WO2018065483A1 - Power electronics circuit - Google Patents

Power electronics circuit Download PDF

Info

Publication number
WO2018065483A1
WO2018065483A1 PCT/EP2017/075247 EP2017075247W WO2018065483A1 WO 2018065483 A1 WO2018065483 A1 WO 2018065483A1 EP 2017075247 W EP2017075247 W EP 2017075247W WO 2018065483 A1 WO2018065483 A1 WO 2018065483A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
layer
power electronics
carrier
electronics circuit
Prior art date
Application number
PCT/EP2017/075247
Other languages
German (de)
French (fr)
Inventor
Erich Mattmann
Sabine Bergmann
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2018065483A1 publication Critical patent/WO2018065483A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29201Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29209Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/292Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29201Material of the matrix with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29211Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83417Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/83424Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • H01L2224/83815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • Soldered carrier wherein the carrier may be made of insulating material such as plastic or in particular ceramic.
  • materials with high specific conductivity are used, for example copper or aluminum.
  • the pairing of the component material and the material of the conductor track or of the carrier can cause mechanical stresses, due to the different thermal expansion coefficients.
  • there are strong temperature fluctuations which thus can lead to high voltages and in particular to detachment depending on the material pairing.
  • solder at least one power component of a power electronics circuit by means of a solder layer, which has spacer particles distributed in solder composition, and the solder layer, which connects the at least one power component to the carrier, is at least 100 ⁇ m thick. Due to the thickness, the shear stresses in the solder layer are reduced, which result from different thermal expansion of the carrier and the power component. It results in a lower stress at temperature changes compared to thinner solder layers, whereby the reliability of the solder joint is increased.
  • the solder layer or its thickness can be realized in a simple manner and relatively precisely during the production process.
  • the power electronics circuit described here has a carrier.
  • the carrier in particular comprises an insulator layer and at least one conductor track layer.
  • the insulator layer may be made of a ceramic material or a plastic.
  • the printed conductors are in particular copper or aluminum printed conductors.
  • the surface of the carrier is formed by the surfaces of the conductor tracks, as well as by the surface of the iso ⁇ lations stressess (at the locations where no conductor tracks are arranged). On this surface is at least one
  • the continuous solder layer is a solid body (ab ⁇ seen from a possibly occurring blowholes or gas proportion of not more than 1% and preferably not more than 1 L).
  • the continuous solder layer extends from the
  • the solder layer extends over the entire volume, which is defined by the surface of the carrier, the contact surface of the power device and the Side surfaces of the volume, which begin at the outer edges of the power component or the contact surface and aligned to the surface of the wearer.
  • the distance particles are distributed in the solder mass. In other words, is located in the space between the spacer particles solder mass with a volume fraction of at least 95% or 99% or 99, 9% (depending on the void fraction).
  • the distance particles float in the solder mass or are surrounded by a continuous mass of solder.
  • the solder mass and the spacer particles fill the entire area between the power component and the surface.
  • the solder layer has a thickness that is at least 100 ym.
  • the distance between the surface of the carrier and the power device is at least 100 ym, with the solder mass extending along the entire distance of the solder layer.
  • a thickness of the solder layer of at least 100 ⁇ m preferably at least 200 ⁇ m or 300 ⁇ m leads to an increase in height, which has a positive effect in favor of the service life.
  • the thickness of the solder layer is at least 100 ym or 200 ym min ⁇ least and preferably at least 250 ym or more.
  • a specific embodiment provides that the thickness of the solder layer is at least 300 .mu.m, specific From ⁇ EMBODIMENTS also a thickness of the solder layer of 300 ym ( ⁇ 10-25%) provide.
  • the spacer particles are provided with a mass fraction of at least 1% (based on the entire solder layer) in this. Preferably, the mass fraction is at least 1.8 or 2%, with specific embodiments providing a mass fraction of 2%. The percentages of the mass fraction can be provided with a tolerance of ⁇ 10% to ⁇ 25%.
  • the spacer particles are made of a metal or have a metal coating.
  • the spacer particles are in ⁇ particular solid.
  • the spacer particles may in particular be made of copper or of a solid alloy or may have a coating of a copper alloy.
  • the spacer particles have a surface that is well wettable with solder, as is the case with copper or nickel. The surface of the spacer particles may thus be made of nickel or the spacer particle is made of nickel. This also applies to nickel alloys.
  • the spacer particles are preferably the same size; in other words, the volume of the spacer particles does not vary by more than 50%, preferably 10% or more preferably 5%.
  • the spacer particles are in particular spherical or ⁇ We sentlichen spherical.
  • the volume of the spacer particles which deviates from a sphere inscribed in the spacer particles is not more than 30%, preferably 15% or particularly preferably 10 or 5% of the total volume of the spacer particles.
  • substantially spherical (relative to the spacer particles) may mean that the volume which deviates from an inscribed in the particle ball speaks not more than 10% or 5% of the total volume of the particle ent ⁇ .
  • the particle size is preferably at least 50 ym, at least 80 ym, at least 100 ym or at least 120 ym In the case of substantially spherical spacer particles, this corresponds to the ball diameter and may also correspond to the diameter of a ball inscribed in the corresponding particle.
  • the particle size may have an upper limit, for example, 300, 200, 150 or 125 ym.
