WO2018066099A1 - 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム - Google Patents

3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム Download PDF

Info

Publication number
WO2018066099A1
WO2018066099A1 PCT/JP2016/079693 JP2016079693W WO2018066099A1 WO 2018066099 A1 WO2018066099 A1 WO 2018066099A1 JP 2016079693 W JP2016079693 W JP 2016079693W WO 2018066099 A1 WO2018066099 A1 WO 2018066099A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
modeling
additional
additive manufacturing
manufacturing apparatus
Prior art date
Application number
PCT/JP2016/079693
Other languages
English (en)
French (fr)
Inventor
晋平 藤巻
崇宏 船木
庄一 佐藤
Original Assignee
技術研究組合次世代3D積層造形技術総合開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 技術研究組合次世代3D積層造形技術総合開発機構 filed Critical 技術研究組合次世代3D積層造形技術総合開発機構
Priority to EP16885443.8A priority Critical patent/EP3332896A4/en
Priority to JP2017514576A priority patent/JP6310614B1/ja
Priority to PCT/JP2016/079693 priority patent/WO2018066099A1/ja
Priority to US15/545,973 priority patent/US20180339457A1/en
Publication of WO2018066099A1 publication Critical patent/WO2018066099A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a control method for a three-dimensional additive manufacturing apparatus, a control method for the three-dimensional additive manufacturing apparatus, and a control program for the three-dimensional additive manufacturing apparatus.
  • Patent Document 1 discloses that in laser cutting processing, based on the virtual angle of the corner portion of the processing path, normal cutting processing and edge processing in which the moving speed of the processing nozzle and the laser output are smaller than in normal cutting processing.
  • a technique for switching between and is disclosed.
  • Patent Document 2 discloses a technique for performing cutting processing by changing cutting conditions based on the angle of the corner portion or the like when processing the corner portion in laser cutting processing.
  • Patent Document 3 discloses a technique for performing edge processing according to the angle of a corner portion in laser cutting processing.
  • Patent Document 4 discloses a technique in which the cutting speed is changed stepwise in accordance with the workpiece material and the plate thickness when the corner portion rises.
  • An object of the present invention is to provide a technique for solving the above-described problems.
  • a three-dimensional additive manufacturing apparatus Material supply means for supplying the material of the three-dimensional layered object onto the modeling table; A light irradiation means for irradiating a light beam; Control means for controlling the scanning direction and scanning speed of the light beam; Modeling model acquisition means for acquiring a modeling model of the three-dimensional layered object; Based on the acquired modeling model, modeling path determining means for determining a modeling path; From the determined modeling path, an extraction means for extracting a start point, an end point of the modeling path, and a relay point where the direction of the modeling path changes; An additional route determination means for determining an additional route for at least one of the extracted start point, the end point, and the relay point; With The control means controls a scanning direction and a scanning speed of the light beam based on the modeling path and the additional path.
  • a method for controlling a three-dimensional additive manufacturing apparatus includes: A material supply step of supplying the material of the three-dimensional layered object onto the modeling table; A light irradiation step for irradiating light; A control step for controlling the scanning direction and scanning speed of the light beam; A modeling model acquisition step of acquiring a modeling model of the three-dimensional layered object, Based on the acquired modeling model, a modeling path determination step for determining a modeling path; An extraction step for extracting a start point, an end point of the determined modeling path, and a relay point at which the direction of the modeling path changes; An additional route determination step for determining an additional route for the extracted start point, the end point, and the relay point; Including In the control step, a scanning direction and a scanning speed of the light beam are controlled based on the modeling path and the additional path.
  • a control program for a three-dimensional additive manufacturing apparatus is: A material supply step of supplying the material of the three-dimensional layered object onto the modeling table; A light irradiation step for irradiating light; A control step for controlling the scanning direction and scanning speed of the light beam; A modeling model acquisition step of acquiring a modeling model of the three-dimensional layered object, Based on the acquired modeling model, a modeling path determination step for determining a modeling path; An extraction step for extracting a start point, an end point of the determined modeling path, and a relay point at which the direction of the modeling path changes; An additional route determination step for determining an additional route for the extracted start point, the end point, and the relay point; To the computer, In the control step, a scanning direction and a scanning speed of the light beam are controlled based on the modeling path and the additional path.
  • a three-dimensional additive object having a corner in a three-dimensional additive manufacturing, can be formed with high accuracy.
  • FIG. 5A is a diagram illustrating an example of a modeling path by the three-dimensional additive manufacturing apparatus according to the prerequisite technology of the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • FIG. 5B is a diagram for explaining a heat input amount at a relay point in the three-dimensional additive manufacturing apparatus according to the prerequisite technique of the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • FIG. 5C is a diagram illustrating an example of a modeling path including a relay point in the three-dimensional additive manufacturing apparatus according to the prerequisite technique of the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • FIG. 5D is a diagram illustrating another example of a modeling path including a relay point by the three-dimensional additive manufacturing apparatus according to the prerequisite technology of the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • the three-dimensional additive manufacturing apparatus first scans the laser beam clockwise to model the outer quadrangular modeling path 510a, and then scans the laser beam laterally to generate the inner five horizontal lines.
  • the modeling path 510b is modeled.
  • the 3D additive manufacturing apparatus forms a route from the lower left starting point 530a in the clockwise direction to the end point 530b (the same point as the starting point 530a). Thereafter, the nozzle is moved along the movement path 520, and the modeling path 510b of the top horizontal line is modeled from left to right. Then, the nozzle is moved along the movement path 520 to move to the next horizontal line, and the modeling path 510b of the second horizontal line is modeled from right to left. By repeating such an operation, the three-dimensional additive manufacturing apparatus executes modeling of five horizontal lines.
  • the modeling path 510a and the modeling path 510b are paths for irradiating a laser beam from the nozzle of the three-dimensional additive manufacturing apparatus, melting the powder as a material, and forming a three-dimensional additive object.
  • the movement path 520 is a path for moving the nozzle of the three-dimensional layered modeling apparatus, and is not irradiated with a laser beam and modeling is not performed.
  • the start point 530a is a point at which modeling is started, and the end point 530b is a point at which modeling is completed.
  • modeling paths 510a and 510b are scanned with a laser beam, it takes time until the scanning speed of the laser beam (nozzle) rises to a predetermined scanning speed at the scanning start point 530a. Therefore, in this section, that is, from the state where the nozzle is stopped until the predetermined scanning speed is reached, the nozzle moves on the modeling paths 510a and 510b at a speed slower than the predetermined scanning speed.
  • the nozzle In the modeling paths 510a and 510b reaching the scanning end point 530b, the nozzle is decelerated from the state where the nozzle scanning speed reaches the predetermined scanning speed, and the movement of the nozzle is stopped at the end point 530b.
  • the nozzle moves on the modeling paths 510a and 510b at a speed slower than a predetermined scanning speed from when the nozzle scanning speed starts to decrease until the nozzle stops.
  • the carrier gas containing the powder ejected from the nozzle tip is irradiated with the laser beam for a long period of time. Will be added.
  • excessive heat is applied in this way, an excessive heat input state is formed, and a portion that is raised from the assumed modeling line is formed in the vicinity of the start point 530a and the end point 530b, or a portion that is depressed from the assumed modeling line is formed.
  • the nozzle scanning speed is reduced in order to change the laser beam scanning direction (nozzle movement direction).
  • the movement of the nozzle is temporarily stopped at the relay point 540, the moving direction of the nozzle is changed, and from there, the nozzle is accelerated again to reach a predetermined scanning speed. That is, the relay point 540 is a point where the moving direction of the laser beam (nozzle) changes. Since the nozzle must be moved at the relay point 540, an excessive heat input state occurs and the modeling line swells, similar to the start point 530a and the end point 530b.
  • FIG. 5B is used to further explain how the excessive heat input state occurs.
  • a modeling path (modeling path) from point C to point D is considered.
  • Between CC ' is an acceleration section, and between D'D is a deceleration section.
  • the laser beam (nozzle) accelerates between CC ′, reaches a predetermined speed (modeling condition speed) at point C ′, moves at a constant speed between C′D ′, and begins to decelerate at point D ′.
  • the speed is reduced to zero.
  • the output of the laser beam is kept constant. This indicates that the same output laser beam is irradiated between CC ′ and D′ D, which are acceleration / deceleration sections.
  • a laser beam is irradiated for a longer time between CC ′ and D′ D, which are sections moving at a speed slower than a predetermined speed, compared to between C′D ′.
  • the irradiation energy density irradiated by the laser beam is higher between the acceleration / deceleration regions CC ′ and D′ D, and more heat is applied than between C′D ′ that is the constant velocity moving section. It becomes a heat input excessive state.
  • the image of the modeling line height becomes a shape that rises between CC ′ and D′ D, which are acceleration / deceleration sections, and causes a decrease in modeling accuracy.
  • Such an excessive heat input state occurs at the start point 530a, the end point 530b, and the relay point 540.
