WO2018066143A1 - 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法 - Google Patents

光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法 Download PDF

Info

Publication number
WO2018066143A1
WO2018066143A1 PCT/JP2016/080025 JP2016080025W WO2018066143A1 WO 2018066143 A1 WO2018066143 A1 WO 2018066143A1 JP 2016080025 W JP2016080025 W JP 2016080025W WO 2018066143 A1 WO2018066143 A1 WO 2018066143A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pixel
capacitor
charge
switch
Prior art date
Application number
PCT/JP2016/080025
Other languages
English (en)
French (fr)
Inventor
須川 成利
理人 黒田
駿一 若嶋
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to CN201680089904.3A priority Critical patent/CN109804466B/zh
Priority to KR1020197009933A priority patent/KR102268948B1/ko
Priority to JP2018543573A priority patent/JP6948074B2/ja
Priority to US16/339,438 priority patent/US10720467B2/en
Priority to PCT/JP2016/080025 priority patent/WO2018066143A1/ja
Publication of WO2018066143A1 publication Critical patent/WO2018066143A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • H04N25/621Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels for the control of blooming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current

Definitions

  • the present invention relates to an optical sensor, a signal readout method thereof, a solid-state imaging device, and a signal readout method thereof.
  • optical sensors and solid-state imaging devices have increased dramatically with the advancement of science and technology and the spread of the Internet society.
  • high-sensitivity, high-speed, wide dynamic range, wide-wavelength-band compatible optical sensors and still image / moving image solid-state imaging devices are strongly demanded from the market as indispensable items for developing new markets.
  • optical sensors and solid-state imaging devices with a wider dynamic range are eagerly desired in the medical / medicine / health / nursing care market, the life science market, the disaster prevention / crime prevention market essential for the formation of a safe and secure society, and the like.
  • Patent Document 1 An example of an optical sensor / solid-state imaging device having a wide dynamic range is described in Patent Document 1, for example.
  • the optical sensor / solid-state imaging device described in Patent Document 1 certainly has a wider dynamic range than the conventional ones, but the expansion range of the dynamic range is on the high illuminance side and low The illuminance side is not out of the previous area. Therefore, the market response
  • required is unexplored. To that end, further development of the industry and the realization of a safer and more secure society remain major challenges in the international community.
  • Patent Document 2 We have already presented an optical sensor / solid-state imaging device for solving this problem (Patent Document 2).
  • optical device which means both, a transistor with an LDD (Lightly Doped Drain) structure and a transistor with a non-LDD structure (a transistor without an LDD structure) are mixed.
  • LDD Lightly Doped Drain
  • non-LDD structure a transistor without an LDD structure
  • the present inventors have found that there is a problem that the number of optical device mass production processes increases and the mass production process tends to be complicated, which may increase the manufacturing cost. Furthermore, it is understood that there is a concern that this problem may lead to the problem that it becomes difficult to ensure the uniformity and stability of the light sensing characteristics between pixels as the number of effective pixels increases and the pixel density increases. It was.
  • the word “LDD” is not limited to the drain (electrode) region, and the source (electrode) region / drain (electrode) region is not symmetrical because of the MOS transistor structure.
  • the electrode region may also be used. This is common in the semiconductor industry.
  • the present invention was made as a result of extensive research and development in view of the above points, and the main purpose of the present invention is that it can be mass-produced without increasing the manufacturing cost as compared with a normal mass-production process.
  • the object is to provide an optical sensor, a solid-state imaging device and a signal readout method thereof that greatly contribute to the development and realization of a safer and more secure society.
  • Another object of the present invention is to provide an optical sensor, a solid-state imaging device, and a signal readout method thereof having a wide dynamic range performance capable of being detected from one photon, which can be mass-produced in the same manner as a normal mass production process.
  • Still another object of the present invention is an optical sensor and a solid-state imaging device that can be mass-produced by a normal mass-production process and has a dynamic range from a one-photon light amount region to a high illuminance light amount region, and is compatible with a high sensitivity, high speed, and wide light wavelength band. And to provide a method for reading out the signals thereof.
  • Yet another object of the present invention is that it can be mass-produced by a normal mass-production process, and has a wide dynamic range performance that combines a high-sensitivity performance capable of one-photon detection and a sufficient high-saturation performance.
  • the present invention relates to an optical sensor using an LDD / MOS transistor instead of a non-LDD / MOS transistor for a transfer switch constituting the optical sensor described in Patent Document 2.
  • a sensor equivalent to at least the optical sensor described in Patent Document 2 can be obtained by setting a specific structure, size, and specific content of semiconductor impurities as will be described later. This is based on the finding that an optical sensor having performance can be mass-produced without increasing the manufacturing cost even when compared with a normal mass-production process.
  • a light receiving element a storage capacitor for storing charge
  • a transfer switch for transferring the charge generated by light input to the light receiving element to the storage capacitor, and a pixel signal output line, and reading a signal to the pixel signal output line
  • the route is connected
  • the storage capacitor is a floating diffusion (C FD ) capacitor and a lateral overflow storage (C LOFIC ) capacitor
  • the transfer switch is an LDD / MOS transistor
  • concentration (N D ) of the semiconductor impurity in the drain region of the LDD / MOS transistor and the concentration (N) of the semiconductor impurity in the diffusion region provided adjacent to the drain region are: 1 ⁇ N / N D ⁇ 100 (1) 0 ⁇ N ⁇ 1.0 ⁇ 10 20 cm- 3 (2)
  • the second pixel output signal charge-voltage conversion by coupling the C LOFIC capacity first pixel output signal charge-voltage conversion and the and C FD capacitance by C FD capacitance and
  • a plurality of pixel portions having a light receiving element, a storage capacitor for storing charge, and a transfer switch for transferring the charge generated by light input to the light receiving element to the storage capacitor are arranged in a plane,
  • the storage capacitors are a floating diffusion (C FD ) capacitor and a lateral overflow storage (C LOFIC ) capacitor
  • the transfer switch is an LDD / MOS transistor, and the concentration (N of semiconductor impurities in the drain region of the LDD / MOS transistor) D ) and the concentration (N) of the semiconductor impurity in the diffusion region provided adjacent to the drain region, 1 ⁇ N / N D ⁇ 100 (1) 0 ⁇ N ⁇ 1.0 ⁇ 10 20 cm -3
  • the pixel signal output line is connected to the pixel signal output line at a position downstream from the position where the last pixel part in the pixel part row of the
  • a signal readout path unit having a function of amplifying by selectively using a rate Have The signal readout path unit may couple the said floating diffusion (C FD) first pixel output signal charge-voltage conversion by capacitive floating diffusion (C FD) capacity and horizontal overflow storage (C LOFIC) Capacity And a second pixel output signal that has been subjected to charge-voltage conversion is input to the multi-pixel photosensor.
  • C FD floating diffusion
  • C LOFIC horizontal overflow storage
  • Each pixel unit has a light receiving element, a storage capacitor for storing charge, and a transfer switch for transferring the charge generated by light input to the light receiving element to the storage capacitor
  • the storage capacitor is a floating diffusion capacitor and a lateral overflow storage capacitor
  • the transfer switch is an LDD / MOS transistor
  • the concentration (N D ) of the semiconductor impurity in the drain region and the concentration (N) of the semiconductor impurity in the diffusion region provided adjacent to the drain region are: 1 ⁇ N / N D ⁇ 100 (1) 0 ⁇ N ⁇ 1.0 ⁇ 10 20 cm -3 (2)
  • Each pixel unit is connected to a pixel signal output line; A signal readout path connected to the pixel signal output line; Using an optical sensor comprising Charge of the amount of charge contributing to reading by the floating diffusion capacitor is converted into a charge voltage to form a first pixel output signal, and the floating diffusion capacitor and the lateral overflow storage capacitor are coupled to each other.
  • the charge is converted to a voltage to form a second pixel output signal, and the two pixel output signals are input to the signal readout path,
  • the signal reading method for an optical sensor wherein the first pixel output signal is amplified by a plurality of amplifiers including at least one amplifier having an amplification factor greater than 1 in the signal reading path.
  • the light receiving element (PD), the transfer switch (T), the overflow switch (S), and the reset switch (R) are connected in series in this order.
  • the transfer switch (T) and the transfer switch (T) The floating diffusion capacitor (C FD ) and the source follower type switch (SF) connected to the connection with the overflow switch (S), the overflow switch (S), and the reset switch (R) Horizontal overflow storage capacity (C LOFIC ) connected to the connection between The source follower type switch (SF) is a MOS transistor,
  • the transfer switch (T) includes a semiconductor impurity concentration (N D ) in a drain region and a semiconductor impurity concentration (N) in a diffusion region provided adjacent to the drain region.
  • a plurality of pixel portions The light receiving elements (PD) of the plurality of pixel portions are two-dimensionally arranged to form a pixel array, A pixel column output signal line in which the plurality of pixel portions are sequentially connected; Have A reading unit connected to the pixel column output signal line; Has, in said read unit, a first pixel output signal and the floating diffusion capacitance (C FD) and lateral overflow storage capacitor (C LOFIC) and which is the charge-voltage converted by the floating diffusion capacitance (C FD) A second pixel output signal that has been combined and subjected to charge-voltage conversion is input, In the imaging apparatus, the first pixel output signal is amplified by a plurality of amplifiers including at least one amplifier having an amplification factor greater than 1 in the signal readout path.
  • the light receiving element (PD), the transfer switch (T), the overflow switch (S), and the reset switch (R) are connected in series in this order.
  • the transfer switch (T) and the transfer switch (T) The floating diffusion capacitor (C FD ) and the source follower type switch (SF) connected to the connection with the overflow switch (S), the overflow switch (S), and the reset switch (R) Horizontal overflow storage capacity (C LOFIC ) connected to the connection between The source follower type switch (SF) is a MOS transistor,
  • the transfer switch (T) includes a semiconductor impurity concentration (N D ) in a drain region and a semiconductor impurity concentration (N) in a diffusion region provided adjacent to the drain region.
  • a plurality of pixel portions The light receiving elements (PD) of the plurality of pixel portions are two-dimensionally arranged to form a pixel array, A pixel column output signal line in which the plurality of pixel portions are sequentially connected; A reading unit connected to the pixel column output signal line; And an imaging device comprising: Charge of a charge amount contributing to reading by the floating diffusion capacitor is converted into a charge voltage to form a first pixel output signal, and the charge of the charge amount contributing to reading by combining the floating diffusion capacitor and the lateral overflow storage capacitor.
  • the first pixel output signal is amplified by a plurality of amplifiers including at least one amplifier having an amplification factor larger than 1 in the signal readout path.
  • a pixel portion having a photoelectric conversion function includes a storage capacitor for storing the photoelectrically converted charge and a transfer switch for transferring the charge to the storage capacitor.
  • the storage capacitor is a floating diffusion (C FD ) capacitor and a lateral overflow storage (C LOFIC ) capacitor
  • the transfer switch is an LDD / MOS transistor
  • concentration (N D ) of the semiconductor impurity in the drain region of the LDD / MOS transistor and the concentration (N) of the semiconductor impurity in the diffusion region provided adjacent to the drain region are: 1 ⁇ N / N D ⁇ 100 (1) 0 ⁇ N ⁇ 1.0 ⁇ 10 20 cm -3
  • a pixel signal output line connected to the pixel portion
  • (3) a signal readout path connected to the pixel signal output line Including signals read path, the second pixel output signal charge-voltage conversion by coupling the C LOFIC capacity first pixel output signal charge-voltage conversion and
  • the present invention can be mass-produced without increasing the manufacturing cost as compared with a normal mass-production process, and has a wide dynamic range performance from a one-photon light amount region to a high illuminance light amount region, and has high sensitivity, high speed, and wide light. It is possible to provide an optical sensor and a solid-state imaging device corresponding to a wavelength band and a driving method thereof, and can greatly contribute to further development of the industry and realization of a safer and safer society.
  • FIG. 1 is a circuit diagram showing an example of a preferred embodiment of a pixel circuit and a readout circuit for one column of a CMOS image sensor according to the present invention.
  • FIG. 2 is an equivalent circuit diagram showing the pixel circuit portion extracted from the circuit diagram shown in FIG.
  • FIG. 3A is a schematic cross-sectional view for explaining the structure of a normal MOSTr.
  • FIG. 3B is a schematic structural cutaway view for explaining the structure of the MOSTr according to the present invention.
  • FIG. 4A is a schematic cross-sectional view schematically showing how the width W of a depletion layer formed when a diffusion layer having a normal impurity concentration is provided.
  • FIG. 1 is a circuit diagram showing an example of a preferred embodiment of a pixel circuit and a readout circuit for one column of a CMOS image sensor according to the present invention.
  • FIG. 2 is an equivalent circuit diagram showing the pixel circuit portion extracted from the circuit diagram shown in FIG.
  • FIG. 3A is a schematic
  • FIG. 4B is a schematic cross-sectional view schematically showing how the width W of the depletion layer expands when a diffusion layer having a lower impurity concentration than usual is provided as in the present invention.
  • FIG. 5 is a schematic cross-sectional view for explaining the device structure layout in the case where the omission of LDD formation and the reduction of the diffusion layer concentration are applied to the device having the pixel circuit unit 101 shown in FIG.
  • FIG. 6 is a schematic structural diagram of the optical input sensor unit 500 manufactured by one of the preferable manufacturing processes.
  • FIG. 7 is a schematic explanatory conceptual diagram for explaining photoelectric conversion characteristics of the 1-1 signal, the 1-2 signal, and the second signal.
  • FIG. 5 is a schematic cross-sectional view for explaining the device structure layout in the case where the omission of LDD formation and the reduction of the diffusion layer concentration are applied to the device having the pixel circuit unit 101 shown in FIG.
  • FIG. 6 is a schematic structural diagram of the optical input sensor unit 500 manufactured by one of the preferable manufacturing processes
  • FIG. 8 is a graph showing the relationship between the number of noise electrons in terms of floating diffusion input and the erroneous read probability.
  • FIG. 9 is a graph showing the relationship between the number of input converted noise electrons and the charge voltage conversion gain.
  • FIG. 10 is a timing chart when reading out a signal of one pixel.
  • FIG. 11 is a flowchart for explaining the procedure for reading a signal of one pixel.
  • FIG. 11A is a flowchart for explaining another procedure when reading a signal of one pixel.
  • FIG. 11B is a flowchart for explaining yet another procedure for reading a signal of one pixel.
  • FIG. 12 shows an example of a preferred embodiment of the sensor unit when the CMOS image sensor according to the invention is applied to an image pickup apparatus.
  • FIG. 12A is a circuit diagram showing a modification of FIG.
  • FIG. 12B is a circuit diagram showing still another modification of FIG.
  • FIG. 13 is an overall block diagram schematically showing the entire sensor unit of the imaging apparatus shown in FIG.
  • FIG. 14A is a diagram illustrating an example of a schematic layout pattern of the pixel unit 101.
  • 14B is a schematic cross-sectional view when cut along a cross-sectional line A in FIG. 14A.
  • FIG. 14C is a schematic cross-sectional view taken along section line B in FIG. 14A.
  • FIG. 15 is a graph showing experimental results.
  • FIG. 1 shows a circuit diagram as an example (embodiment example 1) of a preferred embodiment showing a pixel circuit and a readout circuit for one column of a CMOS optical input sensor according to the present invention.
  • FIG. 1 illustrates the minimum necessary parts so that the description and the description are avoided, and the minimum necessary description is required so that the features of the present invention can be easily understood.
  • the optical sensor unit 100 in FIG. 1 includes a pixel unit 101 and a reading unit 102.
  • the pixel unit 101 and the reading unit 102 are electrically connected via a pixel column output signal line 103.
  • a current source 108 is provided below the pixel column output signal line 103.
  • the current source 108 is composed of, for example, a MOS transistor.
  • the equivalent circuit diagram of the pixel unit 101 is equivalent to the pixel equivalent circuit diagram of FIG.
  • the column circuit unit 102 includes three column readout units (10HG, 102LG, and 102N).
  • the first column reading unit 102HG for outputting the first-first signal 102S1 has a switch means (SW / AMPEN) 104HG for reading the first-first signal 102S1 from the upstream side, a high gain amplifier 105HG, and an analog memory circuit unit 106HG. Are arranged in this order and are electrically connected to the signal line 107HG.
  • SW / AMPEN switch means
  • the analog memory circuit 106HG includes a switch means (NS1H) 106HG-1 and a capacitor (N1H) 106HG-2 for the first-first signal 102S1, and a switch means (SS1H) 106HG-3 and a capacitor (S1H) 106HG-. 4 are electrically connected in series and connected to the signal line 107HG as shown in the figure.
  • the second column readout unit 102LG for outputting the first-second signal 102S2 is also provided with the switch means (SW / AMPEN) 104LG for reading the first-second signal 102S2, the low gain amplifier 105LG, and the analog memory circuit unit from the upstream side. It is arranged in the order of 106LG and is electrically connected to the signal line 107LG.
  • the analog memory circuit portion 106LG is electrically connected to a switch means (NS1) 106LG-1 and a capacitor (N1) 106LG-2, and a switch means (SS1) 106LG-3 and a capacitor (S1) 106LG-4, respectively. They are connected in series and connected to the signal line 107LG as shown in the figure.
  • the third column readout unit 102N that outputs the second signal 102SN is different from the first column readout unit 102HG and the second column readout unit 102LG in that the analog memory circuit unit 106N outputs a pixel output via the signal line 107N1. It is electrically connected directly to the signal line 103.
  • the analog memory circuit portion 106N is electrically connected to a switch means (NS2) 106N-1 and a capacitor (N2) 106N-2, and a switch means (SS2) 106N-3 and a capacitor (S2) 106N-4, respectively. They are connected in series and connected to the signal line 107N2 as shown in the figure.
  • the readout unit 102 is common to each pixel unit in one column.
  • the two gain amplifiers (105HG, 105LG) arranged in the reading unit 102 are used when reading the first signal with high sensitivity from the pixel unit 101, and the amplitude is increased to reduce the subsequent noise 1-1.
  • the signal (102S1) and the 1-2 signal (102S2) having a signal amplitude amplified by an amplification factor of “1” or less, it is possible to obtain an ultrahigh sensitivity signal and a high sensitivity signal.
  • the highly saturated second signal output from the pixel unit 101 is input to a signal readout path unit directly connected to the pixel signal output line.
  • a high saturation signal (“second signal (102SN)”) is read from the signal readout path section with the signal amplitude of the input second signal.
  • the ultra-sensitive pixel 1-1 signal (102S1) is used for extremely low illuminance pixels
  • the second signal (102SN) is used for pixels with high illuminance
  • the first signal is used for pixels with intermediate illuminance.
  • a video (or imaging) signal can be linearly obtained from a very low illuminance region to a high illuminance using a single exposure period.
  • FIG. 1 the English characters in “()” before the number indicate the following technical meaning.
  • AMPEN... "1-1 signal” and “1-2 signal” read switch NS1H ... "1-1 BG signal” sampling switch SS1H ... “1-1 optical signal” Sampling switch N1H... “1-1BG signal” hold capacitor S1H... “1-1 optical signal” hold capacitor NS1... “1-2BG signal” sampling Switch SS1... “1-2 optical signal” sampling switch N1... “1-2BG signal” hold capacitor S1.
  • FIG. 2 the features of the present invention, FIGS. 3A, 3B, 4A, 4B, the further described with reference to FIG.
  • FIG. 2 shows the pixel unit 101 in the optical sensor unit 100 shown in FIG.
  • the pixel portion 101 is described as a photodiode (PD) 201, a transfer switch means (T) 202, a floating diffusion capacitor (C FD ) (non-fixed floating capacitance: F FD capacitor) that performs charge-voltage conversion. 203, horizontal overflow storage capacitor (C LOFIC ) (Lateral Overflow Integration Capacitor) 204, overflow switch means (S) 205, reset switch means (R) 206, pixel selection switch means (X) 207, source The follower type switch means (SF) 208 is constituted.
  • the overflow switch means (S) 205 is an overflow switch that combines or divides the potentials of the C FD capacitor 203 and the horizontal overflow storage capacitor (C LOFIC ) 204.
  • V R means a reset voltage
