each of the plurality of imaging devices may capture images of the target 27 from different directions and acquire images having different imaging directions.
- the position of the target 27 in a predetermined plane can be calculated from images taken from different directions.
- the target position measurement sensor 4b may include a shutter for blocking plasma light.
- the shutter is a detection signal output from the timing sensor 4a, and may be opened and closed by a gate signal delayed for a predetermined period with respect to the detection signal indicating the passing timing of the target 27.
- the target image measurement sensor 4c may include a third illumination unit and an imaging device such as a CCD camera. In FIG. 2, the third illumination unit and the imaging device are not shown. The third illumination unit is illustrated with reference numeral 286 in FIG. The imaging device is illustrated in FIG.
- the target image measurement sensor 4 c captures a transmission image of illumination light from the target 27.
- a high-luminance light source such as a laser light source may be applied to the third illumination unit. By this.
- the target image measurement sensor 4c can image the target 27 by relatively short exposure.
- the target image measurement sensor 4c can capture an image with which the position of the target 27 can be specified at a certain time by relatively short exposure.
- the target image measurement sensor 4c may include a shutter for blocking plasma light.
- the shutter is a detection signal output from the timing sensor 4a, and may be opened and closed by a gate signal delayed for a predetermined period with respect to the detection signal indicating the passing timing of the target 27.
- the target sensor 4 shown in FIG. 1 may include the timing sensor 4a, the target position measurement sensor 4b, and the target image measurement sensor 4c shown in FIG. Details of the target position measurement sensor 4b and the target image measurement sensor 4c will be described later.
- the EUV light generation controller 5 executes the following operation when an output preparation signal of the target 27 is input from the exposure apparatus controller 6a of the exposure apparatus 6.
- the EUV light generation controller 5 controls the temperature controller so that the target material 271 inside the tank unit 260 has a temperature equal to or higher than the melting point. In contrast to the control of the EUV light generation controller 5, the temperature controller drives the heater power supply so that the detection value of the temperature sensor is equal to or higher than a predetermined temperature.
- the predetermined temperature may be a temperature equal to or higher than the melting point of tin when tin is applied as the target material 271.
- the predetermined temperature may be 232 ° C. or higher with respect to 232 ° C., which is the melting point of tin.
- the predetermined temperature may be a temperature range.
- the temperature range may be 240 ° C. or higher and 290 ° C. or lower with respect to 232 ° C., which is the melting point of tin.
- the EUV light generation controller 5 may determine whether or not the detection value of the temperature sensor maintains a temperature equal to or higher than a predetermined temperature for a predetermined period. When the predetermined temperature or higher is maintained for a predetermined period, the EUV light generation controller 5 may notify the exposure apparatus control unit 6a of the exposure apparatus 6 that the output preparation of the target 27 has been completed. The EUV light generation controller 5 may stand by until a signal requesting the output of the target 27 is input.
- the EUV light generation controller 5 controls the pressure regulator 120 to increase the pressure inside the tank unit 260 to a predetermined pressure.
- the predetermined pressure may be about 40 megapascals.
- the EUV light generation controller 5 may control the pressure regulator 120 to maintain the internal pressure of the tank unit 260 at a predetermined pressure. In a state where the internal pressure of the tank portion 260 is maintained at a predetermined pressure, the jet of the target material 271 can be output from the nozzle hole 267.
- the EUV light generation controller 5 controls the piezo power supply 112 so that the jet of the target material 271 output from the nozzle hole 267 changes to a droplet having a predetermined size and a predetermined cycle. Thereby, a driving voltage having a predetermined waveform may be applied from the piezoelectric power source 112 to the first vibrator 111a.
- the vibration generated in the first vibrator 111a to which a drive voltage having a predetermined waveform is applied may be transmitted to the target material 271 via the nozzle holder, the nozzle member 266, and the tank portion 260. Thereby, the jet of the target material 271 may be divided, and the jet of the target material 271 may be changed into droplets having a predetermined size and a predetermined cycle.
- the EUV light generation controller 5 may output, to the target position measurement sensor 4b and the target image measurement sensor 4c, a gate signal delayed by a predetermined period with respect to the detection signal output from the timing sensor 4a.
- the target position measurement sensor 4b may image the plasma generation region 25 in accordance with the gate signal output from the EUV light generation controller 5 and output the image signal to the EUV light generation controller 5.
- the EUV light generation controller 5 may calculate the position of the target 27 in the plasma generation region 25 using the imaging signal output from the target position measurement sensor 4b. For example, the EUV light generation controller 5 may calculate the coordinates of the target 27 in the coordinate system set in the plasma generation region 25.
- the EUV light generation controller 5 may calculate the two-dimensional coordinates of the target 27. For example, the EUV light generation controller 5 may calculate coordinates on the XZ plane.
- the EUV light generation controller 5 may operate the stage 114 of the target supply unit 26 so as to reduce the deviation between the target position of the target 27 and the detected target position.
- the target image measurement sensor 4 c may image the plasma generation region 25 in accordance with the gate signal output from the EUV light generation controller 5 and output the image signal to the EUV light generation controller 5.
- the EUV light generation controller 5 may calculate the position of the target 27 in the plasma generation region 25 using the image signal output from the target image measurement sensor 4c. For example. The EUV light generation controller 5 may calculate the coordinates of the target 27 in the coordinate system set in the plasma generation region 25. The EUV light generation controller 5 may calculate the position in the Y direction in the coordinate system set in the plasma generation region 25.
- the EUV light generation controller 5 may add a delay period to the light emission trigger signal output to the laser device 3 so that the target position of the target 27 is irradiated with laser light according to the measured position of the target 27. .
- FIG. 3 is a diagram illustrating a configuration example of the target position measurement sensor illustrated in FIG. 2 and a configuration example of the target image measurement sensor.
- the target position measurement sensor 4b illustrated in FIG. 3 includes a first illumination device 280, a first imaging device 282, and a second imaging device 284. Each of the first imaging device 282 and the second imaging device 284 may include an illumination device.
- the first imaging device 282 shown in FIG. 3 is arranged at a position where the target 27 is imaged from the X direction.
- the second imaging device 284 illustrated in FIG. 3 is disposed at a position where the target 27 is imaged from the Z direction.
- the imaging direction of the first imaging device 282 is not limited to the X direction. Further, the imaging direction of the second imaging device 284 is not limited to the Z direction.
- the imaging direction of the first imaging device 282 and the imaging direction of the second imaging device 284 may be different directions.
- the imaging direction of the first imaging device 282 and the imaging direction of the second imaging device 284 may be orthogonal to each other.
- the first illumination device 280 shown in FIG. 3 is arranged so that the reflected light of the target 27 is incident on the first imaging device 282 and the second imaging device 284.
- the third imaging device 288 includes a second illumination device 286 and a third imaging device 288.
- the second illumination device 286 may be a laser light source or a light source capable of emitting high-luminance illumination light such as a flash lamp.
- the second illumination device 286 shown in FIG. 3 is arranged at a position facing the third imaging device 288 across the trajectory of the target 27.
- the illumination light emitted from the second illumination device 286 and transmitted through the vicinity of the target 27 may be incident on the third imaging device 288.
- the third imaging device 288 may acquire an image of the target 27 that blocks the illumination light emitted from the second illumination device 286.
- the EUV light generation controller 5 outputs a gate signal to the first image pickup device 282 and the second image pickup device 284, and outputs the target 27 from each of the first image pickup device 282 and the second image pickup device 284. An image may be acquired.
- FIG. 4 is a diagram illustrating an example of an image captured by the first imaging device illustrated in FIG.
- the captured image of the first imaging device 282 shown in FIG. 4 is an image obtained by projecting a plurality of targets 27 output continuously at a constant cycle onto the YZ plane.
- the captured image of the first imaging device 282 shown in FIG. 4 can specify the position of the trajectory of the target 27 in the Z direction.
- FIG. 5 is a diagram illustrating an example of an image captured by the second imaging device illustrated in FIG.
- the captured image of the second imaging device 284 illustrated in FIG. 5 is an image obtained by projecting a plurality of targets 27 output continuously at a constant cycle onto the XY plane.
- the captured image of the second imaging device 284 illustrated in FIG. 5 can specify the position of the trajectory of the target 27 in the X direction.
- the period of the gate signal indicating the light receiving period of the third imaging device 288 may be relatively short. If the period of the gate signal representing the light receiving period of the third imaging device 288 is short, the light receiving period of the third imaging device 288 is shortened, so that the third imaging device 288 can capture a still image of the target 27.
- FIG. 6 is a diagram illustrating an example of an image captured by the third imaging device illustrated in FIG. By capturing a still image of the target 27 shown in FIG. 6, it is possible to specify coordinates in the Y-axis direction of the target 27 that has reached the plasma generation region 25 at a certain time.
- FIG. 7 is a block diagram schematically showing a configuration of an EUV light generation system according to the first embodiment.
- the EUV light generation system 11a illustrated in FIG. 7 includes a target supply unit 26a, a controller 5a, a drive transducer switching device 300, a transducer drive device 302, and a target detection device 304.
- the target supply unit 26a may include a first vibrator 111a, a second vibrator 111b, and a third vibrator 111c, which are three vibrators.
- the electrodes (not shown) of the first vibrator 111a, the second vibrator 111b, and the third vibrator 111c are connected to the drive vibrator switching device 300 so that the drive voltage can be transmitted.
- the drive vibrator switching device 300 is connected to the vibrator drive device 302 so that a drive voltage can be transmitted.
- the drive vibrator switching device 300 and the vibrator drive device 302 are connected to the controller 5a so as to be able to transmit electrical signals.
- the target detection device 304 is arranged at a position where the state of the target 27 output from the target supply unit 26a can be detected.
- the target detection device 304 is connected to the controller 5a so as to be able to transmit electrical signals.
- the target detection device 304 may apply the timing sensor 4a shown in FIG.
- the target detection device 304 may apply the target image measurement sensor 4c shown in FIG.
- EUV light generation controller 5 may be included in the EUV light generation controller 5 shown in FIG. 2 or provided separately from the EUV light generation controller 5, and the EUV light generation controller 5 may be included in the EUV light generation controller 5. And an electric signal may be transmitted.
- the controller 5a may be configured to include one or a plurality of processors.
- the controller 5a may include a memory associated with the processor.
- the vibrator driving device 302 shown in FIG. 7 may include the piezo power source 112 shown in FIG.
- the target supply unit 26a applied to the EUV light generation system 11a includes the number of m vibrators. m is an integer of 2 or more.
- the controller 5a determines any one transducer from the m transducers as the first transducer to be driven.
- the first vibrator is the first vibrator.
- the vibrator to be driven is a vibrator that is supplied with a driving voltage to vibrate when the target 27 is generated.
- the controller 5a selects a vibrator to be driven by the driving vibrator switching device 300.
- the first selected transducer is the first transducer.
- the first vibrator may be any vibrator among the m vibrators.
- the controller 5a may output a selection signal representing the information of the first vibrator to the drive vibrator switching device 300.
- the vibrator information may be an identification number of the vibrator.
- the identification number of the vibrator may be an integer from 1 to m attached to each of the m vibrators.
- the controller 5a supplies a drive voltage to the first vibrator to vibrate the first vibrator.
- the controller 5a adjusts the drive parameter of the first vibrator so that the target 27 is coupled as a droplet having a specified performance, and determines the drive parameter of the first vibrator.
- An example of a droplet having a prescribed performance is a combined droplet in which the passing frequency of the target 27 at a predetermined observation position passes at 100 kHz.
- the passing frequency of the target 27 is calculated as the reciprocal of the interval of the passing timing of the target 27.
- the drive parameter may be the amplitude of the voltage waveform of the drive voltage or the duty of the voltage waveform of the drive voltage.
- the controller 5a applies the determined drive parameter to vibrate the first vibrator to generate the target 27.
- the target detection device 304 detects the state of the target 27. Details of detection of the state of the target 27 will be described later.
- the controller 5a determines whether or not the first vibrator has failed based on the detection result of the state of the target 27 output from the target detection device 304.
- the failure of the vibrator means that the vibrator does not vibrate, the vibrator vibrates but the target 27 is not output, or the vibrator vibrates but the target 27 that satisfies the predetermined condition is not output.
- a state may be included. Details of the vibrator failure determination will be described later.
- the drive vibrator switching device 300 determines that the vibrator is another vibrator different from the first vibrator and drives an unused vibrator. To do. For example, the vibrator determined as the vibrator to be driven instead of the first vibrator is set as the second vibrator.
- the controller 5a may follow the light emission stop permission command output from the exposure apparatus 6 shown in FIG. 2 when outputting the vibration for switching the vibrator to the drive vibrator switching device 300.
- the controller 5a adjusts and determines the driving parameter of the second vibrator.
- the controller 5a generates the target 27 by vibrating the second vibrator.
- the target detection device 304 detects the state of the target 27.
- the controller 5a determines whether or not the second vibrator has failed based on the detection result of the state of the target 27 output from the target detection device 304.
- the controller 5a determines the vibrator that drives the n-th vibrator, which is an arbitrary unused vibrator, and, when selected, adjusts and determines the drive parameter of the n-th vibrator.
- n is an integer of 1 to m.
- the controller 5a generates the target 27 by vibrating the nth vibrator.
- the target detection device 304 detects the state of the target 27. If the controller 5a determines that the nth transducer is defective based on the detection result of the state of the target 27 by the target detection device 304, the controller 5a determines and selects the transducer that drives the (n + 1) th transducer. .
- the controller 5a When switching the vibrator to be driven from the nth vibrator to the (n + 1) th vibrator, the controller 5a vibrates the nth vibrator according to the light emission stop permission command output from the exposure apparatus 6 shown in FIG. May be stopped.
- the controller 5a adjusts and determines the driving parameter of the (n + 1) th vibrator.
- the controller 5a generates the target 27 by vibrating the (n + 1) th vibrator.
- the target detection device 304 detects the state of the target 27.
- the controller 5a determines that the vibrator to be driven has failed until each of the first to m-th vibrators has failed, the controller 5a selects the vibrator to be driven among the unused vibrators. Determine from and change.
- the target detection device 304 shown in FIG. 7 may also be used as the timing sensor 4a shown in FIG. If the target detection device 304 shown in FIG. 7 is the timing sensor 4a shown in FIG. 2, the timing sensor 4a detects the interval of the passage timing of the target 27.
- the controller 5a may determine that the vibrator to be driven is a failure when the distance between the targets 27 calculated from the interval of the passage timing of the target 27 is equal to or less than a predetermined value.
- the distance between the targets 27 is calculated by multiplying the passing timing interval of the target 27 by the speed of the target 27.
- the speed of the target 27 can be determined based on the output conditions of the target.
- the distance between standard targets 27 is 1000 micrometers. If 3 ⁇ (99.73%), which is a variation in the distance between the targets 27, is less than 5 micrometers or more than minus 5 micrometers, the controller 5a may determine that the vibrator is normal.
- the controller 5a may determine that the vibrator has failed. 5 micrometers is 0.5 percent of 1000 micrometers which is the distance between standard targets 27.
- sampling period of the timing sensor 4a may be 0.1 seconds.
- the number of samples may be 10,000.
- the absolute value of the maximum value of the difference obtained by subtracting the distance between the targets 27 from the distance between the standard targets 27 or the absolute value of the minimum value of the difference is 0 of the distance between the standard targets 27. If it is less than 5%, the controller 5a may determine that the vibrator is normal.
- the absolute value of the maximum difference obtained by subtracting the distance between the targets 27 from the distance between the standard targets 27 or the absolute value of the minimum difference is 0.5 percent of the distance between the standard targets 27. If so, the controller 5a may determine that the vibrator has failed.
- Target Detection Device is Target Image Measurement Sensor
- the target detection device 304 shown in FIG. 7 may also be used as the target image measurement sensor 4c shown in FIG.
- the target detection device 304 shown in FIG. 7 is the target image measurement sensor 4c shown in FIG. 2
- an index for determining the failure of the vibrator is obtained from the analysis result of the image captured by the target image measurement sensor 4c. It is good.
- the distance between standard targets 27 is 1000 micrometers. If 3 ⁇ , which is a variation in the distance between the targets 27, is less than 5 micrometers or more than minus 5 micrometers, the controller 5a may determine that the vibrator is normal.