  • the relay points 540 are not likely to have an excessive heat input state at all the relay points 540, but are likely to occur when the direction change angle is greater than or equal to a predetermined angle.
  • FIGS. 5C and 5D illustrates a case where excessive heat input is unlikely to occur at the relay point 540
  • FIG. 5D illustrates a case where excessive heat input is likely to occur at the relay point 540.
  • the angle ( ⁇ ) formed by the modeling path 510c and the modeling path 510d is a relatively shallow angle, and the nozzle (laser beam) can pass through the relay point 540 while maintaining the speed. That is, if the angle of direction change from the modeling path 510c to the modeling path 510d is a relatively gentle angle, the nozzle can trace the modeling path 510d from the modeling path 510c without reducing the speed.
  • the nozzle is moved using an NC (Numerical Control) device. As a function of the NC device, if ⁇ is smaller than a certain angle, the nozzle can be advanced at a constant speed without stopping the movement of the nozzle.
  • a path from the modeling path 510e to the modeling path 510f with the relay point 540 interposed therebetween is considered.
  • the angle ( ⁇ ′) formed by the modeling path 510e and the modeling path 510f is a large angle of 90 ° or more.
  • the nozzle when moving from the modeling path 510e to the modeling path 510f, the nozzle temporarily stops at the relay point 540 or changes its direction after being decelerated. Heat easily accumulates at the point 540.
  • the modeling table may move while the nozzle remains fixed.
  • FIG. 1 is a diagram illustrating an outline of a configuration of a three-dimensional additive manufacturing apparatus 100 according to the present embodiment.
  • components other than those shown here are omitted as appropriate in order to avoid complication of the drawing.
  • the three-dimensional additive manufacturing apparatus 100 will be described using an LMD (Laser Metal Deposition) type three-dimensional additive manufacturing apparatus as an example, but may be a powder bed type additive-added three-dimensional additive manufacturing apparatus.
  • LMD Laser Metal Deposition
  • the three-dimensional additive manufacturing apparatus 100 applies a laser beam to metal powder or the like that is a material of the three-dimensional additive manufacturing object, and melts and solidifies the metal powder to laminate the powder on the modeling table 130. It is an apparatus for modeling the modeled object 120.
  • the three-dimensional additive manufacturing apparatus 100 includes a control unit 101, a modeling model acquisition unit 102, a modeling path determination unit 103, an extraction unit 104, and an additional path determination unit 105.
  • the three-dimensional additive manufacturing apparatus 100 further includes a modeling table 130, a material storage unit 150, a material transport tube 151, a light source 160, a lens barrel 170, and a nozzle 180.
  • tube 151, and the nozzle 180 comprise a material supply part.
  • the light source 160 generates a light beam such as a laser beam.
  • the lens barrel 170 adjusts the optical path of the generated laser beam, guides the laser beam to the modeling table 130, and irradiates it.
  • the nozzle 180 injects the carrier gas 140 from the tip of the nozzle 180 and supplies the material of the three-dimensional layered object 120 onto the modeling table 130.
  • the carrier gas 140 is an inert gas such as argon gas, nitrogen gas, or helium gas, and is a gas that conveys metal powder or the like that is a material of the three-dimensional layered object 120 onto the modeling table 130.
  • the material storage unit 150 stores the material of the three-dimensional layered object 120 and supplies the material to the nozzle 180 through a material conveyance pipe 151 by pressure feeding or the like.
  • the control unit 101 is connected to the light source 160, the lens barrel 170, the nozzle 180, and the material storage unit 150.
  • the control unit 101 controls the light source 160 by adjusting the output of the laser beam, the scanning direction, the scanning speed, and the like.
  • the control unit 101 controls the lens barrel 170 to adjust the optical axis of the laser beam and the focusing state.
  • the control unit 101 controls the nozzle 180 and the material storage unit 150 to adjust the scanning speed of the nozzle 180, the injection amount of the carrier gas 140 from the nozzle 180, and the like, thereby adjusting the supply amount of the material.
  • the modeling model acquisition unit 102 acquires a modeling model (three-dimensional shape) that is data necessary for modeling the three-dimensional layered object 120.
  • the modeling model is created using, for example, CAM (Computer Aided Manufacturing) or CAD (Computer Aided Design), but is not limited thereto.
  • the modeling path determination unit 103 determines a modeling path based on the acquired modeling model.
  • the modeling path is determined by, for example, converting a modeling model having a three-dimensional shape into slice data and deriving a modeling path that fills the slice data for each slice data obtained by the conversion.
  • the extraction unit 104 extracts the start point and the end point of the modeling path from the determined modeling path.
  • the extraction unit 104 further extracts a relay point that is a point where the direction of the modeling path changes.
  • the extraction of the start point, the end point, and the relay point is performed by assigning a code number to the modeling path determined by the modeling path determination unit 103, for example. For example, if two code numbers “G00” and “G01” are used as the code numbers, the start point, the end point, and the relay point can be extracted based on the difference between the two code numbers.
  • the extraction unit 104 determines that it is the start point. On the other hand, when “G00” comes after “G01”, the extraction unit 104 determines that the end point is reached. Then, the extraction unit 104 determines that the place where “G01” is connected is a relay point. As described above, the extraction unit 104 can determine and extract the start point, the end point, and the relay point based on the code number attached to the modeling path.
  • the extraction method of the start point, end point and relay point is not limited to the method shown here. For example, a method of adding identification data such as a flag representing the start point, end point and relay point to the modeling route data. There may be.
  • the additional route determination unit 105 determines what additional route is added to the extracted start point, end point, and relay point.
  • the shape of the additional route is not particularly limited, but the additional route determination unit 105 determines, for example, the movement time of the additional route and the route length of the additional route to be the shortest.
  • the additional route may be attached to at least one of the extracted start point, end point, and relay point, or may be attached to all of these, or to some combination of these. May be attached.
  • control part 101 controls the light source 160, the nozzle 180, etc. so that a laser beam traces a modeling path
  • the control unit 101 switches ON / OFF of the laser beam, for example, turns off the laser beam in the additional path and does not irradiate (stops irradiation of the light beam). Since the laser beam is emitted at a constant output, the laser beam can be turned on / off by, for example, providing a gate at an arbitrary position of the nozzle 180 and opening and closing the gate, or controlling the output. You may carry out by the method.
  • FIG. 2A is a diagram for explaining an example of an additional path by the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • FIG. 2B is a diagram for explaining another example of the additional path by the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • the modeling path 210a includes a modeling path 210a that goes from the left direction to the right direction, and a modeling path 210a that changes direction at the relay point 240 and goes diagonally upward to the left.
  • the entire additional path 210b has a triangular shape composed of three straight additional paths 210b.
  • the laser beam nozzle 180
  • the laser beam changes direction at two direction change points 220, which are points to change direction, and faces the same direction as the modeling path 210a heading diagonally to the left.
  • the laser beam is accelerated by the additional path 210b that faces obliquely upward to the left, and proceeds again to the modeling path 210a.
  • the laser beam needs to be temporarily stopped or decelerated at the two turning points 220, like the relay point 240.
  • the overall shape of the additional path 210a is not limited to the triangular shape shown here, and may be a polygonal shape.
  • the additional path 210b includes a straight additional path 210b and a curved additional path 210c. That is, after passing through the straight addition path 210b, the laser beam passes through the curved addition path 210c, and again enters the modeling path 210a toward the upper left via the straight addition path 210b.
  • the turning radius (R) of the additional path 210c of the curve is a value that can pass through the turning point 220 without reducing the scanning speed of the laser beam at the turning point 220. That is, the laser beam has a value that can enter from the straight additional path 210b to the curved additional path 210c or from the curved additional path 210c to the straight additional path 210b. The smaller the radius of rotation, the better. However, a value that allows the laser beam to pass through the turning point 220 without reducing the speed is preferable. For example, R is about 3 mm as a guide, but is not limited thereto. .
  • FIG. 2C is a diagram for explaining the amount of heat input at the relay point 240 by the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • a modeling path modeling path
  • A'A additional path
  • the laser beam (nozzle) is accelerated to a predetermined speed.
  • AB modeling pass
  • a predetermined speed constant speed, modeling condition speed. Since the laser beam is accelerated to a predetermined speed in an additional path (running path, acceleration path) and then enters the modeling path, a predetermined heat can be applied from the start position of the modeling path.
  • the laser beam reaches point B, that is, the end position of the modeling pass, the laser beam is decelerated to a predetermined speed or until it stops between BB '(running pass and deceleration pass).
  • the laser output of the laser beam is constant, and the moving speed (scanning speed) of the laser beam is constant at a predetermined speed in the modeling path.
  • the energy density is constant. Therefore, in the modeling pass, the heat given to the material such as the metal powder is constant.
  • the scanning of the laser beam and moving the laser beam at a constant speed it is possible to suppress the occurrence of the excessive heat input state described in the above-mentioned prerequisite technology. The decrease can also be suppressed.
