WO2018062839A1 - 정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치 - Google Patents

정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치 Download PDF

Info

Publication number
WO2018062839A1
WO2018062839A1 PCT/KR2017/010704 KR2017010704W WO2018062839A1 WO 2018062839 A1 WO2018062839 A1 WO 2018062839A1 KR 2017010704 W KR2017010704 W KR 2017010704W WO 2018062839 A1 WO2018062839 A1 WO 2018062839A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
substrate
electrodes
varistor
capacitor
Prior art date
Application number
PCT/KR2017/010704
Other languages
English (en)
French (fr)
Inventor
박규환
유준서
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160125526A external-priority patent/KR102464070B1/ko
Priority claimed from KR1020160125525A external-priority patent/KR20180035440A/ko
Priority claimed from KR1020160125527A external-priority patent/KR102475369B1/ko
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Publication of WO2018062839A1 publication Critical patent/WO2018062839A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/06Electrostatic or electromagnetic shielding arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/144Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being welded or soldered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/146Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the resistive element surrounding the terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/16Resistor networks not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/102Varistor boundary, e.g. surface layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/028Housing; Enclosing; Embedding; Filling the housing or enclosure the resistive element being embedded in insulation with outer enclosing sheath
    • H01C1/03Housing; Enclosing; Embedding; Filling the housing or enclosure the resistive element being embedded in insulation with outer enclosing sheath with powdered insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type