- the controller 5a may determine that the vibrator has failed.
- 5 micrometers is 0.5 percent of 1000 micrometers which is the distance between standard targets 27.
- the diameter of the target 27 in the form of a droplet may be 20 micrometers.
- the controller 5a may determine that the vibrator is normal. If the absolute value of the value obtained by subtracting the distance between the targets 27 from the distance between the standard targets 27 is 0.5% or more of the distance between the standard targets 27, the controller 5a It may be determined that
- FIG. 8 is a flowchart showing the procedure of the vibrator switching method applied to the EUV light generation system according to the first embodiment.
- the controller 5a illustrated in FIG. 7 determines the vibrator that drives the nth vibrator among the m vibrators provided in the target supply unit 26a, and starts the vibration of the nth vibrator.
- step S10 of FIG. 8 the controller 5a shown in FIG. 7 adjusts the drive parameter of the nth vibrator, determines the drive parameter of the nth vibrator, and vibrates the nth vibrator.
- step S12 of FIG. 8 the target 27 is detected by the target detection device 304 shown in FIG.
- the controller 5 a determines whether the state of the target 27 has changed.
- Step S14 of FIG. 8 if the controller 5a shown in FIG. 7 determines that the state of the target 27 has not changed, No determination is made. In the case of No determination, the process proceeds to step S12 of FIG. 8, and step S12 and step S14 are repeatedly executed until a Yes determination is made in step S14.
- step S14 if the controller 5a shown in FIG. 7 determines that the state of the target 27 has changed, a Yes determination is made. In the case of Yes determination, the process proceeds to step S16 in FIG. In step S16, the controller 5a shown in FIG. 7 determines whether or not a light emission stop permission command from the exposure apparatus 6 has been acquired.
- Step S16 of FIG. 8 if the controller 5a shown in FIG. 7 has not acquired the light emission stop permission command from the exposure apparatus 6, the determination is No. In the case of No determination, the controller 5a continues to determine whether or not the light emission stop permission command from the exposure apparatus 6 has been acquired.
- Step S16 of FIG. 8 when the controller 5a shown in FIG. 7 acquires the light emission stop permission command from the exposure apparatus 6, a Yes determination is made. In the case of Yes determination, the process proceeds to step S18 in FIG.
- step S18 the controller 5a shown in FIG. 7 causes the vibrator driving device 302 to stop the vibration of the nth vibrator.
- step S18 of FIG. 8 when the vibration of the nth vibrator is stopped, the process proceeds to step S20.
- step S20 the controller 5a shown in FIG. 7 determines whether or not the nth transducer is the final transducer.
- the final vibrator is the mth vibrator.
- step S20 of FIG. 8 if the controller 5a shown in FIG. 7 determines that the nth transducer is not the final transducer, the determination is No. In the case of No determination, the process proceeds to step S22 in FIG.
- step S22 the controller 5a shown in FIG. 7 determines the vibrator to drive the (n + 1) th vibrator, and starts the vibration of the (n + 1) th vibrator by the vibrator driving device 302.
- the (n + 1) th transducer may be an unused transducer. Thereafter, the controller 5a sequentially executes the processes from step S10 to step S20 until a Yes determination is made in step S22 of FIG.
- step S20 if the controller 5a shown in FIG. 7 determines that the nth transducer is the final transducer, the determination is Yes. In the case of Yes determination, the controller 5a illustrated in FIG. 7 ends the switching of the vibrator.
- the target supply unit 26 and the target supply unit 26a in the present disclosure are one aspect of the target supply device.
- the m vibrators including the first vibrator 111a, the second vibrator 111b, and the third vibrator 111c in the present disclosure are one mode of a plurality of vibrators including the first vibrator.
- the target detection device 304 in the present disclosure is an aspect of a detection unit.
- an unused vibrator is an aspect of another vibrator different from the first vibrator. It is.
- the drive vibrator switching device according to the present disclosure is an aspect of the vibrator switching unit.
- the controller 5a in the present disclosure is an aspect of the control unit.
- the vibrator driving device 302 in the present disclosure is an aspect of the vibrator driving unit.
- the timing sensor 4a is an aspect of a passage timing interval measurement unit that measures a passage timing interval between targets in a passage route of a target.
- the timing sensor 4a in the present disclosure is an aspect of a timing measurement unit that measures the interval of the passage timing between the targets in order to adjust the output timing of the targets output from the nozzles.
- the illumination unit 200 provided in the timing sensor 4a according to the present disclosure is an aspect of the first illumination unit.
- the third imaging device 288 provided in the target image measurement sensor 4c in the present disclosure is an aspect of an imaging unit that images the target output from the nozzle.
- the second illumination device 286 provided in the target image measurement sensor 4c according to the present disclosure is an aspect of the second illumination unit.
- FIG. 9 is a block diagram schematically showing a configuration of an EUV light generation system according to a second embodiment.
- the EUV light generation system 11b illustrated in FIG. 9 includes a target supply unit 26b, a sensor switching device 310, a vibration electromotive force measurement device 312 and a counter 314.
- the counter 314 may be a timer.
- the target supply unit 26b shown in FIG. 9 includes a plurality of vibrators.
- the plurality of vibrators include at least one vibrator that can be used as a vibration sensor.
- the fourth vibrator 111d shown in FIG. 9 may be a vibrator that can be used as a vibration sensor.
- the electrodes (not shown) of the first vibrator 111a, the second vibrator 111b, and the fourth vibrator 111d are connected to the sensor switching device 310 so that the drive voltage can be transmitted.
- the sensor switching device 310 is connected to the vibration electromotive force measurement device 312 so as to be able to transmit an electrical signal.
- the sensor switching device 310 and the vibration electromotive force measurement device 312 are connected to the controller 5a so as to be able to transmit electrical signals.
- the counter 314 is connected to the controller 5a so as to be able to transmit electrical signals.
- the controller 5a determines any one transducer that is not used for driving from among a plurality of transducers provided in the target supply unit 26b as a vibration sensor.
- the mth vibrator may be determined as the vibration sensor.
- the fourth vibrator 111d in FIG. 9 may be determined as a vibration sensor by using the m-th vibrator. Note that the mth transducer is an arbitrary transducer among the m transducers.
- the controller 5a selects the mth vibrator as a vibration sensor by the sensor switching device 310.
- the controller 5a may output to the sensor switching device 310 a selection signal representing information on the mth transducer to be selected as the vibration sensor.
- the vibrator information may be an identification number of the vibrator.
- the identification number of the vibrator may be an integer from 1 to m attached to each of the m vibrators.
- the controller 5a determines and selects the nth vibrator as the vibrator to be driven.
- the vibration is transmitted to the mth vibrator used as a vibration sensor through the nozzle.
- the m-th vibrator generates an electromotive force representing the vibration state of the n-th vibrator.
- the vibration electromotive force measuring device 312 measures the electromotive force generated by the mth vibrator.
- the vibration state of the nth vibrator represents the vibration state of the nozzle when the nth vibrator is vibrated.
- the nozzle is a tip portion of the nozzle member 266 including the nozzle hole 267.
- the controller 5a determines the presence or absence of a failure of the nth vibrator based on the state of the electromotive force generated by the mth vibrator measured by the vibration electromotive force measuring device 312.
- the controller 5a always compares the voltage waveform of the electromotive force generated by the mth vibrator used as the vibration sensor with the voltage waveform of the electromotive force generated by the mth vibrator in the initial state of the driven vibrator. Also good.
- the controller 5a may compare the voltage waveform of the measurement result with the prescribed voltage waveform at every measurement timing of the electromotive force generated by the mth vibrator.
- the electromotive force state may use the maximum value of the electromotive force amplitude as an index.
- the controller 5a may determine that the nth vibrator has failed when the maximum value of the electromotive force generated by the mth vibrator is equal to or less than minus 10% of the specified value.
- the specified value applied to the failure determination of the nth vibrator may be the maximum value of the amplitude of the electromotive force generated by the mth vibrator in the initial state of the nth vibrator.
- the initial state of the nth vibrator may be immediately after the measurement of the vibration of the nth vibrator is started.
- the term “immediately after here” may include a timing at which measurement is started, or may be a period from a timing at which measurement is started to a timing at which a predetermined number of pulses are output.
- the specified value may be an average value of measured values in a period from a timing at which measurement is started to a timing at which a predetermined number of pulses are output.
- the predetermined number of pulses may be one pulse or more. For example, the predetermined number of pulses may be 100 pulses.
- the failure determination threshold value of minus 10% or less of the specified value is an example.
- the failure determination threshold value may be determined according to a condition to be satisfied by the target 27 output from the target supply unit 26b. As the conditions to be satisfied by the target 27, the shape of the target or the presence or absence of satellites may be applied.
- the controller 5a determines and selects the vibrator that drives the (n + 1) th vibrator.
- the n + 1-th vibrator may be any vibrator as long as it is an unused vibrator as a vibrator to be driven.
- the controller 5a stops the measurement of the electromotive force of the m-th vibrator by the vibration electromotive force measuring device 312.
- the controller 5a determines and selects the mth vibrator as the vibrator to be driven.
- the controller 5a adjusts and determines the drive parameter of the mth vibrator.
- the counter 314 measures the number of vibrations of the mth vibrator. When the number of vibrations of the m-th vibrator measured by the counter 314 exceeds the specified number, the controller 5a stops the vibration of the m-th vibrator.
- the number of vibrations of the m-th vibrator may be the number of vibrations since the m-th vibrator is used as a vibrator to be driven.
- the specified number of times is a specified value of the number of vibrations.
- the specified number of times may be 1.0 ⁇ 10 11 times.
- 1.0 ⁇ 10 11 times corresponds to the number of vibrations when the vibrator is vibrated at 100 kilohertz, the vibrator is vibrated for 24 hours per day, and the vibrator is vibrated for 12 days.
- the timer measures a period from the start of vibration of the mth vibrator.
- the start of vibration may be the start of vibration when the m-th vibrator is used as a vibrator to be driven.
- the controller 5a stops the vibration of the mth vibrator.
- the specified period is a specified value for the vibration period.
- Specified period may be 1036800 seconds.
- 1036800 seconds corresponds to a period in which the vibrator is vibrated for 24 hours per day and the vibrator is vibrated for 12 days.
- FIG. 10 is a diagram showing an example of the voltage waveform of the electromotive force generated by the vibrator used as the vibration sensor shown in FIG.
- a voltage waveform denoted by reference numeral 330 in FIG. 10 is an example of a voltage waveform of an electromotive force generated by a vibrator used as a vibration sensor due to vibration of the vibrator to be driven in an initial state.
- the voltage waveform denoted by reference numeral 332 in FIG. 10 is an example of measuring the amplitude of the voltage waveform, and the voltage of the electromotive force generated by the vibrator used as the vibration sensor when the driven vibrator is determined to be faulty. It is an example of measurement of the amplitude of a waveform.
- the horizontal axis of the graph shown in FIG. 10 is the period.
- the unit of period is microseconds.
- the vertical axis of the graph shown in FIG. 10 is voltage.
- the unit of voltage is volts.
- the vertical axis in FIG. 10 is represented by a relative value in which the maximum value V 1max in the positive direction in the voltage waveform 330 is 1 volt and the minimum value V 1min in the negative direction is ⁇ 1 volt.
- the maximum value of the amplitude of the voltage waveform 330 calculated by subtracting the minimum value V 1min from the maximum value V 1max of the voltage waveform 330 may be used as the prescribed value of the electromotive force as the initial amplitude.
- the maximum value of the amplitude of the voltage waveform 330 may be set as one measurement value, and the average value of the measurement values for 100 times may be set as the prescribed value of electromotive force.
- the maximum value of the amplitude of the voltage waveform 332 which is calculated by subtracting the minimum value V 2min from the maximum value V 2max of the voltage waveform 332 may be a measured value of the electromotive force.
- the maximum value of the amplitude of the voltage waveform 332 may be used as a single measurement value, and an average value of 100 measurement values may be used as a measurement value of electromotive force.
- the maximum value of the amplitude of the voltage waveform 330 that is the prescribed value of electromotive force is 2.0 volts.
- the measured value of the voltage waveform 332 is 1.8 volts, which is ⁇ 10% or less of the prescribed value of electromotive force.
- FIG. 11 is a flowchart showing a procedure of the transducer switching method applied to the EUV light generation system according to the second embodiment.
- step S10 the controller 5a shown in FIG. 9 adjusts the driving parameter of the nth vibrator and determines the driving parameter of the nth vibrator.
- the controller 5a starts the vibration of the nth vibrator.
- step S40 of FIG. 11 the vibration electromotive force measuring device 312 shown in FIG. 9 measures the vibration of the nth vibrator detected by the mth vibrator.
- step S42 of FIG. 11 the controller 5a shown in FIG. 9 determines whether or not the maximum amplitude value in the vibration of the nth vibrator is equal to or less than minus 10% of the specified value.
- Step S42 of FIG. 11 when the controller 5a shown in FIG. 9 determines that the amplitude of the vibration of the nth vibrator exceeds minus 10% of the specified value, No determination is made. In the case of No determination, the process proceeds to step S40 in FIG. 11, and step S40 and step S42 are repeatedly executed until a Yes determination is made in step S42.
- step S42 if the controller 5a shown in FIG. 9 determines that the amplitude of the vibration of the n-th vibrator is less than or equal to minus 10% of the specified value, a Yes determination is made. In the case of Yes determination, the process proceeds to step S44 in FIG.
- step S44 to step S50 is the same as the process from step S16 to step S22 in FIG. 8, and description thereof will be omitted here. If the controller 5a shown in FIG. 9 determines in step S48 of FIG. 11 that the nth transducer is the m ⁇ 1th transducer, the process proceeds to step S52 of FIG.
- step S48 of FIG. 11 the controller 5a shown in FIG. 9 has m-1 vibrators failed, and an unused vibrator is used as a vibration sensor. If it is determined that only the th vibrator is present, the process proceeds to step S52 in FIG.
- step S52 the controller 5a shown in FIG. 9 stops the detection by the m-th vibrator by the sensor switching device 310.
- step S54 of FIG. 11 the controller 5a shown in FIG. 9 determines and selects the m-th vibrator as a vibrator to start vibration of the m-th vibrator.
- step S56 of FIG. 11 the controller 5a shown in FIG. 9 adjusts and determines the drive parameter of the mth vibrator.
- step S58 of FIG. 11 the controller 5a illustrated in FIG. 9 measures the number of vibrations of the m-th vibrator by the counter 314. The controller 5a determines whether or not the number of vibrations of the mth vibrator is equal to or greater than the specified number.
- step S58 of FIG. 11 the controller 5a shown in FIG. 9 measures the vibration period of the mth vibrator using a timer, and determines whether or not the vibration period of the mth vibrator is equal to or longer than a specified period. May be.
- step S58 of FIG. 11 when the controller 5a shown in FIG. 9 determines that the number of vibrations of the mth vibrator is less than the specified number, the determination is No. In the case of No determination, the controller 5a continues to determine whether or not the number of vibrations of the mth vibrator is equal to or greater than the predetermined number until the determination of Yes is made in step S58 of FIG.
- step S58 if the controller 5a determines that the number of vibrations of the m-th vibrator is equal to or greater than the specified number, a Yes determination is made. In the case of Yes determination, the controller 5a illustrated in FIG. 9 ends the switching of the vibrator.
- the m vibrators including the first vibrator 111a, the second vibrator 111b, and the fourth vibrator 111d in the present disclosure are the second vibrator that vibrates the nozzle and the third vibrator that detects the vibration of the nozzle. Is an embodiment of a plurality of vibrators including
- the m-th vibrator used as the vibration sensor in the present disclosure is an aspect of the third vibrator.
- the m-th vibrator and the vibration electromotive force measurement device used as the vibration sensor in the present disclosure are one aspect of the detection unit.
- the sensor switching device 310 is an aspect of a detection transducer switching unit that switches any of the plurality of transducers to the third transducer.
- the counter 314 in the present disclosure is an aspect of a vibration frequency measurement unit that measures the vibration frequency of the second vibrator.
- the timer in the present disclosure is an aspect of a vibration period measurement unit that measures the vibration period of the second vibrator.
- FIG. 12 is a block diagram schematically showing a configuration of an EUV light generation system according to a third embodiment.