  • all spacer particles have substantially the same particle size (corresponding to a maximum deviation of the size of all Particles of a solder layer of not more than 50%, 25%, 10% or 5%).
  • the mass fraction of the spacer particles in the solder layer is 2%.
  • the distance particles are in this case spherical and the ball ⁇ diameter is at least 80 ym and not more than 100 ym.
  • the spacer particles are made of copper.
  • the solder mass between distance particles is a common solder material, for example with 96.5% tin, 3% silver and 0.3% copper.
  • soldering materials can be used with a tin content of at least 90% or 95%. Preference is given to using solder compositions with an indium portion.
  • the carrier can be cold-gas sprayed and in particular have cold gas-sprayed layers.
  • the carrier may comprise a cold gas-sprayed conductive layer. This forms in particular a conductor track structure.
  • the cold gas sprayed layer ⁇ forms the surface.
  • the cold gas-sprayed conductive layer is in particular a layer of copper or of aluminum or of a copper alloy or an aluminum alloy.
  • the use of cold gas-sprayed layers simplifies production. At the same time allows, through the solder layer as described herein, that the cold gas sprayed layer (in particular at the locations where a Leis ⁇ processing component is soldered) a reduction in the mechanical stresses by different bathausdeh- .
  • the thickness of the solder layer in particular results in a stable structure, wherein the cold-gas-sprayed, conductive layer forms conductor tracks or a conductor track structure.
  • the carrier preferably has a cold gas-sprayed, electrically insulating layer. This is located on the side of the conductive layer which is opposite to the surface.
  • the kaltgasge- is injected, electrically conductive layer between the electrically insulating layer and assigns the at least one component being ⁇ .
  • the electrically conductive layer is arranged on the electrically insulating layer, wherein the components are applied to the electrically conductive layer by means of the solder joint described here.
  • Layer may alternatively be produced by a thermal spray process such as flame spraying.
  • the heat sink or the heat release layer is electrically conductive and in particular made of metal.
  • the electrically insulating layer is applied, on which in turn is the electrically conductive layer.
  • the electrically insulating layer is located between the heat sink and the conductive layer. Therefore, conductive heat sinks can also be provided, wherein the insulating layer serves to enable the electrically conductive layer to form a printed conductor structure (and is not short-circuited by the heat sink.)
  • Both the electrically insulating layer and the electrically conductive layer, ie the printed conductor layer, are
  • the electrically insulating layer may be made of a ceramic material.
  • the carrier has a heat sink or a heat release layer of ceramic or plastic, in particular of a non-conductive material.
  • the carrier may comprise a cold gas sprayed conductive layer, in particular the layer which forms the Lei ⁇ terbahn. This is formed on the heat sink.
  • the cold gas sprayed conductive layer forms the conductive path ⁇ structure. Furthermore, this forms a surface on which the at least one power component is soldered (by means of the solder layer described here). In this case, to ⁇ additional electrically insulating layer is necessary because of the cooling body itself does not conduct and the conductive layer may be applied as cold gas sprayed layer preferably directly on the heat sink.
  • FIG. 1 serves for a more detailed explanation of the solder connection described here.
  • FIG. 1 shows a detail of a power electronic circuit L with a carrier and a power component 4, which is mounted on the carrier by means of a solder layer 3.
  • the detail A shows the solder joint described here in more detail.
  • the power electronics circuit L comprises a heat sink 1 made of aluminum. On this a cold gas sprayed, iso-regulating ⁇ layer 2a is applied. On the electrically insulating layer 2a, in turn, an electrically conductive, kaltgasge ⁇ sprayed layer 2b is arranged.
  • the heat sink 1 can be made of aluminum, wherein the layer 2 a can be made of a ceramic material and the layer 2 b is made of copper. The layers 2a and 2b are cold-gas sprayed.
  • the cooler 1 can be made by means of an aluminum casting method .
  • the electrically conductive layer 2b (as the uppermost layer of the carrier) forms the surface 0.
  • the support comprises in particular ⁇ sondere the elements having the reference numerals 1, 2a and 2b, and further forming the surface from 0.
  • a power component 4 is mounted on the surface 0 via a solder layer 3.
  • the component 4 is in particular a semiconductor component and can be present, for example, as a packaged or unhoused chip.
  • the component 4 can be in particular a power ⁇ transistor or a power diode or a power TRIAC.
  • the solder layer 3 comprises spacer particles 3a, which are embedded in a solder mass 3b.
  • Figure 1 gives no sizes ⁇ relationships; rather, the particle size of the Abstandpumble 3a may be smaller than half, one third or one quarter of the layer thickness of the solder layer 3. Apart from that, the particle size at least a quarter, one third or half of the thickness of the solder layer 3 correspond.
  • the solder layer 3 obtained by melting of the solder mass 3b, the figure 1 also (re ⁇ sultierend in a taper of the solder layer to the component down) represents the conventional surface effect, which occurs when solder mass liquefied on a solder surface (corresponding to the surface 0) applied becomes.
  • solder layer 3 is continuous between the outer edges of the solder layer. Between the spacer particles 3a is solder mass. The space between the spacer particles is completely filled with solder mass 3b between the outer edges of the solder layer.
  • the heat sink 1 is made of aluminum in the example shown.
  • the solder layer thickness is about 300 ym. It corresponds to the distance between the power device 4 and the surface 0.
  • the spacer particles 3a are made of copper.
  • the spacer particles 3a are also spherical. In addition, the distance particles 3a have a size of 80 to 100 ym, which corresponds in particular to the ball diameter.
  • the mass fraction of the spacer particles 3a within the solder layer 3 is about 2%.
  • the power device 4 may be a MOSFET or an IGBT.
  • the power electronics circuit L is in particular a drive circuit for an electric drive of a motor vehicle or is an engine control of an electric machine which forms the generator, the starter or a start generator.

