WO2018066125A1 - 密閉型圧縮機 - Google Patents

密閉型圧縮機 Download PDF

Info

Publication number
WO2018066125A1
WO2018066125A1 PCT/JP2016/079944 JP2016079944W WO2018066125A1 WO 2018066125 A1 WO2018066125 A1 WO 2018066125A1 JP 2016079944 W JP2016079944 W JP 2016079944W WO 2018066125 A1 WO2018066125 A1 WO 2018066125A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
flexible structure
cylinder
refrigerant gas
chamber
Prior art date
Application number
PCT/JP2016/079944
Other languages
English (en)
French (fr)
Inventor
勝巳 遠藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018543556A priority Critical patent/JP6673491B2/ja
Priority to PCT/JP2016/079944 priority patent/WO2018066125A1/ja
Priority to CN201680089771.XA priority patent/CN109804164B/zh
Publication of WO2018066125A1 publication Critical patent/WO2018066125A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing

Definitions

  • This invention relates to a hermetic compressor used in a refrigeration air conditioner.
  • the hermetic compressor includes a compression mechanism unit that compresses refrigerant gas, an electric mechanism unit that drives the compression mechanism unit, and a sealed container that houses the compression mechanism unit and the electric mechanism unit.
  • the compression mechanism part is comprised by the cylinder which has the cylindrical interior space opened up and down, the cylindrical rolling piston arrange
  • the compression mechanism section sucks, compresses, and discharges the refrigerant gas in the internal space of the cylinder by rotating the drive shaft.
  • the opening in the internal space of the cylinder is closed by the upper bearing and the lower bearing, and the upper bearing and the lower bearing support the drive shaft.
  • the upper and lower bearings of the hermetic compressor are composed of a flange portion that closes the opening of the cylinder and a cylindrical bearing portion that has a bearing hole into which the drive shaft is inserted and supports the drive shaft.
  • the flexible structure disclosed in Patent Document 1 is such that when the drive shaft is bent and deformed, the inner diameters of the bearing portions of the upper bearing and the lower bearing are easily deformed minutely.
  • an annular groove that opens to an end surface that abuts the cylinder at a position slightly away from the inner peripheral surface of the bearing hole of the bearing portion of the upper bearing and the lower bearing and surrounds the opening of the bearing hole in an annular shape That is, a flexible structure groove is provided.
  • the flexible structure groove has a circular cross section perpendicular to the axial direction, and a thin cylindrical portion, that is, a flexible structure is formed between the inner peripheral surface of the bearing hole of the upper bearing and the lower bearing and the flexible structure groove.
  • the thin cylindrical portion, that is, the flexible structure is elastically deformed according to the bending deformation of the drive shaft, the compressive load acting on the inner peripheral surface of the bearing portion is relaxed, and the occurrence of local wear is suppressed.
  • hermetic compressors are required to increase the suction, compression and discharge cycles and increase the working pressure of refrigerant gas due to the spread of variable speed compressors from the viewpoint of energy saving and resource saving. Due to the increased pressure, the hermetic compressor increases the amplitude of pressure pulsation in the compression mechanism before and after the refrigerant gas compressed by the compression mechanism is discharged into the sealed container.
  • the drive shaft is pressed in the axial direction and relatively moved in the axial direction.
  • a small gap is formed between them. The relative movement of the drive shaft in the axial direction causes a phenomenon that one gap is enlarged and the other gap is reduced.
  • the refrigerant gas passes through the gap to the flexible structure groove. Inflow.
  • the gap between the lower end surface of the upper bearing or the upper end surface of the lower bearing and the upper end surface or the lower end surface of the rolling piston is reduced, it is difficult for the refrigerant gas to flow out of the flexible structure groove via the gap. As a result, pressure pulsations are repeatedly generated inside the flexible structure groove.
  • the refrigerant gas takes in the refrigeration oil at the point where the refrigerant gas has escaped, and the necessary refrigeration oil is reduced, reducing the lubricity and sealing performance of the compression mechanism. As a result, there was room for further improvement.
  • the present invention has been made to solve the above-described problems.
  • the compression mechanism is increased in speed and the pressure of the refrigerant gas is increased. It is an object of the present invention to provide a hermetic compressor that can relieve the force of moving the drive shaft in the axial direction and suppress an increase in noise and vibration.
  • a hermetic compressor includes a drive shaft that is connected to an electric mechanism portion and transmits a driving force to the compression mechanism portion, is cylindrical, has an opening in the axial direction thereof, and contains a refrigerant gas.
  • An upper bearing having a cylinder provided with a cylinder chamber for suction and compression, a bearing hole through which the drive shaft is inserted, a bearing portion having the bearing hole and supporting the drive shaft, and a flange portion closing the opening of the cylinder chamber;
  • a lower bearing provided in at least one of the upper bearing and the lower bearing, communicates the cylinder chamber and the outside of the cylinder chamber, and discharges the refrigerant gas compressed in the cylinder chamber; and the upper bearing or the lower bearing;
  • a muffler chamber in which refrigerant gas is discharged from the discharge port, and a cylinder side opening of the bearing hole of the upper bearing and a cylinder side opening of the bearing hole of the lower bearing are provided so as to surround at least one of them.
  • the flexible structure groove is provided with a communication hole that allows the flexible structure groove and the muffler chamber to communicate with each other so that the refrigerant gas flowing into the flexible structure groove from the cylinder chamber is discharged to the muffler chamber.
  • the hermetic compressor according to the present invention is provided with a communication hole that communicates the flexible structure groove and the muffler chamber in the flexible structure groove provided in at least one of the upper bearing and the lower bearing. Since the refrigerant gas flowing into the muffler chamber is discharged into the muffler chamber, it has a flexible structure and a flexible structure groove that suppresses local wear of the drive shaft due to the deflection of the drive shaft, and the communication hole speeds up the compression mechanism and the refrigerant The increase in noise and vibration can be suppressed by relieving the force that relatively moves the drive shaft in the axial direction by increasing the gas pressure.
  • FIG. 1 is a cross-sectional view of a hermetic rotary compressor according to Embodiment 1 for carrying out the present invention as viewed from the longitudinal direction, that is, from the radial direction of a drive shaft.
  • FIG. 2 is an enlarged view of the compression mechanism portion of FIG.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2, that is, a view perpendicular to the axial direction of the crankshaft and viewed from the axial direction, that is, the compression mechanism portion viewed from above.
  • a hermetic compressor 100 includes a hermetic container 1 in which a compression mechanism unit 3 and an electric mechanism unit 2 above the compression mechanism unit 3 are housed.
  • the electric mechanism unit 2 and the compression mechanism unit 3 are connected by a drive shaft 4, and the compression mechanism unit 3 is driven by the electric mechanism unit 2.
  • the electric mechanism unit 2 includes a stator 21 and a rotor 22 that rotates by the magnetic force generated by the stator 21, and the drive shaft 4 applies the rotational force of the electric mechanism unit 2 to the compression mechanism unit 3. introduce.
  • the stator 21 includes a coil around which a conductive wire is wound, and generates a magnetic force by energizing the coil.
  • the coil of the stator 21 is connected to a terminal 23 provided in the hermetic compressor 100, and energizes from the outside of the hermetic compressor 100 via the terminal 23.
  • the rotor 22 includes a secondary conductor composed of an aluminum bar or the like, a permanent magnet, and the like, and rotates in response to the magnetic force generated by the coil of the stator 21.
  • the compression mechanism unit 3 compresses the low-pressure refrigerant gas sucked into the compression mechanism unit 3 by the rotational force, that is, the driving force of the electric mechanism unit 2 transmitted from the drive shaft 4, and the high-pressure refrigerant gas is put into the sealed container 1. Discharge.
  • the airtight container 1 becomes a high-pressure space by the compressed high-temperature and high-pressure refrigerant gas.
  • refrigerating machine oil for lubricating the compression mechanism 3 is stored below the bottom of the sealed container 1, that is, at the bottom.
  • the drive shaft 4 includes a main shaft portion 41, a sub shaft portion 42, and an eccentric shaft portion 43, and is provided in the order of the main shaft portion 41, the eccentric shaft portion 43, and the sub shaft portion 42 in the axial direction. That is, the main shaft portion 41 is provided on one side of the eccentric shaft portion 43 in the axial direction, and the auxiliary shaft portion 42 is provided on the other side of the eccentric shaft portion 43 in the axial direction.
  • Each of the main shaft portion 41, the sub shaft portion 42, and the eccentric shaft portion 43 has a substantially cylindrical shape, and is provided so that the centers of the axes of the main shaft portion 41 and the sub shaft portion 42 coincide, that is, coaxially. It has been.
  • the center of the axis of the eccentric shaft portion 43 is shifted from the center of the shaft of the main shaft portion 41 and the auxiliary shaft portion 42.
  • the eccentric shaft portion 43 rotates eccentrically.
  • the rotor 22 of the electric mechanism unit 2 is shrink-fitted or press-fitted and fixed to the main shaft portion 41, and a cylindrical rolling piston 32 is slidably mounted to the eccentric shaft portion 43.
  • a cylindrical hollow hole is provided in the center of the shaft of the drive shaft 4, and the hollow hole serves as an oil supply passage for transferring the refrigerating machine oil at the bottom of the sealed container 1.
  • the oil supply passage has an opening at the end face in the axial direction of the auxiliary shaft portion 42.
  • the auxiliary shaft 42 side of the drive shaft 4 is immersed in refrigeration oil stored at the bottom of the sealed container 1.
  • the oil supply path sucks up the stored refrigerating machine oil from the opening of the auxiliary shaft portion 42 when the drive shaft 4 rotates.
  • the sucked refrigerating machine oil is supplied to each sliding portion of the compression mechanism unit 3 to lubricate and seal the compression mechanism unit 3.
  • the compression mechanism unit 3 includes a drive shaft 4, a cylinder 31, a rolling piston 32, an upper bearing 33, a lower bearing 34, and a vane 35.
  • the cylinder 31 is provided with a cylindrical internal space that is open at both ends in the axial direction, that is, a cylinder chamber 36.
  • the cylinder chamber 36 of the cylinder 31 houses the eccentric shaft portion 43 of the drive shaft 4 and the rolling piston 32 attached to the eccentric shaft portion 43.
  • the eccentric shaft portion 43 that is, the rolling piston 32 rotates eccentrically in the cylinder chamber 36 of the cylinder 31.
  • the cylinder 31 is provided with a vane groove 37 in the radial direction of the cylinder chamber 36, one opening to the cylinder chamber 36 and the other opening to the back pressure chamber 38.
  • a vane 35 having a substantially rectangular parallelepiped shape is accommodated in the vane groove 37, and the vane 35 reciprocates while sliding on the vane groove 37.
  • the back pressure chamber 38 is provided with a spring.
  • the vane 35 is pushed out from the vane groove 37 to the cylinder chamber 36 of the cylinder 31 by the force of the refrigerant gas and the spring taken into the back pressure chamber 38.
  • the tip of the vane 35 contacts the rolling piston 32. Accordingly, the space formed by the inner peripheral surface of the inner diameter of the cylinder chamber 36 of the cylinder 31 and the outer peripheral surface of the outer diameter of the rolling piston 32 is divided into the suction chamber and the compression chamber by the vane 35.
  • the rolling piston 32 has a ring shape, that is, a cylindrical shape, and is rotatably attached to the eccentric shaft portion 43.
  • the rolling piston 32 rotates eccentrically in the cylinder chamber 36 together with the eccentric shaft portion 43 as the drive shaft 4 rotates.
  • the vane 35 in contact with the rolling piston 32 reciprocates in the vane groove 37.
  • the rolling piston 32 and the vane 35 have been described as separate shapes, they may have an integrated shape and the operation is substantially the same.
  • FIG. 4 shows the upper bearing 33 as viewed from the cylinder 31 side.
  • the upper bearing 33 includes a cylindrical bearing portion 33a and a flat flange portion 33b.
  • the flange portion 33 b is a fixed portion that is bolted to the cylinder 31, and closes one axial opening of the cylinder chamber 36, that is, the upper side of the suction chamber and the compression chamber in the cylinder 31.
  • the flange portion 33b is provided from the end portion on the cylinder 31 side of the cylindrical bearing portion 33a, that is, integrally connected.
  • the outermost edge portion of the flange portion 33b is disposed in the radial direction of the bearing portion 33a.
  • the bearing portion 33a is erected on the flange portion 33b such that an end portion on the opposite side to the cylinder 31 side is disposed in a direction opposite to the cylinder 31 from the flange portion 33b, that is, in the direction of the rotor 22.
  • the bearing portion 33 a has bearing holes 33 c that communicate from both ends in the axial direction, that is, from the end portion on the cylinder 31 side to the end portion on the opposite side of the cylinder 31.
  • the opening part of the bearing hole 33c is arrange
  • the bearing hole 33c has a cylindrical inner peripheral surface, the main shaft portion 41 is inserted from one opening to the other opening, and the bearing portion 33a supports the main shaft 41. That is, the upper bearing 33 supports the main shaft portion 41, that is, the drive shaft 4 so as to be rotatable in the radial direction.
  • a gap is provided between the cylindrical inner peripheral surface of the bearing hole 33 c of the bearing portion 33 a of the upper bearing 33 and the outer peripheral surface of the main shaft portion 41 of the drive shaft 4. That is, they are assembled so as not to contact each other.
  • refrigeration oil is supplied from the oil supply passage of the drive shaft 4 to form an oil film. Therefore, the bearing portion 33a of the upper bearing 33 supports the main shaft portion 41 of the drive shaft 4 so as to be rotatable in the radial direction via the refrigerating machine oil.
  • the drive shaft 4 Since the oil film is formed by the oil pressure from the oil supply passage of the drive shaft 4, the drive shaft 4 is supported by the oil film oil pressure so that the inner peripheral surface of the bearing portion 33a and the outer peripheral surface of the main shaft portion 41 do not come into contact with each other.
  • 4 is an oil groove for transferring refrigeration oil between the inner peripheral surface of the bearing portion 33a and the outer peripheral surface of the main shaft portion 41, and 33e is a bolt hole for fixing the upper bearing 33 to the cylinder 31. .
  • FIG. 5 shows the lower bearing 34 as viewed from the cylinder 31 side.
  • the lower bearing 34 includes a cylindrical bearing portion 34a and a flat flange portion 34b.
  • the flange portion 34b is a fixed portion that is bolted to the cylinder 31, and closes the other axial side of the cylinder chamber 36, that is, the lower side of the suction chamber and the compression chamber in the cylinder 31.
  • the flange portion 34b is provided from the end of the cylindrical bearing portion 34a on the cylinder 31 side, that is, integrally connected.
  • the outermost edge portion of the flange portion 34b is arranged in the radial direction of the bearing portion 34a.
  • the bearing portion 34a is erected on the flange portion 34b so that an end opposite to the cylinder 31 side is disposed in a direction opposite to the cylinder 31 from the flange portion 34b, that is, in a direction toward the bottom of the sealed container 1.
  • the bearing portion 34 a has bearing holes 34 c that communicate from both ends in the axial direction, that is, from the end portion on the cylinder 31 side to the end portion on the opposite side of the cylinder 31.
  • the opening of the bearing hole 34c is disposed on the side opposite to the cylinder 31 side of the bearing portion 34a and on the cylinder 31 side of the flange portion 34b. That is, the bearing hole 34c communicates with the inside of the bearing portion 34a and connects the openings.
  • the bearing hole 34 c has a cylindrical inner peripheral surface, and the auxiliary shaft portion 42 is inserted from one opening to the other opening, and the bearing portion 34 a supports the auxiliary shaft portion 42. That is, the lower bearing 34 supports the auxiliary shaft portion 42, that is, the drive shaft 4 so as to be rotatable in the radial direction.
