WO2018066392A1 - タービン翼の製造方法 - Google Patents

タービン翼の製造方法 Download PDF

Info

Publication number
WO2018066392A1
WO2018066392A1 PCT/JP2017/034426 JP2017034426W WO2018066392A1 WO 2018066392 A1 WO2018066392 A1 WO 2018066392A1 JP 2017034426 W JP2017034426 W JP 2017034426W WO 2018066392 A1 WO2018066392 A1 WO 2018066392A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
base material
treatment
undercoat
brazing
Prior art date
Application number
PCT/JP2017/034426
Other languages
English (en)
French (fr)
Inventor
大助 吉田
鳥越 泰治
正樹 種池
尚俊 岡矢
義之 井上
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to US16/313,992 priority Critical patent/US20190234220A1/en
Priority to DE112017005101.0T priority patent/DE112017005101T5/de
Priority to KR1020197002702A priority patent/KR20190022804A/ko
Priority to CN201780042532.3A priority patent/CN109415977B/zh
Publication of WO2018066392A1 publication Critical patent/WO2018066392A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/237Brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/40Heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/175Superalloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2112Aluminium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2118Zirconium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/70Treatment or modification of materials
    • F05D2300/701Heat treatment

Definitions

  • the present invention relates to a method of manufacturing a turbine blade.
  • the gas turbine has a compressor, a combustor, and a turbine.
  • the compressor takes in air and compresses it into high-temperature and high-pressure compressed air.
  • the combustor supplies fuel to the compressed air for combustion.
  • a plurality of stator blades and blades are alternately arranged in a vehicle cabin.
  • blades are rotated by high-temperature and high-pressure combustion gas generated by the combustion of compressed air. This rotation converts thermal energy into rotational energy.
  • Turbine blades such as stationary blades and blades, are formed using a highly heat-resistant metallic material because they are exposed to high temperatures.
  • a thermal barrier coating (TBC) is formed on the turbine blade to protect it from high temperatures.
  • TBC thermal barrier coating
  • an undercoat is formed on the surface of a base material of a turbine blade, and a top coat is formed on the surface of the undercoat.
  • the undercoat prevents the oxidation of the base material and improves the adhesion of the top coat, and is formed using, for example, an alloy material or the like.
  • the top coat is to enhance the heat shielding properties of the base material, and is formed using, for example, a ceramic material or the like.
  • heat treatment for diffusing the undercoat on the surface of the base material is performed.
  • due to this heat treatment there have been cases in which spots, cracks and the like occur in part of the thermal barrier coating, for example, the top coat.
  • the present invention has been made in view of the above, and provides a method of manufacturing a turbine blade capable of suppressing the occurrence of spots or cracks in the thermal barrier coating while securing the adhesion between the thermal barrier coating and the base material.
  • the purpose is to
  • a method of manufacturing a turbine blade according to the present invention forms an undercoat on a surface of a base material of a turbine blade formed using a Ni-based alloy material, using a metal material having higher oxidation resistance than the base material. Performing a diffusion process of heating the base material having the undercoat formed thereon to diffuse a part of the undercoat toward the base material, and after the diffusion process is performed, the undercoat Forming a top coat using a material having a thermal conductivity lower than that of the base material and the undercoat on the surface of the substrate.
  • the diffusion treatment is performed before forming the top coat, it is possible to suppress the occurrence of spots, cracks and the like in the top coat. Thereby, it is possible to suppress the occurrence of spots or cracks in the thermal barrier coating while securing the adhesion between the thermal barrier coating and the base material.
  • the base material may be heated at a heating temperature higher than a set temperature set to prevent the quality deterioration of the top coat due to heating.
  • the diffusion treatment is performed before forming the top coat, even if the base material is heated at a heating temperature higher than the set temperature, it is not necessary to cause spots or cracks in the top coat. Thereby, diffusion processing can be performed reliably.
  • quality deterioration of the topcoat by heating it is mentioned that a spot, a crack, etc. arise in a topcoat, for example.
  • the method further includes heating the base material to perform a stabilization treatment, and heating the base material subjected to the stabilization treatment to perform an aging treatment, and the diffusion treatment includes the under-processing
  • the method may include performing at least one of the stabilization treatment and the aging treatment on the base material on which the coat is formed.
  • At least one heat treatment of the stabilization treatment and the aging treatment can be performed on the base material on which the undercoat is formed, also serving as the diffusion treatment of the undercoat.
  • the method further includes heating the base material on which the brazing material is disposed to perform a brazing process, and the diffusion process includes performing the brazing process and the stabilization process on the base material on which the undercoat is formed.
  • the heat treatment may be performed on the material as one heat treatment.
  • the heat treatment can be performed in a shorter time by performing the brazing treatment and the stabilization treatment as one heat treatment as the heat treatment for the base material.
  • the diffusion treatment may include continuously performing the brazing treatment, the stabilization treatment, and the aging treatment as one heat treatment on the base material on which the undercoat is formed. .
  • the heat treatment can be performed in a shorter time by continuously performing the brazing treatment, the stabilization treatment, and the aging treatment as one heat treatment.
  • ADVANTAGE OF THE INVENTION According to this invention, it can suppress that a spot, a crack, etc. arise in a thermal barrier coating, ensuring the adhesiveness of a thermal barrier coating and a base material.
  • FIG. 1 is a flowchart showing an example of a method of manufacturing a turbine blade according to the first embodiment.
  • FIG. 2 is a flowchart showing an example of the procedure of the heating process in step S40.
  • FIG. 3 is a flowchart showing an example of the diffusion process in step S40 of the method of manufacturing a turbine blade according to the second embodiment.
  • FIG. 4 is a graph showing an example of the time change of the heating temperature in the case where the brazing treatment and the stabilization treatment are performed as one heat treatment.
  • FIG. 5 is a flowchart showing an example of the diffusion process in step S40 of the method of manufacturing a turbine blade according to the third embodiment.
  • FIG. 1 is a flowchart showing an example of a method of manufacturing a turbine blade according to the first embodiment.
  • FIG. 2 is a flowchart showing an example of the procedure of the heating process in step S40.
  • FIG. 3 is a flowchart showing an example of the diffusion process in step S40 of the method of manufacturing a turbine
  • FIG. 6 is a graph showing an example of the time change of the heating temperature in the case where the brazing treatment and the stabilization treatment and the aging treatment are continuously performed as one heat treatment.
  • FIG. 7 is a graph showing another example of the time change of the heating temperature in the case where the brazing treatment and the stabilization treatment and the aging treatment are successively performed as one heat treatment.
  • FIG. 8 is a flowchart showing an example of a method of manufacturing a turbine blade according to a modification.
  • FIG. 9 is a graph showing an example of the time change of the heating temperature in the heating process of step S350.
  • FIG. 1 is a flowchart showing an example of a method of manufacturing a turbine blade according to the first embodiment.
  • the method for manufacturing a turbine blade according to the first embodiment includes, for example, a step of forming a base material of a turbine blade such as a stationary blade or a moving blade of a gas turbine (step S10) A step of performing a blasting process (step S20), a step of forming an undercoat on the surface of the base material (step S30), a step of performing a diffusion treatment on the undercoat (step S40), and And a forming step (step S50).
  • a base material forming a turbine blade such as a stationary blade or a moving blade is formed. Turbine blades are exposed to high temperatures in gas turbines. For this reason, the base material which comprises a turbine blade is formed using materials, such as an alloy excellent in heat resistance, for example, Ni-based alloy.
  • Ni-based alloy for example, Cr: 12.0% to 14.3%, Co: 8.5% to 11.0%, Mo: 1.0% to 3.5%, W: 3.
  • Ni-based alloys having a composition containing 0.04% or more and 0.12% or less, B: 0.005% or more and 0.05% or less, and the balance being Ni and unavoidable impurities, and the like.
  • you may contain Zr: 0.001 ppm or more and 5 ppm or less in the Ni-based alloy of the said composition.
  • the Ni-based alloy of the above composition may contain Mg and / or Ca: 1 ppm or more and 100 ppm or less, and further, Pt: 0.02% or more and 0.5% or less, Rh: 0.02% or more and 0. 0%. 5% or less and Re: 0.02% or more and 0.5% or less may contain 1 type, or 2 or more types, and may contain both of them.
  • a base material is formed by casting, forging, etc. using the said material.
  • a base material such as conventional casting (CC), directional solidification (DS), single crystal (SC) can be formed.
  • CC conventional casting
  • DS directional solidification
  • SC single crystal
  • the precipitate generated in the previous step may be dissolved by heating to perform solution treatment for reducing component segregation.
  • the base material is heated, for example, at a temperature of about 1200 ° C.
  • step S20 before forming an undercoat on the surface of the base material, alumina (Al 2 O 3 ) is sprayed on the surface of the base material, for example, to roughen the surface of the base material.