  • V DD means a power supply voltage
  • the pixel unit 101 since the pixel unit 101 includes the C LOFIC capacitor 204, the pixel unit 101 may be hereinafter referred to as a “LOFIC pixel unit”.
  • Each switch means in the pixel unit 101 in the present invention is preferably composed of a FET (Field Effect Transistor) such as a MOS (Metal Oxide Semiconductor) transistor (MOSTr).
  • FET Field Effect Transistor
  • MOS Metal Oxide Semiconductor
  • transfer switch means (T) 202 overflow switch means (S) 205, reset switch means (R) 206, pixel selection switch means (X) 207, and source follower switch means (SF) 208
  • Each switch means is composed of a MOS Tr.
  • the basic signal path in the present invention is as follows.
  • the light input to the PD 201, the photocharge generated, the generated photoelectric charges, through the SF208 are charge-voltage conversion respectively of the total volume of the C FD 203 and C FD 203 and C LOFIC 204 analog
  • the data is read out to the corresponding analog memory circuit unit in the memory circuit units 106HG, 106LG, and 106N, and held as a voltage signal in the analog memory of the analog memory circuit unit. Thereafter, the voltage signal is capacity-divided from the analog memory, read out of the device via an output buffer (not shown), and converted into a digital signal by an ADC (Analog-Digital Converter) (not shown).
  • ADC Analog-Digital Converter
  • the noise is superimposed and the S / N is reduced as the stage after the readout is reduced. Therefore, in the present invention, the charge voltage conversion gain in the stage before the readout path as much as possible, particularly in the CFD 203, is obtained. By increasing the gain as much as possible, the noise in the later stage of the readout path is relatively reduced, and the S / N is increased.
  • the device is actually designed and manufactured as an input sensor device, the sensitivity characteristic of the sensor is measured, the result is analyzed and examined, and the result of the examination is designed and manufactured.
  • the optimization of the (gate) overlap capacitance (200-1, 200-2, 200-3) indicated by the broken line ⁇ in FIG. It was made based on the finding that the object of the invention was achieved.
  • the gate / substrate parasitic capacitance (3) formed in 505, the channel capacitance (4), and the gate overlap capacitance (5) formed in the FD diffusion layer portion and the pixel SF portion can be roughly divided.
  • the wiring parasitic capacitance (1) reduces the wiring distance by arranging the FD diffusion layer portion 504 and the pixel SF portion 505 (FIG. 5) close to each other. By arranging adjacent metal wirings as far apart as possible, it can be reduced to some extent.
  • the size of the pixel portion 101 hereinafter also referred to as “pixel size”
  • the gate / substrate parasitic capacitance (3) can be reduced by applying a special process “Well in Well” to the pixel SF portion 505.
  • a special process “Well in Well” to the pixel SF portion 505.
  • the process becomes complicated and the pixel size becomes large. Therefore, when the “Well in Well” process is adopted, it is not appropriate to reduce the pixel size and reduce the capacity.
  • the channel capacity (4) requires a channel for allowing a constant current to flow through the pixel SF section 505, it cannot be expected to reduce the capacity.
  • the channel capacity (4) can be suppressed by adopting the “Well in Well” process as described above to eliminate the substrate bias effect and set the gain of the source follower type switch means 208 to “1”.
  • the adoption of the “Well in Well” process is not suitable for both pixel size dyne and low capacity.
  • the PN junction capacitance (2) and the gate overlap capacitance (3) are capacitances that cannot be expected to be reduced by devising the device layout or the reading method. Change the process to reduce it. That is, in the present invention, the capacity reduction of the CFD 203 is optimized by drastically changing the conventional method as described below for the process of forming the gate overlap capacitor (5) and its conditions. .
  • FIG. 3A is a schematic structural cutaway view for explaining the structures of the MOSTrs 301A1 and 301A2 having the LDD structure according to the present invention.
  • FIG. 3B is a schematic structural sectional view for explaining the structures of the non-LDD-structured MOSTrs 301B1 and 301B2 according to the invention of the previous application (Patent Document 2) by the present inventors.
  • the LDD 305 is first formed between the formation of the gate electrodes 303A and 303B and the formation of the sidewalls 304A, 304B1, and 304B2. Next, the sidewalls 304A, 304B1, and 304B2 are formed, and the diffusion layer 302 is formed in this order.
  • the reason why the LDD 305 is provided is to prevent hot carrier deterioration of the formed MOSTr. That is, some of the electrons traveling from the source to the drain are accelerated by a high electric field in the vicinity of the drain and become hot carriers having high energy. Hot carriers generate high-energy electrons and holes by impact ionization, generate defects near the interface between the gate insulating film and the semiconductor, or are injected into the gate insulating film. It is captured by the defect and becomes a fixed charge, which causes deterioration of the transistor electrical characteristics over time. The generation of hot carriers is remarkable in a transistor having a channel length of 1 ⁇ m or less, which is a big problem in miniaturization of a general logic LSI.
  • the LDD 305 is composed of a diffusion layer having a low concentration for relaxing the electric field in the vicinity of the drain.
  • This type of transistor is generally referred to as an “LDD transistor”.
  • a transistor having no LDD structure may be referred to as a “non-LDD structure transistor”.
  • portions of the diffusion layer portion (the portions of the diffusion layer 302 and the LDD 305) formed by the LDD 305 protruding toward the gate electrodes 303A and 303B (portions where the LDD 305 protrudes on both sides of the diffusion layer 302 are shown. ) Is a factor that increases the gate overlap capacity.
  • Patent Document 2 the above-mentioned prior application
  • the formation of the LDD 305 can be omitted, which can be one of the factors for greatly reducing the overlap capacity. Furthermore, even if the formation of the LDD 305 is omitted, it has been found through trial manufacture and measurement experiments of a transistor that the influence of the hot carriers described above is sufficiently small under the operating voltage conditions of the optical sensor and does not cause a problem.
  • FIG. 3B schematically shows the capacitance relationship of the gate overlap portion when the formation of the LDD 305 is omitted, as in FIG. 3A.
  • the drain or source of the transistor (301B1 or 301B2) is carried by the end region of the diffusion layer 302.
  • the PN junction capacitance is determined by the width of the depletion layer formed across the p-epi layer 300 and the n + layer (diffusion layer) 302. That is, the larger the width W of the depletion layer, the smaller the capacity of the PN junction.
  • the width W of the depletion layer is determined by the impurity concentration of the p-epi layer 300 and the n + layer 302.
  • the width W of the depletion layer is increased and the PN junction capacitance is reduced.
  • FIG. 4A shows the width W of the depletion layer when the diffusion layer 402A having a normal impurity concentration is provided
  • FIG. 4B shows the width W of the depletion layer when the diffusion layer 402B having a lower impurity concentration than usual is provided. The extent of spread was shown schematically.
  • FIG. 4A is a schematic cross-sectional view schematically showing how the width W of the depletion layer formed when a diffusion layer having a normal impurity concentration is provided in the LDD / MOSTr.
  • FIG. 4B is a schematic structural cross-sectional view schematically showing how the width W of the depletion layer expands when a diffusion layer having a lower impurity concentration than usual is provided in the LDD / MOS Tr as in the present invention. is there.
  • FIG. 4A shows a part of the structure of the MOSTr 401A1 and the MOSTr 401A2.
  • the diffusion layer 402A has both the drain region of the MOSTr 401A1 (left side portion of the diffusion layer 402A in the drawing) and the source region of the MOSTr 401A2 (right side portion of the diffusion layer 402A in the drawing).
  • the width WA of the depletion layer becomes small as shown in FIG. 4A, and when the impurity concentration in the diffusion layer 402B is low as shown in FIG. In addition, the width WB of the depletion layer increases.
  • Reducing the impurity concentration in the n + layer (diffusion layer) has the effect of reducing the PN junction capacitance because the depletion layer width of the PN junction can be increased. Further, since the distance between the charge in the n + layer and the gate electrode is increased, there is an effect of reducing the gate overlap capacitance as in the case where the LDD formation is omitted.
  • FIG. 5 shows one preferred example of the embodiment of the present invention when the LDD and diffusion layer concentration reduction are applied.
  • FIG. 5 shows a device structure layout when the LDD and diffusion layer concentration reduction are applied in forming the device structure of the optical input sensor unit 500 having a circuit configuration equivalent to the circuit configuration of the pixel circuit unit 101 shown in FIG. It is a typical structure cutaway view for explaining.
  • the extraction electrode (shown by a solid line) is described as a virtual electrode. 1 and 2 are denoted by reference numerals in FIGS. 1 and 2.
  • the optical input sensor unit 500 epitaxially grows a p-type silicon layer 500-2 on an n-type silicon (n-Si) substrate 500-1, and uses the p-type silicon layer 500-2 to produce the structure shown in FIG. Based on the circuit design shown, each electronic element such as a light receiving diode, a transistor, and a capacitor and a wiring are created.
  • the n-type impurity is doped at each concentration.
  • the doping concentration of n-type impurities in each region is (N - type region concentration) ⁇ (n-type region concentration) ⁇ (n + -type region concentration) (1) Are in a relationship.
  • the doping concentration of p-type impurities in each region is (P-type region concentration) ⁇ (p + -type region concentration) (2) Are in a relationship.
  • Numerals 501-1, 501-2, and 501-3 indicate n-type regions in which the doping amount of impurities is reduced compared to the prior art in order to form a low-capacity FD.
  • n + -type regions 502-1, 502-2, 502-3, 502-4, and 502-5 are doped with an impurity amount at a high concentration as before.
  • LDD n-type regions 503-1, 503-2, 503-3, 503-4, 503-5, 503-6, and 503-7.
  • the n-type regions (503-1 to 503-7) and the n + -type regions (502-1 to 502-5) may be referred to as “diffusion layers”.
  • the element isolation regions 506-1, 506-2, and 506- each having the necessary performance characteristics are included in the corresponding electronic elements that contribute to the realization of higher device performance by ensuring element isolation. 3,506-4 is provided.
  • P-type buried regions 507-1, 507-2, and 507-3 are provided at predetermined positions of the p-type silicon layer 500-2.
  • a photodiode (PD) 201 has a diode structure in which an n ⁇ region 508 and a p + region 509 are stacked.
  • the n ⁇ type region 511 in the lateral overflow storage capacity (C LOFIC ) 204 and the n ⁇ type region 512 in the source follower type switch means (SF) 208 are desirably provided for the following technical reasons. is there.
  • C LOFIC lateral overflow storage capacitor
  • SF source follower type switching means
  • the channel is formed widely in the Si depth direction, so that it becomes difficult for electrons to be trapped in the trap in the gate insulating film, and the influence of trapped electrons and trapped charges can be reduced. As a result, low low frequency noise can be obtained.
  • the photodiode (PD) 201 can be changed to a phototransistor.
  • a wire ⁇ T is connected to the electrode 202-1 of the transfer switch means T202, a wire ⁇ S is connected to the electrode 205-1 of the overflow switch means (S) 205, and the reset switch means (R) 206
  • a wiring ⁇ R is connected to the electrode 206-1, and a wiring ⁇ X is connected to the electrode 207-1 of the pixel selection switch means (X) 207.
  • n + -type region 502-1 functions as a drain of the reset switch means (R) 206, which is connected to a wiring V R giving reset voltage.
  • the electrode 208-1 of the source follower switch means (SF) 208 is electrically connected to the n-type region 501-1.
  • the electrode 204-1 of the lateral overflow storage capacitor (C LOFIC ) 204 functions as one electrode of the capacitor (C LOFIC ) 204 and is electrically connected to the n-type region 501-2.
  • n + type regions 502-2 and 502-3 are electrically directly connected to the wiring GND.
  • n + -type region 502-5 is electrically connected directly to the pixel output signal line 103.
  • Each switch means described in FIG. 5 is composed of MOSTr.
  • the concentration (ND) of the semiconductor impurity in the drain region and the concentration (N) of the semiconductor impurity in the diffusion region provided adjacent to the drain region are: 1 ⁇ N / N D ⁇ 100 (1) 0 ⁇ N ⁇ 1.0 ⁇ 10 20 cm -3 (2) It is that there is a relationship.
  • the formula (1) is preferably 1 ⁇ N / N D ⁇ 50, more preferably 1 ⁇ N / N D ⁇ 10.
  • Formula (2) is preferably 1.0 ⁇ 10 10 cm ⁇ 3 ⁇ N ⁇ 5.0 ⁇ 10 19 cm ⁇ 3 , more preferably 5.0 ⁇ 10 10 cm ⁇ 3 ⁇ N ⁇ 5.0 ⁇ 10 19 cm ⁇ 3 . It is desirable.
  • any one of the overflow switch means (S) and the source follower type switch means (SF) has the above relationship. More preferably, all of the transfer switch means (T), the overflow switch means (S), and the source follower type switch means (SF) have the above relationship.
  • the degree of reduction in the impurity concentration of the n-type regions 501-1 and 501-3 depends on the impurity content in the conventional practical device (impurity content of the n + -type regions 502-1 to 502-5). On the other hand, it is usually desirable to reduce 50%, preferably 70%, more preferably 90%.
  • it is desirably 1 ⁇ 10 20 pieces / cm 3 or less, preferably 6 ⁇ 10 19 pieces / cm 3 or less, and more preferably 2 ⁇ 10 19 pieces / cm 3 or less.
  • the capacitance of the capacitor (C FD ) 203 is effectively reduced by reducing the impurity concentration of the n-type regions 501-1 and 501-3.
  • a reduction in the impurity concentration of the n-type regions 502-1, 502-4, and 502-5 causes an increase in series resistance.
  • the dynamic range is reduced by narrowing the pixel signal output voltage range, the gain of the source follower circuit is reduced, the S / N ratio is reduced, or shading is caused.
  • the impurity concentrations of -1, 502-4, and 502-5 are less than those of conventional practical elements.
  • the impurity concentration of the n-type regions 501-1 and 501-3 is preferably 50% or less than the impurity concentration of the n + -type regions 502-1 to 502-5. Is preferable.
  • the capacity (C FD ) 203 (FIG. 2) is reduced, and both high sensitivity characteristics and high saturation characteristics of one-photon detection are achieved, and a wide dynamic range is achieved. It is possible to provide a highly sensitive image sensor.
  • the transfer switch means (T) 202, the overflow switch means (S) 205, and the reset switch means (R) 206 are respectively used for transferring charges accumulated in the photodiode (PD) 201 and for transferring the photodiode (PD) 201. It is used only for resetting the capacity of the capacity and capacity (C FD ) 203 and the capacity of the capacity (C LOFIC ) 204 (total number of capacity is about 10 fF ).
  • the LDD is provided in the source part of the MOS transistor as the switch means 208 to prevent the gain from being lowered.
  • the following process chart shows the main processes of the manufacturing process.
  • Steps (12) and (13) are steps for reducing the capacity of the capacity (C FD ) 203.
  • Reference numerals 605-1 to 605-2 are wiring interlayer insulation layers
  • reference numerals 606-1 to 606-3 are contact electrodes
  • reference numerals 607-1 to 607-2 are metal wirings
  • Reference numeral 4 denotes an LDD
  • reference numerals 609-1 and 609-2 denote diffusion layers.
  • CMOS image sensor solid-state imaging device
  • the charge amount (charge signal) accumulated in the capacitor (C FD ) 203 having a small capacitance value is converted into a voltage signal corresponding to the corresponding voltage value, and the first signal (A1-1) from the pixel portion 101 is converted. Is output as
  • either the switch means 104HG or the switch means 104LG is ON. And input to either the first column reading unit 102HG or the first column reading unit 102LG.
  • the switch means 104HG is turned on. , Input to the first column reading unit 102HG.
  • the input first signal (A1-1) is amplified at a gain exceeding “1” by the high gain amplifier 105HG and temporarily stored in the analog memory circuit unit 106HG as an amplified signal AM1. Thereafter, the first-first signal (102S1) corresponding to the amplified signal AM1 is read from the first column reading unit 102HG.
  • the switch means 104LG When the output first signal (A1-1) is less than or equal to a predetermined value (in the case of a high sensitivity light receiving signal under low illuminance), the switch means 104LG is turned on, It is input to the double-row reading unit 102LG.
  • the input first signal (A1-1) is amplified by the low gain amplifier 105LG at an amplification factor of “1” or less and temporarily stored in the analog memory circuit unit 106LG as an amplified signal AM2. Thereafter, the first-second signal (102S2) corresponding to the amplified signal AM2 is read from the second column reading unit 102LG.
  • the amount of charge (charge signal) stored in a capacitor having a large capacitance value which is the sum of the capacitance of the floating diffusion capacitor (C FD ) 203 and the capacitance of the lateral overflow storage capacitor (C LOFIC ) 204, corresponds. It is converted into a voltage signal corresponding to the voltage value, and is output from the pixel unit 101 as the second signal (A1-2).
  • the output second signal (A1-2) is input to the third column reading unit 102N.
  • the input second signal (A1-2) is temporarily stored in the analog memory circuit unit 106N. Thereafter, a second signal (102SN) corresponding to the accumulated second signal (A1-2) is read from the third column reading unit 102N.
  • the readout signal from the readout unit 102 is read by sequentially selecting columns by a scanning circuit (not shown) installed in the horizontal direction.
  • an ADC (A / D conversion means) may be provided in each column reading unit, and each signal may be subjected to analog-digital conversion for each column in the device chip, and the digital signal may be read out of the device chip.
  • the first signal (A1-1) is a signal obtained in a very small amount of irradiation light amount range (ultra-high sensitivity light-receiving signal under extremely low illuminance), or the very small amount of irradiation.
  • the amplification factor to be amplified differs depending on whether the signal is obtained in the irradiation light amount region that exceeds the light amount in the light amount region (high sensitivity light reception signal under low illuminance).
  • the reference for switching the amplification factor can be appropriately determined as desired according to the signal level of the first signal (A1-1).
  • the gain value (amplification factor) larger than 1 is preferably 16 times the gain value.
  • the gain of the high gain amplifier 105HG is 16 times, and the gain of the low gain amplifier 105LG is 1 time.
  • the signal / noise ratio when combining the 1-1 signal (102S1) and the 1-2 signal (102S2) is the same for both the 1-1 signal (102S1) and the 1-2 signal (102S2). If the difference between the amplification factors of the high gain amplifier 105HG and the low gain amplifier 105LG is kept within a certain range in order to make it equal to or greater than a certain value, the signal amplification factor of the high gain amplifier 105HG is determined by a circuit downstream of the reading unit 102. A higher value is desirable in order to reduce the influence of generated noise. In the present invention, it is desirable that the amplification factor is larger than “1”.
  • the first signal 1-12 (102S1) having the highest sensitivity, the second signal 1-2 (102S2) having the second highest sensitivity, and the second signal 102N having the higher sensitivity are synthesized.
  • an imaging signal in a wide dynamic range can be obtained in one exposure period.
  • a signal obtained by combining “1-1 signal (102S1)”, “1-2 signal (102S2)”, and “second signal (102N)” is “imaging signal”, and the “imaging signal” is “Image signal” can be obtained in a wide range from a signal from a dark pixel of about 1 photon to a signal from a pixel with high illuminance in one exposure period. It is done.
  • FIGS. 7 and 8 are diagrams for conceptually explaining this point.
  • FIG. 7 is a schematic explanatory conceptual diagram for explaining the photoelectric conversion characteristics of the 1-1 signal (102S1), the 1-2 signal (102S2), and the second signal (102N).
  • FIG. 8 is a graph showing the relationship between the number of noise electrons converted to floating diffusion input and the erroneous read probability.
  • the erroneous read probability can be made smaller than 5%, and the signal can be read with accuracy of one photon without any problem. Furthermore, it has also been found that when the number of input converted noise electrons is preferably 0.20 or less, the erroneous read probability can be made smaller than 1%.
  • FIG. 9 is a graph showing the relationship between the number of input converted noise electrons and the charge voltage conversion gain.
  • the pixel signal output method of the device according to the present invention described below is a pixel signal output method by a source follower circuit including a source follower type switch (SF) 208 and a column current source 108.
  • SF source follower type switch
  • the pixel signal output method is not limited to this.
  • the pixel output line 103 is reset and then floated, and the source follower type switch (SF) is caused by a capacitive load parasitic on the pixel output line 103.
  • SF source follower type switch
  • a stray capacitance load reading method that drives and outputs a pixel signal may be used.
  • FIG. 10 is a timing chart when reading out a signal of one pixel.
  • the transfer switch means (T) 202 is turned ON / OFF (pulse ST1) and then turned ON / OFF (pulse ST2), the next ON / OFF is switched from the first ON / OFF OFF point.
  • the period up to the ON point is the accumulation period (ST).
  • T1 to T5 are timings of signal sampling to the analog memory.
  • the signal sampling to analog memory starts when the corresponding pulse is ON.
  • the overflow switch means (S) 205 and the pixel selection switch means (X) 207 are kept ON for a predetermined time (t1, t2)
  • the reset switch means (R) 206 the transfer switch means ( T) 202 is sequentially turned ON, and the ON state is maintained for each predetermined time (t3, t4).
  • the pixel selection switch means (X) 207 is turned off after the overflow switch means (S) 205 is turned off.