  • a gap is also provided between the cylindrical inner peripheral surface of the bearing hole 34 c of the bearing portion 34 a of the lower bearing 34 and the outer peripheral surface of the auxiliary shaft portion 42 of the drive shaft 4. That is, they are assembled so as not to contact each other.
  • refrigeration oil is supplied from the oil supply passage of the drive shaft 4 to form an oil film. Therefore, the bearing portion 34a of the lower bearing 34 supports the auxiliary shaft portion 42 of the drive shaft 4 via the refrigerating machine oil. Since the oil film is formed by the oil pressure from the oil supply passage of the drive shaft 4, the drive shaft 4 is supported by the oil film oil pressure so that the inner peripheral surface of the bearing portion 34 a and the outer peripheral surface of the auxiliary shaft portion 42 do not come into contact with each other. It has been.
  • 34 d is an oil groove for transferring refrigeration oil between the inner peripheral surface of the bearing portion 34 a and the outer peripheral surface of the main shaft portion 41
  • 34 e is a bolt hole for fixing the lower bearing 34 to the cylinder 31. .
  • FIGS. 1 and 2 show a case where there is one cylinder, and the description has been made based on this. However, there may be a case where there are two or more cylinders. In the case of multiple cylinders, a configuration in which cylinders are stacked one above the other is common.
  • the upper bearing 33 closes the upper opening of the uppermost cylinder
  • the lower bearing 34 closes the lower opening of the lowermost cylinder.
  • An intermediate partition plate for partitioning the cylinder chambers is provided between the cylinders. Openings other than the opening above the uppermost cylinder and the opening below the lowermost cylinder are closed by the intermediate partition plate.
  • the configuration in which the drive shaft 4 is pivotally supported by the upper bearing 33 and the lower bearing 34 is the same.
  • the cylinder 31 is provided with a flow path that communicates with the outside of the sealed container 1 and the cylinder chamber 36, that is, a suction port.
  • the suction port is a hole provided in the cylinder 31.
  • the suction port communicates with one suction chamber in which the cylinder chamber 36 is divided by the vane 35.
  • the cylinder 31 sucks the refrigerant gas from the outside of the hermetic container 1 into the suction chamber in the cylinder chamber 36 by the suction port.
  • FIG. 6 is a view of the upper bearing 33 as viewed from above.
  • the upper bearing 33 is provided with a flow path and an opening that communicate with the discharge port, that is, a discharge port 51.
  • a discharge valve 52 is provided at the discharge port 51.
  • the discharge port 51 communicates the compression chamber of the cylinder 31 and the external space of the cylinder 31 via the discharge port.
  • the discharge valve 52 is closed until the refrigerant gas in the compression chamber reaches a predetermined pressure, and opens when the refrigerant gas in the compression chamber reaches a predetermined pressure or higher. That is, the refrigerant gas compressed in the compression chamber in the cylinder chamber 36 is discharged to the outside of the cylinder chamber 36 through the discharge port 51 and the discharge port.
  • the lower bearing 34 may have a discharge port. In this case as well, it is the same that a discharge valve is provided and closed until the refrigerant gas in the compression chamber reaches a predetermined pressure, and opens when the refrigerant gas in the compression chamber becomes equal to or higher than the predetermined pressure. In some cases, both the upper bearing 33 and the lower bearing 34 are provided with discharge ports.
  • the upper bearing 33 When the upper bearing 33 is provided with the discharge port 51, the upper bearing 33 has a surface opposite to the cylinder 31 of the upper bearing 33, that is, the main shaft portion 41 of the drive shaft 4 and the bearing portion 33 a of the upper bearing 33.
  • An upper discharge muffler 39 is provided to cover the surface on the side where is disposed.
  • the upper discharge muffler 39 may cover the entire surface of the upper bearing 33 opposite to the cylinder 31 or may cover a part thereof.
  • the upper discharge muffler 39 is attached to the upper bearing 33 with bolts or the like.
  • a space, that is, an upper muffler chamber 39a is provided between the upper bearing 33 and the upper discharge muffler 39.
  • an upper muffler chamber 39 a is formed between the upper discharge muffler 39 and the upper bearing 33. Accordingly, the discharge port 51 communicates the compression chamber, that is, the cylinder chamber 36 and the muffler chamber 39a by opening and closing the discharge valve 52.
  • the refrigerant gas discharged from the discharge port 51 of the upper bearing 33 diffuses into the upper muffler chamber 39a. Discharge noise is suppressed by once diffusing the refrigerant gas compressed in the cylinder 31 into the upper muffler chamber 39a.
  • the lower discharge muffler 40 When the discharge port is in the lower bearing 34, the lower discharge muffler 40 is provided in the lower bearing 34.
  • the lower discharge muffler 40 also covers the surface of the lower bearing 34 opposite to the cylinder 31, that is, the surface on the side where the auxiliary shaft portion 42 of the drive shaft 4 and the bearing portion 34a of the lower bearing 34 are disposed.
  • the lower discharge muffler 40 may cover the entire surface of the lower bearing 34 opposite to the cylinder 31 or may cover a part thereof.
  • the lower discharge muffler 40 is attached to the lower bearing 34 with bolts or the like. Between the lower bearing 34 and the lower discharge muffler 40, a space, that is, a lower muffler chamber 40a is provided.
  • the lower discharge muffler 40 forms a lower muffler chamber 40 a between the lower discharge muffler 40 and the lower bearing 34.
  • the discharge port communicates the compression chamber, that is, the cylinder chamber 36 and the muffler chamber 40a by opening and closing the discharge valve.
  • the refrigerant gas is diffused from the discharge port of the lower bearing 34 into the lower muffler chamber 40 a of the lower discharge muffler 40.
  • the refrigerant gas discharged into the lower muffler chamber 40a passes through the communication path provided in the upper bearing 33, the lower bearing 34, and the cylinder 31, and is guided to the upper bearing 33 side.
  • an upper discharge muffler 39 and a lower discharge muffler 40 are provided on the upper bearing 33 and the lower bearing 34, respectively. Then, the refrigerant gas is discharged into the upper muffler chamber 39a and the lower muffler chamber 40a, respectively.
  • the refrigerant gas discharged to the lower muffler chamber 40a passes through the communication path provided in the cylinder 31 and is guided to the upper muffler chamber 39a.
  • both an upper discharge muffler 39 and a lower discharge muffler 40 are provided.
  • the upper bearing of the uppermost cylinder is closed by the upper bearing
  • the lower bearing of the lowermost cylinder is closed by the lower bearing.
  • the refrigerant gas compressed in each cylinder chamber is discharged from the discharge ports of the upper bearing and the lower bearing. Therefore, an upper discharge muffler and a lower discharge muffler are provided in the upper bearing and the lower bearing, respectively.
  • the refrigerant gas discharged to the lower muffler chamber passes through a communication path provided in the cylinder and is guided to the upper muffler chamber.
  • the upper discharge muffler 39 is provided with an opening above the upper muffler chamber 39a.
  • the upper muffler chamber 39a and the space between the upper discharge muffler 39 and the sealed container 1, that is, the internal space of the sealed container 1 are provided. And communicate with each other. Thereby, the refrigerant gas compressed in the cylinder chamber 36 is discharged into the sealed container 1 through the upper discharge muffler 39.
  • the refrigerant gas discharged into the hermetic container 1 is guided in the direction of the discharge pipe 5 above the hermetic container 1 and is sent out of the hermetic container 1 from the discharge pipe 5. At that time, the refrigerant gas passes through the gap between the stator 21 and the rotor 22 of the electric mechanism unit 2 and the communication hole provided in the rotor 22 and is sent upward.
  • the suction muffler 101 provided outside the sealed container 1 is connected to the suction port via the suction pipe 6.
  • a low-pressure refrigerant gas and a liquid refrigerant are mixedly sent to the hermetic compressor 100 from an external circuit to which the hermetic compressor 100 is connected. If the liquid refrigerant flows into the compression mechanism unit 3 and is compressed, the compression mechanism unit 3 may be damaged. Therefore, the suction muffler 101 separates the liquid refrigerant and the refrigerant gas and sends only the refrigerant gas to the compression mechanism unit 3. .
  • a condenser 102, an expansion valve 103, and an evaporator 104 are provided outside the hermetic compressor 100 to form a refrigeration circuit. That is, an annular circuit is formed that is connected to the suction muffler 101 by piping from the discharge pipe 5 of the hermetic compressor 100 through the condenser 102, the expansion valve 103, and the evaporator 104, and the refrigerant is passed through the circuit. By circulating, heat exchange is performed with air or water to form a refrigeration cycle that conveys heat energy. And the heat pump apparatus using this is implement
  • the discharge valve 52 that closes the discharge port and the discharge port 51 opens.
  • the discharge port 51 is opened, the high-pressure and high-temperature refrigerant gas in the compression chamber is discharged into the discharge mufflers 39 and 40 through the discharge port 51.
  • the refrigerant gas discharged into the discharge mufflers 39 and 40 is discharged from the discharge mufflers 39 and 40 into the sealed container 1.
  • the rolling piston 32 rotates eccentrically, the communication with the discharge port is cut off and the communication with the suction port is made again. By repeating this, the compression mechanism unit 3 sucks, compresses, and discharges the refrigerant gas. A series of operations are performed while the rolling piston 32 makes one rotation in the cylinder chamber 36.
  • the drive shaft 4 Due to the compressive load of the refrigerant gas, the drive shaft 4 is pressed in the direction opposite to the direction in which the discharge port 51 is arranged, that is, in the lower left direction in the drawing, with the inner diameter center of the cylinder 31 as the center. Since the drive shaft 4 is pressed by the main shaft portion 41 by the upper bearing 33 and the sub shaft portion 42 by the lower bearing 34, the drive shaft 4 is bent and deformed using these as fulcrums.
  • the drive shaft 4 Since the drive shaft 4 is bent and deformed with the upper bearing 33 and the lower bearing 34 as fulcrums, the drive shaft 4 is provided near the connection portion between the main shaft portion 41 and the eccentric shaft portion 43 and at the connection portion between the sub shaft portion 42 and the eccentric shaft portion 43.
  • the vicinity and the vicinity of the end of the upper bearing 33 and the lower bearing 34 on the cylinder 31 side may make strong local contact. As a result, damage may occur.
  • the upper flexible structure groove 61 and the upper flexible structure 62 are formed on the surface of the upper bearing 33 on the cylinder 31 side, and the surface of the lower bearing 34 on the cylinder 31 side is A lower flexible structure groove 64 and a lower flexible structure 65 are provided respectively.
  • the upper flexible structure groove 61 and the upper flexible structure 62, and the lower flexible structure groove 64 and the lower flexible structure 65 are slightly deformed in accordance with the bending deformation of the drive shaft 4, so that the main shaft portion 41 and the auxiliary shaft portion 42 are The inner diameters of the bearing holes 33c and 34c are slightly deformed.
  • At least one of the upper flexible structure groove 61 and the upper flexible structure 62, and the lower flexible structure groove 64 and the lower flexible structure 65 may be provided.
  • the upper flexible structure groove 61 is an annular groove that annularly surrounds an opening portion opened on the cylinder 31 side surface of the bearing hole 33c of the bearing portion 33a of the upper bearing 33.
  • the upper flexible groove 61 is provided concentrically with the center of the opening of the bearing hole 33c, and is open to the cylinder 31 side.
  • the upper flexible structure 62 is a cylindrical thin portion formed between the upper flexible structure groove 61 and the bearing hole 33c and formed by the upper flexible structure groove 61 and the inner peripheral surface of the bearing hole 33c.
  • the upper flexible structure 62 can be easily deformed and has an elastic force. That is, it is formed with a thickness capable of elastic deformation.
  • the upper flexible structure groove 61 is formed with a groove width that does not hinder the elastic deformation of the upper flexible structure 62 and a depth that the upper flexible structure 62 has elastic deformation.
  • the thickness of the flexible structure may be about several mm
  • the width of the groove may be narrower than the thickness of the flexible structure
  • the depth of the groove may be about several mm to several tens of mm.
  • the lower flexible structure groove 64 is an annular groove that annularly surrounds an opening portion opened on the cylinder 31 side surface of the bearing hole 34c of the bearing portion 34a of the lower bearing 34.
  • the lower flexible structure groove 64 is provided concentrically with the center of the opening of the bearing hole 34c and opens toward the cylinder 31 side.
  • the lower flexible structure 65 is a cylindrical thin portion formed between the lower flexible structure groove 64 and the bearing hole 34c and formed by the lower flexible structure groove 64 and the inner peripheral surface of the bearing hole 34c.
  • the lower flexible structure 65 is easily deformed and has an elastic force. That is, it is formed with a thickness capable of elastic deformation.
  • the lower flexible structure groove 64 is formed with a groove width that does not hinder the elastic deformation of the lower flexible structure 65 and a depth that the lower flexible structure 65 has elastic deformation.
  • the depth and the like are the same as those of the upper flexible structure groove 61 and the upper flexible structure 62.
  • hermetic compressors 100 are required to increase the speed of the suction, compression, and discharge cycles and increase the operating pressure of the refrigerant gas.
  • GWP Global Warming Potential
  • the hermetic compressor 100 has a large amplitude of pressure pulsation in the compression chamber before and after the refrigerant gas compressed by the compression mechanism 3 is discharged into the sealed container 1. Become.
  • the drive shaft 4 is pressed in the axial direction and relatively moved in the axial direction.
  • the upper flexible structure 62 on the cylinder 31 side is provided.
  • An enlarged gap between at least one of the end surface and the end surface on the cylinder 31 side of the lower flexible structure 65 and at least one of the end surface on the upper bearing 33 side and the end surface on the lower bearing 34 side of the rolling piston 32 is provided.
  • the pressure inside the upper flexible structure groove 61 or the lower flexible structure groove 64 becomes an axial force acting on the bottom surface (ceiling surface) of the upper flexible structure groove 61 or the lower flexible structure groove 64.
  • the force that relatively moves the drive shaft 4 in the axial direction increases, and noise from the main body of the hermetic compressor 100 increases or vibration of the main body increases.
  • a flow path for releasing the refrigerant gas having a high pressure from the inside of the upper flexible groove 61 and the lower flexible groove 64 to the outside of the upper flexible groove 61 and the lower flexible groove 64. is there.
  • the flange portion 33b of the upper bearing 33 is opened at the end surface of the outermost edge portion in the radial direction from the center of the bearing hole 33c of the upper bearing 33, and the opening portion and the upper flexible structure groove 61 are communicated with each other.
  • a hole provided with a communication hole, or a flange portion 34b of the lower bearing 34 is opened from the center of the bearing hole 34c of the lower bearing 34 to the end surface of the outermost edge portion in the radial direction.
  • the refrigerating machine oil is stored in the sealed container 1 to such an extent that the flange portion 33b of the upper bearing 33 is immersed. Therefore, when high-pressure refrigerant gas is released from the upper flexible structure groove 61 or the lower flexible structure groove 64 via the communication hole, the refrigerant is released into the refrigerating machine oil. In such a case, the refrigerating machine oil is agitated by the refrigerant gas, and the refrigerant gas and the refrigerating machine oil are in a compatible state. The refrigerant gas rises above the sealed container 1 due to its mass while taking in the refrigerating machine oil, and is sent out from the discharge pipe 5 to the refrigeration circuit outside the sealed container 1.
  • the refrigeration oil hinders the heat exchange of the refrigeration cycle, the heat exchange rate of the refrigeration circuit is lowered, and the performance of the refrigeration circuit is deteriorated.