Abstract

A power electronics circuit (L) is equipped with a carrier (1+2a+2b) having a surface (O). At least one power component (4) (in particular a semiconductor component present for example as a packaged or unpackaged chip) is soldered on the carrier (1+2a+2b) by means of a continuous solder layer (3). The solder layer (3) comprises spacer particles (3a) and solder compound (3b). The spacer particles (3a) are distributed in the solder compound (3b). The solder layer (3) has a thickness that is at least 100 µm. The thickness reduces the shear stresses in the solder layer (3) that arise as a result of different thermal expansion of the carrier (1+2a+2b) and of the power component (4). This results in lower loading in the case of temperature changes in comparison with thinner solder layers, as a result of which the reliability of the solder connection is increased. Particularly in the case of a cold-gas-sprayed surface (O), a relatively high roughness results, such that a thickness of the solder layer (3) of at least 100 µm leads to a height structure having a positive effect for the benefit of the lifetime.

Description

Beschreibung description
Leistungselektronikschaltung Zum elektromechanischen Aufbau von Schaltungen ist es inzwischen üblich, oberflächenmontierte Bauelemente auf einer Leiterplatte durch Löten zu befestigen. Power electronics circuit For the electromechanical structure of circuits, it is now common to attach surface mounted components on a circuit board by soldering.
Bei Leistungsanwendungen werden häufig siliziumbasierte Power applications are often silicon based
Halbleiterbauelemente auf Leiterbahnen eines isolierendenSemiconductor devices on tracks of an insulating
Trägers aufgelötet, wobei der Träger aus isolierendem Material wie Kunststoff oder insbesondere Keramik sein kann. Zum Aufbau der Leiterbahnen werden Materialien mit hoher spezifischer Leitfähigkeit verwendet, beispielsweise Kupfer oder Aluminium. Abhängig von der Materialpaarung, d.h. der Paarung des Bauelementmaterials und des Materials der Leiterbahn bzw. des Trägers können mechanische Spannungen entstehen, durch die unterschiedlichen Wärmeausdehnungskoeffizienten . Gerade bei Anwendungen im Fahrzeug ergeben sich starke Temperaturschwankungen, die somit abhängig von der Materialpaarung zu starken Spannungen und insbesondere zu Ablösung führen können. Soldered carrier, wherein the carrier may be made of insulating material such as plastic or in particular ceramic. For the construction of the tracks, materials with high specific conductivity are used, for example copper or aluminum. Depending on the material pairing, i. the pairing of the component material and the material of the conductor track or of the carrier can cause mechanical stresses, due to the different thermal expansion coefficients. Especially in applications in the vehicle, there are strong temperature fluctuations, which thus can lead to high voltages and in particular to detachment depending on the material pairing.
Es ist daher eine Aufgabe der Erfindung, eine Möglichkeit aufzuzeigen, mit der sich eine Leistungselektronikschaltung auf einfache Weise realisieren lässt, die eine hohe Stabilität aufweist . It is therefore an object of the invention to show a possibility with which a power electronics circuit can be realized in a simple manner, which has a high stability.
Diese Aufgabe wird gelöst durch die Leistungselektronikschaltung nach Anspruch 1. Weitere Merkmale, Vorteile und Eigenschaften ergeben sich mit den abhängigen Ansprüchen sowie der folgenden Beschreibung und der Figur 1. Es wird vorgeschlagen, mindestens ein Leistungsbauteil einer Leistungselektronikschaltung mittels einer Lotschicht aufzulöten, die in Lotmasse verteilte Abstandspartikel aufweist und die Lotschicht, welche das mindestens eine Leistungsbauteil mit dem Träger verbindet, mindestens 100 ym dick ist. Durch die Dicke werden die Schubspannungen in der Lotschicht verringert, die durch unterschiedliche Temperaturausdehnung des Trägers und des Leistungsbauteils entstehen. Es ergibt sich eine geringere Beanspruchung bei Temperaturwechseln im Vergleich zu dünneren Lotschichten, wodurch die Zuverlässigkeit der Lotverbindung erhöht ist. This object is achieved by the power electronics circuit according to claim 1. Further features, advantages and features emerge with the dependent claims and the following description and the figure 1. It is proposed to solder at least one power component of a power electronics circuit by means of a solder layer, which has spacer particles distributed in solder composition, and the solder layer, which connects the at least one power component to the carrier, is at least 100 μm thick. Due to the thickness, the shear stresses in the solder layer are reduced, which result from different thermal expansion of the carrier and the power component. It results in a lower stress at temperature changes compared to thinner solder layers, whereby the reliability of the solder joint is increased.
Mit den Abstandspartikeln lässt sich die Lotschicht bzw. deren Dicke auf einfache Weise und relativ präzise beim Herstel- lungsprozess realisieren. With the spacer particles, the solder layer or its thickness can be realized in a simple manner and relatively precisely during the production process.
Die hier beschriebene Leistungselektronikschaltung weist einen Träger auf. Der Träger umfasst insbesondere eine Isolatorschicht und mindestens eine Leiterbahnschicht. Die Isolatorschicht kann aus einem Keramikmaterial oder einem Kunststoff gefertigt sein. Die Leiterbahnen sind insbesondere Kupfer- oder Aluminiumleiterbahnen. Die Oberfläche des Trägers wird von den Oberflächen der Leiterbahnen gebildet, sowie von der Oberfläche des Iso¬ lationskörpers (an den Stellen, auf denen keine Leiterbahnen angeordnet sind) . Auf dieser Oberfläche ist mindestens einThe power electronics circuit described here has a carrier. The carrier in particular comprises an insulator layer and at least one conductor track layer. The insulator layer may be made of a ceramic material or a plastic. The printed conductors are in particular copper or aluminum printed conductors. The surface of the carrier is formed by the surfaces of the conductor tracks, as well as by the surface of the iso ¬ lationskörpers (at the locations where no conductor tracks are arranged). On this surface is at least one
Leistungsbauteil aufgelötet mittels einer durchgehenden Lot¬ schicht. Die durchgehende Lotschicht ist ein Vollkörper (ab¬ gesehen von einem möglicherweise auftretenden Lunker- bzw. Gasanteil von nicht mehr als 1 % und vorzugsweise nicht mehr als 1 Vo ) . Die durchgehende Lotschicht erstreckt sich von derPower component soldered by means of a continuous Lot ¬ layer. The continuous solder layer is a solid body (ab ¬ seen from a possibly occurring blowholes or gas proportion of not more than 1% and preferably not more than 1 L). The continuous solder layer extends from the
