WO2019035559A1 - 복합 소자 제조 방법 및 이에 의해 제조된 복합 소자 - Google Patents

복합 소자 제조 방법 및 이에 의해 제조된 복합 소자 Download PDF

Info

Publication number
WO2019035559A1
WO2019035559A1 PCT/KR2018/007981 KR2018007981W WO2019035559A1 WO 2019035559 A1 WO2019035559 A1 WO 2019035559A1 KR 2018007981 W KR2018007981 W KR 2018007981W WO 2019035559 A1 WO2019035559 A1 WO 2019035559A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
composite device
adhesive
varistor
capacitor
Prior art date
Application number
PCT/KR2018/007981
Other languages
English (en)
French (fr)
Inventor
윤철원
한희구
김태홍
조상민
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Publication of WO2019035559A1 publication Critical patent/WO2019035559A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0067Devices for protecting against damage from electrostatic discharge

Definitions

  • the present invention relates to a method of manufacturing a composite device mounted on a smart phone, a tablet, and the like, and more particularly to a composite device manufacturing method capable of realizing a high electrostatic response characteristic and a high capacity capacitance, AND COMPOSITE DEVICE MANUFACTURED BY THE METHOD.
  • the metal housing is excellent in electrical conductivity due to the nature of the material, an electrical path can be formed between the housing and the built-in circuit depending on the specific device or depending on the location.
  • the composite device is formed by stacking a varistor element and a capacitor element in order to realize high capacity capacitance suitable for static electricity protection and wireless communication.
  • the varistor element and the capacitor element are formed of different materials in order to realize the respective electrical characteristics, and the defective rate due to the distortion of the composite element at the time of co-firing due to the difference in shrinkage ratio between different materials increases.
  • the present invention has been made to solve the above-mentioned problems occurring in the prior art, and an object of the present invention is to provide a heat- And to provide a composite device manufactured by the method.
  • a method for fabricating a composite device including the steps of preparing a heat-sensitive adhesive substrate, adhering a first element to an adhesive substrate, forming a bonding layer on an upper surface of the first element, A step of laminating a second element on the upper surface of the bonding layer, a step of bonding the first element and the second element to produce a composite element, and a step of taking out the composite element from the adhesive base.
  • the first element may be a ceramic material element
  • the second element may be an element different from the first element.
  • the first element and the second element may be ceramic elements.
  • the first element may be one of a varistor element and a capacitor element
  • the second element may be one of a varistor element and a capacitor element.
  • the first element and the second element are multilayer laminated structures, and the first element and the second element may be heterogeneous materials.
  • the adhesive substrate may be a heat peeling tape or a foam tape.
  • the adhesive base material may include an adhesive layer in which a non-sticky substance and a sticky substance are mixed.
  • the method for fabricating a composite device further includes the step of removing the cover layer of the adhesive substrate to form the element array region before the step of adhering the first element,
  • the first element can be adhered so that a plurality of first elements are arranged in a matrix in the element array region.
  • the composite device manufacturing method may further include forming a plurality of mutually spaced element array regions by removing the cover layer of the adhesive substrate before the step of adhering the first element. At this time, in the step of adhering the first element, one first element can be adhered to each of the plurality of element array regions.
  • the bonding layer may be formed by applying epoxy to the upper surface of the first element by a screen printing or a dispensing method.
  • the first element and the second element can be bonded by curing the bonding layer interposed between the upper surface of the first element and the lower surface of the second element through the reflow process.
  • the adhesive property of the adhesive base material is lost through the reflow process, and the composite device can be taken out of the adhesive base material.
  • the composite device manufacturing method according to an embodiment of the present invention may further include forming external terminals on both sides of the composite device taken out from the adhesive substrate.
  • the present invention in the method of manufacturing a composite device, it is possible to minimize the occurrence of defects in a composite device while easily bonding devices of different materials by laminating devices on a heat-reactive adhesive substrate to manufacture a composite device.
  • the composite device manufacturing method has an effect that the composite device can be easily taken out by losing the adhesive force of the heat-reactive adhesive base material through the heating process.
  • a varistor device and a capacitor device are provided in different materials and are packaged in a single package, thereby improving response characteristics against static electricity and realizing high capacity capacitance, thereby producing a highly reliable composite device .
  • the composite device manufacturing method has the effect of simplifying the manufacturing process and simplifying the lineup according to various capacities by making a single package using the existing varistor and capacitor manufacturing process, thereby improving the manufacturing efficiency and reducing the manufacturing cost.
  • the capacitor is manufactured separately from the varistor, the flexibility of designing the capacitance can be increased, so that the lineup of various capacities can be realized, so that it is possible to quickly respond to the request of the customer without changing the process.
  • the composite device manufacturing method can form a junction layer between the varistor element and the capacitor element, thereby preventing the material movement between the varistor material layer and the dielectric, thereby preventing the deterioration of the electrical characteristics due to the heterojunction It is effective.
  • the composite element manufacturing method has the effect of manufacturing a composite element in which the defects such as deviation due to the difference in temperature change rate between dissimilar materials in the bonding step are suppressed have.
  • the varistor element and the capacitor element each have a separate external electrode, the contact area between the varistor element and the capacitor element is increased, thereby suppressing the occurrence of spark when static electricity is applied due to a poor contact between the internal electrode and the external terminal.
  • the electrical characteristics can be measured in each of the varistor element and the capacitor element, it is possible to easily manage and control the electrical characteristics in the complex process, thereby improving the reliability of the product.
  • the composite device according to the embodiment of the present invention can be manufactured by the composite device manufacturing method described above.
  • FIG 1 and 2 are views for explaining a composite device manufactured by a composite device manufacturing method according to an embodiment of the present invention.
  • 3 to 14 are flowcharts for explaining a method of manufacturing a composite device according to an embodiment of the present invention.
  • 15 to 21 are views for explaining a composite device manufactured by a composite device manufacturing method according to an embodiment of the present invention.
  • the composite device 100 manufactured by the composite device manufacturing method according to the embodiment of the present invention is mounted on a portable terminal such as a smart phone or a tablet to allow static electricity to pass therethrough, And passes the communication signal while blocking.
  • the composite device 100 includes a first device 110, a second device 120, a bonding layer 130, and an external terminal 140.
  • the first element 110 and the second element 120 are constituted by the varistor element 200 or the capacitor element 300 (for example, a multilayer ceramic capacitor (MLCC)) and have high electrostatic response characteristics and a high capacity
  • MLCC multilayer ceramic capacitor
  • An example is one formed of a different material for simultaneous implementation.
  • first element 110 and the second element 120 may be composed of various types of elements in addition to the varistor element 200 and the capacitor element 300.
  • One of the first element 110 and the second element 120 may be a cell unit element made of a ceramic material and the other element may be made of a homogeneous or heterogeneous material.
  • the method of fabricating a composite device suggests a method of fabricating a composite device that facilitates bonding of the first device 110 and the second device 120, which are heterogeneous materials, while minimizing the occurrence of defects .
  • the composite device manufacturing method includes a first device preparation step S100, a second device preparation step S200, an adhesive substrate preparation step S300, S400), a first element is bonded (S500), a bonding layer forming step (S600), a second element laminating step (S700), a complex element forming step (S800), and a complex element taking step (S900).
  • the first element preparation step (S100) the first element 110 having a multilayer laminated structure is prepared.
  • the first element preparation step (S100) the first element 110 formed in a multilayered structure and fired through a firing process is prepared.
  • the varistor device 200 formed in a multilayered structure is prepared as the first device 110.
  • the varistor element 200 includes a varistor material layer 210, a first internal electrode 220, and a second internal electrode 230. At this time, the varistor element 200 performs a leakage current cutoff function and an electrostatic protection function.
  • the varistor material layer 210 comprises a varistor material.
  • the varistor material includes ZnO as a main component, Zr, Nb, Pr, Bi, Co. And at least one or more oxides of Si, Cr, and Mn.
  • a plurality of varistor material layers 210 are formed. That is, since the first internal electrode 220 or the second internal electrode 230 is provided on one varistor material layer 210, the arrangement of the first internal electrode 220 and the second internal electrode 230 And may be composed of a plurality of units.
  • the first internal electrodes 220 are spaced apart from each other on the same varistor material layer 210 and are composed of at least two.
  • the first internal electrodes 220 may be connected to the first external electrodes 240 and may be spaced apart from each other by a predetermined distance.
  • the second internal electrode 230 is provided on at least one varistor material layer 210 which is different from the plurality of first internal electrodes 220. 4, when there are two first internal electrodes 220, the second internal electrodes 230 may be disposed only on the cross section of the composite element between the first internal electrodes 220 .
  • first internal electrode 220 and the second internal electrode 230 are partially overlapped with each other, but the present invention is not limited thereto, and the first internal electrode 220 and the second internal electrode 230 may be disposed without overlapping each other.
  • the distance between the first internal electrodes 220 may be greater than the distance between the first internal electrodes 220 and the second internal electrodes 230. Accordingly, an incoming signal such as static electricity can be propagated in the order of the first internal electrode 220, the second internal electrode 230, and the first internal electrode 220.
  • the varistor element 200 may be formed such that the gap between the pair of first internal electrodes 220 and the second internal electrodes 230 and the particle diameter of the varistor material satisfy the breakdown voltage Vbr.
  • the breakdown voltage Vbr of the varistor element 200 is applied between the first internal electrode 220 and the second internal electrode 230 and between the second internal electrode 230 and the first internal electrode 220, And may be larger than the rated voltage (Vin) of the external power supply so as to block the leakage current caused by the external power supply.
  • the voltage of the static electricity is larger than the breakdown voltage Vbr, so that the varistor element 200 can be turned on to pass the static electricity.
  • the breakdown voltage Vbr is larger than the rated voltage of the power supply, so that the leakage current can be cut off.