  • the reset switch means (R) 206 and the transfer switch means (T) 202 are turned ON / OFF (pulse S R1 , pulse S T1 ).
  • the ON / OFF timing of the transfer switch means (T) 202 is taken within the ON / OFF period (“predetermined time (t3)”) of the reset switch means (R) 206.
  • the switch means (NS2) 106N-1 is turned on for a predetermined time (t5). . After the predetermined time (t5) has elapsed, the switch means (NS2) 106N-1 is turned off.
  • This switch means (NS2) 106N-1 is turned off before the overflow switch means (S) 205 is turned off. Thereafter, the pixel selection switch means (X) 207 is turned off.
  • the switch means (NS1H) 106HG-1 and the switch means (NS1) 106LG-1 are simultaneously turned ON / OFF (pulse SHG1, pulse SLG1).
  • the transfer switch means (T) 202 is turned ON / OFF (pulse ST2), and then the switch means (SS1H) 106HG-3 and the switch means (SS1) 106LG-3 are simultaneously turned ON.
  • the overflow switch means (S) 205 is turned on (pulse SS2), and then the switch means (SS2) 106N-3 is turned on. Turn ON / OFF (pulse SSS2).
  • the transfer switch means (T) 202 and the reset switch means (R) 206 are sequentially turned OFF (pulse ST3, pulse SR2 )become.
  • the switch means (NS2) 106N-1 is turned ON / OFF (pulse SNS22).
  • the overflow switch means (S) 205 is turned off (pulse SS2).
  • the photocharge amount exceeding the saturation charge amount of the PD 201 is generated in the PD 201 within the accumulation period (ST)
  • the photo charge exceeds the potential barrier of the transfer switch means (T) 202 from the PD 201 to the capacitance.
  • the capacitance (C FD) light amount of charge exceeding the saturation charge amount of 203 is overflowed into the capacitance (C FD) 203, photocharge potential barrier capacitance (C FD) 203 from the switch means (S) 205 And overflow to the storage capacity (C LOFIC ) 204.
  • the pixel is coupled to the column output line 103, and the following signals are sequentially output.
  • the switch means (SW / AMPEN) 104HG and the switch means (SW / AMPEN) 104LG are turned ON.
  • the switch means (NS1H) 106HG-1 and the switch means (NS1) 106LG-1 the ON ⁇ OFF (pulse S HG1, pulse S LG1) by, reading the 1-1BG signal, a first 1-2BG signal respectively,
  • the respective signals are held in the corresponding capacitor (N1H) 106HG-2 and capacitor (N1) 106LG-2.
  • the 1-1 signal and the 1-2 signal are signals corresponding to the reset noise of the capacitor (C FD ) 203, the threshold variation of the switch means (SF) 208, and the offset voltage of the gain amplifier 105HG and the gain 105LG. (Noise signal) is included.
  • the transfer switch means (T) 202 is turned ON / OFF (pulse ST2), and the charge (also referred to as “photo charge”) generated in the PD 201 by receiving light is transferred to the floating diffusion capacitor (C FD ). Complete transfer to 203.
  • the switch means (SS1H) 106HG-3 and the switch means (SS1) 106LG-3 are turned ON / OFF (pulse SHG3, pulse SLG3),
  • the first optical signal 1-1 and the first optical signal 1-2 are read out and held in the corresponding capacitor (S1H) 106HG-4 and capacitor (S1) 106LG-4, respectively.
  • This signal read end timing T3 is when the switch means (SS1H) 106HG-3 and the switch means (SS1) 106LG-3 are OFF.
  • the signals generated in response to the above are added, and the interphase double sampling processing is performed in the subsequent circuit, that is, the 1-1BG signal is subtracted from the 1-1 optical signal, and the 1-2BG from the 1-2 optical signal. By subtracting the signal, only the signal generated according to the amount of photocharge is obtained.
  • a gain amplifier having a correlated double sampling function may be used as the gain amplifiers 105HG and 105LG.
  • the switch means (SW / AMPEN) 104HG and the switch means (SW / AMPEN) 104LG is turned off to make gain amplifiers 105HG and 105LG inactive.
  • the switch means (S) 205 is turned on to couple the potentials of the capacitor (C FD ) 203 and the storage capacitor (C LOFIC ) 204.
  • the charge of the amount of charge accumulated in the storage capacitor (C LOFIC ) 204 and the charge of the amount of charge transferred to the capacitor (C FD ) 203 are accumulated via the switch means (S) 205.
  • the charge voltage is converted by the total capacity of the storage capacitor (C LOFIC ) 204 and the capacitor (C FD ) 203.
  • an operation of turning ON / OFF the transfer switch means (T) 202 while the switch means (S) 205 is ON may be inserted.
  • the switch means (SS2) 106N-3 is turned ON / OFF (pulse SSS2) during the period (t1) in which the switch means (S) 205 is ON, thereby converting the second optical signal into the capacity (S2).
  • the switch means (R) 206 is turned on to start resetting the storage capacitor (C LOFIC ) 204 and the capacitor (C FD ) 203.
  • the transfer switch means (T) 205 is turned on to start resetting the PD 201.
  • the switch means (R) 206 is turned OFF to complete the resetting of the storage capacitor (C LOFIC ) 204 and the capacitor (C FD ) 203.
  • reset noise is captured in each of the storage capacitor (C LOFIC ) 204 and the capacitor (C FD ) 203, but it can be removed as described above to obtain only a signal corresponding to the amount of received light.
  • the switch means (NS2) 106N-1 is turned ON / OFF (pulse S NS22 ) to read and hold the second BG signal in the capacitor (N2) 106N-2.
  • the switch means (S) 205 is turned off to decouple the potentials of the storage capacitor (C LOFIC ) 204 and the capacitor (C FD ) 203.
  • the switch means (X) 207 is turned off, the pixel is disconnected from the output line, and the reading period of the pixel in another row starts.
  • FIG. 11 is a flowchart for explaining a procedure in the case of reading (imaging) a signal of one pixel in the example of FIG. 1 or FIG.
  • the procedure shown in FIG. 11 is executed by a control circuit (not shown) that is operated by a computer program.
  • step 801 When imaging is started (step 801), it is determined whether or not signal output is ready (step 802). If it is before preparation for signal output, the process proceeds to step 803 for obtaining photoelectric conversion characteristics of the first-first signal 102S1, the first-second signal 102S2, and the second signal 102N. When the acquisition of photoelectric conversion characteristics of each signal is completed, the process proceeds to step 804. If it is not before preparation of signal output in step 80, the process proceeds to step 804. In step 804, it is determined whether or not acquisition of a pixel signal is started. The acquired pixel signal from which acquisition of the pixel signal is started is accumulated in step 805. If the pixel signal acquisition is not started, the process returns to step 804 again to determine whether the pixel signal acquisition is started. Each signal accumulated in step 804 (1-1st signal 102S1, 1-2 signal 102S2, second signal 102N) is output in step 806 for transfer to the next stage circuit.
  • a signal representing the illuminance on the imaging surface is derived from the combination of outputs of the 1-1 signal 102S1, the 1-2 signal 102S2, and the second signal 102N (step 807). Thereafter, the derived signal is output for transfer to a predetermined circuit (step 808), and a series of reading operations is completed (step 809).
  • the noise voltage in terms of floating diffusion input could be reduced to 60 ⁇ V.
  • the number of input conversion noise electrons could be 0.26, and the signal could be read with accuracy for each photon without any problem.
  • the number of input conversion noise electrons could be 0.20.
  • LDD n-type region
  • the ion implantation process for implanting n-type impurities at a high dose of the order of 10 15 cm ⁇ 2 after the sidewall formation is changed to reduce the dose of n-type impurities to 6 ⁇ 10 14 cm ⁇ 2 , thereby reducing the predetermined n
  • the concentration of the type diffusion layer (n-type regions 501-1, 501-2, and 501-3) was reduced.
  • the floating diffusion capacitance can be 0.5 fF
  • the charge-voltage conversion gain can be 320 ⁇ V / e ⁇
  • the number of input conversion noise electrons can be 0.19, with the accuracy of one photon.
  • the signal could be read out.
  • synthesizing the 1-1 signal, the 1-2 signal, and the 2nd signal it was possible to obtain an imaging signal linearly from 1 electron to 74000 electrons in one exposure period.
  • FIG. 12 and FIG. 13 show an example of a preferred embodiment when the present invention is applied to an imaging apparatus.
  • the example of FIG. 12 is essentially the same as the example of FIG.
  • FIG. 12 shows an example of a preferred embodiment of the sensor unit 1200 when the CMOS image sensor according to the invention is applied to an imaging apparatus.
  • N pixel circuits in the first column and a readout circuit for one column are shown as a circuit diagram.
  • the pixel circuit columns are provided in M columns as necessary.
  • a readout circuit is also provided for each pixel circuit column.
  • a readout circuit may be provided for each of the plurality of pixel circuit columns. In this case, while one pixel circuit row of the plurality of pixel circuit rows is in a read operation, the pixel signal is not transferred between the other pixel circuit rows and the read circuit by transfer ON-OFF means. Is done.
  • FIG. 12 shows a column pixel circuit unit 1200-1 in the first column and a column circuit unit 102-1 in the first column.
  • N pixel (circuit) sections (101-1 to 101-N) are arranged as illustrated, and each of the pixel (circuit) sections (101-1 to 101-N) is arranged.
  • the current source 108-1 is connected downstream of the pixel column signal line 103-1, as in the case of FIG.
  • the column circuit section 102-1 includes a first column readout circuit 102HG-1 having a high gain amplifier, a second column readout circuit 102LG-1 having a low gain amplifier, and a third column readout.
  • the circuit 102N is configured.
  • Each of the column readout circuits (102HG-1, 102LG-1, 102N) is provided with an analog memory circuit (not shown) as in the case of FIG.
  • the signal reading method in the case of FIG. 12 is the same as that described above with reference to FIG. 1 except that the reading is repeated N times.
  • FIG. 13 is a general block diagram schematically showing the entire sensor unit of the example of the imaging apparatus shown in FIG.
  • the sensor unit 1300 includes “N ⁇ M” pixels having the pixel circuit unit (corresponding to one pixel) 101 shown in FIG. 1, a two-dimensionally arranged pixel array 1301, a vertical (row) shift register unit 1302, a horizontal A (column) shift register unit 1303 is provided.
  • a second signal analog memory section 1309 is provided.
  • a 16 ⁇ amplifier unit 1306, a 1-1st signal analog memory unit 1307, and a second signal analog memory unit 1309 are provided. Between them, a 1 ⁇ amplifier array section 1308 is provided.
  • the 16 ⁇ amplifier array unit 1306 employs an amplifier with a 16 ⁇ amplification factor as a high gain amplifier
  • the 1 ⁇ amplifier sequence unit 1308 employs an amplifier with 1 ⁇ amplification factor as a low gain amplifier.
  • the final stage buffer 1311 is a buffer for outputting the holding signal of the analog memory in the column sequentially selected by the horizontal shift register to the outside of the chip with low output impedance.
  • FIG. 12A and 12B the numbering of FIG. 12 is used as it is for the means equivalent to the means described in FIG.
  • FIG. 12A shows a first modification of FIG.
  • the sensor unit 1200A shown in FIG. 12A has the same configuration as the sensor unit 1200 shown in FIG. 12 except for the column circuit unit 102-1A in the first column, the gain selection unit 1201, and the gain switching unit 1202. Therefore, the same numbering is used for the same constituent elements as the sensor unit 1200 in the sensor unit 1200A. Hereinafter, only the difference between the sensor unit 1200A and the sensor unit 1200 will be described.
  • the column circuit unit 102-1A includes a first column readout circuit unit 102H / LG-1 and a third column readout circuit unit 102N-1.
  • the first column readout circuit unit 102H / LG-1 includes a high gain amplifier (not shown) and a low gain amplifier (not shown) so that an input signal can be amplified by any amplifier. It has become.
  • an analog memory circuit unit (not shown) is provided as in the case of the sensor unit 1200 of FIG.
  • the analog memory circuit section is provided with memory means for signals amplified by a high gain amplifier and memory means for signals amplified by a low gain amplifier.
  • the first signal A1-1 output from the pixel unit 101-1 is a signal obtained in an extremely small amount of irradiation light amount region (ultra high under an extremely low illuminance).
  • the signal 1-1 is obtained in an irradiation light amount region having a light amount exceeding the light amount of the irradiation light amount region of the extremely small amount (102S1).
  • Signal high sensitivity light-receiving signal under low illuminance
  • the second signal A1-2 is the same as in the case of FIG.
  • step 1101A When imaging is started (step 1101A), it is determined whether or not signal output is ready (step 1102A). If it is before preparation for signal output, the steps for acquiring photoelectric conversion characteristics and setting the gain switching signal level of the 1-1 signal (102S1), 1-2 signal (102S2), and 2nd signal (102N) Move to 1103A. When the acquisition of the photoelectric conversion characteristics of each signal and the setting of the gain switching signal level are completed, the process proceeds to step 1104A.
  • Preparation for signal output means that the acquisition of the photoelectric conversion characteristics and the setting of the gain switching signal level of the first signal (102S1), the first signal (102S2), and the second signal (102N) are completed. is there.
  • step 1103A is skipped and the process proceeds to step 1104A.
  • step 1104A it is determined whether or not acquisition of a pixel signal is started.
  • first signal (A1-1) the acquisition of the pixel signal (“first signal (A1-1)”) is started
  • the acquired pixel signal is stored in the predetermined capacity (FD) of the pixel units (101-1 to 101-N) in step 1105A. Capacity and C LOFIC capacity). If the pixel signal acquisition is not started, the process returns to step 1104A again to determine whether the pixel signal acquisition is started.
  • step 1107A When the first signal (A1-1) is accumulated, in step 1107A, a corresponding gain (amplification factor) is selected by the gain selection means 1201A in accordance with the signal level of the first signal (A1-1). The gain is switched to the selected gain by the gain switching means 1202A. Corresponding to this gain switching, either the 1-1 signal (102S1) or the 1-2 signal (102S2) is read from the first row / second row reading unit 102H / LG-1A.
  • the 1-1 signal (102S1) is treated as a very sensitive signal
  • the 1-2 signal (102S2) is treated as a highly sensitive signal.
  • the ultra-high sensitivity signal is amplified by the first-row / second-row reading unit 102H / L-1A with an amplification factor exceeding “1”.
  • the second signal (A1-2) output from the corresponding pixel unit is temporarily stored in the third column reading unit 102N1, and then externally transmitted from the signal reading path unit 1200-2 as the second signal (103S3). (Step 1108A).
  • a signal (optical signal) representing the illuminance of the imaging surface is derived from the combination of the output of the read first 1-1 signal (102S1), first 1-2 signal (102S2), and second signal (102N) (Ste 1107A). Thereafter, the derived optical signal is output for transfer to a predetermined circuit (step 1110A), and a series of reading operations is completed (terminated) (step 1111A).
  • the imaging procedure in the example of FIG. 12B is shown in FIG. 11B.
  • step 1101B it is determined whether or not signal output is ready (step 1102B). If it is before preparation for signal output, the steps for acquiring photoelectric conversion characteristics and setting the gain switching signal level of the 1-1 signal (102S1), 1-2 signal (102S2), and 2nd signal (102N) 1103B is entered.
  • step 1104B the process proceeds to step 1104B.
  • Preparation for signal output means that the acquisition of the photoelectric conversion characteristics and the setting of the gain switching signal level of the first signal (102S1), the first signal (102S2), and the second signal (102N) are completed. is there.
  • step 1103B is skipped and the process proceeds to step 1104B.
  • step 1104B it is determined whether or not acquisition of a pixel signal is started.
  • first signal (A1-1) the acquisition of the pixel signal (“first signal (A1-1)”) is started
  • the acquired pixel signal is stored in the predetermined capacity (FD) of the pixel unit (101-1 to 101-N) in step 1105B. Capacity and CLOFIC capacity). If the pixel signal acquisition is not started, the process returns to step 1104B again to determine whether the pixel signal acquisition is started.
  • a gain is set in step 1106B according to the signal level of the first signal (A1-1).
  • the set gain is applied to the first signal (A1-1), and any one of the first signal (102S1) and the first signal (102S2) is converted into the signal readout path unit 1200-1B. (Step 1107B).
  • the gain is set to “1” (step 1108B). This set gain is applied to the second signal (A1-2) input to the reading unit 102-1B, and the second signal is output from the reading unit 102-1B (step 1109B).
  • a signal (optical signal) representing the illuminance of the imaging surface is derived from the combination of the output of the read first signal 1-1 (102S1), first signal 1-2 (102S2), and second signal (102N) (Ste 1110B). Thereafter, the derived optical signal is output for transfer to a predetermined circuit (step 1111B), and a series of reading operations is completed (terminated) (step 1112B).
  • the 1-1 signal (102S1) is treated as an ultra-sensitive signal
  • the 1-2 signal (102S2) is treated as a highly sensitive signal.
  • the ultra-high sensitivity signal is amplified by the first-row / second-row reading unit 102H / L-1A with an amplification factor exceeding “1”.
  • FIG. 12B will be described.
  • FIG. 12B shows a second modification of FIG.
  • the sensor unit 1200B shown in FIG. 12B has the same configuration as the sensor unit 1200 shown in FIG. 12 except for the column circuit unit 102-1B in the first column, the gain selection unit 1201B, and the gain switching unit 1202B. Therefore, the same numbering is used for the same constituent elements as the sensor unit 1200 in the sensor unit 1200A. Hereinafter, only the difference between the sensor unit 1200B and the sensor unit 1200 will be described.
  • the column circuit section 102-1B includes a high gain amplifier (not shown) and a low gain amplifier (not shown), and can amplify an input signal with any one of the amplifiers. Further, the column circuit unit 102-1B also includes a signal transmission path (not shown) that does not pass through the amplifier. A second signal (102SN) corresponding to the second signal A1-1 output from each pixel unit (1-1 to 1-N) through the signal transmission path is read out.
  • the first signal A1-1 output from the pixel unit (1-1) 101-1 is switched in the gain switching unit 1202B to the gain selected in the gain selection unit 1201B according to the magnitude of the signal level. And amplified by the selected gain and read out from the column circuit section 102-1B as the 1-1 signal (102S1) or the 1-2 signal (102S2).
  • FIG. 14A is a schematic top surface layout pattern diagram of a device structure corresponding to the pixel circuit unit 101.
  • FIG. 14B is a schematic cross-sectional view when cut along the cross-sectional line A shown in FIG. 14A
  • FIG. 14C is a schematic cross-sectional view when cut along the cross-sectional line B shown in FIG. 14A.
  • FIG. 14A shows a schematic layout pattern of the device structure of the pixel circuit unit 101 including the equivalent circuit of FIG.
  • the device of the pixel circuit unit 101 includes a photodiode 201 (PD), a transfer switch unit 202 (T), a floating diffusion capacitor 203 (FD), an overflow switch unit 205 (S), and a reset switch unit 206 ( R), pixel selection switch means 207 (X), and source follower type switch means 208 (SF).
  • PD photodiode
  • T transfer switch unit
  • FD floating diffusion capacitor
  • S overflow switch unit
  • R reset switch unit 206
  • pixel selection switch means 207 X
  • source follower type switch means 208 SF
  • An electrode region 1403 for transferring a charge signal to the horizontal overflow storage capacitor 204 (C LOFIC ), -Electrode area 1404 for applying a recent signal ⁇ R, Reset voltage V R is applied for the electrode region 1405,
  • the overlapping capacity between the transfer switch means 202 and the FD area 203-14AFD of the floating diffusion capacity 203, which is a constituent factor of the floating diffusion capacity 203, and the overflow switch means 205 and the FD area 203-14AFD of the floating diffusion capacity 203 Each overlap capacity is proportional to the floating diffusion width (W FD ). Further, the PN junction capacitance formed by the n + diffusion layer and the p-type region which are the components of the floating diffusion capacitor 203 which is a constituent factor of the floating diffusion capacitor 203 is proportional to “W FD ” and “L FD ”.
  • indicates a more preferable sample
  • indicates a preferable sample
  • indicates a comparative sample
  • a region X indicates a region where a preferable sample is obtained
  • a region Y indicates a region where a more preferable sample is obtained.
  • Second signal signal lines 108, 108-1 Current sources 200-1 to 200-3 (gate) overlap capacitance 201 ... photodiode (PD) 202 ... Transfer switch means (T) 202-1 ... Electrode 203 of transfer switch means (T) ... Floating diffusion capacitance ( CFD ) 204 ... Horizontal overflow storage capacity (C LOFIC ) 204-1 ... Electrode 205 of horizontal overflow storage capacitor (C LOFIC ) ... Switch means for overflow (S) 205-1 ... Electrode 206 for overflow switch means (S) ... Switch means for reset (R) 206-1 ... Electrode 207 of reset switch means (R) ... Pixel selection switch means (X) 207-1 ...
  • Optical input sensor unit 500-1 ... n-type silicon (n-Si) substrate 500-2 ... p-type silicon Layers 501-2 to 501-3... Reduced impurity amount n-type regions 502-1 to 502-5... N + -type regions 503-1 to 503-6. 504 ... FD diffusion layer section 505 ... pixel SF portions 506-1 to 506-4 ... isolation region 507-1 ⁇ 507-3 ⁇ p-type buried region 508..
  • N - -type region 509 ... P + type region 510... STI peripheral p + type region 511, 512... N ⁇ type region 601-1 to 601-3... LDD forming photoresists 602-1 to 602-11 ... Sidewalls 603-1 to 603-2 ...
  • Gate electrode of switch means 205 for overflow Area 206-14AR Gate electrode area 207-14AX of reset switch means 206 Gate electrode area 208-14ASF of pixel selection switch means 207 Gate electrode area 1401 of source follower type switch means 208 -Electrode region 1402 for applying transfer signal ⁇ T ... Electrode region for applying switch signal ⁇ S, 1403... Electrode region 1404 for transferring a charge signal to horizontal overflow storage capacitor 204 (C LOFIC )... Electrode region 1405 for applying a recent signal ⁇ R... Electrode region 1406 for applying reset voltage VR Electrode region 1407 for pixel signal output ... Electrode region 1408 for applying pixel selection switch signal ⁇ X ... Electrode region for applying power supply voltage AVDD