Oberfläche des Trägers bis zu dem Leistungsbauteil, bzw. bis zu dessen Kontaktfläche. Die Lotschicht erstreckt sich über das gesamte Volumen, das definiert ist durch die Oberfläche des Trägers, der Kontaktfläche des Leistungsbauteils und den Seitenflächen des Volumens, die an den Außenkanten des Leistungsbauteils bzw. der Kontaktfläche beginnen und zur Oberfläche des Trägers hin fluchten. Die Abstandpartikel sind in der Lotmasse verteilt. Mit anderen Worten befindet sich in dem Raum zwischen den Abstandspartikeln Lotmasse mit einem Volumenanteil von mindestens 95 % oder 99 % oder 99, 9 % (abhängig vom Lunkeranteil) . Die Abstandspartikel schwimmen in der Lotmasse bzw. sind von einer durchgehenden Lotmasse umgeben. Die Lotmasse und die Abstandpartikel füllen den gesamten Bereich zwischen Leistungbauteil und Oberfläche aus. Surface of the carrier up to the power component, or up to its contact surface. The solder layer extends over the entire volume, which is defined by the surface of the carrier, the contact surface of the power device and the Side surfaces of the volume, which begin at the outer edges of the power component or the contact surface and aligned to the surface of the wearer. The distance particles are distributed in the solder mass. In other words, is located in the space between the spacer particles solder mass with a volume fraction of at least 95% or 99% or 99, 9% (depending on the void fraction). The distance particles float in the solder mass or are surrounded by a continuous mass of solder. The solder mass and the spacer particles fill the entire area between the power component and the surface.
Die Lotschicht weist einen Dicke auf, die mindestens 100 ym beträgt. Mit anderen Worten ist der Abstand zwischen der Oberfläche des Trägers und dem Leistungsbauteil mindestens 100 ym, wobei sich die Lotmasse entlang des gesamten Abstandes der Lotschicht erstreckt. Bei einer kaltgasgespritzen Oberfläche ergibt sich eine relativ hohe Rauigkeit, so dass eine Dicke der Lotschicht von mindestens 100 ym (vorzugsweise mindestens 200 ym oder 300 ym) zu einem Höhenaufbau führt, der sich positiv zu Gunsten der Lebensdauer auswirkt. The solder layer has a thickness that is at least 100 ym. In other words, the distance between the surface of the carrier and the power device is at least 100 ym, with the solder mass extending along the entire distance of the solder layer. In a surface sprayed with cold gas, a relatively high roughness results, so that a thickness of the solder layer of at least 100 μm (preferably at least 200 μm or 300 μm) leads to an increase in height, which has a positive effect in favor of the service life.
Die Dicke der Lotschicht beträgt mindestens 100 ym oder min¬ destens 200 ym und bevorzugt mindestens 250 ym oder mehr. Eine spezifische Ausführungsform sieht vor, dass die Dicke der Lotschicht mindestens 300 ym beträgt, wobei spezifische Aus¬ führungsformen auch eine Dicke der Lotschicht von 300 ym (± 10 - 25%) vorsehen. The thickness of the solder layer is at least 100 ym or 200 ym min ¬ least and preferably at least 250 ym or more. A specific embodiment provides that the thickness of the solder layer is at least 300 .mu.m, specific From ¬ EMBODIMENTS also a thickness of the solder layer of 300 ym (± 10-25%) provide.
Die Abstandspartikel sind mit einem Masseanteil von mindestens 1 % (bezogen auf die gesamte Lotschicht) in dieser vorgesehen. Vorzugsweise beträgt der Masseanteil mindestens 1,8 oder 2 %, wobei spezifische Ausführungsformen einen Masseanteil von 2 % vorsehen. Die Prozentangaben des Masseanteils können mit einer Toleranz von ± 10 % bis ± 25 % versehen sein. Die Abstandspartikel sind aus einem Metall gefertigt oder weisen eine Metallbeschichtung auf. Die Abstandspartikel sind ins¬ besondere Vollkörper. Die Abstandspartikel können insbesondere aus Kupfer oder aus einer Volllegierung gefertigt sein oder können eine Beschichtung aus einer Kupferlegierung aufweisen. Die Abstandspartikel haben eine Oberfläche, die mit Lot gut benetzbar ist, wie es etwa der Fall bei Kupfer oder Nickel ist. Die Oberfläche der Abstandspartikel kann somit aus Nickel sein oder der Abstandspartikel ist aus Nickel gefertigt. Dies gilt ebenso für Nickellegierungen. The spacer particles are provided with a mass fraction of at least 1% (based on the entire solder layer) in this. Preferably, the mass fraction is at least 1.8 or 2%, with specific embodiments providing a mass fraction of 2%. The percentages of the mass fraction can be provided with a tolerance of ± 10% to ± 25%. The spacer particles are made of a metal or have a metal coating. The spacer particles are in ¬ particular solid. The spacer particles may in particular be made of copper or of a solid alloy or may have a coating of a copper alloy. The spacer particles have a surface that is well wettable with solder, as is the case with copper or nickel. The surface of the spacer particles may thus be made of nickel or the spacer particle is made of nickel. This also applies to nickel alloys.
Die Abstandspartikel haben vorzugsweise die gleiche Größe; mit anderen Worten variiert das Volumen der Abstandspartikel um nicht mehr als 50 %, bevorzugt 10 % oder besonders bevorzugt 5 %. Die Abstandspartikel sind insbesondere kugelförmig oder im We¬ sentlichen kugelförmig. Das Volumen der Abstandspartikel, welches von einer in den Abstandspartikeln einbeschriebenen Kugel abweicht, beträgt nicht mehr als 30 %, bevorzugt 15 % oder besonders bevorzugt 10 oder 5 % des Gesamtvolumens der Ab- Standspartikel. Unter„im Wesentlichen kugelförmig" (bezogen auf die Abstandspartikel) kann bedeuten, dass das Volumen, welches von einer in den Partikel einbeschriebene Kugel abweicht, nicht mehr als 10 % oder 5 % des Gesamtvolumens des Partikels ent¬ spricht. Die Partikelgröße beträgt insbesondere mindestens 50 ym, mindestens 80 ym, mindestens 100 ym oder mindestens 120 ym. Im Falle von im Wesentlichen kugelförmigen Abstandspartikeln entspricht dies dem Kugeldurchmesser. Ferner kann dies dem Durchmesser einer Kugel entsprechen, die in das entsprechende Partikel einbeschrieben ist. The spacer particles are preferably the same size; in other words, the volume of the spacer particles does not vary by more than 50%, preferably 10% or more preferably 5%. The spacer particles are in particular spherical or ¬ We sentlichen spherical. The volume of the spacer particles which deviates from a sphere inscribed in the spacer particles is not more than 30%, preferably 15% or particularly preferably 10 or 5% of the total volume of the spacer particles. By "substantially spherical" (relative to the spacer particles) may mean that the volume which deviates from an inscribed in the particle ball speaks not more than 10% or 5% of the total volume of the particle ent ¬. The particle size is preferably at least 50 ym, at least 80 ym, at least 100 ym or at least 120 ym In the case of substantially spherical spacer particles, this corresponds to the ball diameter and may also correspond to the diameter of a ball inscribed in the corresponding particle.
Die Partikelgröße kann eine Obergrenze haben, die beispielsweise 300, 200, 150 oder 125 ym beträgt. Vorzugsweise haben alle Abstandspartikel im Wesentlichen die gleiche Partikelgröße (entsprechend einer maximalen Abweichung der Größe aller Partikel einer Lotschicht von nicht mehr als 50%, 25%, 10% oder 5 %) . The particle size may have an upper limit, for example, 300, 200, 150 or 125 ym. Preferably, all spacer particles have substantially the same particle size (corresponding to a maximum deviation of the size of all Particles of a solder layer of not more than 50%, 25%, 10% or 5%).