  • FIG. 2D is a view for explaining still another example of the additional path by the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • the additional path shown in FIG. 2D has a configuration in which a straight path 210b is added to the additional path shown in FIG. 2B. That is, in FIG. 2D, the linear additional path 210b is further sandwiched between the linear additional path 210b and the curved additional path 210c shown in FIG. 2B. In this way, a straight line path having a relatively short distance may be sandwiched between the straight line part and the curved line part, and the curve may be connected to the additional path 210c or the additional line 210b.
  • the rotation radius of the curved additional path 210c can be reduced by sandwiching the linear portion with an angle therebetween.
  • the entire additional path may be configured by freely combining the linear additional path 210b and the curved additional path 210c.
  • the additional path may be constituted by a curved additional path 210c, but is not limited thereto.
  • FIG. 2E is a diagram for explaining the movement time of the additional path in the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • the acceleration / deceleration time indicates the time required for acceleration and deceleration before and after the turning point 220 when the additional path 210b shown in FIG. 2A is a straight line, and is 0.1 [s] here.
  • the feed speed is, for example, the moving speed of the laser beam in the modeling pass.
  • the two linear angles are ⁇ in FIGS. 2A and 2B.
  • the straight jump time indicates the movement time in the case of the additional route shown in FIG. 2A.
  • the arc jump time indicates the movement time in the case of the additional route shown in FIG. 2B, and the arc R is 3 mm.
  • the route including the curved portion in the additional route shown in FIG. 2B can move faster.
  • the additional path formed by the straight line shown in FIG. 2A can move at a higher speed.
  • the additional path shown in FIG. 2B can move at a higher speed, and 135 [deg]. If so, the additional route shown in FIG. 2A can move at a higher speed.
  • FIG. 2F is a diagram for explaining the length of the additional path by the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • the radius of rotation of the curved path (arc) is 10 mm.
  • the additional route in which the straight route and the curved route are in contact with each other at 90 ° (tangent) is more than the additional route in which the straight route and the curved route are in contact with each other at 60 °.
  • the entire length of the additional path is shortened.
  • the additional path length is 111.29 mm
  • the additional path length is 112.14 mm.
  • the length of the straight line part is shortened when contacting at 90 °, whereas the length of the straight line part is increased when contacting at 60 °. . Further, when the contact is 90 °, the curved portion becomes longer, whereas when the contact is made at 60 °, the curved portion becomes shorter. However, when viewed in total, the length of the additional path is shorter when the contact is made at 90 °.
  • the additional path in which the straight path and the curved path are in contact with each other at 60 ° is shorter than the additional path in which the straight path and the curved path are in contact with each other at 90 °.
  • the length of the straight line portion is shortened, whereas when contacting at 60 °, the length of the straight line portion is increased.
  • the contact is 90 °, the curved portion becomes longer, whereas when the contact is made at 60 °, the curved portion becomes shorter.
  • the length of the additional path is shorter when the contact is made at 60 °.
  • FIG. 3 is a diagram illustrating an example of an additional path table included in the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • the additional path table 401 stores the additional path 413 in association with the angle 411 ([°]) of the relay point 240 and the laser beam scanning speed 412 ([mm / s]).
  • the three-dimensional additive manufacturing apparatus 100 refers to the additional path table 401 and determines the additional paths 210b and 210c. Note that the method of determining the additional paths 210b and 210c is not limited to the method of determining with reference to the additional path table 401, and the three-dimensional additive manufacturing apparatus 100 is based on the angle of the relay 240 points and the scanning speed of the laser beam. A method of determining each time may be used.
  • FIG. 4 is a flowchart illustrating a processing procedure performed by the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • the three-dimensional additive manufacturing apparatus 100 acquires a modeling model of the three-dimensional additive manufacturing object 120 from CAM, CAD, or the like.
  • the three-dimensional additive manufacturing apparatus 100 determines a modeling path based on the acquired modeling model.
  • the three-dimensional additive manufacturing apparatus 100 extracts a start point, an end point, and a relay point from the determined modeling path.
  • the three-dimensional additive manufacturing apparatus 100 determines additional paths for the extracted start point, end point, and relay point.
  • the three-dimensional additive manufacturing apparatus 100 models the three-dimensional additive object 120 by controlling the laser beam so that the laser beam moves on the formation path and the additional path.
  • FIG. 6 is a diagram illustrating a configuration of the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • the three-dimensional additive manufacturing apparatus according to the present embodiment is different from the first embodiment in that an angle determination unit is included. Since other configurations and operations are the same as those in the first embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the three-dimensional additive manufacturing apparatus 600 further includes an angle determination unit 606.
  • the angle determination unit 606 determines whether the angle of the relay point 240 is equal to or greater than a predetermined angle.
  • the angle of the relay point 240 represents the direction change angle at the relay point 240. If the angle determined by the angle determination unit 606 is equal to or greater than a predetermined angle, the additional route determination unit 105 determines an additional route according to the angle of the relay point 240.
  • the laser beam can pass through the relay point 240 without reducing the scanning speed (movement speed) without providing an additional path. Therefore, when the direction change angle at the relay point 240 is shallow, no additional path is provided at the relay point 240. Therefore, in this embodiment, even if it is the relay point 240, there exists the relay point 240 which does not provide an additional path
  • the predetermined angle is set based on, for example, the performance of the NC device, but is not limited to this, and the user may set an arbitrary angle. Further, an additional route is attached to the start point and the end point.
  • FIG. 7 is a flowchart illustrating a processing procedure performed by the three-dimensional additive manufacturing apparatus according to the present embodiment.
  • step S ⁇ b> 701 the three-dimensional additive manufacturing apparatus 600 determines the start point, the end point, or the relay point 240. If it is the start point or the end point, the three-dimensional additive manufacturing apparatus 600 proceeds to step S703.
  • step S703 the three-dimensional additive manufacturing apparatus 600 determines an additional path. For example, an acceleration / deceleration path corresponding to the modeling movement speed of the laser beam is added as an additional path to the start point or the end point. In the case of the starting point, the previous positioning position is also changed.
  • step S709 the three-dimensional additive manufacturing apparatus 600 determines whether the relay point 240 is less than a predetermined angle. When it is determined that the angle is less than the predetermined angle (YES in step S709), the three-dimensional additive manufacturing apparatus 600 proceeds to step S705. When it is determined that the angle is not less than the predetermined angle, that is, when it is determined that the angle is equal to or greater than the predetermined angle (NO in step S709), the three-dimensional additive manufacturing apparatus 600 proceeds to step S711.
  • step S711 the three-dimensional additive manufacturing apparatus 600 determines additional paths 210b and 210c to be attached to the relay point 240.
  • the additional path including only the straight additional path 210b or the additional path including the additional path 210c of the arc (curve) path is selected with the shorter travel time (movement distance).
  • the shorter travel time movement distance
  • the three-dimensional additive manufacturing apparatus 600 proceeds to step S703, and the three-dimensional additive manufacturing object is determined based on the additional path determined for the start point / end point and the additional path determined for the relay point 240.
  • the additional paths 210b and 210c necessary for 120 modeling are determined.
  • step S705 the three-dimensional additive manufacturing apparatus 600 determines the modeling path 210a including the additional paths 210b and 210c. Then, the 3D additive manufacturing apparatus 600 generates a modeling program for the determined modeling path 210a (including the additional paths 210b and 210c) as a modified modeling program, and issues an operation command to each functional component of the three-dimensional additive manufacturing apparatus 600. send.
  • step S707 the three-dimensional additive manufacturing apparatus 600 controls the nozzle 180 and the like to form the three-dimensional additive object 120 based on the modified modeling program.
  • the control unit 101 of the three-dimensional additive manufacturing apparatus 600 turns on the laser beam in the modeling path 210a and turns off the laser beam in the additional paths 210b and 210c. Further, the control unit 101 moves the axis such as the nozzle 180 so that the laser beam traces the modeling path 210a and the additional paths 210b and 210c.
  • a three-dimensional additive object having a relay point of a predetermined angle or more can be formed with high accuracy. Further, in the three-dimensional layered modeling, a three-dimensional layered object having a relay point of a predetermined angle or more can be modeled with high accuracy and high speed.
  • the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where an information processing program that implements the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed on the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本願発明は、3次元積層造形において、コーナー部を有する3次元積層造形物を高精度で造形することを目的とする。 本願発明は、3次元積層造形装置であって、3次元積層造形物の材料を造形台上に供給する材料供給部と、光線を照射する光線照射部と、前記光線の走査方向および走査速度を制御する制御部と、前記3次元積層造形物の造形モデルを取得する造形モデル取得部と、取得した前記造形モデルに基づいて、造形経路を決定する造形経路決定部と、決定した前記造形経路から、前記造形経路の始点、終点および前記造形経路の方向が変化する中継点を抽出する抽出部と、抽出した前記始点、前記終点および前記中継点の少なくとも1つに対する付加経路を決定する付加経路決定部と、を備え、前記制御部は、前記造形経路および前記付加経路に基づいて、前記光線の走査方向および走査速度を制御するものである。