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本発明の課題の一つは、産業の更なる発展やより安心・安全な社会の実現に大いに貢献する光センサと固体撮像装置並びにそれらの信号読み出し方法駆動を提供することである。 本発明の解決手段の一つは、受光素子と電荷を蓄積する蓄積容量と前記受光素子に入力する光によって発生する電荷を前記蓄積容量に転送するための転送スイッチと、を有する光センサにおいて、前記蓄積容量は、フローティングディフュージョン容量と横型オーバーフロー蓄積容量であり、前記転送スイッチは、LDD・MOSトランジスタであり、且つそのドレイン領域における不純物濃度を特定の濃度にしたことである。

Description

光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法
 本発明は、光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法に関するものである。
 科学技術の進展、ネット社会の浸透に伴って、光センサや固体撮像装置の需要は飛躍的に拡大している。一方で、高感度・高速・広ダイナミックレンジ・広光波長帯域対応の光センサや静止画・動画対応の固体撮像装置は新市場開拓の必須アイテムとして市場より強く求められている。殊に、ダイナミックレンジのより広い光センサや固体撮像装置は、医用・医薬・健康・介護の市場、ライフサイエンス市場、安心・安全社会形成に必須の防災・防犯市場等で切望されている。
 ダイナミックレンジの広い光センサ・固体撮像装置の例としては、例えば、特許文献1に記載されている。
 しかしながら、特許文献1に記載の光センサ・固体撮像装置は、確かに、従前のものに比べて広いダイナミックレンジを有しているが、ダイナミックレンジの拡大領域は、高照度側であって、低照度側は、従前の域を出ていない。従って、微光量域での対応も要求されることがある市場対応が未開拓となっている。そのために、産業の更なる発展や、より安心・安全な社会の実現が依然として国際社会における大きな課題である。
 この課題を解決するための光センサ・固体撮像装置を我々発明者らは既に提示した(特許文献2)。
特開2005-328493号公報 国際公開第2016/080337号公報
 しかしながら、その後の量産プロセスの検討、プロセス設計、プロセス実施を帰納法的に繰り返し行う過程で、特許文献2に記載の光センサ・固体撮像装置(以後、光センサと固体撮像装置の何れか一方若しくは両者を意味するのに「光デバイス」)と記すこともある)の場合、LDD( Lightly Doped Drain)構造を有するトランジスタと非LDD構造を有するトランジスタ(LDD構造を有さないトランジスタ)が混在するために、光デバイスの量産プロセスの工程数が多くなると共に量産プロセスも煩雑になりやすくなるために、製造コストを押し上げる要因にもなり兼ねないという課題があることを見出した。更に、この課題は、有効画素数が多くなるにつれて、また、画素密度が高まるにつれて、画素間の光センシング特性の均一性・安定性の確保が難しくなる課題も誘引される懸念があることが分かった。
 本明細書においては、「LDD」なる語は、MOSトランジスタの構造からしてソース(電極)領域・ドレイン(電極)領域が左右対称となることから、ドレイン(電極)領域に限らず、ソース(電極)領域についても使用することがある。このことは、半導体業界において一般的なことである。
 本発明は、上記の点に鑑みて鋭意努力して研究開発した結果なされたのであり、その主たる目的は、通常の量産プロセスと比べても製造コストアップにならずに量産でき、産業の更なる発展やより安心・安全な社会の実現に大いに貢献する光センサと固体撮像装置並びにそれらの信号読み出し方法を提供することである。
 本発明の別な目的は、通常の量産プロセスと遜色なく量産でき、一光子から検出が可能な広ダイナミックレンジ性能を備えた光センサと固体撮像装置並びにそれらの信号読み出し方法を提供することである。
本発明の更に別な目的は、通常の量産プロセスで量産でき、一光子光量域から高照度光量域までのダイナミックレンジを備えた、高感度・高速・広光波長帯域対応の光センサと固体撮像装置並びにそれらのその信号読み出し方法を提供することである。
 本発明の更にもう一つの別な目的は、通常の量産プロセスで量産でき、一光子検出が可能な高感度性能と十分な高飽和性能を両立した広範のダイナミックレンジ性能を備えた、高感度・高速・広光波長帯域対応の光センサと固体撮像装置並びにそれらの信号読み出し方法を提供することである。
 本発明は、上記目的を達成するために、特許文献2に記載の光センサを構成する転送スイッチ用の非LDD・MOSトランジスタの代わりにLDD・MOSトランジスを使用した光センサについて、設計・試作・特性/性能検査・検討を帰納法的に繰り返し実施することで、後述するように特定の構造とサイズ・半導体不純物の特定含有量とすれば、特許文献2に記載の光センサと少なくとも同等のセンサ性能を有する光センサを通常の量産プロセスと比べても製造コストアップにならずに量産できることを見出したことに基づいている。
 本発明の側面の一つは、
 受光素子と電荷を蓄積する蓄積容量と前記受光素子に入力する光によって発生する電荷を前記蓄積容量に転送するための転送スイッチと画素信号出力線、を有し、前記画素信号出力線に信号読出経路が接続されていて、
 前記蓄積容量は、フローティングディフュージョン(CFD)容量と横型オーバーフロー蓄積(CLOFIC)容量で、前記転送スイッチは、LDD・MOSトランジスタであり、
該LDD・MOSトランジスタのドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
    1< N/ND ≦100・・・・・(1)
    0< N ≦ 1.0×1020 cm-3・・・・・(2)
の関係にあり、
前記信号読出経路には、前記CFD容量によって電荷電圧変換された第1の画素出力信号と前記CFD容量と前記CLOFIC容量とを結合して電荷電圧変換された第2の画素出力信号とが入力され、
前記第1の画素出力信号が、超高感度信号の場合は、1より大きい増幅率で増幅することを特徴とする光センサにある。
 本発明の別な側面は、
受光素子と、電荷を蓄積する蓄積容量と、前記受光素子に入力する光によって発生する電荷を前記蓄積容量に転送するための転送スイッチと、を有する画素部が平面的に複数配されていて、
 前記蓄積容量が、フローティングディフュージョン(CFD)容量と横型オーバーフロー蓄積(CLOFIC)容量で、前記転送スイッチは、LDD・MOSトランジスタであり、該LDD・MOSトランジスタのドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
    1< N/ND ≦100・・・・・(1)
    0< N ≦ 1.0×1020 cm-3・・・・・(2)
の関係にある画素部列;
前記画素部の夫々が順次結線されている画素信号出力線;、
前記画素信号出力線の前記画素部列における配列最後の画素部が結線されている位置より下流の位置で前記画素信号出力線に結線されているとともに、1より大きい増幅率とこれとは異なる増幅率を使い分けて増幅する機能を備えている信号読出経路部;
を有し、
 前記信号読出経路部には、前記フローティングディフュージョン(CFD)容量によって電荷電圧変換された第1の画素出力信号と前記フローティングディフュージョン(CFD)容量と横型オーバーフロー蓄積(CLOFIC)容量とを結合して電荷電圧変換された第2の画素出力信号と、が入力される、ことを特徴とするマルチ画素の光センサにある。
 本発明の更に別な側面は、
 受光素子と電荷を蓄積する蓄積容量と前記受光素子に入力する光によって発生する電荷を前記蓄積容量に転送するための転送スイッチと、を画素部毎に有し、
 前記蓄積容量は、フローティングディフュージョン容量と横型オーバーフロー蓄積容量であり、前記転送スイッチは、LDD・MOSトランジスタであり、
そのドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
    1< N/ND ≦100・・・・・(1)
    0< N ≦ 1.0×1020 cm-3・・・・・(2)
の関係にあり、
 各画素部が、結線されている画素信号出力線と、
 該画素信号出力線に結線されている信号読出経路と、
を具備する光センサを用い、
 前記フローティングディフュージョン容量によって読出しに寄与する電荷量の電荷を電荷電圧変換して第1の画素出力信号を形成し、前記フローティングディフュージョン容量と前記横型オーバーフロー蓄積容量とを結合し読出しに寄与する電荷量の電荷を電荷電圧変換して第2の画素出力信号を形成し、これら2つの画素出力信号を前記信号読出経路に入力し、
 前記第1の画素出力信号は、前記信号読出し経路において1より大きい増幅率のアンプの少なくとも1つを含む複数のアンプによって増幅する、ことを特徴とする光センサの信号読出し方法。
 本発明のもう一つの側面は、
 受光素子(PD)、転送用のスイッチ(T)、オーバーフロー用のスイッチ(S)、リセット用のスイッチ(R)がこの順で直列に結線されており、前記転送用のスイッチ(T)と前記オーバーフロー用のスイッチ(S)との間の結線に結線されたフローティングディフュージョン容量(CFD)とソースフォロア型のスイッチ(SF)と、前記オーバーフロー用のスイッチ(S)と前記リセット用のスイッチ(R)との間の結線に結線された横型オーバーフロー蓄積容量(CLOFIC)と、を有し、
 前記ソースフォロア型のスイッチ(SF)は、MOSトランジスタであり、
 前記転送用のスイッチ(T)は、ドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
    1< N/ND ≦100・・・・・(1)
    0< N ≦ 1.0×1020 cm-3・・・・・(2)
の関係にある、
複数の画素部;
を有し、該複数の画素部の前記受光素子(PD)は、2次元的に配されて画素アレイを構成し、
前記複数の画素部が順次結線されている画素列出力信号線;
を有し、
該画素列出力信号線に結線された読取部;
を有し、該読取部には、前記フローティングディフュージョン容量(CFD)によって電荷電圧変換された第1の画素出力信号と前記フローティングディフュージョン容量(CFD)と横型オーバーフロー蓄積容量(CLOFIC)とを結合して電荷電圧変換された第2の画素出力信号とが入力され、
前記第1の画素出力信号は前記信号読出し経路において1より大きい増幅率のアンプの少なくとも1つを含む複数のアンプによって増幅されることを特徴とする撮像装置にある。
 本発明の更にもう一つの側面は、
 受光素子(PD)、転送用のスイッチ(T)、オーバーフロー用のスイッチ(S)、リセット用のスイッチ(R)がこの順で直列に結線されており、前記転送用のスイッチ(T)と前記オーバーフロー用のスイッチ(S)との間の結線に結線されたフローティングディフュージョン容量(CFD)とソースフォロア型のスイッチ(SF)と、前記オーバーフロー用のスイッチ(S)と前記リセット用のスイッチ(R)との間の結線に結線された横型オーバーフロー蓄積容量(CLOFIC)と、を有し、
 前記ソースフォロア型のスイッチ(SF)は、MOSトランジスタであり、
 前記転送用のスイッチ(T)は、ドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
    1< N/ND ≦100・・・・・(1)
    0< N ≦ 1.0×1020 cm-3・・・・・(2)
の関係にある、
複数の画素部;
を有し、該複数の画素部の前記受光素子(PD)は、2次元的に配されて画素アレイを構成し、
前記複数の画素部が順次結線されている画素列出力信号線、
該画素列出力信号線に結線された読取部;
と、を具備した撮像装置を用意し、
 前記フローティングディフュージョン容量によって読出しに寄与する電荷量の電荷を電荷電圧変換して第1の画素出力信号を形成し、前記フローティングディフュージョン容量と横型オーバーフロー蓄積容量とを結合し読出しに寄与する電荷量の電荷を電荷電圧変換して第2の画素出力信号を形成し、これら2つの画素出力信号を前記信号読出し経路に入力し、
前記第1の画素出力信号は、前記信号読出し経路において1より大きい増幅率のアンプの少なくとも1つを含む複数のアンプによって増幅する、ことを特徴とする撮像装置の信号読出し方法にある。
 本発明の更に別な側面は、
(1)光電変換機能を備えた画素部;
 該画素部は、光電変換された電荷を蓄積する蓄積容量と前記電荷を前記蓄積容量に転送するための転送スイッチとを備え、
 前記蓄積容量は、フローティングディフュージョン(CFD)容量と横型オーバーフロー蓄積(CLOFIC)容量で、前記転送スイッチは、LDD・MOSトランジスタであり、
該LDD・MOSトランジスタのドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
    1< N/ND ≦100・・・・・(1)
    0< N ≦ 1.0×1020 cm-3・・・・・(2)
の関係にある、
(2)前記画素部に結線されている画素信号出力線;
(3)前記画素信号出力線に接続されている信号読出経路;
該信号読出経路には、前記CFD容量によって電荷電圧変換された第1の画素出力信号と前記CFD容量と前記CLOFIC容量とを結合して電荷電圧変換された第2の画素出力信号とが入力され、
前記第1の画素出力信号が、超高感度信号の場合は、1より大きい増幅率で増幅する、
ことを特徴とする光センサにある。
 本発明によれば、通常の量産プロセスと比べても製造コストアップにならずに量産でき、一光子光量域から高照度光量域までの広範囲なダイナミックレンジ性能を備えた、高感度・高速・広光波長帯域対応の光センサと固体撮像装置並びにそれらの駆動方法を提供することが出来、産業の更なる発展やより安心・安全な社会の実現に大いに貢献することが出来る。
図1は、本発明に係るCMOSイメージセンサの画素回路と1列分の読み出し回路の好適な実施態様の一例を示す回路図である。 図2は、図1に示す回路図から画素回路部を抜き出して示した等価回路図である。 図3Aは、通常のMOSTrの構造を説明するための模式的構造切断面図である。 図3Bは、本発明に係るMOSTrの構造を説明するための模式的構造切断面図である。 図4Aは、通常の不純物濃度の拡散層を設けた場合の形成される空乏層の幅Wの広がり具合を模式的に示した模式的構造断面図である。 図4Bは、本発明のように通常よりも不純物濃度を低濃度化した拡散層を設けた場合の空乏層の幅Wの広がり具合を模式的に示した模式的構造断面図である。 図5は、図2に示す画素回路部101を有するデバイスにLDD形成の省略と拡散層の低濃度化を適用した場合のデバイス構造レイアウトを説明するための模式的変形切断面図である。 図6は、好適な製造工程の一つにより製造される光入力センサ部500の模式的構造図である。 図7は、第1-1信号、第1-2信号、第2信号の光電変換特性を説明するための模式的説明概念図である。 図8はフローティングディフュージョン入力換算のノイズ電子数と、誤読出し確率との関係を示すグラフである。 図9は入力換算ノイズ電子数と電荷電圧変換ゲインとの関係を示すグラフでる。 図10は、1画素の信号を読み出す場合のタイミング図である。 図11は、1画素の信号を読み出す場合の手順を説明するためのフロー図である。 図11Aは、1画素の信号を読み出す場合の別の手順を説明するためのフロー図である。 図11Bは、1画素の信号を読み出す場合の更に別の手順を説明するためのフロー図である。 図12は、発明に係わるCMOSイメージセンサを撮像装置に適用した場合のセンサ部の好適な実施態様の一例を示すもので、第1列のN個分の画素部列と1列分の信号読出経路部を示す回路図である。 図12Aは、図12の変形例を示す回路図である。 図12Bは、図12の更に別の変形例を示す回路図である。 図13は、図12に示す撮像装置のセンサ部全体を模式的に示す全体ブロック図である。 図14Aは、画素部101の模式的なレイアウトパターンの一例を示す図。 図14Bは、図14Aの断面線Aで切断した場合の模式的切断面図である。 図14Cは、図14Aの断面線Bで切断した場合の模式的切断面図である。 図15は、実験結果を示すグラフである。
 図1には、本発明に係わるCMOS光入力センサの画素回路と1列分の読み出し回路を示す好適な実施態様の一例(実施態様例1)としての回路図が示される。
 図1の回路構成とし、且つ後述するデバイス構造とすることで、光子検出の高感度と高飽和を両立することが出来る。
 図1は、図と説明が複雑になることを避けて、本発明の特徴が端的に理解されるように必要最小限の説明で済むように必要最小限の部分を図示化してある。
 図1の光センサ部100は、画素部101と読出部102で構成されている。
 画素部101と読出部102は、画素列出力信号線103を介して電気的に接続されている。画素列出力信号線103の下方には、電流源108が設けてある。電流源108は、例えばMOSトランジスタで構成される。
 画素部101の等価回路図は、特許文献1の図21の画素等価回路図と同等である。図1の例では、列回路部102は、3つの列読出部(10HG,102LG,102N)で構成されている。
 第1-1信号102S1を出力するめの第一列読出部102HGは、上流側より、第1-1信号102S1読み出し用のスイッチ手段(SW/AMPEN)104HG、高ゲインアンプ105HG、アナログメモリ回路部106HGがこの順で配列され信号線107HGと電気的に接続されている構成となっている。
 アナログメモリ回路部106HGは、第1-1信号102S1用のスイッチ手段(NS1H)106HG-1と容量(N1H)106HG-2が、また、スイッチ手段(SS1H)106HG-3と容量(S1H)106HG-4が、其々電気的に直列に接続されて、信号線107HGに図示のごとく結線されている。
 第1-2信号102S2を出力するための第二列読出部102LGも、上流側より、第1-2信号102S2読み出し用のスイッチ手段(SW/AMPEN)104LG、低ゲインアンプ105LG、アナログメモリ回路部106LGの順で配列され信号線107LGと電気的に接続されている構成となっている。
 アナログメモリ回路部106LGは、スイッチ手段(NS1)106LG-1と容量(N1)106LG-2が、また、スイッチ手段(SS1)106LG-3と容量(S1)106LG-4が、其々電気的に直列に接続されて、信号線107LGに図示のごとく結線されている。
 第2信号102SNを出力する第三列読出部102Nは、前記第一列読出部102HGおよび前記第二列読出部102LGとは異なり、アナログメモリ回路部106Nが、信号線107N1を介して、画素出力信号線103に電気的に直結している。
 アナログメモリ回路部106Nは、スイッチ手段(NS2)106N-1と容量(N2)106N-2が、また、スイッチ手段(SS2)106N-3と容量(S2)106N-4が、其々電気的に直列に接続されて、信号線107N2に図示のごとく結線されている。
 読出部102は、一つの列の各画素部に共通である。
 図1の回路構成とすることで、1光子検出の高感度特性と高飽和特性の両立が可能で、広範のダイナクミックレンジ性能を有する高感度イメージセンサを提供出来る。
 読出部102に配置した2つのゲインアンプ(105HG、105LG)は画素部101から高感度な第一信号を読み出している際に使用し、振幅を増大して後段のノイズを低減した第1-1 信号(102S1)と「1」以下の増幅率で増幅された信号振幅の第1-2 信号(102S2)を生成することにより、超高感度信号と高感度信号を得ることができる。
 また、画素部101から出力される高飽和な第二信号は、画素信号出力線を直接につないだ信号読出経路部に入力される。入力された第二信号に応じて該信号読出経路部から前記入力された第二信号の信号振幅で高飽和信号(「第2信号(102SN)」)が読み出される。
 即ち、上記に説明した3つの信号から極低照度な画素では超高感度な第1-1信号(102S1)、高照度な画素では第2信号(102SN)、その中間の照度の画素では第1-2信号(102S2)を読み出すことで、極低照度領域から高照度まで単一の露光期間を用いてリニアに映像(又は撮像)信号を得ることができる。
 図1の説明において符番の前の「()」の中の英文字は、以下の技術的意味を示す。
AMPEN・・・「第1-1信号」および「第1-2信号」読出し用スイッチ
NS1H・・・・「第1-1BG信号」サンプリング用スイッチ
SS1H・・・・「第1-1光信号」サンプリング用スイッチ
N1H・・・・・「第1-1BG信号」ホールド用容量
S1H・・・・・「第1-1光信号」ホールド用容量
NS1・・・・・「第1-2BG信号」サンプリング用スイッチ
SS1・・・・・「第1-2光信号」サンプリング用スイッチ
N1・・・・・・「第1-2BG信号」ホールド用容量
S1・・・・・・「第1-2光信号」ホールド用容量
NS2・・・・・「第2BG信号」サンプリング用スイッチ
SS2・・・・・「第2光信号」サンプリング用スイッチ
N2・・・・・・「第2BG信号」ホールド用容量
S2・・・・・・「第2光信号」ホールド用容量
 次に、本発明の特徴を図2、図3A、図3B、図4A、図4B、図5に従って更に説明する。