- the target supply unit 26 c illustrated in FIG. 12 includes a dedicated vibration sensor 350.
- the vibration sensor 350 is connected to the vibration electromotive force measuring device 312 so as to be able to transmit an electric signal.
- the vibration sensor 350 shown in FIG. 12 is dedicated to vibration detection.
- the vibration sensor 350 may be a piezoelectric element.
- the controller 5a determines and selects a vibrator to be driven from a plurality of vibrators. Here, the controller 5a selects the nth transducer. The controller 5a vibrates the nth vibrator, and adjusts and sets the drive parameter of the nth vibrator.
- the vibration electromotive force measuring device 312 measures the vibration of the nth vibrator detected by the vibration sensor 350.
- the measurement of the vibration of the nth vibrator detected by the vibration sensor 350 is the same as the measurement of the vibration of the nth vibrator detected by the mth vibrator used as the vibration sensor in the second embodiment. There is no explanation here.
- FIG. 13 is a flowchart showing a procedure of a vibrator switching method applied to the EUV light generation system according to the third embodiment.
- the flowchart shown in FIG. 13 includes step S41 instead of step S40 shown in FIG.
- step S41 the vibration electromotive force measuring device 312 shown in FIG. 12 measures the vibration of the n-th vibrator detected by the vibration sensor 350.
- Steps S42 to S46 and S50 in FIG. 13 are the same as steps S42 to S46 and S50 in FIG. 11, and a description thereof will be omitted here.
- Step S48 in FIG. 13 is the same process as step S20 in FIG.
- the controller 5a shown in FIG. 12 determines whether or not the nth transducer is the final transducer.
- the final vibrator is the mth vibrator.
- step S48 of FIG. 13 if the controller 5a shown in FIG. 12 determines that the nth transducer is not the final transducer, the determination is No. In the case of No determination, the process proceeds to step S50 in FIG.
- a dedicated vibration sensor is provided, it is possible to employ a vibration sensor having characteristics that are advantageous for vibration measurement. As a result, the accuracy of the failure determination of the vibrator can be increased, the determination relating to the switching of the vibrator can be performed more accurately, and the reliability of the EUV light generation system is improved.
- the m vibrators including the first vibrator 111a and the second vibrator 111b in the present disclosure are one mode of a plurality of vibrators including the fourth vibrator.
- the configuration including the vibration sensor 350 and the vibration electromotive force measurement device 312 in the present disclosure is an aspect of the detection unit.
- the unused vibrator among the m vibrators including the first vibrator 111a and the second vibrator 111b in the present disclosure is an aspect of another vibrator different from the fourth vibrator.
- FIG. 14 is a block diagram schematically illustrating a configuration of an EUV light generation system according to a fourth embodiment.
- the EUV light generation system 11d shown in FIG. 14 includes the target supply unit 26a shown in FIG.
- the EUV light generation system 11d shown in FIG. 14 includes a counter 314a instead of the target detection device 304 shown in FIG.
- the counter 314a shown in FIG. 14 is connected to the controller 5a so as to be able to transmit electrical signals.
- the counter 314a shown in FIG. 14 measures the number of vibrations of the driven vibrator.
- the EUV light generation system 11d may include a timer instead of the counter 314. The timer measures the vibration period of the vibrator to be driven.
- the controller 5a determines and selects a vibrator to be driven from a plurality of vibrators. Here, the controller 5a selects the nth transducer. The controller 5a vibrates the nth vibrator, and adjusts and sets the drive parameter of the nth vibrator.
- the controller 5a outputs a command for measuring the number of vibrations during the operation of the nth vibrator to the counter 314a.
- the target supply unit 26 may oscillate the nth vibrator and output the target 27.
- the counter 314a measures the number of vibrations during the operation of the nth vibrator until the number of vibrations during the operation of the nth vibrator reaches the specified number of times for one vibrator.
- the counter 314a outputs a signal indicating that to the controller 5a.
- the specified number of times may be 1 ⁇ 10 11 times.
- the life of the target supply unit 26 is 36 days
- the number of vibrators is three
- vibrators are vibrated at 100 kHz
- one vibrator is used for 24 hours per day for 12 days. This corresponds to the total number of vibrations of the three vibrators when vibrated.
- a signal for switching to the vibrator is output to the drive vibrator switching device 300.
- the controller 5a When the driven vibrator switching device 300 switches the vibrator to be driven to another vibrator, the controller 5a outputs a signal for resetting the measurement value of the counter 314a to the counter 314a.
- the counter 314a may output a signal indicating the number of vibrations during the operation of the nth vibrator to the controller 5a.
- the controller 5a may acquire a signal representing the measurement value of the counter 314a until the number of vibrations during the operation of the n-th vibrator reaches the specified number of times for one vibrator.
- the controller 5a may monitor whether or not the number of vibrations during the operation of the nth vibrator has reached a prescribed number of times for one vibrator. When the number of vibrations during the operation of the nth vibrator reaches the specified number of times for one vibrator, the controller 5a transfers the vibrator to be driven to another vibrator according to the light emission stop permission command of the exposure device 6. A signal for switching may be output to the drive vibrator switching device 300.
- the controller 5a When a timer is provided instead of the counter 314a, the controller 5a outputs a command for measuring the vibration period during the operation of the nth vibrator to the timer.
- the timer measures the vibration period during the operation of the nth vibrator until the vibration period during the operation of the nth vibrator reaches a specified period for one vibrator.
- the timer When the vibration period during the operation of the nth vibrator reaches the specified period for one vibrator, the timer outputs a signal indicating that to the controller 5a.
- the specified period may be 1036800 seconds.
- the life of the target supply unit 26 is 36 days
- the number of vibrators is three
- the total of three vibrators is obtained when one vibrator is vibrated for 24 hours per day for 12 days. It corresponds to a period.
- a signal for switching to the child may be output to the drive vibrator switching device 300.
- the controller 5a may output a signal for resetting the timer measurement value to the counter 314a.
- the timer may output a signal indicating a vibration period during the operation of the n-th vibrator to the controller 5a.
- the controller 5a may acquire a signal representing the measured value of the timer until the vibration period during the operation of the nth vibrator reaches a specified period for one vibrator.
- the controller 5a may monitor whether or not the vibration period during the operation of the nth vibrator has reached a specified period for one vibrator. When the vibration period during the operation of the n-th vibrator reaches the specified period in one vibrator, the controller 5a outputs a signal for switching the vibrator to be driven to another vibrator to the driving vibrator switching device 300. Also good.
- FIG. 15 is a flowchart showing a procedure of a first example of a transducer switching method applied to the EUV light generation system according to the fourth embodiment.
- the vibrator switching method according to the first example shown in FIG. 15 switches the vibrator to be driven based on the number of vibrations of the vibrator.
- the controller 5a shown in FIG. 14 determines the vibrator that drives the nth vibrator among the m vibrators provided in the target supply unit 26a, and starts the vibration of the nth vibrator.
- step S10 of FIG. 15 the controller 5a shown in FIG. 14 adjusts the drive parameter of the nth vibrator, determines the drive parameter of the nth vibrator, and vibrates the nth vibrator.
- the controller 5a shown in FIG. 14 outputs a signal for resetting the measurement value of the counter 314a to the counter 314a.
- the counter 314a shown in FIG. 14 measures the number of vibrations of the nth vibrator.
- the counter 314a shown in FIG. 14 determines whether or not the number of vibrations of the n-th vibrator has reached the prescribed number of times for one vibrator.
- step S64 of FIG. 15 if the counter 314a shown in FIG. 14 determines that the number of vibrations of the nth vibrator has not reached the prescribed number of times for one vibrator, the determination is No. In the case of No determination, the process proceeds to step S62 in FIG. 15, and steps S62 and S64 are repeatedly executed until a Yes determination is made in step S64.