  • the second internal electrode 230 is shown as being not connected to the first external electrode 240, the present invention is not limited thereto, and the arrangement order of the first internal electrode 220 and the second internal electrode 230
  • the first internal electrode 220 may be connected to one first external electrode 240 and the second internal electrode 230 may be connected to the other first external electrode 240.
  • the first internal electrode 220 may be disposed on the upper and lower sides with the second internal electrode 230 as a center. That is, the varistor material layer 210 including the first internal electrode 220 and the varistor material layer 210 including the second internal electrode 230 may be repeatedly stacked.
  • the first internal electrode 220 and the second internal electrode 230 may include at least one of Ag, Pd, Pt, Au, Ni, and Cu.
  • the first internal electrode 220 and the second internal electrode 230 may be alloyed with at least one of the above-listed components because Ag may be deteriorated in electrostatic ESD resistance when used alone .
  • the varistor element 200 may further include a first external electrode 240.
  • the first outer electrode 240 is provided on both sides of the plurality of varistor material layers 210.
  • the first external electrode 240 can be disposed between the both sides of the varistor material layer 210 and the external terminal.
  • This increases the contact area for connecting the first internal electrode 220 or the second internal electrode 230 to the external terminal so that the first internal electrode 220 or the second internal electrode 230 is electrically connected, And the occurrence of sparks on the external terminals can be suppressed and the reliability of the product can be improved.
  • the individual electrical characteristics can be easily measured in a complex process such as a process of joining with the capacitor device 300, so that the management and control of the electrical characteristics are easy and the reliability of the product can be further improved.
  • the first external electrode 240 may include Ag and glass. As a result, it is possible to improve the electrical characteristics of connecting the first internal electrode 220 or the second internal electrode 230 to the external terminal, and to improve the adhesion to the varistor material layer 210.
  • the first external electrode 240 may have a thickness of 15 mu m or less and a width of 200 mu m or less. This increases the bonding area of the bonding layer 130 between the varistor element 200 and the capacitor element 300, that is, between the first external electrode 240 and the second external electrode 330, The electrode 240 and the second external electrode 330 can be easily adhered to each other.
  • the first external electrode 240 may have a minimum distance between the first internal electrode 220 and the second internal electrode 230 that is not connected to the first external electrode 240 of 20 mu m or more. As a result, it is possible to prevent a path of a signal, such as static electricity, traveling between the first internal electrode 220 and the second internal electrode 230 from being changed to the first external electrode 240, as described above.
  • a signal such as static electricity
  • the second element preparation step (S200) the second element 120 having a multi-layered laminated structure is prepared.
  • the second device preparation step (S200) the second device 120 formed in a multi-layered structure and fired through a firing process is prepared.
  • the capacitor device 300 formed in a multi-layered structure is prepared as the second device 120 as an example.
  • the capacitor element 300 includes a dielectric sheet layer 310 and a capacitor electrode 320.
  • the dielectric sheet layer 310 includes a dielectric.
  • the dielectric material includes BaTiO3 as a main component and at least one oxide of Ti, Si, Sr, Bi, W, and Nd.
  • the plurality of dielectric sheet layers 310 are formed. That is, since one capacitor electrode 320 is provided on one dielectric sheet layer 310, a plurality of capacitor electrodes 320 may be formed according to the arrangement of the capacitor electrodes 320.
  • the capacitance of the varistor element 200 can be easily realized with a large capacity by supplementing the characteristic of the varistor element 200, which is not easy to implement a large capacitance.
  • the capacitor element 300 is excluded from the influence of the varistor element 200, it is possible to more densely form the interval between the capacitor electrodes 320 laminated inside the capacitor element 300, thereby increasing the number of stacked capacitor electrodes 320 And the dielectric sheet layer 310 having a high dielectric constant, it is easy to realize a high capacitance.
  • the capacitor element 300 by implementing the capacitor element 300 separately from the varistor element 200, the degree of freedom in designing the capacitance is increased, so that a lineup of various capacities can be realized without any additional process change, so that it is possible to quickly respond to a request of a customer.
  • the capacitor device 300 can transmit the band-specific communication signal corresponding to the communication purpose without attenuation.
  • Capacitor electrodes 320 may be provided on each dielectric sheet layer 310 one by one.
  • the capacitor element 300 can be sequentially stacked with the plurality of dielectric sheet layers 310 having the capacitor electrodes 320.
  • the dielectric sheet layers 310 in which the capacitor electrodes 320 and the capacitor electrodes 320 are respectively provided at positions symmetrical to each other may be alternately stacked.
  • the capacitor element 300 may have an insulation breakdown voltage Vcp that is higher than the rated voltage Vin of the external power supply. Accordingly, when the leakage current due to the external power source is inputted, the capacitor element 300 can prevent the user from electric shock by blocking the leakage current.
  • the distance between the capacitor electrodes 320 may be 20 mu m or more. As described above, by sufficiently ensuring the interval between the capacitor electrodes 320, the capacitance suitable for wireless communication can be realized and the dielectric breakdown voltage Vcp for blocking the leakage current can be increased.
  • the capacitor electrode 320 may include at least one of Ag, Pd, Pt, Au, Ni, and Cu.
  • the capacitor electrode 320 may be alloyed with Ag to at least one of the components listed above because the electrostatic discharge (ESD) resistance may deteriorate when Ag alone is used.
  • the capacitor element 300 may further include a second external electrode 330.
  • the second outer electrode 330 is provided on both sides of the plurality of dielectric sheet layers 310.
  • the second external electrode 330 can be disposed between the both sides of the dielectric sheet layer 310 and the external terminal.
  • the individual electrical characteristics can be easily measured in the composite process such as the joining step with the varistor element 200, so that the management and control of the electrical characteristics are easy and the reliability of the product can be improved.
  • the second external electrode 330 may include Ag and glass. This improves the electrical characteristics of connecting the capacitor electrode 320 to the external terminal 140 and improves the adhesion to the dielectric sheet layer 310.
  • the second external electrode 330 may have a thickness of 15 mu m or less and a width of 200 mu m or less. This increases the bonding area of the bonding layer 130 between the varistor element 200 and the capacitor element 300, that is, between the first external electrode 240 and the second external electrode 330, The electrode 240 and the second external electrode 330 can be easily adhered to each other.
  • the second external electrode 330 may have a minimum distance between the second external electrode 330 and the capacitor electrode 320 that is not connected to the second external electrode 330 of 20 mu m or more. That is, the distance between one capacitor electrode 320 and the second external electrode 330 connected to the other capacitor electrode 320 may be 20 ⁇ m or more.
  • the varistor element 200 and the capacitor element 300 may have substantially the same thickness, but the present invention is not limited thereto, and the varistor element 200 and the capacitor element 300 may be different from each other depending on applications.
  • the sum of the thicknesses of the varistor element 200 and the capacitor element 300 is set to satisfy the specification of the composite element.
  • the varistor element 200 and the capacitor element 300 may have a thickness of 1/3 to 2/3 of the total thickness of the composite device.
  • the adhesive base material (400) is provided with a thermoreactive adhesive tape which maintains adhesiveness at a temperature lower than the set temperature and loses adhesiveness when the temperature is set to a temperature higher than the set temperature. That is, in the adhesive substrate preparation step (S300), the first element 110 is adhered and fixed in the laminating process at a temperature lower than the set temperature, and a heat-reactive adhesive tape And is prepared as an adhesive substrate 400.
  • the heat-reactive adhesive tape is one selected from a heat peeling tape and a foam tape as an example.
  • the heat-reactive adhesive substrate 400 composed of the adhesive layer 420 and the cover layer 430 can be prepared.
  • the adhesive substrate 400 includes an adhesive layer 420 formed on the upper surface of the base film 410, and a cover layer 430 disposed on the upper surface of the adhesive layer 420. As shown in FIG.
  • the adhesive layer 420 is formed by mixing a non-sticky material 422 and a sticky material 424.
  • the non-sticky material 422 is disposed in the sticky material 424 at a temperature lower than the set temperature to maintain the adhesive force.
  • the non-sticky material 422 is exposed upward as the heat above the set temperature is applied to the pressure-sensitive adhesive layer 420 to lose the adhesive force.
  • the adhesive layer 420 corresponds to the adhesive surface of the heat peeling tape and the foam tape.
  • the cover layer 430 protects the adhesive layer 420 by being disposed on the upper surface of the adhesive layer 420 and corresponds to a release tape or release paper adhering to the adhesive surface of the foam tape.
  • the element array region 450 is formed in the adhesive substrate 400. [ That is, in the device array region formation step S400, the cover layer 430 of the region where the device is adhered is removed to form the device array region 450 in the adhesive substrate 400. [
  • one element array region 450 can be formed by half-cutting (cutting) the entire region to which elements are adhered.
  • a plurality of element array regions 450 can be formed by half-cutting (cutting) a region where each element is adhered.
  • the first element 110 is adhered to the element array region 450 of the adhesive substrate 400. [ 11, in the bonding step S500 of the first element, the first element 110 is adhered to the element array region 450 through a SMT (Surface Mounter Technology) process. At this time, in the adhesion step (S500) of the first element, a plurality of first elements (110) are arranged in a matrix in the element array region (450).
  • SMT Surface Mounter Technology
  • the bonding layer 130 is formed on the upper surface of the first element 110 adhered to the adhesive substrate 400. [ At this time, the bonding layer 130 is disposed therebetween to separate the first element 110 and the second element 120 from each other.
  • the bonding layer 130 has a function of bonding the first element 110 and the second element 120 and a function of separating the first element 110 and the second element 120 electrically and thermally.
  • the bonding layer 130 is formed by printing a thermosetting resin on the upper surface of the first element 110.
  • a thermosetting resin may be printed on the upper surface of the first element 110 to form the bonding layer 130.
  • the epoxy may have a non-conductive property to electrically and thermally separate the first element 110 and the second element 120.
  • the epoxy may have an insulation resistance of more than 10 M ⁇ .
  • the bonding layer 130 is formed by printing a thermosetting resin on the upper surface of the first element 110 through a screen printing or a dispensing printing method.
  • a thermosetting resin to such an extent that the bonding layer 130 does not escape to the outside during the process of laminating the second device 120 to the first device 110 is referred to as the first device 110, As shown in FIG.
  • an adhesive such as paste having adhesiveness, 130 may be formed.
  • the first external electrodes 240 and the second external electrodes 330 are spaced apart from the pair of second external electrodes 330