  • the refrigeration oil in the airtight container 1 will reduce. Thereby, the sealing performance of the compression mechanism part 3 is lowered, and the airtightness is lowered. Thereby, the leakage of the refrigerant gas from the compression mechanism unit 3 increases, and the compression performance deteriorates.
  • the lubricity of each sliding part also falls, it causes wear and damage. That is, the speed of the compression mechanism section 3 of the hermetic compressor 100 is hindered, and it is difficult to maintain the performance when the speed of the hermetic compressor 100 is further increased.
  • a communication hole communicating from the upper flexible structure groove 61 of the upper bearing 33 to the outermost edge portion of the flange portion 33b of the upper bearing 33 or the outermost edge portion of the flange portion 34b of the lower bearing 34 from the lower flexible structure groove 64 of the lower bearing 34.
  • the communication hole pressure loss or clogging due to sludge is taken into consideration.
  • the design method and the processing method were complicated. In particular, when used at a higher pressure than conventional refrigerants, it is important that pressure loss does not hinder the release of refrigerant gas.
  • the method of opening into the hermetic container 1 has room for further improvement with respect to higher speed and higher pressure of the hermetic compressor 100.
  • the refrigerant gas in the upper flexible structure groove 61 or the lower flexible structure groove 64 can be released to the drive shaft 4 side.
  • the refrigerant gas has a gap between the inner peripheral surface of the bearing hole 33 c of the upper bearing 33 or the inner peripheral surface of the bearing hole 34 c of the lower bearing 34 and the outer peripheral surface of the drive shaft 4. Is discharged into the sealed container 1.
  • the refrigerant gas is released into the oil film of the refrigerating machine oil formed in the gap between the inner peripheral surface of the bearing hole 33 c of the upper bearing 33 or the inner peripheral surface of the bearing hole 34 c of the lower bearing 34 and the outer peripheral surface of the drive shaft 4. Will be.
  • the refrigerant gas takes in the refrigerating machine oil in the same manner as when the opening portion of the communication hole is provided in the end surface of the outermost edge portion of the flange portion 33b of the upper bearing 33 and the end surface of the flange portion 34b of the lower bearing 34.
  • the refrigeration circuit performance is deteriorated, the sealing performance of the compression mechanism 3 is lowered, and the lubricity of each sliding portion is lowered.
  • the refrigerant gas in the upper flexible structure groove 61 or the lower flexible structure groove 64 passes through the gap between the inner peripheral surface of the bearing hole 33 c of the upper bearing 33 or the bearing hole 34 c of the lower bearing 34 and the outer peripheral surface of the drive shaft 4. Since the oil film in the gap is broken, the supporting force and lubricity of the upper bearing 33 and the lower bearing 34 are reduced, which causes wear and damage. In particular, when used at a higher speed or higher pressure than conventional refrigerants, a large load is applied to the upper bearing 33 and the lower bearing 34 that support the drive shaft 4, so that these parts are not excessively worn or damaged. It is important to maintain such an oil film.
  • the opening portion of the communication hole communicating with the upper flexible structure groove 61 is on the side opposite to the cylinder 31 of the upper bearing 33, that is, the upper discharge muffler 39 side, and the opening portion of the communication hole communicating with the lower flexible structure groove 64 is the lower bearing.
  • the refrigerant gas released from the upper flexible structure groove 61 or the lower flexible structure groove 64 is a gap between the inner peripheral surface of the bearing hole 33 c of the upper bearing 33 or the bearing hole 34 c of the lower bearing 34 and the outer peripheral surface of the drive shaft 4. Therefore, the supporting force and lubricity of the upper bearing 33 and the lower bearing 34 are not lowered without affecting the oil film in the gap.
  • the refrigerating machine oil does not flow into the upper muffler chamber 39a or the lower muffler chamber 40a
  • the surplus refrigerating machine oil is discharged from the sliding portion. It remains in the inner or lower muffler chamber 40a. It is necessary to prevent the surplus refrigeration oil from being agitated by the refrigerant gas discharged from the upper flexible structure groove 61 or the lower flexible structure groove 64. Further, the inside of the upper muffler chamber 39a or the lower muffler chamber 40a is filled with the refrigerant gas discharged from the compression chamber of the cylinder 31.
  • FIG. 8 is an enlarged cross-sectional view of the upper bearing 33 of FIGS.
  • a communication hole 63 communicates with the upper flexible groove 61 and opens to the upper muffler chamber 39a, that is, a vent hole.
  • 61a is an opening part opened to the cylinder 31 side of the upper flexible structure groove 61
  • 61b is the deepest part, ie, the bottom part (ceiling part), of the upper flexible structure groove 61 on the opposite side to 61a.
  • a structure similar to this is also provided in the lower bearing 34, and the communication hole 66 in FIGS.
  • the communication hole 63 of the upper flexible structure groove 61 is opened to the deepest part 61 b of the upper flexible structure groove 61. Since the refrigerant gas is pushed into the deepest portion 61b side of the upper flexible groove 61, the discharge effect is high.
  • the openings 61a of the upper flexible structure groove 61 and the upper flexible structure groove 61 What is necessary is just to open to the side surface by the side of the deepest part 61b rather than the middle of the deepest part 61b. With such a configuration, there is no hindrance to the release of the refrigerant gas from the upper flexible structure groove 61.
  • the communication hole 63 of the upper flexible structure groove 61 is connected to the bearing portion 33 a of the upper bearing 33 and the flange portion 33 b on the outer peripheral surface of the upper bearing 33 on the upper discharge muffler 39 side.
  • the bearing portion 33a is opened at a position that bends in an L shape when viewed from the radial direction.
  • channel 61 and the upper muffler chamber 39a can be connected in the shortest distance, and it is easy also on a processing surface.
  • the opening of the communication hole 63 of the upper flexible structure groove 61 is disposed above the plane of the upper discharge muffler 39 side of the flange portion 33b of the upper bearing 33 so that the stirring of the refrigerating machine oil is performed. But it ’s convenient. For example, even if surplus refrigerating machine oil in the sliding portion remains in the upper muffler chamber 39a, the refrigerating machine oil is in the plane of the flange portion 33b and is far from the opening of the communication hole 63. Therefore, the refrigerant gas discharged from the communication hole 63 of the upper flexible structure groove 61 does not stir the refrigeration oil.
  • the communication hole 63 of the upper flexible structure groove 61 is opened in the vicinity of the discharge port 51 and in the vicinity of the discharge port 51 with reference to the drive shaft 4 as shown in FIG.
  • the vicinity of the discharge port 51 serves as a compression chamber and is in a state where refrigerant gas is being compressed or discharged. Since the refrigerant gas flows into the upper flexible groove 61 from the compression chamber, in order to suppress the compression pulsation, the refrigerant gas flows from the upper flexible groove 61 to the outside of the upper flexible groove 61, that is, the upper muffler chamber 39a. Is most effective. Therefore, the communication hole 63 of the upper flexible structure groove 61 is opened to the discharge port 51 side, whereby the refrigerant gas can be most effectively released from the upper flexible structure groove 61 in order to suppress the compression pulsation.
  • the upper muffler chamber 39a is filled with the refrigerant gas from the discharge port 51.
  • the refrigerant gas discharged from the discharge port 51 and the refrigerant gas discharged from the upper flexible groove 61 are in the same compression chamber.
  • Refrigerant gas Accordingly, the refrigerant gas has substantially the same pressure, and the upper flexible structure groove 61 sucks the refrigerant gas in the upper muffler chamber 39a by opening the opening of the communication hole 63 of the upper flexible structure groove 61 to the discharge port 51 side. This does not occur, and there is no hindrance to the release of the refrigerant gas.
  • the opening portion of the communication hole 63 of the upper flexible groove 61 has a more advantageous structure in which the refrigerant gas and the refrigerating machine oil do not come into contact with each other by opening upward from the discharge port 51.
  • the communication hole 63 of the upper flexible structure groove 61 is not circular in a section cut by a plane perpendicular to the direction from the opening of the upper flexible structure groove 61 of the communication hole 63 to the opening of the upper muffler chamber 39a. It doesn't matter. For example, it may be an ellipse, an ellipse, or a polygon.
  • the shape of the opening of the upper muffler chamber 39a is the same as the shape of the opening of the upper flexible structure groove 61.
  • the communication hole 63 may have substantially the same cross-sectional area from the opening of the upper flexible structure groove 61 to the opening of the upper muffler chamber 39a.
  • the communication hole 63 of the upper flexible structure groove 61 is provided substantially linearly from the upper flexible structure groove 61 to the opening of the upper muffler chamber 39a in order to suppress pressure loss in the communication hole 63 of the upper flexible structure groove 61. It is done.
  • a plurality of communication holes 63 of the upper flexible structure groove 61 may be provided. Since the plurality of ones can alleviate the pressure loss of the refrigerant gas released at a time, the refrigerant gas can be discharged smoothly from the upper flexible groove 61. Further, when a plurality of communication holes 63 of the upper flexible structure groove 61 are provided, at least one of the communication holes 63 may be provided on the discharge port 51 side. The rest can be in any direction. At least one communicating hole 63 on the discharge port 51 side exhibits the effects described above.
  • the upper flexible structure groove 61, the upper flexible structure 62, and the communication hole 63 of the upper bearing 33 have been described.
  • the communication hole 66 of the lower bearing 34 whose upper and lower sides are opposite does not necessarily apply where the upper and lower positions are effective, but the other points are almost the same.
  • the refrigerant gas that has flowed into at least one of the inside of the upper flexible structure groove 61 and the inside of the lower flexible structure groove 64 is transferred to the outside of the upper flexible structure groove 61.
  • it can be discharged to the outside of the lower flexible structure groove 64, that is, the upper muffler chamber 39a or the lower muffler chamber 40a.
  • the pressure pulsation in the upper flexible structure groove 61 and the lower flexible structure groove 64 is reduced, the force for moving the drive shaft 4 in the axial direction is suppressed, and the noise and vibration from the main body of the hermetic compressor 100 are suppressed. it can.
  • the function of the conventional upper flexible structure 62 and the lower flexible structure 65 is realizable as it is, without impairing.
  • Gas does not stir the refrigeration oil. Therefore, the refrigeration oil is sent to the outside of the sealed container 1 to deteriorate the performance of the refrigeration circuit, to reduce the sealing performance of the compression mechanism section 3, or to reduce the lubricity of each sliding section. Is suppressed.
  • the refrigerant gas in the upper flexible structure groove 61 and the lower flexible structure groove 64 is discharged to the upper muffler chamber 39a or the lower muffler chamber 40a, the oil film of the bearing hole 33c of the upper bearing 33 or the bearing hole 34c of the lower bearing 34 is affected. Is not given. That is, wear and damage between the drive shaft 4 and the upper bearing 33 and the lower bearing 34 are suppressed.
  • the communication hole 63 of the upper flexible structure groove 61 is seen from the radial direction of the bearing portion 33a where the bearing portion 33a and the flange portion 33b of the upper bearing 33 are connected and connected on the outer peripheral surface on the upper discharge muffler 39 side. And is opened at a position that bends in an L shape.
  • the upper flexible structure groove 61 and the upper muffler chamber 39a can be communicated with each other at the shortest distance, and the processing surface is easy.
  • the communication hole 66 of the lower flexible structure groove 64 is seen from the radial direction of the bearing portion 34a where the bearing portion 34a and the flange portion 34b of the lower bearing 34 are connected, that is, connected, on the outer peripheral surface on the lower discharge muffler 40 side.
  • the lower flexible structure groove 64 and the lower muffler chamber 40a can be communicated with each other at the shortest distance, and the processing surface is easy. Moreover, even if surplus refrigeration oil remains in the upper muffler chamber 39a by opening upward from the plane on the upper discharge muffler 39 side of the flange portion 33b, the communication hole 63 of the upper flexible structure groove 61 is used. The released refrigerant gas does not agitate the refrigerating machine oil.
  • the opening portion of the communication hole 63 of the upper flexible structure groove 61 and the opening portion of the communication hole 66 of the lower flexible structure groove 64 are provided in the vicinity of the discharge port where refrigerating machine oil does not accumulate due to the discharged high-pressure refrigerant gas. It has been. Thereby, the refrigerant gas discharged from the communication hole 63 of the upper flexible structure groove 61 and the communication hole 66 of the lower flexible structure groove 64 does not contact the refrigerating machine oil, and the effect is further enhanced. Moreover, the opening part of the communicating hole 63 of the upper flexible structure groove 61 is opened upward from the discharge port. The opening of the communication hole 66 of the lower flexible structure groove 64 opens downward from the discharge port.
  • the opening portion of the communication hole 63 of the upper flexible structure groove 61 and the opening portion of the communication hole 66 of the lower flexible structure groove 64 are formed in the bearing portion 33 a of the upper bearing 33 or the bearing portion 34 a of the lower bearing 34.
  • the flange 33b or the flange 34b of the lower bearing 34 is open toward the end opposite to the cylinder 31. Since the refrigerating machine oil is pushed out by the high-pressure refrigerant gas discharged from the discharge port, the refrigerant gas discharged from the communication hole 63 of the upper flexible structure groove 61 or the communication hole 66 of the lower flexible structure groove 64 and the refrigerating machine oil However, it has an advantageous structure without contact.
  • the opening of the communication hole 63 of the upper flexible structure groove 61 and the opening of the communication hole 66 of the lower flexible structure groove 64 are provided on the discharge port side and in the vicinity of the discharge port with reference to the drive shaft 4, so that compression is performed.
  • the refrigerant gas flowing into the upper flexible structure groove 61 or the lower flexible structure groove 64 from the compressed compression chamber is discharged from the inside of the upper flexible structure groove 61 and the lower flexible structure groove 64 to the outside of the upper flexible structure groove 61.
  • it can be discharged to the outside of the lower flexible structure groove 64, that is, to the upper muffler chamber 39a or the lower muffler chamber 40a.
  • the refrigerant gas discharged from the discharge port and the refrigerant gas discharged from the upper flexible structure groove 61 and the lower flexible structure groove 64 are the refrigerant gas in the same compression chamber, and are the refrigerant gases having substantially the same pressure. Therefore, the refrigerant gas in the upper muffler chamber 39a is transferred from the communication hole 63 of the upper flexible structure groove 61 to the upper flexible structure groove 61, or the refrigerant gas of the lower muffler chamber 40a is transferred from the communication hole 66 of the lower flexible structure groove 64 to the lower flexible structure. Inhalation into the groove 64 does not occur, and there is no hindrance to the discharge of the refrigerant gas.
  • a plurality of communication holes 63 in the upper flexible structure groove 61 or communication holes 66 in the lower flexible structure groove 64 may be provided, and the pressure loss of the refrigerant gas released at a time can be alleviated. Thereby, the refrigerant gas can be smoothly discharged from the upper flexible structure groove 61 or the lower flexible structure groove 64.
  • a plurality are provided, at least one of them is provided on the discharge port side, so that the above-described effects can be exhibited. Even if some of the communication holes are clogged by sludge or the like, the other communication holes release the refrigerant gas, so that the refrigerant gas is released from the upper flexible structure groove 61 or the lower flexible structure groove 64. Higher reliability with redundancy can be ensured without losing functionality.

Abstract

密閉型圧縮機(100)は、圧縮機構部(3)に、駆動軸(4)と、シリンダ(31)と、上軸受(33)および下軸受(34)と、マフラ室(39a,40a)と、を備える。上軸受(33)および下軸受(34)のうち少なくとも一方には、シリンダ(31)側に開口し上軸受(33)あるいは下軸受(34)の駆動軸(4)を挿通する軸受孔(33c,34c)との間に薄肉部を形成する柔構造溝(61,64)を備え、柔構造溝(61,64)には、柔構造溝(61,64)とマフラ室(39a,40a)とを連通する連通孔(63,66)を設けた。

Description

密閉型圧縮機
 この発明は冷凍空調装置に用いられる密閉型圧縮機に関するものである。
 密閉型圧縮機は、冷媒ガスを圧縮する圧縮機構部と、その圧縮機構部を駆動する電動機構部と、圧縮機構部および電動機構部を収納する密閉容器と、から構成される。圧縮機構部は、上下に開口された円筒状の内部空間を有するシリンダと、シリンダ内に配置された円筒状のローリングピストンと、ローリングピストンを偏心回転させる駆動軸によって構成されている。圧縮機構部は、駆動軸を回転させることによって、シリンダの内部空間にて、冷媒ガスを吸入、圧縮、吐出する。シリンダの内部空間の開口部は、上軸受および下軸受によって、閉塞されるとともに、上軸受および下軸受は、駆動軸を支持している。
 このような構成の密閉型圧縮機では、圧縮機構部が冷媒ガスを圧縮する際、圧縮荷重が駆動軸に作用し、撓み(軸方向に対して垂直な方向への偏位)が発生する。駆動軸の撓みによって上軸受および下軸受に局部摩耗が発生するおそれがあった。
 このため、上軸受および下軸受のうち少なくとも一方に、駆動軸の撓みを吸収する柔構造を形成した密閉型圧縮機が開示されている(例えば、特許文献1参照)。
特開2004-124834号公報(第4-5頁、第4図)
 密閉型圧縮機の上軸受および下軸受は、シリンダの開口部を閉塞するフランジ部と、駆動軸が挿入される軸受孔を有し、駆動軸を軸支する円筒状の軸受部から構成されている。特許文献1に開示された柔構造は、駆動軸が撓み変形したとき、上軸受および下軸受の軸受部内径が容易に微小変形するようにしたものである。具体的には、上軸受および下軸受の軸受部の軸受孔の内周面から、外側に少し離れた位置に、シリンダに当接する端面に開口し、軸受孔の開口部を環状に囲む環状溝すなわち柔構造溝が設けられている。その柔構造溝は、軸方向と垂直な断面が円形であり、上軸受および下軸受の軸受孔の内周面と柔構造溝との間には、薄肉の円筒部分すなわち柔構造が形成される。
 このような構造によって、駆動軸の撓み変形に応じて、薄肉の円筒部分すなわち柔構造が弾性変形し、軸受部の内周面に作用する圧縮荷重は緩和され、局部摩耗の発生が抑えられる。
 しかしながら、近年の密閉型圧縮機には省エネ性、省資源性の観点から可変速圧縮機普及による吸入、圧縮、吐出のサイクルの高速化、冷媒ガスの作動圧力の高圧化が求められ、高速化や高圧化によって、密閉型圧縮機では圧縮機構部で圧縮した冷媒ガスを密閉容器内に吐出する前後において、圧縮機構部内の圧力脈動の振幅が大きくなる。
 圧縮機構部内の圧力脈動が大きくなると、駆動軸は、軸方向に押圧されて軸方向に相対移動することになる。
 ローリングピストンの偏心回転を可能にするために、上軸受のシリンダに当接する下端面とローリングピストンの上端面との間、および、下軸受のシリンダに当接する上端面とローリングピストンの下端面との間には、それぞれ僅かな隙間が形成されている。駆動軸の軸方向への相対移動によって、一方の隙間が拡大して、他方の隙間が縮小する現象が生じる。
 上軸受および下軸受のうち少なくとも一方に柔構造が設けられた場合、上軸受および下軸受とローリングピストンとの間の隙間が拡大したとき、その隙間を経由して、冷媒ガスが柔構造溝に流入する。上軸受の下端面また下軸受の上端面と、ローリングピストンの上端面または下端面との間の隙間が縮小したとき、その隙間を経由して、冷媒ガスが柔構造溝から流出し難くなる。その結果、柔構造溝の内部で圧力脈動が繰り返し発生する。
 柔構造溝の内部の圧力は、柔構造溝の底面(天井面)に作用する軸方向の力になるため、脈動が大きくなった場合、駆動軸を軸方向に相対移動させる力が強くなり、密閉型圧縮機の本体からの騒音が増加したり、本体の振動が増加したりするという課題があった。
 柔構造溝の内部の冷媒ガスを逃がす方法はあるが、冷媒ガスを逃がした先で、冷媒ガスが冷凍機油を取り込み、必要な冷凍機油が減少し、圧縮機構部の潤滑性やシール性を低下させるので、さらなる改善の余地があった。
 この発明は、上記のような課題を解決するためになされたもので、駆動軸の撓みによる駆動軸の局部摩耗を抑える柔構造を備えながら、圧縮機構部の高速化や冷媒ガスの高圧化による駆動軸を軸方向に相対移動させる力を緩和して、騒音や振動の増加を抑えることができる密閉型圧縮機を提供するものである。
 この発明に係る密閉型圧縮機は、その圧縮機構部に、電動機構部と連結し駆動力を伝達する駆動軸と、円筒状であって、その軸方向に開口部を有し、冷媒ガスを吸入し圧縮するシリンダ室が設けられたシリンダと、駆動軸を挿通する軸受孔と軸受孔を有し駆動軸を支持する軸受部とシリンダ室の開口部を閉塞するフランジ部とを有する上軸受および下軸受と、上軸受および下軸受のうち少なくとも一方に設けられ、シリンダ室とシリンダ室の外部とを連通し、シリンダ室で圧縮された冷媒ガスを吐出する吐出口と、上軸受あるいは下軸受との間に吐出口から冷媒ガスが吐出されるマフラ室と、上軸受の軸受孔のシリンダ側の開口部および下軸受の軸受孔のシリンダ側の開口部のうち少なくとも一方を囲むように設けられ、シリンダ側に開口し上軸受あるいは下軸受の軸受孔との間に薄肉部を形成する柔構造溝と、を備え、
 柔構造溝には、柔構造溝とマフラ室とを連通する連通孔を設け、シリンダ室から柔構造溝内に流入する冷媒ガスをマフラ室に放出させるようにしたものである。
 この発明に係る密閉型圧縮機は、上軸受および下軸受のうち少なくとも一方に設けられた柔構造溝に、柔構造溝とマフラ室とを連通する連通孔を設け、シリンダ室から柔構造溝内に流入する冷媒ガスをマフラ室に放出させるようにしたので、駆動軸の撓みによる駆動軸の局部摩耗を抑える柔構造と柔構造溝とを備えるとともに、連通孔によって圧縮機構部の高速化や冷媒ガスの高圧化による駆動軸を軸方向に相対移動させる力を緩和して、騒音や振動の増加を抑えることができる。
この発明の実施の形態1における密閉型圧縮機の全体の説明図である。 この発明の実施の形態1における圧縮機構部の拡大説明図である。 この発明の実施の形態1における圧縮機構部の断面図である。 この発明の実施の形態1における上軸受の斜視図である。 この発明の実施の形態1における下軸受の斜視図である。 この発明の実施の形態1における上軸受の上面図である。 この発明の実施の形態1における冷凍回路の説明図である。 この発明の実施の形態1における上軸受の柔構造の断面図である。
実施の形態1.
 図1は、この発明を実施するための実施の形態1における密閉型の回転圧縮機を示す縦方向すなわち駆動軸の半径方向から見た断面図である。図2は、図1の圧縮機構部を拡大した図である。図3は、図2のA-Aすなわちクランク軸の軸方向と直角な平面にて切断し軸方向から見た図、すなわち圧縮機構部を上面から見た断面図である。
 図1に示すように、密閉型圧縮機100は、密閉容器1の内部に圧縮機構部3と、圧縮機構部3の上方に電動機構部2と、が収納されている。電動機構部2と圧縮機構部3とは、駆動軸4にて連結され、圧縮機構部3は電動機構部2によって駆動される。電動機構部2は、固定子21と、固定子21が発生する磁力によって回転する回転子22と、から構成されており、駆動軸4は、電動機構部2の回転力を圧縮機構部3に伝達する。固定子21は、導線を巻き回したコイルを備え、そのコイルに通電することにより、磁力を発生させる。固定子21のコイルは、密閉型圧縮機100に設けられた端子23と接続されており、端子23を介して、密閉型圧縮機100の外部から通電を行う。回転子22は、アルミバーなどで構成された二次導体や永久磁石などを備え、固定子21のコイルが発生する磁力に反応して回転する。
 圧縮機構部3は、駆動軸4から伝達された電動機構部2の回転力すなわち駆動力によって、圧縮機構部3に吸入した低圧の冷媒ガスを圧縮し、高圧の冷媒ガスを密閉容器1内に吐出する。密閉容器1内は圧縮された高温・高圧の冷媒ガスによって高圧空間となる。一方、密閉容器1の下方すなわち底部には圧縮機構部3の潤滑のための冷凍機油が貯留されている。
 駆動軸4は、主軸部41と副軸部42と偏芯軸部43とから構成され、軸方向に主軸部41、偏心軸部43、副軸部42の順に設けられている。すなわち、偏芯軸部43の軸方向の一方に主軸部41が、偏芯軸部43の軸方向のもう一方に副軸部42が、設けられている。主軸部41、副軸部42、偏芯軸部43は、それぞれ、ほぼ円柱状の形状をしており、主軸部41と副軸部42の軸の中心が一致するように、すなわち同軸に設けられている。一方、偏芯軸部43の軸の中心は、主軸部41、副軸部42の軸の中心からずらされて設けられている。主軸部41、副軸部42が軸の中心を中心に回転すると、偏芯軸部43は偏芯回転をする。主軸部41には電動機構部2の回転子22が焼嵌または圧入され固定されており、偏心軸部43には円筒状の形状のローリングピストン32が摺動自在に装着されている。
 駆動軸4の軸の中心には円筒状の中空穴が設けられており、その中空穴は密閉容器1の底部の冷凍機油を移送する給油路となっている。給油路は副軸部42の軸方向の端面に開口部を有する。駆動軸4の副軸部42側は、密閉容器1の底部に貯留された冷凍機油に浸かっている。給油路は、駆動軸4が回転したときに、貯留された冷凍機油を副軸部42の開口部から吸い上げる。吸い上げられた冷凍機油は、圧縮機構部3の各摺動部に供給され、圧縮機構部3の潤滑とシールとを行う。
 圧縮機構部3は、図2、3のように、駆動軸4、シリンダ31、ローリングピストン32、上軸受33、下軸受34、および、ベーン35で構成されている。シリンダ31には、軸方向の両端が開口された円筒状の内部空間すなわちシリンダ室36が設けられている。シリンダ31のシリンダ室36には、駆動軸4の偏心軸部43と、偏心軸部43に装着されたローリングピストン32と、が収納されている。そして、駆動軸4の回転によって、偏心軸部43すなわちローリングピストン32が、シリンダ31のシリンダ室36内で偏芯回転を行う。
 シリンダ31には、そのシリンダ室36の径方向にベーン溝37が設けられており、一方はシリンダ室36に、もう一方は背圧室38に開口している。ベーン溝37には、形状がほぼ直方体状のベーン35が収納されており、ベーン35はベーン溝37を摺動しながら往復運動する。背圧室38には、スプリングが設けられている。ベーン35は、背圧室38に取り込んだ冷媒ガスとスプリングとの力で、ベーン溝37からシリンダ31のシリンダ室36に押し出される。ベーン35の先端はローリングピストン32に当接する。これよって、シリンダ31のシリンダ室36の内径の内周面と、ローリングピストン32の外径の外周面とで形成される空間を、ベーン35によって、吸入室と圧縮室とに分割する。
 ローリングピストン32は、リング状すなわち円筒状であり、偏芯軸部43に回転自在に装着されている。ローリングピストン32は、駆動軸4が回転することによって、シリンダ室36内を、偏芯軸部43とともに、偏芯回転する。これにより、ローリングピストン32に当接されているベーン35は、ベーン溝37を往復運動する。
 なお、ローリングピストン32とベーン35は、別体形状として説明したが、一体化された形状のものでも良く、動作もほぼ同じである。
 シリンダ31の上面には、シリンダ室36の軸方向の一方すなわち上方の開口部を閉塞する上軸受33が、ボルトにて固定されている。すなわち、シリンダ31内の吸入室と圧縮室との上側を上軸受33が閉塞する。図4に上軸受33をシリンダ31側から見た図を示す。図4のように、上軸受33は、筒状の軸受部33aと平板状のフランジ部33bとから構成される。フランジ部33bは、シリンダ31にボルト固定される固定部であり、シリンダ室36の軸方向の一方の開口部すなわちシリンダ31内の吸入室と圧縮室との上側を閉塞する。フランジ部33bは、筒状の軸受部33aのシリンダ31側の端部から連なり、すなわち一体的に繋がって、設けられている。軸受部33aの半径方向に、フランジ部33bの最外縁部が配置される。軸受部33aは、フランジ部33bからシリンダ31とは逆方向、すなわち回転子22の方向に、シリンダ31側と反対側の端部が配置されるように、フランジ部33bに立設されている。さらに、軸受部33aは、その軸方向の両端すなわちシリンダ31側の端部からシリンダ31の反対側の端部を連通する軸受孔33cを有する。軸受孔33cの開口部は、軸受部33aのシリンダ31側と反対側と、フランジ部33bのシリンダ31側と、に配置されている。すなわち、軸受孔33cは、軸受部33a内を連通し、その開口部どうしを繋いでいる。軸受孔33cは、円筒状の内周面を有し、一方の開口部から他方の開口部へ、主軸部41が挿通され、軸受部33aは主軸部41を軸支する。すなわち、上軸受33は主軸部41すなわち駆動軸4を径方向に回転自在に支持する。
 なお、上軸受33の軸受部33aの軸受孔33cの円筒状の内周面と駆動軸4の主軸部41の外周面との間には、隙間が設けられている。すなわち、互いに接触はしないように組み立てられている。この隙間には、駆動軸4の給油路から冷凍機油が供給され、油膜が形成されている。そのため、上軸受33の軸受部33aは、冷凍機油を介して、駆動軸4の主軸部41を径方向に回転自在に支持する。油膜は、駆動軸4の給油路からの油圧によって形成されているので、駆動軸4は油膜の油圧によって、軸受部33aの内周面と主軸部41の外周面とは接触しないように支えられている。
 なお、図4の33dは、軸受部33aの内周面と主軸部41の外周面のすき間に冷凍機油を移送する油溝であり、33eは上軸受33をシリンダ31に固定するボルト穴である。
 同様に、シリンダ31の下面には、シリンダ室36の軸方向のもう一方すなわち下方の開口部を閉塞する下軸受34が、ボルトにて固定されている。すなわち、シリンダ31内の吸入室と圧縮室との下側を閉塞する。図5に下軸受34をシリンダ31側から見た図を示す。図5のように、下軸受34は、筒状の軸受部34aと平板状のフランジ部34bとから構成されている。フランジ部34bは、シリンダ31にボルト固定される固定部であり、シリンダ室36の軸方向のもう一方すなわちシリンダ31内の吸入室と圧縮室との下側を閉塞する。フランジ部34bは、筒状の軸受部34aのシリンダ31側の端部から連なり、すなわち一体的に繋がって、設けられている。軸受部34aの半径方向に、フランジ部34bの最外縁部が配置される。軸受部34aは、そのフランジ部34bからシリンダ31とは逆方向、すなわち密閉容器1の底部の方向に、シリンダ31側と反対側の端部が配置されるように、フランジ部34bに立設されている。さらに、軸受部34aは、その軸方向の両端すなわちシリンダ31側の端部からシリンダ31の反対側の端部を連通する軸受孔34cを有する。軸受孔34cの開口部は、軸受部34aのシリンダ31側と反対側と、フランジ部34bのシリンダ31側と、に配置されている。すなわち、軸受孔34cは、軸受部34a内を連通し、その開口部どうしを繋いでいる。軸受孔34cは、円筒状の内周面を有し、一方の開口部から他方の開口部へ、副軸部42が挿通され、軸受部34aは副軸部42を軸支する。すなわち、下軸受34は副軸部42すなわち駆動軸4を径方向に回転自在に支持する。
 なお、下軸受34の軸受部34aの軸受孔34cの円筒状の内周面と駆動軸4の副軸部42の外周面との間にも、隙間が設けられている。すなわち、互いに接触はしないように組み立てられている。この隙間には、駆動軸4の給油路から冷凍機油が供給され、油膜が形成されている。そのため、下軸受34の軸受部34aは、冷凍機油を介して、駆動軸4の副軸部42を支持する。油膜は、駆動軸4の給油路からの油圧によって形成されているので、駆動軸4は油膜の油圧によって、軸受部34aの内周面と副軸部42の外周面とは接触しないように支えられている。
 なお、図5の34dは、軸受部34aの内周面と主軸部41の外周面のすき間に冷凍機油を移送する油溝であり、34eは下軸受34をシリンダ31に固定するボルト穴である。
 なお、図1、2は、シリンダが一つの場合であり、これを基に説明してきたが、シリンダが二つ以上の多気筒の場合もある。多気筒の場合は、シリンダが上下に積み重ねられた構成が一般的である。最上位のシリンダの上方の開口部を上軸受33が閉塞し、最下位のシリンダの下方の開口部を下軸受34が閉塞する。シリンダとシリンダの間には、シリンダ室どうしを仕切るための中間仕切り板が備えられている。最上位のシリンダの上方の開口部および最下位のシリンダの下方の開口部以外の開口部は、中間仕切り板で閉塞される。駆動軸4を上軸受33と下軸受34とが軸支する構成は、同じである。
 シリンダ31には、密閉容器1の外部とシリンダ室36と連通する流路、すなわち、吸入ポートが設けられている。一般的に、吸入ポートは、シリンダ31に設けられた穴である。吸入ポートは、ベーン35によってシリンダ室36を分割した一方の吸入室と連通している。シリンダ31は、吸入ポートによって、シリンダ室36内の吸入室に密閉容器1の外部から冷媒ガスを吸入する。
 同様に、シリンダ31の外部とシリンダ室36と連通する流路、すなわち、吐出ポートが設けられている。一般的に、吐出ポートも、シリンダ31に設けられた穴や切欠きである。吐出ポートは、ベーン35によってシリンダ室36を分割したもう一方の圧縮室と連通している。図6は上軸受33を上面から見た図である。上軸受33には、吐出ポートと連通する流路および開口部、すなわち、吐出口51が設けられている。吐出口51には、吐出弁52が設けられている。吐出口51は、吐出ポートを介して、シリンダ31の圧縮室と、シリンダ31の外部空間と、を連通する。吐出弁52は、圧縮室内の冷媒ガスが所定の圧力となるまで閉塞し、圧縮室内の冷媒ガスが所定の圧力以上となると開口する。すなわち、シリンダ室36内の圧縮室にて圧縮された冷媒ガスは、吐出口51と吐出ポートとを介して、シリンダ室36の外部へ吐出される。
 なお、下軸受34に吐出口がある場合もある。その場合も、吐出弁が設けられ、圧縮室内の冷媒ガスが所定の圧力となるまで閉塞し、圧縮室内の冷媒ガスが所定の圧力以上となると開口することは、同じである。
 上軸受33、下軸受34の両方に吐出口が設けられている場合もある。
 上軸受33に吐出口51が設けられている場合は、上軸受33には、上軸受33のシリンダ31と反対側の面、すなわち駆動軸4の主軸部41と上軸受33の軸受部33aとが配置された側の面を覆う上部吐出マフラ39が設けられている。上部吐出マフラ39は、上軸受33のシリンダ31と反対側の面の全面を覆う場合もあれば、一部を覆う場合もある。上部吐出マフラ39は上軸受33にボルトなどで取り付けられている。上軸受33と上部吐出マフラ39との間には、空間、すなわち、上部マフラ室39aが設けられている。すなわち、上部吐出マフラ39は上軸受33との間に上部マフラ室39aを形成する。したがって、吐出口51は、吐出弁52の開閉により、圧縮室すなわちシリンダ室36とマフラ室39aを連通する。上軸受33の吐出口51から吐出された冷媒ガスは、上部マフラ室39aに拡散する。シリンダ31内で圧縮された冷媒ガスを、一旦、上部マフラ室39aに拡散することによって、吐出音を抑制している。
 なお、吐出口が下軸受34にある場合は、下部吐出マフラ40が下軸受34に設けられている。下部吐出マフラ40も、下軸受34のシリンダ31と反対側の面、すなわち駆動軸4の副軸部42と下軸受34の軸受部34aとが配置された側の面を覆っている。下部吐出マフラ40は、下軸受34のシリンダ31と反対側の面の全面を覆う場合もあれば、一部を覆う場合もある。下部吐出マフラ40は下軸受34にボルトなどで取り付けられている。下軸受34と下部吐出マフラ40との間には、空間、すなわち、下部マフラ室40aが設けられている。すなわち、下部吐出マフラ40は下軸受34との間に下部マフラ室40aを形成する。吐出口は、吐出弁の開閉により、圧縮室すなわちシリンダ室36とマフラ室40aを連通する。そして、冷媒ガスは、下軸受34の吐出口から下部吐出マフラ40の下部マフラ室40a内に拡散される。下部マフラ室40aに吐出された冷媒ガスは、上軸受33、下軸受34、シリンダ31に設けられた連通路を通過し、上軸受33の側に導かれる。
 また、図1、2のように両方に吐出口がある場合は、上軸受33、下軸受34、それぞれに上部吐出マフラ39、下部吐出マフラ40が設けられている。そして、冷媒ガスは、上部マフラ室39aと下部マフラ室40aとに、それぞれ吐出される。下部マフラ室40aに吐出された冷媒ガスは、シリンダ31に設けられた連通路を通過し、上部マフラ室39aに導かれる。
 また、多気筒の場合は、上部吐出マフラ39、下部吐出マフラ40を両方備える。最上位のシリンダの上方の開口部は、上軸受が、最下位のシリンダの下方の開口部は、下軸受が、それぞれ、閉塞する。それぞれのシリンダ室で圧縮された冷媒ガスは、上軸受、下軸受の吐出口から吐出される。したがって、上軸受、下軸受、それぞれに上部吐出マフラ、下部吐出マフラが設けられている。下部マフラ室に吐出された冷媒ガスは、シリンダに設けられた連通路を通過し、上部マフラ室に導かれる。
 上部吐出マフラ39には、上部マフラ室39aの上方に開口部が設けられており、上部マフラ室39aと、上部吐出マフラ39と密閉容器1との間の空間、すなわち、密閉容器1の内部空間と、を連通する。これにより、シリンダ室36内で圧縮された冷媒ガスは、上部吐出マフラ39を介して密閉容器1内へ吐出する。
 密閉容器1内に吐出された冷媒ガスは、密閉容器1の上方にある吐出管5の方向に導かれ、吐出管5から密閉容器1の外部に送り出される。そのとき、冷媒ガスは、電動機構部2の固定子21と回転子22との隙間や回転子22に設けられた連通孔を通過し、上方に送られる。
 吸入ポートには、密閉容器1の外部に設けられた吸入マフラ101が、吸入管6を介して、接続されている。密閉型圧縮機100には、密閉型圧縮機100が接続された外部の回路から、低圧の冷媒ガスと液冷媒が混在して送られてくる。液冷媒が圧縮機構部3に流入し圧縮されると圧縮機構部3の故障の原因となるため、吸入マフラ101では、液冷媒と冷媒ガスを分離し、冷媒ガスのみ圧縮機構部3に送られる。
 密閉型圧縮機100の外部には、図7のように、凝縮器102、膨張弁103、蒸発器104が設けられ、冷凍回路が形成されている。すなわち、密閉型圧縮機100の吐出管5から、凝縮器102、膨張弁103、蒸発器104を経て、吸入マフラ101に配管にて接続される環状の回路を形成し、この回路内を冷媒が循環することで、空気や水などと、熱交換を行い、熱エネルギーを搬送する冷凍サイクルを形成する。そして、これを利用するヒートポンプ装置を実現する。
 続いて、圧縮機構部3の動作について、説明する。
 まず、初めに、吸入ポートと連通した吸入室に、低圧低温の冷媒ガスが吸入される。冷媒ガスを吸入した吸入室は、ローリングピストン32、すなわち、偏芯軸部43の偏芯回転により、シリンダ室36内を移動して、吸入ポートとの連通が断たれる。さらに、ローリングピストン32が偏芯回転していくと、その吸入室の容積が縮小し、吸入した冷媒ガスを圧縮する。すなわち、吸入室が圧縮室となる。ローリングピストン32の偏芯回転が進むにしたがって、圧縮室は吐出ポートと連通する。圧縮室と吐出ポートが連通し、冷媒ガスが所定の圧力に到達すると、吐出ポートおよび吐出口51を閉塞している吐出弁52が開口する。吐出口51が開口すると、圧縮室内の高圧高温の冷媒ガスは、吐出口51を介して、吐出マフラ39、40内に吐出される。吐出マフラ39、40内に吐出された冷媒ガスは、吐出マフラ39、40から密閉容器1内に、吐出される。ローリングピストン32が偏芯回転していくと、吐出ポートとの連通が断たれ、再び、吸入ポートと連通される。これが繰り返されることによって、圧縮機構部3は、冷媒ガスを吸入、圧縮、吐出を行う。一連の動作は、ローリングピストン32がシリンダ室36内を一回転する間に行われる。
 このような構造と動作のため、圧縮機構部3では冷媒ガスを圧縮するとき、圧縮荷重が駆動軸4に作用し、駆動軸4は撓み変形する。
 圧縮機構部3の圧縮室にて冷媒ガスが圧縮されると、駆動軸4の偏芯軸部43に圧縮室の圧縮された冷媒ガスの圧縮荷重がかかる。例えば、図3において、ローリングピストン32が反時計回りに回転し、ベーン溝の右側に吐出ポートおよび吐出口51が配置されているとする。冷媒ガスの圧縮荷重により、駆動軸4は、シリンダ31の内径中心を中心とし、吐出口51が配置された方向と反対方向、すなわち、図の左下方向に、押圧される。駆動軸4は、主軸部41を上軸受33にて、副軸部42を下軸受34にて、押さえられているので、これらを支点に、撓み変形する。
 駆動軸4は上軸受33および下軸受34を支点として撓み変形するため、主軸部41と偏芯軸部43との接続部の近傍および副軸部42と偏芯軸部43との接続部の近傍と、上軸受33および下軸受34のシリンダ31側の端部近傍とが、強い局部接触をすることがある。その結果、損傷することもある。
 これを防止するため、図4、5のように、上軸受33のシリンダ31側の面には、上部柔構造溝61および上部柔構造62が、下軸受34のシリンダ31側の面には、下部柔構造溝64および下部柔構造65が、それぞれ、設けている。上部柔構造溝61および上部柔構造62と、下部柔構造溝64および下部柔構造65とは、駆動軸4の撓み変形に合わせて、微小変形することで、主軸部41および副軸部42の軸受孔33c、34cの内径を微小変形させる。その結果、主軸部41と偏芯軸部43との接続部の近傍および副軸部42と偏芯軸部43との接続部の近傍と、上軸受33および下軸受34のシリンダ31側の端部近傍との、局部接触が緩和される。
 なお、上部柔構造溝61および上部柔構造62、ならびに、下部柔構造溝64および下部柔構造65は、少なくとも一方が設けられていれば良い。
 上部柔構造溝61は、上軸受33の軸受部33aの軸受孔33cのシリンダ31側の面に開口した開口部を環状に囲む環状溝である。上部柔構造溝61は、軸受孔33cの開口部の中心と同心円状に設けられ、シリンダ31側に開口している。上部柔構造62は、上部柔構造溝61と軸受孔33cとの間に配置され、上部柔構造溝61と軸受孔33cの内周面とで形成された円筒状の薄肉部である。上部柔構造62は、変形が容易であり、弾性力を有している。すなわち、弾性変形が可能な厚さで形成されている。また、上部柔構造溝61は、上部柔構造62の弾性変形を阻害しない程度の溝の幅と、上部柔構造62が弾性変形を有する程度の深さで形成されている。例えば、柔構造の厚さは、数mm程度、溝の幅は、柔構造の厚さより狭くても良く、溝の深さは、数mmから十数mm程度あれば良い。
 下部柔構造溝64は、下軸受34の軸受部34aの軸受孔34cのシリンダ31側の面に開口した開口部を環状に囲む環状溝である。下部柔構造溝64は、軸受孔34cの開口部の中心と同心円状に設けられ、シリンダ31側に開口している。下部柔構造65は、下部柔構造溝64と軸受孔34cと間に配置され、下部柔構造溝64と軸受孔34cの内周面とで形成された円筒状の薄肉部である。下部柔構造65は、変形が容易であり、弾性力を有している。すなわち、弾性変形が可能な厚さで形成されている。また、下部柔構造溝64は、下部柔構造65の弾性変形を阻害しない程度の溝の幅と、下部柔構造65が弾性変形を有する程度の深さで形成されている。深さなどは、上部柔構造溝61、上部柔構造62と同様である。
 しかしながら、近年の密閉型圧縮機100には吸入、圧縮、吐出のサイクルの高速化、冷媒ガスの作動圧力の高圧化が求められている。特に、GWP(Global Warming Potential、地球温暖化係数)の小さな冷媒を求められている結果、従来の410Aより低密度の冷媒や高圧で使用する冷媒を用いることを要求されている。圧縮機構部3の高速化や冷媒ガスの高圧化によって、密閉型圧縮機100では圧縮機構部3で圧縮した冷媒ガスを密閉容器1内に吐出する前後において、圧縮室の圧力脈動の振幅が大きくなる。
 圧縮室内の圧力脈動が大きくなると、駆動軸4は、軸方向に押圧されて、軸方向に相対移動することになる。
 ローリングピストン32の偏芯回転を可能にするために、上軸受33のシリンダ31側の面とローリングピストン32の上軸受33側の端面との間、および、下軸受34のシリンダ31側の面とローリングピストン32の下軸受34側の端面との間には、それぞれ僅かな隙間が形成されている。それぞれの隙間は、通常、冷凍機油によって、シールされ、圧縮室と吸入室の気密性を保っている。駆動軸4が、軸方向に相対移動する挙動が起きると、一方の隙間が拡大して、他方の隙間が縮小する現象が生じる。隙間が拡大したとき、冷凍機油のシール作用も低下する。
 上軸受33、下軸受34に上部柔構造溝61および上部柔構造62、ならびに、下部柔構造溝64および下部柔構造65のうち少なくとも一方が設けられた場合、上部柔構造62のシリンダ31側の端面および下部柔構造65のシリンダ31側の端面のうち少なくとも一方の端面と、ローリングピストン32の上軸受33側の端面および下軸受34側の端面のうち少なくとも一方の端面との間の拡大した隙間を経由して、冷媒ガスが上部柔構造溝61および下部柔構造溝64のうち少なくとも一方に流入するようになる。一方、上部柔構造62のシリンダ31側の端面および下部柔構造65のシリンダ31側の端面のうち少なくとも一方の端面と、ローリングピストン32の上軸受33側の端面および下軸受34側の端面のうち少なくとも一方の端面との間の隙間が縮小すると、上部柔構造溝61および下部柔構造溝64のうち少なくとも一方の内部から上部柔構造溝61あるいは下部柔構造溝64の外部へ流出し難くなる。その結果、上部柔構造溝61および下部柔構造溝64のうち少なくとも一方の内部にも圧力脈動が繰り返し発生する。
 そのため、上部柔構造溝61あるいは下部柔構造溝64の内部の圧力は、上部柔構造溝61あるいは下部柔構造溝64の底面(天井面)に作用する軸方向の力になる。脈動が大きくなった場合、駆動軸4を軸方向に相対移動させる力が強くなり、密閉型圧縮機100の本体からの騒音が増加したり、本体の振動が増加したりする。
 これを回避するために、上部柔構造溝61および下部柔構造溝64の内部から高圧となった冷媒ガスを上部柔構造溝61および下部柔構造溝64の外部に開放する流路を設ける場合がある。
 例えば、上軸受33のフランジ部33bに、上軸受33の軸受孔33cの中心を基点として、その半径方向の最外縁部の端面に開口し、その開口部と上部柔構造溝61とを連通する連通孔を設けたもの、あるいは、下軸受34のフランジ部34bに、下軸受34の軸受孔34cの中心を基点として、その半径方向の最外縁部の端面に開口し、その開口部と下部柔構造溝64とを連通する連通孔を設けたものがある。その連通孔によって、上部柔構造溝61あるいは下部柔構造溝64の内部の冷媒ガスを密閉容器1内に放出することができる。しかしながら、密閉容器1内には、上軸受33のフランジ部33bが浸かる程度に、冷凍機油が貯留されている。そのため、上部柔構造溝61あるいは下部柔構造溝64から、その連通孔を経由して、高圧の冷媒ガスを放出すると、冷凍機油の中に開放することになる。そのような場合、冷媒ガスによって、冷凍機油が撹拌され、冷媒ガスと冷凍機油とが相溶状態となる。冷媒ガスは、冷凍機油を取り込んだまま、その質量により、密閉容器1の上方に上昇し、吐出管5から、密閉容器1の外部の冷凍回路に送り出されることになる。
 冷凍回路内に冷凍機油が流入すると、冷凍機油は冷凍サイクルの熱交換の妨げになり、冷凍回路の熱交換率が低下し、冷凍回路の性能を悪化させる。
 また、密閉容器1から冷凍機油が排出されると、密閉容器1内の冷凍機油が減少する。これにより、圧縮機構部3のシール性が低下し、気密性が低下する。それにより、圧縮機構部3からの冷媒ガスの漏れが大きくなり、圧縮性能が悪化する。さらに、各摺動部の潤滑性も低下するので、摩耗や損傷の原因となる。すなわち、密閉型圧縮機100の圧縮機構部3の高速化の妨げとなり、さらなる密閉型圧縮機100の高速化を図った場合の性能を維持することが困難である。
 また、上軸受33の上部柔構造溝61から上軸受33のフランジ部33bの最外縁部まで連通する連通孔あるいは下軸受34の下部柔構造溝64から下軸受34のフランジ部34bの最外縁部まで連通する連通孔では、連通孔の長さ寸法があるので、上部柔構造溝61あるいは下部柔構造溝64から冷媒ガスの放出を妨げない連通孔の圧損や、スラッジによる目詰まりなどを考慮する必要があり、設計方法や加工方法が複雑であった。特に、従来の冷媒より、高圧で使用するような場合は、圧損が冷媒ガスの放出の妨げとならないようにすることは重要である。
 したがって、上軸受33の上部柔構造溝61から上軸受33のフランジ部33bの最外縁部の端面あるいは下軸受34の下部柔構造溝64から下軸受34のフランジ部34bの最外縁部の端面から密閉容器1内へ開放する方法は、密閉型圧縮機100の高速化・高圧化に対し、さらなる改善の余地があった。
 また、上軸受33の上部柔構造62あるいは下軸受34の下部柔構造65に切欠きを設けたものもある。その切欠きから、上部柔構造溝61あるいは下部柔構造溝64の冷媒ガスを駆動軸4側へ開放することができる。しかしながら、冷媒ガスを駆動軸4側へ開放すると、冷媒ガスは、上軸受33の軸受孔33cの内周面あるいは下軸受34の軸受孔34cの内周面と駆動軸4の外周面との隙間を通過して、密閉容器1内へ放出される。そのため、上軸受33の軸受孔33cの内周面あるいは下軸受34の軸受孔34cの内周面と駆動軸4の外周面との隙間に形成される冷凍機油の油膜の中に冷媒ガスを開放されることになる。上軸受33のフランジ部33bの最外縁部の端面および下軸受34のフランジ部34bの最外縁部の端面に連通孔の開口部が設けられたときと、同様に、冷媒ガスが冷凍機油を取り込み、密閉容器1の外部に送りだされ、冷凍回路の性能の悪化、圧縮機構部3のシール性の低下、各摺動部の潤滑性の低下が起きる。
 さらに、上部柔構造溝61あるいは下部柔構造溝64の冷媒ガスが上軸受33の軸受孔33cあるいは下軸受34の軸受孔34cの内周面と駆動軸4の外周面との隙間を通過する際、その隙間の油膜を壊すので、上軸受33、下軸受34の支持力や潤滑性が低下して、摩耗や損傷の原因となる。特に、従来の冷媒より、高速または高圧で使用する場合は、駆動軸4を支持する上軸受33、下軸受34にも、大きな荷重がかかるので、それらの部品に過大な摩耗や損傷を与えないような油膜を維持することは重要である。
 したがって、上軸受33の上部柔構造62あるいは下軸受34の下部柔構造65に切欠きを設け、上部柔構造溝61あるいは下部柔構造溝64の冷媒ガスを駆動軸4側へ放出する方法も、密閉型圧縮機100の高速化や高圧化に対し、さらなる改善の余地があった。
 本願では、上部柔構造溝61と連通する連通孔の開口部を上軸受33のシリンダ31と反対側すなわち上部吐出マフラ39側に、下部柔構造溝64と連通する連通孔の開口部を下軸受34のシリンダ31と反対側すなわち下部吐出マフラ40側に設ける。すなわち、上部柔構造溝61の連通孔は、上部柔構造溝61と上部マフラ室39aとを連通させ、下部柔構造溝64の連通孔は、下部柔構造溝64と下部マフラ室40aとを連通させる。これにより、上部柔構造溝61の内部の冷媒ガスを上部マフラ室39a内に放出し、下部柔構造溝64の内部の冷媒ガスを下部マフラ室40a内に放出する。上部マフラ室39a内および下部マフラ室40a内は、シリンダ31の圧縮室から吐出される圧縮された冷媒ガスで満たされるので、冷凍機油が流入せず、冷凍機油が冷媒ガスに撹拌されることはない。すなわち、上部柔構造溝61および下部柔構造溝64から冷媒ガスを放出するとき、冷媒ガスが、冷凍機油を取り込むことはない。よって、冷凍機油が密閉容器1の外部に送りだされることを抑制できる。
 また、上部柔構造溝61あるいは下部柔構造溝64から放出される冷媒ガスは、上軸受33の軸受孔33cあるいは下軸受34の軸受孔34cの内周面と駆動軸4の外周面との隙間を通過しないので、その隙間の油膜に影響を与えることなく、上軸受33、下軸受34の支持力や潤滑性が低下することはない。
 しかしながら、上部マフラ室39a内あるいは下部マフラ室40a内には、冷凍機油の流入は無いとしたが、摺動部から余剰となった冷凍機油が排出されているので、僅かながら、上部マフラ室39a内あるいは下部マフラ室40a内にも残っている。この余剰冷凍機油が上部柔構造溝61あるいは下部柔構造溝64から放出される冷媒ガスに撹拌されないようにする必要がある。