- step S64 if the counter 314a shown in FIG. 14 determines that the number of vibrations of the n-th vibrator has reached the specified number of movements of one vibrator, a Yse determination is made. In the case of Yse determination, the process proceeds to step S66. Steps S66 to S72 are the same steps as steps S16 to S22 in FIG. 8 and will not be described here.
- step S70 of FIG. 15 in the case of Yes determination, the controller 5a shown in FIG.
- FIG. 16 is a flowchart showing the procedure of a second example of the transducer switching method applied to the EUV light generation system according to the fourth embodiment.
- the vibrator switching method according to the second example illustrated in FIG. 16 switches the vibrator to be driven based on the vibration period of the vibrator.
- Step S10 in FIG. 16 is the same as step S10 in FIG. 15, and description thereof is omitted here.
- the controller 5a shown in FIG. 14 outputs a signal for resetting a measured value of a timer (not shown) to the timer.
- step S82 in FIG. 16 the timer measures the vibration period of the nth vibrator.
- step S84 of FIG. 16 the timer determines whether or not the vibration period of the nth vibrator has reached a specified period of one vibrator.
- Step S84 of FIG. 16 if the timer determines that the vibration period of the nth vibrator has not reached the specified period of one vibrator, the determination is No. In the case of No determination, the process proceeds to step S82, and the processes of step S82 and step S84 are repeatedly executed until a Yes determination is made in step S84.
- step S84 if the timer determines that the vibration period of the nth vibrator has reached the specified period of one vibrator, a Yse judgment is made. In the case of Yse determination, the process proceeds to step S86. Steps S86 to S72 are the same steps as steps S16 to S22 in FIG. 8, and a description thereof will be omitted here.
- step S90 of FIG. 16 in the case of Yes determination, the controller 5a shown in FIG.
- the target supply unit includes one vibrator
- the number of vibrations per vibrator or the vibration period can be reduced, and as a result, the vibrator to be driven It is possible to reduce the failure rate. Accordingly, the life of the target supply unit can be extended according to the number of vibrators provided in the target supply unit.
- the vibrator to be driven can be switched to an unused vibrator, and the downtime of the EUV light generation system due to the failure of the vibrator can be suppressed. This improves the reliability of the EUV light generation system.
- the m vibrators including the first vibrator 111a, the second vibrator 111b, and the third vibrator 111c in the present disclosure are one mode of a plurality of vibrators including the fifth vibrator.
- the configuration including the counter 314a and the timer in the present disclosure is an aspect of the detection unit.
- the unused vibrator among the m vibrators including the first vibrator 111a and the second vibrator 111b in the present disclosure is an aspect of a vibrator different from the fifth vibrator.
- the counter 314a in the present disclosure is an aspect of a vibration frequency measurement unit that measures the vibration frequency of the fifth vibrator.
- the timer in the present disclosure is an aspect of a vibration period measurement unit that measures the vibration period of the fifth vibrator.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- X-Ray Techniques (AREA)
Abstract
本開示の一観点に係るターゲット供給装置は、ターゲットを出力するノズルと、ノズルを振動させる第1振動子を含む複数の振動子と、ノズルから出力したターゲットの状態の変化を検知する検知部と、ノズルを振動させる振動子を第1振動子から複数の振動子に含まれる第1振動と異なる他の振動子へ切り替える振動子切替部と、検知部によって検知されたノズルから出力したターゲットの状態の変化に基づいて、ノズルを振動させる振動子の切り替えを制御する制御部と、を備えている。
Description
本開示は、ターゲット供給装置に関する。
近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、20nm以下の微細加工が要求されるようになる。このため、波長13nm程度の極端紫外(EUV;Extreme Ultra Violet)光を生成するための装置と縮小投影反射光学系とを組み合わせた露光装置の開発が期待されている。
EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)式の装置と、放電によって生成されるプラズマが用いられるDPP(Discharge Produced Plasma)式の装置と、軌道放射光が用いられるSR(Synchrotron Radiation)式の装置との3種類の装置が提案されている。
本開示の1つの観点に係るターゲット供給装置は、ターゲットを出力するノズルと、ノズルを振動させる第1振動子を含む複数の振動子と、ノズルから出力したターゲットの状態の変化を検知する検知部と、ノズルを振動させる振動子を第1振動子から、複数の振動子に含まれる第1振動子と異なる他の振動子へ切り替える振動子切替部と、検知部によって検出されたノズルから出力したターゲットの状態の変化に基づいて、ノズルを振動させる振動子の切り替えを制御する制御部と、を備えたターゲット供給装置である。
本開示の1つの観点に係るターゲット供給装置は、ターゲットを出力するノズルと、ノズルを振動させる第2振動子、及びノズルの振動を検知する第3振動子を含む複数の振動子と、ノズルの振動を表す検知信号を出力し、第3振動子を含む検知部と、ノズルを振動させる振動子を第2振動子から、複数の振動子に含まれる第2振動子と異なる他の振動子へ切り替える振動子切替部と、検知部から出力される検知信号に基づいて、ノズルを振動させる振動子の切り替えを制御する制御部と、を備えたターゲット供給装置である。
本開示の1つの観点に係るターゲット供給装置は、ターゲットを出力するノズルと、ノズルを振動させる第4振動子を含む複数の振動子と、ノズルの振動を検知し、ノズルの振動を表す検知信号を出力する検知部と、ノズルを振動させる振動子を第4振動子から、複数の振動子に含まれる第4振動子と異なる他の振動子へ切り替える振動子切替部と、検知部から出力される検知信号に基づいて、ノズルを振動させる振動子の切り替えを制御する制御部と、を備えたターゲット供給装置である。
本開示の1つの観点に係るターゲット供給装置は、ターゲットを出力するノズルと、ノズルを振動させる第5振動子を含む複数の振動子と、第5振動子の振動回数を計測する振動回数計測部、又は第5振動子の振動期間を計測する振動期間計測部の少なくともいずれかを含む検知部と、ノズルを振動させる振動子を第5振動子から、複数の振動子に含まれる第5振動子と異なる他の振動子へ切り替える振動子切替部と、振動回数計測部によって計測された第5振動子の振動回数が予め決められた振動回数の規定値に達した場合、又は振動期間計測部によって計測された第5振動子の振動期間が予め決められた振動期間の規定値に達した場合に、振動子切替部によって、ノズルを振動させる振動子を第5振動子と異なる他の振動子へ切り替える制御部と、を備えたターゲット供給装置である。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は例示的なLPP式のEUV光生成システムの構成を概略的に示す図である。
図2は本開示の実施形態に適用可能なEUV光生成システムの構成を示す一部断面図である。
図3は図2に示したターゲット位置計測センサの構成例、及びターゲット像計測センサの構成例を示す図である。
図4は図3に示した第1撮像装置による撮像画像の例を示す図である。
図5は図3に示した第2撮像装置による撮像画像の例を示す図である。
図6は図3に示した第3撮像装置による撮像画像の例を示す図である。
図7は第1実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。
図8は第1実施形態に係るEUV光生成システムに適用される振動子切替方法の手順を示すフローチャートである。
図9は第2実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。
図10は図9に示した振動センサとして使用される振動子が発生させる起電力の電圧波形の一例を示す図である。
図11は第2実施形態に係るEUV光生成システム供給装置に適用される振動子切替方法の手順を示すフローチャートである。
図12は第3実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。
図13は第3実施形態に係るEUV光生成システムに適用される振動子切替方法の手順を示すフローチャートである。
図14は第4実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。
図15は第4実施形態に係るEUV光生成システムに適用される振動子切替方法の第1例の手順を示すフローチャートである。
図16は第4実施形態に係るEUV光生成システムに適用される振動子切替方法の第2例の手順を示すフローチャートである。
-目次-
1.極端紫外光生成システムの全体説明
1.1 構成
1.2 動作
2.用語の説明
3.課題
4.ターゲット供給部に複数の振動子を備えた極端紫外光生成システムの説明
4.1 構成
4.2 動作
4.3 ターゲット位置計測センサ、及びターゲット像計測センサの説明
4.3.1 構成
4.3.2 動作
5.第1実施形態
5.1 構成
5.2 動作
5.2.1 概要
5.2.2 ターゲット検知装置がタイミングセンサの場合の故障判定
5.2.3 ターゲット検知装置がターゲット像計測センサの場合の故障判定
5.3 振動子切替方法の手順
5.4 作用・効果
6.第2実施形態
6.1 構成
6.2 動作
6.3 振動子切替方法の手順
6.4 作用・効果
7.第3実施形態
7.1 構成
7.2 動作
7.3 振動子切替方法の手順
7.4 作用・効果
8.第4実施形態
8.1 構成
8.2 動作
8.3 振動子切替方法の手順
8.3.1 第1例
8.3.2 第2例
8.4 作用・効果
以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.極端紫外光生成システムの全体説明
1.1 構成
1.2 動作
2.用語の説明
3.課題
4.ターゲット供給部に複数の振動子を備えた極端紫外光生成システムの説明
4.1 構成
4.2 動作
4.3 ターゲット位置計測センサ、及びターゲット像計測センサの説明
4.3.1 構成
4.3.2 動作
5.第1実施形態
5.1 構成
5.2 動作
5.2.1 概要
5.2.2 ターゲット検知装置がタイミングセンサの場合の故障判定
5.2.3 ターゲット検知装置がターゲット像計測センサの場合の故障判定
5.3 振動子切替方法の手順
5.4 作用・効果
6.第2実施形態
6.1 構成
6.2 動作
6.3 振動子切替方法の手順
6.4 作用・効果
7.第3実施形態
7.1 構成
7.2 動作
7.3 振動子切替方法の手順
7.4 作用・効果
8.第4実施形態
8.1 構成
8.2 動作
8.3 振動子切替方法の手順
8.3.1 第1例
8.3.2 第2例
8.4 作用・効果
以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.極端紫外光生成システムの全体説明
1.1 構成
図1に、例示的なLPP式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられる場合がある。本開示においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、ターゲット供給部26を含む。チャンバ2は、密閉可能な容器である。ターゲット供給部26は、ターゲット物質をチャンバ2内部に供給するように構成され、例えば、チャンバ2の壁を貫通するように取り付けられる。ターゲット供給部26から出力されるターゲット物質の材料は、錫、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
1.1 構成
図1に、例示的なLPP式のEUV光生成システムの構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いられる場合がある。本開示においては、EUV光生成装置1及びレーザ装置3を含むシステムを、EUV光生成システム11と称する。図1に示し、かつ、以下に詳細に説明するように、EUV光生成装置1は、チャンバ2、ターゲット供給部26を含む。チャンバ2は、密閉可能な容器である。ターゲット供給部26は、ターゲット物質をチャンバ2内部に供給するように構成され、例えば、チャンバ2の壁を貫通するように取り付けられる。ターゲット供給部26から出力されるターゲット物質の材料は、錫、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
チャンバ2の壁には、少なくとも1つの貫通孔が設けられている。その貫通孔は、ウインドウ21によって塞がれ、ウインドウ21をレーザ装置3から出力されるパルスレーザ光32が透過する。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置される。EUV集光ミラー23は、第1及び第2の焦点を有する。EUV集光ミラー23の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成される。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ生成領域25に位置し、その第2焦点が中間集光点(IF;Intermediate Focusing point)292に位置するように配置されてもよい。EUV集光ミラー23の中央部には貫通孔24が設けられ、貫通孔24をパルスレーザ光33が通過する。
EUV光生成装置1は、EUV光生成コントローラ5、ターゲットセンサ4等を含む。ターゲットセンサ4は、ターゲット27の存在、軌跡、位置、速度のうちいずれか又は複数を検出するよう構成される。ターゲットセンサ4は、撮像機能を備えてもよい。
また、EUV光生成装置1は、チャンバ2の内部と露光装置6の内部とを連通させる接続部29を含む。接続部29の内部には、アパーチャ293が形成された壁291が設けられる。壁291は、そのアパーチャ293がEUV集光ミラー23の第2の焦点位置に位置するように配置される。
更に、EUV光生成装置1は、レーザ光伝送装置34、レーザ光集光ミラー22、ターゲット27を回収するためのターゲット回収部28等を含む。レーザ光伝送装置34は、レーザ光の伝送状態を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備える。
1.2 動作
図1を参照して、例示的なLPP式のEUV光生成システムの動作を説明する。レーザ装置3から出力されたパルスレーザ光31は、レーザ光伝送装置34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射する。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内を進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射される。
図1を参照して、例示的なLPP式のEUV光生成システムの動作を説明する。レーザ装置3から出力されたパルスレーザ光31は、レーザ光伝送装置34を経て、パルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射する。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内を進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射される。
ターゲット供給部26は、ターゲット物質によって形成されたターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力するよう構成される。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射される。パルスレーザ光が照射されたターゲット27はプラズマ化し、そのプラズマから放射光251が放射される。放射光251に含まれるEUV光252は、EUV集光ミラー23によって選択的に反射される。EUV集光ミラー23によって反射されたEUV光252は、中間集光点292で集光され、露光装置6に出力される。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