  • alumina Al 2 O 3
  • an undercoat is formed on the surface of the base material.
  • the undercoat is part of a thermal barrier coating (TBC) to protect the turbine blades from high temperatures.
  • TBC thermal barrier coating
  • the undercoat prevents the oxidation of the base material and improves the adhesion of the top coat.
  • an alloy material such as MCrAlY, which is more resistant to oxidation than the base material, can be used.
  • the alloy material or the like is sprayed onto the surface of the base material to form an undercoat.
  • step S40 diffusion processing is performed on the undercoat.
  • the diffusion treatment is a treatment in which atoms constituting the undercoat are diffused to the side of the base material by heating the undercoat, and the adhesion between the undercoat and the base material is improved.
  • the diffusion treatment is performed in a state where the top coat is not formed after the undercoat is formed on the base material.
  • step S40 the base material can be heat-treated as the diffusion treatment.
  • heat treatment include heat treatments such as brazing treatment, stabilization treatment, and aging treatment.
  • FIG. 2 is a flowchart showing an example of the procedure of the heating process in step S40. As shown in FIG. 2, in step S40, brazing (S41), stabilization (S43) and aging (S45) can be performed in this order.
  • the brazing process in step S41 is a process of melting and joining the brazing material to the base material by heating in a state where the brazing material is arranged on the base material.
  • a BNi-2 equivalent material or the like is used as the brazing material.
  • the solidus temperature of the brazing material is, for example, about 970.degree.
  • the amount of the brazing material used for the brazing process is previously adjusted by conducting experiments and the like.
  • the heat treatment can be performed at a temperature at which the brazing material can be melted, for example, a temperature of 1060 ° C. or more and 1100 ° C. or less.
  • the brazing material is placed in the base material, and is put into a predetermined heating furnace, and the heater of the heating furnace is operated to start heating.
  • the furnace temperature (heating temperature) of the heating furnace is raised to a predetermined preheating temperature.
  • the preheating temperature is set to a temperature lower than the solidus temperature of the brazing material, and can be, for example, 930 ° C. or more and 970 ° C. or less.
  • the temperatures of the base material and the brazing material are uniformly increased overall, and the temperature difference at each portion is reduced.
  • the temperature in the furnace is raised again.
  • the rise in the temperature in the furnace is stopped and heat treatment is performed at the brazing temperature for a predetermined time.
  • the brazing material is melted and joined to the base material.
  • the heater is stopped and the temperature of the base material is rapidly reduced to a predetermined cooling temperature at a temperature decreasing rate of, for example, about 30 ° C./min by supplying a cooling gas into the heating furnace. Allow (quench).
  • the stabilization process in step S43 is a process of growing the ⁇ ′ phase which is an intermetallic compound in the base material by heating the base material, and aligning the size, the form, and the like of the ⁇ ′ phase.
  • the heat treatment can be performed, for example, at a temperature equivalent to the heating temperature in the brazing treatment, for example, at a temperature of 1060 ° C. or more and 1100 ° C. or less.
  • the ⁇ 'phase grows in the base material, and the size, form, and the like of the ⁇ ' phase are aligned.
  • the preheating treatment may be performed as in the brazing treatment. In this case, since heating is performed at the heating temperature of the stabilization process from the state where the preheating process has been performed, each part of the base material is uniformly heated. For this reason, the ⁇ 'phase grows uniformly in each part of the base material.
  • the heater is stopped, and the temperature of the base material is reduced at a temperature decreasing rate of, for example, about 30 ° C./min by supplying a cooling gas into the heating furnace. Reduce rapidly (quenching). By this quenching process, the state (particle size etc.) of the ⁇ 'phase is maintained.
  • the aging treatment by heating the base material subjected to the stabilization treatment, the ⁇ ′ phase grown by the stabilization treatment is further grown in the base material, and the diameter is smaller than that of the ⁇ ′ phase produced by the stabilization treatment. Precipitate the ⁇ 'phase of The small diameter ⁇ 'phase increases the strength of the base material. Therefore, the aging treatment precipitates the small-diameter ⁇ 'phase and enhances the strength of the base material, thereby finally adjusting the strength and ductility of the base material.
  • the temperature can be 830 ° C. or more and 870 ° C. or less.
  • the heater of the heating furnace is stopped, and the temperature of the base material is rapidly reduced at a temperature decreasing rate of, for example, about 30 ° C./min by supplying a cooling gas into the heating furnace. (Quenched).
  • step S40 it is not limited to when all the three heat treatments of the said brazing process, a stabilization process, and an aging process are performed, You may perform only one at least.
  • a top coat is formed on the surface of the undercoat.
  • the top coat is part of the thermal barrier coating and protects the surface of the base material from high temperatures.
  • a material having a small thermal conductivity such as ceramic is used.
  • the ceramic for example, a material containing zirconia as a main component is used.
  • the material is formed by atmospheric plasma spraying on the surface of the undercoat.
  • the manufacturing method of the turbine blade concerning this embodiment performs diffusion processing before forming a top coat, it can control that a spot, a crack, etc. arise in a top coat. Thereby, it is possible to suppress the occurrence of spots or cracks in the thermal barrier coating while securing the adhesion between the thermal barrier coating and the base material.
  • FIG. 3 is a flowchart showing an example of the diffusion process in the method of manufacturing a turbine blade according to the second embodiment.
  • the method of manufacturing a turbine blade according to the second embodiment includes steps S10 to S50 as in the first embodiment, and the procedure of step S40 is different from that of the first embodiment. The following description will focus on step S40.
  • step S40 a step (step S141) of performing brazing and stabilization as one heat treatment on the base material on which the undercoat is formed, and a step of performing an aging treatment ((step S141) And step S143).
  • the aging treatment in step S143 is the same as that in the first embodiment.
  • the process of step S141 will be described.
  • step S141 the brazing process and the stabilization process are continuously performed as one heat treatment.
  • FIG. 4 is a graph showing an example of the heat treatment in step S142. The horizontal axis of FIG. 4 indicates time, and the vertical axis indicates temperature.
  • step S 141 the brazing material is placed in the base material, and is inserted into a predetermined heating furnace, and the heater of the heating furnace is operated to start heating (time t 1).
  • the furnace temperature (heating temperature) of the heating furnace is raised to a predetermined preheating temperature T0.
  • the preheating temperature T0 is set to a temperature lower than the solidus temperature of the brazing material, and can be, for example, a temperature of 930 ° C. or more and 970 ° C. or less.
  • the temperature in the furnace reaches the preheating temperature T0 (time t2)
  • the rise in the temperature in the furnace is stopped, and the heating process (preheating process) at the preheating temperature T0 is performed for a predetermined time.
  • the furnace temperature is raised again.
  • the rise in the temperature in the furnace is stopped, and the heat treatment is performed at the first temperature T1 for a predetermined time.
  • the brazing material is melted and joined to the base material.
  • the ⁇ 'phase grows in the base material, and the size, form, and the like of the ⁇ ' phase are aligned.
  • each part of a base material will be heated uniformly.
  • the gamma prime phase grows uniformly in each part of a base material.
  • the heater is stopped and the temperature of the base material is, for example, about 30 ° C./min by supplying a cooling gas into the heating furnace.
  • the temperature is reduced rapidly to a predetermined cooling temperature at a rate of temperature reduction (quenching).
  • quenching the state (particle size etc.) of the ⁇ 'phase is maintained.
  • time t6 a predetermined cooling temperature
  • brazing process and the stabilization process are performed by one heat treatment, time and effort in the manufacturing process can be reduced.
  • two types of processing, brazing processing and stabilization processing, are collectively performed, efficient processing can be performed in a short time.
  • FIG. 5 is a flowchart showing an example of the diffusion process in the method of manufacturing a turbine blade according to the third embodiment.
  • the method for manufacturing a turbine blade according to the third embodiment includes steps S10 to S50 as in the first embodiment, and the procedure of step S40 is different from that of the first embodiment. The following description will focus on step S40.
  • step S40 includes the step of performing brazing and stabilization treatment and aging treatment (step S241).
  • step S241 the brazing and stabilization treatments and the aging treatment are continuously performed as one heat treatment.
  • FIG. 6 is a graph showing an example of the heat treatment in step S241. The horizontal axis of FIG. 6 indicates time, and the vertical axis indicates temperature.
  • step S241 as in the first embodiment, the preheating process (time t1 to t4) is performed at the preheating temperature T0, and after the preheating process, the heating process as the brazing process and the stabilization process is performed at the first temperature T1. (Time t4 to t5).
  • time t5 After the heat treatment at the first temperature T1 is performed for a predetermined time (time t5), for example, the operation of the heater is stopped, and the adjustment process is performed to reduce the temperature in the furnace to the second temperature T2.