 また、上部マフラ室39aあるいは下部マフラ室40aの内部はシリンダ31の圧縮室から吐出された冷媒ガスで満たされている。上部柔構造溝61あるいは下部柔構造溝64と連通する連通孔を上部マフラ室39a内あるいは下部マフラ室40a内に開口すると、上部マフラ室39a内あるいは下部マフラ室40a内に上部柔構造溝61あるいは下部柔構造溝64の冷媒ガスを放出とともに、上部マフラ室39a内あるいは下部マフラ室40a内の冷媒ガスを上部柔構造溝61あるいは下部柔構造溝64に吸入される可能性もある。吸入した場合、損失となるので、吸入されないようにする必要がある。
 それらの課題を考慮し実現した方法を説明する。
 図8は、図1、2の上軸受33の拡大断面図である。63が上部柔構造溝61と連通し、上部マフラ室39aに開口する連通孔すなわちガス抜き穴である。61aは、上部柔構造溝61のシリンダ31側に開口した開口部であり、61bは、61aと反対側にある上部柔構造溝61の最深部すなわち底部(天井部)である。これと同様の構造を、下軸受34にも備えており、図1、2の連通孔66が該当する。
 上軸受33、下軸受34は、同様の構造のため、図8にて、上軸受33の構造を、代表して説明していく。上部柔構造溝61の連通孔63は、上部柔構造溝61の最深部61bに開口される。上部柔構造溝61の最深部61b側に冷媒ガスが押し込まれるので、放出効果が高い。しかしながら、上部柔構造62の強度設計などの都合で、上部柔構造溝61の最深部61bに開口する構造が実現できなくても、上部柔構造溝61の開口部61aと上部柔構造溝61の最深部61bの中間より、最深部61b側の側面に開口されていれば良い。そのような構成であれば、上部柔構造溝61から冷媒ガスの放出には、支障は無い。
 また、上部柔構造溝61の連通孔63は、図8のように、上軸受33の上部吐出マフラ39側外周面において、上軸受33の軸受部33aとフランジ部33bとが繋がり連なる、すなわち連接する、軸受部33aの半径方向から見てL字上に屈曲する位置に開口される。これにより、上部柔構造溝61と上部マフラ室39aとを最短距離で連通することができ、加工面でも容易である。
 また、上部柔構造溝61の連通孔63の開口部は、連通孔63の開口部は上軸受33のフランジ部33bの上部吐出マフラ39側の平面より上方に配置され、冷凍機油の攪拌の面でも、都合が良い。例えば、上部マフラ室39aに摺動部の余剰の冷凍機油が残っていたとしても、冷凍機油はフランジ部33bの平面にあり、連通孔63の開口部とは距離がある。したがって、上部柔構造溝61の連通孔63から放出される冷媒ガスが冷凍機油を攪拌することはない。
 また、上部柔構造溝61の連通孔63は、図6のように、駆動軸4を基準として吐出口51側、吐出口51近傍に開口される。吐出口51近傍が、圧縮室として、冷媒ガスを圧縮中あるいは吐出中の状態である。その圧縮室から、冷媒ガスが上部柔構造溝61に流入してくるので、圧縮脈動を抑えるためには、この冷媒ガスを上部柔構造溝61から上部柔構造溝61の外部すなわち上部マフラ室39aへ放出することが、最も効果的である。よって、上部柔構造溝61の連通孔63は、吐出口51側に開口することによって、圧縮脈動を抑えるために、上部柔構造溝61から最も効果的に冷媒ガスの放出ができる。
 また、上部マフラ室39aは、吐出口51からの冷媒ガスで満たされているが、吐出口51から吐出される冷媒ガスも、上部柔構造溝61から放出される冷媒ガスも、同じ圧縮室の冷媒ガスである。したがって、ほぼ同じ圧力の冷媒ガスであり、上部柔構造溝61の連通孔63の開口部が吐出口51側に開口されることで、上部マフラ室39aの冷媒ガスを上部柔構造溝61が吸入するようなことも発生せず、冷媒ガスの放出に、支障が無い。
 さらに、吐出口51近傍は、吐出される高圧の冷媒ガスにより、余剰の冷凍機油などは溜まることはないので、上部柔構造溝61の連通孔63の開口部が吐出口51側に開口されることで、上部柔構造溝61の連通孔63から放出される冷媒ガスと冷凍機油とが接触することはなく、さらに、効果が高い。
 なお、上部柔構造溝61の連通孔63の開口部は、吐出口51より、上方に開口させることにより、冷媒ガスと冷凍機油とが接触しないという、さらに、有利な構造となっている。
 なお、上部柔構造溝61の連通孔63は、連通孔63の上部柔構造溝61の開口部から上部マフラ室39aの開口部に向かう方向と直角方向の面で切断した断面は、円形でなくでも構わない。例えば、楕円であっても、長円であっても、多角形であっても、構わない。上部マフラ室39aの開口部の形状も、上部柔構造溝61の開口部の形状も、同様である。連通孔63は、上部柔構造溝61の開口部から上部マフラ室39aの開口部まで、ほぼ同じ断面積で良いが、開口部にテーパーや面取りがされ断面積が広がっていても、機能に支障はない。
 また、上部柔構造溝61の連通孔63は、上部柔構造溝61の連通孔63内の圧損を抑制するため、上部柔構造溝61から上部マフラ室39aの開口部まで、ほぼ直線状に設けられる。
 また、上部柔構造溝61の連通孔63は、複数個設けられていても構わない。複数個の方が、一度に放出する冷媒ガスの圧損が緩和できるので、上部柔構造溝61から冷媒ガスを、スムーズに放出できる。
 また、上部柔構造溝61の連通孔63は、複数個設けられている場合、少なくとも一個が、吐出口51側に設けられれば良い。残りは、どの方向でも構わない。少なくとも一個設けられた吐出口51側の連通孔63が、前述までの効果を発揮する。その上で、複数個設けられている方が、連通孔63のいくつかが、スラッジなどにより、目詰まりしても、他の連通孔63が冷媒ガスの放出を行うので、上部柔構造溝61から冷媒ガスの放出の機能を損ねることなく、冗長性を持った、より高い信頼性を確保できる。
 以上、上軸受33の上部柔構造溝61、上部柔構造62、連通孔63にて説明した。上下が反対の下軸受34の連通孔66には、上下の配置関係にて効果があるところは、必ずしも当てはまらないが、それ以外の点については、ほぼ、同様のことが当てはまる。
 以上のような構造にて、上部柔構造溝61および上部柔構造溝61と上部マフラ室39aとを連通する連通孔63、ならびに、下部柔構造溝64および下部柔構造溝64と下部マフラ室40aとを連通する連通孔66のうち少なくとも一方が設けられることにより、上部柔構造溝61の内部および下部柔構造溝64の内部のうち少なくとも一方に流入した冷媒ガスを、上部柔構造溝61の外部あるいは下部柔構造溝64の外部すなわち上部マフラ室39aあるいは下部マフラ室40aに放出させることができる。これにより、上部柔構造溝61および下部柔構造溝64における、圧力脈動は小さくなり、駆動軸4を軸方向に相対移動させる力を抑え、密閉型圧縮機100の本体からの騒音や振動を抑制できる。
 そして、従来の上部柔構造62および下部柔構造65の機能は、損なわず、そのまま、実現できる。
 また、上部柔構造溝61の連通孔63の開口部を上部マフラ室39a内に、下部柔構造溝64の連通孔66の開口部を下部マフラ室40a内に開口することにより、放出された冷媒ガスが冷凍機油を撹拌することはない。よって、冷凍機油が、密閉容器1の外部に送りだされ、冷凍回路の性能を悪化させたり、圧縮機構部3のシール性を低下させたり、各摺動部の潤滑性を低下させたりすることは抑制される。
 また、上部柔構造溝61および下部柔構造溝64の冷媒ガスを上部マフラ室39aあるいは下部マフラ室40aに放出するので、上軸受33の軸受孔33cあるいは下軸受34の軸受孔34cの油膜に影響を与えることも無い。すなわち、駆動軸4と上軸受33および下軸受34との磨耗や損傷は抑制される。
 また、上部柔構造溝61の連通孔63は、上部吐出マフラ39側外周面において、上軸受33の軸受部33aとフランジ部33bとが繋がり連なる、すなわち連接する、軸受部33aの半径方向から見てL字上に屈曲する位置に開口される。上部柔構造溝61と上部マフラ室39aとを最短距離で連通することができ、加工面でも容易である。
 同様に、下部柔構造溝64の連通孔66は、下部吐出マフラ40側外周面において、下軸受34の軸受部34aとフランジ部34bとが連なる、すなわち連接する、軸受部34aの半径方向から見てL字上に屈曲する位置に開口される。下部柔構造溝64と下部マフラ室40aとを最短距離で連通することができ、加工面でも容易である。
 また、フランジ部33bの上部吐出マフラ39側の平面より、上方に開口していることにより、上部マフラ室39aに余剰の冷凍機油が残っていたとしても、上部柔構造溝61の連通孔63から放出される冷媒ガスが、その冷凍機油を攪拌することはない。
 さらに、上部柔構造溝61の連通孔63の開口部および下部柔構造溝64の連通孔66の開口部は、吐出される高圧の冷媒ガスにより、冷凍機油は溜まることがない吐出口近傍に設けられている。これにより、上部柔構造溝61の連通孔63および下部柔構造溝64の連通孔66から放出される冷媒ガスと冷凍機油とが接触することはなく、さらに効果が高い。
 また、上部柔構造溝61の連通孔63の開口部は吐出口より、上方に開口している。下部柔構造溝64の連通孔66の開口部は、吐出口より、下方に開口している。すなわち、上部柔構造溝61の連通孔63の開口部および下部柔構造溝64の連通孔66の開口部は、上軸受33の軸受部33aあるいは下軸受34の軸受部34aにおいて、上軸受33のフランジ部33bあるいは下軸受34のフランジ部34bに対し、シリンダ31と反対側の端部の方、開口している。吐出口から吐出される高圧の冷媒ガスにより、冷凍機油は押し出されているので、上部柔構造溝61の連通孔63あるいは下部柔構造溝64の連通孔66から放出される冷媒ガスと冷凍機油とが、さらに、接触することがない有利な構造となっている。
 また、上部柔構造溝61の連通孔63の開口部および下部柔構造溝64の連通孔66の開口部を、駆動軸4を基準として吐出口側、吐出口近傍に設けられることにより、圧縮中あるいは吐出中の圧縮室から上部柔構造溝61あるいは下部柔構造溝64へ流入してくる冷媒ガスを、上部柔構造溝61の内部および下部柔構造溝64の内部から上部柔構造溝61の外部あるいは下部柔構造溝64の外部、すなわち、上部マフラ室39aあるいは下部マフラ室40aへ放出することができる。これにより、上部柔構造溝61あるいは下部柔構造溝64の圧縮脈動を最も効果的に抑えることができる。
 また、吐出口から吐出される冷媒ガスも、上部柔構造溝61および下部柔構造溝64から放出される冷媒ガスも、同じ圧縮室の冷媒ガスであり、ほぼ同じ圧力の冷媒ガスである。よって、上部柔構造溝61の連通孔63から上部マフラ室39aの冷媒ガスを上部柔構造溝61へ、あるいは、下部柔構造溝64の連通孔66から下部マフラ室40aの冷媒ガスを下部柔構造溝64へ、吸入するようなことも発生せず、冷媒ガスの放出に、支障も無い。
 さらに、上部柔構造溝61の連通孔63あるいは下部柔構造溝64の連通孔66は、複数設けられていても良く、一度に放出する冷媒ガスの圧損が緩和できる。これにより、上部柔構造溝61あるいは下部柔構造溝64から冷媒ガスを、スムーズに放出できる。
 複数個設けられている場合、少なくとも一個が、吐出口側に設けられることにより、前述までの効果を発揮することができる。
 また、いくつかの連通孔が、スラッジなどにより、目詰まりしても、他の連通孔が、冷媒ガスの放出を行うので、上部柔構造溝61あるいは下部柔構造溝64から冷媒ガスの放出の機能を損ねることなく、冗長性を持った、より高い信頼性を確保できる。
 1 密閉容器、2 電動機構部、3 圧縮機構部、4 駆動軸、5 吐出管、6 吸入管、21 固定子、22 回転子、23 端子、31 シリンダ、32 ローリングピストン、33 上軸受、33a 上軸受の軸受部、33b 上軸受のフランジ部、33c 上軸受の軸受孔、34 下軸受、34a 下軸受の軸受部、34b 下軸受のフランジ部、34c 下軸受の軸受孔、35 ベーン、36 シリンダ室、37 ベーン溝、38 背圧室、39 上部吐出マフラ、39a 上部マフラ室、40 下部吐出マフラ、40a 下部マフラ室、41 主軸部、42 副軸部、43 偏芯軸部、51 吐出口、52 吐出弁、61 上部柔構造溝、61a 上部柔構造溝の最深部、61b 上部柔構造溝の開口部、62 上部柔構造、63 上部柔構造溝の連通孔、64 下部柔構造溝、65 下部柔構造、66 下部柔構造溝の連通孔、100 密閉型圧縮機、101 吸入マフラ、102 凝縮器、103 膨張弁、104 蒸発器。