 図2は、図1に示す光センサ部100の中の画素部101を示したものである。
 画素部101は、フォトダイオード(PD)201、転送用スイッチ手段(T)202、電荷電圧変換を行うフローティングディフュージョン容量(CFD)(非固定浮遊容量:Floating Diffusion Capacitor、「CFD容量」と記すこともある)203、横型オーバーフロー蓄積容量(CLOFIC)(Lateral Overflow Integration Capacitor)204、オーバーフロー用スイッチ手段(S)205、リセット用スイッチ手段(R)206、画素選択スイッチ手段(X)207、ソースフォロア型スイッチ手段(SF)208から構成される。
 オーバーフロー用スイッチ手段(S)205は、CFD容量203と横型オーバーフロー蓄積容量(CLOFIC)204のポテンシャルを結合または分割するオーバーフロー用のスイッチである。
 図2において、「V」は、リセット電圧、「VDD」は、電源電圧を意味する。
 本発明においては、画素部101にCLOFIC容量204を有しているので、画素部101は、以後、「LOFIC画素部」とも呼ぶことがある。
 本発明における画素部101中の各スイッチ手段は、好ましくは、MOS(Metal Oxide Semiconductor)トランジスタ(MOSTr)等のFET(Field Effect Transistor)で構成されるのが望ましい。
 図2においては、転送用スイッチ手段(T)202、オーバーフロー用スイッチ手段(S)205、リセット用スイッチ手段(R)206、画素選択スイッチ手段(X)207、ソース・フォロアースイッチ手段(SF)208の各スイッチ手段は、MOSTrで構成されている。
 本発明における基本的信号経路は、以下の通りである。
 即ち、PD201に入力された光は、光電荷を発生し、発生した光電荷は、CFD203およびCFD203とCLOFIC204との合計の容量のそれぞれで電荷電圧変換されSF208を介してアナログメモリ回路部106HG、106LG、106Nの中の該当するアナログメモリ回路部に読み出し、そのアナログメモリ回路部のアナログメモリに電圧信号として保持される。その後、電圧信号は、アナログメモリから容量分割され、出力バッファ(不図示)を介してデバイス外部へ読み出され、ADC(Analog-Digital Convertor)(不図示)によりデジタル信号へと変換される。
 この一連の信号経路においては、読み出しの後段になればなる程ノイズが重畳されてS/Nが低下するので、本発明においては、読み出し経路の出来るだけ前段、特にCFD203における電荷電圧変換ゲインを出来るだけ高ゲイン化することで読み出し経路後段のノイズを相対的に小さくし、高S/N化を図っている。
 本発明は、図2に示す画素部101に基づいて、実際に入力センサ・デバイスとしてデバイス設計・製造してセンサの感度特性を測定し、その結果を分析・検討し、その検討結果を設計・製造にフィードバックするということを繰り返し、繰り返し行う過程において、図2に破線○で示すところの(ゲート)オーバーラップ容量(200-1、200-2,200-3)の最適化を図れば、本発明の目的が達成されることを見出したことに基づいてなされた。
 容量(CFD)203を構成する容量は、デバイスの配線部に形成される配線寄生容量(1)、FD拡散層部504(図5)において形成されるPN接合容量(2)、画素SF部505において形成されるゲート・基板寄生容量(3)、チャネル容量(4)、FD拡散層部と画素SF部において形成されるゲートオーバーラップ容量(5)の5つに大別できる。
 容量(CFD)203を構成する5種類の容量の中、配線寄生容量(1)は、FD拡散層部504と画素SF部505(図5)を近くに配置して配線の距離を短くし、隣接するメタル配線を出来る限り離して配置することにより、ある程度は縮小することが出来る。しかし、デバイスの高密度化の要求から画素部101のサイズ(以後、「画素サイズ」ともいう)ダウンをしなければならないことを考慮すると、配線寄生容量(1)の低容量化にも限界がある。
 ゲート・基板寄生容量(3)の改善方法としては、「Well in Well」という特殊プロセスを画素SF部505に適用することで、ゲート・基板寄生容量(3)を低減することが出来る。しかし、プロセスが複雑化し、しかも、画素サイズが大きくなるという課題が存在するので、「Well in Well」プロセスの採用では、画素サイズダウンと低容量化の両立は適わない。
 加えて、本願の発明者らの検討によると、現時点ではゲート・基板寄生容量(3)は他の容量と比較して小さい容量であるので、ゲート・基板寄生容量(3)の改善は、今のところ必要ないという結論に至っている。
 チャネル容量(4)は、画素SF部505に一定電流を流すためのチャネルが必要なことから容量低減化の期待は実質出来ない。
 ソースフォロア型のスイッチ手段208のチャネル容量を、「Cchl」で表記すると、容量(Cchl)が容量(CFD)203に影響を与えるのは、ミラー効果によるもので、実効的にチャネル容量(4)が、「1/(ソースフォロア型のスイッチ手段208のゲイン)」倍となる。
 従って、前述と同様に「Well in Well」プロセスを採用して基板バイアス効果を排除しソースフォロワ型のスイッチ手段208のゲインを「1」にすれば、チャネル容量(4)は抑制できる。しかし、「Well in Well」プロセスの採用では、画素サイズダインと低容量化の両立は適わない。
 一方、PN接合容量(2)とゲートオーバーラップ容量(3)とはデバイスのレイアウトや読み出し方法の工夫では低減することが期待できない容量であるため、本発明においては、以下に説明するように製造プロセスを変更して低減を図る。即ち、本発明では、ゲートオーバーラップ容量(5)形成のプロセスとその条件を以後に説明する様に従来法を大幅に変更することにより、CFD203の容量の低減最適化を図るものである。
 本発明の特徴を説明するに際し、先ず、ゲートオーバーラップ容量低減のために行う、LDD( Lightly Doped Drain)の省略について、図3A、図3Bを用いて説明する。
 図3Aは、本発明に係るLDD構造を有するMOSTr301A1、301A2の構造を説明するための模式的構造切断面図である。
 図3Bは、本発明者等による先の出願(特許文献2)の発明に係る非LDD構造のMOSTr301B1、301B2の構造を説明するための模式的構造切断面図である。
 通常、ゲート電極303A、303Bの作成とサイドウォール304A、304B1、304B2の作成の間に、先ずLDD305の形成が行われる。
次いで、サイドウォール304A、304B1、304B2の形成、拡散層302の形成の順で、形成される。
 LDD305を設ける理由は、形成されるMOSTrのホットキャリア劣化防止である。即ち、ソースからドレインに走行する電子の一部がドレイン近傍の高い電界によって加速され、高いエネルギー有するホットキャリアとなる。ホットキャリアは、インパクトイオン化によって高いエネルギーを有する電子・正孔を発生させたり、ゲート絶縁膜と半導体との界面付近に欠陥を生成させたり、あるいはゲート絶縁膜中に注入され、ゲート絶縁膜中の欠陥に捉えられて固定電荷となり、トランジスタ電気的特性の経時劣化をもたらす。このホットキャリアの発生は、チャネル長が1μm以下のトランジスタで顕著であり、一般的なロジックLSIの微細化における大きな課題である。
 このホットキャリアの発生を抑制するために,ドレイン近傍の電界を緩和するための濃度の薄い拡散層でLDD305を構成する。このタイプのトランジスタは「LDD構造のトランジスタ」と一般的に呼ばれている。又、本願では、LDD構造を有しないトランジスタを「「非LDD構造トランジスタ」と呼ぶ場合がある。
 このようなLDD構造のトランジスタの場合は、以下のような課題が発生する。
 図3Aに示されるように、拡散層部分(拡散層302とLDD305の部分)のうちゲート電極303A、303B側にせり出したLDD305による部分(拡散層302の両サイドにLDD305のせり出した部分が示される)が、ゲートオーバーラップ容量を大きくする要因になっている。
 そこで特許文献2(前記先願)では、LDD305の形成を省略することで、オーバーラップ容量を大幅に軽減する要因の一つとすることが出来たものである。さらに、LDD305形成を省略したとしても、光センサの動作電圧条件下では、前述のホットキャリアによる影響が十分に小さく、問題を生じさせないことをトランジスタの試作と測定の実験を通して見出したものである。
 図3BにLDD305の形成を省略した場合のゲートオーバーラップ部の容量関係を図3Aと同様模式的に示す。
 図から明らかなように、図3Aの場合に比べて図3Bの場合の方がゲートオーバーラップ部の容量が低減されている。
 図3Bの場合のトランジスタ(301B1若しくは301B2)のドレイン若しくはソースは、拡散層302の端部領域が担っている。
 以下に、容量低減のために行うプロセス変更について述べる。
PN接合容量は、p-epi層300とn+層(拡散層)302に亘って形成される空乏層の幅によって決まる。即ち、空乏層の幅Wが大きくなればなるほど、PN接合の容量はより小さくなる。この空乏層の幅Wは、p-epi層300とn+層302の不純物の濃度によって決まる。
 本発明においては、n+層302の不純物の濃度を小さくすることで空乏層の幅Wを大きくしてPN接合容量を減らす。
 図4Aに、通常の不純物濃度の拡散層402Aを設けた場合の、図4Bに、本発明のように通常よりも不純物濃度を低濃度化した拡散層402Bを設けた場合の空乏層の幅Wの広がり具合を模式的に示した。
 図4Aは、LDD・MOSTrに通常の不純物濃度の拡散層を設けた場合の形成される空乏層の幅Wの広がり具合を模式的に示した模式的構造断面図である。
 図4Bは、本発明のようにLDD・MOSTrに通常よりも不純物濃度を低濃度化した拡散層を設けた場合の空乏層の幅Wの広がり具合を模式的に示した模式的構造断面図である。
 図4Aには、MOSTr401A1とMOSTr401A2の構造の一部が示される。
 拡散層402Aは、MOSTr401A1のドレイン領域(図において拡散層402Aの左側部分)とMOSTr401A2のソース領域(図において拡散層402Aの右側部)を兼ね備えている。
 通常のように拡散層402A中の不純物の濃度が高いと図4Aに示すように空乏層の幅WAは小さくなり、本願のように拡散層402B中の不純物の濃度が低いと図4Bに示すように空乏層の幅WBは大きくなる。
 n+層(拡散層)の不純物の低濃度化は、PN接合の空乏層幅を広げることができるためPN接合容量を低減する効果がある。さらに、n+層中の電荷とゲート電極の距離が大きくなるため、LDD形成の省略と同様にゲートオーバーラップ容量を低減する効果がある。
 以上、図3A乃至図4Bでの説明に関連して、LDDと拡散層の低濃度化を適用した場合の本発明の実施態様の好適な例の一つを図5に示す。
 図5は、図2に示す画素回路部101の回路構成と同等の回路構成を有する光入力センサ部500のデバイス構造の形成に際しLDDと拡散層の低濃度化を適用した場合のデバイス構造レイアウトを説明するための模式的構造切断面図である。
 図5において、引き出し電極(実線で示してある)は、仮想電極として記載してある。又、図1、図2と同じものを示す場合は、図1、図2の符番で示してある。
 光入力センサ部500は、n-型シリコン(n-Si)基体500-1の上にp型シリコン層500-2をエピタキシャル成長させ、該p型シリコン層500-2を利用して、図2に示す回路設計に基づいて、受光ダイドード、トランジスタ、容量素子等の各電子素子と配線を作成したものである。
 図5において、n型不純物がそれぞれの濃度でド-ピングされているのは、
n型領域501-1,501-2、503―1~503-11、n+型領域502-1~502-5、n型領域508,511、512、n型シリコン(n-Si)基体500-1である。
各領域におけるn型不純物のド-ピング濃度は、
(n型領域の濃度)<(n型領域の濃度)<(n+型領域の濃度)・・・(1)
の関係にある。
 p型不純物がそれぞれの濃度でド-ピングされているのは、p型シリコン層500-2、STI周辺p+型領域510である。
各領域におけるp型不純物のド-ピング濃度は、
(p型領域の濃度)<(p+型領域の濃度)・・・(2)
の関係にある。
 図5の場合においては、n型領域503-1~503-11がLDDである。
 低容量FDを形成するために、不純物のド-ピング量を従前に比べて低減化したn型領域が、符番501-1、501-2,501-3で示される。
 従前通り高濃度で不純物量がドーピングされているのが、n+型領域502-1,502-2,502-3,502-4,502-5である。
 従来通りLDDとして形成されているのが、n型領域503-1,503-2,503-3,503-4,503-5,503-6、503-7である。
 本発明においては、上記のn型領域(503-1~503-7)、n+型領域(502-1~502-5)は、「拡散層」と記すこともある。
 各電子素子の内、素子分離を確実にする方が高デバイス性能化の実現に貢献する該当の電子素子には、それぞれ、必要な性能特性の素子分離領域506-1,506-2,506-3,506-4が設けてある。
 p型シリコン層500-2の所定の位置には、p型埋め込み領域507-1,507-2,507-3が設けてある。
 図5においては、フォトダイオード(PD)201は、n-領域508とp+領域509が積層されたダイオード構造を有している。
 図5において、横型オーバーフロー蓄積容量(CLOFIC)204におけるn-型領域511とソースフォロア型のスイッチ手段(SF)208におけるn-型領域512は、以下の技術的理由から設けるのが望ましいものである。
 横型オーバーフロー蓄積容量(CLOFIC)においては、ゲート絶縁膜を誘電体とするキャパシタとして使用するので出来るだけ広い電圧範囲で一定の容量値が得られることが望ましいために、n-型で示した埋め込みN型層を形成するのが好ましい。
 この様に、n-型領域を設けることで、動作電圧範囲でSi領域とゲート絶縁膜の界面に常に電子をためることができ、一定の容量値が得やすくなる。
 ソースフォロア型のスイッチ手段(SF)においては、低周波ノイズを低減する目的でn-型で示した埋め込みチャネル層を形成するのが好ましい。
 n-型領域を設けることでチャネルがSi深さ方向に広く形成されるため、ゲート絶縁膜中のトラップに電子が捕獲されづらくなるとともに、電子を捕獲し帯電したトラップの影響も低減することが出来るので、低い低周波ノイズを得ることが出来る。
 本発明においては、フォトダイオード(PD)201は、フォトトランジスタに変えることも可能である。
 転送用スイッチ手段T202の電極202-1には、配線ΦTが結線され、オーバーフロー用スイッチ手段(S)205の電極205-1には、配線ΦSが結線され、リセット用スイッチ手段(R)206の電極206-1には、配線ΦRが結線され、画素選択スイッチ手段(X)207の電極207-1には、配線ΦXが結線されている。
 n+型領域502-1は、リセット用スイッチ手段(R)206のドレインとして機能し、リセット電圧を与える配線Vに結線されている。
 ソース・フォロアースイッチ手段(SF)208の電極208-1は、n型領域501-1に電気的に接続されている。
 横型オーバーフロー蓄積容量(CLOFIC)204の電極204-1は、容量(CLOFIC)204の一方の電極として機能し、n型領域501-2に電気的に接続されている。
 n型領域502-2,502-3は、配線GNDに電気的に直接接続されている。
 n+型領域502-5は、画素出力信号線103に電気的に直接接続されている。
 図5に記載される各スイッチ手段は、MOSTrで構成されている。
 本発明においての特徴の一つは、
転送用スイッチ手段(T)において、そのドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
       1< N/ND ≦100・・・・・(1)
       0< N ≦ 1.0×1020 cm-3・・・・・(2)
の関係にあることである。
本発明において、式(1)は、好ましくは、1< N/ND ≦50、より好ましくは、1< N/ND ≦10、であるのが望ましい。式(2)は、好ましくは、1.0×1010 cm-3≦ N ≦ 5.0×1019 cm-3、より好ましくは、5.0×1010 cm-3≦ N ≦ 5.0×1019 cm-3、であるのが望ましい。
 更には、好ましくは、更にオーバーフロー用スイッチ手段(S)、ソースフォロア型スイッチ手段(SF)のいずれか一方においても上記関係にあることが望ましい。より好ましくは、転送用スイッチ手段(T),オーバーフロー用スイッチ手段(S)、ソースフォロア型スイッチ手段(SF)のすべてにおいて上記関係にあることが望ましい。
 本発明においては、n型領域501-1、501-3の不純物濃度の低減化の程度は、従前の実用素子における不純物含有量(n+型領域502-1~502-5の不純物含有量)に対して、通常は50%減、好ましくは、70%減、より好ましくは、90%減であることが望ましい。
 具体的には、1×1020個/cm3以下、好ましくは、6×1019個/cm3以下、より好ましくは、2×1019個/cm3以下であるのが望ましい。
 本発明においては、上述のように、n型領域501-1、501-3の不純物濃度の低減化により、容量(CFD)203の容量の低減化を効果的に図るものである。しかし、例えば、n型領域502-1、502-4、502-5の不純物濃度の低減化は、直列抵抗の増加を引き起こす。その結果、画素信号出力電圧範囲をせばめてダイナミックレンジを低下させたり、ソースフォロワ回路のゲインを低下させ、S/N比を低下させたり、あるいはシェーディングの原因になったりするので、n型領域502-1、502-4、 502-5の不純物濃度は、従前の実用素子のものより低減することは、デバイスのトータル設計上芳しくない。
 このような視点からすると、本発明においては、n型領域501-1、501-3の不純物濃度は、n+型領域502-1乃至502-5における不純物濃度より、望ましくは、50%以下、とするのが好適である。
 以上の様なデバイス構成とすることにより、容量(CFD)203(図2)の低容量化を図り、1光子検出の高感度特性と高飽和特性を両立させ、広範のダイナクミックレンジを有する高感度イメージセンサの提供を可能にしている。
 転送用スイッチ手段(T)202、オーバーフロー用スイッチ手段(S)205、リセット用スイッチ手段(R)206は、それぞれフォトダイオード(PD)201に蓄積した電荷の転送と、フォトダイオード(PD)201の容量と容量(CFD)203の容量と容量(CLOFIC)204の容量(容量の合計数10fF程度)のリセットにのみ使用する。
 ソースフォロア型のスイッチ手段(SF)208の直列抵抗が大きくなると、ゲインが低下してしまう。そのため、本発明では、図5に示すように、スイッチ手段208としてのMOSトランジスタのソース部にはLDDを設けてゲインの低下を阻止している。
 次に、図5に示す光センサ部500の製造例の概略を説明する。
使用される製造技術は、通常の半導体製造技術であるので、当業者ならば容易に理解できる程度の範囲で省略(材料、薬品、製造条件、製造装置等)して説明する。
 以下の工程表は、製造工程の主要工程を示すものである。
 尚、工程(12)、(13)は、容量(CFD)203の容量の低減化のための工程である。
『工程表』
工程(1): 素子分離(Shallow Trench Isolation: STI)(506-1~506-4)形成
工程(2):ウェル/チャネルストップ層(507-1~507-3、510)形成イオン 注入
工程(3):活性化アニール
工程(4):ゲート絶縁膜形成
工程(5):ゲート電極成膜
工程(6):ゲート電極パターニング
工程(7):PD埋め込みn-層(508)形成イオン注入
工程(8):PD表面p+層(509)形成イオン注入
工程(9):Lightly Doped Drain(LDD)形成イオン注入
『フォトリソ⇒イオン注入⇒レジスト除去』
工程(10):活性化アニール
工程(11:)サイドウォール形成
工程(12:)S/D拡散層(501-1~501-3、502-1~502-5)形成イオン注入(1)
フォトリソ⇒イオン注入⇒レジスト除去
工程(13):S/D高濃度拡散層(502-1~502-5)形成イオン注入(2)
『フォトリソ⇒イオン注入⇒レジスト除去』
工程(14):活性化アニール
工程(15):第一層間膜(605-1)形成
工程(16):コンタクトホール形成
工程(17):コンタクト電極(606-1~606-3)形成
工程(18):メタル電極(607-1,607-2)形成
工程(19):水素シンタリング
 上記工程で得られた光センサ部500の模式的構造図を図6に示す。
 図6において、
附番605-1~605-2は配線層間絶縁体層、附番606-1~606-3はコンタクト電極、附番607-1~607-2はメタル配線、附番608-1~608-4はLDD、附番609-1,609-2は拡散層である。
 次に、図1、2を利用して、本発明を画像入力デバイスとしての高感度CMOSイメージセンサ(固体撮像装置)に応用した場合の好適な例の一つについて記述する。