Definitions

  • the present invention relates to an electrostatic protection device for an electronic device such as a smart phone, and more particularly, an electrostatic protection device capable of simultaneously improving resistance to electrostatic discharge (ESD), temperature characteristics, and capacitance capacity, and a method of manufacturing the same. It relates to a portable electronic device provided.
  • ESD electrostatic discharge
  • the metal housing has excellent electrical conductivity due to the characteristics of the material, an electrical path may be formed between the external housing and the internal circuit part through a specific device or according to a portion thereof.
  • the metal housing and the circuit part form a loop, when a static electricity having a high voltage is momentarily introduced through a conductor such as a metal housing having a large external exposed area, the circuit part such as an IC may be damaged. Measures are required.
  • the present invention has been made in view of the above, an electrostatic protection device capable of simultaneously improving the resistance to static electricity, temperature characteristics, and capacitance capacity by having a single package with a static electricity protection function and a capacitor function separately, and its manufacture It is an object of the present invention to provide a method and a portable electronic device having the same.
  • the present invention provides a protection unit for passing static electricity; And a capacitor unit connected in parallel with the protection unit.
  • any one of the protective part and the capacitor part is formed of a substrate, the other is made of a single component, the substrate and the single component is molded by a molding member.
  • the substrate is a COG type dielectric substrate, and the single component may be a varistor.
  • the substrate is a varistor substrate
  • the single component may be a COG type MLCC.
  • the protection unit and the capacitor unit may be coupled in a vertical stack.
  • the substrate a pair of bottom electrode; A pair of top electrodes; At least a pair of internal electrodes; And a pair of connecting portions connecting each pair of the electrodes.
  • the spacing a between the pair of top electrodes may be smaller than the spacing b between the pair of bottom electrodes.
  • the space formed by the pair of upper electrodes and the lower surface of the single component may be filled with a discharge material.
  • the present invention includes a substrate comprising a pair of bottom electrodes, a pair of top electrodes, at least one pair of internal electrodes, and a pair of connecting portions connecting each pair of the electrodes; A single component coupled to the top electrode of the substrate to be connected in parallel with the substrate; And a molding part for molding the upper surface of the substrate and the single component.
  • any one of the substrate and the single component is a protection unit for passing static electricity, and the other is a capacitor unit.
  • the present invention includes a conductor including a tip portion protruding outward from the conductive case; Circuit section; And it provides a portable electronic device comprising an electrostatic protection device for electrically connecting the conductor and the circuit portion.
  • the electrostatic protection device of the electrostatic protection device of various embodiments having the structure and properties as described above may be preferably used.
  • the conductor may comprise a side key.
  • the tip portion may include one end of the insertion port of the connector for connection with an external device.
  • the present invention comprises the steps of forming at least a pair of internal electrodes, a pair of top electrodes, a pair of bottom electrodes, and a pair of connecting portions of each of the electrodes on a large area substrate; Soldering a single component to the top electrode in the form of a flip chip to laminate-bond the top electrode; Molding the upper surface of the substrate and the single component with an epoxy film; And it provides a method of manufacturing an electrostatic protection device comprising the step of cutting by the unit zone.
  • any one of the substrate and the single component is a protection unit for passing static electricity, and the other is a capacitor unit.
  • the manufacturing method of the electrostatic protection device further comprises the step of filling the space formed by the pair of the top electrode and the bottom surface of the single component with a discharge material after the step of combining. It may include.
  • the molding step may be cured by placing an epoxy film on the upper side of the substrate and the single component.
  • the large area substrate may be a dielectric substrate or a varistor substrate.
  • the forming may include forming the top electrode and the bottom electrode such that the gap a between the pair of top electrodes is smaller than the gap b between the pair of bottom electrodes.
  • the present invention by separately providing a static protection function and a capacitor function and packaging in a single package, it is possible to enhance the resistance to static electricity and to improve the capacitance capacity at the same time, thereby improving the reliability of the product.
  • the present invention is provided with a single component and a substrate function separately in the form of a single component and a substrate, and a single package, thereby simplifying the manufacturing process and easy line-up according to various capacities, it is possible to improve the manufacturing efficiency and reduce the manufacturing cost .
  • the present invention by implementing the capacitance using a COG-type dielectric, it is possible to stabilize the temperature characteristics of the entire package by supplementing the temperature characteristics of the electrostatic protection function can improve the reliability of the product.
  • the degree of freedom in designing the capacitance is increased, so that the lineup of various capacities is possible, so that the customer's requirements can be quickly responded without a separate process change.
  • the present invention by molding a single component and the substrate into a single package, it is possible to protect the single component and the substrate, and at the same time standardize the size of the entire chip size, and to improve the pickup properties in the manufacturing process, electrostatic protection There is no need for a separate effort to pick up the device can further improve the manufacturing efficiency.
  • the present invention is easy to mass production by using a large-area substrate and curing the epoxy film, molding, it is possible to reduce the raw materials to be discarded to further reduce the manufacturing cost and contribute to improving the environment.
  • the varistor is composed of a single layer, it is easy to implement a high capacitance by securing sufficient space for forming the capacitance, or the chip size can be uniformly standardized using a single capacitor having a relatively large volume. .
  • the present invention is formed by making the interval between the upper electrode of the substrate smaller than the interval between the electrode, the electrostatic discharge through the space between the upper electrode can be added to the discharge path of the static electricity to further improve the resistance to static electricity You can.
  • FIG. 1 is a cross-sectional view showing an electrostatic protection device according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of a state in which the molding part is removed from FIG. 1;
  • FIG. 3 is a cross-sectional view showing the relationship between the distance between the top electrode and the bottom electrode of the dielectric substrate in the electrostatic protection device according to an embodiment of the present invention
  • FIG. 4 is a cross-sectional view showing an example of a dielectric substrate in an electrostatic protection device according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view showing another example of a dielectric substrate in an electrostatic protection device according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a varistor in the electrostatic protection device according to an embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating a case where a dielectric substrate is provided in an electrostatic protection device according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing another example of an electrostatic protection device according to an embodiment of the present invention.
  • FIG. 9 is an exploded perspective view of a state in which the molding part is removed from FIG. 8;
  • FIG. 10 is a cross-sectional view showing a relationship between the distance between the top electrode and the bottom electrode of the varistor substrate in another example of the electrostatic protection device according to an embodiment of the present invention
  • FIG. 11 is a cross-sectional view showing an example of a varistor substrate in another example of the electrostatic protection element according to the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing another example of the varistor substrate in another example of the electrostatic protection element according to the embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing an MLCC in another example of an electrostatic protection device according to an embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing another example of an electrostatic protection device according to an embodiment of the present invention.
  • FIG. 15 is a flowchart illustrating a method of manufacturing an electrostatic protection device according to an embodiment of the present invention.
  • 16 to 19 are cross-sectional views showing each step of the manufacturing method of the electrostatic protection device according to an embodiment of the present invention.
  • 20 to 23 are cross-sectional views showing each step of the manufacturing method of another example of the electrostatic protection device according to an embodiment of the present invention.
  • 24 is a graph showing the temperature change rate of the varistor and the dielectric.
  • the electrostatic protection devices 100 and 200 may include protection parts 120 and 210, capacitor parts 110 and 220, and molding parts 130 and 230.
  • the protection parts 120 and 210 pass static electricity, and the capacitor parts 110 and 220 are connected in parallel with the protection parts 120 and 210.
  • any one of the protective part (120, 210) and the capacitor part (110, 220) is formed of the substrate (110, 210), the other is made of a single component (120, 220).
  • the capacitor unit 110 may be a dielectric substrate, and the protection unit 120 may be a single component.
  • the protection unit 210 may be a varistor substrate, and the capacitor unit 220 may be a single component.
  • the protection parts 120 and 210 may be varistors or diodes.
  • the protection parts 120 and 210 and the capacitor parts 110 and 220 may be stacked and coupled up and down.
  • the protection parts 120 and 210 and the capacitor parts 110 and 220 may be horizontally coupled from side to side.
  • the protection parts 120 and 210 may include a pair of internal electrodes spaced apart at regular intervals on the same plane.
  • the electrostatic protection device (100,200) is provided with a separate capacitor, there is no need to implement the capacitance by the protection unit (120,210), moreover, if the protection unit (120,210) is a varistor having a high temperature change rate, the capacitance therein Since the capacitance changes depending on the temperature when formed, it adversely affects the capacitance of the entire package. Therefore, it is preferable to arrange the electrodes on the same plane, excluding the stacked structure that forms the capacitance wherever possible.
  • the protection parts 120 and 210 may be made of a single component 120 as shown in FIG. 1, or the thickness of both the protection parts 120 and 210 may be made of the substrate 210 as shown in FIG. 8. Therefore, it may be easy to standardize the overall thickness of the electrostatic protection device (100,200) to the chip size.
  • the overall chip size can be standardized.
  • the thickness t1 of the substrate 110 serving as the capacitor portion may be greater than the thickness t2 of the single component 120 serving as the protective portion.
  • the thickness t3 of the substrate 210 as the protective part may be smaller than the thickness t4 of the single part 220 as the capacitor part.
  • the thicknesses t2 and t3 of the single part 120 or the substrate 210 serving as the protection part may be the same or similar, and the thicknesses t1 and t4 of the substrate 110 or the single part 220 serving as the capacitor part may be the same. Or similarly, the entire package can be standardized.
  • the dielectric material has a change rate of less than 1%, while the varistor material changes significantly with temperature.
  • the varistor material may have a change rate of 5% or more, it is difficult to realize capacitance within an error range when the capacitance value is to be managed within 5% due to signal characteristics. Therefore, the capacitance should be implemented using a dielectric material. desirable.
  • the electrostatic protection device (100,200) according to an embodiment of the present invention provides an ESD function and at the same time improves the temperature characteristics, the ESD protection function is implemented in a varistor material for standardization by a single chip, the capacitance is a dielectric Implement
  • the electrostatic protection device 100 including the capacitor part as the substrate 110 and the protection part as the single component 120 will be described first.
  • the static electricity protection device 100 includes a dielectric substrate 110, a varistor 120, and a molding part 130, as shown in FIGS. 1, 2, and 7.
  • the dielectric substrate 110 may be a COG type dielectric substrate.
  • the COG characteristic satisfies the temperature coefficient of 0 ⁇ 30 ppm / ° C. within the use temperature range of ⁇ 55 to 125 ° C. as specified by the EIA (Electrical Industries Association). Accordingly, since the COG type dielectric substrate 110 has a very small temperature change rate, the COG type dielectric substrate 110 may provide a temperature compensation function for the varistor 120 having a large temperature change rate.
  • the varistor 120 since the varistor 120 has a large temperature change rate due to the characteristics of the material, when the temperature change due to frequent use is used in an extreme portable electronic device, the varistor 120 may affect other components, so that the varistor 120 may affect the COG type dielectric substrate 110. As a result, the deterioration of characteristics due to the temperature change of the varistor 120 may be compensated.
  • the temperature characteristics of the varistor 120 having a high temperature change rate can be compensated to stabilize the temperature characteristics of the entire package, thereby improving the reliability of the product. have.
  • the capacitor unit by the dielectric substrate 110, it is possible to implement the capacitance independently of the varistor material of the varistor 120 having a large temperature change rate, thereby increasing the design freedom of the capacitance, so that various capacities can be achieved without a separate process change.
  • the lineup is available so you can respond quickly to customer needs.
  • the dielectric substrate 110 may be a stack of a plurality of sheet layers 110a (see FIGS. 4 and 5).
  • each of the plurality of sheet layers may be made of an insulator having a dielectric constant, and may be made of a ceramic material.
  • the ceramic material includes at least one selected from Er 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , V 2 O 5 , CoO, MoO 3 , SnO 2 , BaTiO 3 , and Nd 2 O 3 . It may be made of a metal-based oxidizing compound.
  • the dielectric substrate 110 includes a pair of bottom electrodes 111a and 111b, a pair of top electrodes 112a and 112b, a plurality of internal electrodes 113a and 113b, and a It may include a pair of connecting portions (114a, 114b).
  • the internal electrodes 113a and 113b may be capacitor electrodes 113a and 113b.
  • the pair of bottom electrodes 111a and 111b are for mounting the electrostatic protection device 100 on a circuit board, and may be formed on both sides of the bottom surface of the dielectric substrate 110.
  • the pair of top electrodes 112a and 112b are connected to the varistor 120 as a single component in parallel and may be formed on both sides of the top surface of the dielectric substrate 110.
  • a space 101 may be formed between the pair of top electrodes 112a and 112b.
  • the space 101 may form a discharge path of the static electricity (ESD) through the pair of top electrodes 112a and 112b.
  • electrostatic discharge is possible through the space 101 between the pair of top electrodes 112a and 112b, and a discharge path of static electricity is added to the varistor 120 to further improve resistance to static electricity.
  • the gap a between the pair of top electrodes 112a and 112b may be smaller than the gap b between the pair of bottom electrodes 111a and 111b.
  • static electricity flowing from the outside may be discharged through only the pair of top electrodes 112a and 112b before being discharged through the pair of bottom electrodes 111a and 111b.
  • the plurality of capacitor electrodes 113a and 113b may be formed on the plurality of sheet layers 110a constituting the dielectric substrate 110, respectively.
  • the capacitor electrodes 113a and 113b may be connected to the pair of top electrodes 112a and 112b and the pair of bottom electrodes 111a and 111b through the pair of connecting portions 114a and 114b, respectively. That is, one side of the capacitor electrode 113a is connected to the top electrode 112a and the bottom electrode 111a through the connection portion 114a, and the other side of the capacitor electrode 113b is the top electrode 112b through the connection portion 114b. ) And the bottom electrode 111b, respectively.
  • the distance between the pair of top electrodes 112a and 112b and the adjacent capacitor electrodes 113a and 113b that are not electrically connected to each other for example, the top electrode 112b and the uppermost part.
  • the gap d2 between the capacitor electrodes 113a may be larger than the gap d3 between the capacitor electrodes 113a and 113b.
  • the distance between the capacitor electrodes 113a and 113b and the connection parts 114a and 114b that are not electrically connected for example, the distance d4 between the uppermost capacitor electrode 113a and the connection part 114b may be the capacitor electrode 113a. It may be formed larger than the interval (d3) between the, 113b.
  • the pair of connecting portions 114a and 114b may be conductive vias 114a and 114b formed through the dielectric substrate 110.
  • the pair of conductive vias 114a and 114b may be formed by forming a through hole penetrating through the dielectric substrate 110 and then filling with a conductive material.
  • the dielectric substrate 110 may be connected to the varistor 120 in parallel by the pair of conductive vias 114a and 114b.
  • a pair of side electrodes 114a ', 114b', 214a ', and 214b' may be provided on both side surfaces of the dielectric substrate 110.
  • each of the capacitor electrodes 113a and 113b is limited between the pair of conductive vias 114a and 114b, the area constituting the capacitor is reduced, and thus the capacitance is reduced.
  • the capacity of is limited.
  • the pair of connecting portions of the dielectric substrate 110 ′ may be formed on both sides of the dielectric substrate 110 ′. That is, the pair of connection parts may be a pair of side electrodes 114a 'and 114b'.
  • the pair of side electrodes 114a 'and 114b' form a hemispherical groove by drilling or punching a portion of the side surface of the dielectric substrate 110, and applying a conductive material to the surface of the groove where the conductive material is formed or filling into the groove. Can be formed.
  • the present invention is not limited thereto, and in the case where the substrate 210 is a protection unit, a pair of breakdown voltages Vbr may be satisfied according to the position of the pair of connection units. The spacing between the internal electrodes can be determined.
  • the varistor 120 is stacked and coupled to the pair of top electrodes 112a and 112b of the dielectric substrate 110 so as to be connected in parallel with the dielectric substrate 110.
  • the varistor 120 is made of a single component, has a static electricity protection function, and passes the static electricity introduced from the outside.