  • the bonding layer 130 can be extended.
  • the second element 120 is stacked on the bonding layer 130 formed on the upper surface of the first element 110.
  • the bonding layer 130 formed on the upper surface of the first element 110 adhering to the element array region 450 through the SMT process the device 120 is laminated.
  • the first element 110 and the second element 120 are bonded by applying heat to the bonding layer 130 interposed between the first element 110 and the second element 120 Thereby forming the composite element 100.
  • a predetermined heat is applied to cure the bonding layer 130 to bond the first element 110 and the second element 120 together.
  • the composite element 100 may be formed by simultaneously applying heat and pressure to bond the first element 110 and the second element 120 together. That is, when only the heat is applied in the composite element formation step S800, the adhesive force of the adhesive base material 400 may be lowered and the first element 110 and the second element 120 may be displaced. In this case, performance deterioration of the composite device 100 may occur, so that in the composite device formation step S800, the pressure is applied in the downward direction (i.e., the direction from the second device 120 to the first device 110) Heat is applied to bond the first element 110 and the second element 120 together.
  • the composite element 100 is taken out from the adhesive base material 400.
  • the adhesive force of the adhesive base material 400 is lost by applying heat of a temperature equal to or higher than a set temperature, and the composite element 100 is taken out from the adhesive base material 400.
  • the adhesive layer 420 is heated to a temperature equal to or higher than the set temperature, the adhesive force is lost, so that the composite device 100 can be easily taken out.
  • the composite device 100 is manufactured by inserting and aligning devices in a plurality of grooves formed in an SMT equipment or a zig, it is difficult to separate the manufactured composite device 100, .
  • the composite device 100 is manufactured by aligning and adhering the devices to the adhesive substrate 400, which is a heat-reactive adhesive tape, .
  • the adhesive substrate 400 can be tilted or turned over to take out a plurality of the composite elements 100 at a time, so that the composite element 100 can be more easily separated than in the prior art, It is effective.
  • the method for fabricating a composite device according to an embodiment of the present invention may further include forming an external terminal 140 (not shown).
  • the external terminal 140 is formed on both sides of the first element 110 and the second element 120 for electrical conduction.
  • the external terminal 140 may be a paste in which a metal is dispersed in a conductive epoxy.
  • the external terminal 140 may be formed by a method such as vacuum deposition.
  • the dipping method can be used, so that manufacturing and manufacturing steps can be easily performed and the manufacturing cost can be reduced.
  • the conductive epoxy has a function of further increasing the bonding force between the first element 110 and the second element 120 bonded after curing.
  • the external terminal 140 may be Ni-plated and then Sn-plated to facilitate the SMT process.
  • Au plating may be performed after Ni plating.
  • the epoxy constituting the bonding layer 130 and the external terminal 140 should be stabilized at a temperature of 300 degrees or less when the curing process is completed, thereby enabling the SMT operation.
  • the bonding strength between the first element 110 and the second element 120 thus manufactured may be 1 kgf or more on the basis of a shera test and the terminal strength of the external terminal 140 may be 0.8 kgf or more.
  • the composite device 100 manufactured by the composite device manufacturing method according to the embodiment of the present invention has characteristics similar to the varistor type in terms of voltage-current characteristics and electrostatic discharge (ESD) characteristics, And has broadband characteristics compared to a varistor type because it has characteristics similar to those of a supercritical type which is easy to implement a high capacity capacitance in frequency characteristics.
  • ESD electrostatic discharge
  • the composite device 100 can provide both an electrostatic protection function, a leakage current blocking function, and a wireless communication function.
  • the composite device 100 may be arranged to electrically connect a conductor 12, such as a metal case of the portable terminal 10, and the circuit portion 14. [ At this time, the composite device 100 is directly connected to the ground of the circuit part 14, and the static electricity introduced by turning on the varistor device can be bypassed to the ground without transmitting the static electricity to the circuit part 14.
  • the composite device 100 when the composite device 100 is not directly connected to the ground of the circuit portion 14, that is, when the conductor 12 and the circuit portion 14 are electrically connected to each other to only pass static electricity, May have a separate protective element for bypassing static electricity to ground.
  • a protection element may be a single element, a suppressor or a varistor.
  • the composite device 100 can pass the static electricity by turning on the varistor element. That is, since the breakdown voltage Vbr of the composite device 100 is smaller than the instantaneous voltage of the static electricity, the composite device 100 can be electrically conducted to pass the static electricity. As a result, the composite device 100 has a low electrical resistance upon introduction of static electricity from the conductor 12, so that the composite device 100 can pass the static electricity without itself being broken down.
  • the dielectric breakdown voltage Vcp of the capacitor element provided in the composite device 100 is larger than the breakdown voltage Vbr of the varistor element, the static electricity can be passed only through the varistor element without flowing into the capacitor element.
  • the composite device 100 can be shut off so that the leakage current is not transmitted to the conductor 12 by the turning-off of the varistor element and the capacitor element .
  • the composite device 100 when the leakage current of the external power source flows into the conductor 12 through the circuit board of the circuit unit 14, for example, the ground, the composite device 100 is configured such that the breakdown voltage Vbr thereof exceeds the overvoltage It can be kept open.
  • the composite device 100 maintains the open state without being electrically conducted since the breakdown voltage Vbr of the composite device 100 is larger than the rated voltage of the external power source of the portable terminal 10 so that the human body contactable conductor It is possible to prevent the leakage current from being transmitted to the electrodes 12 and 12.
  • the capacitor element included in the composite device 100 can cut off the DC component included in the leakage current, and furthermore, since the AC component of the leakage current has a relatively lower frequency than the radio communication band, By acting as a large impedance, leakage current can be cut off.
  • the composite device 100 can shield the user from the electric shock by blocking the leakage current caused by the external power source flowing from the ground of the circuit part 14.
  • the composite device 100 may allow the communication signal, which flows through the conductor 12, to pass by the capacitor element when the conductor 12 is constituted as a part of the antenna. At this time, the varistor element is turned off so that the composite element 100 can function as a capacitor.
  • the composite device 100 keeps the varistor element in an open state to shut off the conductor 12 and the circuit part 14, but allows the internal capacitor element to pass the incoming communication signal. In this way, the capacitor element of the composite device 100 can provide the inflow path of the communication signal.
  • the portable terminal 10 may be in the form of a portable electronic device which is portable and portable.
  • the portable terminal 10 may be a portable terminal 10 such as a smart phone, a cellular phone, and the like, and may be a smart watch, a digital camera, a DMB, an electronic book, a netbook, a tablet PC,
  • Such electronic devices may comprise any suitable electronic components including antenna structures for communication with external devices.
  • it may be a device using local area network communication such as WiFi and Bluetooth.
  • Such a portable terminal 10 may be made of a conductive material such as a metal (aluminum, stainless steel, etc.) or an outer housing made of carbon-fiber synthetic material or other fiber-based composites, glass, ceramic, plastic, .
  • a conductive material such as a metal (aluminum, stainless steel, etc.) or an outer housing made of carbon-fiber synthetic material or other fiber-based composites, glass, ceramic, plastic, .
  • the housing of the portable terminal 10 may include a conductor 12 made of metal and exposed to the outside.
  • the conductor 12 may include at least one of an antenna for communication between the electronic device and the external device, a metal case, and conductive ornaments.
  • the metal case may be provided to partially surround or entirely surround the housing side portion of the portable terminal 10.
  • the metal case may be provided to surround a camera provided to be exposed to the outside on the front surface or the rear surface of the housing of the electronic device.
  • the composite device 100 may be suitably provided in accordance with the number of metal cases provided in the housing of the portable terminal 10. However, when a plurality of metal cases are provided, each of the metal cases may be embedded in the housing of the portable terminal 10 such that the composite devices 100 are individually connected.
  • the conductor 12 such as the metal case surrounding the side of the housing of the portable terminal 10 is composed of four parts as shown in Fig. 17, each of the conductors 12a, 12b, 12c,
  • the circuit inside the portable terminal 10 can be protected from leakage current and static electricity by being connected to the device 100.
  • the composite device 100 may be provided in various ways according to the roles of the metal cases 12a, 12b, 12c, and 12d when the plurality of metal cases 12a, 12b, 12c, and 12d are provided.
  • the composite device 100 blocks the leakage current And may be provided in a form that protects the internal circuit from static electricity.
  • the composite device 100 may be connected to the metal case 12b to shield the leakage current and protect the internal circuit from static electricity.
  • the composite device 100 may connect the metal case 12 and the circuit board 14. At this time, since the composite device 100 is for passing static electricity without damaging itself, the circuit board 14 may have a separate protection element 16 for bypassing static electricity to the ground.
  • the protection element 16 may be a suppressor or a varistor.
  • the composite device 100 may be disposed through a matching circuit (for example, R and L components) between the metal case 12 and the front end module 14a.
  • the metal case 12 may be an antenna.
  • the composite device 100 passes the communication signal without attenuation, passes static electricity from the metal case 12, and cuts off the leakage current flowing from the ground through the matching circuit.
  • the composite device 100 may be disposed between a metal case 12 having an antenna and an IC 14c implementing a communication function through the antenna.
  • the corresponding communication function may be NFC communication.
  • a separate protection element 16 for bypassing static electricity to the ground may be provided.
  • the protection element 16 may be a suppressor or a varistor.
  • the composite device 100 may be disposed between a short pin 22 of a planar inverted F antenna (PIFA) antenna 20 and a matching circuit. At this time, the composite device 100 passes the communication signal without attenuation, passes static electricity from the metal case 12, and cuts off the leakage current flowing from the ground through the matching circuit.
  • PIFA planar inverted F antenna
  • the conductor 12 may include a tip portion protruding outward from the conductive case.
  • the conductor 12 may include a side key.
  • the distal end portion may include one end of a connector insertion port into which a connector for inserting an external device, for example, an earphone, a charging cable, a data cable, and the like, is inserted.
  • a connector for inserting an external device for example, an earphone, a charging cable, a data cable, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermistors And Varistors (AREA)