 ここでは、光電子検出型について記述するが、素子構造の極性が逆極性であっても本発明の範疇に入ることは言うまでもない。
 蓄積期間(ST)(撮像光を受光することで発生する光電荷を所定の容量に蓄積する期間)中に、フォトダイオード(PD)201とフローティングディフュージョン容量(CFD)203への電荷の蓄積量がそれらの容量を超えて過飽和状態になって流れ出した過飽和電荷はオーバーフロー用スイッチ手段(S)205を介して横型オーバーフロー蓄積容量(CLOFIC)204において蓄積される。
 容量値の小さい容量(CFD)203において蓄積されている電荷量(電荷信号)は相当する電圧値に対応する電圧信号に変換されて、画素部101から第一の信号(A1-1))として出力される。
上記出力された第一の信号(A1-1)は、その値の大きさ(電圧値若しくは元の電荷量で示すことができる)に応じて、スイッチ手段104HG若しくはスイッチ手段104LGの何れかがONになり、第一列読出部102HG若しくは、第一列読出部102LGの何れかに入力される。
 即ち、第一の信号(A1-1)は、その値の大きさが所定値を超えている場合(超低照度下での超高感度受光信号の場合)は、スイッチ手段104HGがONされて、第一列読出部102HGに入力される。該入力された第一の信号(A1-1)は、高ゲインアンプ105HGにより「1」を超えた増幅率で増幅されて増幅信号AM1としてアナログメモリ回路部106HGに一旦蓄積される。その後、該増幅信号AM1に応じた第1-1信号(102S1)が第一列読出部102HGから読み出される。
 上記出力された第一の信号(A1-1)は、その値の大きさが所定値以下の場合(低照度下での高感度受光信号の場合)は、スイッチ手段104LGがONされて、第二列読出部102LGに入力される。該入力された第一の信号(A1-1)は、低ゲインアンプ105LGにより「1」以下の増幅率で増幅されて増幅信号AM2としてアナログメモリ回路部106LGに一旦蓄積される。その後、該増幅信号AM2に応じた第1-2信号(102S2)が第二列読出部102LGより読み出される。
 次に、フローティングディフュージョン容量(CFD)203の容量と横型オーバーフロー蓄積容量(CLOFIC)204の容量とを足し合わせた、容量値の大きい容量において蓄積されている電荷量(電荷信号)は相当する電圧値に対応する電圧信号に変換されて、画素部101から第二の信号(A1-2)として出力される。
 上記出力された第二の信号(A1-2)は、第三列読出部102Nに入力される。前記入力された第二の信号(A1-2)は、アナログメモリ回路部106Nに一旦蓄積される。その後、該蓄積された第二の信号(A1-2)に応じた第2信号(102SN)が第三列読出部102Nより読み出される。
 読出部102からの読出信号は水平方向に設置された走査回路(不図示)によって列を順次選択されて読出される。
 ここで、各列読出部にADC(A/D変換手段)を設け、デバイスチップ内で列毎に各信号をアナログ-デジタル変換し、デジタル信号をデバイスチップ外に読出しても良い。
 本発明において、第一の信号(A1-1)は、超極微小量の照射光量域で得られた信号(超低照度下での超高感度受光信号)か、該超極微小量の照射光量域の光量を超えた光量の照射光量域で得られた信号(低照度下での高感度受光信号)かによって、増幅される増幅率が異なる。
 本発明においては、その増幅率の切換えの基準は、第一の信号(A1-1)の信号の大きさのレベルに合わせて所望に従って適宜決めることができるが、例えば、信号レベルの大きさが電荷量で250電子程度の場合は、1よりも大きいゲインの値(増幅率)は、16倍のゲイン値とするのが好ましい。
 本発明の試作デバイスでは、例えば、高ゲインアンプ105HGの増幅率は16倍とし、低ゲインアンプ105LGの増幅率は1倍とした。
 ただし、第1-1信号(102S1)と第1-2信号(102S2)とを合成する際の信号/ノイズ比が第1-1信号(102S1)と第1-2信号(102S2)のどちらも一定値以上にするために、高ゲインアンプ105HGと低ゲインアンプ105LGの増幅率の差を一定以内に保つ範囲であれば、高ゲインアンプ105HGの信号増幅率は、読出部102の下流の回路で発生するノイズの影響を低減するために高い方が望ましい。本発明においては、「1」より大きい増幅率とするのが望ましい。
 以上のことにより、感度の高い第1-1信号(102S1)、次に感度の高い第1-2信号(102S2)、さらに高飽和な第2信号(102N)を合成して第1-1信号(102S1)の高感度信号を得ると共に、広いダイナミックレンジにおける撮像信号を一回の露光期間によって得ることが出来る。
 即ち、「第1-1信号(102S1)」「第1-2信号(102S2)」「第2信号(102N)」を合成した信号が「撮像信号」であって、その「撮像信号」は、1回の露光時間内に高感度で広ダイナミックに、詰り、「撮像信号」は、1回の露光期間で、1光子程度の暗部画素からの信号から高照度の画素からの信号まで広範囲に得られる。この点を概念的に説明するための図が、図7、図8である。
 図7は、第1-1信号(102S1)、第1-2信号(102S2)、第2信号(102N)の光電変換特性を説明するための模式的説明概念図である。
 図8はフローティングディフュージョン入力換算のノイズ電子数と、誤読出し確率との関係を示すグラフである。
 ここで、フローティングディフュージョンに入力された光電荷を一つずつ読出しできた場合を正しい読出しと定義した。
 入力換算ノイズ電子数を0.26個以下とすると誤読出し確率を5%より小さくすることができ実質的に問題なく1光子毎の精度で信号を読み出せることを見出した。また、さらに、入力換算ノイズ電子数を好適には0.20個以下とすると誤読出し確率を1%より小さくすることができることも見出した。
 これらのことは、デバイス設計・シミュレーション・製造・デバイス駆動・分析・検討を種々繰り返すことで確認された。
 図9は入力換算ノイズ電子数と電荷電圧変換ゲインとの関係を示すグラフである。
 図10、図11を用いて、以下、本発明に係る撮像装置により撮像し、該撮像した画像に基づく画像信号を読み出す方法を説明する。
 ここで、以下に記載の本発明におけるデバイスの画素信号出力方法はソースフォロア型のスイッチ(SF)208と列電流源108とで構成されるソースフォロア回路による画素信号出力方法である。
 本発明においては、この画素信号出力方法に限定されることはなく、画素出力線103をリセットした後に浮遊状態にして、ソースフォロア型のスイッチ(SF)を画素出力線103に寄生する容量負荷によって駆動させ画素信号出力を行う浮遊容量負荷読出し方法を用いても良い。
 図10は、1画素の信号を読み出す場合のタイミング図である。図10において、転送用スイッチ手段(T)202がON・OFF(パルスST1)し、次にON・OFF(パルスST2)する際、最初のON・OFFのOFF時点から、次のON・OFFのON時点までの期間は、蓄積期間(ST)である。
T1~T5はアナログメモリへの信号サンプリング終了のタイミングである。
 アナログメモリへの信号サンプリング開始は、該当のパルスのON時である。オーバーフロー用スイッチ手段(S)205、画素選択スイッチ手段(X)207がそれぞれ所定時間(t1、t2)ON状態を維持している期間に、リセット用スイッチ手段(R)206、転送用スイッチ手段(T)202が順次ONされ、それぞれの所定時間(t3、t4)ON状態を維持する。
 オーバーフロー用スイッチ手段(S)205、画素選択スイッチ手段(X)207のOFFのタイミングは、オーバーフロー用スイッチ手段(S)205がOFFされた後に、画素選択スイッチ手段(X)207がOFFされる。
 オーバーフロー用スイッチ手段(S)205がOFFされる前にリセット用スイッチ手段(R)206、転送用スイッチ手段(T)202がON・OFF(パルスSR1,パルスST1)する。
 転送用スイッチ手段(T)202のON・OFFのタイミングは、リセット用スイッチ手段(R)206のON・OFF期間(「所定時間(t3)」)内にとられる。
 転送用スイッチ手段(T)202、リセット用スイッチ手段(R)206、オーバーフロー用スイッチ手段(S)205が順次OFFされた後、スイッチ手段(NS2)106N-1が所定時間(t5)ONされる。該所定時間(t5)経過後、スイッチ手段(NS2)106N-1はOFFされる。
 このスイッチ手段(NS2)106N-1のOFFのタイミングは、オーバーフロー用スイッチ手段(S)205がOFFされる前である。その後、画素選択スイッチ手段(X)207がOFFされる。
 画素選択スイッチ手段(X)207が再びONされると、先ず、スイッチ手段(SW/AMPEN)104HG、スイッチ手段(SW/AMPEN)104LGが、ONになる。
 次いで、スイッチ手段(NS1H)106HG-1とスイッチ手段(NS1)106LG―1が同時にON・OFF(パルスSHG1,パルスSLG1)する。
 次いで、転送用スイッチ手段(T)202がON・OFF(パルスST2)し、その後、スイッチ手段(SS1H)106HG-3とスイッチ手段(SS1)106LG-3が同時にONする。
 スイッチ手段(SS1H)106HG-3とスイッチ手段(SS1)106LG-3がこのON状態から同時にOFFした後のタイミングでスイッチ手段(SW/AMPEN)104HG、スイッチ手段(SW/AMPEN)104LGがOFF(パルスSAM1,パルスSAM2)する。
 このスイッチ手段(SW/AMPEN)104HG、スイッチ手段(SW/AMPEN)104LGがOFFした後に、オーバーフロー用スイッチ手段(S)205がON(パルスSS2)し、次にスイッチ手段(SS2)106N-3がON・OFF(パルスSSS2)する。
 次いで、リセット用スイッチ手段(R)206、転送用スイッチ手段(T)202が、順次ONになる。
 このオーバーフロー用スイッチ手段(S)205がON状態にある期間(パルスSS2の幅t1)に、転送用スイッチ手段(T)202、リセット用スイッチ手段(R)206が順次OFF(パルスST3、パルスSR2)になる。
次にスイッチ手段(NS2)106N-1がON・OFF(パルスSNS22)する。このスイッチ手段(NS2)106N-1がOFF(パルスSNS22)した後にオーバフロースイッチ手段(S)205がOFF(パルスSS2)する。
 ここで、蓄積期間(ST)内に、PD201の飽和電荷量を超える光電荷量がPD201で発生した場合には、光電荷はPD201から転送用スイッチ手段(T)202のポテンシャル障壁を超えて容量(CFD )203へオーバーフローされる。さらに、容量(CFD )203の飽和電荷量を超える光電荷量が容量(CFD )203へオーバーフローされた場合、光電荷は、容量(CFD)203からスイッチ手段(S)205のポテンシャル障壁を超えて蓄積容量(CLOFIC)204へオーバーフローされる。
 スイッチ手段(X)207がONしている期間(パルスSX1,パルスSX2のパルス幅t2に相当)は、その画素は列出力線103と結合し、以下の信号が順次出力される。
 スイッチ手段(SW/AMPEN)104HG,スイッチ手段(SW/AMPEN)104LGがONしている際に、ゲインアンプ105HGおよびゲインアンプ105LGがアクティブになる。
 転送用スイッチ手段(T)202がONする前で且つ蓄積期間(ST)内で、
スイッチ手段(SW/AMPEN)104HG及びスイッチ手段(SW/AMPEN)104LGをONさせる。
 その後、スイッチ手段(NS1H)106HG-1およびスイッチ手段(NS1)106LG-1をON・OFF(パルスSHG1,パルスSLG1)させて、第1-1BG信号、第1-2BG信号をそれぞれ読出し、其々の信号を該当する容量(N1H)106HG-2及び容量(N1)106LG-2に保持する。
 ここで、第1-1信号、第1-2信号には、容量(CFD)203のリセット雑音、スイッチ手段(SF)208の閾値ばらつき及びゲインアンプ105HG、ゲイン105LGのオフセット電圧に相当する信号(ノイズ信号)が含まれる。
 次に、転送用スイッチ手段(T)202をON・OFF(パルスST2)させて、受光することによりPD201内に発生した電荷(「光電荷」ということもある)をフローティングディフュージョン容量(CFD)203へ完全転送させる。
 この時、光電荷の電荷量が容量(CFD)203の飽和電荷量よりも大きい場合には、スイッチ手段(S)205のポテンシャルを超えて蓄積容量(CLOFIC)204に過飽和量の光電荷がオーバーフローする。容量(CFD)203に転送された電荷量の光電荷は、容量(CFD)203の容量値に応じて電荷電圧変換される。
 転送用スイッチ手段(T)202がOFFした(パルスST2のOFF)後に、スイッチ手段(SS1H)106HG-3およびスイッチ手段(SS1)106LG-3をON・OFF(パルスSHG3,パルスSLG3)させて、第1-1光信号、第1-2光信号をそれぞれ読出し、其々に該当する容量(S1H)106HG-4、容量(S1)106LG-4に保持する。この信号読み出し終了タイミングT3は、スイッチ手段(SS1H)106HG-3およびスイッチ手段(SS1)106LG-3のOFF時である。
 ここで、第1-1光信号、第1-2光信号には、それぞれ第1-1BG信号、第1-2BG信号に加えて、容量(CFD)203に転送された光電荷の電荷量に応じて発生した信号が加算されており、後段の回路で相間二重サンプリング処理、すなわち第1-1光信号から第1-1BG信号を減算し、第1-2光信号から第1-2BG信号を減算することで、光電荷の電荷量に応じて発生した信号のみをそれぞれ得る。当然のことながら、ゲインアンプ105HG、105LGには相関二重サンプリング機能を有するゲインアンプを用いてもよい。
 第1-1光信号を容量(S1H)106HG-4に、第1-2光信号を容量(S1)106LG-4へそれぞれ読出した後、スイッチ手段(SW/AMPEN)104HG,スイッチ手段(SW/AMPEN)104LGをそれぞれOFFさせて、ゲインアンプ105HGおよび105LGを非アクティブにする。
 その後、スイッチ手段(S)205をONさせて、容量(CFD)203と蓄積容量(CLOFIC)204のポテンシャルを結合する。
この時、蓄積期間(ST)内ないしは蓄積期間(ST)内と転送期間(TT)内に、容量(CFD)203からオーバーフローして蓄積容量(CLOFIC)204に蓄積されている電荷がある場合には、蓄積容量(CLOFIC)204に蓄積されている電荷量の電荷と容量(CFD)203に転送されて蓄積されている電荷量の電荷とがスイッチ手段(S)205を介して混ざり合い、蓄積容量(CLOFIC)204と容量(CFD)203の合計の容量によって電荷電圧変換される。
 容量(CFD)203からオーバーフローがなく蓄積容量(CLOFIC)204に電荷が蓄積されてない場合には、容量(CFD)203に転送された電荷量の電荷が蓄積容量(CLOFIC)204と容量(CFD)203の合計の容量によって電荷電圧変換される。
 ここで、転送用スイッチ手段(T)202がパルスST2でON・OFFする動作でOFFした時点からフォトダイドード(PD)201に蓄積されている光電荷を容量(CFD)203と蓄積容量(CLOFIC)204に転送させるために、スイッチ手段(S)205がONしている状態で転送用スイッチ手段(T)202をON・OFFさせる動作を入れても良い。
 その後、スイッチ手段(S)205がONとなっている期間(t1)内に、スイッチ手段(SS2)106N-3をON・OFF(パルスSSS2)させることで、第2光信号を容量(S2)106N-4に読出し、保持する。この際の読み出し終了タイミングはT4である。
 次いで、スイッチ手段(R)206をONさせて蓄積容量(CLOFIC)204および容量(CFD)203のリセットを開始する。
 その後、転送用スイッチ手段(T)205をONさせてPD201のリセットを開始する。
 次いで、スイッチ手段(R)206をOFFさせて蓄積容量(CLOFIC)204および容量(CFD)203のリセットを完了する。
 この時、蓄積容量(CLOFIC)204および容量(CFD)203にはそれぞれリセット雑音が取り込まれるが、前述のようにして除去して受光量に応じた信号のみとすることが出来る。
 その後、スイッチ手段(NS2)106N-1をON・OFF(パルスSNS22)させることで、第2BG信号を容量(N2)106N-2に読出し、保持する。
 その後、スイッチ手段(S)205をOFFさせて、蓄積容量(CLOFIC)204と容量(CFD)203のポテンシャルを非結合する。
 次いで、スイッチ手段(X)207をOFFさせて、画素を出力線から切り離し、別の行の画素の読出し期間に移る。
 図11は、図1若しくは図12の例において、1画素の信号を読み出す(撮像する)場合の手順を説明するためのフロー図である。図11に示された手順は、コンピュータプログラムによって動作する図示しない制御回路によって実行されるものとする。
 撮像が開始される(ステップ801)と、信号出力の準備前か否か(ステップ802)が判断される。信号出力の準備前であれば、第1-1信号102S1、第1-2信号102S2、第2信号102Nの光電変換特性の取得ステップ803に移行する。各信号の光電変換特性の取得が完了すると、ステップ804に移行する。ステップ80で信号出力の準備前でなければ、ステップ804に移行する。ステップ804では、画素信号の取得開始か否かが判断される。画素信号の取得が開始される、取得された画素信号はステップ805において、蓄積される。画素信号の取得開始が否の場合は、再度、ステップ804に戻って画素信号の取得開始か否かが判断される。ステップ804で蓄積された各信号(第1-1信号102S1、第1-2信号102S2、第2信号102N)は、ステップ806で、次段階の回路へ転送されるために出力される。
 次いで、第1-1信号102S1、第1-2信号102S2、第2信号102Nの出力の組み合わせから撮像面の照度を表す信号を導出する(ステップ807)。その後、導出された信号を所定の回路に転送するために出力し(ステップ808)、一連の読み取り動作を完了する(ステップ809)。
 本発明に係る試作デバイスAでは、列回路部102に高ゲインアンプを用いることで、フローティングディフュージョン入力換算のノイズ電圧を60μVにすることが出来た。
 電荷電圧変換ゲインを230μV/e-とした時に入力換算ノイズ電子数を0.26個とすることが出来、実質的に問題なく1光子毎の精度で信号を読み出すことが出来た。
 また、電荷電圧変換ゲインを300μV/e-とした時に入力換算ノイズ電子数を0.20個とすることが出来た。
 ここで、電荷電圧変換ゲインとフローティングディフュージョン容量との関係は以下の式で与えられる。
 CG=q/CFD・・・・・・(1)
 尚、「CG」は電荷電圧変換ゲインを、「q」は素電荷を、「CFD」はフローティン グディフュージョン容量を示す。
 上記の試作デバイスAの試作においては、これまでに説明してきた通り、ゲート電極とn型拡散層とのオーバーラップを物理的に縮小するために、通常LDDと呼ばれる、ゲート電極のサイドウォール形成前にn型の不純物を注入して形成するn型領域(LDD)を形成しない作成フローを用いた。
 また、サイドウォール形成後にn型不純物を1015 cm-2オーダーの高ドーズで打ち込むイオン注入の工程を変更してn型不純物のドーズを6×1014 cm-2として低ドーズ化し、所定のn型拡散層(n型領域501-1,501-2,501-3)の濃度を低減した。
 これによりゲートオーバーラップ容量がさらに低減され、また、PN接合容量も低減することが出来た。即ち、試作デバイスAにおいては、フローティングディフュージョン容量は、0.5fF、電荷電圧変換ゲインは、320μV/e-、入力換算ノイズ電子数は、0.19個とすることが出来、1光子の精度で信号を読み出せた。また、第1-1信号、第1-2信号、第2信号を合成することで、1回の露光期間で、1電子から74000電子まで線形に撮像信号を得ることが出来た。
 次に、図12、図13によって、本発明を撮像装置に適用した場合の好適な実施態様の一例を示す。図12の例は、図1の例と本質的には同じである。
図12は、発明に係わるCMOSイメージセンサを撮像装置に適用した場合のセンサ部1200の好適な実施態様の一例を示す。
 図12においては、便宜上、第1列のN個分の画素回路と1列分の読み出し回路を示す回路図として示してあるが、画素回路列は、必要に応じてM列設けられ、それに応じて、読み出し回路も画素回路列毎に設けられる。或いは、信号処理がやや遅くはなるが、複数の画素回路列毎に読み出し回路を設けてもよい。この場合、前記複数の画素回路列の中の一つの画素回路列が読み出し動作中は、他の画素回路列と前記読み出し回路との間は転送ON-OFF手段によって画素信号が転送されないように工夫される。
 図12では、第1列目の列画素回路部1200-1と第一列目の列回路部102-1が示されている。
 列画素回路部1200-1は、N個の画素(回路)部(101-1~101-N)が、図示のごとく配列され、画素(回路)部(101-1~101-N)の夫々は、第1列目の画素列信号線103-1に列順に結線されている。
 図12においては、列画素回路部が一列だけ記載されているが、実際は、M列配列されている(1200-1~1200-M)(1200-2~1200-Mは不図示)。