  • the varistor 120 includes a pair of external electrodes 121a and 121b and a pair of internal electrodes 122a and 122b as shown in FIG. 6.
  • the pair of external electrodes 121a and 121b may be provided at both sides of the varistor 120 and may be coupled to the pair of top electrodes 112a and 112b of the dielectric substrate 110 through soldering.
  • the pair of internal electrodes 122a and 122b are connected to each of the pair of external electrodes 121a and 121b and may be spaced apart at regular intervals on the same plane.
  • the electrostatic protection device 100 since the electrostatic protection device 100 has a capacitor function as a separate dielectric substrate 110, it is not necessary to implement capacitance by the varistor 120, and furthermore, since the varistor 120 has a high temperature change rate, If capacitance is formed inside, the capacitance is changed according to temperature, and thus adversely affects the capacitance of the entire package. Therefore, it is preferable to dispose the stacked structure that forms the capacitance, and to arrange the electrodes on the same plane.
  • the thickness of the varistor 120 can be reduced. Therefore, even when stacked on the dielectric substrate 110, it is easy to standardize to a predetermined chip size by preventing the increase in the overall thickness of the electrostatic protection device 100.
  • the varistor 120 becomes thinner, the space for forming capacitance within a chip size of a certain size is relatively increased, so that sufficient space is secured to realize a high capacity capacitance and a relatively large volume. While implementing a high capacity capacitor using the dielectric substrate 110, the entire chip size can be standardized.
  • the varistor 120 includes a body (120a) is made of a varistor material, for example to, ZnO, SrTiO 3, BaTiO 3, the semiconductive material comprising at least one of SiC, or Pr, and Bi-based material can be made of any one have.
  • the varistor 120 may be formed so that the gap d1 between the pair of internal electrodes 122a and 122b and the particle size of the varistor material satisfy the breakdown voltage Vbr.
  • the varistor 120 may be coupled to the pair of top electrodes 112a and 112b of the dielectric substrate 110 in a flip chip form. In this case, the varistor 120 may be coupled to the dielectric substrate 110 by soldering.
  • the space formed by the bottom surfaces of the pair of top electrodes 112a and 112b and the varistor 120 may be filled with a discharge material in part or all.
  • the discharge material has a low dielectric constant, no conductivity, and should not have a short when an overvoltage is applied.
  • the discharge material may be made of a non-conductive material including metal particles, and may be made of a semiconductor material including SiC or silicon-based components.
  • the molding part 130 molds the dielectric substrate 110 and the varistor 120 by the molding member. That is, the molding part 130 is molded to cover the upper surface of the dielectric substrate 110 and the varistor 120.
  • the molding member may be made of epoxy.
  • the molding part 130 may be formed by curing the epoxy film.
  • the molding unit 130 By molding the dielectric substrate 110 and the varistor 120 by the molding unit 130 to protect the dielectric substrate 110 and the varistor 120, a single component of the varistor 120 having various capacities and characteristics. In the case of using, the entire chip size can be uniformly standardized. As a result, since pickup performance can be improved in the manufacturing process, no additional effort for pickup of the electrostatic protection device 100 is required, and manufacturing efficiency can be further improved.
  • the dielectric substrate 110 and the varistor 120 may be independently provided without being influenced by each other by different materials, thereby preventing static electricity.
  • the product's reliability can be improved by increasing resistance and simultaneously increasing capacitance capacity.
  • the gap between the capacitor electrodes 113a and 113b stacked in the dielectric substrate 110 can be formed more densely, thereby increasing the number of stacked capacitor electrodes and increasing the capacitance of the capacitor. Implementation may be easy.
  • the protection part and the capacitor part may be disposed opposite to each other.
  • the electrostatic protection device 200 including the protection part as the substrate 210 and the capacitor part as the single component 220 will be described.
  • the static electricity protection device 200 includes a varistor substrate 210, a capacitor 220, and a molding unit 230, as shown in FIGS. 8, 9, and 14.
  • the varistor substrate 210 has a body 210a made of a varistor material.
  • the varistor substrate 210 may be formed of a semiconductive material including one or more of ZnO, SrTiO 3 , BaTiO 3 , SiC, or Pr and Bi-based materials. have.
  • the varistor substrate 210 may be formed such that the gap d1 between the pair of internal electrodes 222a and 222b and the particle diameter of the varistor material satisfy the breakdown voltage Vbr.
  • the varistor substrate 210 includes a pair of bottom electrodes 211a and 211b, a pair of top electrodes 212a and 212b, a pair of internal electrodes 213a and 213b, and Pairs of connections 214a, 214b.
  • the pair of bottom electrodes 211a and 211b are for mounting the static electricity protection device 200 on a circuit board, and may be formed on both sides of the bottom surface of the varistor substrate 210.
  • the pair of top electrodes 212a and 212b are connected in parallel with the capacitor 220 and may be formed on both sides of the top surface of the varistor substrate 210.
  • a space 201 may be formed between the pair of top electrodes 212a and 212b.
  • the space 201 may form a discharge path of the electrostatic discharge (ESD) through the pair of top electrodes 212a and 212b.
  • electrostatic discharge is possible through the space 201 between the pair of top electrodes 212a and 212b so that a discharge path of static electricity is added to the pair of internal electrodes 213a and 213b of the varistor substrate 210.
  • the resistance to static electricity can be further improved.
  • the spacing a between the pair of top electrodes 212a and 212b may be smaller than the spacing b between the pair of bottom electrodes 211a and 211b.
  • static electricity flowing from the outside may be discharged through only the pair of top electrodes 212a and 212b before being discharged through the pair of bottom electrodes 211a and 211b.
  • the pair of internal electrodes 213a and 213b may be spaced apart at regular intervals on the same plane.
  • the static electricity protection device 200 since the static electricity protection device 200 includes a separate single component capacitor 220, it is not necessary to implement capacitance by the varistor substrate 210, and furthermore, since the varistor substrate 210 has a high temperature change rate, If capacitance is formed therein, the capacitance changes according to temperature, and thus adversely affects the capacitance of the entire package. Therefore, it is preferable to dispose an electrode structure on the same plane, excluding a stacked structure that forms capacitance as much as possible.
  • the thickness of the varistor substrate 210 can be reduced. Therefore, even when the capacitor 220 is stacked, it may be easy to standardize to a predetermined chip size by preventing an increase in the overall thickness of the electrostatic protection device 200.
  • the varistor substrate 210 becomes thinner, the space for forming capacitance within a chip size of a certain size is relatively increased, so that sufficient space is secured to realize high capacity capacitance, and the volume is relatively small. While using a large single component capacitor 220, the overall chip size can be standardized.
  • the pair of internal electrodes 213a and 213b may be connected to the pair of top electrodes 212a and 212b and the pair of bottom electrodes 211a and 211b through the pair of connecting portions 214a and 214b, respectively. That is, the inner electrode 213a of one side is connected to the upper electrode 212a and the lower electrode 211a through the connecting portion 214a, respectively, and the inner electrode 213b of the other side is connected to the upper electrode 212b through the connecting portion 214b. ) And the bottom electrode 211b, respectively.
  • the pair of connection portions 214a and 214b may be conductive vias 214a and 214b formed through the varistor substrate 210.
  • the pair of conductive vias 214a and 214b may be formed by forming a through hole penetrating the varistor substrate 210 and then filling with a conductive material.
  • the varistor substrate 210 may be connected in parallel with the capacitor 220 by the pair of conductive vias 214a and 214b.
  • a pair of side electrodes 214a 'and 214b' may be provided on both side surfaces of the varistor substrate 210.
  • the varistor substrate 210 ' may be formed at both sides of the varistor substrate 210' as shown in FIG. That is, the pair of connection parts may be a pair of side electrodes 214a 'and 214b'.
  • the pair of side electrodes 214a 'and 214b' form a hemispherical groove by drilling or punching a part of the side surface of the varistor substrate 210 and applying a conductive material to the surface of the groove on which the conductive material is formed or filling into the groove. Can be formed.
  • the capacitor 220 may be a multilayer ceramic capacitor (MLCC) of a COG type. That is, the capacitor 220 may be an MLCC satisfying the COG characteristic as described above.
  • MLCC multilayer ceramic capacitor
  • the varistor substrate 210 since the varistor substrate 210 has a large temperature change rate due to the characteristics of the material, when the temperature change due to frequent use is used in a portable electronic device with extreme use, the varistor substrate 210 may affect other components. As a result, the deterioration of characteristics due to the temperature change of the varistor substrate 210 may be compensated.
  • the temperature characteristics of the varistor substrate 210 having a high temperature change rate can be compensated for, thereby stabilizing the temperature characteristics of the entire package, thereby improving the reliability of the product.
  • the capacitor 220 is stacked and coupled to the pair of top electrodes 212a and 212b of the varistor substrate 210 so as to be connected in parallel with the varistor substrate 210.
  • the capacitor 220 may include a pair of external electrodes 221a and 221b and a plurality of capacitor electrodes 222a and 222b.
  • the pair of external electrodes 221a and 221b may be provided at both sides of the capacitor 220 and may be coupled to the pair of top electrodes 212a and 212b of the varistor substrate 210 through soldering.
  • the plurality of capacitor electrodes 222a and 222b may be formed on the plurality of sheet layers 220a, respectively.
  • the capacitor 220 may be a stack of a plurality of sheet layers 220a (see FIG. 13).
  • each of the plurality of sheet layers may be made of an insulator having a dielectric constant, and may be made of a ceramic material.
  • the ceramic material includes at least one selected from Er 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , V 2 O 5 , CoO, MoO 3 , SnO 2 , BaTiO 3 , and Nd 2 O 3 . It may be made of a metal-based oxidizing compound.
  • the capacitor 220 may be stacked and coupled in a flip chip form to a pair of top electrodes 212a and 212b of the varistor substrate 210. In this case, the capacitor 220 may be coupled to the varistor substrate 210 by soldering.
  • the space formed by the bottom surfaces of the pair of top electrodes 212a and 212b and the capacitor 220 may be filled with a discharge material as described above.
  • the molding part 230 molds the varistor substrate 210 and the capacitor 220 by the molding member as described above. That is, the molding part 230 is molded to cover the upper surface of the varistor substrate 210 and the capacitor 220.
  • the varistor substrate 210 and the capacitor 220 are protected at the same time, and the single component capacitor 220 having various capacities and characteristics.
  • the entire chip size can be standardized.
  • pick-up property can be improved in the manufacturing process, a separate effort for pick-up of the electrostatic protection device 200 is not required, and thus manufacturing efficiency can be further improved.
  • the varistor substrate 210 and the capacitor 220 may be provided independently without being influenced by each other by different materials, thereby enhancing resistance to static electricity.
  • the capacitance capacity it is possible to improve the reliability of the product.
  • the electrostatic protection devices 100 and 200 may be disposed in the portable electronic device to electrically connect between a conductor such as an outer metal case and a circuit unit.
  • the static electricity protection devices 100 and 200 may be directly connected to the ground of the circuit part to bypass the static electricity flowing into the circuit part without transferring the static electricity to the circuit part.
  • the portable electronic device when the electrostatic protection device 100,200 is not directly connected to the ground of the circuit portion, i.e., only by electrically connecting the conductor and the circuit portion to pass static electricity, the portable electronic device may be configured to bypass the static electricity to ground.
  • a separate protective device may be provided.
  • Such protection element may be a suppressor or a varistor.
  • the portable electronic device may be in the form of a portable electronic device that is portable and easy to carry.
  • the portable electronic device may be a mobile terminal such as a smart phone or a cellular phone, and may be a smart watch, a digital camera, a DMB, an e-book, a netbook, a tablet PC, a portable computer, or the like.
  • Such electronics may have any suitable electronic components including antenna structures for communication with an external device.
  • the device may be a device using local area network communication such as Wi-Fi and Bluetooth.
  • the conductor may include a tip portion protruding outward from the conductive case.
  • the conductor may include a side key.
  • the tip portion may include one end of an insertion hole of a connector for connecting to an external device, for example, an earphone, a charging cable, a data cable, and the like.
  • the electrostatic protection device (100,200) when connecting a portion having a protruding portion or a pointed shape with a high probability of the inflow of static electricity, the circuit part, resistance to static electricity (ESD), temperature The characteristic and the capacitance capacity can be improved at the same time.
  • FIGS. 15 to 23 illustrate a manufacturing process of the electrostatic protection device 100 having a dielectric substrate
  • FIGS. 20 to 23 illustrate a manufacturing process of the electrostatic protection device 200 having a varistor substrate.
  • an internal and external electrode on the substrate 110 (S710) and stacking a single component 120 on the substrate 110 is performed. (S720), molding (S730 and S740) by the molding film, and cutting into a unit device (S750).
  • a pair of bottom electrodes 111a, 111b, 211a and 211b and a pair of top electrodes are formed on the large area substrates 110a and 210a per unit area.
  • (112a, 112b, 212a, 212b) at least one pair of internal electrodes 113a, 113b, 213a, and 213b, and a pair of connecting portions 114a, 114b, 214a, and 214b connecting the pair of electrodes, respectively.
  • the large area substrate 110a of FIG. 16 may be a large area dielectric substrate as shown in FIG. 4, and the internal electrodes 113a and 113b may be a plurality of capacitor electrodes.
  • the large area substrate 110a may be formed by stacking a plurality of sheet layers on which capacitor electrodes 113a and 113b are formed, respectively.
  • the large area substrate 210a of FIG. 20 is a large area varistor substrate as shown in FIG. 11, and the internal electrodes 213a and 213b may be spaced apart at regular intervals on the same plane.
  • the large area substrate 210a may be formed by stacking a plurality of sheet layers on which internal electrodes 213a and 213b are formed, respectively.
  • the bottom surface of the large-area substrates 110a and 210a such that the space between the pair of top electrodes 112a, 112b, 212a and 212b is smaller than the space between the pair of bottom electrodes 111a, 111b, 211a and 211b.
  • a pair of bottom electrodes 111a, 111b, 211a and 211b may be formed on the top surface, and a pair of top electrodes 112a, 112b, 212a and 212b may be formed on the top surface of the large area substrates 110a and 210a.
  • the pair of connecting portions 114a, 114b, 214a, and 214b may be conductive vias or side electrodes.
  • the pair of conductive vias 114a, 114b, 214a, and 214b may be formed by forming a through hole in the unit area in the large area substrates 110a and 210a and filling the through hole with a conductive material.
  • the pair of side electrodes 114a ', 114b', 214a ', and 214b' pass through the large area substrates 110a and 210a after forming through holes on the boundary surface of the unit area, that is, the cutting surface c. It may be formed by filling a conductive material in the hole or applying a conductive material to the inner wall of the through hole.
  • the single components 120 and 220 are soldered to the pair of top electrodes 112a, 112b, 212a and 212b in the form of flip chips, and stacked and bonded (step S720).
  • the single components 120 and 220 may be varistors or diodes as shown in FIG.
  • the single component 220 may be a MLCC of the COG type as shown in FIG.
  • the varistor 120 and the capacitor 220 may be pre-made or existing products.
  • the pair of external electrodes 121a, 121b, 221a, and 221b of the varistor 120 or the capacitor 220 are connected to the pair of top electrodes 112a, 112b, 212a and 212b of the large-area substrates 110a and 210a. It can be laminated to be bonded to each.
  • the varistor 120 may be connected in parallel with the dielectric substrate 110 or the capacitor 220 may be connected in parallel with the varistor substrate 210 for each unit area of the large area substrates 110a and 210a.
  • the molding films 130a and 230a are disposed on the upper surfaces of the large-area substrates 110a and 210a and the varistors 120 or the capacitors 220 (steps). S730).
  • the molding films 130a and 230a may be large-area films having the same size as that of the large-area substrates 110a and 210a.
  • the molding films 130a and 230a may be epoxy films.
  • the epoxy films 130a and 230a may be thermally fused and hardened to cover the upper surfaces of the large area substrates 110a and 210a and the varistors 120 or the capacitor 220 (step S740).
  • the epoxy film (130a, 230a) is dissolved, as shown in Figure 19 and 23, the upper surface of the large-area substrate (110a, 210a) and the varistor 120 or the capacitor 220 may be molded with epoxy. .
  • the unit sections are cut along the boundary line c.
  • the electrostatic protection devices 100 and 200 may be manufactured for each unit area.
  • a pair of side electrodes 114a ', 114b', 214a ', 214b' along the cut surface of the boundary line (c) ) May be exposed to the outside.
  • a discharge material may be formed in the space 101.
  • the space 101 between the pair of top electrodes 112a, 112b, 212a and 212b is shown.
  • the pair of top electrodes 112a, 112b, 212a and 212b may be used. And a discharge material in the space 101 formed by the lower surface of the varistor 120 or the capacitor 220.
  • the discharge material has a low dielectric constant, no conductivity, and should not have a short when an overvoltage is applied.
  • the discharge material may be made of a non-conductive material including metal particles, and may be made of a semiconductor material including SiC or silicon-based components.
  • the dielectric substrate 110 and the varistor 120 or the varistor substrate 210 and the capacitor 220 are provided as separate single components and substrates in a single package, and are packaged in a single package, thereby substantially using only a substrate forming process and a package process.
  • the manufacturing process can be simplified.
  • when the capacitor is used as a single part it is easy to line up according to the various capacities required by the customer, thereby improving manufacturing efficiency and reducing manufacturing cost, and at the same time responding quickly to the needs of the customer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermistors And Varistors (AREA)