  • the base material temperature is decreased at a temperature decrease rate of, for example, 3 ° C./min or more and 20 ° C./min or less. Therefore, the temperature decrease after the stabilization process (after time t5) is performed more gently than in the first embodiment.
  • the heater When the temperature in the furnace reaches the second temperature T2 (time t7), the heater is operated, and the heat treatment as the aging treatment is performed in a state where the temperature in the furnace is the second temperature T2. Therefore, after the stabilization treatment, the temperature in the furnace is shifted to the second temperature T2 for performing the aging treatment without cooling the inside of the heating furnace to a predetermined cooling temperature, and the aging treatment is continuously performed.
  • the brazing treatment, the stabilization treatment, and the aging treatment are continuously performed as one heat treatment.
  • the heat treatment is performed, for example, at a second temperature T2 lower than the first temperature T1 for a predetermined time.
  • the second temperature T2 may be, for example, a temperature of 830 ° C. or more and 870 ° C. or less.
  • growth of the ⁇ 'phase and precipitation of the small-diameter ⁇ ' phase in the aging treatment are performed as in the case of quenching as in the first embodiment. Is done. For this reason, a base material excellent in balance of strength and ductility is formed.
  • the heater of the heating furnace is stopped, and the base material temperature is rapidly reduced at a temperature reduction rate of, for example, about 30 ° C./min by supplying a cooling gas into the heating furnace. Reduce to (quenched).
  • time t9 the heat treatment is completed by removing the base material from the inside of the heating furnace.
  • the brazing treatment and the stabilization treatment and the aging treatment are continuously performed as one heat treatment, the heat treatment time can be further shortened.
  • the heat treatment in the heating furnace can be effectively used by performing the adjustment process of adjusting to the second temperature which is the heating temperature of the aging process. it can.
  • the technical scope of the present invention is not limited to the above embodiment, and appropriate modifications can be made without departing from the scope of the present invention.
  • the temperature decrease rate of the base material is about 3 ° C./min or more and 20 ° C./min or less
  • the case where it cooled by was mentioned as an example and demonstrated, it does not limit to this.
  • FIG. 7 is a graph showing another example of the time change of the furnace temperature in the case where the brazing treatment and the stabilization treatment and the aging treatment are continuously performed as one heat treatment.
  • the inside of the heating furnace is cooled at a temperature decreasing rate of, for example, about 30 ° C./min, and the temperature in the furnace reaches a third temperature T3 lower than the second temperature T2.
  • the heater may be operated at time t10.
  • the third temperature T3 can be set, for example, to a temperature of about 530 ° C. or more and 570 ° C. or less.
  • the heater of the heating furnace is stopped, and the base material temperature is 30 ° C. by supplying the cooling gas into the heating furnace.
  • the temperature is reduced rapidly at a temperature reduction rate of about / min (quenching).
  • the heat treatment is completed by removing the base material from the inside of the heating furnace. Even when the temperature change is performed as described above, the heat treatment time can be shortened.
  • the heat treatment in the heating furnace is effectively used by performing the adjustment process of adjusting the temperature to the second temperature T2, which is the heating temperature of the aging process.
  • the base material is cooled at a temperature decreasing rate of, for example, about 30 ° C./min, and when the furnace temperature reaches the second temperature T2, the inside of the heating furnace is brought to the second temperature T2. Aging treatment may be performed.
  • FIG. 8 is a flowchart showing an example of a method of manufacturing a turbine blade according to a modification. As shown in FIG.
  • step S310 in the method of manufacturing a turbine blade according to the modification, a step of forming a base material using a normal casting material (step S310), and a step of performing hot isostatic treatment on the base material (step S310) Step S320), forming a wear resistant coating on the surface of the base material (Step S330), forming an undercoat on the surface of the base material and the wear resistant coating (Step S340), and brazing the base material
  • a step of performing a solution treatment step S350
  • step S360 a step of performing an aging treatment on the base material
  • step S370 step of forming a top coat on the base material
  • step S350 and step S360 are performed as diffusion processing.
  • the hot isostatic pressing (HIP) in step S320 heats, for example, at a temperature of 1180 ° C. or more and 1220 ° C. or less in a state where the base material is disposed in an atmosphere of argon gas. As a result, the entire surface of the base material is heated under equal pressure. After the hot isostatic treatment is completed, the temperature of the base material is lowered by stopping the heating (cooling the furnace). After step S320, the same process as the solution treatment described later may be performed.
  • step S330 a cobalt-based wear resistant material such as, for example, Tribaloy (registered trademark) 800 can be used as the wear resistant coating.
  • the layer of the above material can be formed on the base material by a method such as atmospheric pressure plasma spraying, high speed flame spraying, reduced pressure plasma spraying, atmosphere plasma spraying, or the like.
  • step S340 an undercoat is formed on the base material by the same method as the above embodiment.
  • the base material is brazed, furnace-cooled and then solution treatment.
  • the brazing process is a process of melting and joining a brazing material to a base material by heating in a state where the brazing material is placed on the base material.
  • the brazing material for example, a material such as Amdry (registered trademark) DF-6A is used.
  • the solidus temperature of the brazing material is, for example, about 1050.degree.
  • the amount of the brazing material used for the brazing process is previously adjusted by conducting experiments and the like.
  • the heat treatment can be performed at a temperature (T21) at which the brazing material can be melted, for example, a temperature of 1175 ° C. or more and 1215 ° C. or less.
  • the solution treatment is a treatment in which the ⁇ ′ phase, which is an intermetallic compound, is dissolved and grown in the base material by heating the base material.
  • the heat treatment can be performed, for example, at a temperature (T22) lower than the heating temperature in the brazing treatment, for example, at a temperature of 1100 ° C. or more and 1140 ° C. or less.
  • FIG. 9 is a graph showing an example of the time change of the heating temperature in the heating process of step S350.
  • the horizontal axis of FIG. 9 indicates time, and the vertical axis indicates temperature.
  • step S350 first, brazing is performed.
  • the brazing material is placed in the base material, and is put into a predetermined heating furnace, and the heater of the heating furnace is operated to start heating (time t21).
  • the in-furnace temperature (heating temperature) of the heating furnace reaches the temperature T21 (time t22)
  • the rising of the in-furnace temperature is stopped, and the heating process is performed at the temperature T21 for a predetermined time.
  • the brazing material is melted and joined to the base material.
  • the temperature in the furnace may be raised to a predetermined preheating temperature, and heat treatment (preheating processing) at the preheating temperature may be performed for a predetermined time.
  • the preheating temperature in this case is set to a temperature lower than the solidus temperature of the brazing material and can be, for example, 1030.degree.
  • the preheating temperature can be appropriately changed according to the solidus temperature of the brazing material.
  • the temperature of the base material is reduced by a temperature decrease rate of about 3 ° C./min or more and 20 ° C./min or less by stopping the heater.
  • the temperature is lowered to T23 lower than T22 (slow cooling).
  • the temperature T23 may be, for example, a temperature of 980 ° C. or more and 1020 ° C. or less. Cooling by gradual cooling suppresses generation of voids and the like in the brazed portion.
  • adjustment processing is performed to raise the in-furnace temperature (time t24).
  • the temperature in the furnace is raised to the temperature T22 by operating the heater.
  • the rise in the temperature in the furnace is stopped, and the solution treatment is performed in a state where the temperature in the heating furnace is the temperature T22.
  • the heater is stopped to supply a cooling gas into the heating furnace (time t26).
  • step S340 is completed by removing the base material from the inside of the heating furnace.
  • the brazing process and the solution treatment may be performed separately.
  • step S350 the abrasion resistant coat and the oxidation resistant coat are diffused on the surface of the base material, and the adhesion between the surface of the base material and each coat is improved.
  • the aging treatment in step S360 can be performed, for example, at a temperature of 830 ° C. or more and 870 ° C. or less, as in the above embodiments.
  • the heater of the heating furnace is stopped, and the temperature of the base material is rapidly reduced at a temperature decreasing rate of, for example, about 30 ° C./min by supplying a cooling gas into the heating furnace. (Quenched).
  • the undercoat is diffused to the surface of the roughened base material, and the adhesion between the surface of the base material and the undercoat is improved.
  • step S370 a top coat is formed on the surface of the undercoat in the same manner as in the above embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Ni基合金材料を用いて形成されたタービン翼の母材の表面に、母材よりも耐酸化性の高い金属材料を用いてアンダーコートを形成することと、アンダーコートが形成された母材を加熱してアンダーコートの一部を母材側に拡散させる拡散処理を行うことと、拡散処理が行われた後、アンダーコートの表面に母材及びアンダーコートよりも熱伝導率が低い材料を用いてトップコートを形成することと、を含む。