Description

3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
 本発明は、3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラムに関する。
 上記技術分野において、特許文献1には、レーザ切断加工において、加工経路のコーナー部の仮想角度に基づいて、通常切断加工と、通常切断加工よりも加工ノズルの移動速度およびレーザ出力が小さいエッジ加工とを切り替える技術が開示されている。特許文献2には、レーザ切断加工において、コーナー部を加工する場合、コーナー部の角度などに基づいて、切断条件を変更して切断加工を行う技術が開示されている。特許文献3には、レーザ切断加工において、コーナー部の角度に応じてエッジ加工処理を実行する技術が開示されている。特許文献4には、コーナー部の立ち上がりにおいて、ワーク材質や板厚に応じて切断速度を段階的に変化させる技術が開示されている。
特許第5255137号明細書 特許第3211902号明細書 特許第3825123号明細書 特開平2-30388号公報
 しかしながら、上記文献に記載の技術では、3次元積層造形において、所定角度以上のコーナー部を有する3次元積層造形物を高精度で造形することができなかった。
 本発明の目的は、上述の課題を解決する技術を提供することにある。
 上記目的を達成するため、本発明に係る3次元積層造形装置は、
 3次元積層造形物の材料を造形台上に供給する材料供給手段と、
 光線を照射する光線照射手段と、
 前記光線の走査方向および走査速度を制御する制御手段と、
 前記3次元積層造形物の造形モデルを取得する造形モデル取得手段と、
 取得した前記造形モデルに基づいて、造形経路を決定する造形経路決定手段と、
 決定した前記造形経路から、前記造形経路の始点、終点および前記造形経路の方向が変化する中継点を抽出する抽出手段と、
 抽出した前記始点、前記終点および前記中継点の少なくとも1つに対する付加経路を決定する付加経路決定手段と、
 を備え、
 前記制御手段は、前記造形経路および前記付加経路に基づいて、前記光線の走査方向および走査速度を制御する。
 上記目的を達成するため、本発明に係る3次元積層造形装置の制御方法は、
 3次元積層造形物の材料を造形台上に供給する材料供給ステップと、
 光線を照射する光線照射ステップと、
 前記光線の走査方向および走査速度を制御する制御ステップと、
 前記3次元積層造形物の造形モデルを取得する造形モデル取得ステップと、
 取得した前記造形モデルに基づいて、造形経路を決定する造形経路決定ステップと、
 決定した前記造形経路の始点、終点および前記造形経路の方向が変化する中継点を抽出する抽出ステップと、
 抽出した前記始点、前記終点および前記中継点に対する付加経路を決定する付加経路決定ステップと、
 を含み、
 前記制御ステップにおいて、前記造形経路および前記付加経路に基づいて、前記光線の走査方向および走査速度を制御する。
 上記目的を達成するため、本発明に係る3次元積層造形装置の制御プログラムは、
 3次元積層造形物の材料を造形台上に供給する材料供給ステップと、
 光線を照射する光線照射ステップと、
 前記光線の走査方向および走査速度を制御する制御ステップと、
 前記3次元積層造形物の造形モデルを取得する造形モデル取得ステップと、
 取得した前記造形モデルに基づいて、造形経路を決定する造形経路決定ステップと、
 決定した前記造形経路の始点、終点および前記造形経路の方向が変化する中継点を抽出する抽出ステップと、
 抽出した前記始点、前記終点および前記中継点に対する付加経路を決定する付加経路決定ステップと、
 をコンピュータに実行させ、
 前記制御ステップにおいて、前記造形経路および前記付加経路に基づいて、前記光線の走査方向および走査速度を制御する。
 本発明によれば、3次元積層造形において、コーナー部を有する3次元積層造形物を高精度で造形することができる。
本発明の第1実施形態に係る3次元積層造形装置の構成を示す図である。 本発明の第1実施形態に係る3次元積層造形装置による付加経路の一例を説明する図である。 本発明の第1実施形態に係る3次元積層造形装置による付加経路の他の例を説明する図である。 本発明の第1実施形態に係る3次元積層造形装置による中継点における入熱量について説明する図である。 本発明の第1実施形態に係る3次元積層造形装置による付加経路のさらに他の例を説明する図である。 本発明の第1実施形態に係る3次元積層造形装置における付加経路の移動時間を説明する図である。 本発明の第1実施形態に係る3次元積層造形装置による付加経路の長さを説明する図である。 本発明の第1実施形態に係る3次元積層造形装置の有する付加経路テーブルの一例を示す図である。 本発明の第1実施形態に係る3次元積層造形装置による処理手順を説明するフローチャートである。 本発明の第1実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置による造形経路の一例を示す図である。 本発明の第1実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置において中継点における入熱量について説明する図である。 本発明の第1実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置において中継点を含む造形経路の一例を示す図である。 本発明の第1実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置による中継点を含む造形経路の他の例を示す図である。 本発明の第2実施形態に係る3次元積層造形装置の構成を示す図である。 本発明の第2実施形態に係る3次元積層造形装置による処理手順を説明するフローチャートである。
 以下に、本発明を実施するための形態について、図面を参照して、例示的に詳しく説明記載する。ただし、以下の実施の形態に記載されている、構成、数値、処理の流れ、機能要素などは一例に過ぎず、その変形や変更は自由であって、本発明の技術範囲を以下の記載に限定する趣旨のものではない。
 [前提技術]
 図5A乃至図5Dを用いて、本発明の第1実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置による造形経路について説明する。図5Aは、本実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置による造形経路の一例を示す図である。図5Bは、本実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置において中継点における入熱量について説明する図である。図5Cは、本実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置において中継点を含む造形経路の一例を示す図である。図5Dは、本実施形態に係る3次元積層造形装置の前提技術に係る3次元積層造形装置による中継点を含む造形経路の他の例を示す図である。
 図5Aに示したように、外側の四角形の造形経路510aと、四角形の内側の5本の横線の造形経路510bとを考える。3次元積層造形装置は、まず、レーザビームを時計回りに走査して、外側の四角形の造形経路510aの造形を行い、次に、レーザビームを横方向に走査して、内側の5本の横線の造形経路510bの造形を行う。
 3次元積層造形装置は、左下の始点530aから時計回りに造形をスタートし、終点530b(始点530aと同じ点)まで戻る経路を造形する。その後、移動経路520に沿ってノズルを移動させて、一番上の横線の造形経路510bを左から右へ向かって造形する。そして、移動経路520に沿ってノズルを移動させて、1つ下の横線に移動して、2番目の横線の造形経路510bを右から左へ向かって造形する。このような動作を繰り返して、3次元積層造形装置は、5本の横線の造形を実行する。
 ここで、造形経路510aおよび造形経路510bは、3次元積層造形装置のノズルからレーザビームを照射して、材料である粉体を溶融し、3次元積層造形物を造形する経路である。移動経路520は、3次元積層造形装置のノズルが移動するための経路であり、レーザビームは照射されず、造形は行われない。始点530aは、造形を開始する点であり、終点530bは、造形を終了する点である。
 このような造形経路510a、510bをレーザビームで走査する場合、走査の始点530aにおいては、レーザビーム(ノズル)の走査速度が所定の走査速度まで上昇するまでに時間を要する。そのため、この区間は、つまり、ノズルが停止した状態から所定の走査速度に達するまでの間は、所定の走査速度よりも遅い速度でノズルが造形経路510a、510b上を移動する。
 また、走査の終点530bに至る造形経路510a、510bにおいては、ノズルの走査速度が所定の走査速度に達した状態から、ノズルを減速して、終点530bでノズルの動きを停止させる。ノズルの走査速度の減速を開始してから、ノズルが停止するまでの間、ノズルは、所定の走査速度よりも遅い速度で造形経路510a、510b上を移動する。
 したがって、ノズルが、所定の走査速度よりも遅い速度で移動している間は、ノズル先端から噴射される粉体を含むキャリアガスに対して、レーザビームが長時間照射されるので、より大きな熱が加えられることとなる。このように過大な熱が加えられると、入熱過多状態となり、始点530aおよび終点530b付近において、想定した造形ラインよりも盛り上がった部分が形成されたり、想定した造形ラインよりも落ち込んだ部分が形成されたりする。
 また、所定角度以上のコーナー部である中継点540においては、レーザビームの走査方向(ノズルの移動方向)を変更するために、ノズルの走査速度を減速する。または、中継点540においてノズルの動きを一旦停止させて、ノズルの移動方向を変え、そこから、ノズルを再度加速させ、所定の走査速度まで到達させる。つまり、中継点540は、レーザビーム(ノズル)の移動方向が変化する点である。中継点540においては、このようなノズルの動きを行わなければならないため、始点530aや終点530bと同様に、入熱過多状態が発生し、造形ラインが盛り上がったりするなどの状況が発生する。
 図5Bを用いて、このように入熱過多状態が発生する様子をさらに説明する。図5Bに示したように、C点からD点までの造形パス(造形経路)を考える。CC’間は加速区間であり、D’D間は減速区間である。レーザビーム(ノズル)は、CC’間で加速し、C’点で所定の速度(造形条件速度)に到達し、C’D’間は、等速で移動し、D’点で減速し始め、D点で、例えば、速度ゼロまで減速する。
 一方で、レーザビーム(ノズル)がCD間を移動している間は、レーザビームの出力は、一定の出力が維持されている。これは、加減速区間であるCC’間およびD’D間でも同じ出力のレーザビームが照射されることを示している。