Abstract

정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치가 제공된다. 본 발명의 일 실시예에 따른 정전기보호소자는 정전기를 통과시키는 보호부; 및 보호부와 병렬로 연결되는 커패시터부를 포함하는 정전기보호소자를 제공한다. 여기서, 보호부 및 커패시터부 중 어느 하나는 기판으로 형성되고, 다른 하나는 단일부품으로 이루어지며, 기판 및 단일부품은 몰딩부재에 의해 몰딩된다. 이에 의하면, 정전기에 대한 내성을 강화하고 커패시턴스 용량을 동시에 향상시키므로, 제품의 신뢰성을 향상시킬 수 있고, 제조공정을 단순화하고 다양한 용량에 따른 라인업이 용이하여 제조효율을 향상시키고 제조단가를 감소시킬 수 있으며, 정전기 보호기능의 온도특성을 보완하여 전체 패키지의 온도특성을 안정화시킬 수 있으므로 제품의 신뢰성을 향상시킬 수 있다.

Description

정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치
본 발명은 스마트폰 등과 같은 전자장치용 정전기보호소자에 관한 것으로, 더욱 상세하게는 정전기(ESD)에 대한 내성, 온도특성, 및 커패시턴스 용량을 동시에 향상시킬 수 있는 정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치에 관한 것이다.
최근의 휴대용 전자장치는 심미성과 견고함을 향상시키기 위해 메탈 재질의 하우징의 채택이 증가하고 있는 추세이다.
그러나, 이러한 메탈 재질의 하우징은 재질의 특성상 전기전도도가 우수하기 때문에, 특정 소자를 통하여 또는 부위에 따라 외장 하우징과 내장 회로부 사이에 전기적 경로가 형성될 수 있다. 특히, 메탈 하우징과 회로부가 루프를 형성함에 따라, 외부의 노출면적이 큰 메탈 하우징과 같은 전도체를 통하여 순간적으로 높은 전압을 갖는 정전기가 유입되는 경우, IC 등의 회로부를 파손시킬 수 있기 때문에 이 대한 대책이 요구되고 있다.
더욱이, 이러한 정전기가 그 특성상 평면보다는 뾰족한 형상의 첨단부로 더 잘 유입되기 때문에, 이러한 부분에 대해서는 정전기의 내성을 더 강화시킬 필요성이 있다.
한편, 이러한 휴대용 전자장치는 통신 기능을 필수적으로 수반하기 때문에 통신신호를 감쇄 없이 안정적으로 처리하기 위해서는 고용량의 커패시턴스가 요구되며, 특히, 회로기판 상에서 배치되는 위치에 따라 다양한 커패시턴스가 요구되고 있다.
이러한 실정에서, 정전기보호소자로서 바리스터를 이용하는 경우, 정전기에 대한 내성을 강화할 수 있으나, 고용량의 커패시턴스를 달성하기 용이하지 않으며, 더욱이, 바리스터 재료의 특성상 온도변화율이 높기 때문에 다른 재료 또는 부품과 조합하여 사용하는 경우 전체 온도특성의 열화를 초래한다.
따라서, 휴대용 전자장치에서 정전기 유입이 용이한 위치별로 정전기 내성을 강화시키는 동시에 다양한 고용량 커패시턴스를 구현하고, 이와 함께 온도 안정화를 위한 대책이 시급한 실정이다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 정전기 보호기능과 커패시터 기능을 별도로 구비하여 단일 패키지화함으로써 정전기에 대한 내성, 온도특성, 및 커패시턴스 용량을 동시에 향상시킬 수 있는 정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치를 제공하는데 그 목적이 있다.
상술한 과제를 해결하기 위하여 본 발명은 정전기를 통과시키는 보호부; 및 상기 보호부와 병렬로 연결되는 커패시터부를 포함하는 정전기보호소자를 제공한다. 여기서, 상기 보호부 및 상기 커패시터부 중 어느 하나는 기판으로 형성되고, 다른 하나는 단일부품으로 이루어지며, 상기 기판 및 상기 단일부품은 몰딩부재에 의해 몰딩된다.
본 발명의 바람직한 실시예에 의하면, 상기 기판은 COG 타입의 유전체기판이고, 상기 단일부품은 바리스터일 수 있다.
또한, 상기 기판은 바리스터기판이고, 상기 단일부품은 COG 타입의 MLCC일 수 있다.
또한, 상기 보호부와 상기 커패시터부는 상하로 적층 결합될 수 있다. 여기서, 상기 기판은, 한 쌍의 하면전극; 한 쌍의 상면전극; 적어도 한 쌍의 내부전극; 및 상기 전극들의 쌍 각각을 연결하는 한 쌍의 연결부를 포함할 수 있다.
또한, 상기 한 쌍의 상면전극 사이의 간격(a)은 상기 한 쌍의 하면전극 사이의 간격(b)보다 작을 수 있다.
또한, 상기 한 쌍의 상면전극 및 상기 단일부품의 하면에 의해 형성되는 공간은 방전물질이 충진될 수 있다.
한편, 본 발명은 한 쌍의 하면전극, 한 쌍의 상면전극, 적어도 한 쌍의 내부전극, 및 상기 전극들의 쌍 각각을 연결하는 한 쌍의 연결부를 포함하는 기판; 상기 기판과 병렬 연결되도록 상기 기판의 상면전극에 결합되는 단일부품; 및 상기 기판의 상면 및 상기 단일부품을 몰딩하는 몰딩부를 포함하는 정전기보호소자를 제공한다. 여기서, 상기 기판 및 상기 단일부품 중 어느 하나는 정전기를 통과시키는 보호부이며, 다른 하나는 커패시터부이다.
한편, 본 발명은 도전성 케이스에서 외측으로 돌출 형성되는 첨단부를 포함하는 전도체; 회로부; 및 상기 전도체와 회로부를 전기적으로 연결하는 정전기보호소자를 포함하는 휴대용 전자장치를 제공한다. 여기서, 상기 정전기보호소자는 상술한 바와 같은 구조 및 특성을 갖는 다양한 실시예의 정전기보호소자가 바람직하게 이용될 수 있다.
본 발명의 바람직한 실시예에 의하면, 상기 전도체는 사이드 키를 포함할 수 있다.
또한, 상기 첨단부는 외부 기기와 연결을 위한 커넥터의 삽입구의 일단을 포함할 수 있다.
한편, 본 발명은 대면적기판에 단위 구역별로 적어도 한 쌍의 내부전극, 한 쌍의 상면전극, 한 쌍의 하면전극, 및 상기 전극들의 쌍 각각을 연결하는 한 쌍의 연결부를 형성하는 단계; 상기 상면전극에 단일부품을 플립칩 형태로 솔더링하여 적층 결합하는 단계; 상기 기판의 상면 및 상기 단일부품을 에폭시필름으로 몰딩하는 단계; 및 상기 단위 구역별로 절단하는 단계를 포함하는 정전기보호소자의 제조 방법을 제공한다. 여기서, 상기 기판 및 상기 단일부품 중 어느 하나는 정전기를 통과시키는 보호부이며, 다른 하나는 커패시터부이다.
본 발명의 바람직한 실시예에 의하면, 상기 정전기보호소자의 제조 방법은 상기 결합하는 단계 이후에, 상기 한 쌍의 상면전극 및 상기 단일부품의 하면에 의해 형성되는 공간을 방전물질로 충진하는 단계를 더 포함할 수 있다.
또한, 상기 몰딩하는 단계는 에폭시필름을 상기 기판 및 상기 단일부품의 상측에 배치하여 경화할 수 있다.
또한, 상기 대면적기판은 유전체기판 또는 바리스터기판일 수 있다.
또한, 상기 형성하는 단계는 상기 한 쌍의 상면전극 사이의 간격(a)이 상기 한 쌍의 하면전극 사이의 간격(b)보다 작게 되도록 상기 상면전극 및 상기 하면전극을 형성할 수 있다.
본 발명에 의하면, 정전기 보호기능과 커패시터 기능을 별도로 구비하고 단일 패키지화함으로써, 정전기에 대한 내성을 강화하고 커패시턴스 용량을 동시에 향상시키므로, 제품의 신뢰성을 향상시킬 수 있다.
또한, 본 발명은 정전기 보호기능과 커패시터 기능을 별도로 단일부품과 기판 형태로 구비하고 단일 패키지화함으로써, 제조공정을 단순화하고 다양한 용량에 따른 라인업이 용이하여 제조효율을 향상시키고 제조단가를 감소시킬 수 있다.
또한, 본 발명은 COG 타입의 유전체를 사용하여 커패시턴스를 구현함으로써, 정전기 보호기능의 온도특성을 보완하여 전체 패키지의 온도특성을 안정화시킬 수 있으므로 제품의 신뢰성을 향상시킬 수 있다.
또한, 본 발명은 유전체기판 또는 단일 MLCC를 이용함으로써, 커패시턴스의 구현시 설계 자유도가 증가하므로, 다양한 용량의 라인업이 가능하여 별도의 공정 변경 없이도 고객사의 요구에 신속히 대응할 수 있다.
또한, 본 발명은 단일부품과 기판을 몰딩하여 단일 패키지화함으로써, 단일부품 및 기판을 보호하는 동시에 전체 칩 사이즈의 크기를 일정하게 규격화할 수 있고, 제조공정 상에서 픽업성을 향상시킬 수 있으므로, 정전기보호소자의 픽업을 위한 별도의 노력이 필요없어 제조효율을 더욱 향상시킬 수 있다.
또한, 본 발명은 대면적기판을 이용하고 에폭시필름을 경화시켜 몰딩함으로써, 대량생산이 용이하므로, 폐기되는 원자재를 감소시켜 제조비용을 더욱 감소시키고 환경 개선에 이바지할 수 있다.
또한, 본 발명은 바리스터를 단층으로 구성함으로써, 커패시턴스를 형성하기 위한 공간을 충분히 확보하여 고용량의 커패시턴스를 구현하기 용이하거나, 상대적으로 체적이 큰 단일 커패시터를 이용하면서도 칩 사이즈를 일정하게 규격화할 수 있다.
또한, 본 발명은 기판의 상면전극 사이의 간격을 하면전극 사이의 간격에 비하여 작게 형성함으로써, 상면전극 사이의 공간을 통한 정전기 방전이 가능하여 정전기의 방전 경로가 부가되어 정전기에 대한 내성을 더욱 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 정전기보호소자를 나타낸 단면도,
도 2는 도 1에서 몰딩부를 제거한 상태의 분해 사시도,
도 3은 본 발명의 일 실시예에 따른 정전기보호소자에서 유전체기판의 상면전극 사이의 간격과 하면전극 사이의 간격의 관계를 나타내는 단면도,
도 4는 본 발명의 일 실시예에 따른 정전기보호소자에서 유전체기판의 일례를 나타낸 단면도,
도 5는 본 발명의 일 실시예에 따른 정전기보호소자에서 유전체기판의 다른 예를 나타낸 단면도,
도 6은 본 발명의 일 실시예에 따른 정전기보호소자에서 바리스터를 나타낸 단면도,
도 7은 본 발명의 일 실시예에 따른 정전기보호소자에서 유전체기판을 구비한 경우를 나타낸 단면도,
도 8은 본 발명의 일 실시예에 따른 정전기보호소자의 다른 예를 나타낸 단면도,
도 9는 도 8에서 몰딩부를 제거한 상태의 분해 사시도,
도 10은 본 발명의 일 실시예에 따른 정전기보호소자의 다른 예에서 바리스터기판의 상면전극 사이의 간격과 하면전극 사이의 간격의 관계를 나타내는 단면도,
도 11은 본 발명의 일 실시예에 따른 정전기보호소자의 다른 예에서 바리스터기판의 일례를 나타낸 단면도,
도 12는 본 발명의 일 실시예에 따른 정전기보호소자의 다른 예에서 바리스터기판의 다른 예를 나타낸 단면도,
도 13은 본 발명의 일 실시예에 따른 정전기보호소자의 다른 예에서 MLCC를 나타낸 단면도,
도 14는 본 발명의 일 실시예에 따른 정전기보호소자의 다른 예를 나타낸 단면도,
도 15는 본 발명의 일 실시예에 따른 정전기보호소자의 제조 방법을 나타낸 순서도,
도 16 내지 도 19는 본 발명의 일 실시예에 따른 정전기보호소자의 제조 방법의 각 단계를 나타낸 단면도,
도 20 내지 도 23은 본 발명의 일 실시예에 따른 정전기보호소자의 다른 예의 제조 방법의 각 단계를 나타낸 단면도, 그리고,
도 24는 바리스터와 유전체의 온도변화율을 나타낸 그래프이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
본 발명의 일 실시예에 따른 정전기보호소자(100,200)는 도 1 및 도 8에 도시된 바와 같이, 보호부(120,210), 커패시터부(110,220) 및 몰딩부(130,230)를 포함한다. 여기서, 보호부(120,210)는 정전기를 통과시키고, 커패시터부(110,220)는 보호부(120,210)와 병렬로 연결된다.
아울러, 보호부(120,210) 및 커패시터부(110,220) 중 어느 하나는 기판(110,210)으로 형성되고, 다른 하나는 단일부품(120,220)으로 이루어진다.
일례로, 도 1에서, 커패시터부(110)는 유전체기판이고, 보호부(120)는 단일부품일 수 있다. 또한, 도 8에서, 보호부(210)는 바리스터기판이고, 커패시터부(220)는 단일부품일 수 있다.
여기서, 보호부(120,210)는 바리스터 또는 다이오드일 수 있다. 또한, 보호부(120,210)와 커패시터부(110,220)는 상하로 적층 결합될 수 있다. 대안적으로 보호부(120,210)와 커패시터부(110,220)는 좌우로 수평 결합될 수 있다.
이때, 보호부(120,210)는 동일 평면 상에서 일정 간격으로 이격 배치되는 한 쌍의 내부전극을 포함할 수 있다.
여기서, 정전기보호소자(100,200)는 별도의 커패시터부를 구비하므로 보호부(120,210)에 의해 커패시턴스를 구현할 필요가 없으며, 더욱이, 보호부(120,210)가 온도변화율이 높은 바리스터인 경우, 그 내부에 커패시턴스를 형성하면 온도에 따라 커패시턴스가 변경되므로, 오히려 전체 패키지의 커패시턴스에 악영향을 미치므로, 가급적 커패시턴스를 형성하는 적층 구조를 배제하여 동일 평면 상에 전극을 배치하는 것이 바람직하다.
이에 의해, 보호부(120,210)가 도 1에 도시된 바와 같이 단일부품(120)으로 이루어지거나, 도 8에 도시된 바와 같이, 기판(210)으로 이루어지는 경우 모두에 그 두께를 박형화할 수 있다. 따라서, 정전기보호소자(100,200)의 전체 두께를 칩 사이즈로 규격화하는 것이 용이할 수 있다.
즉, 보호부(120,210)의 박형화에 따라 일정한 규격의 칩 사이즈 내에서 커패시턴스를 형성하기 위한 공간이 상대적으로 증가하기 때문에 충분한 공간을 확보하여 고용량의 커패시턴스를 구현하기 용이하고, 또한, 상대적으로 체적이 큰 고용량 커패시터를 이용하면서도, 전체 칩 사이즈를 일정하게 규격화할 수 있다.
일례로, 도 1에 도시된 바와 같이, 커패시터부인 기판(110)의 두께(t1)는 보호부인 단일부품(120)의 두께(t2)보다 크게 형성될 수 있지만, 도 8에 도시된 바와 같이, 보호부인 기판(210)의 두께(t3)는 커패시터부인 단일부품(220)의 두께(t4)보다 작게 형성될 수도 있다.
여기서, 보호부인 단일부품(120) 또는 기판(210)의 두께(t2,t3)는 동일하거나 유사할 수 있고, 커패시터부인 기판(110) 또는 단일부품(220)의 두께(t1,t4)는 동일하거나 유사하게 구성함으로써, 전체 패키지를 일정하게 규격화할 수 있다.
한편, 바리스터 재료와 유전체의 온도변화율을 비교하여 보면(도 24 참조), 전체 온도 범위에서 유전체는 1% 미만의 온도변화율을 갖는 반면, 바리스터 재료는 온도에 따라 변화율이 크게 변화하는 것을 알 수 있다. 특히, 바리스터 재료는 5% 이상의 변화율이 발생하는 경우도 있기 때문에, 신호특성상 커패시턴스 값이 5% 이내로 관리되어야 하는 경우에는 오차 범위 내에서 커패시턴스를 구현하기 곤란하므로, 커패시턴스는 유전체를 이용하여 구현하는 것이 바람직하다.
이때, 유전체만으로 ESD 보호기능을 구현하는 경우, 선형적인 ESD 보호기능을 제공하기 어려운 점이 있다.
따라서, 본 발명의 일 실시예에 따른 정전기보호소자(100,200)는 ESD 기능을 제공하는 동시에 온도특성을 개선하고, 단일 칩에 의한 규격화를 위해 ESD 보호 기능은 바리스터 재료로 구현하고, 커패시턴스는 유전체로 구현한다.
이하, 도 1에 도시된 바와 같이, 상기 커패시터부가 기판(110)이고, 상기 보호부가 단일부품(120)로 이루어진 정전기보호소자(100)를 먼저 설명한다.
정전기보호소자(100)는 도 1, 도 2 및 도 7에 도시된 바와 같이, 유전체기판(110), 바리스터(120) 및 몰딩부(130)를 포함한다.