EUV光生成コントローラ5は、EUV光生成システム11全体の制御を統括するよう構成される。EUV光生成コントローラ5は、ターゲットセンサ4の検出結果を処理するよう構成される。ターゲットセンサ4の検出結果に基づいて、EUV光生成コントローラ5は、例えば、レーザ装置3の発振タイミング、パルスレーザ光32の照射方向、パルスレーザ光33の集光位置等を制御するよう構成されてもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加されてもよい。
2.用語の説明
「ターゲット」は、チャンバに導入されたレーザ光の被照射物である。
「ターゲット」は、チャンバに導入されたレーザ光の被照射物である。
「ターゲット供給部」は、EUV光を生成するために用いられる溶融錫等のターゲット物質をドロップレットの形状でチャンバ内に供給するための装置である。
「ドロップレット」は、チャンバの内部に出力されたターゲット物質の一形態である。
3.課題
ターゲット供給部は、ノズルを振動させる振動子を備えている。ターゲットを生成する周期に対応した周波数の電気信号を振動子に供給することによって、ターゲット供給部はノズルから均一なドロップレットの形態のターゲットを出力する。以下、振動子に供給される電気信号は駆動電圧と記載されることがある。
ターゲット供給部は、ノズルを振動させる振動子を備えている。ターゲットを生成する周期に対応した周波数の電気信号を振動子に供給することによって、ターゲット供給部はノズルから均一なドロップレットの形態のターゲットを出力する。以下、振動子に供給される電気信号は駆動電圧と記載されることがある。
ターゲット供給部に駆動する振動子を1つだけ備える場合、振動子が故障すると振動子が正常に動作しない結果、ターゲット供給部は均一なドロップレットの形態のターゲットの生成が困難になり、ターゲット供給部は寿命となる。
4.ターゲット供給部に複数の振動子を備えた極端紫外光生成システムの説明
4.1 構成
図2は本開示の実施形態に適用可能なEUV光生成システムの構成を示す一部断面図である。図2に示したチャンバ2の内部には、レーザ集光光学系22aと、EUV集光ミラーホルダ81と、EUV集光ミラーホルダ保持プレート82と、ターゲット回収部28とを備えている。
4.1 構成
図2は本開示の実施形態に適用可能なEUV光生成システムの構成を示す一部断面図である。図2に示したチャンバ2の内部には、レーザ集光光学系22aと、EUV集光ミラーホルダ81と、EUV集光ミラーホルダ保持プレート82と、ターゲット回収部28とを備えている。
レーザ集光光学系22aは、高反射軸外放物面ミラー221と、高反射平面ミラー222と、レーザ集光光学系保持プレート83と、X方向、Y方向及びZ方向に移動可能なステージ84とを備えている。
レーザ集光光学系22aは、レーザ集光光学系22aの集光位置がプラズマ生成領域25と一致するように配置される。「一致」とは、厳密には異なっているものの、一致しているとみなし得る「実質的な一致」が含まれ得る。
高反射軸外放物面ミラー221は、第1ホルダ223によって支持される。高反射平面ミラー222は第2ホルダ224によって支持される。ターゲット回収部28は、ターゲット27の軌道の延長線上に配置される。ターゲット回収部28は、プラズマ生成領域25を通過したターゲット物質を回収する。
図2に示したレーザ光伝送装置34は、第1高反射ミラー34aと、第2高反射ミラー34bとを備えている。レーザ装置3から出射したパルスレーザ光31は、第1高反射ミラー34aへ入射する。
第1高反射ミラー34aによって反射したパルスレーザ光32は、第2高反射ミラー34bへ入射する。第2高反射ミラー34bによって反射したパルスレーザ光32は、第1ウインドウ21aを介してチャンバ2の内部へ導入される。なお、図2に示した第1ウインドウ21aは、図1に示したウインドウ21に相当する。
図2に示したターゲット供給部26は、タンク部260と、ノズル部材266と、圧力調節器120と、ヒータ141と、第1振動子111aと、第2振動子111bと、ピエゾ電源112と、ステージ114とを備えている。
タンク部260には、ターゲット材料271である錫が貯蔵される。タンク部260の材質は、錫との反応性が低い材質が適用されてもよい。タンク部260の材質の材料はモリブデンが適用されてもよい。
ノズル部材266は、直径が3マイクロメートルから6マイクロメートルのノズル孔267が形成される。ノズル部材266の材質は、錫との反応性が低い材料が適用されてもよい。ノズル部材266の材質の材料は、モリブデンが適用されてもよい。ターゲット供給部26はノズル部材266をタンク部260の底部に固定するためのノズルホルダを備えてもよい。ノズルホルダの図示は省略する。
ノズルホルダの材質は、錫との反応性が低い材料が適用されてもよい。ノズルホルダの材質の材料は、モリブデンが適用されてもよい。ノズル部材266と図示しないノズルホルダとの間は面シールされていてもよい。タンク部260とノズル部材266との間は面シールされていてもよい。
圧力調節器120は、不活性ガスのボンベが接続される。ボンベの図示は省略する。不活性ガスは、アルゴンが適用されてもよい。ボンベと圧力調節器120との間のガス配管は、圧力調節器120によって制御可能なバルブが設けられる。ガス配管及びバルブの図示は省略する。
圧力調節器120は、導入管131を介してタンク部260の内部と連通する。圧力調節器120は、導入管131を介して図示しないボンベから供給された不活性ガスをタンク部260へ導入してもよい。
ヒータ141は、ヒータ電源と電気接続される。ヒータ電源は温度コントローラと電気信号を伝送可能に接続される。ヒータ電源及び温度コントローラの図示は省略する。ヒータ電源は、温度コントローラからの制御に従って、ヒータへ電力を供給してもよい。
ヒータ141は、タンク部260の内部のターゲット材料271を加熱するように配置される。例えば、ヒータ141は、タンク部260の外側面に配置されてもよい。
タンク部260、及び図示しないノズルホルダのいずれか一方は、温度センサが取り付けられる。温度センサの図示は省略する。温度センサは、タンク部260、及びノズルホルダのいずれか一方の温度を計測するように配置されてもよい。
温度センサは、チャンバ2の隔壁に設けられた導入端子を介して、温度コントローラと電気信号を伝送可能に接続される。導入端子の図示は省略する。導入端子は、チャンバ2の気密性を維持し、温度センサと温度コントローラとの電気接続ラインをチャンバ2から電気的に絶縁してもよい。
ピエゾ電源112は、EUV光生成コントローラ5と電気信号を伝送可能に接続される。ピエゾ電源112は、チャンバ2の隔壁に設けられた導入端子を介して、第1振動子111aの電極、及び第2振動子111bの電極と電気接続される。第1振動子111aの電極、第2振動子111bの電極、及び導入端子の図示は省略する。
導入端子は、チャンバ2の気密性を維持し、ピエゾ電源112と第1振動子111aの電極、第2振動子111bの電極との電気接続ラインをチャンバ2から電気的に絶縁してもよい。
第1振動子111a及び第2振動子111bは、ノズル部材266の側面に設けられていてもよい。第1振動子111a及び第2振動子111bは、ノズル孔267の中心を通る軸に対して線対称関係となるように配置されてもよい。
第1振動子111a、及び第2振動子111bは、ピエゾ素子を適用してもよい。ピエゾ素子は、外部からの電気信号に応じて振動する圧電部材であってもよい。ピエゾ素子は、チタン酸ジルコン酸鉛を用いた圧電素子であってもよい。
圧力調節器120及び温度コントローラは、EUV光生成コントローラ5と電気信号を伝送可能に接続される。圧力調節器120及び温度コントローラは、EUV光生成コントローラ5の制御に従い動作する。
タンク部260の内部は、タンク部260の底に設けられたターゲット流路を介してノズル孔267と連通してもよい。ターゲット流路は、流通するターゲット材料271を濾過するためのフィルタを備えてもよい。ターゲット流路、及びフィルタの図示は省略する。
ステージ114は、XZ平面と平行な面内において、タンク部260、及びノズル部材266を移動可能な位置に配置される。ステージ114は、EUV光生成コントローラ5と電気信号を伝送可能に接続される。ステージ114は、EUV光生成コントローラ5の制御に従い、XZ平面と平行な面内において、チャンバ2の位置に対するタンク部260、及びノズル部材266の位置を移動させる。
図2に示したEUV光生成装置1は、タイミングセンサ4aを備えている。タイミングセンサ4aは、ターゲット27がプラズマ生成領域25に到達する前の検知位置Pでターゲット27が通過したことを検知する位置に配置される。タイミングセンサ4aは、ターゲット27が検知位置Pを通過したタイミングを表す通過タイミング信号を出力する。
タイミングセンサ4aは、照明部200と、受光部202とを備えている。照明部200と受光部202とは、ターゲット27の軌道を挟んで、ターゲット27の通過領域の両側に配置される。
照明部200は、光源204と、照明光学系206とを備えている。照明部200は、チャンバ2の隔壁に設けられた第2ウインドウ21bを介して、チャンバ2の内部へ照明光を照射可能な位置に配置される。光源204から出射した照明光は、照明光学系206及び第2ウインドウ21bを介して、ターゲット27の軌道に照射される。
受光部202は、受光光学系208と、光センサ210とを備えている。受光部202は、第3ウインドウ21cを介して、照明部200から出射した照明光を可能な位置に配置される。第3ウインドウ21cを介して、入射した照明光は、受光光学系208を介して光センサ210へ到達する。光センサ210は、受光した照明光の光量に応じたターゲット27の検知信号を出力する。
タイミングセンサ4aは、EUV光生成コントローラ5と電気信号を伝送可能に接続される。タイミングセンサ4aは、光センサ210から出力された検知信号であり、ターゲット27が検知位置Pを通過したタイミングを表す検知信号をEUV光生成コントローラ5へ出力する。
図2に示したターゲット位置計測センサ4bは、プラズマ生成領域25に向けて配置されてもよい。ターゲット位置計測センサ4bの検知位置Pを通過したターゲット27の軌道の位置を検知してもよい。
ターゲット像計測センサ4cは、プラズマ生成領域25に向けて配置されてもよい。ターゲット像計測センサ4cは、検知位置Pを通過したターゲット27の画像を取得してもよい。
ターゲット位置計測センサ4b、及びターゲット像計測センサ4cは、EUV光生成コントローラ5と電気信号を伝送可能に接続される。ターゲット位置計測センサ4bは、ターゲット27の軌道の位置を表す検知信号をEUV光生成コントローラ5へ出力してもよい。ターゲット像計測センサ4cは、ターゲット27の画像を表す検知信号をEUV光生成コントローラ5へ出力してもよい。
ターゲット位置計測センサ4bは、第2照明部と、CCDカメラ等の撮像装置を備えていてもよい。図2では、第2照明部、及び撮像装置の図示は省略する。第2照明部は、図3に符号280を付して図示する。撮像装置は、図3に符号282、及び284を付して図示する。
図2に示したターゲット位置計測センサ4bは、ターゲット27による照明光の反射画像を撮像する。図3に示すように、複数の撮像装置を備え、複数の撮像装置のそれぞれは、異なる方向からターゲット27を撮像して、撮影方向が異なる画像を取得してもよい。
異なる方向から撮影された画像から、所定の平面内におけるターゲット27の位置の計算が可能である。ターゲット位置計測センサ4bは、プラズマ光を遮断するためのシャッターを備えていてもよい。シャッターは、タイミングセンサ4aから出力される検知信号であり、ターゲット27の通過タイミングを表す検知信号に対して、所定の期間遅延させたゲート信号によって開閉してもよい。
ターゲット像計測センサ4cは、第3照明部と、CCDカメラ等の撮像装置を備えていてもよい。図2では、第3照明部、及び撮像装置の図示は省略する。第3照明部は、図3に符号286を付して図示する。撮像装置は、図3に符号288を付して図示する。
ターゲット像計測センサ4cは、ターゲット27による照明光の透過画像を撮像する。第3照明部は、レーザ光源などの高輝度の光源を適用してもよい。これにより。ターゲット像計測センサ4cは、比較的、短期間の露光によって、ターゲット27の撮像が可能である。
ターゲット像計測センサ4cは、比較的、短期間の露光によって、ある時刻におけるターゲット27の位置が特定可能な画像を撮像し得る。ターゲット像計測センサ4cは、プラズマ光を遮断するためのシャッターを備えていてもよい。シャッターは、タイミングセンサ4aから出力される検知信号であり、ターゲット27の通過タイミングを表す検知信号に対して、所定の期間遅延させたゲート信号によって開閉してもよい。
図1に示したターゲットセンサ4は、図2に示したタイミングセンサ4a、ターゲット位置計測センサ4b、及びターゲット像計測センサ4cを含んでいてもよい。ターゲット位置計測センサ4b、及びターゲット像計測センサ4cの詳細は後述する。
4.2 動作
EUV光生成コントローラ5は、露光装置6の露光装置制御部6aからターゲット27の出力準備信号が入力されると、以下の動作を実行する。
EUV光生成コントローラ5は、露光装置6の露光装置制御部6aからターゲット27の出力準備信号が入力されると、以下の動作を実行する。
EUV光生成コントローラ5は、タンク部260の内部のターゲット材料271が融点以上の温度となるように、温度コントローラを制御する。EUV光生成コントローラ5の制御に対して、温度コントローラは温度センサの検知値が所定の温度以上となるように、ヒータ電源を駆動する。
所定の温度は、ターゲット材料271として錫が適用される場合、錫の融点以上の温度であってもよい。例えば、錫の融点である232℃に対して、所定の温度は232℃以上であってもよい。所定の温度は、温度範囲であってもよい。例えば、温度範囲は、錫の融点である232℃に対して、240℃以上290℃以下の温度範囲としてもよい。
EUV光生成コントローラ5は、温度センサの検知値が、所定の期間、所定の温度以上の温度を維持しているか否かを判定してもよい。所定の温度以上が所定期間維持されている場合、EUV光生成コントローラ5は、露光装置6の露光装置制御部6aにターゲット27の出力準備が完了したことを通知してもよい。EUV光生成コントローラ5は、ターゲット27の出力を要求する信号が入力されるまで待機してもよい。
EUV光生成コントローラ5は、ターゲット27の出力を要求する信号が入力されると、圧力調節器120を制御して、タンク部260の内部の圧力を所定の圧力まで昇圧させる。所定の圧力は、40メガパスカル程度であってもよい。
EUV光生成コントローラ5は、圧力調節器120を制御して、タンク部260の内部の圧力を所定の圧力に維持してもよい。タンク部260の内部の圧力が所定の圧力に維持されている状態において、ノズル孔267からターゲット材料271のジェットが出力され得る。
EUV光生成コントローラ5は、ノズル孔267から出力されるターゲット材料271のジェットが、所定のサイズ、及び所定の周期のドロップレットに変化するように、ピエゾ電源112を制御する。これにより、ピエゾ電源112から第1振動子111aに所定の波形の駆動電圧が印加されてもよい。
所定の波形の駆動電圧が印加された第1振動子111aで発生した振動は、ノズルホルダ、ノズル部材266、及びタンク部260を介してターゲット材料271に伝達してもよい。これにより、ターゲット材料271のジェットが分断され、ターゲット材料271のジェットが、所定のサイズ、及び所定の周期のドロップレットに変化してもよい。
EUV光生成コントローラ5は、タイミングセンサ4aが出力する検知信号に対して、所定の期間遅延させたゲート信号を、ターゲット位置計測センサ4b、及びターゲット像計測センサ4cに出力してもよい。
ターゲット位置計測センサ4bは、EUV光生成コントローラ5から出力されたゲート信号に従って、プラズマ生成領域25を撮像し、撮像信号をEUV光生成コントローラ5へ出力してもよい。
EUV光生成コントローラ5は、ターゲット位置計測センサ4bから出力された撮像信号を用いて、プラズマ生成領域25におけるターゲット27の位置を演算してもよい。例えば、EUV光生成コントローラ5は、プラズマ生成領域25に設定される座標系におけるターゲット27の座標を演算してもよい。
プラズマ生成領域25に設定される座標系が二次元座標系の場合、EUV光生成コントローラ5は、ターゲット27の二次元の座標を演算してもよい。例えば、EUV光生成コントローラ5は、XZ平面上の座標を演算してもよい。
EUV光生成コントローラ5は、ターゲット27の目標位置と、検知されたターゲットの位置との偏差を小さくするように、ターゲット供給部26のステージ114を動作させてもよい。
ターゲット像計測センサ4cは、EUV光生成コントローラ5から出力されたゲート信号に従って、プラズマ生成領域25を撮像し、撮像信号をEUV光生成コントローラ5へ出力してもよい。
EUV光生成コントローラ5は、ターゲット像計測センサ4cから出力された画像信号を用いて、ターゲット27がプラズマ生成領域25における位置を演算してもよい。例えば。EUV光生成コントローラ5は、プラズマ生成領域25に設定される座標系におけるターゲット27の座標を演算してもよい。EUV光生成コントローラ5は、プラズマ生成領域25に設定される座標系におけるY方向の位置を算出してもよい。
EUV光生成コントローラ5は、計測されたターゲット27の位置に従って、ターゲット27の目標位置にレーザ光が照射されるように、レーザ装置3に出力される発光トリガ信号に遅延期間を付加してもよい。
4.3 ターゲット位置計測センサ、及びターゲット像計測センサの説明
4.3.1 構成
図3は図2に示したターゲット位置計測センサの構成例、及びターゲット像計測センサの構成例を示す図である。図3に示したターゲット位置計測センサ4bは、第1照明装置280と、第1撮像装置282と、第2撮像装置284とを備えている。第1撮像装置282及び第2撮像装置284のそれぞれに照明装置を備えてもよい。
4.3.1 構成
図3は図2に示したターゲット位置計測センサの構成例、及びターゲット像計測センサの構成例を示す図である。図3に示したターゲット位置計測センサ4bは、第1照明装置280と、第1撮像装置282と、第2撮像装置284とを備えている。第1撮像装置282及び第2撮像装置284のそれぞれに照明装置を備えてもよい。
図3に示した第1撮像装置282は、X方向からターゲット27を撮像する位置に配置される。図3に示した第2撮像装置284は、Z方向からターゲット27を撮像する位置に配置される。第1撮像装置282の撮像方向はX方向に限定されない。また、第2撮像装置284の撮像方向はZ方向に限定されない。
第1撮像装置282の撮像方向と第2撮像装置284の撮像方向とは、異なる方向であればよい。第1撮像装置282の撮像方向と第2撮像装置284の撮像方向とは、互いに直交する方向としてもよい。
図3に示した第1照明装置280は、第1撮像装置282及び第2撮像装置284に、ターゲット27の反射光が入射するように配置される。
図3に示したターゲット像計測センサ4cは、第2照明装置286と、第3撮像装置288とを備えている。第2照明装置286は、レーザ光源、又はフラッシュランプ等の高輝度の照明光を出射可能な光源を適用してもよい。
図3に示した第3撮像装置288は、被写体像が表示される画面において、Y方向が特定できる方向からターゲット27を撮像する位置に配置される。図3に示した第2照明装置286は、ターゲット27の軌道を挟んで、第3撮像装置288と対向する位置に配置される。
第3撮像装置288には、第2照明装置286から出射した照明光であり、ターゲット27の付近を透過した照明光が入射してもよい。第3撮像装置288は、第2照明装置286から出射した照明光を遮るターゲット27の像を取得してもよい。
4.3.2 動作
EUV光生成コントローラ5は、第1撮像装置282及び第2撮像装置284へゲート信号を出力して、第1撮像装置282及び第2撮像装置284のそれぞれから、ターゲット27の画像を取得してもよい。
EUV光生成コントローラ5は、第1撮像装置282及び第2撮像装置284へゲート信号を出力して、第1撮像装置282及び第2撮像装置284のそれぞれから、ターゲット27の画像を取得してもよい。
図4は図3に示した第1撮像装置による撮像画像の例を示す図である。図4に示した第1撮像装置282の撮像画像は、一定の周期で連続して出力された複数のターゲット27をYZ平面に投影した画像である。図4に示した第1撮像装置282の撮像画像は、Z方向におけるターゲット27の軌道の位置を特定可能である。
図5は図3に示した第2撮像装置による撮像画像の例を示す図である。図5に示した第2撮像装置284の撮像画像は、一定の周期で連続して出力された複数のターゲット27をXY平面に投影した画像である。図5に示した第2撮像装置284の撮像画像は、X方向におけるターゲット27の軌道の位置を特定可能である。