Bei einer beispielhaften, konkreten Ausgestaltung liegt der Masseanteil der Abstandspartikel in der Lotschicht bei 2 %. Die Abstandspartikel sind hierbei kugelförmig und der Kugel¬ durchmesser beträgt mindestens 80 ym und nicht mehr als 100 ym. Die Abstandspartikel sind hierbei aus Kupfer gefertigt. Die Lotmasse zwischen Abstandspartikeln ist ein übliches Lotma- terial, beispielsweise mit 96,5 % Zinn, 3 % Silber und 0,3 % Kupfer. Es können jedoch auch andere bleifreie Lotmassen verwendet werden, insbesondere mit einer Schmelztemperatur oder einem Schmelzbereich unter 250°C und insbesondere unter 230°C. Ferner können Lotmassen verwendet werden mit einem Zinnanteil von mindestens 90% oder 95%. Vorzugsweise werden Lotmassen mit einem Indiumanteil verwendet. Durch Indium lässt sich die Duktilität des Aufbaus erhöhen. Auch dies wirkt sich zu Gunsten der Lebensdauer aus . Der Träger kann kaltgasgespritzt sein und insbesondere kalt- gasgespritzte Schichten aufweisen. Beispielsweise kann der Träger eine kaltgasgespritzte leitende Schicht aufweisen. Diese bildet insbesondere eine Leiterbahnstruktur aus. Die kalt¬ gasgespritzte Schicht bildet die Oberfläche. Auf dieser In an exemplary, concrete embodiment, the mass fraction of the spacer particles in the solder layer is 2%. The distance particles are in this case spherical and the ball ¬ diameter is at least 80 ym and not more than 100 ym. The spacer particles are made of copper. The solder mass between distance particles is a common solder material, for example with 96.5% tin, 3% silver and 0.3% copper. However, it is also possible to use other lead-free soldering materials, in particular having a melting temperature or a melting range below 250 ° C. and in particular below 230 ° C. Furthermore, soldering materials can be used with a tin content of at least 90% or 95%. Preference is given to using solder compositions with an indium portion. Indium increases the ductility of the structure. This also has an effect on the service life. The carrier can be cold-gas sprayed and in particular have cold gas-sprayed layers. For example, the carrier may comprise a cold gas-sprayed conductive layer. This forms in particular a conductor track structure. The cold gas sprayed layer ¬ forms the surface. On this
Oberfläche ist mindestens ein Leistungsbauteil aufgelötet. Die kaltgasgespritzte, leitende Schicht ist insbesondere eine Schicht aus Kupfer oder aus Aluminium oder aus einer Kupferlegierung oder einer Aluminiumlegierung. Durch die Verwendung von kaltgasgespritzten Schichten wird die Herstellung ver- einfacht. Gleichzeitig ermöglicht die, wie hier beschriebene durchgehende Lotschicht, dass die kaltgasgespritzte leitende Schicht (insbesondere an den Stellen, an denen ein Leis¬ tungsbauteil aufgelötet ist) eine Verringerung der mechanischen Spannungen, die sich durch unterschiedliche Wärmeausdeh- , Surface, at least one power component is soldered on. The cold gas-sprayed conductive layer is in particular a layer of copper or of aluminum or of a copper alloy or an aluminum alloy. The use of cold gas-sprayed layers simplifies production. At the same time allows, through the solder layer as described herein, that the cold gas sprayed layer (in particular at the locations where a Leis ¬ processing component is soldered) a reduction in the mechanical stresses by different Wärmeausdeh- .
b nungskoeffizienten ergeben. Ferner ergibt sich insbesondere durch die Dicke der Lotschicht eine stabile Struktur, wobei die kaltgasgespritzte, leitende Schicht, Leiterbahnen bzw. eine Leiterbahnstruktur ausbildet.  yielding coefficients. Furthermore, the thickness of the solder layer in particular results in a stable structure, wherein the cold-gas-sprayed, conductive layer forms conductor tracks or a conductor track structure.
Ferner weist der Träger vorzugsweise eine kaltgasgespritzte, elektrisch isolierende Schicht auf. Diese ist auf derjenigen Seite der leitenden Schicht angeordnet, die der Oberfläche entgegengesetzt ist. Mit anderen Worten ist die kaltgasge- spritzte, elektrisch leitende Schicht zwischen der elektrisch isolierenden Schicht und dem mindestens ein Bauelement ange¬ ordnet. Auf der elektrisch isolierenden Schicht ist die elektrisch leitende Schicht angeordnet, wobei auf der elektrisch leitenden Schicht die Bauelemente mittels der hier beschriebenen Lötverbindung aufgebracht sind. Die elektrisch isolierendeFurthermore, the carrier preferably has a cold gas-sprayed, electrically insulating layer. This is located on the side of the conductive layer which is opposite to the surface. In other words, the kaltgasge- is injected, electrically conductive layer between the electrically insulating layer and assigns the at least one component being ¬. The electrically conductive layer is arranged on the electrically insulating layer, wherein the components are applied to the electrically conductive layer by means of the solder joint described here. The electrically insulating
Schicht kann alternativ als durch ein thermisches Spritzverfahren erzeugt werden wie Flammspritzen. Layer may alternatively be produced by a thermal spray process such as flame spraying.
Es kann ferner ein Kühlkörper oder eine Wärmeabgabeschicht vorgesehen sein. Der Kühlkörper bzw. die Wärmeabgabeschicht ist elektrisch leitend und insbesondere aus Metall gefertigt . Auf dem Kühlkörper bzw. auf der wärmeleitenden Schicht ist die elektrisch isolierende Schicht aufgebracht, auf der sich wiederum die elektrisch leitende Schicht befindet. Die elektrisch isolierende Schicht befindet sich zwischen dem Kühlkörper und der leitenden Schicht. Daher können auch leitende Kühlkörper vorgesehen sein, wobei die isolierende Schicht dazu dient, dass die elektrisch leitende Schicht eine Leiterbahnstruktur ausbilden kann (und nicht von dem Kühlkörper kurzgeschlossen wird. Sowohl die elektrisch isolierende Schicht als auch die elektrisch leitende Schicht, d.h. die Leiterbahnschicht, sind insbesondere kalt- gasgespritzt . Die elektrisch isolierende Schicht kann aus einem Keramikwerkstoff gefertigt sein. Weiterhin kann vorgesehen sein, dass der Träger einen Kühlkörper oder eine Wärmeabgabeschicht aus Keramik oder Kunststoff aufweist, insbesondere aus einem nicht leitenden Material. Als weiteres kann der Träger eine kaltgasgespritzte, leitende Schicht aufweisen, insbesondere die Schicht, welche die Lei¬ terbahn ausbildet. Diese ist auf dem Kühlkörper ausgebildet. Die kaltgasgespritzte, leitende Schicht bildet die Leiterbahn¬ struktur aus. Ferner bildet diese eine Oberfläche, auf der das mindestens eine Leistungsbauteil aufgelötet ist (mittels der hier beschriebenen Lotschicht) . In diesem Fall ist keine zu¬ sätzliche, elektrisch isolierende Schicht notwendig, da der Kühlkörper selbst nicht leitet und die leitende Schicht als kaltgasgespritzte Schicht vorzugsweise direkt auf den Kühlkörper aufgebracht werden kann. There may also be provided a heat sink or a heat release layer. The heat sink or the heat release layer is electrically conductive and in particular made of metal. On the heat sink or on the heat-conducting layer, the electrically insulating layer is applied, on which in turn is the electrically conductive layer. The electrically insulating layer is located between the heat sink and the conductive layer. Therefore, conductive heat sinks can also be provided, wherein the insulating layer serves to enable the electrically conductive layer to form a printed conductor structure (and is not short-circuited by the heat sink.) Both the electrically insulating layer and the electrically conductive layer, ie the printed conductor layer, are The electrically insulating layer may be made of a ceramic material. Furthermore, it can be provided that the carrier has a heat sink or a heat release layer of ceramic or plastic, in particular of a non-conductive material. As another, the carrier may comprise a cold gas sprayed conductive layer, in particular the layer which forms the Lei ¬ terbahn. This is formed on the heat sink. The cold gas sprayed conductive layer forms the conductive path ¬ structure. Furthermore, this forms a surface on which the at least one power component is soldered (by means of the solder layer described here). In this case, to ¬ additional electrically insulating layer is necessary because of the cooling body itself does not conduct and the conductive layer may be applied as cold gas sprayed layer preferably directly on the heat sink.