유전체기판(110)은 COG 타입의 유전체기판일 수 있다. 여기서, COG 특성은 EIA(Electrical Industries Association)에서 규정하는 바와 같이 -55∼125℃의 사용온도 범위 내에서 0±30ppm/℃의 온도계수를 만족한다. 따라서, 이러한 COG 타입의 유전체기판(110)은 온도변화율이 매우 작기 때문에, 온도변화율이 큰 바리스터(120)에 대한 온도보상 기능을 제공할 수 있다.
즉, 바리스터(120)는 재료의 특성상 온도변화율이 크기 때문에, 빈번한 사용에 따른 온도의 변화가 극심한 휴대용 전자장치에 사용되는 경우, 다른 부품에 영향을 미칠 수 있으므로, COG 타입 유전체기판(110)에 의해 바리스터(120)의 온도변화에 따른 특성 열화를 보상할 수 있다.
이와 같이, COG 타입의 유전체기판(110)을 사용하여 커패시터부를 구현함으로써, 온도변화율이 높은 바리스터(120)의 온도특성을 보완하여 전체 패키지의 온도특성을 안정화시킬 수 있으므로 제품의 신뢰성을 향상시킬 수 있다.
아울러, 유전체기판(110)에 의해 커패시터부를 구현함으로써, 온도변화율이 큰 바리스터(120)의 바리스터 물질과 독립적으로 커패시턴스를 구현할 수 있어 커패시턴스에 대한 설계 자유도가 증가하므로, 별도의 공정 변경 없이도 다양한 용량의 라인업이 가능하여 고객사의 요구에 신속히 대응할 수 있다.
이러한 유전체기판(110)은 복수의 시트층(110a)이 적층된 것일 수 있다(도 4 및 도 5 참조). 여기서, 복수의 시트층 각각은 유전율을 갖는 절연체로 이루어질 수 있으며, 세라믹 재료로 이루어질 수 있다. 일례로, 상기 세라믹 재료는 Er2O3, Dy2O3, Ho2O3, V2O5, CoO, MoO3, SnO2, BaTiO3, 및 Nd2O3 중 선택된 1종 이상을 포함하는 금속계 산화 화합물로 이루어질 수 있다.
이때, 유전체기판(110)은 도 4에 도시된 바와 같이, 한 쌍의 하면전극(111a,111b), 한 쌍의 상면전극(112a,112b), 복수의 내부전극(113a,113b), 및 한 쌍의 연결부(114a,114b)를 포함할 수 있다. 여기서, 내부전극(113a,113b)은 커패시터전극(113a,113b)일 수 있다.
한 쌍의 하면전극(111a,111b)은 정전기보호소자(100)를 회로기판에 실장하기 위한 것으로서, 유전체기판(110)의 하면 양측에 형성될 수 있다.
한 쌍의 상면전극(112a,112b)은 단일부품인 바리스터(120)와 병렬로 연결하기 위한 것으로서, 유전체기판(110)의 상면 양측에 형성될 수 있다. 이때, 도 2에 도시된 바와 같이, 한 쌍의 상면전극(112a,112b) 사이에 공간(101)이 형성될 수 있다. 이러한 공간(101)은 한 쌍의 상면전극(112a,112b)을 통한 정전기(ESD)의 방전 경로를 형성할 수 있다.
즉, 한 쌍의 상면전극(112a,112b) 사이의 공간(101)을 통한 정전기 방전이 가능하여 바리스터(120)와 별도로 정전기의 방전 경로가 부가되어 정전기에 대한 내성을 더욱 향상시킬 수 있다.
이때, 도 3에 도시된 바와 같이, 한 쌍의 상면전극(112a,112b) 사이의 간격(a)은 한 쌍의 하면전극(111a,111b) 사이의 간격(b)보다 작을 수 있다. 이에 의해, 외부에서 유입되는 정전기는 한 쌍의 하면전극(111a,111b)을 통하여 방전되기 전에 한 쌍의 상면전극(112a,112b)만을 통하여 방전될 수 있다.
복수의 커패시터전극(113a,113b)은 유전체기판(110)을 이루는 복수의 시트층(110a) 상에 각각 형성될 수 있다.
이러한 커패시터전극(113a,113b)은 한 쌍의 연결부(114a,114b)를 통하여 한 쌍의 상면전극(112a,112b) 및 한 쌍의 하면전극(111a,111b)에 각각 연결될 수 있다. 즉, 일측의 커패시터전극(113a)은 연결부(114a)를 통하여 상면전극(112a) 및 하면전극(111a)에 각각 연결되고, 타측의 커패시터전극(113b)은 연결부(114b)를 통하여 상면전극(112b) 및 하면전극(111b)에 각각 연결될 수 있다.
이때, 도 7에 도시된 바와 같이, 한 쌍의 상면전극(112a,112b)과 전기적으로 연결되지 않은 이웃하는 커패시터전극(113a,113b) 사이의 간격, 일례로, 상면전극(112b)과 최상위의 커패시터전극(113a) 사이의 간격(d2)은 커패시터전극(113a,113b) 사이의 간격(d3)보다 크게 형성될 수 있다.
또한, 커패시터전극(113a,113b)과 전기적으로 연결되지 않은 연결부(114a,114b) 사이의 간격, 일례로, 최상위 커패시터전극(113a)과 연결부(114b) 사이의 간격(d4)은 커패시터전극(113a,113b) 사이의 간격(d3)보다 크게 형성될 수 있다.
상기 한 쌍의 연결부(114a,114b)는 유전체기판(110)에 관통 형성되는 도전성비아(114a,114b)일 수 있다. 여기서, 한 쌍의 도전성비아(114a,114b)는 유전체기판(110)을 관통하는 관통홀을 형성한 후 도전성물질로 충진되어 형성될 수 있다. 이러한 한 쌍의 도전성비아(114a,114b)에 의해 유전체기판(110)은 바리스터(120)와 병렬로 연결될 수 있다.
여기서, 한 쌍의 도전성비아(114a,114b)는 유전체기판(110)의 내부에 형성되기 때문에, 커패시터전극(113a,113b)의 길이(L1)가 감소하여 그에 따른 용량이 제한되므로 이를 극복하기 위해 유전체기판(110)의 양측면에 한 쌍의 측면전극(114a',114b',214a',214b')이 구비될 수 있다.
일례로, 도 4에 도시된 바와 같이, 커패시터전극(113a,113b)의 각각의 길이(L1)가 한 쌍의 도전성비아(114a,114b) 사이로 제한되므로 커패시터를 이루는 면적이 감소하고, 이에 따라 커패시턴스의 용량이 제한된다.
커패시턴스의 용량을 증가시키기 위해, 도 5에 도시된 바와 같이, 유전체기판(110')은 상기 한 쌍의 연결부가 유전체기판(110')의 양측면에 형성될 수 있다. 즉, 상기 한 쌍의 연결부는 한 쌍의 측면전극(114a',114b')일 수 있다.
여기서, 한 쌍의 측면전극(114a',114b')은 유전체기판(110)의 측면 일부를 드릴 가공 또는 펀칭 가공하여 반구형 홈을 형성하고, 도전성물질을 형성된 홈의 표면에 도포하거나 홈 내부에 충진하여 형성될 수 있다.
이때, 한 쌍의 측면전극(114a',114b')에 각각 연결되는 커패시터전극(113a',113b')의 길이(L2)는 도 4에 비하여 증가하기 때문에, 커패시터를 이루는 면적이 증가하여 커패시턴스를 증가시킬 수 있다.
본 실시예에서, 기판(110)이 커패시터부인 경우를 예로 설명하였으나, 이에 한정되지 않고, 기판(210)이 보호부인 경우, 한 쌍의 연결부의 위치에 따라 항복전압(Vbr)을 만족하도록 한 쌍의 내부전극 사이의 간격을 결정할 수 있다.
바리스터(120)는 유전체기판(110)과 병렬 연결되도록 유전체기판(110)의 한 쌍의 상면전극(112a,112b)에 적층 결합된다. 이러한 바리스터(120)는 단일부품으로 이루어지며, 정전기 보호기능을 가지며, 외부로부터 유입된 정전기를 통과시킨다.
일례로, 바리스터(120)는 도 6에 도시된 바와 같이, 한 쌍의 외부전극(121a,121b) 및 한 쌍의 내부전극(122a,122b)을 포함한다.
한 쌍의 외부전극(121a,121b)은 바리스터(120)의 양측면에 구비되며, 솔더링을 통하여 유전체기판(110)의 한 쌍의 상면전극(112a,112b)에 결합될 수 있다.
한 쌍의 내부전극(122a,122b)은 한 쌍의 외부전극(121a,121b)의 각각에 연결되며, 동일 평면 상에서 일정 간격으로 이격 배치될 수 있다.
여기서, 정전기보호소자(100)는 별도의 유전체기판(110)으로 커패시터 기능을 구비하므로, 바리스터(120)에 의해 커패시턴스를 구현할 필요가 없으며, 더욱이, 바리스터(120)가 온도변화율이 높기 때문에, 그 내부에 커패시턴스를 형성하면 온도에 따라 커패시턴스가 변경되므로, 오히려 전체 패키지의 커패시턴스에 악영향을 미치므로, 가급적 커패시턴스를 형성하는 적층 구조를 배제하여 동일 평면 상에 전극을 배치하는 것이 바람직하다.
이에 의해, 바리스터(120)의 두께를 박형화할 수 있다. 따라서, 유전체기판(110)에 적층된 상태에서도 정전기보호소자(100)의 전체 두께의 증가를 방지하여 일정한 칩 사이즈로 규격화하는 것이 용이할 수 있다.
즉, 바리스터(120)의 박형화에 따라 일정한 규격의 칩 사이즈 내에서 커패시턴스를 형성하기 위한 공간이 상대적으로 증가하기 때문에 충분한 공간을 확보하여 고용량의 커패시턴스를 구현하기 용이하고, 또한, 상대적으로 체적이 큰 유전체기판(110)을 이용하여 고용량 커패시터를 구현하면서도, 전체 칩 사이즈를 일정하게 규격화할 수 있다.
이러한 바리스터(120)는 몸체(120a)가 바리스터 물질로 이루어지며, 일례로, ZnO, SrTiO3, BaTiO3, SiC 중 하나 이상을 포함하는 반도성 재료, 또는 Pr 및 Bi 계 재료 중 어느 하나로 이루어질 수 있다. 여기서, 바리스터(120)는 한 쌍의 내부전극(122a,122b) 사이의 간격(d1) 및 바리스터 물질의 입경이 항복전압(Vbr)을 만족할 수 있도록 형성될 수 있다.
아울러, 바리스터(120)는 유전체기판(110)의 한 쌍의 상면전극(112a,112b)에 플립칩 형태로 적층 결합될 수 있다. 이때, 바리스터(120)는 솔더링에 의해 유전체기판(110)에 적층 결합될 수 있다.
한편, 한 쌍의 상면전극(112a,112b) 사이의 공간(101)에 의한 방전 기능을 향상시키기 위해, 한 쌍의 상면전극(112a,112b) 및 바리스터(120)의 하면에 의해 형성되는 공간(101)은 그 일부 또는 전부에 방전물질이 충진될 수 있다.
여기서, 상기 방전물질은 유전율이 낮고 전도도가 없으며, 과전압 인가시 쇼트(short)가 없어야 한다. 이를 위해, 상기 방전물질은 금속입자를 포함하는 비전도성 물질로 이루어질 수 있으며, SiC 또는 실리콘 계열의 성분을 포함하는 반도체 물질로 이루어질 수 있다.
몰딩부(130)는 유전체기판(110) 및 바리스터(120)를 몰딩부재에 의해 몰딩한다. 즉, 몰딩부(130)는 유전체기판(110)의 상면 및 바리스터(120)를 덮도록 몰딩한다. 일례로, 상기 몰딩부재는 에폭시로 이루어질 수 있다. 여기서, 몰딩부(130)는 에폭시필름을 경화시켜 형성될 수 있다.
이러한 몰딩부(130)에 의해 유전체기판(110)과 바리스터(120)를 몰딩하여 단일 패키지화함으로써, 유전체기판(110) 및 바리스터(120)를 보호하는 동시에 다양한 용량 및 특성의 바리스터(120) 단일부품을 이용하는 경우에도 전체 칩 사이즈를 일정하게 규격화할 수 있다. 이에 의해, 제조 공정 상에서 픽업성을 향상시킬 수 있으므로, 정전기보호소자(100)의 픽업을 위한 별도의 노력이 필요없어 제조효율을 더욱 향상시킬 수 있다.
이와 같이, 유전체기판(110)과 단일부품의 바리스터(120)를 단일 패키지화함으로써, 유전체기판(110)과 바리스터(120)가 상이한 재료에 의해 서로 영향을 받지 않고 독립적으로 구비될 수 있으므로 정전기에 대한 내성을 강화하고 커패시턴스의 용량을 동시에 향상시키므로 제품의 신뢰성을 향상시킬 수 있다.
특히, 바리스터(120)와의 영향이 배제되어 유전체기판(110) 내에 적층 형성되는 커패시터전극들(113a,113b)의 간격을 보다 조밀하게 형성할 수 있어 커패시터전극의 적층 수를 증가시켜 고용량의 커패시턴스의 구현이 용이할 수 있다.
한편, 상기 보호부와 상기 커패시터부는 서로 반대로 배치될 수 있다.
이하, 도 8에 도시된 바와 같이, 상기 보호부가 기판(210)이고, 상기 커패시터부가 단일부품(220)으로 이루어진 정전기보호소자(200)를 설명한다.
정전기보호소자(200)는 도 8, 도 9 및 도 14에 도시된 바와 같이, 바리스터기판(210), 커패시터(220), 및 몰딩부(230)를 포함한다.
바리스터기판(210)은 몸체(210a)가 바리스터 물질로 이루어지며, 일례로, ZnO, SrTiO3, BaTiO3, SiC 중 하나 이상을 포함하는 반도성 재료, 또는 Pr 및 Bi 계 재료 중 어느 하나로 이루어질 수 있다. 여기서, 바리스터기판(210)은 한 쌍의 내부전극(222a,222b) 사이의 간격(d1) 및 바리스터 물질의 입경이 항복전압(Vbr)을 만족할 수 있도록 형성될 수 있다.
이러한 바리스터기판(210)은 도 11에 도시된 바와 같이, 한 쌍의 하면전극(211a,211b), 한 쌍의 상면전극(212a,212b), 한 쌍의 내부전극(213a,213b), 및 한 쌍의 연결부(214a,214b)를 포함한다.
한 쌍의 하면전극(211a,211b)은 정전기보호소자(200)를 회로기판에 실장하기 위한 것으로서, 바리스터기판(210)의 하면 양측에 형성될 수 있다.
한 쌍의 상면전극(212a,212b)은 커패시터(220)와 병렬로 연결하기 위한 것으로서, 바리스터기판(210)의 상면 양측에 형성될 수 있다. 이때, 도 9에 도시된 바와 같이, 한 쌍의 상면전극(212a,212b) 사이에 공간(201)이 형성될 수 있다. 이러한 공간(201)은 한 쌍의 상면전극(212a,212b)을 통한 정전기(ESD)의 방전 경로를 형성할 수 있다.
즉, 한 쌍의 상면전극(212a,212b) 사이의 공간(201)을 통한 정전기 방전이 가능하여 바리스터기판(210)의 한 쌍의 내부전극(213a,213b)과 별도로 정전기의 방전 경로가 부가되어 정전기에 대한 내성을 더욱 향상시킬 수 있다.
이때, 도 10에 도시된 바와 같이, 한 쌍의 상면전극(212a,212b) 사이의 간격(a)은 한 쌍의 하면전극(211a,211b) 사이의 간격(b)보다 작을 수 있다. 이에 의해, 외부에서 유입되는 정전기는 한 쌍의 하면전극(211a,211b)을 통하여 방전되기 전에 한 쌍의 상면전극(212a,212b)만을 통하여 방전될 수 있다.
한 쌍의 내부전극(213a,213b)은 동일 평면 상에서 일정 간격으로 이격 배치될 수 있다.
여기서, 정전기보호소자(200)는 별도의 단일부품 커패시터(220)를 구비하므로, 바리스터기판(210)에 의해 커패시턴스를 구현할 필요가 없으며, 더욱이, 바리스터기판(210)이 온도변화율이 높기 때문에, 그 내부에 커패시턴스를 형성하면 온도에 따라 커패시턴스가 변경되므로, 오히려 전체 패키지의 커패시턴스에 악영향을 미치므로, 가급적 커패시턴스를 형성하는 적층 구조를 배제하여 동일 평면 상에 전극을 배치하는 것이 바람직하다.
이에 의해, 바리스터기판(210)의 두께를 박형화할 수 있다. 따라서, 커패시터(220)가 적층된 상태에서도 정전기보호소자(200)의 전체 두께의 증가를 방지하여 일정한 칩 사이즈로 규격화하는 것이 용이할 수 있다.
즉, 바리스터기판(210)의 박형화에 따라 일정한 규격의 칩 사이즈 내에서 커패시턴스를 형성하기 위한 공간이 상대적으로 증가하기 때문에 충분한 공간을 확보하여 고용량의 커패시턴스를 구현하기 용이하고, 또한, 상대적으로 체적이 큰 단일부품 커패시터(220)를 이용하면서도, 전체 칩 사이즈를 일정하게 규격화할 수 있다.