Abstract

열반응성 점착 기재에 소자를 정렬 및 가접착한 후 접합층 및 다른 소자를 적층하여 이종 재질의 소자들을 용이하게 접착하면서 복합 소자의 불량 발생을 최소화하도록 한 복합 소자 제조 방법 및 이에 의해 제조된 복합 소자를 제시한다. 제시된 복합 소자 제조 방법은 열반응성 점착 기재를 준비하는 단계, 점착 기재에 제1 소자를 가접착하는 단계, 제1 소자의 상면에 접합층을 형성하는 단계, 접합층의 상면에 제2 소자를 적층하는 단계, 제1 소자 및 제2 소자를 접착하여 복합 소자를 제조하는 단계 및 점착 기재로부터 복합 소자를 취출하는 단계를 포함한다.

Description

복합 소자 제조 방법 및 이에 의해 제조된 복합 소자
본 발명은 스마트폰, 태블릿 등에 실장되는 복합 소자 제조 방법에 관한 것으로, 더욱 상세하게는 높은 정전기 응답 특성과 고용량 커패시턴스의 구현이 가능한 복합 소자 제조 방법 및 이에 의해 제조된 복합 소자(METHOD OF MANUFACTURING COMPOSITE DEVICE AND COMPOSITE DEVICE MANUFACTURED BY THE METHOD)에 관한 것이다.
최근의 휴대 단말은 심미성과 견고함을 향상시키기 위해 메탈 재질의 하우징의 채택이 증가하고 있는 추세이다.
그러나, 이러한 메탈 재질의 하우징은 재질의 특성상 전기전도도가 우수하기 때문에, 특정 소자를 통하여 또는 부위에 따라 외장 하우징과 내장 회로부 사이에 전기적 경로가 형성될 수 있다.
특히, 메탈 하우징과 회로부가 루프를 형성함에 따라, 외부의 노출 면적이 큰 메탈 하우징과 같은 전도체를 통하여 순간적으로 높은 전압을 갖는 정전기가 유입되는 경우, IC 등의 회로부를 파손시키며, AC 전원에 의해 발생되는 누설 전류가 회로부의 접지부를 따라 메탈 하우징으로 전파되어 사용자에게 불쾌감을 주거나 심한 경우, 사용자에게 상해를 입힐 수 있는 감전 사고를 초래하기 때문에, 이에 대한 대책이 요구되고 있다.
더욱이, 정전기의 경우, 그 특성상 평면보다는 뾰족한 형상의 첨단부로 더 잘 유입되기 때문에, 이러한 부분에 대해서는 정전기의 내성을 더 강화시킬 필요성이 있다.
한편, 이러한 휴대 단말은 통신 기능을 필수적으로 수반하기 때문에 통신신호를 감쇄 없이 안정적으로 처리하기 위해서는 고용량의 커패시턴스가 요구되며, 특히, 회로기판 상에서 배치되는 위치에 따라 다양한 커패시턴스가 요구되고 있다.
이러한 실정에서, 정전기 보호기능을 갖는 감전방지소자로서 바리스터(varistor) 유형을 이용하는 경우, 정전기에 대한 내성을 강화할 수 있으나, 고용량의 커패시턴스를 달성하기 용이하지 않으며, 더욱이, 바리스터 재료의 특성상 온도변화율이 높기 때문에 다른 재료 또는 부품과 조합하여 사용하는 경우 전체 온도특성의 열화를 초래한다.
따라서, 휴대 단말에서 누설전류를 차단하면서도 정전기 유입이 용이한 위치별로 정전기 내성을 강화시키는 동시에 다양한 고용량 커패시턴스를 구현하기 위한 대책이 시급한 실정이다.
이러한 사정으로 인해, 정전기 보호 기능과 커패시터 기능을 이종재료로 단일패키지화한 복합소자의 연구 개발이 진행되고 있다.
복합소자는 정전기 보호와 무선 통신에 적합한 고용량 커패시턴스를 구현하기 위해서 바리스터 소자와 커패시터 소자를 적층한 구조로 형성된다.
이때, 바리스터 소자와 커패시터 소자는 각각의 전기적 특성을 구현하기 위해서 이종 재질로 형성되는데, 이종 재질 간의 수축률 차이로 인해 동시 소성시 복합소자의 뒤틀림 등으로 인한 불량률이 증가하는 문제점이 있다.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 열반응성 점착 기재에 소자를 정렬 및 가접착한 후 접합층 및 다른 소자를 적층하여 이종 재질의 소자들을 용이하게 접착하면서 복합 소자의 불량 발생을 최소화하도록 한 복합 소자 제조 방법 및 이에 의해 제조된 복합 소자를 제공하는 것을 목적으로 한다.
또한, 본 발명은 가열 공정을 통해 열반응성 점착 기재의 접착력을 상실시켜 복합 소자를 용이하게 취출하도록 한 복합 소자 제조 방법 및 이에 의해 제조된 복합 소자를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 실시 예에 따른 복합 소자 제조 방법은 열반응성 점착 기재를 준비하는 단계, 점착 기재에 제1 소자를 가접착하는 단계, 제1 소자의 상면에 접합층을 형성하는 단계, 접합층의 상면에 제2 소자를 적층하는 단계, 제1 소자 및 제2 소자를 접착하여 복합 소자를 제조하는 단계 및 점착 기재로부터 복합 소자를 취출하는 단계를 포함한다.
제1 소자는 세라믹 재질의 소자이고, 제2 소자는 제1 소자와 이종 재질의 소자일 수 있다. 제1 소자 및 제2 소자는 세라믹 재질의 소자일 수도 있다.
제1 소자는 바리스터 소자 및 커패시터 소자 중 하나이고, 제2 소자는 바리스터 소자 및 커패시터 소자 중 다른 하나일 수 있다. 이때, 제1 소자 및 제2 소자는 다층 적층 구조이고, 제1 소자 및 제2 소자는 이종 재질일 수 있다.
점착 기재는 열박리 테이프 또는 발포 테이프일 수 있다. 이때, 점착 기재는 비점착성 물질 및 점착성 물질이 혼합된 점착층을 포함할 수 있다.
본 발명의 실시예에 따른 복합 소자 제조 방법은 제1 소자를 가접착하는 단계 이전에 점착 기재의 커버층을 제거하여 소자 어레이 영역을 형성하는 단계를 더 포함하고, 제1 소자를 가접착하는 단계에서는 소자 어레이 영역에 복수의 제1 소자가 행렬 배치되도록 가접착할 수 있다.
본 발명의 실시예에 따른 복합 소자 제조 방법은 제1 소자를 가접착하는 단계 이전에 점착 기재의 커버층을 제거하여 상호 이격된 복수의 소자 어레이 영역을 형성하는 단계를 더 포함할 수 있다. 이때, 제1 소자를 가접착하는 단계에서는 복수의 소자 어레이 영역 각각에 하나의 제1 소자를 가접착할 수 있다.
접합층을 형성하는 단계에서는 스크린 인쇄 또는 디스펜싱 방식으로 제1 소자의 상면에 에폭시를 도포하여 접합층을 형성할 수 있다.
복합 소자 형성 단계에서는 리플로우 공정을 통해 제1 소자의 상면 및 제2 소자의 하면 사이에 개재된 접합층을 경화시켜 제1 소자 및 제2 소자를 접착할 수 있다.
복합 소자를 취출하는 단계에서는 리플로우 공정을 통해 점착 기재의 점착성을 상실시켜 점착 기재로부터 복합 소자를 취출할 수 있다.
본 발명의 실시예에 따른 복합 소자 제조 방법은 점착 기재로부터 취출된 복합 소자의 양측에 외부 단자를 형성하는 단계를 더 포함할 수 있다.
본 발명에 의하면, 복합 소자 제조 방법은 열반응성 점착 기재 상에 소자들을 적층하여 복합 소자를 제조함으로써, 이종 재질의 소자들을 용이하게 접착하면서 복합 소자의 불량 발생을 최소화할 수 있는 효과가 있다.
또한, 복합 소자 제조 방법은 가열 공정을 통해 열반응성 점착 기재의 접착력을 상실시킴으로써, 복합 소자를 용이하게 취출할 수 있는 효과가 있다.
또한, 복합 소자 제조 방법은 바리스터 소자와 커패시터 소자를 이종재료로 구비하고 단일 패키지화함으로써, 정전기에 대한 응답특성을 향상시키고, 고용량 커패시턴스를 구현함으로써, 신뢰성이 높은 복합 소자를 제조할 수 있는 효과가 있다.
또한, 복합 소자 제조 방법은 기존의 바리스터 및 커패시터 제조 공정을 이용하여 단일 패키지화함으로써, 제조공정을 단순화하고 다양한 용량에 따른 라인업이 용이하여 제조효율을 향상시키고 제조단가를 감소시킬 수 있는 효과가 있다.
또한, 복합 소자 제조 방법은 바리스터와 별도로 커패시터를 구현함으로써, 커패시턴스의 구현시 설계 자유도가 증가하므로, 다양한 용량의 라인업이 가능하여 별도의 공정 변경 없이도 고객사의 요구에 신속히 대응할 수 있다.
또한, 복합 소자 제조 방법은 바리스터 소자와 커패시터 소자 사이에 접합층을 구성함으로써, 바리스터 물질층과 유전체 사이의 물질이동을 차단하여 이종접합에 의한 전기적 특성의 열화를 방지하는 복합 소자를 제조할 수 있는 효과가 있다.
또한, 복합 소자 제조 방법은 바리스터 소자와 커패시터 소자에 하나의 동일한 외부단자를 구비함으로써, 접합 공정시 이종재료 간 온도변화율의 차이에 따른 틀어짐 등의 결함이 억제된 복합 소자를 제조할 수 있는 효과가 있다.
또한, 복합 소자 제조 방법은 바리스터 소자와 커패시터 소자 각각에 별도의 외부 전극을 구비함으로써, 내부 전극과의 접촉면적을 증가시키므로 내부 전극과 외부단자 간 접촉불량에 의한 정전기 인가시 스파크의 발생을 억제할 수 있는 동시에, 바리스터 소자와 커패시터 소자 각각에 전기적 특성을 측정할 수 있으므로 복합공정에서 전기적 특성의 관리 및 제어가 용이하여 제품의 신뢰성을 향상시킬 수 있다.
본 발명의 실시예에 따른 복합 소자는 상술한 복합 소자 제조 방법에 의해 제조될 수 있다.
도 1 및 도 2는 본 발명의 실시 예에 따른 복합 소자 제조 방법에 의해 제조된 복합 소자를 설명하기 위한 도면.
도 3 내지 도 14는 본 발명의 실시 예에 따른 복합 소자 제조 방법을 설명하기 위한 흐름도.
도 15는 내지 도 21은 본 발명의 실시 예에 따른 복합 소자 제조 방법에 의해 제조된 복합 소자를 설명하기 위한 도면.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시 예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1 및 도 2를 참조하면, 본 발명의 실시 예에 따른 복합 소자 제조 방법에 의해 제조된 복합 소자(100)는 스마트폰, 태블릿 등의 휴대 단말에 실장되어, 정전기를 통과시키고, 누설전류를 차단면서 통신 신호를 통과시키는 기능을 수행한다.
이를 위해, 복합 소자(100)는 제1 소자(110), 제2 소자(120), 접합층(130) 및 외부 단자(140)를 포함하여 구성된다. 이때, 제1 소자(110) 및 제2 소자(120)는 바리스터 소자(200) 또는 커패시터 소자(300; 예를 들면, 적층세라믹콘덴서(MLCC))로 구성되며, 높은 정전기 응답특성과 고용량 커패시터의 동시 구현을 위해 이종 재질로 형성되는 것을 일례로 한다.
물론, 제1 소자(110) 및 제2 소자(120)는 바리스터 소자(200), 커패시터 소자(300) 이외에도 다양한 형태의 소자로 구성될 수 있다. 제1 소자(110) 및 제2 소자(120) 중 하나는 세라믹 재질의 셀 단위 소자이고, 다른 하나는 동종 또는 이종 재질의 소자로 구성될 수 있다.