Description

タービン翼の製造方法
 本発明は、タービン翼の製造方法に関する。
 ガスタービンは、圧縮機と燃焼器とタービンとを有している。圧縮機は、空気を取り込んで圧縮し、高温高圧の圧縮空気とする。燃焼器は、この圧縮空気に対して燃料を供給して燃焼させる。タービンは、車室内に複数の静翼及び動翼が交互に配置されている。タービンは、圧縮空気の燃焼により発生した高温高圧の燃焼ガスによって動翼が回転する。この回転により、熱エネルギーが回転エネルギーに変換される。
 静翼や動翼といったタービン翼は、高温下に曝されるため、耐熱性の高い金属材料を用いて形成される。また、タービン翼には、高温から保護するための遮熱コーティング(Thermal Barrier Coating:TBC)が形成される。遮熱コーティングとしては、例えばタービン翼の母材の表面にアンダーコートが形成され、アンダーコートの表面にトップコートが形成される。
特開2003-343205号公報
 アンダーコートは、母材の酸化を防止すると共にトップコートの密着性を向上させるものであり、例えば合金材料等を用いて形成される。トップコートは、母材の遮熱性を高めるものであり、例えばセラミック材料等を用いて形成される。従来、アンダーコートと母材との間の密着性を確保するため、アンダーコート及びトップコートを形成した後、アンダーコートを母材の表面に拡散させるための加熱処理を行っている。しかしながら、この加熱処理により、遮熱コーティングの一部、例えばトップコートに斑点やクラック等が生じる場合があった。
 本発明は、上記に鑑みてなされたものであり、遮熱コーティングと母材との密着性を確保しつつ、遮熱コーティングに斑点やクラック等が生じることを抑制できるタービン翼の製造方法を提供することを目的とする。
 本発明に係るタービン翼の製造方法は、Ni基合金材料を用いて形成されたタービン翼の母材の表面に、前記母材よりも耐酸化性の高い金属材料を用いてアンダーコートを形成することと、前記アンダーコートが形成された前記母材を加熱して前記アンダーコートの一部を前記母材側に拡散させる拡散処理を行うことと、前記拡散処理が行われた後、前記アンダーコートの表面に前記母材及び前記アンダーコートよりも熱伝導率が低い材料を用いてトップコートを形成することと、を含む。
 本発明によれば、トップコートを形成する前に拡散処理が行われるため、トップコートに斑点やクラック等が生じることを抑制できる。これにより、遮熱コーティングと母材との密着性を確保しつつ、遮熱コーティングに斑点やクラック等が生じることを抑制できる。
 また、前記拡散処理は、加熱による前記トップコートの品質低下を防止するために設定される設定温度よりも高い加熱温度で前記母材を加熱してもよい。
 本発明によれば、トップコートを形成する前に拡散処理が行われるため、設定温度よりも高い加熱温度で母材を加熱しても、トップコートに斑点やクラック等が生じなくても済む。これにより、拡散処理を確実に行うことができる。なお、加熱によるトップコートの品質低下としては、例えばトップコートに斑点やクラック等が生じることが挙げられる。
 また、前記母材を加熱して安定化処理を行うことと、前記安定化処理が行われた前記母材を加熱して時効処理を行うことと、をさらに含み、前記拡散処理は、前記アンダーコートが形成された前記母材に対して前記安定化処理及び前記時効処理のうち少なくとも一方を行うことを含んでもよい。
 本発明によれば、アンダーコートが形成された母材に対して安定化処理及び時効処理のうち少なくとも一方の加熱処理を、アンダーコートの拡散処理を兼ねて行うことができる。これにより、製造工程の短縮化を図ることができる。
 また、ろう材が配置された前記母材を加熱してろう付け処理を行うことをさらに含み、前記拡散処理は、前記ろう付け処理及び前記安定化処理を、前記アンダーコートが形成された前記母材に対して一の加熱処理として行うことを含んでもよい。
 本発明によれば、母材に対する加熱処理として、ろう付け処理及び安定化処理を一の加熱処理として行うことにより、加熱処理をより短時間で行うことができる。
 また、前記拡散処理は、前記ろう付け処理及び前記安定化処理と前記時効処理とを、前記アンダーコートが形成された前記母材に対して一の加熱処理として連続して行うことを含んでもよい。
 本発明によれば、母材に対する加熱処理として、ろう付け処理及び安定化処理と時効処理とを一の加熱処理として連続して行うことにより、加熱処理をさらに短時間で行うことができる。
 本発明によれば、遮熱コーティングと母材との密着性を確保しつつ、遮熱コーティングに斑点やクラック等が生じることを抑制できる。
図1は、第1実施形態に係るタービン翼の製造方法の一例を示すフローチャートである。 図2は、ステップS40における加熱処理の手順の一例を示すフローチャートである。 図3は、第2実施形態に係るタービン翼の製造方法のステップS40における拡散処理の一例を示すフローチャートである。 図4は、ろう付け処理及び安定化処理を一の加熱処理として行う場合の加熱温度の時間変化の一例を示すグラフである。 図5は、第3実施形態に係るタービン翼の製造方法のステップS40における拡散処理の一例を示すフローチャートである。 図6は、ろう付け処理及び安定化処理と時効処理とを一の加熱処理として連続して行う場合の加熱温度の時間変化の一例を示すグラフである。 図7は、ろう付け処理及び安定化処理と時効処理とを一の加熱処理として連続して行う場合の加熱温度の時間変化の他の例を示すグラフである。 図8は、変形例に係るタービン翼の製造方法の一例を示すフローチャートである。 図9は、ステップS350の加熱処理における加熱温度の時間変化の一例を示すグラフである。
 以下、本発明に係るタービン翼の製造方法の実施形態を図面に基づいて説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
 <第1実施形態>
 図1は、第1実施形態に係るタービン翼の製造方法の一例を示すフローチャートである。図1に示すように、第1実施形態に係るタービン翼の製造方法は、例えばガスタービンの静翼や動翼といったタービン翼の母材を形成する工程(ステップS10)と、母材に対してブラスト処理を行う工程(ステップS20)と、母材の表面にアンダーコートを形成する工程(ステップS30)と、アンダーコートに拡散処理を行う工程(ステップS40)と、アンダーコートの表面にトップコートを形成する工程(ステップS50)とを含む。
 ステップS10では、静翼や動翼等のタービン翼を構成する母材が形成される。タービン翼は、ガスタービンにおいて高温下に曝される。このため、タービン翼を構成する母材は、耐熱性に優れた合金、例えばNi基合金等の材料を用いて形成される。Ni基合金としては、例えばCr:12.0%以上14.3%以下、Co:8.5%以上11.0%以下、Mo:1.0%以上3.5%以下、W:3.5%以上6.2%以下、Ta:3.0%以上5.5%以下、Al:3.5%以上4.5%以下、Ti:2.0%以上3.2%以下、C:0.04%以上0.12%以下、B:0.005%以上0.05%以下、を含有し、残部がNiおよび不可避不純物からなる組成のNi基合金等が挙げられる。また、上記組成のNi基合金に、Zr:0.001ppm以上5ppm以下を含有してもよい。また、上記組成のNi基合金に、Mgおよび/またはCa:1ppm以上100ppm以下を含有してもよく、さらにPt:0.02%以上0.5%以下、Rh:0.02%以上0.5%以下、Re:0.02%以上0.5%以下のうちの1種または2種以上を含有してもよく、これら双方を含有してもよい。