 画素列信号線103-1の下流には、図1の場合と同様に、電流源108-1が結線されている。
 列回路部102-1は、図1の場合と同様に、高ゲインアンプを備えた第一列読出回路102HG-1、低ゲインアンプを備えた第二列読出回路102LG-1、第三列読出回路102Nで構成されている。
 又、列読出回路(102HG-1、102LG-1、102N)の夫々には、図1の場合と同様にアナログメモリ回路部(不図示)が設けてある。
 図12の場合の信号の読出し方法は、読出しをN行回繰り返す以外は図1で前述したのと同じである。
 図13は、図12に示す撮像装置の例のセンサ部全体を模式的に示す全体ブロック図である。
センサ部1300は、図1に示す画素回路部(一画素に相当する)101を備えた画素が「NxM」個、2次元配列されている画素アレイ1301、垂直(行)シフトレジスタ部1302、水平(列)シフトレジスタ部1303を備えている。
 画素アレイ1301の行方向に沿って、電流源108がM個配されている電流源列部1304、画素出力線リセット用スイッチ手段がM個配されているリセットスイッチ列部1305、アナログメモリ回路部106HGがM個配されている第1-1信号用アナログメモリ部1307、アナログメモリ回路部106LGがM個配されている第1-2信号用アナログメモリ部1309、アナログメモリ回路部106NがM個配されている第2信号用アナログメモリ部1309が夫々設けられている。
 列リセットスイッチ部1305と第1-1信号用アナログメモリ部1307との間には、16倍アンプ部1306が、また、第1-1信号用アナログメモリ部1307と第2信号用アナログメモリ部1309との間には、1倍アンプ列部1308が、其々設けられてある。
 ここで、16倍アンプ列部1306は、高ゲインアンプとして16倍の増幅率のアンプを採用し、1倍アンプ列部1308は、低ゲインアンプとして増幅率1倍のアンプを採用していることを意味している。
最終段バッファ1311は、水平シフトレジスタで順次選択される列におけるアナログメモリの保持信号を低出力インピーダンスでチップ外部に出力するためのバッファである。
 図12の変形例を図12A,図12Bを参照して説明する。
 図12A,図12Bにおいて、図12記載の手段と同等の手段には、図12の付番をそのまま使用している。
 図12Aには、図12の第一の変形例が示されている。
 図12Aに示すセンサ部1200Aにおいては、第一列目の列回路部102-1A、ゲイン選択手段1201、ゲイン切換手段1202以外は、図12に示すセンサ部1200と同じ構成である。そのため、センサ部1200Aにおいもセンサ部1200と同じ構成要素については同じ付番を使用している。
以下、センサ部1200Aについては、センサ部1200と異なる点のみを説明する。
 列回路部102-1Aは、第一列読出回路部102H/LG-1と第三列読出回路部102N-1を備えている。第一列読出回路部102H/LG-1は、 高ゲインアンプ(不図示)と低ゲインアンプ(不図示)とを備えており、入力される信号を何れかのアンプで増幅することが出来るようになっている。勿論、第一列読出回路部102H/LG-1には、図12のセンサ部1200の場合と同様にアナログメモリ回路部(不図示)が設けてある。該アナログメモリ回路部には、高ゲインアンプで増幅された信号用のメモリ手段と低ゲインアンプで増幅された信号用のメモリ手段が夫々設けてある。
 画素部101-1から出力される第一の信号A1-1は、信号線103-1を介して列回路部102-1Aに転送される際に、ゲイン選択部1201において対応するゲインが選択され、ゲイン切換部1202で選択されたゲインに切り替えられることで読出回路部102H/LG-1において選択されたゲインのアンプで増幅される。
 即ち、画素部101-1から出力される第一の信号A1-1は、図12の場合と同様に、超極微小量の照射光量域で得られた信号(超低照度下での超高感度受光信号)である場合は、高ゲインアンプで増幅された後、第1-1信号(102S1)として、前記超極微小量の照射光量域の光量を超えた光量の照射光量域で得られた信号(低照度下での高感度受光信号)の場合は、低ゲインアンプで増幅された後、第1-2信号(102S2)として、それぞれ第一列読出回路部102H/LG-1から読み出される。
第二の信号A1-2については、図12の場合と同様である。
 図12Aの例での撮像手順が図11Aに示される。
撮像が開始される(ステップ1101A)と、信号出力の準備前か否か(ステップ1102A)が判断される。信号出力の準備前であれば、第1-1信号(102S1)、第1-2信号(102S2)、第2信号(102N)の光電変換特性の取得及びゲイン切り替え信号レベルの設定のためにステップ1103Aに移行する。各信号の光電変換特性の取得とゲイン切り替え信号レベルの設定が完了すると、ステップ1104Aに移行する。
 信号出力の準備とは、この第1-1信号(102S1)、第1-2信号(102S2)、第2信号(102N)の光電変換特性の取得とゲイン切り替え信号レベルの設定を完了することである。
 信号出力の準備が既に完了している場合は、ステップ1103Aをスキップしてステップ1104Aに移行する。
 ステップ1104Aでは、画素信号の取得開始か否かが判断される。画素信号(「第一の信号(A1-1)」)の取得が開始されると、取得された画素信号はステップ1105Aにおいて、画素部(101-1~101-N)の所定の容量(FD容量やCLOFIC容量など)に蓄積される。画素信号の取得開始が否の場合は、再度、ステップ1104Aに戻って画素信号の取得開始か否かが判断される。
 第一の信号(A1-1)が蓄積されると、ステップ1107Aにおいて、前記第一の信号(A1-1)の信号レベルに合わせてゲイン選択手段1201Aにより対応のゲイン(増幅率)が選択され、ゲイン切り替え手段1202Aにより該当の選択されたゲインに切り替えられる。このゲインの切り替えに対応して第1-1信号(102S1)か第1-2信号(102S2)の何れかが第一列・第二列兼用読取部102H/LG-1Aから読み出される。
 本発明においては、第1-1信号(102S1)は超高感度信号として扱い、第1-2信号(102S2)は高感度信号として扱われる。超高感度信号は「1」を超えた増幅率で第一列・第二列兼用読取部102H/L-1Aにおいて増幅される。
 次に、該当の画素部から出力される第二の信号(A1-2)は、第三列読み取り部102N1一旦蓄積され、その後、第2信号(103S3)として信号読取経路部1200-2から外部に読み出される(ステップ1108A)。
 その後、読み出された第1-1信号(102S1)、第1-2信号(102S2)、第2信号(102N)の出力の組み合わせから撮像面の照度を表す信号(光信号)を導出する(ステップ1107A)。その後、導出された光信号を所定の回路に転送するために出力し(ステップ1110A)、一連の読み取り動作を完了(終了)する(ステップ1111A)。
 図12Bの例での撮像手順が図11Bに示される。
撮像が開始される(ステップ1101B)と、信号出力の準備前か否か(ステップ1102B)が判断される。信号出力の準備前であれば、第1-1信号(102S1)、第1-2信号(102S2)、第2信号(102N)の光電変換特性の取得及びゲイン切り替え信号レベルの設定のためにステップ1103Bに移行する。各信号の光電変換特性の取得とゲイン切り替え信号レベルの設定が完了すると、ステップ1104Bに移行する。
 信号出力の準備とは、この第1-1信号(102S1)、第1-2信号(102S2)、第2信号(102N)の光電変換特性の取得とゲイン切り替え信号レベルの設定を完了することである。
 信号出力の準備が既に完了している場合は、ステップ1103Bをスキップしてステップ1104Bに移行する。
 ステップ1104Bでは、画素信号の取得開始か否かが判断される。画素信号(「第一の信号(A1-1)」)の取得が開始されると、取得された画素信号はステップ1105Bにおいて、画素部(101-1~101-N)の所定の容量(FD容量やCLOFIC容量など)に蓄積される。画素信号の取得開始が否の場合は、再度、ステップ1104Bに戻って画素信号の取得開始か否かが判断される。
 第一の信号(A1-1)が蓄積されると、ステップ1106Bにおいて、前記第一の信号(A1-1)の信号レベルに合わせてゲインを設定する。
 設定したゲインを第一の信号(A1-1)に適用して、第1-1信号(102S1)と第1-2信号(102S2)の何れかの該当する信号を信号読出経路部1200-1Bから出力する(ステップ1107B)。
 次いで、該当の画素部から第二の信号(A1-2)の読出し時に、ゲインを「1」に設定する(ステップ1108B)。この設定ゲインを読取部102-1Bに入力される第二の信号(A1-2)に適用し、読取部102-1Bから第2信号を出力する(ステップ1109B)。
 次いで、読み出された第1-1信号(102S1)、第1-2信号(102S2)、第2信号(102N)の出力の組み合わせから撮像面の照度を表す信号(光信号)を導出する(ステップ1110B)。その後、導出された光信号を所定の回路に転送するために出力し(ステップ1111B)、一連の読み取り動作を完了(終了)する(ステップ1112B)。
 この実施態様例においても、第1-1信号(102S1)は超高感度信号として扱い、第1-2信号(102S2)は高感度信号として扱われる。超高感度信号は「1」を超えた増幅率で第一列・第二列兼用読取部102H/L-1Aにおいて増幅される。
 次に、図12Bについて説明する。
 図12Bには、図12の第二の変形例が示されている。
 図12Bに示すセンサ部1200Bにおいては、第一列目の列回路部102-1B、ゲイン選択手段1201B、ゲイン切換手段1202B以外は、図12に示すセンサ部1200と同じ構成である。そのため、センサ部1200Aにおいもセンサ部1200と同じ構成要素については同じ付番を使用している。
以下、センサ部1200Bについては、センサ部1200と異なる点のみを説明する。
 列回路部102-1Bは、高ゲインアンプ(不図示)と低ゲインアンプ(不図示)とを備えており、入力される信号を何れかのアンプで増幅することが出来るようになっている。更に、列回路部102-1Bは、上記のアンプを経由しない信号伝達経路(不図示)も備えている。該信号伝達経路を経て各画素部(1-1~1-N)から出力される第二の信号A1-1に対応した第2信号(102SN)が読み出される。
 画素部(1-1)101-1から出力される第一の信号A1-1は、その信号レベルの大きさに応じてゲイン選択部1201Bにおいて選択されるゲインにゲイン切換部1202Bにおいて切り換えられることで前記選択されたゲインで増幅されて、第1-1信号(102S1)若しくは第1-2信号(102S2)として列回路部102-1Bから読み出される。
 次に、本発明の光センサ部の最適設計の一例を図14A乃至図14Cを参照して説明する。
 図14Aは、画素回路部101に相当するデバイス構造の模式的上面レイアウトパターン図である。
 図14Bは、図14Aに示す断面線Aで切断した場合の模式的切断面、図14Cは、図14Aに示す断面線Bで切断した場合の模式的切断面図である。
 図14A乃至図14Cにおける英字記号等は、下記の通りに定義される。
  LFD・・・・フローティングディフュージョン長さ
  WFD・・・・フローティングディフュージョン幅
  LSF・・・・ソースフォロワゲート長さ
  WSF_D・・・・ソースフォロワゲートのドレイン側の幅
  WSF_S・・・・ソースフォロワゲートのソース側の幅
 図14Aには、図2の等価回路を備えた画素回路部101のデバイス構造の模式的なレイアウトパターンが示される。
 図14Aでは、図2と同等のものについては図2と同じ符番を使用している。
即ち、画素回路部101のデバイスは、フォトダイオード201(PD)、転送用スイッチ手段202(T)、フローティングディフュージョン容量203(FD)、オーバーフロー用のスイッチ手段205(S)、リセット用スイッチ手段206(R)、画素選択スイッチ手段207(X)、ソースフォロワ型スイッチ手段208(SF)を備えている。
 図14Aには、更に、画素回路部101のデバイスの以下の構成要素に関して符番がつけられている。
・フォトダイオード201の受光面領域201-14APD、
・転送用スイッチ手段202のゲート電極領域202-14AT、
・フローティングディフュージョン容量203のFD領域203-14AFD,
・オーバーフロー用のスイッチ手段205のゲート電極領域205-14AS、
・リセット用スイッチ手段206のゲート電極領域206-14AR、
・画素選択スイッチ手段207のゲート電極領域207-14AX,
・ソースフォロワ型スイッチ手段208のゲート電極領域208-14ASF、
・転送信号фT印加用電極領域1401、
・スイッチ信号фS印加用電極領域1402、
・横型オーバーフロー蓄積容量204(CLOFIC)へ電荷信号を転送するための電極領域1403、
・リセント信号фR印加用電極領域1404、
・リセット電圧V印加用の電極領域1405、
・画素信号出力用の電極領域1406、
・画素選択スイッチ信号фX印加用の電極領域1407、
・電源電圧AVDD印加用の電極領域1408
 フローティングディフュージョン容量203の構成因子である転送用スイッチ手段202とフローティングディフュージョン容量203のFD領域203-14AFDとのオーバーラップ容量及びオーバーフロー用のスイッチ手段205とフローティングディフュージョン容量203のFD領域203-14AFDとのオーバーラップ容量は、それぞれフローティングディフュージョン幅(WFD)に比例する。また、フローティングディフュージョン容量203の構成因子であるフローティングディフュージョン容量203の構成要素であるn+拡散層とp型領域とで形成されるPN接合容量は「WFD」と「LFD」に比例する。
 以上からフローティングディフュージョン容量203の容量値を低減してコンバージョンゲインを向上させるには「WFD」と「LFD」は小さくした方が望ましい。
 次に、本発明に係わるデバイスの試作と特性測定を行ったので以下に記述する。
 「WFD」、「LFD」の値を変更した画素の設計と試作を繰り返し行って、「WFD」、「LFD」の値を種々変更した場合のフローティングディフュージョン容量を測定した。
 このとき、「WSF_D」、「WSF_S」、「LSF」の値はそれぞれ0.30μm, 0.30μm, 0.50μmとし、試作した「SF」のゲインは0.92とした。
試作した画素のフローティングディフュージョン容量の測定の結果、表1および図15に示す特性を得た。
 図15に示す傾向から、0.69fF以下のCFDを得る、すなわちコンバージョンゲインが230μV/e-以上となり好適な結果を得るには、「WFD」、「LFD」が以下の条件式1を満たせばよいことが明らかになった。
Figure JPOXMLDOC01-appb-I000001
また、0.53fF以下のCFDを得る、すなわちコンバージョンゲインが300mV/e-以上となるより好適な結果を得るには、「WFD」、「LFD」が以下の条件式2を満たせばよいことが明らかになった。
Figure JPOXMLDOC01-appb-I000002
尚、ここで「WFD」、「LFD」の単位はμmであるが、条件式1,2には、「WFD」、「LFD」の無名数が用いられる。
 図15において、「○」はより好ましいサンプル、□は好ましいサンプル、◆は比較サンプルを示す。
 図15において、領域Xは好ましいサンプルが得られる領域、領域Yはより好ましいサンプルが得られる領域を示す。
Figure JPOXMLDOC01-appb-T000003
100・・・光センサ部
101、101-1~101-N・・・・画素部
102、102-1、102-1A,102-1B・・・読出部
102HG、102HG-1・・・第一列読出部
102LG,102LG-1・・・第二列読出部
102N、102N-1・・・第三列読出部
102H/LG-1A・・・第一列、二列兼用読出部
102S1・・・第1-1信号
102S2・・・第1-2信号
102SN・・・第2信号
103、103-1・・・画素列出力信号線
104HG・・・スイッチ手段(SW/AMPEN)
104LG・・・スイッチ手段(SW/AMPEN)
105HG・・・高ゲインアンプ
105LG・・・低ゲインアンプ
106HG・・・アナログメモリ回路部
106LG・・・アナログメモリ回路部
106N・・・アナログメモリ回路部
106HG-1・・・スイッチ手段(NS1H)
106LG-1・・・スイッチ手段(NS1)
106N-1・・・スイッチ手段(NS2)
106HG-2・・・容量(N1H)
106LG-2・・・容量(N1)
106N-2・・・容量(N2)
106HG-3・・・スイッチ手段(SS1H)
106LG-3・・・スイッチ手段(SS1)
106N-3・・・スイッチ手段(SS2)
106HG-4・・・容量(S1H)
106LG-4・・・容量(S1)
106N-4・・・容量(S2)
107HG・・・第1-1信号用信号線
107LG・・・第1-2信号用信号線
107N1・・・画素列出力信号線から分岐した第2信号用信号線
108、108-1・・・電流源
200-1~200-3・・・(ゲート)オーバーラップ容量
201・・・フォトダイオード(PD)
202・・・転送用スイッチ手段(T)
202-1・・・転送用スイッチ手段(T)の電極
203・・・フローティングディフュージョン容量(CFD
204・・・横型オーバーフロー蓄積容量(CLOFIC
204-1・・・横型オーバーフロー蓄積容量(CLOFIC)の電極
205・・・オーバーフロー用スイッチ手段(S)
205-1・・・オーバーフロー用スイッチ手段(S)の電極
206・・・リセット用スイッチ手段(R)
206-1・・・リセット用スイッチ手段(R)の電極
207・・・画素選択スイッチ手段(X)
207-1・・・画素選択スイッチ手段(X)の電極
208・・・ソースフォロア型のスイッチ手段(SF)
208-1・・・ソースフォロア型のスイッチ手段(SF)の電極
300・・・p-型epi基板
301A1、301A2、301B1、301B2・・・MOSトランジスタ
302・・・拡散層(n+型領域)
303A、303B・・・ゲート電極
304A、304B1,304B2・・・サイドウォール
305・・・LDD
306・・・絶縁膜層
400・・・p-型epi基板
401A1、401A2・・・MOSトランジスタ
402A・・・拡散層(n+型領域)
403A,403B・・・ゲート電極
404A、404B1,403B2・・・サイドウォール
500・・・光入力センサ部
500-1・・・n型シリコン(n-Si)基体
500-2・・・p型シリコン層
501-2~501-3・・・不純物量低減化n型領域
502-1~502-5・・・n+型領域
503-1~503-6・・・LDD
504・・・FD拡散層部
505・・・画素SF部
506-1~506-4・・・素子分離領域
507-1~507-3・・・p型埋め込み領域
508・・・n型領域
509・・・p+型領域
510・・・STI周辺p+型領域
511、512・・・n-型領域
601-1~601-3・・・LDD形成用フォトレジスト
602-1~602-11・・・サイドウォール
603-1~603-2・・・S/D拡散層形成用フォトレジスト
604-1~604-3・・・S/D高濃度拡散層形成用フォトレジスト
605-1~605-2・・・配線層間絶縁体層
606-1~606-3・・・コンタクト電極
607-1~607-2・・・メタル配線
608-1~608-4・・・LDD
609-1,609-2・・・拡散層
1200、1200A,1200B・・・光センサ部
1200-1・・・画素部列
1200-2、1200-2A,1200-2B・・・信号読出経路部
1201,1201B・・・ゲイン選択手段
1202,1202B・・・ゲイン切換手段
1300・・・光センサ部
1301・・・画素アレイ
1302・・・垂直シフトレジスタ
1303・・・水平シフトレジスタ
1304・・・電流源列部
1305・・・画素出力線リセットスイッチ列部
1306・・・16倍アンプ部
1307・・・第1-1信号用アナログメモリ部
1308・・・1倍アンプ列部
1309・・・第1-2信号用アナログメモリ部
1310・・・第2信号用アナログメモリ部
1311・・・最終段バッファ
201-14APD・・・フォトダイオード201の受光面領域
202-14AT・・・転送用スイッチ手段202のゲート電極領域
203-14AFD・・・フローティングディフュージョン容量203のFD領域
205-14AS・・・オーバーフロー用のスイッチ手段205のゲート電極領域
206-14AR・・・リセット用スイッチ手段206のゲート電極領域
207-14AX・・・画素選択スイッチ手段207のゲート電極領域
208-14ASF・・・ソースフォロワ型スイッチ手段208のゲート電極領域
1401・・・転送信号фT印加用電極領域
1402・・・スイッチ信号фS印加用電極領域、
1403・・・横型オーバーフロー蓄積容量204(CLOFIC)へ電荷信号を転送するための電極領域
1404・・・リセント信号фR印加用電極領域
1405・・・リセット電圧VR印加用の電極領域
1406・・・画素信号出力用の電極領域
1407・・・画素選択スイッチ信号фX印加用の電極領域
1408・・・電源電圧AVDD印加用の電極領域

Claims (6)

  1.  受光素子と電荷を蓄積する蓄積容量と前記受光素子に入力する光によって発生する電荷を前記蓄積容量に転送するための転送スイッチと画素信号出力線、を有し、前記画素信号出力線に信号読出経路が接続されていて、
     前記蓄積容量は、フローティングディフュージョン(CFD)容量と横型オーバーフロー蓄積(CLOFIC)容量で、前記転送スイッチは、LDD・MOSトランジスタであり、
    該LDD・MOSトランジスタのドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
        1< N/ND ≦100・・・・・(1)
        0< N ≦ 1.0×1020 cm-3・・・・・(2)
    の関係にあり、
    前記信号読出経路には、前記CFD容量によって電荷電圧変換された第1の画素出力信号と前記CFD容量と前記CLOFIC容量とを結合して電荷電圧変換された第2の画素出力信号とが入力され、
    前記第1の画素出力信号が、超高感度信号の場合は、1より大きい増幅率で増幅することを特徴とする光センサ。
  2.  受光素子と、電荷を蓄積する蓄積容量と、前記受光素子に入力する光によって発生する電荷を前記蓄積容量に転送するための転送スイッチと、を有する画素部が平面的に複数配されていて、
    前記蓄積容量が、フローティングディフュージョン(CFD)容量と横型オーバーフロー蓄積(CLOFIC)容量で、前記転送スイッチは、LDD・MOSトランジスタであり、該LDD・MOSトランジスタのドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
        1< N/ND ≦100・・・・・(1)
        0< N ≦ 1.0×1020 cm-3・・・・・(2)
    の関係にある画素部列;
    前記画素部の夫々が順次結線されている画素信号出力線;、
    前記画素信号出力線の前記画素部列における配列最後の画素部が結線されている位置より下流の位置で前記画素信号出力線に結線されているとともに、1より大きい増幅率とこれとは異なる増幅率を使い分けて増幅する機能を備えている信号読出経路部;
    を有し、
     前記信号読出経路部には、前記フローティングディフュージョン(CFD)容量によって電荷電圧変換された第1の画素出力信号と前記フローティングディフュージョン(CFD)容量と横型オーバーフロー蓄積(CLOFIC)容量とを結合して電荷電圧変換された第2の画素出力信号と、が入力される、ことを特徴とするマルチ画素の光センサ。
  3.  受光素子と電荷を蓄積する蓄積容量と前記受光素子に入力する光によって発生する電荷を前記蓄積容量に転送するための転送スイッチと、を画素部毎に有し、
     前記蓄積容量は、フローティングディフュージョン容量と横型オーバーフロー蓄積容量であり、前記転送スイッチは、LDD・MOSトランジスタであり、
    そのドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
        1< N/ND ≦100・・・・・(1)
        0< N ≦ 1.0×1020 cm-3・・・・・(2)
    の関係にあり、
     各画素部が、結線されている画素信号出力線と、
     該画素信号出力線に結線されている信号読出経路と、
    を具備する光センサを用い、
     前記フローティングディフュージョン容量によって読出しに寄与する電荷量の電荷を電荷電圧変換して第1の画素出力信号を形成し、前記フローティングディフュージョン容量と前記横型オーバーフロー蓄積容量とを結合し読出しに寄与する電荷量の電荷を電荷電圧変換して第2の画素出力信号を形成し、これら2つの画素出力信号を前記信号読出経路に入力し、
     前記第1の画素出力信号は、前記信号読出し経路において1より大きい増幅率のアンプの少なくとも1つを含む複数のアンプによって増幅する、ことを特徴とする光センサの信号読み出し方法。
  4.  受光素子(PD)、転送用のスイッチ(T)、オーバーフロー用のスイッチ(S)、リセット用のスイッチ(R)がこの順で直列に結線されており、前記転送用のスイッチ(T)と前記オーバーフロー用のスイッチ(S)との間の結線に結線されたフローティングディフュージョン容量(CFD)とソースフォロア型のスイッチ(SF)と、前記オーバーフロー用のスイッチ(S)と前記リセット用のスイッチ(R)との間の結線に結線された横型オーバーフロー蓄積容量(CLOFIC)と、を有し、
     前記ソースフォロア型のスイッチ(SF)は、MOSトランジスタであり、
     前記転送用のスイッチ(T)は、ドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
       1< N/ND ≦100・・・・・(1)
       0< N ≦ 1.0×1020 cm-3・・・・・(2)
    の関係にある、
    複数の画素部;
    を有し、該複数の画素部の前記受光素子(PD)は、2次元的に配されて画素アレイを構成し、
    前記複数の画素部が順次結線されている画素列出力信号線;
    を有し、
    該画素列出力信号線に結線された読取部;
    を有し、該読取部には、前記フローティングディフュージョン容量(CFD)によって電荷電圧変換された第1の画素出力信号と前記フローティングディフュージョン容量(CFD)と横型オーバーフロー蓄積容量(CLOFIC)とを結合して電荷電圧変換された第2の画素出力信号とが入力され、
    前記第1の画素出力信号は前記信号読出し経路において1より大きい増幅率のアンプの少なくとも1つを含む複数のアンプによって増幅されることを特徴とする撮像装置。
  5.  受光素子(PD)、転送用のスイッチ(T)、オーバーフロー用のスイッチ(S)、リセット用のスイッチ(R)がこの順で直列に結線されており、前記転送用のスイッチ(T)と前記オーバーフロー用のスイッチ(S)との間の結線に結線されたフローティングディフュージョン容量(CFD)とソースフォロア型のスイッチ(SF)と、前記オーバーフロー用のスイッチ(S)と前記リセット用のスイッチ(R)との間の結線に結線された横型オーバーフロー蓄積容量(CLOFIC)と、を有し、
     前記ソースフォロア型のスイッチ(SF)は、MOSトランジスタであり、
     前記転送用のスイッチ(T)は、ドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
        1< N/ND ≦100・・・・・(1)
        0< N ≦ 1.0×1020 cm-3・・・・・(2)
    の関係にある、
    複数の画素部;
    を有し、該複数の画素部の前記受光素子(PD)は、2次元的に配されて画素アレイを構成し、
    前記複数の画素部が順次結線されている画素列出力信号線と、
    該画素列出力信号線に結線された読取部;
    と、を具備した撮像装置を用意し、
     前記フローティングディフュージョン容量(CFD)によって読出しに寄与する電荷量の電荷を電荷電圧変換して第1の画素出力信号を形成し、前記フローティングディフュージョン容量(CFD)と横型オーバーフロー蓄積容量(CLOFIC)とを結合し読出しに寄与する電荷量の電荷を電荷電圧変換して第2の画素出力信号を形成し、これら2つの画素出力信号を前記信号読出し経路に入力し、
    前記第1の画素出力信号は、前記信号読出し経路において1より大きい増幅率のアンプの少なくとも1つを含む複数のアンプによって増幅する、ことを特徴とする撮像装置の信号読み出し方法。
  6. (1)光電変換機能を備えた画素部;
     該画素部は、光電変換された電荷を蓄積する蓄積容量と前記電荷を前記蓄積容量に転送するための転送スイッチとを備え、
     前記蓄積容量は、フローティングディフュージョン(CFD)容量と横型オーバーフロー蓄積(CLOFIC)容量で、前記転送スイッチは、LDD・MOSトランジスタであり、
    該LDD・MOSトランジスタのドレイン領域における半導体不純物の濃度(ND)と該ドレイン領域に隣接して設けられた拡散領域における半導体不純物の濃度(N)とが、
        1< N/ND ≦100・・・・・(1)
        0< N ≦ 1.0×1020 cm-3・・・・・(2)
    の関係にある、
    (2)前記画素部に結線されている画素信号出力線;
    (3)前記画素信号出力線に接続されている信号読出経路;
    該信号読出経路には、前記CFD容量によって電荷電圧変換された第1の画素出力信号と前記FD容量と前記CLOFIC容量とを結合して電荷電圧変換された第2の画素出力信号とが入力され、
    前記第1の画素出力信号が、超高感度信号の場合は、1より大きい増幅率で増幅する、
    ことを特徴とする光センサ。
PCT/JP2016/080025 2016-10-07 2016-10-07 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法 WO2018066143A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680089904.3A CN109804466B (zh) 2016-10-07 2016-10-07 光传感器及其信号读出方法和固体摄像装置及其信号读出方法
KR1020197009933A KR102268948B1 (ko) 2016-10-07 2016-10-07 광 센서 및 그 신호 판독 방법 그리고 고체 촬상 장치 및 그 신호 판독 방법
JP2018543573A JP6948074B2 (ja) 2016-10-07 2016-10-07 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法
US16/339,438 US10720467B2 (en) 2016-10-07 2016-10-07 Optical sensor and signal readout method therefor, and solid-state image pickup device and signal readout method therefor
PCT/JP2016/080025 WO2018066143A1 (ja) 2016-10-07 2016-10-07 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080025 WO2018066143A1 (ja) 2016-10-07 2016-10-07 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法

Publications (1)

Publication Number Publication Date
WO2018066143A1 true WO2018066143A1 (ja) 2018-04-12

Family

ID=61831711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080025 WO2018066143A1 (ja) 2016-10-07 2016-10-07 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法

Country Status (5)

Country Link
US (1) US10720467B2 (ja)
JP (1) JP6948074B2 (ja)
KR (1) KR102268948B1 (ja)
CN (1) CN109804466B (ja)
WO (1) WO2018066143A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3675480A1 (en) * 2018-12-25 2020-07-01 Brillnics Inc. Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JPWO2021044770A1 (ja) * 2019-09-06 2021-03-11
WO2023238914A1 (ja) * 2022-06-08 2023-12-14 国立大学法人東北大学 撮像素子及びその駆動方法
WO2024106191A1 (ja) * 2022-11-15 2024-05-23 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および製造方法、並びに電子機器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186398A (ja) * 2017-04-26 2018-11-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置、および電子機器
JP7072362B2 (ja) * 2017-09-26 2022-05-20 ブリルニクス シンガポール プライベート リミテッド 固体撮像装置、固体撮像装置の駆動方法、および電子機器
WO2019096420A1 (en) * 2017-11-20 2019-05-23 Ecole Polytechnique Fédérale De Lausanne Epfl-Tto Pixel sensor cell for cmos image sensors with enhanced conversion gain at high dynamic range capability
JPWO2021166584A1 (ja) * 2020-02-18 2021-08-26
US20220191416A1 (en) * 2020-12-14 2022-06-16 Omnivision Technologies, Inc. Pixel level expandable memory array for voltage domain global shutter
US12022221B2 (en) 2021-11-25 2024-06-25 Samsung Electronics Co., Ltd. Image sensor
US20240205556A1 (en) * 2022-12-14 2024-06-20 Samsung Electronics Co., Ltd. Image sensor having high dynamic range

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083790A1 (ja) * 2004-02-27 2005-09-09 Texas Instruments Japan Limited 固体撮像装置、ラインセンサ、光センサおよび固体撮像装置の動作方法
JP2008016723A (ja) * 2006-07-07 2008-01-24 Matsushita Electric Ind Co Ltd 固体撮像装置の製造方法および固体撮像装置
JP2009283649A (ja) * 2008-05-22 2009-12-03 Panasonic Corp 固体撮像装置及びその製造方法
WO2016080337A1 (ja) * 2014-11-17 2016-05-26 国立大学法人東北大学 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4317115B2 (ja) 2004-04-12 2009-08-19 国立大学法人東北大学 固体撮像装置、光センサおよび固体撮像装置の動作方法
EP2942813B1 (en) * 2006-08-09 2020-09-30 Tohoku University Optical sensor and solid-state imaging device
JP2008305983A (ja) * 2007-06-07 2008-12-18 Nikon Corp 固体撮像素子
JP2013045878A (ja) * 2011-08-24 2013-03-04 Sony Corp 固体撮像装置、固体撮像装置の製造方法、電子機器
JP6406912B2 (ja) * 2014-07-24 2018-10-17 キヤノン株式会社 撮像装置並びにその駆動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083790A1 (ja) * 2004-02-27 2005-09-09 Texas Instruments Japan Limited 固体撮像装置、ラインセンサ、光センサおよび固体撮像装置の動作方法
JP2008016723A (ja) * 2006-07-07 2008-01-24 Matsushita Electric Ind Co Ltd 固体撮像装置の製造方法および固体撮像装置
JP2009283649A (ja) * 2008-05-22 2009-12-03 Panasonic Corp 固体撮像装置及びその製造方法
WO2016080337A1 (ja) * 2014-11-17 2016-05-26 国立大学法人東北大学 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3675480A1 (en) * 2018-12-25 2020-07-01 Brillnics Inc. Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
CN111385501A (zh) * 2018-12-25 2020-07-07 奕景科技(香港)有限公司 固态摄像装置、固态摄像装置的驱动方法、以及电子设备
TWI745809B (zh) * 2018-12-25 2021-11-11 新加坡商普里露尼庫斯新加坡私人有限公司 固態攝像裝置、固態攝像裝置的驅動方法、及電子設備
US11240448B2 (en) 2018-12-25 2022-02-01 Brillnics Singapore Pte. Ltd. Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
CN111385501B (zh) * 2018-12-25 2022-04-29 普里露尼库斯新加坡私人有限公司 固态摄像装置、固态摄像装置的驱动方法、以及电子设备
JPWO2021044770A1 (ja) * 2019-09-06 2021-03-11
WO2021044770A1 (ja) * 2019-09-06 2021-03-11 パナソニックIpマネジメント株式会社 撮像装置
JP7300618B2 (ja) 2019-09-06 2023-06-30 パナソニックIpマネジメント株式会社 撮像装置
WO2023238914A1 (ja) * 2022-06-08 2023-12-14 国立大学法人東北大学 撮像素子及びその駆動方法
WO2024106191A1 (ja) * 2022-11-15 2024-05-23 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および製造方法、並びに電子機器

Also Published As

Publication number Publication date
KR102268948B1 (ko) 2021-06-23
CN109804466B (zh) 2023-05-05
US20200043971A1 (en) 2020-02-06
US10720467B2 (en) 2020-07-21
CN109804466A (zh) 2019-05-24
JPWO2018066143A1 (ja) 2019-07-18
JP6948074B2 (ja) 2021-10-13
KR20190043620A (ko) 2019-04-26

Similar Documents

Publication Publication Date Title
JP6085733B2 (ja) 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法
WO2018066143A1 (ja) 光センサ及びその信号読み出し方法並びに固体撮像装置及びその信号読み出し方法
US10154222B2 (en) Optical sensor, signal reading method therefor, solid-state imaging device, and signal reading method therefor
US9711558B2 (en) Imaging device with photoelectric converter
JP6406585B2 (ja) 撮像装置
US20130050552A1 (en) Solid-state imaging apparatus, method of manufacturing solid-state imaging apparatus, and electronic apparatus
TWI617016B (zh) 成像裝置
JPWO2012160802A1 (ja) 固体撮像装置
TWI536553B (zh) 固態影像感測裝置及固態影像感測裝置之製造方法
JP2007134639A (ja) 光電変換装置及びそれを用いた撮像素子
Ercan et al. Prototype TDI sensors in embedded CCD in CMOS technology
KR101583904B1 (ko) 고체 촬상 장치, 고체 촬상 장치의 제조 방법 및 카메라 모듈
JP2016127058A (ja) 撮像装置
JP5414781B2 (ja) 光電変換装置の製造方法
WO2018220920A1 (ja) 固体撮像装置、および、固体撮像装置の製造方法
JP2019114797A (ja) 固体撮像装置および固体撮像装置の製造方法
JP2019134418A (ja) 固体撮像素子、その駆動回路および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918339

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018543573

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197009933

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918339

Country of ref document: EP

Kind code of ref document: A1