이에, 본 발명의 실시 예에 따른 복합 소자 제조 방법은 이종 재질인 제1 소자(110) 및 제2 소자(120)의 접합을 용이하게 하면서도 불량 발생을 최소화할 수 있는 복합 소자 제조 방법을 제시한다.
도 3을 참조하면, 본 발명의 실시 예에 따른 복합 소자 제조 방법은 제1 소자 준비 단계(S100), 제2 소자 준비 단계(S200), 점착 기재 준비 단계(S300), 소자 어레이 영역 형성 단계(S400), 제1 소자 가접착 단계(S500), 접합층 형성 단계(S600), 제2 소자 적층 단계(S700), 복합 소자 형성 단계(S800), 복합 소자 취출 단계(S900)를 포함한다.
제1 소자 준비 단계(S100)에서는 다층 적층 구조의 제1 소자(110)를 준비한다. 제1 소자 준비 단계(S100)에서는 다층 적층 구조로 형성되어 소성 공정을 통해 소성된 제1 소자(110)를 준비한다. 이때, 제1 소자 준비 단계(S100)에서는 다층 적층 구조로 형성된 바리스터 소자(200)를 제1 소자(110)로 준비하는 것을 일례로 한다.
도 4를 참조하면, 바리스터 소자(200)는 바리스터 물질층(210), 제1 내부 전극(220), 제2 내부 전극(230)을 포함한다. 이때, 바리스터 소자(200)는 누설 전류 차단 및 정전기 보호 기능을 수행한다.
바리스터 물질층(210)은 바리스터 물질을 포함하여 구성된다. 이때, 바리스터 물질은 ZnO를 주성분으로 Zr, Nb, Pr, Bi, Co. Si, Cr, 및 Mn의 산화물 중 적어도 하나 이상을 포함하는 것을 일례로 한다.
바리스터 물질층(210)은 복수 개로 이루어진다. 즉, 하나의 바리스터 물질층(210) 상에 제1 내부 전극(220) 또는 제2 내부 전극(230)이 구비되므로, 제1 내부 전극(220) 및 제2 내부 전극(230)의 배치 구성에 따라 복수 개로 구성될 수 있다.
제1 내부 전극(220)은 동일 바리스터 물질층(210) 상에 일정간격 이격되어 구비되며, 적어도 두 개로 구성된다. 일례로, 제1 내부 전극(220)은 제1 외부 전극(240)에 각각 연결되고 서로 일정 간격 이격될 수 있다.
제2 내부 전극(230)은 복수 개의 제1 내부 전극(220)과 상이한 바리스터 물질층(210) 상에 구비되며, 적어도 하나로 구성된다. 일례로, 도 4에 도시된 바와 같이, 제1 내부 전극(220)이 두 개인 경우, 제2 내부 전극(230)은 복합소자의 단면 상에서 제1 내부 전극(220) 사이에 하나만 배치될 수 있다.
여기서, 제1 내부 전극(220)과 제2 내부 전극(230)은 서로 대향하여 일부가 중첩되는 것으로 도시되고 설명되었으나, 이에 한정되지 않고, 서로 중첩되지 않게 배치될 수도 있다.
이때, 제1 내부 전극(220) 사이의 거리는 제1 내부 전극(220)과 제2 내부 전극(230) 사이의 거리보다 크게 형성될 수 있다. 이에 의해 정전기와 같은 유입되는 신호는 제1 내부 전극(220), 제2 내부 전극(230), 및 제1 내부 전극(220)의 순서의 경로로 전파될 수 있다.
이때, 바리스터 소자(200)는 한 쌍의 제1 내부 전극(220)과 제2 내부 전극(230) 사이의 간격 및 바리스터 물질의 입경이 항복 전압(Vbr)을 만족할 수 있도록 형성될 수 있다. 여기서, 바리스터 소자(200)의 항복 전압(Vbr)은 제1 내부 전극(220)과 제2 내부 전극(230) 사이, 제2 내부 전극(230)과 제1 내부 전극(220) 사이 각각의 항복 전압의 총합이며, 외부전원에 의한 누설전류를 차단하도록 외부전원의 정격 전압(Vin)보다 클 수 있다.
이에 의해, 바리스터 소자(200)는 정전기가 유입되는 경우, 정전기의 전압이 항복 전압(Vbr)보다 크기 때문에 턴온되어 정전기를 통과시킬 수 있고, 아울러, 외부전원에 의한 누설전류가 유입되는 경우, 외부전원의 정격전압보다 항복 전압(Vbr)이 크기 때문에 턴오프되어 누설전류를 차단할 수 있다.
여기서, 제2 내부 전극(230)은 제1 외부 전극(240)에 연결되지 않은 것으로 도시되고 설명되었으나, 이에 한정되지 않고, 제1 내부 전극(220) 및 제2 내부 전극(230)의 배치 순서에 따라 제1 내부 전극(220)이 하나의 제1 외부 전극(240)에 연결되고, 제2 내부 전극(230)이 다른 하나의 제1 외부 전극(240)에 연결될 수도 있다.
아울러, 제1 내부 전극(220)은 제2 내부 전극(230)을 중심으로 상하에 배치될 수 있다. 즉, 제1 내부 전극(220)이 구비된 바리스터 물질층(210)과 제2 내부 전극(230)이 구비된 바리스터 물질층(210)이 반복적으로 적층될 수 있다.
이에 의해 정전기의 경로가 병렬로 복수 개가 구비되므로 정전기에 대한 응답특성을 더욱 향상시킬 수 있다.
이때, 제1 내부 전극(220) 및 제2 내부 전극(230)은 Ag, Pd, Pt, Au, Ni 및 Cu 중 적어도 하나 이상을 포함할 수 있다. 일례로, 제1 내부 전극(220) 및 제2 내부 전극(230)은 Ag 단독으로 사용되는 경우 정전기(ESD) 내성이 열화될 수 있기 때문에 Ag에 상기 열거된 성분 중 적어도 하나를 합금화할 수 있다.
한편, 도 5를 참조하면, 바리스터 소자(200)는 제1 외부 전극(240)을 더 포함할 수 있다.
제1 외부 전극(240)은 복수 개의 바리스터 물질층(210)의 양측에 구비된다. 여기서, 후술하는 바와 같이, 복합소자는 외부단자가 구비되므로, 제1 외부 전극(240)은 바리스터 물질층(210)의 양측과 외부단자 사이에 배치될 수 있다.
이에 의해, 제1 내부 전극(220) 또는 제2 내부 전극(230)과 외부단자 사이를 연결하기 위한 접촉면적이 증가함으로써, 정전기 인가시 제1 내부 전극(220) 또는 제2 내부 전극(230)과 외부단자 상의 스파크 발생 등의 현상을 억제할 수 있어 제품의 신뢰성을 향상시킬 수 있다.
아울러, 커패시터 소자(300)와의 접합 공정 등의 복합공정에서 개별적인 전기적 특성을 용이하게 측정할 수 있으므로 전기적 특성의 관리 및 제어가 용이하고 따라서 제품의 신뢰성을 더욱 향상시킬 수 있다.
이때, 제1 외부 전극(240)은 Ag와 글라스를 포함할 수 있다. 이에 의해 제1 내부 전극(220) 또는 제2 내부 전극(230)과 외부단자 사이를 연결하는 전기적 특성을 향상시키는 동시에 바리스터 물질층(210)과의 접착성을 향상시킬 수 있다.
여기서, 제1 외부 전극(240)은 그 두께가 15㎛ 이하이고, 그 폭은 200㎛ 이하일 수 있다. 이에 의해, 접합층(130)이 바리스터 소자(200)와 커패시터 소자(300) 사이, 즉, 제1 외부 전극(240)과 제2 외부 전극(330) 각각에 접착되는 면적을 증가시킴으로써 제1 외부 전극(240)과 제2 외부 전극(330)에 용이하게 접착될 수 있다.
아울러, 제1 외부 전극(240)은 제1 외부 전극(240)과 연결되지 않은 제1 내부 전극(220) 또는 제2 내부 전극(230)과의 최소 인접거리가 20㎛ 이상일 수 있다. 이에 의해, 상술한 바와 같이 제1 내부 전극(220) 및 제2 내부 전극(230) 사이에서 진행하는 정전기 등과 같은 신호의 경로가 제1 외부 전극(240)으로 변경되는 것을 방지할 수 있다.
제2 소자 준비 단계(S200)에서는 다층 적층 구조의 제2 소자(120)를 준비한다. 제2 소자 준비 단계(S200)에서는 다층 적층 구조로 형성되어 소성 공정을 통해 소성된 제2 소자(120)를 준비한다. 이때, 제2 소자 준비 단계(S200)에서는 다층 적층 구조로 형성된 커패시터 소자(300)를 제2 소자(120)로 준비하는 것을 일례로 한다.
도 6을 참조하면, 커패시터 소자(300)는 유전체 시트층(310) 및 커패시터 전극(320)을 포함한다.
유전체 시트층(310)은 유전체를 포함한다. 이때, 유전체는 BaTiO3을 주성분으로, Ti, Si, Sr, Bi, W, 및 Nd의 산화물 중 적어도 하나 이상을 포함하는 것을 일례로 한다.
여기서, 유전체 시트층(310)은 복수 개로 이루어진다. 즉, 하나의 유전체 시트층(310) 상에 하나의 커패시터 전극(320)이 구비되므로, 커패시터 전극(320)의 배치 구성에 따라 복수 개로 구성될 수 있다.
이와 같이, 유전체를 이용하여 커패시터 소자(300)를 구현함으로써, 커패시턴스의 대용량 구현이 용이하지 않은 바리스터 소자(200)의 특성을 보완하여 대용량으로 다양한 값으로 커패시턴스를 용이하게 구현할 수 있다.
특히, 커패시터 소자(300)는 바리스터 소자(200)와의 영향이 배제되어 내부에 적층 형성되는 커패시터 전극(320)의 간격을 보다 조밀하게 형성할 수 있어 커패시터 전극(320)의 적층 수를 증가시키거나, 고유전율의 유전체 시트층(310)을 이용하여 고용량의 커패시턴스의 구현이 용이할 수 있다.
아울러, 바리스터 소자(200)와 별도로 커패시터 소자(300)를 구현함으로써, 커패시턴스에 대한 설계 자유도가 증가하므로, 별도의 공정 변경없이도 다양한 용량의 라인업이 가능하여 고객사의 요구에 신속히 대응할 수 있다.
이에 의해 커패시터 소자(300)는 통신 목적에 대응하는 대역별 통신 신호를 감쇄없이 전달할 수 있다.
커패시터 전극(320)은 각각의 유전체 시트층(310) 상에 하나씩 구비될 수 있다.
이와 같이, 커패시터 소자(300)는 커패시터 전극(320)이 구비된 복수 개의 유전체 시트층(310)이 순차적으로 적층될 수 있다. 이때, 서로 대칭되는 위치에 커패시터 전극(320) 및 커패시터 전극(320)이 각각 구비되는 유전체 시트층(310)이 교대로 적층될 수 있다.
이때, 커패시터 소자(300)는 외부전원의 정격전압(Vin)보다 큰 절연 파괴 전압(Vcp)을 가질 수 있다. 이에 의해 커패시터 소자(300)는 외부전원에 의한 누설전류가 유입되는 경우, 누설전류를 차단하여 사용자의 감전을 방지할 수 있다.
여기서, 커패시터 전극(320) 사이의 거리는 20㎛ 이상일 수 있다. 이와 같이, 커패시터 전극(320)은 사이의 간격을 충분히 확보함으로써, 무선 통신에 적합한 커패시턴스를 구현하는 동시에 누설전류 차단을 위한 절연 파괴 전압(Vcp)을 증대시킬 수 있다.
이때, 커패시터 전극(320)은 Ag, Pd, Pt, Au, Ni, 및 Cu 중 적어도 1종 이상을 포함할 수 있다. 일례로, 커패시터 전극(320)은 Ag 단독으로 사용되는 경우 정전기(ESD) 내성이 열화될 수 있기 때문에 Ag에 상기 열거된 성분 중 적어도 하나를 합금화할 수 있다.