 母材は、上記材料を用いて鋳造や鍛造などによって形成される。鋳造によって母材を形成する場合、例えば普通鋳造材(Conventional Casting:CC)、一方向凝固材(Directional Solidification:DS)、単結晶材(Single Crystal:SC)等の母材を形成することができる。以下、母材として一方向凝固材が用いられる場合を例に挙げて説明するが、これに限定するものではなく、母材が普通鋳造材又は単結晶材であっても同様の説明が可能である。
 なお、母材を形成した後、前工程で生成された析出物を加熱によって固溶させ、成分偏析を軽減させる溶体化処理を行ってもよい。溶体化処理を行う場合、例えば1200℃程度の温度で母材を加熱する。
 ステップS20では、母材の表面にアンダーコートを形成する前に、例えば母材の表面にアルミナ(Al)を吹き付けることにより、母材表面を粗面化する。母材を粗面化することにより、アンカー効果によって、母材とアンダーコートの密着性が向上する。なお、ブラスト処理の後、母材の表面を洗浄するクリーニング処理を行ってもよい。
 ステップS30では、母材の表面にアンダーコートを形成する。アンダーコートは、タービン翼を高温から保護するための遮熱コーティング(Thermal Barrier Coating:TBC)の一部である。アンダーコートは、母材の酸化を防止すると共にトップコートの密着性を向上させる。アンダーコートの材料としては、例えば母材よりも耐酸化性の高いMCrAlY等の合金材料を用いることができる。ステップS30では、例えば母材の表面を加熱した後、上記合金材料等を母材の表面に溶射することでアンダーコートを形成する。
 ステップS40では、アンダーコートに拡散処理を行う。拡散処理は、アンダーコートを加熱することにより、アンダーコートを構成する原子を母材側に拡散させ、アンダーコートと母材との間の密着性を向上させる処理である。拡散処理は、母材にアンダーコートを形成した後、トップコートが形成されていない状態で行う。
 ステップS40では、拡散処理として、母材に対する加熱処理を行うことができる。このような加熱処理としては、例えばろう付け処理、安定化処理、時効処理等の加熱処理が挙げられる。図2は、ステップS40における加熱処理の手順の一例を示すフローチャートである。図2に示すように、ステップS40において、ろう付け処理(S41)、安定化処理(S43)及び時効処理(S45)をこの順に行うことができる。
 ステップS41におけるろう付け処理は、母材にろう材を配置した状態で加熱することにより、ろう材を母材に溶融させて接合する処理である。ろう材としては、例えばBNi-2相当材等が用いられる。この場合、ろう材の固相線温度は、例えば970℃程度である。ろう付け処理に用いられるろう材の量については、実験等を行うことで予め調整しておく。ろう付け処理では、ろう材を溶融させることが可能な温度、例えば1060℃以上、1100℃以下の温度で加熱処理を行うことができる。
 ろう付け処理を行う場合、母材にろう材を配置した状態で所定の加熱炉に投入し、加熱炉のヒータを作動させて加熱を開始する。加熱開始後、まず、加熱炉の炉内温度(加熱温度)を所定の予熱温度にまで上昇させる。この予熱温度は、ろう材の固相線温度よりも低い温度に設定され、例えば930℃以上、970℃以下の温度とすることができる。炉内温度が予熱温度に到達した場合、炉内温度の上昇を停止し、所定時間、当該予熱温度での加熱処理(予熱処理)を行う。予熱処理を行うことにより、母材及びろう材の温度が全体的に均一に上昇し、各部位における温度差が低減する。予熱処理を所定時間行った後、再び炉内温度を上昇させる。炉内温度が上記のろう付け温度に到達した場合、炉内温度の上昇を停止し、当該ろう付け温度で所定時間、加熱処理を行う。これにより、ろう材が溶融して母材に接合される。所定時間行われた後、例えばヒータを停止させ、加熱炉内に冷却用の気体を供給することにより母材の温度を例えば30℃/min程度の温度低下速度で所定の冷却温度まで急激に低下させる(急冷)。
 ステップS43における安定化処理は、母材を加熱することにより、母材において金属間化合物であるγ´相を成長させ、γ´相の大きさ、形態等をそろえる処理である。安定化処理では、例えばろう付け処理における加熱温度と同等の温度、例えば1060℃以上、1100℃以下の温度で加熱処理を行うことができる。
 安定化処理では、母材においてγ´相が成長し、当該γ´相の大きさ、形態等がそろえられる。安定化処理を行う場合には、ろう付け処理と同様に、予熱処理を行ってもよい。この場合、予熱処理を行った状態から安定化処理の加熱温度で加熱するため、母材の各部がムラなく加熱されることになる。このため、母材の各部においてγ´相が均一に成長する。安定化処理が所定時間行われた後、例えばヒータを停止させ、加熱炉内に冷却用の気体を供給することにより母材の温度を例えば30℃/min程度の温度低下速度で所定の冷却温度まで急激に低下させる(急冷)。この急冷処理により、γ´相の状態(粒径等)が保持される。
 時効処理は、安定化処理を行った母材を加熱することにより、母材において、安定化処理で成長したγ´相をさらに成長させると共に、当該安定化処理で生じたγ´相よりも小径のγ´相を析出させる。この小径のγ´相は、母材の強度を増加させる。したがって、時効処理は、小径のγ´相を析出させ、母材の強度を高めることにより、最終的に母材の強度及び延性を調整する。時効処理では、例えば830℃以上、870℃以下の温度とすることができる。時効処理を所定時間行った後、加熱炉のヒータを停止させ、加熱炉内に冷却用の気体を供給することにより母材の温度を例えば30℃/min程度の温度低下速度で急激に低下させる(急冷)。
 このような加熱処理を行うことにより、アンダーコートが粗面化された母材の表面に拡散され、母材の表面とアンダーコートとの間の密着性が向上する。なお、ステップS40の拡散処理では、上記ろう付け処理、安定化処理及び時効処理の3つの加熱処理の全てを行う場合に限定されるものではなく、少なくとも1つのみを行ってもよい。
 ステップS50では、アンダーコートの表面にトップコートを形成する。トップコートは、上記遮熱コーティングの一部であり、母材の表面を高温から保護する。トップコートの材料としては、セラミック等の熱伝導率の小さい材料が用いられる。セラミックとしては、例えばジルコニアを主成分とする材料等が用いられる。ステップS50では、例えば上記材料をアンダーコートの表面に大気プラズマ溶射することにより形成される。
 以上のように、本実施形態に係るタービン翼の製造方法は、トップコートを形成する前に拡散処理を行うため、トップコートに斑点やクラック等が生じることを抑制できる。これにより、遮熱コーティングと母材との密着性を確保しつつ、遮熱コーティングに斑点やクラック等が生じることを抑制できる。