第3撮像装置288は、高輝度の照明光の透過光が入射するので、第3撮像装置288の受光期間を表すゲート信号の期間は、比較的短くてよい。第3撮像装置288の受光期間を表すゲート信号の期間が短いと、第3撮像装置288の受光期間が短くなるので、第3撮像装置288は、ターゲット27の静止画像の撮像が可能である。
図6は図3に示した第3撮像装置による撮像画像の例を示す図である。図6に示すターゲット27の静止画像の撮像によって、ある時刻におけるプラズマ生成領域25に到達したターゲット27のY軸方向の座標の特定が可能である。
5.第1実施形態
5.1 構成
図7は第1実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。図7に示したEUV光生成システム11aは、ターゲット供給部26aと、コントローラ5aと、駆動振動子切替装置300と、振動子駆動装置302と、ターゲット検知装置304とを備えている。
5.1 構成
図7は第1実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。図7に示したEUV光生成システム11aは、ターゲット供給部26aと、コントローラ5aと、駆動振動子切替装置300と、振動子駆動装置302と、ターゲット検知装置304とを備えている。
図7に示したターゲット供給部26aは、複数の振動子を備えている。図7に示すように、ターゲット供給部26aは、3つの振動子である、第1振動子111a、第2振動子111b、及び第3振動子111cを備えてもよい。
第1振動子111a、第2振動子111b、及び第3振動子111cの図示しない電極は、駆動振動子切替装置300と、駆動電圧を伝送可能に接続される。駆動振動子切替装置300は、振動子駆動装置302と、駆動電圧を伝送可能に接続される。駆動振動子切替装置300、及び振動子駆動装置302は、コントローラ5aと電気信号を伝送可能に接続される。
ターゲット検知装置304は、ターゲット供給部26aから出力されたターゲット27の状態を検知可能な位置に配置される。ターゲット検知装置304は、コントローラ5aと電気信号を伝送可能に接続される。
ターゲット検知装置304は、図2に示したタイミングセンサ4aを適用してもよい。ターゲット検知装置304は、図2に示したターゲット像計測センサ4cを適用してもよい。
図7に示したコントローラ5a、駆動振動子切替装置300は、図2に示したEUV光生成コントローラ5に含まれてもよいし、EUV光生成コントローラ5とは別に備えられ、EUV光生成コントローラ5と電気信号を伝送可能に接続されてもよい。
コントローラ5aは、1つ、又は複数のプロセッサを含んで構成されてもよい。コントローラ5aは、プロセッサに付随するメモリを備えていてもよい。図7に示した振動子駆動装置302は、図2に示したピエゾ電源112を含んでいてもよい。
5.2 動作
5.2.1 概要
EUV光生成システム11aに適用されるターゲット供給部26aは、m個の振動子の数を備えている。mは2以上の整数である。コントローラ5aは、m個の振動子の中から任意の一つの振動子を、駆動する最初の振動子として決定する。最初の振動子は1番目の振動子とする。駆動する振動子とは、ターゲット27を生成する際に駆動電圧を供給して振動させる振動子である。
5.2.1 概要
EUV光生成システム11aに適用されるターゲット供給部26aは、m個の振動子の数を備えている。mは2以上の整数である。コントローラ5aは、m個の振動子の中から任意の一つの振動子を、駆動する最初の振動子として決定する。最初の振動子は1番目の振動子とする。駆動する振動子とは、ターゲット27を生成する際に駆動電圧を供給して振動させる振動子である。
コントローラ5aは、駆動振動子切替装置300によって、駆動する振動子を選択する。最初に選択される振動子を1番目の振動子とする。1番目の振動子は、m個の振動子のうち、任意の振動子でよい。
例えば、コントローラ5aは、1番目の振動子の情報を表す選択信号を駆動振動子切替装置300へ出力してもよい。例えば、振動子の情報は、振動子の識別番号としてもよい。振動子の識別番号は、m個の振動子のそれぞれに付した1からmまでの整数としてもよい。
コントローラ5aは、1番目の振動子に駆動電圧を供給して、1番目の振動子を振動させる。コントローラ5aは、ターゲット27が規定の性能のドロップレットとして結合するように1番目の振動子の駆動パラメータを調整し、1番目の振動子の駆動パラメータを決定する。
規定の性能のドロップレットの例として、所定の観察位置におけるターゲット27の通過周波数が100キロヘルツで通過する、結合したドロップレットが挙げられる。ターゲット27の通過周波数は、ターゲット27の通過タイミングの間隔の逆数として算出される。駆動パラメータは、駆動電圧の電圧波形の振幅でもよいし、駆動電圧の電圧波形のデューティでもよい。
コントローラ5aは、決定された駆動パラメータを適用して1番目の振動子を振動させて、ターゲット27を生成する。ターゲット検知装置304は、ターゲット27の状態を検知する。ターゲット27の状態の検知の詳細は後述する。
コントローラ5aは、ターゲット検知装置304から出力される、ターゲット27の状態の検知結果に基づいて、1番目の振動子の故障の有無を判定する。振動子の故障は、振動子が振動しない状態、振動子が振動するもののターゲット27が出力されない振動子の状態、又は振動子が振動するものの、所定の条件を満たすターゲット27が出力されない振動子の状態が含まれてもよい。振動子の故障判定の詳細は後述する。
コントローラ5aは、1番目の振動子が故障したと判定すると、駆動振動子切替装置300によって、1番目の振動子と異なる他の振動子であり、未使用の振動子を駆動する振動子に決定する。例えば、1番目の振動子に代わり駆動する振動子として決定された振動子を2番目の振動子とする。
コントローラ5aは、振動子を切り替える振動を駆動振動子切替装置300へ出力する際に、図2に示した露光装置6から出力される光出射停止許可命令に従ってもよい。
コントローラ5aは、2番目の振動子の駆動パラメータを調整し、決定する。コントローラ5aは、2番目の振動子を振動させてターゲット27を生成する。ターゲット検知装置304は、ターゲット27の状態を検知する。コントローラ5aは、ターゲット検知装置304から出力される、ターゲット27の状態の検知結果に基づいて、2番目の振動子の故障の有無を判定する。
このようにして、コントローラ5aは、任意の未使用の振動子であるn番目の振動子を駆動する振動子として決定し、選択すると、n番目の振動子の駆動パラメータを調整し、決定する。なお、nは1以上m以下の整数である。
コントローラ5aは、n番目の振動子を振動させてターゲット27を生成する。ターゲット検知装置304は、ターゲット27の状態を検知する。コントローラ5aは、ターゲット検知装置304によるターゲット27の状態の検知結果に基づいて、n番目の振動子が故障していると判定すると、n+1番目の振動子を駆動する振動子として決定し、選択する。
駆動する振動子をn番目の振動子からn+1番目の振動子へ切り替える際に、コントローラ5aは、図2に示した露光装置6から出力される光出射停止許可命令に従ってn番目の振動子の振動を停止させてもよい。
コントローラ5aは、n+1番目の振動子の駆動パラメータを調整し、決定する。コントローラ5aは、n+1番目の振動子を振動させてターゲット27を生成する。ターゲット検知装置304は、ターゲット27の状態を検知する。
このようにして、1番目の振動子からm番目の振動子のそれぞれが故障するまで、コントローラ5aは、駆動する振動子が故障したと判定すると、駆動する振動子を未使用の振動子の中から決定して、変更する。
5.2.2 ターゲット検知装置がタイミングセンサの場合の故障判定
図7に示したターゲット検知装置304は、図2に示したタイミングセンサ4aと兼用されてもよい。図7に示したターゲット検知装置304が図2に示したタイミングセンサ4aの場合、タイミングセンサ4aはターゲット27の通過タイミングの間隔を検知する。コントローラ5aは、ターゲット27の通過タイミングの間隔から算出される、ターゲット27の間の距離が、予め決められた規定値以下の場合に、駆動する振動子を故障と判定してもよい。ターゲット27間の距離は、ターゲット27の通過タイミングの間隔にターゲット27の速度を乗算して算出される。ターゲット27の速度はターゲットの出力条件に基づいて決めることが可能である。
図7に示したターゲット検知装置304は、図2に示したタイミングセンサ4aと兼用されてもよい。図7に示したターゲット検知装置304が図2に示したタイミングセンサ4aの場合、タイミングセンサ4aはターゲット27の通過タイミングの間隔を検知する。コントローラ5aは、ターゲット27の通過タイミングの間隔から算出される、ターゲット27の間の距離が、予め決められた規定値以下の場合に、駆動する振動子を故障と判定してもよい。ターゲット27間の距離は、ターゲット27の通過タイミングの間隔にターゲット27の速度を乗算して算出される。ターゲット27の速度はターゲットの出力条件に基づいて決めることが可能である。
例えば、標準的なターゲット27間の距離を1000マイクロメートルとする。ターゲット27間の距離のばらつきである3σ(99.73パーセント)が、5マイクロメートル未満、又はマイナス5マイクロを超えていれば、コントローラ5aは振動子が正常と判定してもよい。
一方、ターゲット27間の距離のばらつきである3σが、5マイクロメートル以上、又はマイナス5マイクロメートル以下であれば、コントローラ5aは振動子が故障していると判定してもよい。5マイクロメートルとは、標準的なターゲット27間の距離である1000マイクロメートルの0.5パーセントである。
なお、タイミングセンサ4aのサンプリング期間は0.1秒としてもよい。サンプル数は10000としてもよい。
また、標準的なターゲット27間の距離からターゲット27間の距離を減算して求めた差分の最大値の絶対値、又は差分の最小値の絶対値が、標準的なターゲット27間の距離の0.5パーセント未満であれば、コントローラ5aは振動子が正常と判定してもよい。標準的なターゲット27間の距離からターゲット27間の距離を減算した求めた差分の最大値の絶対値、又は差分の最小値の絶対値が、標準的なターゲット27間の距離の0.5パーセント以上であれば、コントローラ5aは振動子が故障していると判定してもよい。
5.2.3 ターゲット検知装置がターゲット像計測センサの場合の故障判定
図7に示したターゲット検知装置304は、図2に示したターゲット像計測センサ4cと兼用されてもよい。図7に示したターゲット検知装置304が、図2に示したターゲット像計測センサ4cの場合は、ターゲット像計測センサ4cによって撮像された画像の解析結果から得られる、を振動子の故障判定の指標としてもよい。
図7に示したターゲット検知装置304は、図2に示したターゲット像計測センサ4cと兼用されてもよい。図7に示したターゲット検知装置304が、図2に示したターゲット像計測センサ4cの場合は、ターゲット像計測センサ4cによって撮像された画像の解析結果から得られる、を振動子の故障判定の指標としてもよい。
例えば、標準的なターゲット27間の距離を1000マイクロメートルとする。ターゲット27間の距離のばらつきである3σが5マイクロメートル未満、又はマイナス5マイクロメートルを超えていれば、コントローラ5aは振動子が正常と判定してもよい。
一方、ターゲット27間の距離のばらつきである3σが5マイクロメートル以上、又はマイナス5マイクロメートル以下であれば、コントローラ5aは振動子が故障していると判定してもよい。5マイクロメートルは、標準的なターゲット27間の距離である1000マイクロメートルの0.5パーセントである。なお、ドロップレットの形態のターゲット27の直径は20マイクロメートルとしてもよい。
また、標準的なターゲット27間の距離からターゲット27間の距離を減算して求めた差分の最大値の絶対値、又は差分の最小値の絶対値が、標準的なターゲット27間の距離の0.5パーセント未満であれば、コントローラ5aは振動子が正常と判定してもよい。標準的なターゲット27間の距離からターゲット27間の距離を減算した値の絶対値が、標準的なターゲット27間の距離の0.5パーセント以上であれば、コントローラ5aは振動子が故障していると判定してもよい。
5.3 振動子切替方法の手順
図8は第1実施形態に係るEUV光生成システムに適用される振動子切替方法の手順を示すフローチャートである。図7に示したコントローラ5aは、ターゲット供給部26aに備えられるm個の振動子のうち、n番目の振動子を駆動する振動子として決定し、n番目の振動子の振動を開始する。
図8は第1実施形態に係るEUV光生成システムに適用される振動子切替方法の手順を示すフローチャートである。図7に示したコントローラ5aは、ターゲット供給部26aに備えられるm個の振動子のうち、n番目の振動子を駆動する振動子として決定し、n番目の振動子の振動を開始する。
図8のステップS10において、図7に示したコントローラ5aは、n番目の振動子の駆動パラメータを調整し、n番目の振動子の駆動パラメータを決定し、n番目の振動子を振動させる。図8のステップS12では、図7に示したターゲット検知装置304によってターゲット27の検知が実行される。
図8のステップS14では、図7に示したターゲット検知装置304によるターゲット27の検知結果に基づいて、コントローラ5aは、ターゲット27の状態が変化したか否かを判定する。
図8のステップS14において、図7に示したコントローラ5aがターゲット27の状態が変化していないと判定すると、No判定となる。No判定の場合は、図8のステップS12へ進み、ステップS14においてYes判定となるまで、ステップS12、及びステップS14が繰り返し実行される。
ステップS14において、図7に示したコントローラ5aがターゲット27の状態が変化していると判定すると、Yes判定となる。Yes判定の場合は、図8のステップS16へ進む。ステップS16では、図7に示したコントローラ5aは、露光装置6からの光出射停止許可命令を取得したか否かを判定する。
図8のステップS16において、図7に示したコントローラ5aが露光装置6からの光出射停止許可命令を取得していない場合は、No判定となる。No判定の場合は、コントローラ5aは、露光装置6からの光出射停止許可命令を取得したか否かの判定を継続する。
図8のステップS16において、図7に示したコントローラ5aが露光装置6からの光出射停止許可命令を取得した場合は、Yes判定となる。Yes判定の場合は、図8のステップS18へ進む。
ステップS18では、図7に示したコントローラ5aは、振動子駆動装置302によって、n番目の振動子の振動を停止させる。図8のステップS18において、n番目の振動子の振動を停止させると、ステップS20へ進む。
ステップS20では、図7に示したコントローラ5aは、n番目の振動子が最終の振動子であるか否かを判定する。最終の振動子はm番目の振動子である。図8のステップS20において、図7に示したコントローラ5aがn番目の振動子が最終の振動子でないと判定すると、No判定となる。No判定の場合は、図8のステップS22へ進む。
ステップS22では、図7に示したコントローラ5aは、n+1番目の振動子を駆動する振動子として決定し、振動子駆動装置302によって、n+1番目の振動子の振動を開始する。n+1番目の振動子は、未使用の振動子であればよい。以降、コントローラ5aは、図8のステップS22においてYes判定となるまで、ステップS10からステップS20までの工程を順に実行する。
ステップS20において、図7に示したコントローラ5aが、n番目の振動子が最終の振動子であると判定すると、Yes判定となる。Yes判定の場合は、図7に示したコントローラ5aは、振動子の切り替えを終了する。
5.4 作用・効果
ターゲットの生成の際に駆動する振動子が故障しても、故障した振動子は他の振動子へ切り替わるので、振動子が故障した場合にターゲット供給部を交換する必要がない。これにより、ターゲット供給部に備えられた振動子の数分だけ、ターゲット供給部の寿命が延長可能である。
ターゲットの生成の際に駆動する振動子が故障しても、故障した振動子は他の振動子へ切り替わるので、振動子が故障した場合にターゲット供給部を交換する必要がない。これにより、ターゲット供給部に備えられた振動子の数分だけ、ターゲット供給部の寿命が延長可能である。
また、ターゲットの状態が直接検知されるので、より正確な振動子の故障判定が可能となり、結果として、EUV光生成システムの信頼性が向上する。
本開示におけるターゲット供給部26、及びターゲット供給部26aは、ターゲット供給装置の一態様である。
本開示における第1振動子111a、第2振動子111b、及び第3振動子111cを含むm個の振動子は、第1振動子を含む複数の振動子の一態様である。本開示におけるターゲット検知装置304は、検知部の一態様である。
本開示における第1振動子111a、第2振動子111b、及び第3振動子111cを含むm個の振動子のうち未使用の振動子は、第1振動子と異なる他の振動子の一態様である。本開示における駆動振動子切替装置は、振動子切替部の一態様である。本開示におけるコントローラ5aは、制御部の一態様である。本開示における振動子駆動装置302は振動子駆動部の一態様である。
本開示におけるタイミングセンサ4aは、ターゲットの通過経路における、各ターゲット間の通過タイミングの間隔を計測する通過タイミング間隔計測部の一態様である。本開示におけるタイミングセンサ4aは、ノズルから出力するターゲットの出力タイミングを調整するために、各ターゲット間の通過タイミングの間隔を計測するタイミング計測部の一態様である。本開示におけるタイミングセンサ4aに備えられる照明部200は、第1照明部の一態様である。
本開示におけるターゲット像計測センサ4cに備えられる第3撮像装置288は、ノズルから出力したターゲットを撮像する撮像部の一態様である。本開示におけるターゲット像計測センサ4cに備えられる第2照明装置286は、第2照明部の一態様である。
6.第2実施形態
6.1 構成
図9は第2実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。図9に示したEUV光生成システム11bは、ターゲット供給部26bと、センサ切替装置310と、振動起電力計測装置312と、カウンタ314とを備えている。カウンタ314はタイマでもよい。
6.1 構成
図9は第2実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。図9に示したEUV光生成システム11bは、ターゲット供給部26bと、センサ切替装置310と、振動起電力計測装置312と、カウンタ314とを備えている。カウンタ314はタイマでもよい。
図9に示したターゲット供給部26bは、複数の振動子を備えている。複数の振動子は、振動センサとして使用可能な振動子が少なくとも1つ含まれる。図9に示した第4振動子111dは、振動センサとして使用可能な振動子であってもよい。
第1振動子111a、第2振動子111b、及び第4振動子111dの図示しない電極は、センサ切替装置310と、駆動電圧を伝送可能に接続される。センサ切替装置310は、振動起電力計測装置312と電気信号を伝送可能に接続される。センサ切替装置310、及び振動起電力計測装置312は、コントローラ5aと電気信号を伝送可能に接続される。カウンタ314は、コントローラ5aと電気信号を伝送可能に接続される。
6.2 動作
コントローラ5aは、ターゲット供給部26bに備えられる複数の振動子の中から、駆動に使用しない任意の一つの振動子を振動センサとして決定する。振動センサとしてm番目の振動子を決定してもよい。例えば、図9の第4振動子111dをm番目の振動子とし、振動センサとして決定してもよい。なお、m番目の振動子は、m個の振動子のうち任意の振動子である。
コントローラ5aは、ターゲット供給部26bに備えられる複数の振動子の中から、駆動に使用しない任意の一つの振動子を振動センサとして決定する。振動センサとしてm番目の振動子を決定してもよい。例えば、図9の第4振動子111dをm番目の振動子とし、振動センサとして決定してもよい。なお、m番目の振動子は、m個の振動子のうち任意の振動子である。
コントローラ5aは、センサ切替装置310によって、振動センサとしてm番目の振動子を選択する。コントローラ5aは、振動センサとして選択するm番目の振動子の情報を表す選択信号をセンサ切替装置310へ出力してもよい。振動子の情報は、振動子の識別番号としてもよい。振動子の識別番号は、m個の振動子のそれぞれに付した1からmまでの整数としてもよい。
コントローラ5aは、駆動する振動子としてn番目の振動子を決定し、選択する。コントローラ5aがn番目の振動子を振動させると、その振動がノズルを介して振動センサとして使用するm番目の振動子に伝達する。その結果、m番目の振動子はn番目の振動子の振動状態を表す起電力を発生させる。振動起電力計測装置312は、m番目の振動子が発生させる起電力を計測する。n番目の振動子の振動状態は、n番目の振動子を振動させた際のノズルの振動状態を表している。ノズルは、ノズル孔267を含む、ノズル部材266の先端部分である。