한편, 도 7을 참조하면, 커패시터 소자(300)는 제2 외부 전극(330)을 더 포함할 수 있다.
제2 외부 전극(330)은 복수 개의 유전체 시트층(310)의 양측에 구비된다. 여기서, 후술하는 바와 같이, 복합소자는 외부단자가 구비되므로, 제2 외부 전극(330)은 유전체 시트층(310)의 양측과 외부단자 사이에 배치될 수 있다.
이에 의해, 바리스터 소자(200)와의 접합 공정 등의 복합공정에서 개별적인 전기적 특성을 용이하게 측정할 수 있으므로 전기적 특성의 관리 및 제어가 용이하고 따라서 제품의 신뢰성을 향상시킬 수 있다.
이때, 제2 외부 전극(330)은 Ag와 글라스를 포함할 수 있다. 이에 의해 커패시터 전극(320)과 외부 단자(140) 사이를 연결하는 전기적 특성을 향상시키는 동시에 유전체 시트층(310)과의 접착성을 향상시킬 수 있다.
여기서, 제2 외부 전극(330)은 그 두께가 15㎛ 이하이고, 그 폭은 200㎛ 이하일 수 있다. 이에 의해, 접합층(130)이 바리스터 소자(200)와 커패시터 소자(300) 사이, 즉, 제1 외부 전극(240)과 제2 외부 전극(330) 각각에 접착되는 면적을 증가시킴으로써 제1 외부 전극(240)과 제2 외부 전극(330)에 용이하게 접착될 수 있다.
아울러, 제2 외부 전극(330)은 제2 외부 전극(330)과 연결되지 않은 커패시터 전극(320)과의 최소 인접거리가 20㎛ 이상일 수 있다. 즉, 하나의 커패시터 전극(320)과, 다른 커패시터 전극(320)이 연결된 제2 외부 전극(330) 사이의 거리가 20㎛ 이상일 수 있다.
이때, 바리스터 소자(200)와 커패시터 소자(300)는 대략 동일한 두께로 구비될 수 있지만, 이에 한정되지 않으며, 용도에 따라 서로 상이하게 구비될 수도 있다. 이때, 바리스터 소자(200)와 커패시터 소자(300)의 두께의 합은 복합소자의 규격을 만족하도록 설정된다. 일례로, 바리스터 소자(200)와 커패시터 소자(300)는 복합소자의 전체 두께의 1/3~2/3배의 두께로 구비될 수 있다.
점착 기재 준비 단계(S300)에서는 설정 온도 미만에서 접착성을 유지하고, 설정 온도를 이상으로 가열시 접착성을 상실하는 열반응성 접착 테이프를 점착 기재(400)로 준비한다. 즉, 점착 기재 준비 단계(S300)에서는 설정 온도 미만에서 이루어지는 적층 공정시 제1 소자(110)를 가접착하여 고정하고, 제조된 복합 소자(100)의 취출을 용이하게 하기 위해서 열반응성 접착 테이프를 점착 기재(400)로 준비한다. 이때, 열반응성 접착 테이프는 열박리 테이프, 발포 테이프 중 선택된 하나인 것을 일례로 한다.
점착 기재 준비 단계(S300)에서는 점착층(420) 및 커버층(430)으로 구성된 열반응성 점착 기재(400)를 준비할 수 있다. 일례로, 도 8을 참조하면, 점착 기재(400)는 기재 필름(410)의 상면에 형성된 점착층(420), 점착층(420)의 상면에 배치된 커버층(430)으로 구성된다.
점착층(420)은 비점착성 물질(422)과 점착성 물질(424)이 혼합되어 형성된다. 점착층(420)은 설정 온도 미만에서 비점착성 물질(422)이 점착성 물질(424) 내에 배치되어 접착력을 유지한다. 점착층(420)은 설정 온도 이상의 열이 가해짐에 따라 비점착성 물질(422)이 상부로 노출되어 접착력을 상실한다. 이때, 점착층(420)은 열박리 테이프, 발포 테이프의 점착면에 대응된다.
커버층(430)은 점착층(420)을 상면에 배치되어 점착층(420)을 보호하는 것으로, 열박리 테이프, 발포 테이프의 접착면에 부착된 박리지(또는 이형지)에 대응된다.
소자 어레이 영역 형성 단계(S400)에서는 점착 기재(400)에 소자 어레이 영역(450)을 형성한다. 즉, 소자 어레이 영역 형성 단계(S400)에서는 소자가 가접착되는 영역의 커버층(430)을 제거하여 점착 기재(400)에서 소자 어레이 영역(450)을 형성한다.
일례로, 도 9에 도시된 바와 같이, 소자 어레이 영역 형성 단계(S400)에서는 소자가 가접착되는 영역을 전체를 하프 타발(커팅)하여 하나의 소자 어레이 영역(450)을 형성할 수 있다.
다른 일례로, 도 10에 도시된 바와 같이, 소자 어레이 영역 형성 단계(S400)에서는 각각의 소자가 가접착되는 영역을 하프 타발(커팅)하여 복수의 소자 어레이 영역(450)을 형성할 수 있다.
제1 소자 가접착 단계(S500)에서는 점착 기재(400)의 소자 어레이 영역(450)에 제1 소자(110)를 가접착한다. 즉, 도 11을 참조하면, 제1 소자 가접착 단계(S500)에서는 SMT(Surface Mounter Technology) 공정을 통해 소자 어레이 영역(450)에 제1 소자(110)를 가접착한다. 이때, 제1 소자 가접착 단계(S500)에서는 소자 어레이 영역(450)에 복수의 제1 소자(110)들을 행렬 배치되도록 가접착한다.
접합층 형성 단계(S600)에서는 점착 기재(400)에 가접착된 제1 소자(110)의 상면에 접합층(130)을 형성한다. 이때, 접합층(130)은 제1 소자(110)와 제2 소자(120)를 이격시키도록 그 사이에 배치된다. 여기서, 접합층(130)은 제1 소자(110) 및 제2 소자(120)를 접합하는 기능과 전기적 및 열적으로 제1 소자(110) 및 제2 소자(120)를 분리하는 기능을 갖는다.
이에 의해, 제1 소자(110) 및 제2 소자(120; 즉, 바리스터 소자(200)와 커패시터 소자(300))의 상이한 온도특성에 의해 상호 간의 특성 열화를 방지할 수 있어, 바리스터 고유의 우수한 정전기(ESD) 내성을 가짐과 동시에 안정적인 온도특성을 제공할 수 있으며, 원하는 고용량의 커패시턴스를 용이하게 구현할 수 있다.
접합층 형성 단계(S600)에서는 열경화성 수지를 제1 소자(110)의 상면에 인쇄하여 접합층(130)을 형성한다. 일례로, 도 12를 참조하면, 접합층 형성 단계(S600)에서는 제1 소자(110)의 상면에 에폭시를 인쇄하여 접합층(130)을 형성할 수 있다. 이때, 에폭시는 제1 소자(110) 및 제2 소자(120)를 전기적으로 및 열적으로 분리시키도록 비도전성 특징을 가질 수 있다. 이를 위해 에폭시는 절연저항이 10㏁이상일 수 있다.
접합층 형성 단계(S600)에서는 스크린 인쇄 또는 디스펜싱 인쇄 방식을 통해 열경화성 수지를 제1 소자(110)의 상면에 인쇄하여 접합층(130)을 형성한다. 이때, 접합층 형성 단계(S600)에서는 제1 소자(110)에 제2 소자(120)를 적층하는 과정에서 접합층(130)이 외부로 빠져나오지 않을 정도의 열경화성 수지를 제1 소자(110)의 상면에 인쇄한다.
접합층 형성 단계(S600)에서는 에폭시 등의 열경화성 수지 이외에도, 이종 재질의 제1 소자(110) 및 제2 소자(120)를 접합할 수 있는 본드, 접착성을 갖는 페이스트 등의 접착재로 접합층(130)을 형성할 수도 있다.
접합층 형성 단계(S600)에서는 한 쌍의 제1 외부 전극(240)이 한 쌍의 제2 외부 전극(330)을 이격시키도록 제1 외부 전극(240) 및 제2 외부 전극(330) 부분까지 접합층(130)을 연장형성할 수 있다.
제2 소자 적층 단계(S700)에서는 제1 소자(110)의 상면에 형성된 접합층(130) 상에 제2 소자(120)를 적층한다. 즉, 도 13을 참조하면, 제2 소자 적층 단계(S700)에서는 SMT 공정을 통해 소자 어레이 영역(450)에 가접착된 제1 소자(110)의 상면에 형성된 접합층(130) 상에 제2 소자(120)를 적층한다.
복합 소자 형성 단계(S800)에서는 제1 소자(110)와 제2 소자(120) 사이에 개재된 접합층(130)에 열을 가하여 제1 소자(110) 및 제2 소자(120)를 접합하여 복합 소자(100)를 형성한다. 즉, 도 14를 참조하면, 복합 소자 형성 단계(S800)에서는 소정의 열을 가하여 접합층(130)을 경화시켜 제1 소자(110) 및 제2 소자(120)를 접합한다.
복합 소자 형성 단계(S800)에서는 열과 압력을 동시에 가하여 제1 소자(110) 및 제2 소자(120)를 접합하여 복합 소자(100)를 형성할 수도 있다. 즉, 복합 소자 형성 단계(S800)에서 열만 가하는 경우 점착 기재(400)의 접착력이 저하되어 제1 소자(110) 및 제2 소자(120)가 어긋날 수 있다. 이 경우, 복합 소자(100)의 성능 열화가 발생할 수 있으므로, 복합 소자 형성 단계(S800)에서는 하부 방향(즉, 제2 소자(120)에서 제1 소자(110) 방향)으로 압력을 가함과 동시에 열을 가하여 제1 소자(110) 및 제2 소자(120)를 접합한다.
복합 소자 취출 단계(S900)에서는 점착 기재(400)로부터 복합 소자(100)를 취출한다. 복합 소자 취출 단계(S900)에서는 설정 온도 이상의 열을 가하여 점착 기재(400)의 접착력을 상실시켜 점착 기재(400)로부터 복합 소자(100)를 취출한다. 이때, 점착층(420)은 설정 온도 이상의 열을 가할 경우 접착력을 상실하기 때문에 복합 소자(100)를 용이하게 취출할 수 있다.
종래에는 복합 소자 제조 방법에서는 SMT 설비 또는 지그(Zig)에 형성된 복수의 홈에 소자를 삽입 및 정렬하여 복합 소자(100)를 제조하기 때문에, 제조된 복합 소자(100)의 분리가 어려워 생산 효율이 저하된다.
이에 반해, 본 발명의 실시 예에 따른 복합 소자 제조 방법에서는 열반응성 접착 테이프인 점착 기재(400)에 소자를 정렬 및 가접착하여 복합 소자(100)를 제조하기 때문에, 가열을 통해 점착 기재(400)의 접착력을 상실시킨 후 점착 기재(400)를 기울이거나 뒤집어 복수의 복합 소자(100)를 한 번에 취출할 수 있어 종래에 비해 복합 소자(100)의 분리가 용이하고, 생산 효율이 증대되는 효과가 있다.
한편, 본 발명의 실시 예에 따른 복합 소자 제조 방법은 외부 단자(140) 형성 단계(미도시)를 더 포함할 수 있다.
외부 단자(140) 형성 단계에서는 제1 소자(110) 및 제2 소자(120)의 양측에 전기적 통전을 위해 외부 단자(140)를 형성한다. 이때, 외부 단자(140)는 도전성 에폭시에 금속을 분산시킨 페이스트일 수 있다. 선택적으로, 외부 단자(140)는 진공 증착 등의 방식에 의해 형성할 수도 있다.