이러한 한 쌍의 내부전극(213a,213b)은 한 쌍의 연결부(214a,214b)를 통하여 한 쌍의 상면전극(212a,212b) 및 한 쌍의 하면전극(211a,211b)에 각각 연결될 수 있다. 즉, 일측의 내부전극(213a)은 연결부(214a)를 통하여 상면전극(212a) 및 하면전극(211a)에 각각 연결되고, 타측의 내부전극(213b)은 연결부(214b)를 통하여 상면전극(212b) 및 하면전극(211b)에 각각 연결될 수 있다.
상기 한 쌍의 연결부(214a,214b)는 바리스터기판(210)에 관통 형성되는 도전성비아(214a,214b)일 수 있다. 여기서, 한 쌍의 도전성비아(214a,214b)는 바리스터기판(210)을 관통하는 관통홀을 형성한 후 도전성물질로 충진되어 형성될 수 있다. 이러한 한 쌍의 도전성비아(214a,214b)에 의해 바리스터기판(210)은 커패시터(220)와 병렬로 연결될 수 있다.
여기서, 한 쌍의 도전성비아(214a,214b)는 바리스터기판(210)의 내부에 형성되기 때문에, 한 쌍의 내부전극(213a,213b) 사이의 간격(d1)이 감소하여 그에 따른 용량이 제한되므로 이를 극복하기 위해 바리스터기판(210)의 양측면에 한 쌍의 측면전극(214a',214b')이 구비될 수 있다.
일례로, 도 11에 도시된 바와 같이, 한 쌍의 내부전극(213a,213b) 사이의 간격(d1)이 한 쌍의 도전성비아(214a,214b) 사이로 제한되므로 항복전압(Vbr)의 크기가 제한된다.
항복전압(Vbr)의 크기를 증가시키기 위해, 도 12에 도시된 바와 같이, 바리스터기판(210')은 상기 한 쌍의 연결부가 바리스터기판(210')의 양측면에 형성될 수 있다. 즉, 상기 한 쌍의 연결부는 한 쌍의 측면전극(214a',214b')일 수 있다.
여기서, 한 쌍의 측면전극(214a',214b')은 바리스터기판(210)의 측면 일부를 드릴 가공 또는 펀칭 가공하여 반구형 홈을 형성하고, 도전성물질을 형성된 홈의 표면에 도포하거나 홈 내부에 충진하여 형성될 수 있다.
이때, 한 쌍의 측면전극(214a',214b')에 각각 연결되는 한 쌍의 내부전극(213a,213b) 사이의 간격(d2)은 도 11에 비하여 증가하기 때문에, 항복전압(Vbr)을 증가시킬 수 있다.
커패시터(220)는 COG 타입의 MLCC(Multilayer Ceramic Capacitor)일 수 있다. 즉, 커패시터(220)는 상술한 바와 같은 COG 특성을 만족하는 MLCC일 수 있다. 여기서, 바리스터기판(210)은 재료의 특성상 온도변화율이 크기 때문에, 빈번한 사용에 따른 온도의 변화가 극심한 휴대용 전자장치에 사용되는 경우, 다른 부품에 영향을 미칠 수 있으므로, COG 타입 커패시터(220)에 의해 바리스터기판(210)의 온도변화에 따른 특성 열화를 보상할 수 있다.
이와 같이, COG 타입의 MLCC를 이용함으로써, 온도변화율이 높은 바리스터기판(210)의 온도특성을 보완하여 전체 패키지의 온도특성을 안정화시킬 수 있으므로 제품의 신뢰성을 향상시킬 수 있다.
아울러, 기존의 다양한 용량으로 제조된 MLCC를 이용함으로써, 커패시턴스의 구현시 설계 자유도가 증가하므로, 별도의 공정 변경 없이도 다양한 용량의 라인업이 가능하여 고객사의 요구에 신속히 대응할 수 있다.
이러한 커패시터(220)는 바리스터기판(210)과 병렬 연결되도록 바리스터기판(210)의 한 쌍의 상면전극(212a,212b)에 적층 결합된다.
또한, 커패시터(220)는 도 13에 도시된 바와 같이, 한 쌍의 외부전극(221a,221b) 및 복수의 커패시터전극(222a,222b)을 포함할 수 있다.
한 쌍의 외부전극(221a,221b)은 커패시터(220)의 양측면에 구비되며, 솔더링을 통하여 바리스터기판(210)의 한 쌍의 상면전극(212a,212b)에 결합될 수 있다.
복수의 커패시터전극(222a,222b)은 복수의 시트층(220a) 상에 각각 형성될 수 있다.
이러한 커패시터(220)는 복수의 시트층(220a)이 적층된 것일 수 있다(도 13 참조). 여기서, 복수의 시트층 각각은 유전율을 갖는 절연체로 이루어질 수 있으며, 세라믹 재료로 이루어질 수 있다. 일례로, 상기 세라믹 재료는 Er2O3, Dy2O3, Ho2O3, V2O5, CoO, MoO3, SnO2, BaTiO3, 및 Nd2O3 중 선택된 1종 이상을 포함하는 금속계 산화 화합물로 이루어질 수 있다.
이러한 커패시터(220)는 바리스터기판(210)의 한 쌍의 상면전극(212a,212b)에 플립칩 형태로 적층 결합될 수 있다. 이때, 커패시터(220)는 솔더링에 의해 바리스터기판(210)에 적층 결합될 수 있다.
한편, 한 쌍의 상면전극(212a,212b) 사이의 공간(201)에 의한 방전 기능을 향상시키기 위해, 한 쌍의 상면전극(212a,212b) 및 커패시터(220)의 하면에 의해 형성되는 공간(201)은 그 일부 또는 전부에 상술한 바와 같은 방전물질이 충진될 수 있다.
몰딩부(230)는 바리스터기판(210) 및 커패시터(220)를 상술한 바와 같은 몰딩부재에 의해 몰딩한다. 즉, 몰딩부(230)는 바리스터기판(210)의 상면 및 커패시터(220)를 덮도록 몰딩한다.
이러한 몰딩부(230)에 의해 바리스터기판(210)과 커패시터(220)를 몰딩하여 단일 패키지화함으로써, 바리스터기판(210) 및 커패시터(220)를 보호하는 동시에 다양한 용량 및 특성의 단일부품 커패시터(220)를 이용하는 경우에도 전체 칩 사이즈를 일정하게 규격화할 수 있다. 이에 의해, 제조 공정 상에서 픽업성을 향상시킬 수 있으므로, 정전기보호소자(200)의 픽업을 위한 별도의 노력이 필요없어 제조효율을 더욱 향상시킬 수 있다.
이와 같이, 바리스터기판(210) 및 커패시터(220)를 단일 패키지화함으로써, 바리스터기판(210)과 커패시터(220)가 상이한 재료에 의해 서로 영향을 받지 않고 독립적으로 구비될 수 있으므로 정전기에 대한 내성을 강화하고 커패시턴스의 용량을 동시에 향상시키므로 제품의 신뢰성을 향상시킬 수 있다.
특히, 단일부품의 MLCC를 이용함으로써, 기제작된 다양한 용량의 MLCC에 의해 다양한 커패시턴스를 용이하게 구현할 수 있으므로, 추가적인 공정의 변경 없이도 다양한 용량의 라인업을 구성할 수 있고 따라서, 고객사에 요구에 빠르게 대응할 수 있다.
이와 같은 정전기보호소자(100,200)는 휴대용 전자 장치에서, 외장 메탈케이스와 같은 전도체와 회로부 사이를 전기적으로 연결하도록 배치될 수 있다. 이때, 정전기보호소자(100,200)는 회로부의 접지에 직접 연결되어 유입되는 정전기를 회로부로 전달하지 않고 접지로 바이패스시킬 수 있다.
선택적으로, 정전기보호소자(100,200)가 회로부의 접지에 직접 연결되지 않은 경우, 즉, 전도체와 회로부를 전기적으로 연결하여 정전기를 통과시키기만 하는 경우, 휴대용 전자장치는 정전기를 접지로 바이패스하기 위한 별도의 보호소자를 구비할 수 있다. 이러한 보호소자는 써프레서 또는 바리스터일 수 있다.
여기서, 상기 휴대용 전자장치는 휴대가 가능하고 운반이 용이한 휴대용 전자기기의 형태일 수 있다. 일례로, 상기 휴대용 전자장치는 스마트폰, 셀룰러폰 등과 같은 휴대단말기일 수 있으며, 스마트 워치, 디지털 카메라, DMB, 전자책, 넷북, 태블릿 PC, 휴대용 컴퓨터 등일 수 있다. 이러한 전자장치들은 외부기기와의 통신을 위한 안테나 구조들을 포함하는 임의의 적절한 전자 컴포넌트들을 구비할 수 있다. 더불어, 와이파이(WiFi) 및 블루투스와 같은 근거리 네트워크 통신을 사용하는 기기일 수 있다.
이때, 상기 전도체는 도전성 케이스에서 외측으로 돌출 형성되는 첨단부를 포함할 수 있다. 일례로, 상기 전도체는 사이드 키를 포함할 수 있다. 아울러, 상기 첨단부는 외부 기기와 연결을 위한 커넥터의 삽입구, 일례로, 이어폰, 충전 케이블, 데이터 케이블 등이 삽입되는 커넥터의 삽입구의 일단을 포함할 수 있다.
즉, 본 발명의 실시예에 따른 정전기보호소자(100,200)는 정전기의 유입 가능성이 높은 외부로 돌출된 부분이나 뾰족한 형상을 갖는 부분과 회로부를 연결하기는 경우, 정전기(ESD)에 대한 내성, 온도특성, 및 커패시턴스 용량을 동시에 향상시킬 수 있다.
이하, 도 15 내지 도 23을 참조하여 본 발명의 실시예에 따른 정전기보호소자의 제조 방법을 설명한다. 여기서, 도 16 내지 도 19는 유전체기판을 구비한 정전기보호소자(100)의 제조 과정을 나타내며, 도 20 내지 도 23은 바리스터기판을 구비한 정전기보호소자(200)의 제조 과정을 나타낸다.
도 15에 도시된 바와 같이, 본 발명의 정전기보호소자의 제조 방법(700)은 기판(110)에 내외부 전극을 형성하는 단계(S710), 기판(110)에 단일부품(120)을 적층하는 단계(S720), 몰딩용 필름에 의해 몰딩하는 단계(S730 및 S740), 및 단위소자로 절단하는 단계(S750)를 포함한다.
보다 상세하게는, 먼저, 도 16 및 도 20에 도시된 바와 같이, 대면적기판(110a,210a)에 단위 구역별로 한 쌍의 하면전극(111a,111b,211a,211b), 한 쌍의 상면전극(112a,112b,212a,212b), 적어도 한 쌍의 내부전극(113a,113b,213a,213b), 및 상기 전극들의 쌍 각각을 연결하는 한 쌍의 연결부(114a,114b,214a,214b)를 형성한다(단계 S710).
여기서, 도 16의 대면적기판(110a)은 도 4에 도시된 바와 같은 대면적 유전체기판이고, 내부전극(113a,113b)은 복수의 커패시터 전극일 수 있다. 이러한 대면적기판(110a)은 커패시터전극(113a,113b) 각각이 형성된 복수의 시트층을 적층하여 형성할 수 있다.
또한, 도 20의 대면적기판(210a)은 도 11에 도시된 바와 같은 대면적 바리스터기판이고, 내부전극(213a,213b)은 동일 평면 상에서 일정 간격으로 이격 배치될 수 있다. 이러한 대면적기판(210a)은 내부전극(213a,213b) 각각이 형성된 복수의 시트층을 적층하여 형성할 수 있다.
이때, 한 쌍의 상면전극(112a,112b,212a,212b) 사이의 간격이 한 쌍의 하면전극(111a,111b,211a,211b) 사이의 간격보다 작게 되도록 대면적기판(110a,210a)의 하면에 한 쌍의 하면전극(111a,111b,211a,211b)을 형성하고, 대면적기판(110a,210a)의 상면에 한 쌍의 상면전극(112a,112b,212a,212b)을 형성할 수 있다.
여기서, 한 쌍의 연결부(114a,114b,214a,214b)는 도전성비아나 측면전극일 수 있다. 이때, 한 쌍의 도전성비아(114a,114b,214a,214b)는 대면적기판(110a,210a)에서 단위 구역 내에 관통홀을 형성한 후 관통홀에 도전성물질을 충진하여 형성될 수 있다.
또한, 한 쌍의 측면전극(114a',114b',214a',214b')은 대면적기판(110a,210a)에서 단위 구역의 경계면, 즉, 절단면(c) 상에 관통홀을 형성한 후에 관통홀에 도전성물질을 충진하거나 관통홀의 내벽에 도전성물질을 도포하여 형성될 수 있다.
다음으로, 도 17 및 도 21에 도시된 바와 같이, 한 쌍의 상면전극(112a,112b,212a,212b)에 단일부품(120,220)을 플립칩 형태로 솔더링하여 적층 결합한다(단계 S720).
여기서, 단일부품(120,220)은 정전기를 통과시키는 보호부로서, 도 6에 도시된 바와 같은 바리스터 또는 다이오드일 수 있다. 또한, 단일부품(220)은 도 13에 도시된 바와 같은 COG 타입의 MLCC일 수 있다. 이와 같은 바리스터(120) 및 커패시터(220)는 사전 제작되거나 기존의 제품일 수 있다.
이때, 바리스터(120) 또는 커패시터(220)의 한 쌍의 외부전극(121a,121b,221a,221b)이 대면적기판(110a,210a)의 한 쌍의 상면전극(112a,112b,212a,212b)에 각각 결합되도록 적층결합할 수 있다. 이에 의해, 대면적기판(110a,210a)의 단위 구역별로 바리스터(120)가 유전체기판(110)과 병렬로 연결되거나, 커패시터(220)가 바리스터기판(210)과 병렬로 연결될 수 있다.
다음으로, 도 18 및 도 22에 도시된 바와 같이, 몰딩용 필름(130a,230a)을 대면적기판(110a,210a)의 상면 및 바리스터(120) 또는 커패시터(220)의 상측에 배치한다(단계 S730). 이때, 몰딩용 필름(130a,230a)은 대면적기판(110a,210a)의 크기에 동일한 크기의 대면적 필름일 수 있다. 여기서, 몰딩용 필름(130a,230a)은 에폭시필름일 수 있다.
이와 같이 배치된 상태에서 에폭시필름(130a,230a)을 대면적기판(110a,210a)의 상면 및 바리스터(120) 또는 커패시터(220)를 덮도록 열융착하여 경화시킬 수 있다(단계 S740). 이때, 에폭시필름(130a,230a)이 용해되어 도 19 및 도 23에 도시된 바와 같이, 대면적기판(110a,210a)의 상면 및 바리스터(120) 또는 커패시터(220)를 에폭시로 몰딩할 수 있다.
이에 의해, 대량생산이 용이하므로, 폐기되는 원자재를 감소시켜 제조비용을 더욱 감소시키고 환경 개선에 이바지할 수 있다.
이와 같이 몰딩이 완료된 후, 경계선(c)을 따라 단위 구역별로 절단한다. 이에 의해 단위 구역별로 정전기보호소자(100,200)가 제조될 수 있다. 이때, 대면적기판(110a,210a)의 경계선(c)에서 관통홀에 의해 전극이 형성된 경우, 경계선(c)의 절단면을 따라 한 쌍의 측면전극(114a',114b',214a',214b')이 외부로 노출될 수 있다.
한편, 한 쌍의 상면전극(112a,112b,212a,212b) 사이의 공간(101)에 대한 방전 특성을 향상시키기 위해 공간(101)에 방전물질을 형성할 수 있다.
일례로, 도 16 및 도 20에서와 같이, 한 쌍의 상면전극(112a,112b,212a,212b)을 형성한 후, 한 쌍의 상면전극(112a,112b,212a,212b) 사이의 공간(101)에 방전물질을 충진할 수 있다.
대안적으로, 도 17 및 도 21에서와 같이, 바리스터(120) 또는 커패시터(220)를 대면적기판(110a,210a)에 적층 결합한 후, 한 쌍의 상면전극(112a,112b,212a,212b) 및 바리스터(120) 또는 커패시터(220)의 하면에 의해 형성되는 공간(101) 방전물질로 충진할 수 있다.
여기서, 상기 방전물질은 유전율이 낮고 전도도가 없으며, 과전압 인가시 쇼트(short)가 없어야 한다. 이를 위해, 상기 방전물질은 금속입자를 포함하는 비전도성 물질로 이루어질 수 있으며, SiC 또는 실리콘 계열의 성분을 포함하는 반도체 물질로 이루어질 수 있다.
이와 같이, 유전체기판(110)과 바리스터(120) 또는 바리스터기판(210)과 커패시터(220)를 별도의 단일부품과 기판 형태로 구비하고 단일 패키지화함으로써, 실질적으로 기판 형성 공정과 패키지 공정만을 이용하여 제조공정을 단순화할 수 있다. 특히, 커패시터를 단일부품으로 이용하는 경우, 고객사가 요구하는 다양한 용량에 따른 라인업이 용이하여 제조효율을 향상시키고 제조단가를 감소시킬 수 있는 동시에 고객사의 요구에 신속히 대응할 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (15)