Die beigefügte Figur 1 dient der näheren Erläuterung der hier beschriebenen Lotverbindung. The attached FIG. 1 serves for a more detailed explanation of the solder connection described here.
Die Figur 1 zeigt einen Ausschnitt einer Leistungselektro- nikschaltung L mit einem Träger und einem Leistungsbauteil 4, das auf den Träger mittels einer Lotschicht 3 montiert ist. Der Ausschnitt A zeigt die hier beschriebene Lotverbindung näher. FIG. 1 shows a detail of a power electronic circuit L with a carrier and a power component 4, which is mounted on the carrier by means of a solder layer 3. The detail A shows the solder joint described here in more detail.
Die Leistungselektronikschaltung L umfasst einen Kühlkörper 1 aus Aluminium. Auf diesem ist eine kaltgasgespritzte, iso¬ lierende Schicht 2a aufgebracht. Auf der elektrisch isolierenden Schicht 2a ist wiederum eine elektrisch leitende, kaltgasge¬ spritzte Schicht 2b angeordnet. Der Kühlkörper 1 kann aus Aluminium gefertigt sein, wobei die Schicht 2a aus einem Ke- ramikmaterial gefertigt sein kann und die Schicht 2b aus Kupfer hergestellt ist. Die Schichten 2a und 2b sind kaltgasgespritzt . Der Kühler 1 kann mittels eines Aluminiumgussverfahrens her¬ gestellt sein. Die elektrisch leitende Schicht 2b bildet (als oberste Schicht des Trägers) die Oberfläche 0 aus. Der Träger umfasst insbe¬ sondere die Elemente mit den Bezugszeichen 1, 2a und 2b und bildet ferner die Oberfläche 0 aus. Auf der Oberfläche 0 ist über eine Lotschicht 3 ein Leistungsbauteil 4 auf der Oberfläche 0 montiert. Das Bauteil 4 ist insbesondere ein Halbleiterbauteil und kann beispielsweise als gehäuster oder ungehäuster Chip vorliegen. Das Bauelement 4 kann insbesondere ein Leistungs¬ transistor oder eine Leistungsdiode sein oder auch ein Leis- tungs-TRIAC. The power electronics circuit L comprises a heat sink 1 made of aluminum. On this a cold gas sprayed, iso-regulating ¬ layer 2a is applied. On the electrically insulating layer 2a, in turn, an electrically conductive, kaltgasge ¬ sprayed layer 2b is arranged. The heat sink 1 can be made of aluminum, wherein the layer 2 a can be made of a ceramic material and the layer 2 b is made of copper. The layers 2a and 2b are cold-gas sprayed. The cooler 1 can be made by means of an aluminum casting method . The electrically conductive layer 2b (as the uppermost layer of the carrier) forms the surface 0. The support comprises in particular ¬ sondere the elements having the reference numerals 1, 2a and 2b, and further forming the surface from 0. On the surface 0, a power component 4 is mounted on the surface 0 via a solder layer 3. The component 4 is in particular a semiconductor component and can be present, for example, as a packaged or unhoused chip. The component 4 can be in particular a power ¬ transistor or a power diode or a power TRIAC.
Die Lotschicht 3 umfasst Abstandspartikel 3a, die in einer Lotmasse 3b eingebettet sind. Die Figur 1 gibt keine Größen¬ verhältnisse wieder; vielmehr kann die Partikelgröße der Ab- Standspartikel 3a kleiner sein als die Hälfte, ein Drittel oder ein Viertel der Schichtdicke der Lotschicht 3. Davon abgesehen kann die Partikelgröße mindestens einem Viertel, einem Drittel oder der Hälfte der Dicke der Lotschicht 3 entsprechen. Die Lotschicht 3 ergibt sich durch Aufschmelzen der Lotmasse 3b, wobei die Figur 1 ferner den üblichen Oberflächeneffekt (re¬ sultierend in einer Verjüngung der Lotschicht zum Bauteil hin) wiedergibt, der entsteht, wenn Lotmasse verflüssigt auf eine Lotfläche (entsprechend der Oberfläche 0) aufgebracht wird. Es ist zu erkennen, dass das gesamte Volumen zwischen den Seitenrändern der Lotschicht vollständig ausgefüllt ist. Mit anderen Worten ist die Lotschicht 3 zwischen den Außenrändern der Lotschicht durchgehend. Zwischen den Abstandspartikeln 3a befindet sich Lotmasse. Der Raum zwischen den Abstandspartikeln ist zwischen den Außenrändern der Lotschicht vollständig mit Lotmasse 3b aufgefüllt. The solder layer 3 comprises spacer particles 3a, which are embedded in a solder mass 3b. Figure 1 gives no sizes ¬ relationships; rather, the particle size of the Abstandpartikel 3a may be smaller than half, one third or one quarter of the layer thickness of the solder layer 3. Apart from that, the particle size at least a quarter, one third or half of the thickness of the solder layer 3 correspond. The solder layer 3 obtained by melting of the solder mass 3b, the figure 1 also (re ¬ sultierend in a taper of the solder layer to the component down) represents the conventional surface effect, which occurs when solder mass liquefied on a solder surface (corresponding to the surface 0) applied becomes. It can be seen that the entire volume between the side edges of the solder layer is completely filled. In other words, the solder layer 3 is continuous between the outer edges of the solder layer. Between the spacer particles 3a is solder mass. The space between the spacer particles is completely filled with solder mass 3b between the outer edges of the solder layer.
Der Kühlkörper 1 ist im dargestellten Beispiel aus Aluminium. Die Lotschichtdicke beträgt ca. 300 ym. Sie entspricht dem Abstand zwischen dem Leistungsbauteil 4 und der Oberfläche 0. Die Abstandspartikel 3a sind aus Kupfer. Die Abstandspartikel 3a sind ferner kugelförmig. Zudem haben die Abstandspartikel 3a eine Größe von 80 bis 100 ym, wobei dies insbesondere dem Kugel- durchmesser entspricht. Der Masseanteil der Abstandspartikel 3a innerhalb der Lotschicht 3 beträgt ca. 2 %. Das Leistungsbauteil 4 kann ein MOSFET oder ein IGBT sein. Die Leistungselektronikschaltung L ist insbesondere eine Ansteuerschaltung für einen elektrischen Antrieb eines Kraftfahrzeugs oder ist eine Mo- torsteuerung einer elektrischen Maschine, die den Generator, den Starter oder einen Startgenerator bildet. The heat sink 1 is made of aluminum in the example shown. The solder layer thickness is about 300 ym. It corresponds to the distance between the power device 4 and the surface 0. The spacer particles 3a are made of copper. The spacer particles 3a are also spherical. In addition, the distance particles 3a have a size of 80 to 100 ym, which corresponds in particular to the ball diameter. The mass fraction of the spacer particles 3a within the solder layer 3 is about 2%. The power device 4 may be a MOSFET or an IGBT. The power electronics circuit L is in particular a drive circuit for an electric drive of a motor vehicle or is an engine control of an electric machine which forms the generator, the starter or a start generator.