이와 같이, 페이스트로 외부 단자(140)를 형성함으로써, 디핑(dipping) 방식으로 형성할 수 있으므로 제조 공상이 용이하고 저비용으로 형성할 수 있다.
아울러, 도전성 에폭시는 경화 후 접합된 제1 소자(110)와 제2 소자(120) 사이의 결합력을 더욱 증가시키는 기능을 갖는다.
이후 SMT 공정을 용이하게 하기 위하여 외부 단자(140)를 Ni 도금 후 Sn 도금할 수 있다. 또한, 선택적으로 Ni 도금 후 Au 도금할 수도 있다.
접합층(130) 및 외부 단자(140)를 구성하는 에폭시는 경화 공정이 완료되면, 300도 이하의 온도에서 안정화되어야 하며 이로 인해 SMT 작업이 가능해질 수 있다. 이와 같이 제작된 제1 소자(110)와 제2 소자(120)의 접합 강도는 세라(shera) 테스트 기준으로 1kgf 이상이며, 외부 단자(140)의 단자 강도는 0.8kgf 이상일 수 있다.
도 15를 참조하면, 본 발명의 실시 예에 따른 복합 소자 제조 방법에 의해 제조된 복합 소자(100)는 전압-전류 특성 및 정전기(ESD) 특성 측면에서 바리스터 타입과 유사한 특성을 가지므로 써프레서 타입에 비하여 우수한 특성을 가지며, 주파수 특성에서 고용량 커패시턴스 구현이 용이한 써프레서 타입과 유사한 특성을 가지므로 바리스터 타입에 비하여 광대역 특성을 갖는다.
따라서, 복합 소자(100)는 정전기 방호기능, 누설전류 차단 기능 및 무선 통신 기능을 모두 제공할 수 있다.
도 16을 참조하면, 복합 소자(100)는 휴대 단말(10)의 메탈케이스와 같은 전도체(12)와 회로부(14) 사이를 전기적으로 연결하도록 배치될 수 있다. 이때, 복합 소자(100)는 회로부(14)의 접지에 직접 연결되어 바리스터 소자의 턴온에 의해 유입되는 정전기를 회로부(14)로 전달하지 않고 접지로 바이패스시킬 수 있다.
선택적으로, 복합 소자(100)가 회로부(14)의 접지에 직접 연결되지 않은 경우, 즉, 전도체(12)와 회로부(14)를 전기적으로 연결하여 정전기를 통과시키기만 하는 경우, 휴대 단말(10)은 정전기를 접지로 바이패스하기 위한 별도의 보호소자를 구비할 수 있다. 이러한 보호소자는 단일 소자로 이루어진 써프레서 또는 바리스터일 수 있다.
이와 같이, 복합 소자(100)는 전도체(12)로부터 정전기가 유입되는 경우, 바리스터 소자의 턴온에 의해 정전기를 통과시킬 수 있다. 즉, 복합 소자(100)는 그 항복전압(Vbr)이 정전기의 순간 전압보다 작기 때문에, 전기적으로 도통되어 정전기를 통과시킬 수 있다. 결과적으로, 복합 소자(100)는 전도체(12)로부터 정전기 유입시 전기적 저항이 낮아져 자체가 절연파괴되지 않고 정전기를 통과시킬 수 있다.
이때, 복합 소자(100) 내에 구비된 커패시터 소자는 그 절연 파괴 전압(Vcp)이 바리스터 소자의 항복전압(Vbr)보다 크기 때문에, 정전기는 커패시터 소자로 유입되지 않고, 바리스터 소자로만 통과될 수 있다.
또한, 복합 소자(100)는 회로부(14)의 접지로부터 외부전원의 누설전류가 유입되는 경우, 바리스터 소자의 턴오프 및 커패시터 소자에 의해 누설전류가 전도체(12)로 전달되지 않도록 차단될 수 있다.
즉, 회로부(14)의 회로기판, 예를 들면, 접지를 통하여 외부전원의 누설전류가 전도체(12)로 유입되는 경우, 복합 소자(100)는 그 항복전압(Vbr)이 누설전류에 의한 과전압에 비하여 크기 때문에, 오픈 상태로 유지될 수 있다. 환원하면, 복합 소자(100)는 그의 항복전압(Vbr)이 휴대 단말(10)의 외부전원의 정격전압보다 크기 때문에, 전기적으로 도통되지 않고 오픈 상태를 유지하여 메탈 케이스 등과 같은 인체접촉 가능한 전도체(12)로 누설전류가 전달되는 것을 차단할 수 있다.
이때, 복합 소자(100) 내에 구비된 커패시터 소자는 누설전류에 포함된 DC 성분을 차단할 수 있고, 아울러, 누설 전류의 AC 성분이 무선통신 대역에 비하여 상대적으로 낮은 주파수를 갖기 때문에, 해당 주파수에 대하여 큰 임피던스로 작용함으로써 누설전류를 차단할 수 있다.
결과적으로, 복합 소자(100)는 회로부(14)의 접지로부터 유입되는 외부전원에 의한 누설전류를 차단하여 사용자를 감전으로부터 보호할 수 있다.
또한, 복합 소자(100)는 전도체(12)가 안테나의 일부로 구성되는 경우, 전도체(12)를 통해 유입되는 통신 신호를 커패시터 소자에 의해 통과시킬 수 있다. 이때, 바리스터 소자는 턴오프되어 복합 소자(100)는 커패시터로서 기능할 수 있다.
즉, 복합 소자(100)는 바리스터 소자가 오픈 상태로 유지되어 전도체(12)와 회로부(14)를 차단하지만, 내부의 커패시터 소자가 유입된 통신 신호를 통과시킬 수 있다. 이와 같이, 복합 소자(100)의 커패시터 소자는 통신 신호의 유입 경로를 제공할 수 있다.
여기서, 휴대 단말(10)은 휴대가 가능하고 운반이 용이한 휴대용 전자기기의 형태일 수 있다. 일례로, 휴대 단말(10)은 스마트폰, 셀룰러폰 등과 같은 휴대 단말(10)일 수 있으며, 스마트 워치, 디지털 카메라, DMB, 전자책, 넷북, 태블릿 PC, 휴대용 컴퓨터 등일 수 있다. 이러한 전자장치들은 외부기기와의 통신을 위한 안테나 구조들을 포함하는 임의의 적절한 전자 컴포넌트들을 구비할 수 있다. 더불어, 와이파이(WiFi) 및 블루투스와 같은 근거리 네트워크 통신을 사용하는 기기일 수 있다.
이와 같은 휴대 단말(10)은 금속(알루미늄, 스테인리스 스틸 등)과 같은 도전성 재료들, 또는 탄소-섬유 합성 재료 또는 기타 섬유 계열 합성물들, 유리, 세라믹, 플라스틱 및 이들을 조합한 재료로 이루어진 외부 하우징을 포함할 수 있다.
이때, 휴대 단말(10)의 하우징은 금속으로 이루어지고 외부로 노출되는 전도체(12)를 포함할 수 있다. 여기서, 전도체(12)는 전자장치와 외부기기의 통신을 위한 안테나, 메탈 케이스, 및 도전성 장신구 중 적어도 하나를 포함할 수 있다.
특히, 메탈 케이스는 휴대 단말(10)의 하우징 측부를 부분적으로 둘러싸거나 전체적으로 둘러싸도록 구비될 수 있다. 또한, 메탈 케이스는 전자장치의 하우징의 전면 또는 후면에 외부로 노출되도록 구비되는 카메라를 둘러싸도록 구비될 수 있다.
여기서, 복합 소자(100)는 휴대 단말(10)의 하우징에 구비되는 메탈 케이스의 개수에 맞춰 적절하게 구비될 수 있다. 다만, 메탈 케이스가 복수 개로 구비되는 경우 각각의 메탈 케이스는 모두 복합 소자(100)가 개별적으로 연결되도록 휴대 단말(10)의 하우징에 내장될 수 있다.
즉, 도 17에 도시된 바와 같이 휴대 단말(10)의 하우징의 측부를 둘러싸는 메탈 케이스와 같은 전도체(12)가 네 부분으로 이루어지는 경우 각각의 전도체(12a, 12b, 12c, 12d)는 모두 복합 소자(100)와 연결됨으로써 누설전류 및 정전기로부터 휴대 단말(10) 내부의 회로를 보호할 수 있다.
이때, 복합 소자(100)는 복수 개의 메탈 케이스(12a, 12b, 12c, 12d)가 구비되는 경우 메탈 케이스(12a, 12b, 12c, 12d)의 해당 역할에 맞게 다양한 방식으로 구비될 수 있다.
일례로, 휴대 단말(10)의 하우징에 외부로 노출되는 카메라가 구비되는 경우 카메라를 둘러싸는 전도체(12d)에 복합 소자(100)가 적용되는 경우, 복합 소자(100)는 누설전류를 차단하고 정전기로부터 내부회로를 방호하는 형태로 구비될 수 있다.
또한, 메탈 케이스(12b)가 그라운드 역할을 수행하는 경우 복합 소자(100)는 메탈 케이스(12b)와 연결되어 누설전류를 차단하고 정전기로부터 내부회로를 보호하는 형태로 구비될 수 있다.
한편, 도 18을 참조하면, 복합 소자(100)는 메탈 케이스(12)와 회로기판(14) 사이를 연결할 수 있다. 이때, 복합 소자(100)는 정전기를 자체 파손 없이 통과시키기 위한 것이기 때문에, 회로기판(14)은 정전기를 접지로 바이패스하기 위한 별도의 보호소자(16)를 구비할 수 있다. 여기서, 보호소자(16)는 써프레서 또는 바리스터일 수 있다.
도 19를 참조하면, 복합 소자(100)는 메탈 케이스(12)와 FFM(front End Module; 14a) 사이에서 정합회로(예를 들면, R 및 L 성분)를 통하여 배치될 수 있다. 여기서 메탈 케이스(12)는 안테나일 수 있다. 이때, 복합 소자(100)는 통신 신호를 감쇄없이 통과시키는 동시에 메탈 케이스(12)로부터의 정전기를 통과시키고, 정합회로를 통하여 접지로부터 유입되는 누설전류를 차단시키기 위한 것이다.
도 20을 참조하면, 복합 소자(100)는 안테나가 구비된 메탈 케이스(12)와 해당 안테나를 통한 통신 기능을 구현하는 IC(14c) 사이에 배치될 수 있다. 여기서, 해당 통신 기능은 NFC 통신일 수 있다. 이때, 복합 소자(100)는 정전기를 자체 파손 없이 통과시키기 위한 것이기 때문에, 정전기를 접지로 바이패스하기 위한 별도의 보호소자(16)를 구비할 수 있다. 여기서, 보호소자(16)는 써프레서 또는 바리스터일 수 있다.
도 21에 도시된 바와 같이, 복합 소자(100)는 PIFA(Planar Inverted F Antenna) 안테나(20)의 쇼트 핀(short pin; 22)과 매칭회로 사이에 배치될 수 있다. 이때, 복합 소자(100)는 통신 신호를 감쇄없이 통과시키는 동시에 메탈 케이스(12)로부터의 정전기를 통과시키고, 정합회로를 통하여 접지로부터 유입되는 누설전류를 차단시키기 위한 것이다.
또한, 전도체(12)는 도전성 케이스에서 외측으로 돌출 형성되는 첨단부를 포함할 수 있다. 일례로, 전도체(12)는 사이드 키를 포함할 수 있다.
아울러, 첨단부는 외부 기기와 연결을 위한 커넥터의 삽입구, 일례로, 이어폰, 충전 케이블, 데이터 케이블 등이 삽입되는 커넥터의 삽입구의 일단을 포함할 수 있다.
즉, 본 발명의 실시 예에 따른 복합 소자 제조 방법에 의해 제조된 복합 소자(100)는 정전기의 유입 가능성이 높은 외부로 돌출된 부분이나 뾰족한 형상을 갖는 부분과 회로부(14)를 연결하기는 경우, 정전기(ESD)에 대한 높은 응답특성 및 고용량 커패시턴스를 동시에 구현할 수 있다.
이상에서 본 발명에 따른 바람직한 실시 예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형 예 및 수정 예를 실시할 수 있을 것으로 이해된다.