Claims (5)

  1.  密閉容器内に、電動機構部と、前記電動機構部にて駆動され冷媒ガスを圧縮する圧縮機構部とを備えた密閉型圧縮機において、
     前記圧縮機構部は、前記電動機構部と連結し駆動力を伝達する駆動軸と、円筒状であって、その軸方向に開口部を有し、冷媒ガスを吸入し圧縮するシリンダ室が設けられたシリンダと、前記駆動軸を挿通する軸受孔と前記軸受孔を有し前記駆動軸を支持する軸受部と前記シリンダ室の開口部を閉塞するフランジ部とを有する上軸受および下軸受と、前記上軸受および前記下軸受のうち少なくとも一方に設けられ、前記シリンダ室と前記シリンダ室の外部とを連通し、前記シリンダ室で圧縮された冷媒ガスを吐出する吐出口と、前記上軸受あるいは前記下軸受との間に前記吐出口から冷媒ガスが吐出されるマフラ室と、前記上軸受の軸受孔の前記シリンダ側の開口部および前記下軸受の軸受孔の前記シリンダ側の開口部のうち少なくとも一方を囲むように設けられ、前記シリンダ側に開口し前記上軸受あるいは前記下軸受の軸受孔との間に薄肉部を形成する柔構造溝と、を備え、
     前記柔構造溝には、前記柔構造溝と前記マフラ室とを連通する連通孔が設けられ、前記シリンダ室から前記柔構造溝内に流入する冷媒ガスを前記マフラ室に放出することを特徴とする密閉型圧縮機。
  2.  前記連通孔の前記マフラ室側の開口部は、前記駆動軸を基準として前記吐出口側に設けられたことを特徴とする請求項1に記載の密閉型圧縮機。
  3.  前記連通孔の前記マフラ室側の開口部は、前記軸受部と前記フランジ部とがつながる連接部に設けられたことを特徴とする請求項2に記載の密閉型圧縮機。
  4.  前記連通孔は、複数個設けられ、前記複数個の連通孔のうち少なくとも一個は、前記吐出口側に設けられたことを特徴とする請求項3に記載の密閉型圧縮機。
  5.  前記圧縮機構部は、前記吐出口を有する前記上軸受の前記シリンダとは反対側あるいは前記吐出口を有する前記下軸受の前記シリンダとは反対側に設けられ、前記マフラ室を形成する吐出マフラを備えたことを特徴とする請求項1から4のいずれかに記載の密閉型圧縮機。
PCT/JP2016/079944 2016-10-07 2016-10-07 密閉型圧縮機 WO2018066125A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018543556A JP6673491B2 (ja) 2016-10-07 2016-10-07 密閉型圧縮機
PCT/JP2016/079944 WO2018066125A1 (ja) 2016-10-07 2016-10-07 密閉型圧縮機
CN201680089771.XA CN109804164B (zh) 2016-10-07 2016-10-07 密闭型压缩机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079944 WO2018066125A1 (ja) 2016-10-07 2016-10-07 密閉型圧縮機

Publications (1)

Publication Number Publication Date
WO2018066125A1 true WO2018066125A1 (ja) 2018-04-12

Family

ID=61831434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079944 WO2018066125A1 (ja) 2016-10-07 2016-10-07 密閉型圧縮機

Country Status (3)

Country Link
JP (1) JP6673491B2 (ja)
CN (1) CN109804164B (ja)
WO (1) WO2018066125A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996392U (ja) * 1982-12-20 1984-06-29 ダイキン工業株式会社 回転式圧縮機
JPS6063089U (ja) * 1983-10-06 1985-05-02 三洋電機株式会社 回転式圧縮機の給油装置
JPS6436694U (ja) * 1987-08-31 1989-03-06
JP2014196705A (ja) * 2013-03-29 2014-10-16 三菱電機株式会社 密閉型回転圧縮機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052497A (ja) * 2007-08-28 2009-03-12 Mitsubishi Electric Corp 冷媒圧縮機
JPWO2009145232A1 (ja) * 2008-05-28 2011-10-13 東芝キヤリア株式会社 密閉型圧縮機及び冷凍サイクル装置
CN104421161B (zh) * 2013-08-26 2017-08-01 珠海格力节能环保制冷技术研究中心有限公司 压缩机
CN204140408U (zh) * 2014-09-11 2015-02-04 安徽美芝精密制造有限公司 压缩机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996392U (ja) * 1982-12-20 1984-06-29 ダイキン工業株式会社 回転式圧縮機
JPS6063089U (ja) * 1983-10-06 1985-05-02 三洋電機株式会社 回転式圧縮機の給油装置
JPS6436694U (ja) * 1987-08-31 1989-03-06
JP2014196705A (ja) * 2013-03-29 2014-10-16 三菱電機株式会社 密閉型回転圧縮機

Also Published As

Publication number Publication date
CN109804164A (zh) 2019-05-24
CN109804164B (zh) 2020-09-29
JPWO2018066125A1 (ja) 2019-01-17
JP6673491B2 (ja) 2020-03-25

Similar Documents

Publication Publication Date Title
KR101499976B1 (ko) 압축기
WO2013065706A1 (ja) 密閉型回転式圧縮機と冷凍サイクル装置
JP2013083245A (ja) 密閉型圧縮機及び冷凍サイクル装置
JP2008240667A (ja) ロータリ圧縮機
US9145890B2 (en) Rotary compressor with dual eccentric portion
KR101510697B1 (ko) 회전축 및 이를 적용한 밀폐형 압축기 및 이를 적용한 냉동기기
US7854602B2 (en) Rotary compressor for changing compression capacity
JP2005307764A (ja) 回転式圧縮機
KR20210012231A (ko) 로터리 압축기
US7891956B2 (en) Rotary compressor
WO2018066125A1 (ja) 密閉型圧縮機
EP1808602A1 (en) Muffler installation structure for compressor
JP6206426B2 (ja) 密閉型圧縮機
US7871252B2 (en) Rotary compressor having two compression capacities
KR101563005B1 (ko) 압축기
WO2018198811A1 (ja) ローリングシリンダ式容積型圧縮機
EP1805419B1 (en) Rotary compressor
JP2009108747A (ja) 密閉型電動圧縮機
US20230003427A1 (en) Rotary compressor and refrigeration cycle device
KR20110055249A (ko) 소형 로터리 압축기
JP2017008819A (ja) 回転式圧縮機
JP2019035391A (ja) 圧縮機
JP2018071476A (ja) ロータリ圧縮機
JP5677196B2 (ja) 回転型圧縮機
JP2015001217A (ja) 圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018543556

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16918321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16918321

Country of ref document: EP

Kind code of ref document: A1