 つまり、所定の速度よりも遅い速度で移動する区間である、CC’間およびD’D間では、C’D’間よりも長い時間レーザビームが照射されることとなる。その結果、レーザビームにより照射される照射エネルギー密度は、加減速領域であるCC’間およびD’D間において高くなり、等速移動区間であるC’D’間よりもより多くの熱が加えられ、入熱過多状態となる。
 したがって、図5Bに示したように、造形ライン高さのイメージは、加減速区間であるCC’間およびD’D間で盛り上がった形状となってしまい、造形精度が低下する原因となる。
 このような入熱過多状態は、始点530a、終点530bおよび中継点540において発生する。ただし、中継点540については、全ての中継点540で入熱過多状態が発生するのではなく、方向変化の角度が所定の角度以上の場合に発生し易い。
 この様子を図5Cおよび図5Dに示す。図5Cは、中継点540において、入熱過多が発生し難い場合を示し、図5Dは、中継点540において、入熱過多が発生し易い場合を示している。
 図5Cに示したように、中継点540を挟んで、造形経路510cから造形経路510dへと至る経路を考える。この場合、造形経路510cと造形経路510dとのなす角(θ)は、比較的浅い角度となっており、ノズル(レーザビーム)は速度を保ったまま中継点540を通過できる。すなわち、造形経路510cから造形経路510dへの方向転換の角度が、比較的緩い角度であれば、ノズルは、速度を落とすことなく、造形経路510cから造形経路510dをなぞることができる。ここで、ノズルは、NC(Numerical Control)装置を用いて動かしている。NC装置の機能として、θが、ある一定の角度よりも小さい角度であれば、ノズルの動きを止めることなく等速でノズルを進めることができる。
 これに対して、図5Dに示したように、中継点540を挟んで、造形経路510eから造形経路510fへと至る経路を考える。この場合、造形経路510eと造形経路510fとのなす角(θ’)は、90°以上の大きな角度となっている。この場合、ノズルは、造形経路510eから造形経路510fに移る際に、中継点540において、一旦止まるか、または減速してから方向転換をするという動きになるので、停止または減速の過程において、中継点540に熱が溜まり易くなる。なお、ここでは、造形の際、ノズルが移動する例で説明をしたが、ノズルは固定されたままで、造形台が移動してもよい。
 [第1実施形態]
 本発明の第1実施形態としての3次元積層造形装置100について、図1乃至図4を用いて説明する。図1は、本実施形態に係る3次元積層造形装置100の構成の概略を説明する図である。なお、図1では、ここに示した構成以外の構成については、図が煩雑になるのを避けるため適宜省略している。なお、3次元積層造形装置100は、LMD(Laser Metal Deposition)型の3次元積層造形装置を例に説明をするが、パウダーベッド型の3次元積層造形装置であってもよい。
 3次元積層造形装置100は、3次元積層造形物の材料である金属粉体などにレーザビームを照射して、金属粉体を溶融、凝固させて積層することにより造形台130上に3次元積層造形物120を造形する装置である。
 図1に示したように、3次元積層造形装置100は、制御部101と、造形モデル取得部102と、造形経路決定部103と、抽出部104と、付加経路決定部105とを含む。3次元積層造形装置100は、さらに、造形台130と、材料貯蔵部150と、材料搬送管151と、光源160と、鏡筒170と、ノズル180とを含む。また、材料貯蔵部150と、材料搬送管151と、ノズル180とは、材料供給部を構成する。
 光源160は、レーザビームなどの光線を発生させる。鏡筒170は、発生したレーザビームの光路を調整して、レーザビームを造形台130に誘導して、照射する。ノズル180は、ノズル180の先端からキャリアガス140を噴射して、造形台130上に3次元積層造形物120の材料を供給する。キャリアガス140は、アルゴンガスや窒素ガス、ヘリウムガスなどの不活性ガスであり、3次元積層造形物120の材料である金属粉体などを造形台130上に搬送するガスである。材料貯蔵部150は、3次元積層造形物120の材料を貯蔵し、材料搬送管151を通じて、圧送などにより、ノズル180に対して供給する。
 制御部101は、光源160、鏡筒170、ノズル180および材料貯蔵部150と接続されている。制御部101は、光源160を制御して、レーザビームなどの出力や、走査方向、走査速度などを調整して、制御する。同様に、制御部101は、鏡筒170を制御して、レーザビームなどの光軸や集束状態などの調整をする。さらに、制御部101は、ノズル180および材料貯蔵部150を制御して、ノズル180の走査速度やノズル180からのキャリアガス140の噴射量などを調整し、材料の供給量を調整する。
 造形モデル取得部102は、3次元積層造形物120の造形に必要なデータである、造形モデル(3次元形状)を取得する。造形モデルは、例えば、CAM(Computer Aided Manufacturing)やCAD(Computer Aided Design)などを用いて作成されるが、これらには限定されない。
 造形経路決定部103は、取得した造形モデルに基づいて造形経路を決定する。造形経路の決定は、例えば、3次元形状である造形モデルをスライスデータに変換し、変換して得られた各スライスデータについて、スライスデータを埋めるような造形経路を導き出して行う。
 抽出部104は、決定した造形経路から、造形経路の始点および終点を抽出する。抽出部104は、さらに、造形経路の方向が変化する地点である中継点を抽出する。始点、終点および中継点の抽出は、例えば、造形経路決定部103で決定した造形経路に、コード番号を割り振って行う。コード番号として、例えば、「G00」および「G01」の2つのコード番号を用いれば、この2つのコード番号の違いに基づいて、始点、終点および中継点を抽出することができる。
 つまり、抽出部104は、例えば、「G00」の次に「G01」が来れば、始点と判断する。これとは反対に、抽出部104は、「G01」の次に「G00」が来れば、終点と判断する。そして、抽出部104は、「G01」が繋がっている所は、中継点と判断する。このように、抽出部104は、造形経路に付けられているコード番号により、始点、終点および中継点を判定して、抽出することができる。なお、始点、終点および中継点の抽出方法は、ここに示した方法には限定されず、例えば、造形経路データに始点、終点および中継点を表すフラグなどの識別用データを付加する方法などであってもよい。
 付加経路決定部105は、抽出した始点、終点および中継点に対して、どのような付加経路を付加するかを決定する。付加経路の形状は特に限定はされないが、付加経路決定部105は、例えば、付加経路の移動時間や、付加経路の経路長が最短となるように決定する。なお、付加経路は、抽出した始点、終点および中継点の少なくとも1つに対して付けてもよいし、これらの全てに対して付けてもよいし、これらのうちのいくつかの組み合わせに対して付けてもよい。
 そして、制御部101は、レーザビームが造形経路および付加経路をなぞるように、光源160やノズル180などを制御する。なお、制御部101は、レーザビームのON/OFFを切り替えて、例えば、付加経路ではレーザビームをOFFにして、照射しない(光線の照射を停止する)。レーザビームは出力一定で照射されているので、レーザビームのON/OFFは、例えば、ノズル180の任意の位置にゲートを設けておき、このゲートの開閉で行ってもよいし、出力を制御する方式で行ってもよい。
 次に、図2Aおよび図2Bを参照して、付加経路について説明する。図2Aは、本実施形態に係る3次元積層造形装置による付加経路の一例を説明する図である。図2Bは、本実施形態に係る3次元積層造形装置による付加経路の他の例を説明する図である。
 図2Aに示したように、造形経路210aは、左方向から右方向へ向かう造形経路210aと、中継点240で方向転換して左斜め上に向かう造形経路210aとで構成されているとする。この造形経路210aに対して、付加経路210bの全体は、3本の直線の付加経路210bで構成された三角形状をしている。付加経路210bにおいてレーザビーム(ノズル180)は、方向転換する点である2か所の方向転換点220で方向を変え、左斜め上に向かう造形経路210aと同じ方向を向く。そして、レーザビームは、左斜め上を向く付加経路210bで加速され、再び造形経路210aへと進む。なお、図2Aに示した付加経路210bの例では、レーザビームは、2か所の方向転換点220で、中継点240と同じように、一旦停止するか、または減速する必要がある。なお、付加経路210aの全体の形状は、ここに示した三角形状には限定されず、多角形形状であってもよい。
 次に、図2Bに示したように、付加経路210bは、直線の付加経路210bと曲線の付加経路210cとで構成されている。つまり、レーザビームは、直線の付加経路210bを通過した後、曲線の付加経路210cを経由し、再度、直線の付加経路210bを経て、左斜め上へ向かう造形経路210aへと進入する。
 このように、直線の付加経路210bの間に、曲線の付加経路210cを挟む構成とすると、方向転換点220においてレーザビームが速度を落とすことなく付加経路210b、210cを通過することができる。よって、付加経路210b、210cの通過時間を短縮することができ、造形時間も短縮することができる。なお、曲線の付加経路210cの回転半径(R)は、方向転換点220において、レーザビームの走査速度を減速することなく、方向転換点220を通過できる値となっている。つまり、レーザビームが、直線の付加経路210bから曲線の付加経路210cへ、または曲線の付加経路210cから直線の付加経路210bへと進入できる値となっている。回転半径の値は、小さければ小さいほどよいが、レーザビームが速度を落とさないで方向転換点220を通過できる値が好ましく、例えば、Rは、約3mmが目安となるが、これには限定されない。
 図2Cは、本実施形態に係る3次元積層造形装置による中継点240における入熱量について説明する図である。図2Cに示したように、A点からB点までの造形経路(造形パス)を考える。A’A(付加パス)間は、例えば、付加経路210b、210cであり、この区間では、レーザビーム(ノズル)が所定の速度まで加速される。そして、AB間(造形パス)は、所定の速度(等速、造形条件速度)でレーザビームを走査する区間である。レーザビームは、付加パス(助走パス、加速パス)において所定の速度まで加速されてから造形パスに進入するので、造形パスのスタート位置から所定の熱を加えることができる。そして、レーザビームがB点、つまり、造形パスのエンド位置まで到達すると、レーザビームは、BB’間(助走パス、減速パス)において、所定の速度まで、または停止するまで減速させられる。
 付加パスを含む経路全体において、レーザビームのレーザ出力は一定であり、さらに、造形パスにおいてレーザビームの移動速度(走査速度)は、所定速度で一定なので、造形パスにおいて、照射されるレーザビームのエネルギー密度は一定となる。したがって、造形パスにおいて、金属粉体などの材料に与えられる熱は一定となる。ここに示したように、レーザビームの走査を制御して、レーザビームを等速で動かすことにより、上記前提技術で説明した、入熱過多状態の発生を抑制することができるので、造形精度の低下も抑制できる。