Claims (16)

  1. 열반응성 점착 기재를 준비하는 단계;
    상기 점착 기재에 제1 소자를 가접착하는 단계;
    상기 제1 소자의 상면에 접합층을 형성하는 단계;
    상기 접합층의 상면에 제2 소자를 적층하는 단계;
    상기 제1 소자 및 제2 소자를 접착하여 복합 소자를 제조하는 단계; 및
    상기 점착 기재로부터 상기 복합 소자를 취출하는 단계를 포함하는 복합 소자 제조 방법.
  2. 제1항에 있어서,
    상기 제1 소자는 세라믹 재질의 소자이고, 상기 제2 소자는 상기 제1 소자와 이종 재질의 소자인 복합 소자 제조 방법.
  3. 제1항에 있어서,
    상기 제1 소자 및 상기 제2 소자는 세라믹 재질의 소자인 복합 소자 제조 방법.
  4. 제1항에 있어서,
    상기 제1 소자는 바리스터 소자 및 커패시터 소자 중 하나이고,
    상기 제2 소자는 바리스터 소자 및 커패시터 소자 중 다른 하나인 복합 소자 제조 방법.
  5. 제1항에 있어서,
    상기 제1 소자 및 제2 소자는 다층 적층 구조이고, 상기 제1 소자 및 제2 소자는 이종 재질인 복합 소자 제조 방법.
  6. 제1항에 있어서,
    상기 점착 기재는 열박리 테이프 또는 발포 테이프인 복합 소자 제조 방법.
  7. 제1항에 있어서,
    상기 점착 기재는 비점착성 물질 및 점착성 물질이 혼합된 점착층을 포함하는 복합 소자 제조 방법.
  8. 제1항에 있어서,
    상기 제1 소자를 가접착하는 단계 이전에 상기 점착 기재의 커버층을 제거하여 소자 어레이 영역을 형성하는 단계를 더 포함하는 복합 소자 제조 방법.
  9. 제8항에 있어서,
    상기 제1 소자를 가접착하는 단계에서는 상기 소자 어레이 영역에 복수의 제1 소자가 행렬 배치되도록 가접착하는 복합 소자 제조 방법.
  10. 제1항에 있어서,
    상기 제1 소자를 가접착하는 단계 이전에 상기 점착 기재의 커버층을 제거하여 상호 이격된 복수의 소자 어레이 영역을 형성하는 단계를 더 포함하는 복합 소자 제조 방법.
  11. 제10항에 있어서,
    상기 제1 소자를 가접착하는 단계에서는 상기 복수의 소자 어레이 영역 각각에 하나의 제1 소자를 가접착하는 복합 소자 제조 방법.
  12. 제1항에 있어서,
    상기 접합층을 형성하는 단계에서는 스크린 인쇄 또는 디스펜싱 방식으로 상기 제1 소자의 상면에 접착재를 도포하여 접합층을 형성하는 복합 소자 제조 방법.
  13. 제1항에 있어서,
    상기 복합 소자 형성 단계에서는 리플로우 공정을 통해 상기 제1 소자의 상면 및 상기 제2 소자의 하면 사이에 개재된 상기 접합층을 경화시켜 상기 제1 소자 및 상기 제2 소자를 접착하는 복합 소자 제조 방법.
  14. 제1항에 있어서,
    상기 복합 소자를 취출하는 단계에서는 리플로우 공정을 통해 상기 점착 기재의 점착성을 상실시켜 상기 점착 기재로부터 상기 복합 소자를 취출하는 복합 소자 제조 방법.
  15. 제1항에 있어서,
    상기 점착 기재로부터 취출된 상기 복합 소자의 양측에 외부 단자를 형성하는 단계를 더 포함하는 복합 소자 제조 방법.
  16. 제1항에 기재된 복합 소자 제조 방법에 의해 제조된 복합 소자.
PCT/KR2018/007981 2017-08-18 2018-07-13 복합 소자 제조 방법 및 이에 의해 제조된 복합 소자 WO2019035559A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0104796 2017-08-18
KR1020170104796A KR102064885B1 (ko) 2017-08-18 2017-08-18 복합 소자 제조 방법 및 이에 의해 제조된 복합 소자

Publications (1)

Publication Number Publication Date
WO2019035559A1 true WO2019035559A1 (ko) 2019-02-21

Family

ID=65361892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007981 WO2019035559A1 (ko) 2017-08-18 2018-07-13 복합 소자 제조 방법 및 이에 의해 제조된 복합 소자

Country Status (2)

Country Link
KR (1) KR102064885B1 (ko)
WO (1) WO2019035559A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220246334A1 (en) * 2021-02-01 2022-08-04 KYOCERA AVX Components Corporation Varistor Having Flexible Terminations

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102472342B1 (ko) * 2020-02-10 2022-11-30 진테크 주식회사 열반응성 점착제층을 구비한 전자파 차폐용 캐리어 금속극박 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325978A (ja) * 1993-05-11 1994-11-25 Taiyo Yuden Co Ltd 複合電子部品とその製造方法
JPH10125564A (ja) * 1996-10-17 1998-05-15 Murata Mfg Co Ltd チップ状部品の製造方法
JP2002254417A (ja) * 2001-03-05 2002-09-11 Nitto Denko Corp セラミックグリーンシートの製造方法、積層セラミック電子部品の製造方法およびセラミックグリーンシート用キャリアシート
KR20100048044A (ko) * 2008-10-30 2010-05-11 조인셋 주식회사 표면 실장 가능한 복합 세라믹 칩 부품
KR20120072870A (ko) * 2010-12-24 2012-07-04 삼성전기주식회사 적층 세라믹 전자부품의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684334B1 (ko) 2005-10-31 2007-02-20 (주) 래트론 이종소재를 이용한 다련 바리스터-노이즈 필터 복합 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325978A (ja) * 1993-05-11 1994-11-25 Taiyo Yuden Co Ltd 複合電子部品とその製造方法
JPH10125564A (ja) * 1996-10-17 1998-05-15 Murata Mfg Co Ltd チップ状部品の製造方法
JP2002254417A (ja) * 2001-03-05 2002-09-11 Nitto Denko Corp セラミックグリーンシートの製造方法、積層セラミック電子部品の製造方法およびセラミックグリーンシート用キャリアシート
KR20100048044A (ko) * 2008-10-30 2010-05-11 조인셋 주식회사 표면 실장 가능한 복합 세라믹 칩 부품
KR20120072870A (ko) * 2010-12-24 2012-07-04 삼성전기주식회사 적층 세라믹 전자부품의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220246334A1 (en) * 2021-02-01 2022-08-04 KYOCERA AVX Components Corporation Varistor Having Flexible Terminations

Also Published As

Publication number Publication date
KR20190019620A (ko) 2019-02-27
KR102064885B1 (ko) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2017003001A1 (ko) 감전보호용 컨택터 및 이를 구비한 휴대용 전자장치
WO2013055026A1 (ko) 배터리 보호회로의 패키지 모듈
WO2018021786A1 (ko) 복합 소자 및 이를 구비하는 전자기기
WO2015009087A1 (ko) 배터리 보호회로 모듈 패키지와 홀더가 결합된 구조체 및 이를 구비한 배터리팩
WO2019035559A1 (ko) 복합 소자 제조 방법 및 이에 의해 제조된 복합 소자
WO2017209448A1 (ko) 컨택터
WO2018105912A1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
WO2018088762A1 (ko) 기능성 컨택터
WO2018203632A1 (ko) 복합형 감전방지소자 및 이를 구비한 휴대용 전자장치
WO2015002401A1 (ko) 배터리 보호회로 모듈 패키지, 배터리 팩 및 이를 구비하는 전자장치
WO2018182249A1 (ko) 감전보호소자, 그 제조 방법 및 이를 구비한 휴대용 전자장치
WO2018084587A1 (ko) 기능성 컨택터
WO2021040225A1 (ko) 안테나 패키지의 제조 방법
WO2017135566A1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
WO2019146872A1 (ko) 이차 전지 및 그 제조 방법
WO2018117447A1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
WO2018066871A1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
WO2018124535A1 (ko) 복합 소자 및 이를 구비하는 전자기기
WO2020204623A1 (ko) 플렉서블 케이블 점퍼 장치 및 이를 제조하는 방법
WO2017146517A1 (ko) 기능성 컨택터 및 이를 구비한 휴대용 전자장치
WO2016080623A1 (ko) 감전보호소자 및 이를 구비한 휴대용 전자장치
WO2020055139A1 (ko) 복합소자 제조방법 및 이로 구현된 복합소자
WO2017196151A1 (ko) 컨택터 및 이를 구비하는 전자기기
WO2019031738A1 (ko) 복합형 감전방지소자 및 이를 구비한 휴대용 전자장치
WO2016104959A1 (ko) Pma 무선 충전 방식 무선전력 수신모듈용 어트랙터 및 그 제조방법과, 이를 구비하는 무선전력 수신모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846086

Country of ref document: EP

Kind code of ref document: A1