コントローラ5aは、振動起電力計測装置312によって計測されたm番目の振動子が発生させる起電力の状態に基づいて、n番目の振動子の故障の有無を判定する。コントローラ5aは、振動センサとして使用するm番目の振動子が発生させる起電力の電圧波形を、駆動する振動子の初期状態においてm番目の振動子が発生させる起電力の電圧波形と常に比較してもよい。
コントローラ5aは、m番目の振動子が発生させる起電力の測定タイミングごとに、計測結果の電圧波形と、規定となる電圧波形を比較してもよい。
起電力の状態は、起電力の振幅の最大値を指標としてもよい。コントローラ5aは、m番目の振動子が発生させる起電力の振幅の最大値が、規定値のマイナス10パーセント以下となった場合に、n番目の振動子が故障していると判定してもよい。n番目の振動子の故障判定に適用される規定値は、n番目の振動子の初期状態においてm番目の振動子が発生させる起電力の振幅の最大値としてもよい。
n番目の振動子の初期状態は、n番目の振動子の振動の計測を開始した直後としてもよい。ここでいう直後とは、計測を開始したタイミングが含まれてもよいし、計測を開始したタイミングから所定のパルス数が出力されるタイミングまでの期間としてもよい。規定値は、計測を開始したタイミングから所定のパルス数が出力されるタイミングまでの期間における測定値の平均値としてもよい。所定のパルス数は1パルス以上であればよい。例えば、所定のパルス数は100パルスとしてもよい。
規定値のマイナス10パーセント以下という故障判定の閾値は例示である。故障判定の閾値は、ターゲット供給部26bから出力されるターゲット27が満たすべき条件に応じて決めてもよい。ターゲット27が満たすべき条件は、ターゲットの形状、又はサテライトの有無などを適用してもよい。
コントローラ5aは、n番目の振動子が故障したと判定すると、n+1番目の振動子を駆動する振動子として決定し、選択する。n+1番目の振動子は、駆動する振動子として未使用の振動子であれば、いずれの振動子であってもよい。
振動センサとして使用するm番目の振動子以外の振動子が全て故障した場合、コントローラ5aは、振動起電力計測装置312によるm番目の振動子の起電力の計測を停止させる。
コントローラ5aは、駆動する振動子としてm番目の振動子を決定し、選択する。コントローラ5aは、m番目の振動子の駆動パラメータを調整し、決定する。カウンタ314は、m番目の振動子の振動回数を計測する。カウンタ314によって計測されたm番目の振動子の振動回数が規定回数以上になると、コントローラ5aはm番目の振動子の振動を停止させる。m番目の振動子の振動回数は、m番目の振動子が駆動する振動子として使用されてからの振動回数としてもよい。なお、規定回数は振動回数の規定値である。
規定回数は、1.0×1011回としてもよい。1.0×1011回は、100キロヘルツで振動子を振動させ、1日あたり24時間、振動子を振動させ、12日間、振動子を振動させた場合の振動回数に相当する。
カウンタ314に代わりタイマを備える場合、タイマはm番目の振動子の振動の開始からの期間を計測する。振動の開始は、m番目の振動子が駆動する振動子として使用される場合の振動の開始としてもよい。タイマによって計測された期間が規定期間以上になると、コントローラ5aは、m番目の振動子の振動を停止させる。なお、規定期間は振動期間の規定値である。
規定期間は、1036800秒としてもよい。1036800秒は、1日あたり24時間、振動子を振動させ、12日間、振動子を振動させた場合の期間に相当する。
図10は図9に示した振動センサとして使用される振動子が発生させる起電力の電圧波形の一例を示す図である。図10に符号330を付した電圧波形は、初期状態の駆動する振動子の振動によって、振動センサとして使用される振動子が発生させる起電力の電圧波形の一例である。
図10に符号332を付した電圧波形は、電圧波形の振幅の計測例であり、駆動する振動子が故障と判定される場合の、振動センサとして使用される振動子が発生させる起電力の電圧波形の振幅の計測例である。
図10に示したグラフの横軸は期間である。期間の単位はマイクロ秒である。図10に示したグラフの縦軸は電圧である。電圧の単位はボルトである。図10の縦軸は、電圧波形330における正方向の最大値V1maxを1ボルトとし、負方向の最小値V1minを-1ボルトとした相対値で表されている。
電圧波形330の最大値V1maxから最小値V1minを減算して算出した電圧波形330の振幅の最大値を、初期振幅として起電力の規定値としてもよい。電圧波形330の振幅の最大値を1回の計測値として、100回分の計測値の平均値を起電力の規定値としてもよい。
電圧波形332の最大値V2maxから最小値V2minを減算して算出した電圧波形332の振幅の最大値を、起電力の計測値としてもよい。電圧波形332の振幅の最大値を1回の計測値として、100回分の計測値の平均値を起電力の計測値としてもよい。
起電力の規定値である電圧波形330の振幅の最大値は2.0ボルトである。電圧波形332の計測値は1.8ボルトであり、起電力の規定値のマイナス10パーセント以下である。振動起電力計測装置312によって、電圧波形332が計測された場合は、駆動する振動子は故障していると判定してもよい。
6.3 振動子切替方法の手順
図11は第2実施形態に係るEUV光生成システムに適用される振動子切替方法の手順を示すフローチャートである。
図11は第2実施形態に係るEUV光生成システムに適用される振動子切替方法の手順を示すフローチャートである。
ステップS10において、図9に示したコントローラ5aは、n番目の振動子の駆動パラメータを調整し、n番目の振動子の駆動パラメータを決定する。コントローラ5aは、n番目の振動子の振動を開始させる。
図11のステップS40では、図9に示した振動起電力計測装置312は、m番目の振動子によって検知されたn番目の振動子の振動を計測する。図11のステップS42では、図9に示したコントローラ5aは、n番目の振動子の振動における振幅の最大値が、規定値のマイナス10パーセント以下であるか否かを判定する。
図11のステップS42において、図9に示したコントローラ5aが、n番目の振動子の振動における振幅が、規定値のマイナス10パーセントを超えていると判定すると、No判定となる。No判定の場合は、図11のステップS40に進み、ステップS42においてYes判定となるまで、ステップS40、及びステップS42が繰り返し実行される。
ステップS42において、図9に示したコントローラ5aが、n番目の振動子の振動における振幅が、規定値のマイナス10パーセント以下であると判定すると、Yes判定となる。Yes判定の場合は、図11のステップS44へ進む。
ステップS44からステップS50までの工程は、図8のステップS16からステップS22までの工程と同様の工程であり、ここでの説明は省略する。図11のステップS48において、図9に示したコントローラ5aが、n番目の振動子がm-1番目の振動子であると判定すると、図11のステップS52へ進む。
換言すると、図11のステップS48において、図9に示したコントローラ5aが、m-1個の振動子が故障して、駆動する振動子として未使用の振動子が振動センサとして使用しているm番目の振動子のみになったと判定すると、図11のステップS52へ進む。
ステップS52では、図9に示したコントローラ5aは、センサ切替装置310によってm番目の振動子による検知を停止させる。図11のステップS54では、図9に示したコントローラ5aは、m番目の振動子を振動する振動子として決定し、選択して、m番目の振動子の振動を開始させる。
図11のステップS56では、図9に示したコントローラ5aは、m番目の振動子の駆動パラメータを調整し、決定する。図11のステップS58では、図9に示したコントローラ5aは、カウンタ314によってm番目の振動子の振動回数を計測する。コントローラ5aは、m番目の振動子の振動回数が規定回数以上であるか否かを判定する。
図11のステップS58では、図9に示したコントローラ5aは、タイマによってm番目の振動子の振動期間を計測し、m番目の振動子の振動期間が規定期間以上であるか否かを判定してもよい。
図11のステップS58において、図9に示したコントローラ5aが、m番目の振動子の振動回数が規定回数未満である判定すると、No判定となる。No判定の場合は、コントローラ5aは、図11のステップS58において、Yes判定となるまで、m番目の振動子の振動回数が規定回数以上であるか否かの判定を継続する。
ステップS58において、コントローラ5aが、m番目の振動子の振動回数が規定回数以上であると判定すると、Yes判定となる。Yes判定の場合は、図9に示したコントローラ5aは、振動子の切り替えを終了する。
6.4 作用・効果
ターゲットの生成の際に駆動する振動子が故障しても、故障した振動子は他の振動子へ直ちに切り替わるので、振動子が故障した場合にターゲット供給部を交換する必要がない。これにより、ターゲット供給部に備えられた振動子の数分だけ、ターゲット供給部の寿命が延長可能である。
ターゲットの生成の際に駆動する振動子が故障しても、故障した振動子は他の振動子へ直ちに切り替わるので、振動子が故障した場合にターゲット供給部を交換する必要がない。これにより、ターゲット供給部に備えられた振動子の数分だけ、ターゲット供給部の寿命が延長可能である。
また、複数の振動子の少なくとも1つは、振動センサとして使用されるので、専用の振動センサが不要となる。
本開示における第1振動子111a、第2振動子111b、及び第4振動子111dを含むm個の振動子は、ノズルを振動させる第2振動子、及びノズルの振動を検知する第3振動子を含む複数の振動子の一態様である。
本開示における振動センサとして使用されるm番目の振動子は、第3振動子の一態様である。本開示における振動センサとして使用されるm番目の振動子、及び振動起電力計測装置は、検知部の一態様である。
本開示におけるセンサ切替装置310は、複数の振動子のいずれかを第3振動子に切り替える検知振動子切替部の一態様である。本開示におけるカウンタ314は、第2振動子の振動回数を計測する振動回数計測部の一態様である。本開示におけるタイマは、第2振動子の振動期間を計測する振動期間計測部の一態様である。
7.第3実施形態
7.1 構成
図12は第3実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。図12に示したターゲット供給部26cは、専用の振動センサ350を備えている。振動センサ350は振動起電力計測装置312と電気信号を伝送可能に接続されている。
7.1 構成
図12は第3実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。図12に示したターゲット供給部26cは、専用の振動センサ350を備えている。振動センサ350は振動起電力計測装置312と電気信号を伝送可能に接続されている。
図9に示した第4振動子111dが振動センサと駆動する振動子とを兼用するのに対して、図12に示した振動センサ350は振動検知専用である。振動センサ350は圧電素子を適用してもよい。
7.2 動作
コントローラ5aは、複数の振動子から駆動する振動子を決定し、選択する。ここでは、コントローラ5aは、n番目の振動子を選択する。コントローラ5aは、n番目の振動子を振動させ、n番目の振動子の駆動パラメータを調整し、設定する。
コントローラ5aは、複数の振動子から駆動する振動子を決定し、選択する。ここでは、コントローラ5aは、n番目の振動子を選択する。コントローラ5aは、n番目の振動子を振動させ、n番目の振動子の駆動パラメータを調整し、設定する。
振動起電力計測装置312は、振動センサ350によって検知されたn番目の振動子の振動を計測する。振動センサ350によって検知されたn番目の振動子の振動の計測は、第2実施形態における、振動センサとして使用するm番目の振動子によって検知されたn番目の振動子の振動の計測と同様であり、ここでの説明は省略する。
7.3 振動子切替方法の手順
図13は第3実施形態に係るEUV光生成システムに適用される振動子切替方法の手順を示すフローチャートである。図13に示したフローチャートは、図11に示したステップS40に代わり、ステップS41が含まれる。
図13は第3実施形態に係るEUV光生成システムに適用される振動子切替方法の手順を示すフローチャートである。図13に示したフローチャートは、図11に示したステップS40に代わり、ステップS41が含まれる。
ステップS41では、図12に示した振動起電力計測装置312は、振動センサ350によって検知されたn番目の振動子の振動を計測する。図13のステップS42からステップS46、及びステップS50は、図11のステップS42からステップS46、及びステップS50と同様の工程であり、ここでの説明は省略する。
図13のステップS48は、図8のステップS20と同様の工程である。図13のステップS48では、図12に示したコントローラ5aは、n番目の振動子が最終の振動子であるか否かを判定する。最終の振動子はm番目の振動子である。
図13のステップS48において、図12に示したコントローラ5aがn番目の振動子が最終の振動子でないと判定すると、No判定となる。No判定の場合は、図13のステップS50へ進む。
図13のステップS48において、図12に示したコントローラ5aがn番目の振動子が最終の振動子であると判定すると、Yes判定となる。Yes判定の場合は、図12に示したコントローラ5aは、振動子の切り替えを終了する。
7.4 作用・効果
ターゲットの生成に使用する振動子が故障しても、故障した振動子は他の振動子へ直ちに切り替わるので、振動子が故障した場合にターゲット供給部を交換する必要がない。これにより、ターゲット供給部に備えられた振動子の数分だけ、ターゲット供給部の寿命が延長可能である。
ターゲットの生成に使用する振動子が故障しても、故障した振動子は他の振動子へ直ちに切り替わるので、振動子が故障した場合にターゲット供給部を交換する必要がない。これにより、ターゲット供給部に備えられた振動子の数分だけ、ターゲット供給部の寿命が延長可能である。
専用の振動センサを備えているので、振動の計測に有利な特性を備える振動センサを採用することができる。これにより、振動子の故障判定の精度を高めることができ、より正確な振動子の切替に係る判定が可能となり、EUV光生成システムの信頼性が向上する。
本開示における第1振動子111a、及び第2振動子111bを含むm個の振動子は、第4振動子を含む複数の振動子の一態様である。本開示における振動センサ350、及び振動起電力計測装置312を含む構成は、検知部の一態様である。
本開示における第1振動子111a、及び第2振動子111bを含むm個の振動子のうち未使用の振動子は、第4振動子と異なる他の振動子の一態様である。
8.第4実施形態
8.1 構成
図14は第4実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。図14に示したEUV光生成システム11dは、図7に示したターゲット供給部26aを備えている。一方、図14に示したEUV光生成システム11dは、図7に示したターゲット検知装置304に代わり、カウンタ314aを備えている。
8.1 構成
図14は第4実施形態に係るEUV光生成システムの構成を概略的に示すブロック図である。図14に示したEUV光生成システム11dは、図7に示したターゲット供給部26aを備えている。一方、図14に示したEUV光生成システム11dは、図7に示したターゲット検知装置304に代わり、カウンタ314aを備えている。
図14に示したカウンタ314aは、コントローラ5aと電気信号を伝送可能に接続されている。図14に示したカウンタ314aは、駆動する振動子の振動回数を計測する。EUV光生成システム11dはカウンタ314に代わりタイマを備えてもよい。タイマは駆動する振動子の振動期間を計測する。
8.2 動作
コントローラ5aは、複数の振動子から駆動する振動子を決定し、選択する。ここでは、コントローラ5aは、n番目の振動子を選択する。コントローラ5aは、n番目の振動子を振動させ、n番目の振動子の駆動パラメータを調整し、設定する。
コントローラ5aは、複数の振動子から駆動する振動子を決定し、選択する。ここでは、コントローラ5aは、n番目の振動子を選択する。コントローラ5aは、n番目の振動子を振動させ、n番目の振動子の駆動パラメータを調整し、設定する。
コントローラ5aは、n番目の振動子の動作中の振動回数を計測する命令をカウンタ314aへ出力する。n番目の振動子の動作中は、ターゲット供給部26がn番目の振動子を振動させてターゲット27を出力する期間としてもよい。
カウンタ314aは、n番目の振動子の動作中の振動回数が1つの振動子における規定回数に達するまで、n番目の振動子の動作中の振動回数を計測する。カウンタ314aは、n番目の振動子の動作中の振動回数が1つの振動子における規定回数に達した際に、その旨を表す信号をコントローラ5aへ出力する。例えば、規定回数は、1×1011回としてもよい。1×1011回は、ターゲット供給部26の寿命を36日とし、振動子の数を3つとし、振動子を100キロヘルツで振動させ、1日あたり24時間、12日間、1つの振動子を振動させた場合の3つの振動子の合計の振動回数に相当する。
コントローラ5aは、カウンタ314aから出力された、n番目の振動子の動作中の振動回数が1つの振動子における規定回数に達した旨を表す信号が入力されると、駆動する振動子を他の振動子へ切り替える信号を駆動振動子切替装置300へ出力する。
駆動振動子切替装置300によって、駆動する振動子が他の振動子へ切り替えられると、コントローラ5aはカウンタ314aの計測値をリセットする信号をカウンタ314aへ出力する。
カウンタ314aは、n番目の振動子の動作中の振動回数を表す信号をコントローラ5aへ出力してもよい。コントローラ5aは、n番目の振動子の動作中の振動回数が1つの振動子における規定回数に達するまで、カウンタ314aの計測値を表す信号を取得してもよい。
コントローラ5aは、n番目の振動子の動作中の振動回数が1つの振動子における規定回数に達しているか否かを監視してもよい。コントローラ5aは、n番目の振動子の動作中の振動回数が1つの振動子における規定回数に達した際に、露光装置6の光出射停止許可命令に従って、駆動する振動子を他の振動子へ切り替える信号を駆動振動子切替装置300へ出力してもよい。
カウンタ314aに代わりタイマが備えられる場合は、コントローラ5aは、n番目の振動子の動作中の振動期間を計測する命令をタイマへ出力する。タイマはn番目の振動子の動作中の振動期間が1つの振動子における規定期間に達するまで、n番目の振動子の動作中の振動期間を計測する。
タイマは、n番目の振動子の動作中の振動期間が1つの振動子における規定期間に達した際に、その旨を表す信号をコントローラ5aへ出力する。例えば、規定期間は、1036800秒としてもよい。1036800秒は、ターゲット供給部26の寿命を36日とし、振動子の数を3つとし、1日あたり24時間、12日間、1つの振動子を振動させた場合の3つの振動子の合計の期間に相当する。
コントローラ5aは、タイマから出力された、n番目の振動子の動作中の振動期間が1つの振動子における規定期間に達した旨を表す信号が入力されると、駆動する振動子を他の振動子へ切り替える信号を駆動振動子切替装置300へ出力してもよい。
駆動振動子切替装置300によって、駆動する振動子が他の振動子へ切り替えられると、コントローラ5aはタイマの計測値をリセットする信号をカウンタ314aへ出力してもよい。
タイマは、n番目の振動子の動作中の振動期間を表す信号をコントローラ5aへ出力してもよい。コントローラ5aは、n番目の振動子の動作中の振動期間が1つの振動子における規定期間に達するまで、タイマの計測値を表す信号を取得してもよい。
コントローラ5aは、n番目の振動子の動作中の振動期間が1つの振動子における規定期間に達しているか否かを監視してもよい。コントローラ5aは、n番目の振動子の動作中の振動期間が1つの振動子における規定期間に達すると、駆動する振動子を他の振動子へ切り替える信号を駆動振動子切替装置300へ出力してもよい。
8.3 振動子切替方法の手順
8.3.1 第1例
図15は第4実施形態に係るEUV光生成システムに適用される振動子切替方法の第1例の手順を示すフローチャートである。図15に示した第1例に係る振動子切替方法は、振動子の振動回数に基づいて駆動する振動子を切り替える。
8.3.1 第1例
図15は第4実施形態に係るEUV光生成システムに適用される振動子切替方法の第1例の手順を示すフローチャートである。図15に示した第1例に係る振動子切替方法は、振動子の振動回数に基づいて駆動する振動子を切り替える。
図14に示したコントローラ5aは、ターゲット供給部26aに備えられるm個の振動子のうち、n番目の振動子を駆動する振動子として決定し、n番目の振動子の振動を開始する。
図15のステップS10では、図14に示したコントローラ5aは、n番目の振動子の駆動パラメータを調整し、n番目の振動子の駆動パラメータを決定し、n番目の振動子を振動させる。
図15のステップS60では、図14に示したコントローラ5aは、カウンタ314aの計測値をリセットする信号をカウンタ314aへ出力する。図15のステップS62では、図14に示したカウンタ314aは、n番目の振動子の振動回数を計測する。図15のステップS64では、図14に示したカウンタ314aは、n番目の振動子の振動回数が、1つの振動子における規定回数に達したか否かを判定する。
図15のステップS64において、図14に示したカウンタ314aがn番目の振動子の振動回数が1つの振動子における規定回数に達していないと判定すると、No判定となる。No判定の場合は図15のステップS62へ進み、ステップS64においてYes判定となるまで、ステップS62、及びステップS64の工程が繰り返し実行される。
ステップS64において、図14に示したカウンタ314aがn番目の振動子の振動回数が1つの振動子における規定動回数に達していると判定すると、Yse判定となる。Yse判定の場合は、ステップS66へ進む。ステップS66からステップS72までのそれぞれは、図8のステップS16からステップS22までのそれぞれと同様の工程であり、ここでの説明は省略する。
図15のステップS70において、Yes判定の場合は、図14に示したコントローラ5aは、振動子の切り替えを終了する。
8.3.2 第2例
図16は第4実施形態に係るEUV光生成システムに適用される振動子切替方法の第2例の手順を示すフローチャートである。図16に示した第2例に係る振動子切替方法は、振動子の振動期間に基づいて駆動する振動子を切り替える。
図16は第4実施形態に係るEUV光生成システムに適用される振動子切替方法の第2例の手順を示すフローチャートである。図16に示した第2例に係る振動子切替方法は、振動子の振動期間に基づいて駆動する振動子を切り替える。
図16のステップS10は、図15のステップS10と同様の工程であり、ここでの説明は省略する。図16のステップS80では、図14に示したコントローラ5aは、図示しないタイマの計測値をリセットする信号をタイマへ出力する。
図16のステップS82では、タイマはn番目の振動子の振動期間を計測する。図16のステップS84では、タイマは、n番目の振動子の振動期間が、1つの振動子における規定期間に達したか否かを判定する。
図16のステップS84において、タイマがn番目の振動子の振動期間が1つの振動子における規定期間に達していないと判定すると、No判定となる。No判定の場合はステップS82へ進み、ステップS84においてYes判定となるまで、ステップS82、及びステップS84の工程が繰り返し実行される。
ステップS84において、タイマがn番目の振動子の振動期間が1つの振動子における規定期間に達していると判定すると、Yse判定となる。Yse判定の場合は、ステップS86へ進む。ステップS86からステップS72までのそれぞれは、図8のステップS16からステップS22までのそれぞれと同様の工程であり、ここでの説明は省略する。
図16のステップS90において、Yes判定の場合は、図14に示したコントローラ5aは、振動子の切り替えを終了する。
8.4 作用・効果
ターゲット供給部が振動子を1つ備える場合と比較して、振動子の1つあたりの振動回数、又は振動期間の低減化が可能であり、結果として、駆動する振動子の故障率を低下させることが可能である。これにより、ターゲット供給部に備えられる振動子の数に応じて、ターゲット供給部の長寿命化が可能である。
ターゲット供給部が振動子を1つ備える場合と比較して、振動子の1つあたりの振動回数、又は振動期間の低減化が可能であり、結果として、駆動する振動子の故障率を低下させることが可能である。これにより、ターゲット供給部に備えられる振動子の数に応じて、ターゲット供給部の長寿命化が可能である。
また、駆動する振動子が故障する前に、駆動する振動子を未使用の振動子へ切り替えることが可能であり、振動子の故障に伴うEUV光生成システムのダウンタイムの抑制が可能である。これにより、EUV光生成システムの信頼性が向上する。
本開示における第1振動子111a、第2振動子111b、及び第3振動子111cを含むm個の振動子は、第5振動子を含む複数の振動子の一態様である。本開示におけるカウンタ314a、及びタイマを含む構成は、検知部の一態様である。
本開示における第1振動子111a、及び第2振動子111bを含むm個の振動子のうち未使用の振動子は、第5振動子と異なる振動子の一態様である。
本開示におけるカウンタ314aは、第5振動子の振動回数を計測する振動回数計測部の一態様である。本開示におけるタイマは、第5振動子の振動期間を計測する振動期間計測部の一態様である。
上記の説明は、制限ではなく単なる例示を意図している。したがって、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
Claims (19)
- ターゲットを出力するノズルと、
前記ノズルを振動させる第1振動子を含む複数の振動子と、
前記ノズルから出力したターゲットの状態の変化を検知する検知部と、
前記ノズルを振動させる振動子を前記第1振動子から、前記複数の振動子に含まれる前記第1振動子と異なる他の振動子へ切り替える振動子切替部と、
前記検知部によって検出された前記ノズルから出力したターゲットの状態の変化に基づいて、前記ノズルを振動させる振動子の切り替えを制御する制御部と、
を備えたターゲット供給装置。 - 請求項1に記載のターゲット供給装置であって、
前記検知部は、前記ノズルから出力した複数のターゲットの通過経路における、各ターゲット間の通過タイミングの間隔を計測する通過タイミング間隔計測部を備え、
前記制御部は、前記通過タイミング間隔計測部によって計測された各ターゲット間の通過タイミングの間隔が予め規定された規定値以下の場合に、前記振動子切替部によって、前記ノズルを振動させる振動子を前記第1振動子から、前記第1振動子と異なる他の振動子へ切り替えるターゲット供給装置。 - 請求項2に記載のターゲット供給装置であって、
通過タイミング間隔計測部は、前記ノズルから出力した複数のターゲットへ照明光を照射する第1照明部と、
前記ノズルから出力した複数のターゲットの通過経路を挟んで、前記第1照明部と対向する位置に配置される受光部と、
を備えたターゲット供給装置。 - 請求項1に記載のターゲット供給装置であって、
前記検知部は、前記ノズルから出力したターゲットを撮像する撮像部を備え、
前記制御部は、前記撮像部により撮像された前記ノズルから出力した複数のターゲットの画像から解析される各ターゲット間の通過タイミングの間隔が予め規定された規定値以下の場合に、前記振動子切替部によって、前記ノズルを振動させる振動子を前記第1振動子から、前記第1振動子と異なる振動子へ切り替えるターゲット供給装置。 - 請求項4に記載のターゲット供給装置であって、
前記検知部は、前記ノズルから出力したターゲットの通過経路を挟んで前記撮像部と対向する位置に配置される第2照明部を備えるターゲット供給装置。 - 請求項5に記載のターゲット供給装置であって、
前記撮像部は、前記ノズルから出力したターゲットの通過経路における前記ターゲットの検知位置での前記ターゲットの静止画を撮像するターゲット供給装置。 - 請求項1に記載のターゲット供給装置であって、
前記ノズルを振動させる振動子へ駆動電圧を供給し、前記制御部と電気信号の伝送が可能に接続され、前記振動子切替部と駆動電圧の伝送が可能に接続される振動子駆動部を備えたターゲット供給装置。 - ターゲットを出力するノズルと、
前記ノズルを振動させる第2振動子、及び前記ノズルの振動を検知する第3振動子を含む複数の振動子と、
前記ノズルの振動を表す検知信号を出力し、前記第3振動子を含む検知部と、
前記ノズルを振動させる振動子を前記第2振動子から、前記複数の振動子に含まれる前記第2振動子と異なる他の振動子へ切り替える振動子切替部と、
前記検知部から出力される検知信号に基づいて、前記ノズルを振動させる振動子の切り替えを制御する制御部と、
を備えたターゲット供給装置。 - 請求項8に記載のターゲット供給装置であって、
前記検知部は、前記ノズルの振動の大きさを表す検知信号を出力し、
前記制御部は、前記ノズルの振動の大きさが予め決められた規定値以下の場合に、前記ノズルを振動させる振動子を第2振動子と異なる他の振動子へ切り替えるターゲット供給装置。 - 請求項8に記載のターゲット供給装置であって、
前記複数の振動子のいずれかを前記第3振動子に切り替える検知振動子切替部を備え、
前記制御部は、前記検知振動子切替部によって、前記ノズルを振動させる第2振動子と異なる他の振動子を前記第3振動子に切り替えるターゲット供給装置。 - 請求項8記載のターゲット供給装置であって、
前記制御部は、前記振動子切替部によって、前記ノズルの振動を検知する第3振動子を前記ノズルからターゲットを出力する前記第2振動子へ切り替えるターゲット供給装置。 - 請求項11に記載のターゲット供給装置であって、
前記第3振動子とされた振動子が前記第2振動子に切り替えられた場合に、前記第2振動子の振動回数を計測する振動回数計測部を備え、
前記制御部は、前記振動回数計測部による計測値が予め決められた振動回数の規定値に達した場合に、前記第2振動子の振動を停止させるターゲット供給装置。 - 請求項11に記載のターゲット供給装置であって、
前記第3振動子とされた振動子が前記第2振動子に切り替えられた場合に、前記第2振動子の振動期間を計測する振動期間計測部を備え、
前記制御部は、前記振動期間計測部による計測値が予め決められた振動期間の規定値に達した場合に、前記第2振動子の振動を停止させるターゲット供給装置。 - 請求項8に記載のターゲット供給装置であって、
前記ノズルを振動させる振動子へ駆動電圧を供給し、前記制御部と電気信号の伝送が可能に接続され、前記振動子切替部と駆動電圧の伝送が可能に接続される振動子駆動部を備えたターゲット供給装置。 - ターゲットを出力するノズルと、
前記ノズルを振動させる第4振動子を含む複数の振動子と、
前記ノズルの振動を検知し、前記ノズルの振動を表す検知信号を出力する検知部と、
前記ノズルを振動させる振動子を前記第4振動子から、前記複数の振動子に含まれる前記第4振動子と異なる他の振動子へ切り替える振動子切替部と、
前記検知部から出力される検知信号に基づいて、前記ノズルを振動させる振動子の切り替えを制御する制御部と、
を備えたターゲット供給装置。 - 請求項15に記載のターゲット供給装置であって、
前記検知部は、前記ノズルの振動の大きさを表す検知信号を出力し、
前記制御部は、前記ノズルの振動の大きさが予め決められた規定値以下の場合に、前記ノズルを振動させる振動子を第4振動子と異なる他の振動子へ切り替えるターゲット供給装置。 - 請求項15に記載のターゲット供給装置であって、
前記ノズルを振動させる振動子へ駆動電圧を供給し、前記制御部と電気信号の伝送が可能に接続され、前記振動子切替部と駆動電圧の伝送が可能に接続される振動子駆動部を備えたターゲット供給装置。 - ターゲットを出力するノズルと、
前記ノズルを振動させる第5振動子を含む複数の振動子と、
前記第5振動子の振動回数を計測する振動回数計測部、又は前記第5振動子の振動期間を計測する振動期間計測部の少なくともいずれかを含む検知部と、
前記ノズルを振動させる振動子を前記第5振動子から、前記複数の振動子に含まれる前記第5振動子と異なる他の振動子へ切り替える振動子切替部と、
前記振動回数計測部によって計測された前記第5振動子の振動回数が予め決められた振動回数の規定値に達した場合、又は前記振動期間計測部によって計測された前記第5振動子の振動期間が予め決められた振動期間の規定値に達した場合に、前記振動子切替部によって、前記ノズルを振動させる振動子を前記第5振動子と異なる他の振動子へ切り替える制御部と、
を備えたターゲット供給装置。 - 請求項18に記載のターゲット供給装置であって、
前記ノズルを振動させる振動子へ駆動電圧を供給し、前記制御部と電気信号の伝送が可能に接続され、前記振動子切替部と駆動電圧の伝送が可能に接続される振動子駆動部を備えたターゲット供給装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/080142 WO2018069976A1 (ja) | 2016-10-11 | 2016-10-11 | ターゲット供給装置 |
US16/293,741 US10555409B2 (en) | 2016-10-11 | 2019-03-06 | Target supply apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/080142 WO2018069976A1 (ja) | 2016-10-11 | 2016-10-11 | ターゲット供給装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/293,741 Continuation US10555409B2 (en) | 2016-10-11 | 2019-03-06 | Target supply apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018069976A1 true WO2018069976A1 (ja) | 2018-04-19 |
Family
ID=61905213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/080142 WO2018069976A1 (ja) | 2016-10-11 | 2016-10-11 | ターゲット供給装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10555409B2 (ja) |
WO (1) | WO2018069976A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL2024520A (en) | 2019-01-17 | 2020-08-14 | Asml Netherlands Bv | Target delivery system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006216801A (ja) * | 2005-02-04 | 2006-08-17 | Komatsu Ltd | 極端紫外光源装置 |
JP2014519682A (ja) * | 2011-05-13 | 2014-08-14 | サイマー リミテッド ライアビリティ カンパニー | アクチュエータ誘導式ノズル洗浄を備えた液滴発生器 |
JP2015062202A (ja) * | 2014-12-18 | 2015-04-02 | ギガフォトン株式会社 | 極端紫外光源装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009190189A (ja) | 2008-02-12 | 2009-08-27 | Sii Printek Inc | インクジェットヘッドの温度検出装置、インクジェットヘッド、インクジェット記録装置、およびインクジェットヘッドの温度検出方法 |
JP5670619B2 (ja) | 2009-02-06 | 2015-02-18 | ギガフォトン株式会社 | 極端紫外光源装置 |
JP5952399B2 (ja) * | 2011-08-05 | 2016-07-13 | エーエスエムエル ネザーランズ ビー.ブイ. | 放射源、リソグラフィ装置のための方法及びデバイス製造方法 |
JP6451109B2 (ja) | 2014-07-10 | 2019-01-16 | セイコーエプソン株式会社 | 液体吐出装置、および、液体吐出装置の制御方法 |
-
2016
- 2016-10-11 WO PCT/JP2016/080142 patent/WO2018069976A1/ja active Application Filing
-
2019
- 2019-03-06 US US16/293,741 patent/US10555409B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006216801A (ja) * | 2005-02-04 | 2006-08-17 | Komatsu Ltd | 極端紫外光源装置 |
JP2014519682A (ja) * | 2011-05-13 | 2014-08-14 | サイマー リミテッド ライアビリティ カンパニー | アクチュエータ誘導式ノズル洗浄を備えた液滴発生器 |
JP2015062202A (ja) * | 2014-12-18 | 2015-04-02 | ギガフォトン株式会社 | 極端紫外光源装置 |
Also Published As
Publication number | Publication date |
---|---|
US20190200443A1 (en) | 2019-06-27 |
US10555409B2 (en) | 2020-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9351388B2 (en) | Target generation device and extreme ultraviolet light generation apparatus | |
US9497840B2 (en) | System and method for creating and utilizing dual laser curtains from a single laser in an LPP EUV light source | |
JP6195474B2 (ja) | 極端紫外光生成装置及び極端紫外光生成システムにおけるレーザシステムの制御方法 | |
JP6168797B2 (ja) | 極端紫外光生成装置 | |
WO2017130323A1 (ja) | ターゲット供給装置及び極端紫外光生成装置 | |
JP2020177254A (ja) | パターン描画装置、パターン描画方法、および、デバイス製造方法 | |
US8809823B1 (en) | System and method for controlling droplet timing and steering in an LPP EUV light source | |
WO2014189055A1 (ja) | 極端紫外光生成装置 | |
US10141186B2 (en) | Target image-capture device, extreme-ultraviolet-light generation device, and extreme-ultraviolet-light generation system | |
US10225918B2 (en) | Extreme ultraviolet light generating apparatus | |
JP6775606B2 (ja) | 極端紫外光生成システム | |
WO2018069976A1 (ja) | ターゲット供給装置 | |
JP6378355B2 (ja) | 極端紫外光生成装置及び極端紫外光の生成方法 | |
JP6799583B2 (ja) | 極端紫外光生成装置及び極端紫外光の重心位置の制御方法 | |
WO2016013102A1 (ja) | 極端紫外光生成装置 | |
JPWO2018203370A1 (ja) | ターゲット供給装置、極端紫外光生成装置、及びターゲット供給方法 | |
US20160370706A1 (en) | Extreme ultraviolet light generation apparatus | |
US20240126185A1 (en) | Extreme ultraviolet light generation apparatus and electronic device manufacturing method | |
NL2028934B1 (en) | Extreme ultraviolet light generation apparatus and electronic device manufacturing method | |
NL2034792B1 (en) | Euv light generation system and electronic device manufacturing method | |
JP2009294353A (ja) | レンズユニット光軸調整方法及びレンズユニット光軸調整装置 | |
JP2009300569A (ja) | レンズユニット光軸調整方法及びレンズユニット光軸調整装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16918887 Country of ref document: EP Kind code of ref document: A1 |
|
WD | Withdrawal of designations after international publication |
Designated state(s): JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16918887 Country of ref document: EP Kind code of ref document: A1 |