  1. 정전기를 통과시키는 보호부; 및
    상기 보호부와 병렬로 연결되는 커패시터부를 포함하고,
    상기 보호부 및 상기 커패시터부 중 어느 하나는 기판으로 형성되고,
    다른 하나는 단일부품으로 이루어지며,
    상기 기판 및 상기 단일부품은 몰딩부재에 의해 몰딩되는 정전기보호소자.
  2. 제1항에 있어서,
    상기 기판은 COG 타입의 유전체기판이고, 상기 단일부품은 바리스터인 정전기보호소자.
  3. 제1항에 있어서,
    상기 기판은 바리스터기판이고, 상기 단일부품은 COG 타입의 MLCC인 정전기보호소자.
  4. 제1항에 있어서,
    상기 보호부와 상기 커패시터부는 상하로 적층 결합되며,
    상기 기판은,
    한 쌍의 하면전극;
    한 쌍의 상면전극;
    적어도 한 쌍의 내부전극; 및
    상기 전극들의 쌍 각각을 연결하는 한 쌍의 연결부를 포함하는 정전기보호소자.
  5. 제4항에 있어서,
    상기 한 쌍의 상면전극 사이의 간격(a)은 상기 한 쌍의 하면전극 사이의 간격(b)보다 작은 정전기보호소자.
  6. 제4항에 있어서,
    상기 한 쌍의 상면전극 및 상기 단일부품의 하면에 의해 형성되는 공간은 방전물질이 충진되는 정전기보호소자.
  7. 한 쌍의 하면전극, 한 쌍의 상면전극, 적어도 한 쌍의 내부전극, 및 상기 전극들의 쌍 각각을 연결하는 한 쌍의 연결부를 포함하는 기판;
    상기 기판과 병렬 연결되도록 상기 기판의 상면전극에 결합되는 단일부품; 및
    상기 기판의 상면 및 상기 단일부품을 몰딩하는 몰딩부를 포함하고,
    상기 기판 및 상기 단일부품 중 어느 하나는 정전기를 통과시키는 보호부이며, 다른 하나는 커패시터부인 정전기보호소자.
  8. 도전성 케이스에서 외측으로 돌출 형성되는 첨단부를 포함하는 전도체;
    회로부; 및
    상기 전도체와 회로부를 전기적으로 연결하는 청구항 1 내지 청구항 7 중 어느 한 항에 기재된 정전기보호소자를 포함하는 휴대용 전자장치.
  9. 제8항에 있어서,
    상기 전도체는 사이드 키를 포함하는 휴대용 전자장치.
  10. 제8항에 있어서,
    상기 첨단부는 외부 기기와 연결을 위한 커넥터의 삽입구의 일단을 포함하는 휴대용 전자장치.
  11. 대면적기판에 단위 구역별로 적어도 한 쌍의 내부전극, 한 쌍의 상면전극, 한 쌍의 하면전극, 및 상기 전극들의 쌍 각각을 연결하는 한 쌍의 연결부를 형성하는 단계;
    상기 상면전극에 단일부품을 플립칩 형태로 솔더링하여 적층 결합하는 단계;
    상기 기판의 상면 및 상기 단일부품을 에폭시필름으로 몰딩하는 단계; 및
    상기 단위 구역별로 절단하는 단계를 포함하고,
    상기 기판 및 상기 단일부품 중 어느 하나는 정전기를 통과시키는 보호부이며, 다른 하나는 커패시터부인 정전기보호소자의 제조 방법.
  12. 제11항에 있어서,
    상기 결합하는 단계 이후에,
    상기 한 쌍의 상면전극 및 상기 단일부품의 하면에 의해 형성되는 공간을 방전물질로 충진하는 단계를 더 포함하는 정전기보호소자의 제조 방법.
  13. 제11항에 있어서,
    상기 몰딩하는 단계는 에폭시필름을 상기 기판 및 상기 단일부품의 상측에 배치하여 경화하는 정전기보호소자의 제조 방법.
  14. 제11항에 있어서,
    상기 대면적기판은 유전체기판 또는 바리스터기판인 정전기보호소자의 제조 방법.
  15. 제11항에 있어서,
    상기 형성하는 단계는 상기 한 쌍의 상면전극 사이의 간격(a)이 상기 한 쌍의 하면전극 사이의 간격(b)보다 작게 되도록 상기 상면전극 및 상기 하면전극을 형성하는 정전기보호소자의 제조 방법.
PCT/KR2017/010704 2016-09-29 2017-09-27 정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치 WO2018062839A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020160125526A KR102464070B1 (ko) 2016-09-29 2016-09-29 정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치
KR1020160125525A KR20180035440A (ko) 2016-09-29 2016-09-29 정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치
KR10-2016-0125527 2016-09-29
KR10-2016-0125525 2016-09-29
KR1020160125527A KR102475369B1 (ko) 2016-09-29 2016-09-29 정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치
KR10-2016-0125526 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018062839A1 true WO2018062839A1 (ko) 2018-04-05