 図2Dは、本実施形態に係る3次元積層造形装置による付加経路のさらに他の例を説明する図である。図2Dに示した付加経路は、図2Bに示した付加経路に、さらに直線経路210bを付け加えた構成となっている。つまり、図2Dでは、図2Bに示した、直線の付加経路210bと曲線の付加経路210cとの間に、さらに直線の付加経路210bを挟んだ構成となっている。このように、直線部分と曲線部分との間に、角度を付けた比較的距離の短い直線経路を挟んで、曲線の付加経路210cまたは直線の付加経路210bへの繋ぎとしてもよい。このように、間に角度を付けた直線部分を挟むことにより、曲線の付加経路210cの回転半径を小さくすることができる。ここに示したように、付加経路全体を直線の付加経路210bと曲線の付加経路210cとを自由に組み合わせて構成してもよい。また、付加経路を曲線の付加経路210cで構成してもよいが、これらには限定されない。
 図2Eは、本実施形態に係る3次元積層造形装置における付加経路の移動時間を説明する図である。同図において、加減速時間は、図2Aに示した付加経路210bが直線の場合、方向転換点220の前後における、加速および減速に要する時間を示し、ここでは、0.1[s]である。送り速度は、例えば、造形パスにおけるレーザビームの移動速度である。2直線角度は、図2Aおよび図2Bのθである。また、直線ツナギ時間は、図2Aに示した付加経路の場合の移動時間を示す。円弧ツナギ時間は、図2Bに示した付加経路の場合の移動時間を示し、円弧のRは、3mmである。送り速度が、200[mm/s]や100[mm/s]の場合には、図2Bに示した付加経路に曲線部分を含む経路の方が、高速に移動できる。これとは反対に、送り速度が、10[mm/s]の場合には、図2Aに示した直線で構成された付加経路の方が、高速に移動できる。送り速度が、50[mm/s]の場合、2直線角度が45[deg]、90[deg]であれば、図2Bに示した付加経路の方が高速に移動でき、135[deg]であれば、図2Aに示した付加経路の方が高速に移動できる。
 図2Fは、本実施形態に係る3次元積層造形装置による付加経路の長さを説明する図である。同図において、曲線経路(円弧)の回転半径は、10mmである。同図に示したように、コーナー角が150°の場合、直線経路と曲線経路とが90°で接する(接線)付加経路の方が、直線経路と曲線経路とが60°で接する付加経路よりも付加経路全体の長さは短くなる。同図に示したように、90°で接する場合は、付加経路長さは、111.29mmであるのに対して、60°で接する場合は、112.14mmとなる。付加経路を直線部分と曲線部分とに分けてみると、90°で接する場合は、直線部分の長さが短くなるのに対して、60°で接する場合は、直線部分の長さが長くなる。また、90°接する場合は、曲線部分が長くなるのに対して、60°で接する場合は、曲線部分が短くなる。ただし、トータルでみると、90°で接する場合の方が付加経路の長さが短くなる。
 コーナー角が90度の場合、直線経路と曲線経路とが60°で接する付加経路の方が、直線経路と曲線経路とが90°で接する付加経路よりも付加経路全体の長さは短くなる。同図に示したように、90°で接する場合は、直線部分の長さが短くなるのに対して、60°で接する場合は、直線部分の長さが長くなる。また、90°接する場合は、曲線部分が長くなるのに対して、60°で接する場合は、曲線部分が短くなる。ただし、トータルでみると、60°で接する場いいの方が付加経路の長さが短くなる。
 上述の説明では、回転半径が10mmの場合について説明をしたが、回転半径が異なっても、付加経路の形状は相似形状となるので、90°で接する場合と、60°で接する場合とで、どちらの経路長さが短くなるかは、以下の条件で決まる。すなわち、2直線のコーナー角と、設定した停止せずに連続移動する角度(移動のベクトル角)とによって決まる。
 図3は、本実施形態に係る3次元積層造形装置の有する付加経路テーブルの一例を示す図である。付加経路テーブル401は、中継点240の角度411([°])およびレーザビームの走査速度412([mm/s])に関連付けて、付加経路413を記憶する。3次元積層造形装置100は、付加経路テーブル401を参照して、付加経路210b、210cを決定する。なお、付加経路210b、210cの決定方法は、付加経路テーブル401を参照して決定する方法には限定されず、3次元積層造形装置100が、中継240点の角度およびレーザビームの走査速度に基づいて、その都度決定する方法などであってもよい。
 図4は、本実施形態に係る3次元積層造形装置による処理手順を説明するフローチャートである。ステップS401において、3次元積層造形装置100は、3次元積層造形物120の造形モデルをCAMやCADなどから取得する。ステップS403において、3次元積層造形装置100は、取得した造形モデルに基づいて、造形経路を決定する。ステップS405において、3次元積層造形装置100は、決定した造形経路から、始点、終点および中継点を抽出する。ステップS407において、3次元積層造形装置100は、抽出した始点、終点および中継点に対する付加経路を決定する。ステップS409において、3次元積層造形装置100は、造形経路および付加経路上をレーザビームが移動するように、レーザビームを制御して、3次元積層造形物120を造形する。
 本実施形態によれば、3次元積層造形において、始点、終点および中継点において、精度の高い造形を行うことができるので、3次元積層造形物を高精度で造形することができる。
 [第2実施形態]
 次に本発明の第2実施形態に係る3次元積層造形装置について、図6および図7を用いて説明する。図6は、本実施形態に係る3次元積層造形装置の構成を示す図である。本実施形態に係る3次元積層造形装置は、上記第1実施形態と比べると、角度判定部を有する点で異なる。その他の構成および動作は、第1実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
 3次元積層造形装置600は、角度判定部606をさらに有する。角度判定部606は、中継点240の角度が所定の角度以上か否かを判定する。ここで、中継点240の角度は、中継点240における方向変化の角度を表す。そして、付加経路決定部105は、角度判定部606で判定した角度が、所定の角度以上であれば、中継点240の角度に応じた付加経路を決定する。
 例えば、中継点240の角度が所定角度未満であれば、付加経路を設けなくとも、レーザビームは走査速度(移動速度)を落とすことなく中継点240を通過できる。したがって、中継点240における方向変化の角度が浅い場合には、その中継点240には付加経路は設けない。よって、本実施形態では、中継点240であっても、付加経路を設けない中継点240がある。なお、所定角度は、例えば、NC装置の性能に基づいて設定されるが、これには限定されず、ユーザが任意の角度を設定してもよい。また、始点と終点とには、付加経路が付けられる。
 図7は、本実施形態に係る3次元積層造形装置による処理手順を説明するフローチャートである。ステップS701において、3次元積層造形装置600は、始点、終点または中継点240を判断する。始点または終点である場合、3次元積層造形装置600は、ステップS703へ進む。ステップS703において、3次元積層造形装置600は、付加経路を決定する。例えば、レーザビームの造形移動速度に応じた加減速経路を付加経路として、始点または終点に付加する。なお、始点の場合には、ひとつ前の位置決め位置も変更する。
 ステップS701において、中継点240と判断した場合、3次元積層造形装置600は、ステップS709へ進む。ステップS709において、3次元積層造形装置600は、中継点240が所定角度未満か否かを判断する。所定角度未満と判断した場合(ステップS709のYES)、3次元積層造形装置600は、ステップS705へと進む。所定角度未満ではないと判断した場合、つまり、所定角度以上であると判断した場合(ステップS709のNO)、3次元積層造形装置600は、ステップS711へと進む。
 ステップS711において、3次元積層造形装置600は、中継点240に付ける付加経路210b、210cを決定する。付加経路210b、210cの決定は、例えば、直線の付加経路210bのみからなる付加経路、または円弧(曲線)経路の付加経路210cを含む付加経路のうち、移動時間(移動距離)の短い方を選択して行うが、これには限定されない。
 次に、3次元積層造形装置600は、ステップS703へ進み、始点・終点に対して決定された付加経路と、中継点240に対して決定された付加経路とに基づいて、3次元積層造形物120の造形に必要な付加経路210b、210cを決定する。
 ステップS705において、3次元積層造形装置600は、付加経路210b、210cを含む造形経路210aを決定する。そして、3次元積層造形装置600は、決定した造形経路210a(付加経路210b、210cを含む)に対する造形プログラムを修正造形プログラムとして生成し、3次元積層造形装置600の各機能構成部に動作指令を送る。
 ステップS707において、3次元積層造形装置600は、修正造形プログラムに基づいて、ノズル180などを制御して、3次元積層造形物120の造形を行う。3次元積層造形装置600の制御部101は、造形経路210aではレーザビームをONにし、付加経路210b、210cではレーザビームをOFFにする。また、制御部101は、ノズル180などの軸を移動させて、レーザビームが造形経路210aおよび付加経路210b、210cをトレースするように動かす。
 本実施形態によれば、3次元積層造形において、所定角度以上中継点を有する3次元積層造形物を高精度で造形することができる。また、3次元積層造形において、所定角度以上の中継点を有する3次元積層造形物を高精度かつ高速に造形することができる。
 [他の実施形態]
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
 また、本発明は、複数の機器から構成されるシステムに適用されてもよいし、単体の装置に適用されてもよい。さらに、本発明は、実施形態の機能を実現する情報処理プログラムが、システムあるいは装置に直接あるいは遠隔から供給される場合にも適用可能である。したがって、本発明の機能をコンピュータで実現するために、コンピュータにインストールされるプログラム、あるいはそのプログラムを格納した媒体、そのプログラムをダウンロードさせるWWW(World Wide Web)サーバも、本発明の範疇に含まれる。特に、少なくとも、上述した実施形態に含まれる処理ステップをコンピュータに実行させるプログラムを格納した非一時的コンピュータ可読媒体(non-transitory computer readable medium)は本発明の範疇に含まれる。