 <第2実施形態>
 図3は、第2実施形態に係るタービン翼の製造方法における拡散処理の一例を示すフローチャートである。第2実施形態に係るタービン翼の製造方法は、第1実施形態と同様に、ステップS10からステップS50を含むものであり、ステップS40の手順が第1実施形態とは異なっている。以下、ステップS40を中心に説明する。
 図3に示すように、ステップS40では、ろう付け処理及び安定化処理を、アンダーコートが形成された母材に対して一の加熱処理として行う工程(ステップS141)と、時効処理を行う工程(ステップS143)とを含んでいる。ステップS143の時効処理については、第1実施形態と同様である。ここでは、ステップS141の処理について説明する。
 ステップS141では、ろう付け処理と安定化処理とを一の加熱処理として連続して行う。図4は、ステップS142における加熱処理の一例を示すグラフである。図4の横軸は時間を示し、縦軸は温度を示している。
 図4に示すように、ステップS141では、母材にろう材を配置した状態で所定の加熱炉に投入し、加熱炉のヒータを作動させて加熱を開始する(時刻t1)。加熱開始後、まず、加熱炉の炉内温度(加熱温度)を所定の予熱温度T0にまで上昇させる。この予熱温度T0は、ろう材の固相線温度よりも低い温度に設定され、例えば930℃以上、970℃以下の温度とすることができる。炉内温度が予熱温度T0に到達した場合(時刻t2)、炉内温度の上昇を停止し、所定時間、当該予熱温度T0での加熱処理(予熱処理)を行う。予熱処理を行うことにより、母材及びろう材の温度が全体的に均一に上昇し、各部位における温度差が低減する。
 予熱処理を所定時間行った後(時刻t3)、再び炉内温度を上昇させる。炉内温度が第1温度T1に到達した場合(時刻t4)、炉内温度の上昇を停止し、当該第1温度T1で所定時間、加熱処理を行う。この第1温度T1での加熱処理により、ろう材が溶融して母材に接合される。また、母材においてγ´相が成長し、当該γ´相の大きさ、形態等がそろえられる。予熱処理を行った状態から第1温度T1で加熱するため、母材の各部がムラなく加熱されることになる。このため、均一にろう付けすることができると共に、母材の各部においてγ´相が均一に成長する。第1温度T1での加熱処理が所定時間行われた後(時刻t5)、例えばヒータを停止させ、加熱炉内に冷却用の気体を供給することにより母材の温度を例えば30℃/min程度の温度低下速度で所定の冷却温度まで急激に低下させる(急冷)。この急冷処理により、γ´相の状態(粒径等)が保持される。その後、炉内温度が所定の冷却温度まで低下した場合(時刻t6)、ステップS30の処理が完了する。このように、本実施形態では、ろう付け処理及び安定化処理を一の加熱処理として行う。
 このように、一の加熱処理によってろう付け処理と安定化処理とが行われるため、製造工程における手間を軽減することができる。また、ろう付け処理及び安定化処理の2種類の処理を集中して行うため、短時間で効率的な処理が可能となる。
 <第3実施形態>
 図5は、第3実施形態に係るタービン翼の製造方法における拡散処理の一例を示すフローチャートである。第3実施形態に係るタービン翼の製造方法は、第1実施形態と同様に、ステップS10からステップS50を含むものであり、ステップS40の手順が第1実施形態とは異なっている。以下、ステップS40を中心に説明する。
 図5に示すように、ステップS40では、ろう付け処理及び安定化処理と時効処理とを行う工程(ステップS241)を含んでいる。ステップS241では、ろう付け処理及び安定化処理と時効処理とを一の加熱処理として連続して行う。図6は、ステップS241における加熱処理の一例を示すグラフである。図6の横軸は時間を示し、縦軸は温度を示している。
 ステップS241では、第1実施形態と同様に、予熱温度T0で予熱処理(時刻t1からt4)を行い、予熱処理の後、ろう付け処理及び安定化処理としての加熱処理を第1温度T1で行う(時刻t4からt5)。
 第1温度T1での加熱処理が所定時間行われた後(時刻t5)、例えばヒータの動作を停止し、炉内温度を第2温度T2まで低下させる調整処理を行う。このとき、例えば3℃/min以上、20℃/min以下程度の温度低下速度で母材温度を低下させる。したがって、第1実施形態に比べて、安定化処理後(時刻t5以降)の温度低下が緩やかに行われる。
 炉内温度が第2温度T2に到達した場合(時刻t7)、ヒータを作動させ、炉内温度を第2温度T2とした状態で時効処理としての加熱処理を行う。よって、安定化処理の後は、加熱炉内を所定の冷却温度まで冷却することなく、時効処理を行うための第2温度T2に炉内温度をシフトさせて連続して時効処理を行う。このように、本実施形態では、ろう付け処理及び安定化処理と、時効処理とを一の加熱処理として連続して行う。
 時効処理では、第1実施形態と同様に、例えば第1温度T1よりも低い第2温度T2で所定時間、加熱処理を行う。第2温度T2としては、例えば830℃以上、870℃以下の温度とすることができる。本実施形態では、安定化処理後の温度低下を緩やかに行った場合でも、第1実施形態のように急冷した場合と同様に、時効処理においてγ´相の成長及び小径のγ´相の析出が行われる。このため、強度及び延性のバランスに優れた母材が形成される。
 時効処理を所定時間行った後(時刻t8)、加熱炉のヒータを停止させ、加熱炉内に冷却用の気体を供給することにより母材温度を例えば30℃/min程度の温度低下速度で急激に低下させる(急冷)。炉内温度が所定の温度になった後(時刻t9)、加熱炉内から母材を取り出すことで、加熱処理が終了する。
 本実施形態では、ろう付け処理及び安定化処理と時効処理とを一の加熱処理として連続して行うため、加熱処理時間の更なる短縮化を図ることができる。また、ろう付け処理及び安定化処理を第1温度T1で行った後、時効処理の加熱温度である第2温度に調整する調整処理を行うことにより、加熱炉内の熱を有効利用することができる。
 本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。上記第3実施形態では、安定化処理の後、炉内温度を第2温度T2まで低下させる調整処理を行う際に、母材を3℃/min以上、20℃/min以下程度の温度低下速度で冷却する場合を例に挙げて説明したが、これに限定するものではない。
 図7は、ろう付け処理及び安定化処理と時効処理とを一の加熱処理として連続して行う場合の炉内温度の時間変化の他の例を示すグラフである。図7に示すように、安定化処理の後、加熱炉内を例えば30℃/min程度の温度低下速度で冷却し、炉内温度が第2温度T2よりも低い第3温度T3になった場合に(時刻t10)、ヒータを作動させてもよい。第3温度T3としては、例えば530℃以上、570℃以下の温度程度に設定することができる。
 ヒータを作動させた後、炉内温度が第2温度T2まで上昇した場合(時刻t11)、炉内温度の上昇を停止させ、加熱炉内を第2温度T2とした状態で時効処理を行う。その後は第2実施形態と同様に、時効処理を所定時間行った後(時刻t12)、加熱炉のヒータを停止させ、加熱炉内に冷却用の気体を供給することにより母材温度を30℃/min程度の温度低下速度で急激に低下させる(急冷)。炉内温度が所定の温度になった後(時刻t13)、加熱炉内から母材を取り出すことで、加熱処理が終了する。このように温度変化を行う場合であっても、加熱処理時間の短縮化を図ることができる。また、ろう付け処理及び安定化処理を第1温度T1で行った後、時効処理の加熱温度である第2温度T2に調整する調整処理を行うことにより、加熱炉内の熱を有効利用することができる。なお、安定化処理の後、母材を例えば30℃/min程度の温度低下速度で冷却し、炉内温度が第2温度T2になった場合に加熱炉内を第2温度T2とした状態で時効処理を行ってもよい。
 また、上記各実施形態では、母材として一方向凝固材が用いられる場合を例に挙げて説明したが、これに限定するものではなく、母材として例えば普通鋳造材が用いられてもよい。図8は、変形例に係るタービン翼の製造方法の一例を示すフローチャートである。図8に示すように、変形例に係るタービン翼の製造方法は、普通鋳造材を用いて母材を形成する工程(ステップS310)と、母材に対して熱間静水圧処理を行う工程(ステップS320)と、母材の表面に耐摩耗コートを形成する工程(ステップS330)と、母材及び耐摩耗コートの表面にアンダーコートを形成する工程(ステップS340)と、母材にろう付け処理及び溶体化処理を行う工程(ステップS350)と、母材に時効処理を行う工程(ステップS360)と、母材にトップコートを形成する工程(ステップS370)とを含んでいる。本変形例では、ステップS350及びステップS360を拡散処理として行う。
 ステップS320における熱間静水圧処理(Hot Isostatic Pressing:HIP)は、母材をアルゴンガスの雰囲気中に配置した状態で、例えば1180℃以上1220℃以下の温度で加熱する。これにより、母材の全表面に対して等しく圧力が加えられた状態で加熱される。熱間静水圧処理が完了した後、加熱を停止する(炉冷)ことにより母材の温度を低下させる。なお、ステップS320の後に、後述する溶体化処理と同様の処理を行ってもよい。
 ステップS330において、耐摩耗コートとしては、例えばトリバロイ(登録商標)800等のコバルト基耐磨耗材を用いることができる。ステップS320では、例えば大気圧プラズマ溶射、高速フレーム溶射、減圧プラズマ溶射、雰囲気プラズマ溶射等の手法により、母材に上記材料の層を形成することができる。
 ステップS340では、上記実施形態と同様の手法により、母材にアンダーコートを形成する。
 ステップS350では、母材にろう付け処理を行い、炉冷した後に溶体化処理を行う。ろう付け処理は、母材にろう材を配置した状態で加熱することにより、ろう材を母材に溶融させて接合する処理である。ろう材としては、例えばアムドライ(登録商標)DF-6A等の材料が用いられる。この場合、ろう材の固相線温度は、例えば1050℃程度である。ろう付け処理に用いられるろう材の量については、実験等を行うことで予め調整しておく。ろう付け処理では、ろう材を溶融させることが可能な温度(T21)、例えば1175℃以上、1215℃以下の温度で加熱処理を行うことができる。
 溶体化処理は、母材を加熱することにより、母材において金属間化合物であるγ´相を固溶及び成長させる処理である。溶体化処理では、例えばろう付け処理における加熱温度よりも低い温度(T22)、例えば1100℃以上、1140℃以下の温度で加熱処理を行うことができる。
 図9は、ステップS350の加熱処理における加熱温度の時間変化の一例を示すグラフである。図9の横軸は時間を示し、縦軸は温度を示している。ステップS350では、まず、ろう付け処理を行う。ろう付け処理は、母材にろう材を配置した状態で所定の加熱炉に投入し、加熱炉のヒータを作動させて加熱を開始する(時刻t21)。加熱炉の炉内温度(加熱温度)が上記温度T21に到達した場合(時刻t22)、炉内温度の上昇を停止し、当該温度T21で所定時間、加熱処理を行う。これにより、ろう材が溶融して母材に接合される。
 なお、母材を加熱炉に投入した後、炉内温度を所定の予熱温度にまで上昇させて、所定時間、当該予熱温度での加熱処理(予熱処理)を行ってもよい。この場合の予熱温度は、ろう材の固相線温度よりも低い温度に設定され、例えば1030℃とすることができる。なお、予熱温度は、ろう材の固相線温度に応じて適宜変更することができる。予熱処理を行うことにより、母材及びろう材の温度が全体的に均一に上昇し、各部位における温度差が低減する。予熱処理を所定時間行った場合、予熱処理後に炉内温度を温度T21まで上昇させてろう付け処理を行う。
 ろう付け処理が所定時間行われた後(時刻t23)、例えばヒータを停止させることにより母材の温度を3℃/min以上、20℃/min以下程度の温度低下速度で、溶体化処理における温度T22よりも低い温度T23まで低下させる(徐冷)。温度T23としては、例えば980℃以上、1020℃以下の温度とすることができる。徐冷で冷却することにより、ろう付け部分にボイド等が生じることが抑制される。
 徐冷により炉内温度が温度T23に到達した後、炉内温度を上昇させる調整処理を行う(時刻t24)。調整処理は、ヒータを作動させることにより、炉内温度を温度T22まで上昇させる。炉内温度が温度T22まで上昇した場合(時刻t25)、炉内温度の上昇を停止させ、加熱炉内を温度T22とした状態で溶体化処理を行う。溶体化処理が所定時間行われた後、例えばヒータを停止させ、加熱炉内に冷却用の気体を供給する(時刻t26)。冷却用の気体を供給することにより、母材の温度を例えば30℃/min程度の温度低下速度で所定の冷却温度まで急激に低下させる(急冷)。この急冷処理により、γ´相の状態(粒径等)が保持される。炉内温度が所定の温度になった後(時刻t27)、加熱炉内から母材を取り出すことで、ステップS340が終了する。なお、ステップS340では、ろう付け処理と溶体化処理とを分けて行ってもよい。
 なお、ステップS350の加熱処理により、耐摩耗コート及び耐酸化コートが母材の表面に拡散され、母材の表面と各コートとの間の密着性が向上する。
 ステップS360における時効処理は、上記各実施形態と同様に、例えば830℃以上、870℃以下の温度とすることができる。時効処理を所定時間行った後、加熱炉のヒータを停止させ、加熱炉内に冷却用の気体を供給することにより母材の温度を例えば30℃/min程度の温度低下速度で急激に低下させる(急冷)。
 このような加熱処理を行うことにより、アンダーコートが粗面化された母材の表面に拡散され、母材の表面とアンダーコートとの間の密着性が向上する。
 ステップS370では、上記各実施形態と同様の手法により、アンダーコートの表面にトップコートを形成する。
 上記タービン翼の製造方法は、トップコートを形成する前に拡散処理を行うため、トップコートに斑点やクラック等が生じることを抑制できる。これにより、遮熱コーティングと母材との密着性を確保しつつ、遮熱コーティングに斑点やクラック等が生じることを抑制できる。
T0 予熱温度
T1 第1温度
T2 第2温度

Claims (5)

  1.  Ni基合金材料を用いて形成されたタービン翼の母材の表面に、前記母材よりも耐酸化性の高い金属材料を用いてアンダーコートを形成することと、
     前記アンダーコートが形成された前記母材を加熱して前記アンダーコートの一部を前記母材側に拡散させる拡散処理を行うことと、
     前記拡散処理が行われた後、前記アンダーコートの表面にトップコートを形成することと、を含むタービン翼の製造方法。
  2.  前記拡散処理は、加熱による前記トップコートの品質低下を防止するために設定される設定温度よりも高い加熱温度で前記母材を加熱する請求項1に記載のタービン翼の製造方法。
  3.  前記母材を加熱して安定化処理を行うことと、
     前記安定化処理が行われた前記母材を加熱して時効処理を行うことと、をさらに含み、
     前記拡散処理は、前記アンダーコートが形成された前記母材に対して前記安定化処理及び前記時効処理のうち少なくとも一方を行うことを含む請求項1又は請求項2に記載のタービン翼の製造方法。
  4.  ろう材が配置された前記母材を加熱してろう付け処理を行うことをさらに含み、
     前記拡散処理は、前記ろう付け処理及び前記安定化処理を、前記アンダーコートが形成された前記母材に対して一の加熱処理として行うことを含む請求項3に記載のタービン翼の製造方法。
  5.  前記拡散処理は、前記ろう付け処理及び前記安定化処理と前記時効処理とを、前記アンダーコートが形成された前記母材に対して一の加熱処理として連続して行うことを含む請求項4に記載のタービン翼の製造方法。
PCT/JP2017/034426 2016-10-07 2017-09-25 タービン翼の製造方法 WO2018066392A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/313,992 US20190234220A1 (en) 2016-10-07 2017-09-25 Method for producing turbine blade
DE112017005101.0T DE112017005101T5 (de) 2016-10-07 2017-09-25 Verfahren zur herstellung einer turbinenschaufel
KR1020197002702A KR20190022804A (ko) 2016-10-07 2017-09-25 터빈 블레이드의 제조 방법
CN201780042532.3A CN109415977B (zh) 2016-10-07 2017-09-25 涡轮叶片的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-198778 2016-10-07
JP2016198778A JP6739309B2 (ja) 2016-10-07 2016-10-07 タービン翼の製造方法

Publications (1)

Publication Number Publication Date
WO2018066392A1 true WO2018066392A1 (ja) 2018-04-12

Family

ID=61831655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034426 WO2018066392A1 (ja) 2016-10-07 2017-09-25 タービン翼の製造方法

Country Status (6)

Country Link
US (1) US20190234220A1 (ja)
JP (1) JP6739309B2 (ja)
KR (1) KR20190022804A (ja)
CN (1) CN109415977B (ja)
DE (1) DE112017005101T5 (ja)
WO (1) WO2018066392A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6746457B2 (ja) * 2016-10-07 2020-08-26 三菱日立パワーシステムズ株式会社 タービン翼の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055928A (ja) * 1999-08-12 2001-02-27 Toshiba Corp ガスタービン高温部品の補修再生処理方法
JP2001240950A (ja) * 2000-03-02 2001-09-04 Toshiba Corp 高温部品の再生処理方法
JP2014015666A (ja) * 2012-07-10 2014-01-30 Hitachi Ltd 発電用ガスタービン翼への遮熱コーティング、及びそれを用いた発電用ガスタービン

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343205A (ja) 2002-05-23 2003-12-03 Mitsubishi Heavy Ind Ltd 詰物、翼及び翼表面の遮熱被覆施工方法
US20080145643A1 (en) * 2006-12-15 2008-06-19 United Technologies Corporation Thermal barrier coating
JP5232492B2 (ja) * 2008-02-13 2013-07-10 株式会社日本製鋼所 偏析性に優れたNi基超合金
JP6016016B2 (ja) * 2012-08-09 2016-10-26 国立研究開発法人物質・材料研究機構 Ni基単結晶超合金
CN103408317B (zh) * 2013-07-24 2015-01-28 西北工业大学 一种c/c复合材料和镍基高温合金的高温钎焊连接方法
JP6532182B2 (ja) * 2013-08-06 2019-06-19 日立金属株式会社 Ni基合金、ガスタービン燃焼器用Ni基合金、ガスタービン燃焼器用部材、ライナー用部材、トランジッションピース用部材、ライナー、トランジッションピース

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055928A (ja) * 1999-08-12 2001-02-27 Toshiba Corp ガスタービン高温部品の補修再生処理方法
JP2001240950A (ja) * 2000-03-02 2001-09-04 Toshiba Corp 高温部品の再生処理方法
JP2014015666A (ja) * 2012-07-10 2014-01-30 Hitachi Ltd 発電用ガスタービン翼への遮熱コーティング、及びそれを用いた発電用ガスタービン

Also Published As

Publication number Publication date
JP6739309B2 (ja) 2020-08-12
US20190234220A1 (en) 2019-08-01
CN109415977A (zh) 2019-03-01
DE112017005101T5 (de) 2019-08-01
CN109415977B (zh) 2021-05-07
KR20190022804A (ko) 2019-03-06
JP2018059472A (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
US8235275B1 (en) Braze foil for high-temperature brazing and methods for repairing or producing components using a braze foil
WO2018066644A1 (ja) タービン翼の製造方法
JP2006062080A (ja) 金属部品のクラック修繕方法および修繕された金属部品
RU2627088C2 (ru) Способ сварки и наплавки металлических деталей из алюминия способом дуговой сварки металлическим электродом в среде инертного газа с импульсным током и импульсной подачей проволоки
JP2013513491A (ja) レーザ充填および適度なhip圧縮成形によるチタンブレードの修理方法
JP2006075903A (ja) 金属部品の修復方法
JP2011136344A (ja) ガスタービン部材の補修方法及びガスタービン部材
JP4568094B2 (ja) 遮熱コーティング部材およびその形成方法
US20180221955A1 (en) Processing method
KR102141797B1 (ko) 터빈 블레이드의 제조 방법
JP2011064077A (ja) ガスタービン部品およびその補修方法
JP2003342617A (ja) 耐熱合金製補修高温部品、Ni基耐熱合金製補修ガスタービン翼、Ni基耐熱合金製ガスタービン翼の補修方法および耐熱合金製ガスタービン動翼の補修方法
US8252376B2 (en) Method for restoring the microstructure of a textured article and for refurbishing a gas turbine blade or vane
WO2018066392A1 (ja) タービン翼の製造方法
US11525179B2 (en) Methods for forming vertically cracked thermal barrier coatings and articles including vertically cracked thermal barrier coatings
US7249412B2 (en) Method for repairing a damaged blade of a Blisk
US20090113706A1 (en) Craze crack repair of combustor liners
KR101382141B1 (ko) 고온 계면 안정성이 우수한 코팅층을 갖는 니켈기 합금 및 그 제조방법
US20150368807A1 (en) Method for depositing layer
JP2004149904A (ja) Ni基合金の熱処理方法及びコーティング除去方法
JP2011202649A (ja) ガスタービン部材の変形修正方法
JP2010163889A (ja) チタニウム−アルミニウム金属間化合物よりなる低圧タービン部品の修復方法および修復された低圧タービン部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197002702

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17858231

Country of ref document: EP

Kind code of ref document: A1