Family

ID=61763536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010704 WO2018062839A1 (ko) 2016-09-29 2017-09-27 정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치

Country Status (1)

Country Link
WO (1) WO2018062839A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3767647A1 (en) * 2019-07-19 2021-01-20 Kemet Electronics Corporation Ceramic overvoltage protection device having low capacitance and improved durability
EP3884550A4 (en) * 2018-11-19 2022-10-19 Kemet Electronics Corporation CERAMIC SURGE PROTECTION DEVICE WITH LOW CAPACITY AND ENHANCED DURABILITY

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931402B1 (ko) * 2008-01-14 2009-12-11 조인셋 주식회사 표면 실장용 세라믹 전자부품 및 그 제조 방법
KR20120033255A (ko) * 2010-09-29 2012-04-06 가부시키가이샤 무라타 세이사쿠쇼 Esd 보호 디바이스 및 그 제조방법
KR20150044258A (ko) * 2013-10-16 2015-04-24 삼성전기주식회사 정전기 보호용 부품 및 정전기 보호용 조성물
KR20150135909A (ko) * 2014-05-26 2015-12-04 삼성전기주식회사 복합 전자부품, 제조방법, 그 실장 기판 및 포장체
KR20160060609A (ko) * 2014-11-20 2016-05-30 주식회사 아모텍 감전보호소자 및 이를 구비한 휴대용 전자장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931402B1 (ko) * 2008-01-14 2009-12-11 조인셋 주식회사 표면 실장용 세라믹 전자부품 및 그 제조 방법
KR20120033255A (ko) * 2010-09-29 2012-04-06 가부시키가이샤 무라타 세이사쿠쇼 Esd 보호 디바이스 및 그 제조방법
KR20150044258A (ko) * 2013-10-16 2015-04-24 삼성전기주식회사 정전기 보호용 부품 및 정전기 보호용 조성물
KR20150135909A (ko) * 2014-05-26 2015-12-04 삼성전기주식회사 복합 전자부품, 제조방법, 그 실장 기판 및 포장체
KR20160060609A (ko) * 2014-11-20 2016-05-30 주식회사 아모텍 감전보호소자 및 이를 구비한 휴대용 전자장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3884550A4 (en) * 2018-11-19 2022-10-19 Kemet Electronics Corporation CERAMIC SURGE PROTECTION DEVICE WITH LOW CAPACITY AND ENHANCED DURABILITY
EP3767647A1 (en) * 2019-07-19 2021-01-20 Kemet Electronics Corporation Ceramic overvoltage protection device having low capacitance and improved durability

Similar Documents

Publication Publication Date Title
US10770226B2 (en) Composite electronic component, method of manufacturing the same, board for mounting thereof, and packaging unit thereof
WO2013055026A1 (ko) 배터리 보호회로의 패키지 모듈
WO2017003001A1 (ko) 감전보호용 컨택터 및 이를 구비한 휴대용 전자장치
WO2015009087A1 (ko) 배터리 보호회로 모듈 패키지와 홀더가 결합된 구조체 및 이를 구비한 배터리팩
WO2016190648A1 (en) Display device
WO2018062839A1 (ko) 정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치
EP3304872A1 (en) Display device
KR102127809B1 (ko) 복합 전자부품, 제조방법, 그 실장 기판 및 포장체
WO2018182249A1 (ko) 감전보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치
KR101361446B1 (ko) 정전하 방지 카메라모듈
WO2018034483A1 (ko) 근거리 통신용 안테나 모듈
WO2018203632A1 (ko) 복합형 감전방지소자 및 이를 구비한 휴대용 전자장치
KR20180035440A (ko) 정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치
WO2018084587A1 (ko) 기능성 컨택터
WO2019035559A1 (ko) 복합 소자 제조 방법 및 이에 의해 제조된 복합 소자
WO2015174635A1 (ko) 배터리 팩 및 nfc 통신이 가능한 전자장치
WO2018004242A1 (ko) 전기적 과부하 보호소자
KR102127810B1 (ko) 복합 전자부품, 제조방법, 그 실장 기판 및 포장체
WO2023229392A1 (ko) 반도체 패키지
WO2018117447A1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
WO2023128344A1 (ko) 세라믹 커패시터
WO2015152600A1 (ko) 배터리 보호회로 모듈 패키지 및 배터리 팩
KR102475369B1 (ko) 정전기보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치
WO2017074088A1 (ko) 감전보호 장치
WO2017196116A1 (ko) 기능성 컨택터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856725

Country of ref document: EP

Kind code of ref document: A1