Claims

Patentansprüche claims
Leistungselektronikschaltung (L) mit einem Träger (1, 2a, 2b) , der eine Oberfläche (0) aufweist, auf dem mindestens ein Leistungsbauteil (4) mittels einer durchgehenden Lotschicht (3) aufgelötet ist, wobei die Lotschicht (3) Abstandspartikel (3a) und Lotmasse (3b) aufweist und die Abstandspartikel (3a) in der Lotmasse (3b) verteilt sind und wobei die Lotschicht eine Dicke aufweist, die mindestens 100 ym beträgt. Power electronics circuit (L) with a carrier (1, 2a, 2b) having a surface (0) on which at least one power component (4) is soldered by means of a continuous solder layer (3), wherein the solder layer (3) distance particles (3a ) and solder mass (3b) and the spacer particles (3a) are distributed in the solder mass (3b) and wherein the solder layer has a thickness which is at least 100 ym.
Leistungselektronikschaltung (L) nach Anspruch 1 , wobei die Dicke der Lotschicht mindestens 150 ym, mindestens 200ym, mindestens 250 ym oder mindestens 300ym beträgt. Power electronics circuit (L) according to claim 1, wherein the thickness of the solder layer is at least 150 ym, at least 200ym, at least 250 ym or at least 300ym.
Leistungselektronikschaltung (L) nach Anspruch 1 oder 2, wobei die Abstandspartikel einem Masseanteil von mindestens 1% der Lotschicht ausmachen. The power electronics circuit (L) according to claim 1 or 2, wherein the spacing particles constitute a mass fraction of at least 1% of the solder layer.
Leistungselektronikschaltung (L) nach einem der vorangehenden Ansprüche, wobei die Abstandspartikel (3a) aus Metall gefertigt sind oder eine Metallbeschichtung auf¬ weisen . Power electronics circuit (L) according to one of the preceding claims, wherein the spacer particles (3a) are made of metal or have a metal coating on ¬ .
Leistungselektronikschaltung (L) nach einem der vorangehenden Ansprüche, wobei die Abstandspartikel (3a) ku¬ gelförmig sind. Power electronics circuit (L) according to one of the preceding claims, wherein the distance particles (3a) are ku ¬ gel-shaped.
Leistungselektronikschaltung (L) nach einem der vorangehenden Ansprüche, wobei die Abstandspartikel (3a) eine Partikelgröße von mindestens 50 ym, von mindestens 80 ym, von mindestens 100 ym oder von mindestens 120 ym aufweisen. Power electronics circuit (L) according to one of the preceding claims, wherein the spacing particles (3a) have a particle size of at least 50 ym, of at least 80 ym, of at least 100 ym or of at least 120 ym.
Leistungselektronikschaltung (L) nach einem der vorangehenden Ansprüche, wobei der Träger eine kaltgasge- spritzte, leitende Schicht (2b) aufweist, welche die Oberfläche (0) bildet, auf der das mindestens ein Leis¬ tungsbauteil (4) aufgelötet ist. Leistungselektronikschaltung (L) nach Anspruch 7 , wobei der Träger eine kaltgasgespritzte, elektrisch isolierende Schicht (2a) aufweist, die auf derjenigen Seite der leitenden Schicht (2b) angeordnet ist, die der Oberfläche (0) entgegengesetzt ist. Having power electronics circuit (L) according to any one of the preceding claims, wherein the carrier is injected a kaltgasge- conductive layer (2b), which forms the surface (0), where the at least one Leis ¬ processing component (4) is soldered. The power electronics circuit (L) according to claim 7, wherein the carrier comprises a cold gas-sprayed electrically insulating layer (2a) disposed on the side of the conductive layer (2b) opposite to the surface (0).
Leistungselektronikschaltung (L) nach Anspruch 8 , wobei der Träger einen Kühlkörper (1) aus Metall aufweist, auf dem die elektrisch isolierende Schicht (2a) aufgebracht ist, die sich zwischen dem Kühlkörper (1) und der leitenden Schicht (2b) erstreckt. The power electronics circuit (L) according to claim 8, wherein the support comprises a metal heat sink (1) on which the electrically insulating layer (2a) extending between the heat sink (1) and the conductive layer (2b) is applied.
Leistungselektronikschaltung (L) nach Anspruch 7 , wobei der Träger einen Kühlkörper (1) aus Keramik oder Kunststoff aufweist, und der Träger ferner eine kaltgasgespritzte, leitende Schicht (2b) aufweist, welche die Oberfläche (0) bildet, auf der das mindestens eine Leistungsbauteil (4) aufgelötet ist. Power electronics circuit (L) according to claim 7, wherein the carrier has a cooling body (1) made of ceramic or plastic, and the carrier further comprises a cold gas-sprayed, conductive layer (2b) which forms the surface (0) on which the at least one power component (4) is soldered.
PCT/EP2017/075247 2016-10-07 2017-10-04 Power electronics circuit WO2018065483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016219565.4 2016-10-07
DE102016219565.4A DE102016219565A1 (en) 2016-10-07 2016-10-07 Power electronics circuit

Publications (1)

Publication Number Publication Date
WO2018065483A1 true WO2018065483A1 (en) 2018-04-12

Family

ID=60043186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/075247 WO2018065483A1 (en) 2016-10-07 2017-10-04 Power electronics circuit

Country Status (2)

Country Link
DE (1) DE102016219565A1 (en)
WO (1) WO2018065483A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210013175A1 (en) * 2018-03-29 2021-01-14 Danfoss Silicon Power Gmbh Method of assembling a semiconductor power module component and a semiconductor power module with such a module component and manufacturing system therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018208844B3 (en) 2018-06-05 2019-10-02 Continental Automotive Gmbh Heat sink, power electronics module with a heat sink and method for producing the heat sink

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243293A (en) * 1992-02-28 1993-09-21 Nec Kansai Ltd Mounter
EP0795891A2 (en) * 1996-03-14 1997-09-17 D-Tech GmbH Antriebstechnik und Mikroelektronik Semiconductor chips soldering
DE10045783A1 (en) * 2000-05-08 2001-11-22 Ami Doduco Gmbh Use of cold gas spraying or flame spraying of metals and alloys and mixtures or composite materials of metals and alloys to produce layer(s) on electrical contacts, carriers for contacts, electrical conductors and on strips or profiles
JP2005129886A (en) * 2003-10-03 2005-05-19 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2006073554A (en) * 2004-08-31 2006-03-16 Sanyo Electric Co Ltd Circuit device and its manufacturing method
JP2012028433A (en) * 2010-07-21 2012-02-09 Nec Network Products Ltd Packaging method of electronic component
WO2016016140A1 (en) * 2014-07-28 2016-02-04 Continental Automotive Gmbh Circuit carrier, electronic assembly, method for producing a circuit carrier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347693A (en) * 1989-07-13 1991-02-28 Tamura Seisakusho Co Ltd Solder paste
JP4302607B2 (en) * 2004-01-30 2009-07-29 株式会社デンソー Semiconductor device
DE102006023088A1 (en) * 2006-05-16 2007-07-26 Infineon Technologies Ag Power semiconductor component has power semiconductor chip arranged on region of flat conductor frame planned as chip pads, power semiconductor chip is connected with chip pad by plumb bob layer
JP2009050900A (en) * 2007-08-28 2009-03-12 Toyota Motor Corp Solder with particles and its manufacturing method
JP2011228604A (en) * 2010-04-23 2011-11-10 Honda Motor Co Ltd Manufacturing method of circuit board and circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05243293A (en) * 1992-02-28 1993-09-21 Nec Kansai Ltd Mounter
EP0795891A2 (en) * 1996-03-14 1997-09-17 D-Tech GmbH Antriebstechnik und Mikroelektronik Semiconductor chips soldering
DE10045783A1 (en) * 2000-05-08 2001-11-22 Ami Doduco Gmbh Use of cold gas spraying or flame spraying of metals and alloys and mixtures or composite materials of metals and alloys to produce layer(s) on electrical contacts, carriers for contacts, electrical conductors and on strips or profiles
JP2005129886A (en) * 2003-10-03 2005-05-19 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2006073554A (en) * 2004-08-31 2006-03-16 Sanyo Electric Co Ltd Circuit device and its manufacturing method
JP2012028433A (en) * 2010-07-21 2012-02-09 Nec Network Products Ltd Packaging method of electronic component
WO2016016140A1 (en) * 2014-07-28 2016-02-04 Continental Automotive Gmbh Circuit carrier, electronic assembly, method for producing a circuit carrier

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
-: "Gas dynamic cold spray", WIKIPEDIA, 4 October 2016 (2016-10-04), XP055438912, Retrieved from the Internet <URL:https://en.wikipedia.org/w/index.php?title=Gas_dynamic_cold_spray&oldid=742526152> [retrieved on 20180108] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210013175A1 (en) * 2018-03-29 2021-01-14 Danfoss Silicon Power Gmbh Method of assembling a semiconductor power module component and a semiconductor power module with such a module component and manufacturing system therefor

Also Published As

Publication number Publication date
DE102016219565A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
DE102005008491B4 (en) Power semiconductor device and method for its manufacture
DE102005047567B3 (en) Power semiconductor module comprises a housing, connecting elements and an electrically insulated substrate arranged within the housing and semiconductor components with a connecting element and an insulating molded body
DE102011079708B4 (en) SUPPORT DEVICE, ELECTRICAL DEVICE WITH SUPPORT DEVICE, AND METHOD FOR MANUFACTURING SAME
DE102014221636B4 (en) Semiconductor module and method of manufacturing the same
EP2456589B1 (en) Lead free high temperature connection
EP1493188A2 (en) Electronic component having at least one semiconductor chip and flip-chip contacts, and method for the production thereof
WO2013087243A1 (en) Electrical component and method for producing an electrical component
DE102012211952B4 (en) Power semiconductor module with at least one stress-reducing matching element
WO2003001594A2 (en) High-voltage module and method for producing the same
DE4132947C2 (en) Electronic circuitry
WO2018065483A1 (en) Power electronics circuit
DE10010461A1 (en) Process for packing electronic components comprises injection molding components into ceramic substrate having conducting pathways, contact connection surfaces and pressure contacts
DE102011076774A1 (en) Semiconductor component for use in e.g. power electronic area, has solderable layers formed at surfaces of carrier and cooling body, respectively, where surfaces of carrier and body face body and carrier, respectively
DE102018208844B3 (en) Heat sink, power electronics module with a heat sink and method for producing the heat sink
DE102018207554A1 (en) Contact arrangement, preferably for power electronics
DE102015112451B4 (en) Power semiconductor module
DE102015100868B4 (en) Integrated circuit and method of making an integrated circuit
DE102013212398A1 (en) Circuit device and method for producing a circuit device for controlling a transmission of a vehicle
DE102005036563B4 (en) Electronic component
WO2020078778A1 (en) Semiconductor component arrangement, method for fabrication thereof and heat dissipation device
DE102005024096A1 (en) Device and method for mounting electrical components
DE102017211330A1 (en) Tolerance compensation element for circuit diagrams
DE10146854B4 (en) Electronic component with at least one semiconductor chip and method for producing an electronic component with at least one semiconductor chip
DE102017200504A1 (en) Electronic component and method for producing an electronic component
DE102017209083B4 (en) Circuit board assembly with microprocessor component, electronic control unit and method for producing a printed circuit board assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17781077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17781077

Country of ref document: EP

Kind code of ref document: A1