Claims (12)

  1.  3次元積層造形物の材料を造形台上に供給する材料供給手段と、
     光線を照射する光線照射手段と、
     前記光線の走査方向および走査速度を制御する制御手段と、
     前記3次元積層造形物の造形モデルを取得する造形モデル取得手段と、
     取得した前記造形モデルに基づいて、造形経路を決定する造形経路決定手段と、
     決定した前記造形経路から、前記造形経路の始点、終点および前記造形経路の方向が変化する中継点を抽出する抽出手段と、
     抽出した前記始点、前記終点および前記中継点の少なくとも1つに対する付加経路を決定する付加経路決定手段と、
     を備え、
     前記制御手段は、前記造形経路および前記付加経路に基づいて、前記光線の走査方向および走査速度を制御する3次元積層造形装置。
  2.  前記中継点における方向変化の角度が所定の角度以上か否かを判定する角度判定手段をさらに備え、
     前記付加経路決定手段は、前記角度が所定の角度以上である場合、前記角度に応じた付加経路を決定する、請求項1に記載の3次元積層造形装置。
  3.  前記付加経路は、直線経路を少なくとも1つ含む請求項1または2に記載の3次元積層造形装置。
  4.  前記付加経路は、曲線経路を少なくとも1つ含む請求項1乃至3のいずれか1項に記載の3次元積層造形装置。
  5.  前記付加経路決定手段は、前記中継点の方向変化の角度に基づいて、前記曲線経路の曲率半径を決定する請求項4に記載の3次元積層造形装置。
  6.  前記付加経路決定手段は、前記光線による前記付加経路の走査時間に基づいて、前記付加経路を決定する、請求項1乃至5のいずれか1項に記載の3次元積層造形装置。
  7.  前記制御手段は、前記付加経路において、前記光線の走査を加減速する請求項1乃至6のいずれか1項に記載の3次元積層造形装置。
  8.  前記制御手段は、前記造形経路において、前記光線を等速で走査する請求項1乃至6のいずれか1項に記載の3次元積層造形装置。
  9.  前記光線照射手段は、前記付加経路においては前記光線の照射を停止する請求項1乃至8のいずれか1項に記載の3次元積層造形装置。
  10.  前記付加経路決定手段は、前記光線の走査速度に応じて、前記付加経路の経路長を決定する請求項1乃至9のいずれか1項に記載の3次元積層造形装置。
  11.  3次元積層造形物の材料を造形台上に供給する材料供給ステップと、
     光線を照射する光線照射ステップと、
     前記光線の走査方向および走査速度を制御する制御ステップと、
     前記3次元積層造形物の造形モデルを取得する造形モデル取得ステップと、
     取得した前記造形モデルに基づいて、造形経路を決定する造形経路決定ステップと、
     決定した前記造形経路の始点、終点および前記造形経路の方向が変化する中継点を抽出する抽出ステップと、
     抽出した前記始点、前記終点および前記中継点に対する付加経路を決定する付加経路決定ステップと、
     を含み、
     前記制御ステップにおいて、前記造形経路および前記付加経路に基づいて、前記光線の走査方向および走査速度を制御する3次元積層造形装置の制御方法。
  12.  3次元積層造形物の材料を造形台上に供給する材料供給ステップと、
     光線を照射する光線照射ステップと、
     前記光線の走査方向および走査速度を制御する制御ステップと、
     前記3次元積層造形物の造形モデルを取得する造形モデル取得ステップと、
     取得した前記造形モデルに基づいて、造形経路を決定する造形経路決定ステップと、
     決定した前記造形経路の始点、終点および前記造形経路の方向が変化する中継点を抽出する抽出ステップと、
     抽出した前記始点、前記終点および前記中継点に対する付加経路を決定する付加経路決定ステップと、
     をコンピュータに実行させ、
     前記制御ステップにおいて、前記造形経路および前記付加経路に基づいて、前記光線の走査方向および走査速度を制御する3次元積層造形装置の制御プログラム。
PCT/JP2016/079693 2016-10-05 2016-10-05 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム WO2018066099A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16885443.8A EP3332896A4 (en) 2016-10-05 2016-10-05 3D PRINTING DEVICE, 3D PRINTING DEVICE CONTROL PROCEDURE, AND 3D PRINTING DEVICE CONTROL PROGRAM
JP2017514576A JP6310614B1 (ja) 2016-10-05 2016-10-05 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
PCT/JP2016/079693 WO2018066099A1 (ja) 2016-10-05 2016-10-05 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
US15/545,973 US20180339457A1 (en) 2016-10-05 2016-10-05 Three-dimensional laminating and shaping apparatus, control method of three-dimensional laminating and shaping apparatus, and control program of three-dimensional laminating and shaping apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079693 WO2018066099A1 (ja) 2016-10-05 2016-10-05 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム

Publications (1)

Publication Number Publication Date
WO2018066099A1 true WO2018066099A1 (ja) 2018-04-12

Family

ID=61832178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079693 WO2018066099A1 (ja) 2016-10-05 2016-10-05 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム

Country Status (4)

Country Link
US (1) US20180339457A1 (ja)
EP (1) EP3332896A4 (ja)
JP (1) JP6310614B1 (ja)
WO (1) WO2018066099A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114434012A (zh) * 2022-01-19 2022-05-06 甬矽半导体(宁波)有限公司 镭射印字路径规划方法和镭射装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6526370B1 (ja) * 2018-10-19 2019-06-05 三菱電機株式会社 数値制御装置および付加製造装置の制御方法
US11331755B2 (en) * 2018-10-24 2022-05-17 Mitsubishi Electric Corporation Additive manufacturing apparatus and numerical control device
CN109664495A (zh) * 2019-02-26 2019-04-23 李伟昌 一种续打型3d打印成型方法
US11701712B2 (en) * 2021-01-30 2023-07-18 Xerox Corporation System and method for reducing drop placement errors at perimeter features on an object in a three-dimensional (3D) object printer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230388A (ja) 1988-07-20 1990-01-31 Komatsu Ltd レーザ切断方法
JP3211902B2 (ja) 1992-04-03 2001-09-25 株式会社田中製作所 鋼板のレーザ加工方法
JP3825123B2 (ja) 1997-03-14 2006-09-20 株式会社アマダ レーザ加工方法およびこの加工方法を実施するレーザ制御装置
JP5255137B2 (ja) 2011-10-07 2013-08-07 ファナック株式会社 加工経路におけるコーナ部を加工する制御装置
WO2015133138A1 (ja) * 2014-03-05 2015-09-11 パナソニックIpマネジメント株式会社 三次元形状造形物の製造方法
JP2015199197A (ja) * 2014-04-04 2015-11-12 株式会社松浦機械製作所 三次元造形装置及び三次元形状造形物の製造方法
US20160236417A1 (en) * 2015-02-17 2016-08-18 Ntopology Inc. Dynamic cellular microstructure construction
JP5997850B1 (ja) * 2015-03-20 2016-09-28 技術研究組合次世代3D積層造形技術総合開発機構 加工ノズル、加工ヘッド、加工装置、加工ノズルの制御方法および制御プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3866179A (en) * 1972-09-22 1975-02-11 Giddings & Lewis Numerical control with envelope offset and automatic path segment transitions
JPH0829424B2 (ja) * 1988-12-29 1996-03-27 松下電器産業株式会社 レーザ加工機用nc制御装置
JPH04237582A (ja) * 1991-01-14 1992-08-26 Yamazaki Mazak Corp レーザ加工機
US5453594A (en) * 1993-10-06 1995-09-26 Electro Scientific Industries, Inc. Radiation beam position and emission coordination system
JP3746019B2 (ja) * 2002-06-03 2006-02-15 ヤマザキマザック株式会社 レーザ加工機
US11642725B2 (en) * 2016-01-19 2023-05-09 General Electric Company Method for calibrating laser additive manufacturing process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230388A (ja) 1988-07-20 1990-01-31 Komatsu Ltd レーザ切断方法
JP3211902B2 (ja) 1992-04-03 2001-09-25 株式会社田中製作所 鋼板のレーザ加工方法
JP3825123B2 (ja) 1997-03-14 2006-09-20 株式会社アマダ レーザ加工方法およびこの加工方法を実施するレーザ制御装置
JP5255137B2 (ja) 2011-10-07 2013-08-07 ファナック株式会社 加工経路におけるコーナ部を加工する制御装置
WO2015133138A1 (ja) * 2014-03-05 2015-09-11 パナソニックIpマネジメント株式会社 三次元形状造形物の製造方法
JP2015199197A (ja) * 2014-04-04 2015-11-12 株式会社松浦機械製作所 三次元造形装置及び三次元形状造形物の製造方法
US20160236417A1 (en) * 2015-02-17 2016-08-18 Ntopology Inc. Dynamic cellular microstructure construction
JP5997850B1 (ja) * 2015-03-20 2016-09-28 技術研究組合次世代3D積層造形技術総合開発機構 加工ノズル、加工ヘッド、加工装置、加工ノズルの制御方法および制御プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114434012A (zh) * 2022-01-19 2022-05-06 甬矽半导体(宁波)有限公司 镭射印字路径规划方法和镭射装置

Also Published As

Publication number Publication date
JPWO2018066099A1 (ja) 2018-10-04
US20180339457A1 (en) 2018-11-29
EP3332896A1 (en) 2018-06-13
JP6310614B1 (ja) 2018-04-11
EP3332896A4 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6310614B1 (ja) 3次元積層造形装置、3次元積層造形装置の制御方法および3次元積層造形装置の制御プログラム
CN104001915B (zh) 一种高能束增材制造大尺寸金属零部件的设备及其控制方法
CN110312588B (zh) 层叠控制装置、层叠控制方法以及存储介质
JP5931948B2 (ja) ノズル、積層造形装置、および積層造形物の製造方法
JP5777187B1 (ja) 積層造形装置
KR20200002795A (ko) 레이저를 이용한 작업물 표면의 가공 방법
JP6552770B1 (ja) 積層造形方法、加工経路生成方法および積層造形装置
CN110732667B (zh) 造型物的造型方法
US20180133842A1 (en) Laser cutting apparatus and laser cutting method using the same
JP2016175196A (ja) 積層造形装置
JP6684872B2 (ja) レーザ加工機及びレーザ加工方法
US11229956B2 (en) Numerical control device, additive manufacturing apparatus, and method for controlling additive manufacturing apparatus
US20200261977A1 (en) Scan field variation compensation
KR20230024338A (ko) 적층 제조에서 레이저 어레이의 경사진 스캔
US11249460B2 (en) Numerical control device and method for controlling additive manufacturing apparatus
US10363604B2 (en) Program resumption method of a lamination molding apparatus
KR102237232B1 (ko) 3차원 형상 재료 적층을 위한 공급장치 및 그 제어방법
JP2014000701A (ja) 三次元造形装置および三次元造形方法
US20220194009A1 (en) Accounting for inducing variables in additive manufacturing
TWM583788U (zh) 分線連續打標之雷射打標系統
US11675332B2 (en) Printer for printing a 3D object
US20230008970A1 (en) Hatch reversal with keyhole transfer
US20220118521A1 (en) Systems and methods for weld tapering at a trailing edge using time multiplexing
JP6135183B2 (ja) レーザ加工装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017514576

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2016885443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15545973

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE