WO2018062321A1 - 高周波フロントエンド回路および通信装置 - Google Patents

高周波フロントエンド回路および通信装置 Download PDF

Info

Publication number
WO2018062321A1
WO2018062321A1 PCT/JP2017/035065 JP2017035065W WO2018062321A1 WO 2018062321 A1 WO2018062321 A1 WO 2018062321A1 JP 2017035065 W JP2017035065 W JP 2017035065W WO 2018062321 A1 WO2018062321 A1 WO 2018062321A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
filter
frequency
elimination filter
acoustic wave
Prior art date
Application number
PCT/JP2017/035065
Other languages
English (en)
French (fr)
Inventor
宮崎 大輔
壮央 竹内
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201780060636.7A priority Critical patent/CN109792240B/zh
Publication of WO2018062321A1 publication Critical patent/WO2018062321A1/ja
Priority to US16/360,248 priority patent/US10756768B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves
    • H03H9/725Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/006Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/703Networks using bulk acoustic wave devices
    • H03H9/706Duplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • H04B1/0057Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using diplexing or multiplexing filters for selecting the desired band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • H04B1/0075Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands using different intermediate frequencied for the different bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to a high-frequency front-end circuit and a communication device.
  • Recent cellular phones are required to support a plurality of frequencies and radio systems in one terminal (multiband and multimode).
  • Front-end modules that support multi-band and multi-mode are required to process a plurality of transmission / reception signals at high speed without degrading quality.
  • it is required to perform carrier aggregation that simultaneously transmits and receives high-frequency signals of a plurality of bands.
  • FIG. 21 is a circuit configuration diagram of the electric circuit described in Patent Document 1.
  • the electric circuit described in the figure is a front-end filter circuit connected to an antenna, and includes extraction filter circuits 501 and 502.
  • the extraction filter circuit 501 includes a band pass filter 501A and a band stop filter 501B
  • the extraction filter circuit 502 includes a band pass filter 502A and a band stop filter 502B.
  • a GPS signal is passed.
  • the second signal path including the input terminal In, the band stop filter 501B, the band pass filter 502A, and the output terminal Out2 for example, a WLAN signal is passed.
  • the third signal path including the input terminal In, the band stop filter 501B, the band stop filter 502B, and the output terminal Out3, signals other than the GPS signal and the WLAN signal are passed. That is, the extraction filter circuit 501 and the extraction filter circuit 502 are cascade-connected, so that in the subsequent stage of these two circuits, the two frequency bands (GPS and WLAN) and the frequency band from which the two frequency bands are removed Three signals are demultiplexed and output.
  • the filter circuit described in Patent Document 1 can demultiplex and output two frequency bands (for example, GPS and WLAN) and a frequency band from which the two frequency bands are removed.
  • the bandpass filter 501A and the bandstop filter 501B are commonly connected at the input terminal In, the bandstop filter 501B is affected by the bandpass filter 501A, and the filter characteristics are deteriorated.
  • the band stop filter 502A and the band stop filter 502B are commonly connected at the output terminal of the band stop filter 501B, the band stop filter 502B is affected by the band pass filter 502A, and the filter characteristics deteriorate. .
  • the high-frequency signal input from the input terminal In passes through the single band-pass filter because it passes through the band-stop filter 501B before passing through the band-pass filter 502A. Compared with the case, the insertion loss increases and the propagation characteristics deteriorate.
  • the filter circuit described in Patent Document 1 is applied to a system in which the number of bands is further increased, the number of band-stop filters to be added in front of the band-pass filter is increased. It becomes difficult to meet the demand for downsizing.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a small high-frequency front-end circuit and communication device while maintaining low-loss signal propagation characteristics.
  • a high-frequency front-end circuit includes an antenna common terminal connected to an antenna element, a first input / output terminal, a second input / output terminal, and a third input / output terminal.
  • a first filter connected between the antenna common terminal and the first input / output terminal and having a frequency band including a first frequency band as a pass band; and the antenna common terminal and the second input / output terminal.
  • a first band elimination filter having a frequency band that includes one frequency band but does not include a third frequency band different from the first frequency band and the second frequency band; and the antenna common terminal A second band elimination between the third input / output terminal and connected in series with the first band elimination filter, wherein the frequency band including the second frequency band and not including the third frequency band is an attenuation band.
  • a filter, and the first filter is connected to the antenna common terminal and the first input / output terminal without passing through the first band elimination filter and the second band elimination filter,
  • the antenna common terminal and the second input / output terminal are connected without passing through the first band elimination filter and the second band elimination filter.
  • the filter having the third frequency band as the pass band is composed of two band elimination filters connected in series. Since the second filter and the second band elimination filter are not commonly connected at the antenna terminal and are electrically independent, the second band elimination filter is not affected by the second filter. Thereby, in the signal path for propagating the high-frequency signal in the third frequency band, compared to the case where the second filter and the second band elimination filter are not electrically independent (that is, in a common connection), Insertion loss in the passband can be reduced.
  • the signal path that propagates the high-frequency signal in the first frequency band it does not pass through the band elimination filter and passes only through the first filter. Further, in the signal path that propagates the high-frequency signal in the second frequency band, the signal path passes through only the second filter without passing through the band elimination filter. That is, since the signal passing through the second input / output terminal passes only through the second filter that is electrically independent of the second band elimination filter, the insertion loss can be reduced.
  • the first band elimination filter is a filter having the first frequency band as an attenuation band.
  • the design parameters of the acoustic wave resonator constituting the first filter having the first frequency band as the pass band can be applied, and the same manufacturing process as that of the first filter can be applied.
  • the elastic wave resonator of the first filter is a filter having the second frequency band as an attenuation band.
  • the design parameters of the elastic wave resonator constituting the second filter having the second frequency band as the pass band can be applied, and the same manufacturing process as that of the second filter can be applied.
  • the elastic wave resonator of the second filter since it is not necessary to provide as many band-pass filters as the number of frequency bands in configuring the multiplexer circuit, the manufacturing process can be simplified and reduced in size.
  • first filter and the first band elimination filter may be formed on the same chip, and the second filter and the second band elimination filter may be formed on the same chip.
  • the design parameters of the acoustic wave resonator constituting the first filter having the first frequency band as the pass band can be applied, and the same manufacturing process as that of the first filter can be applied. Applicable. Furthermore, it is possible to use the elastic wave resonator of the first filter.
  • the design parameters of the acoustic wave resonator constituting the second filter having the second frequency band as the pass band can be applied, and the same manufacturing process as that of the second filter can be applied. Furthermore, it is possible to use the elastic wave resonator of the second filter. Therefore, it is easy to form the first filter and the first band elimination filter on the same chip, and form the second filter and the second band elimination filter on the same chip. Thereby, the manufacturing process can be further simplified and downsized.
  • first filter and the first band elimination filter are formed in a first chip
  • second filter and the second band elimination filter are formed in a second chip
  • Each of the first filter, the first band elimination filter, the second filter, and the second band elimination filter includes one or more acoustic wave resonators
  • the first chip includes a surface acoustic wave filter and a BAW (Bulk).
  • the acoustic wave filter is composed of only one of the acoustic wave filters
  • the second chip is composed of only one of the surface acoustic wave filter and the acoustic wave filter using BAW. Also good.
  • the first filter and the second filter can be separately made of SAW or BAW according to the required specifications of the high-frequency signal passing through the first frequency band and the second frequency band, and the degree of design freedom is improved. .
  • the first band elimination filter and the second band elimination filter are connected in order of the antenna common terminal, the first band elimination filter, the second band elimination filter, and the third input / output terminal.
  • the reflection coefficient in the first frequency band when the single band elimination filter is viewed from the antenna common terminal side as a single unit is the second frequency when the second band elimination filter is viewed from the antenna common terminal side as a single unit. It may be larger than the reflection coefficient in the band.
  • the first filter When the first filter, the second filter, and the first band elimination filter / second band elimination filter constituting the demultiplexing / multiplexing circuit are connected in common at the antenna common terminal, the first filter
  • the insertion loss in the pass band is affected by the reflection characteristics viewed from the antenna common terminal side of the first band elimination filter in addition to the insertion loss of the first filter alone.
  • the insertion loss in the pass band of the second filter is affected by the reflection characteristics viewed from the antenna common terminal side of the second band elimination filter in addition to the insertion loss of the second filter alone. More specifically, the insertion loss in the pass band of the first filter decreases as the reflection coefficient in the first frequency band viewed from the antenna common terminal side of the first band elimination filter increases, and in the pass band of the second filter.
  • the insertion loss decreases as the reflection coefficient in the second frequency band viewed from the antenna common terminal side of the second band elimination filter increases (hereinafter, the loss due to the fact that the stop band is not totally reflected at the common terminal is referred to as a bundle loss). .
  • the bundle loss of the first filter caused by the first band elimination filter is the second band elimination filter. It becomes larger than the bundle loss of the second filter due to the above. For this reason, the reflection coefficient in the first frequency band of the first band elimination filter is made larger than the reflection coefficient in the second frequency band of the second band elimination filter.
  • the loss of bundling of the first filter and the second filter can be effectively reduced without arranging a switch between the antenna element and the first filter and the second filter. It is possible to provide a small high-frequency front-end circuit that can maintain a good signal propagation characteristic.
  • the third frequency band, the first frequency band, and the second frequency band are arranged in order from the lowest frequency, and the first band elimination filter and the second band elimination filter are the third frequency band,
  • a low-pass filter having a frequency band including the frequency band as a pass band may be configured.
  • the third frequency band having the lowest frequency by the first band elimination filter and the second band elimination filter. Furthermore, since the third frequency band is formed by a low-pass filter, the third frequency band can be widened.
  • the third frequency band is a middle low band (MLB: 1475.9-2025 MHz), the first frequency band is a middle band (MB: 2110-2200 MHz), and the second frequency band is a high frequency band.
  • Band (HB: 2496-2690 MHz) the first filter is a band pass filter having a band 66 (reception band: 2110-2200 MHz) of LTE (Long Term Evolution), and the second filter is:
  • the band-pass filter uses a band 41 (reception band: 2496-2690 MHz) of LTE as a pass band, and the first band removal filter and the second band removal filter pass a band 3 (reception band: 1805-1880 MHz). Is a low-pass filter It may be.
  • the high-frequency front-end circuit can be applied to, for example, a middle-band, middle-band, and high-band-compatible 3 branching circuit. Therefore, a small high-frequency front-end circuit that can maintain a low-loss signal propagation characteristic can be realized in a configuration including a middle-band, middle-band, and high-band compatible third-demultiplexing circuit.
  • the third frequency band is located on a lower frequency side than the first frequency band and the second frequency band, and each of the first band removal filter and the second band removal filter includes one or more elastic waves.
  • the first band elimination filter including a resonator (1) a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 is used as a surface acoustic wave.
  • the acoustic wave resonator is an SMR (Solidly Mounted Resonator).
  • the elastic wave resonator may be formed of an FBAR (Film Bulk Acoustic Resonator).
  • the elastic wave resonator is made of SMR, and the elastic wave resonator is made of FBAR, it can be minimized.
  • the series connection circuit of the first band elimination filter and the second band elimination filter is a low frequency side filter, and the first filter and the second filter are high frequency side filters, the above-mentioned ( 1)
  • the reflection in the second frequency band of the first band removal filter is more effective than the case where another elastic wave is used for the first band removal filter.
  • the coefficient can be increased. Thereby, the bundling loss of the second filter can be reduced.
  • an acoustic wave resonator includes a piezoelectric layer having an IDT electrode formed on one main surface, and a bulk wave propagating more than an acoustic wave velocity propagating through the piezoelectric layer.
  • a high sound velocity support substrate having a high wave sound velocity, and a low bulk wave sound velocity propagating less than an elastic wave sound velocity disposed between the high sound velocity support substrate and the piezoelectric layer and propagating through the piezoelectric layer.
  • the third frequency band is located on a lower frequency side than the first frequency band and the second frequency band, and each of the first band removal filter and the second band removal filter includes one or more elastic waves.
  • Each of the acoustic wave resonators including a resonator and constituting the first band elimination filter and the second band elimination filter is constituted by a substrate having a piezoelectric layer and an IDT electrode formed on the substrate.
  • the acoustic wave resonator includes the piezoelectric layer in which the IDT electrode is formed on one main surface, and the acoustic wave sound velocity that propagates through the piezoelectric layer.
  • the series connection circuit of the first band elimination filter and the second band elimination filter is a low frequency side filter, and the first filter and the second filter are high frequency side filters, the above-mentioned sound velocity is added to the first band elimination filter.
  • the film laminated structure it is possible to increase the reflection coefficient in the second frequency band of the first band elimination filter, compared to the case of using another structure for the first band elimination filter. Thereby, the bundling loss of the second filter can be reduced.
  • the Love wave by LiNbO 3 is used as the surface acoustic wave in the second band elimination filter, a wide attenuation bandwidth can be secured.
  • the third frequency band is located on a lower frequency side than the first frequency band and the second frequency band, and each of the first band removal filter and the second band removal filter includes one or more elastic waves.
  • Each of the acoustic wave resonators including a resonator and constituting the first band elimination filter and the second band elimination filter is constituted by a substrate having a piezoelectric layer and an IDT electrode formed on the substrate.
  • the first band elimination filter uses a leaky wave propagating through the piezoelectric layer made of LiTaO 3 as a surface acoustic wave
  • the second band elimination filter uses the LiNbO 3 in the second band elimination filter.
  • a Love wave propagating through the piezoelectric layer may be used as a surface acoustic wave.
  • LiTaO 3 is used as the first band elimination filter.
  • the case where the leaky wave propagating through the piezoelectric layer made of is used as the surface acoustic wave is more than the case where the Love wave propagating through the piezoelectric layer made of LiNbO 3 is used as the surface acoustic wave for the first band elimination filter. It becomes possible to increase the reflection coefficient in the second frequency band of the first band elimination filter. Thereby, the bundling loss of the second filter can be reduced. Furthermore, when the Love wave by LiNbO 3 is used as the surface acoustic wave in the second band elimination filter, a wide attenuation bandwidth can be secured.
  • the third frequency band is located on a lower frequency side than the first frequency band and the second frequency band, and each of the first band removal filter and the second band removal filter includes one or more elastic waves.
  • the acoustic wave resonator includes a piezoelectric layer in which an IDT electrode is formed on one main surface, and an acoustic wave velocity that propagates through the piezoelectric layer.
  • a high-sonic support substrate having a high bulk-wave sound velocity to propagate, and a bulk-wave sound velocity propagating lower than an elastic-wave sound velocity disposed between the high-sonic support substrate and the piezoelectric layer and propagating through the piezoelectric layer.
  • the second band elimination filter uses the LiNbO 3 Rayleigh wave and the elastic wave, and the first band elimination filter does not use the LiNbO 3 Rayleigh wave as the elastic wave, so that the second frequency band of the first band elimination filter is used.
  • the reflection coefficient at can be effectively increased.
  • the series connection circuit of the first band elimination filter and the second band elimination filter is a low frequency side filter, and the first filter and the second filter are high frequency side filters, the binding loss of the second filter is reduced. it can.
  • the third frequency band is located on a lower frequency side than the first frequency band and the second frequency band, and each of the first band removal filter and the second band removal filter includes one or more elastic waves.
  • the first band elimination filter including a resonator (1) a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 is used as a surface acoustic wave, (2) the acoustic wave resonator has one IDT electrode A piezoelectric layer formed on a main surface, a high-sonic support substrate having a higher bulk acoustic wave velocity than an acoustic wave velocity propagating through the piezoelectric layer, and the high-sonic support substrate and the piezoelectric layer.
  • a piezoelectric layer made of LiTaO 3 having a sound velocity film laminated structure composed of a low sound velocity film that is disposed between and having a low acoustic wave velocity that propagates lower than an acoustic wave velocity that propagates through the piezoelectric layer.
  • the leaky wave is used as a surface acoustic wave
  • the elastic wave resonator is composed of SMR
  • the elastic wave resonator is composed of FBAR
  • the second band elimination In the filter, a Love wave propagating through a piezoelectric layer made of LiNbO 3 may be used as a surface acoustic wave.
  • the series connection circuit of the first band elimination filter and the second band elimination filter is a low frequency side filter, and the first filter and the second filter are high frequency side filters, the binding loss of the second filter is reduced. it can.
  • first frequency band, the third frequency band, and the second frequency band are arranged in order from the lowest frequency, and the first band elimination filter and the second band elimination filter are the third frequency band and the third frequency band.
  • a frequency band including the frequency band may be used as the pass band.
  • the third frequency band whose frequency is located between the first frequency band and the second frequency band can be configured by the first band elimination filter and the second band elimination filter.
  • the first frequency band is a middle band (MB: 2110-2200 MHz)
  • the third frequency band is a middle high band (MHB: 2300-2400 MHz)
  • the second frequency band is a high band ( HB: 2496-2690 MHz)
  • the first filter is a band-pass filter whose pass band is LTE Band 66 (reception band: 2110-2200 MHz)
  • the second filter is LTE Band 41 (reception band: 2496-2690 MHz) as a pass band
  • the first band elimination filter and the second band elimination filter are band pass filters having a band 40 (reception band: 2300-2400 MHz) as a pass band. May be.
  • the high-frequency front-end circuit can be applied to, for example, a middle-band, middle-high band, and high-band compatible three-branch circuit. Therefore, a small high-frequency front-end circuit that can maintain a low-loss signal propagation characteristic can be realized in a configuration including a middle-band, middle-high band, and high-band compatible third-demultiplexing circuit.
  • first frequency band, the second frequency band, and the third frequency band are arranged in order from the lowest frequency, and the first band elimination filter and the second band elimination filter are the third frequency band, It may be a high-pass filter that uses a frequency band including the frequency band as a pass band.
  • the third frequency band having the highest frequency can be constituted by the first band elimination filter and the second band elimination filter. Furthermore, since the third frequency band is formed by a high-pass filter, the third frequency band can be widened.
  • the third frequency band is an ultra high band (UHB: 3400-3800 MHz), the first frequency band is a middle band (MB: 2110-2200 MHz), and the second frequency band is a high band.
  • the first filter is a band-pass filter whose pass band is LTE Band 66 (reception band: 2110-2200 MHz)
  • the second filter is an LTE Band 41 (reception band) : 2496-2690 MHz
  • the first band elimination filter and the second band elimination filter are Band 42 (reception band: 3400-3600 MHz), Band 43 (reception band: 3600-3800 MHz).
  • both A high-pass filter may be used.
  • the high-frequency front-end circuit can be applied to, for example, a middle-band, high-band, and ultra-high-band three-divided circuit. Therefore, a small high-frequency front-end circuit that can maintain a low-loss signal propagation characteristic can be realized in a configuration including a middle-band, high-band, and ultra-high-band compatible third branch circuit.
  • the third frequency band is located on a higher frequency side than the first frequency band and the second frequency band, and each of the first band elimination filter and the second band elimination filter includes one or more elastic wave resonances.
  • Each of the one or more elastic wave resonators including the first and second band elimination filters includes a substrate having a piezoelectric layer and an IDT electrode formed on the substrate.
  • (1) a Rayleigh wave propagating through the piezoelectric layer made of LiNbO 3 (2) a leaky wave propagating through the piezoelectric layer made of LiTaO 3
  • Any of Love waves propagating through the piezoelectric layer made of LiNbO 3 may be used as the surface acoustic wave.
  • the series connection circuit of the first band elimination filter and the second band elimination filter is a high frequency side filter, and the first filter and the second filter are low frequency side filters, the above-mentioned ( 1)
  • the reflection in the second frequency band of the first band removal filter is more effective than the case where another elastic wave is used for the first band removal filter.
  • the coefficient can be increased. Thereby, the bundling loss of the second filter can be reduced.
  • the elastic wave resonator may be composed of SMR or FBAR.
  • the third frequency band is located on a higher frequency side than the first frequency band and the second frequency band, and each of the first band elimination filter and the second band elimination filter includes one or more elastic wave resonances.
  • Each of the one or more elastic wave resonators including the first and second band elimination filters includes a substrate having a piezoelectric layer and an IDT electrode formed on the substrate. In the first band elimination filter, the elastic wave resonator propagates more than the acoustic wave velocity that propagates through the piezoelectric layer in which the IDT electrode is formed on one main surface and the piezoelectric layer.
  • the reflection coefficient in the low frequency range is larger in the case of the acoustic wave film laminated structure than in the case where the acoustic wave resonator is composed of SMR or FBAR than the resonance point and antiresonance point of the elastic wave resonator.
  • the series connection circuit of the first band elimination filter and the second band elimination filter is a high frequency side filter, and the first filter and the second filter are low frequency side filters, the sound velocity is added to the first band elimination filter.
  • the reflection coefficient in the second frequency band of the first band elimination filter can be made larger than when the first band elimination filter is configured by SMR or FBAR. Thereby, the bundling loss of the second filter can be reduced.
  • the third frequency band is located on a higher frequency side than the first frequency band and the second frequency band, and each of the first band elimination filter and the second band elimination filter includes one or more elastic wave resonances.
  • the first band elimination filter includes (1) a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave, and (2) a leaky wave propagating through a piezoelectric layer made of LiTaO 3.
  • the acoustic wave resonator includes a piezoelectric layer in which an IDT electrode is formed on one main surface, the pressure resonator, and the pressure resonator.
  • the second band elimination filter has the sonic film laminated structure and the first band elimination filter does not have the sonic film laminated structure, so that the first band elimination filter has a good temperature characteristic while securing the first band elimination filter.
  • the reflection coefficient in two frequency bands can be increased.
  • the series connection circuit of the first band elimination filter and the second band elimination filter is a high frequency side filter, and the first filter and the second filter are low frequency side filters, the binding loss of the second filter is reduced. it can.
  • the third frequency band is located on a higher frequency side than the first frequency band and the second frequency band, and each of the first band elimination filter and the second band elimination filter includes one or more elastic wave resonances.
  • the first band elimination filter includes (1) a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave, and (2) a love wave propagating through a piezoelectric layer made of LiNbO 3. (3)
  • the acoustic wave resonator has a piezoelectric layer in which an IDT electrode is formed on one main surface, and a bulk wave sound velocity that propagates more than an acoustic wave sound velocity that propagates through the piezoelectric layer.
  • the acoustic wave resonator is composed of SMR
  • the acoustic wave resonator is composed of FBAR
  • the second band elimination In the filter, a leaky wave propagating through a piezoelectric layer made of LiTaO 3 may be used as a surface acoustic wave.
  • the second band elimination filter uses the LiTaO 3 leaky wave as an elastic wave, and the first band elimination filter does not use the LiTaO 3 leaky wave as an elastic wave, so that the second frequency band of the first band elimination filter is used.
  • the reflection coefficient at can be effectively increased.
  • the series connection circuit of the first band elimination filter and the second band elimination filter is a high frequency side filter, and the first filter and the second filter are low frequency side filters, the binding loss of the second filter is reduced. it can.
  • a communication device transmits an RF signal processing circuit that processes a high-frequency signal transmitted and received by the antenna element, and the high-frequency signal between the antenna element and the RF signal processing circuit.
  • a high-frequency front-end circuit as described above.
  • FIG. 1 is a circuit configuration diagram of a high-frequency front-end circuit according to the first embodiment.
  • FIG. 2 is a specific circuit configuration diagram of the high-frequency front-end circuit according to the first embodiment.
  • FIG. 3 is a graph showing pass characteristics of each filter of the high-frequency front-end circuit according to the first embodiment.
  • FIG. 4 is a diagram showing a chip layout of the high-frequency front-end circuit according to the first embodiment.
  • FIG. 5 is a diagram illustrating a relationship of reflection coefficients with reduced bundling loss in the high-frequency front-end circuit according to the first embodiment.
  • FIG. 6 is a circuit configuration diagram of a communication apparatus according to a modification of the first embodiment.
  • FIG. 7 is a specific circuit configuration diagram of the high-frequency front-end circuit according to the second embodiment.
  • FIG. 8 is a graph showing the pass characteristics of each filter of the high-frequency front-end circuit according to the second embodiment.
  • FIG. 9 is a specific circuit configuration diagram of the high-frequency front-end circuit according to the third embodiment.
  • FIG. 10 is a graph showing the pass characteristics of each filter of the high-frequency front-end circuit according to the third embodiment.
  • FIG. 11 is an example of a plan view and a cross-sectional view schematically illustrating the filter resonator according to the fourth embodiment.
  • FIG. 12A is a diagram for explaining reflection characteristics in the low band 1 of the band elimination filter according to the fourth embodiment.
  • FIG. 12B is a diagram illustrating a combination of configurations of band elimination filters according to Embodiment 4.
  • FIG. 12A is a diagram for explaining reflection characteristics in the low band 1 of the band elimination filter according to the fourth embodiment.
  • FIG. 13A is a diagram for explaining bulk wave leakage in the high band 1 of the band elimination filter according to the first modification of the fourth embodiment.
  • FIG. 13B is a diagram illustrating a combination of configurations of band elimination filters according to Modification 1 of Embodiment 4.
  • FIG. 14A is a diagram for explaining the occurrence of spurious in the low band 2 of the band elimination filter according to the second modification of the fourth embodiment.
  • FIG. 14B is a diagram illustrating a combination of configurations of band elimination filters according to the second modification of the fourth embodiment.
  • FIG. 15A is a diagram for explaining the generation of a high-order mode in the high band 2 of the band elimination filter according to the third modification of the fourth embodiment.
  • FIG. 15B is a diagram illustrating a combination of configurations of band elimination filters according to Modification 3 of Embodiment 4.
  • FIG. 16A is a diagram for explaining reflection characteristics in the low band 3 and bulk wave leakage in the high band 3 of the band elimination filter according to the fourth modification of the fourth embodiment.
  • FIG. 16B is a diagram illustrating a combination of configurations of band elimination filters according to the fourth modification of the fourth embodiment.
  • FIG. 17A is a diagram for explaining spurious generation in the low frequency band 4 and bulk wave leakage in the high frequency band 4 of the band elimination filter according to the fifth modification of the fourth embodiment.
  • FIG. 17B is a diagram illustrating a combination of configurations of band elimination filters according to Modification 5 of Embodiment 4.
  • FIG. 16A is a diagram for explaining reflection characteristics in the low band 3 and bulk wave leakage in the high band 3 of the band elimination filter according to the fourth modification of the fourth embodiment.
  • FIG. 16B is a diagram illustrating a combination of configurations of band elimination filters according
  • FIG. 18A is a diagram for explaining the reflection characteristics in the low band 5 and the generation of the higher-order mode in the high band 5 of the band elimination filter according to the sixth modification of the fourth embodiment.
  • FIG. 18B is a diagram illustrating a combination of configurations of band elimination filters according to Modification 6 of Embodiment 4.
  • FIG. 19A is a graph showing the degradation of reflection loss due to the higher-order mode of the band elimination filter according to Embodiment 4.
  • FIG. 19B is a diagram illustrating parameters that vary the structure of the band elimination filter according to Modification 7 of Embodiment 4.
  • FIG. 19C is a diagram illustrating parameters that vary the structure of the band elimination filter according to the eighth modification of the fourth embodiment.
  • FIG. 20 is a diagram illustrating parameters that vary the structure of the band elimination filter according to the ninth modification of the fourth embodiment.
  • FIG. 21 is a circuit configuration diagram of an electric circuit described in Patent Document 1.
  • FIG. 1 is a circuit configuration diagram of a high-frequency front-end circuit 1 according to the first embodiment.
  • the high-frequency front-end circuit 1 includes a first filter 11A, a first band elimination filter 11B, a second filter 12A, a second band elimination filter 12B, an antenna common terminal 100, and an input / output. Terminals 110, 120 and 130.
  • the high-frequency front-end circuit 1 is a demultiplexing / multiplexing circuit including a first filter 11A, a second filter 12A, and a first band removal filter 11B / second band removal filter 12B bundled at an antenna common terminal 100.
  • the antenna common terminal 100 can be connected to, for example, an antenna element, and the input / output terminals 110, 120, and 130 can be connected to a high-frequency signal processing circuit via an amplifier circuit.
  • the first filter 11A is a band-pass filter connected between the antenna common terminal 100 and the input / output terminal 110 and having a frequency band including the first frequency band as a pass band.
  • the second filter 12A is a band-pass filter connected between the antenna common terminal 100 and the input / output terminal 130 and having a frequency band including a second frequency band different from the first frequency band as a pass band. is there.
  • the first band elimination filter 11B is connected between the antenna common terminal 100 and the input / output terminal 120, includes a first frequency band, and does not include a third frequency band different from the first frequency band and the second frequency band. This is a band elimination filter whose band is an attenuation band.
  • the second band elimination filter 12B is connected between the antenna common terminal 100 and the input / output terminal 120 and is connected in series with the first band elimination filter 11B, and includes a second frequency band and no third frequency band. This is a band elimination filter having an attenuation band as.
  • the series connection circuit of the first band elimination filter 11B and the second band elimination filter 12B includes a filter circuit having a frequency band including the third frequency band as a pass band and an attenuation band as the first frequency band and the second frequency band. It is composed.
  • the first filter 11A is connected to the antenna common terminal 100 without passing through the first band elimination filter 11B and the second band elimination filter 12B.
  • the second filter 12A is connected to the antenna common terminal 100 without passing through the first band removal filter 11B and the second band removal filter 12B.
  • a band-pass filter having each frequency band as a pass band is arranged in each signal path through which a high-frequency signal in each frequency band is passed. That is, three band pass filters are required for three frequency bands.
  • the filter having the third frequency band as the pass band is a series connection circuit of the first band elimination filter 11B and the second band elimination filter 12B.
  • the first band removal filter 11B is a filter whose attenuation band is the first frequency band, which is the pass band of the first filter 11A.
  • the design parameters of the acoustic wave resonator constituting the first filter 11A can be applied, and the first filter 11A The same manufacturing process can be applied.
  • the elastic wave resonator of the first filter 11A can also be used as the elastic wave resonator of the first band elimination filter 11B.
  • the second band elimination filter 12B is a filter having the second frequency band, which is the pass band of the second filter 12A, as an attenuation band. For this reason, for example, in designing and manufacturing the second band elimination filter 12B composed of an acoustic wave resonator, the design parameters of the acoustic wave resonator constituting the second filter 12A can be applied, and the second filter 12A The same manufacturing process can be applied. Furthermore, the elastic wave resonator of the second filter 12A can also be used as the elastic wave resonator of the second band elimination filter 12B.
  • a filter circuit having a first frequency band as a pass band or an attenuation band and a second frequency band are passed.
  • a filter circuit having a band or an attenuation band may be designed and manufactured. Therefore, since it is not necessary to provide as many band-pass filters as the number of frequency bands in configuring the demultiplexing / multiplexing circuit, it is possible to reduce the number of design steps, simplify the manufacturing process, and reduce the size.
  • the filter having the third frequency band as the pass band is configured by the two first band removal filters 11B and 12B that are connected in series.
  • the second filter 12A and the second band elimination filter 12B are not commonly connected at the antenna terminal and are electrically independent, the second band elimination filter 12B is affected by the second filter 12A. Absent.
  • the second filter 12A and the second band elimination filter 12B are compared with the case where they are not electrically independent (that is, connected in common).
  • the insertion loss in the passband can be reduced.
  • the signal path that propagates the high-frequency signal in the first frequency band it does not pass through the band elimination filter and passes only through the first filter. Further, in the signal path that propagates the high-frequency signal in the second frequency band, the signal path passes through only the second filter without passing through the band elimination filter. That is, since the signal passing through the second input / output terminal passes only through the second filter that is electrically independent of the second band elimination filter, the insertion loss can be reduced.
  • the signal does not pass through the band elimination filters 11B and 12B but passes only through the first filter 11A.
  • the signal does not pass through the band elimination filters 11B and 12B but passes only through the second filter 12A. That is, since the signal passing through the input / output terminal 130 passes only through the second filter 12A that is electrically independent of the second band elimination filter 12B, the insertion loss can be reduced.
  • the signal does not pass through the band-pass filter and passes only through the two band elimination filters 11B and 12B.
  • the signal path that propagates the high-frequency signal in the first and second frequency bands It is not necessary to pass through the two band elimination filters 11B and 12B. In other words, in the signal path corresponding to each frequency band, only one of the band-pass filter and the band elimination filter is passed, so that a high-frequency signal in each frequency band can be propagated with low loss.
  • FIG. 2 is a specific circuit configuration diagram of the high-frequency front-end circuit 1A according to the first embodiment.
  • the high-frequency front-end circuit 1A shown in the figure is an example in which the high-frequency front-end circuit 1 is applied to an LTE reception branching circuit.
  • a middle low band (MLB: 1475.9-2025 MHz) is assigned as the third frequency band
  • a middle band (MB: 2110-2200 MHz) is assigned as the first frequency band
  • the second frequency band A high band (HB: 2496-2690 MHz) is allocated. That is, the third frequency band, the first frequency band, and the second frequency band are arranged in ascending order of frequency.
  • the first filter 11A is a band pass filter having a filter pass characteristic having a band 66 (2110-2200 MHz) as a pass band.
  • the second filter 12A is a band-pass filter having a filter pass characteristic having a band 41 (2496-2690 MHz) as a pass band.
  • the first band elimination filter 11B is a band elimination filter having a filter pass characteristic with Band 66 (2110-2200 MHz) as an attenuation band, as shown in (a1) of FIG.
  • the series connection circuit of the first band elimination filter 11B and the second band elimination filter 12B includes a middle low band (MLB: 1475.9) including a Band 3 reception band (1805 to 1880 MHz).
  • MMB middle low band
  • a low-pass filter (low-pass filter) having a filter pass characteristic having a pass band of ⁇ 2025 MHz) and an attenuation band of Band 66 (2110-2200 MHz) and Band 41 (2496-2690 MHz) is configured.
  • the third frequency band having the lowest frequency can be configured by the first band elimination filter 11B and the second band elimination filter 12B.
  • the first band elimination filter 11B is a band elimination filter having a band 41 (2496-2690 MHz) as an attenuation band
  • the second band elimination filter 12B has a band 66 (2110-2200 MHz) as an attenuation band. It may be a band elimination filter. That is, a band elimination filter having Band 41 as an attenuation band is connected to the previous stage (antenna common terminal 100 side), and a band elimination filter having Band 66 as an attenuation band is connected to the subsequent stage (input / output terminal 120 side). Also good.
  • FIG. 4 is a diagram showing a chip layout of the high-frequency front-end circuit 1A according to the first embodiment.
  • first filter 11A and a first band elimination filter 11B are formed in the first chip 91.
  • second filter 12A and a second band elimination filter 12B are formed in the second chip 92.
  • the second filter 12A is connected to the antenna common terminal 100 via a connection electrode 80b formed on the second chip 92, and is connected to the input / output terminal 130 via a connection electrode 80d formed on the second chip 92. It is connected to the.
  • the second band elimination filter 12B is connected to the input / output terminal 120 via a connection electrode 80c formed on the second chip 92.
  • the first chip 91 and the second chip 92 may be electrically connected by wiring formed on a mounting substrate on which the first chip 91 and the second chip 92 are mounted, or the first chip 91 and the second chip 92 may be connected to each other.
  • the chip 92 may be directly electrically connected by a bonding wire.
  • Each filter included in the high-frequency front-end circuit 1A includes, for example, a surface acoustic wave resonator.
  • each filter has, for example, a ladder type filter configuration having a series arm resonator and a parallel arm resonator, and the series arm resonator and the parallel arm resonator are IDT (InterDigital Transducer) formed on a piezoelectric substrate. ) It consists of electrodes.
  • the first filter 11A has a filter pass characteristic having a band 66 (2110-2200 MHz) as a pass band
  • the first band elimination filter 11B has a filter pass characteristic having the same Band 66 as an attenuation band.
  • the passband and attenuation band are defined by the resonance point and antiresonance point of the series arm resonator and the parallel arm resonator.
  • the resonator constituting the first filter 11A and the resonator constituting the first band elimination filter 11B can be formed of IDT electrodes having substantially the same electrode finger pitch. Accordingly, the first filter 11A and the first band elimination filter 11B can be easily formed on one piezoelectric substrate using the same manufacturing process.
  • the second filter 12A has a filter pass characteristic having a band 41 (2496-2690 MHz) as a pass band
  • the second band elimination filter 12B has a filter pass characteristic having the same Band 41 as an attenuation band.
  • the passband and attenuation band are defined by the resonance point and antiresonance point of the series arm resonator and the parallel arm resonator.
  • the resonator constituting the second filter 12A and the resonator constituting the second band elimination filter 12B can be formed by IDT electrodes having substantially the same electrode finger pitch. Accordingly, the second filter 12A and the second band elimination filter 12B can be easily formed on one piezoelectric substrate using the same manufacturing process.
  • the first filter 11A and the first band elimination filter 11B are formed on one first chip 91, and the second filter 12A and the second band elimination filter 12B are formed on one second chip 92. Is done.
  • the design parameters of the acoustic wave resonator constituting the first filter 11A having the first frequency band (Band 66) as the pass band can be applied.
  • a manufacturing process similar to 11A can be applied.
  • the design parameters of the acoustic wave resonator constituting the second filter 12A having the second frequency band (Band 41) as the pass band can be applied, and the same as the second filter 12A.
  • the manufacturing process can be applied.
  • the elastic wave resonator of the second filter 12A can be used.
  • each filter is not limited to this.
  • Each filter may include a vertically coupled filter circuit. Even in this case, the first filter 11A and the first band elimination filter 11B can align the electrode finger pitch of the IDT electrodes of the longitudinally coupled filter circuit, and the second filter 12A and the second band elimination filter 12B. Can align the electrode finger pitch.
  • Each filter may be not only a SAW filter but also a BAW (Bulk Acoustic Wave) filter.
  • the first filter 11A and the first band elimination filter 11B can align the structural parameters of the resonators constituting the BAW filter, and the second filter 12A and the second band elimination filter 12B are , The structural parameters can be aligned. Therefore, the first filter 11A and the first band elimination filter 11B can be formed on one first chip 91, and the second filter 12A and the second band elimination filter 12B are formed on one second chip 92. It becomes possible to do.
  • the first filter 11A and the first band elimination filter 11B formed on the first chip 91 are constituted by acoustic wave resonators using SAW, and the second filter 12A and the second filter formed on the second chip 92 are formed.
  • the band elimination filter 12B may be composed of an elastic wave resonator using BAW. Accordingly, the second filter 12A and the second band removal filter 12B can ensure a large reflection coefficient, and the first filter 11A and the first band removal filter 11B can increase the degree of freedom of the bandwidth.
  • all of the first filter 11A, the first band elimination filter 11B, the second filter 12A, and the second band elimination filter 12B may be configured by an elastic wave resonator using BAW, or SAW is used. You may comprise an elastic wave resonator. That is, the first filter 11A and the second filter 12A can be made separately by SAW or BAW according to the required specifications of the high-frequency signal passing through the first frequency band and the second frequency band, and the degree of design freedom is increased. improves.
  • FIG. 5 is a diagram illustrating a relationship of reflection coefficients with reduced bundling loss of the high-frequency front-end circuit 1A according to the first embodiment.
  • the reflection characteristics of the two-band rejection filter 12B (B41BEF) are shown.
  • the first band elimination filter 11B is connected to the antenna common terminal 100 side
  • the second band elimination filter 12B is connected to the input / output terminal 120 side.
  • the reflection coefficient ⁇ B66 in the first frequency band (Band 66 pass band) when the first band elimination filter 11B is viewed from the antenna common terminal 100 side alone is
  • the second band elimination filter 12B is preferably larger than the reflection coefficient ⁇ B41 in the second frequency band (Band 41 pass band) when viewed from the antenna common terminal 100 side alone.
  • the first filter 11A, the second filter 12A, and the first band elimination filter 11B / second band elimination filter 12B constituting the reception branching circuit are as follows:
  • the insertion loss in the pass band (Band 66) of the first filter 11A is viewed from the antenna common terminal 100 side of other filters in addition to the insertion loss of the first filter 11A alone. Influenced by reflection characteristics.
  • the insertion loss in the pass band (Band 41) of the second filter 12A is affected by the reflection characteristics of the other filters as viewed from the antenna common terminal 100 side in addition to the insertion loss of the second filter 12A alone.
  • the insertion loss in the pass band of the first filter 11A decreases as the reflection coefficient in the first frequency band viewed from the antenna common terminal 100 side of the first band removal filter 11B increases. Further, the insertion loss in the pass band of the second filter 12A decreases as the reflection coefficient in the second frequency band viewed from the antenna common terminal 100 side of the second band removal filter 12B increases (the reflection of the first band removal filter 11B).
  • the insertion loss of the first filter 11A caused by the coefficient and the insertion loss of the second filter 12A caused by the reflection coefficient of the second band elimination filter 12B are referred to as bundle loss).
  • the high-frequency front end circuit 1A is bundled by making the reflection coefficient ⁇ B66 in the first frequency band of the first band removal filter 11B larger than the reflection coefficient ⁇ B41 in the second frequency band of the second band removal filter. Loss can be effectively reduced.
  • the bundle loss of the first filter 11A and the second filter 12A can be effectively reduced without arranging a switch between the antenna element and the first filter 11A and the second filter 12A. It is possible to provide a small high-frequency front-end circuit that can maintain low-loss signal propagation characteristics even during operation.
  • a second band elimination filter 12B (a band elimination filter having Band 41 as an attenuation band) is connected to the previous stage (on the antenna common terminal 100 side), and a first band elimination filter 11B (band elimination having Band 66 as an attenuation band).
  • the second band elimination filter 12B in the second frequency band (Band 41 pass band) when viewed from the antenna common terminal 100 side alone.
  • the reflection coefficient ⁇ B41 is preferably larger than the reflection coefficient ⁇ B66 in the first frequency band (Band 66 pass band) when the first band elimination filter 11B is viewed alone from the antenna common terminal 100 side.
  • FIG. 6 is a circuit configuration diagram of the communication device 3 according to a modification of the first embodiment.
  • FIG. 2 shows a communication device 3 according to the present embodiment.
  • the communication device 3 includes a high-frequency front end circuit 2 according to this modification and a high-frequency signal processing circuit (RFIC) 40.
  • RFIC high-frequency signal processing circuit
  • the high-frequency front-end circuit 2 includes an antenna common terminal 100, branching circuits 10 and 14, switches 21 and 22, a filter circuit 15, and an amplifier circuit 30.
  • the demultiplexing circuit 10 is connected to the antenna common terminal 100, and includes a low-pass filter 10A (pass band: 699-960 MHz) and a high-pass filter 10B (pass band: 1475.9-2690 MHz).
  • the demultiplexing circuit 14 is the one to which the high-frequency front-end circuit 1 according to the first embodiment is applied, and includes a band-pass filter 14A, a first filter 14B, a first band removal filter 14C1, and a second band removal.
  • a filter 14C2 and a second filter 14D are provided.
  • the band-pass filter 14A is a band-pass filter that is connected between the output terminal of the high-pass filter 10B and the switch 21A and uses a frequency band including a middle high band (MHB: 2300-2400 MHz) as a pass band.
  • MHB middle high band
  • the first filter 14B is a band-pass filter that is connected to the output terminal of the high-pass filter 10B and has a frequency band including a middle band (MB: 2110-2200 MHz) that is the first frequency band as a pass band.
  • the first filter 14B corresponds to the first filter 11A of the high-frequency front end circuit 1 according to the first embodiment.
  • the second filter 14D is a band-pass filter that is connected between the output terminal of the high-pass filter 10B and the switch 21D and has a frequency band including a second high-frequency band (HB: 2496-2690 MHz) as a pass band. is there.
  • the second filter 14D corresponds to the second filter 12A of the high-frequency front end circuit 1 according to the first embodiment.
  • the first band elimination filter 14C1 is a band elimination filter that is connected between the output terminal of the high-pass filter 10B and the switch 21C and has a middle band (MB: 2110-2200 MHz) as a first frequency band as an attenuation band. .
  • the first band elimination filter 14C1 corresponds to the first band elimination filter 11B of the high-frequency front end circuit 1 according to the first embodiment.
  • the second band elimination filter 14C2 is connected in series with the first band elimination filter 14C1 between the output terminal of the high pass filter 10B and the switch 21C, and is a high frequency band (HB: 2496-2690 MHz) as the second frequency band. Is a band elimination filter whose attenuation band is.
  • the second band elimination filter 14C2 corresponds to the second band elimination filter 12B of the high frequency front end circuit 1 according to the first embodiment.
  • the series connection circuit of the first band elimination filter 14C1 and the second band elimination filter 14C2 uses a middle low band (MLB: 1475.9-2025 MHz) as a third frequency band as a pass band, and a middle band as a first frequency band.
  • MMB middle low band
  • HB high frequency band
  • the third frequency band whose frequency is located on the lower frequency side than the first frequency band and the second frequency band can be configured by the first band removal filter 14C1 and the second band removal filter 14C2. It becomes possible.
  • a filter circuit and a filter circuit having the second frequency band (HB) as a pass band or an attenuation band may be designed and manufactured. Therefore, since it is not necessary to provide as many band-pass filters as the number of frequency bands in configuring the demultiplexing / multiplexing circuit, it is possible to reduce the number of design steps, simplify the manufacturing process, and reduce the size.
  • the switch 21 includes switches 21A, 21C, and 21D.
  • the switch 22 includes switches 22A, 22B, 22C, and 22D.
  • the filter circuit 15 includes filters 13a, 13b, 13c, 13d, 13e, 13f, 13g, 13h, 13j, and 13k.
  • the amplification circuit is composed of LNAs 31, 32, 33, 34, 35, and 36.
  • the branching circuit 14 divides the frequency band of the high-frequency signal into four frequency band groups. More specifically, the band-pass filter 14A uses a middle high band (MHB: 2300-2400 MHz) as a pass band, and Ba (band a), Bb (band b), Bc (band c), Bd (band d). , And Be (band e). The first filter 14B uses a middle band (MB: 2110-2200 MHz) as a pass band and passes a Bp (band p) signal.
  • MHB middle high band
  • MB 2110-2200 MHz
  • the filter circuit configured by connecting the first band elimination filter 14C1 and the second band elimination filter 14C2 in series has a middle low band (MLB: 1475.9-2025 MHz) as a pass band, and Bf (band f) and Bg (band g ) Signal.
  • the second filter 14D uses a high band (HB: 2496-2690 MHz) as a pass band, and passes Bh (band h), Bj (band j), and Bk (band k) signals.
  • the switch 21A has a common terminal connected to the bandpass filter 14A, and each selection terminal connected to the filters 13a (Ba), 13b (Bb), 13c (Bc), and 13d / 13e (Bd / Be). .
  • the switch 21C has a common terminal connected to the second band elimination filter 14C2, and each selection terminal connected to the filters 13f (Bf) and 13g (Bg).
  • the switch 21D has a common terminal connected to the second filter 14D, and each selection terminal connected to the filters 13h (Bh), 13j (Bj), and 13k (Bk).
  • the switch 22B has a common terminal connected to the LNA 31 and each selection terminal connected to the first filter 14B and the filter 13d.
  • the switch 22A has a common terminal connected to the LNA 32 and each selection terminal connected to the filters 13c, 13b, and 13e.
  • the switch 22D has a common terminal connected to the LNA 33 and each selection terminal connected to the filters 13k, 13h, and 13j.
  • the switch 22C has a common terminal connected to the LNA 34 and each selection terminal connected to the filters 13f and 13g.
  • the passband (2300-2400 MHz) of the bandpass filter 14A is wider than the passbands of the filters 13a (Ba), 13b (Bb), 13c (Bc), and 13d / 13e (Bd / Be). Each passband is included.
  • the first filter 14B (2110-2200 MHz) includes Bp passbands.
  • the pass band (1475.9-2025 MHz) of the filter circuit configured by connecting the first band elimination filter 14C1 and the second band elimination filter 14C2 in series is more than the pass bands of the filters 13f (Bf) and 13g (Bg). Widely includes each passband.
  • the pass band (2496-2690 MHz) of the second filter 14D is wider than and includes the pass bands of the filters 13h (Bh), 13j (Bj), and 13k (Bk).
  • a high-frequency signal processing circuit (RFIC) 40 is connected to the output terminals of the LNAs 31 to 36, and performs signal processing on the high-frequency reception signal input from the antenna element via the reception signal path of each band by down-conversion, etc.
  • the received signal generated by processing is output to the baseband signal processing circuit at the subsequent stage.
  • the high frequency signal processing circuit 40 is, for example, an RFIC.
  • the high-frequency signal processing circuit (RFIC) 40 sends the control signals S1A, S1C, S1D, S2A, S2B, S2C, and S2D to the switches 21A, 21C, 21D, 22A, and 22B, respectively, according to the band to be used. , 22C, and 22D. Thereby, each switch switches the connection of the signal path.
  • the high-frequency front-end circuit 1 according to the first embodiment as the branching circuit 14, the low-loss signal propagation characteristics can be maintained even when the number of bands for CA operation increases.
  • the reception high-frequency front-end circuit that receives a high-frequency signal from the antenna element and transmits the high-frequency signal to the high-frequency signal processing circuit 40 is exemplified.
  • the high-frequency front-end circuit for transmission or transmission / reception is used. May be.
  • the amplifier circuit 30 is composed of a power amplifier.
  • the filter circuit 15 includes a duplexer assigned to each band.
  • FIG. 7 is a specific circuit configuration diagram of the high-frequency front-end circuit 1B according to the second embodiment.
  • the high-frequency front end circuit 1B shown in the figure includes a first filter 11A, a first band elimination filter 11C, a second filter 12A, a second band elimination filter 12C, an antenna common terminal 100, and an input / output terminal. 110, 120, and 130.
  • the high-frequency front-end circuit 1B is a demultiplexing / multiplexing circuit including a first filter 11A, a second filter 12A, and a first band removal filter 11C / second band removal filter 12C bundled at the antenna common terminal 100.
  • the high frequency front end circuit 1B is an example in which the high frequency front end circuit 1 is applied to an LTE reception demultiplexing circuit.
  • a middle high band (MHB: 2300-2400 MHz) is assigned as the third frequency band
  • a middle band (MB: 2110-2200 MHz) is assigned as the first frequency band
  • a high band as the second frequency band. (HB: 2496-2690 MHz) is allocated. That is, the first frequency band, the third frequency band, and the second frequency band are arranged in ascending order of frequency.
  • the high-frequency front end circuit 1B according to the present embodiment differs from the high-frequency front end circuit 1A according to the first embodiment in the filter pass characteristics of the first band elimination filter and the second band elimination filter.
  • the high frequency front end circuit 1B will not be described for the same points as the high frequency front end circuit 1A, and will be described focusing on different points.
  • FIG. 8 is a graph showing pass characteristics of the first filter 11A, the first band elimination filter 11C, the second filter 12A, and the second band elimination filter 12C of the high-frequency front end circuit 1B according to the second embodiment.
  • the first filter 11A is a band pass filter having a filter pass characteristic having a band 66 (2110-2200 MHz) as a pass band.
  • the second filter 12A is a band-pass filter having a filter pass characteristic having a band 41 (2496-2690 MHz) as a pass band.
  • the first band elimination filter 11C is a band elimination filter having a filter pass characteristic with Band 66 (2110-2200 MHz) as an attenuation band, as shown in (b2) of FIG.
  • the second band elimination filter 12C is a band elimination filter having a filter pass characteristic with Band 41 (2496-2690 MHz) as an attenuation band, as shown in (b1) of FIG.
  • the series connection circuit of the first band elimination filter 11C and the second band elimination filter 12C has a middle high band (MLB: 2300-2400 MHz) including Band 40 as a pass band, and Band 66 ( A band-pass filter (band-pass filter) having a filter pass characteristic with an attenuation band of 2110-2200 MHz) and Band 41 (2496-2690 MHz).
  • MMB middle high band
  • Band 66 A band-pass filter (band-pass filter) having a filter pass characteristic with an attenuation band of 2110-2200 MHz) and Band 41 (2496-2690 MHz).
  • the third frequency band whose frequency is located between the first frequency band and the second frequency band can be configured by the first band removal filter 11C and the second band removal filter 12C. Become.
  • the first band removal filter 11C is a band elimination filter having a band 41 (2496-2690 MHz) as an attenuation band
  • the second band removal filter 12C has a band 66 (2110-2200 MHz) as an attenuation band. It may be a band elimination filter. That is, a band elimination filter having Band 41 as an attenuation band is connected to the previous stage (antenna common terminal 100 side), and a band elimination filter having Band 66 as an attenuation band is connected to the subsequent stage (input / output terminal 120 side). Also good.
  • the reflection coefficient ⁇ B66 in the first frequency band (Band66 pass band) when the first band elimination filter 11C is viewed from the antenna common terminal 100 side alone is
  • the second band elimination filter 12C is preferably larger than the reflection coefficient ⁇ B41 in the second frequency band (Band 41 pass band) when viewed from the antenna common terminal 100 side as a single unit. Since the first band elimination filter 11C is connected to the antenna common terminal 100 side with respect to the second band elimination filter 12C, the bundle loss of the first filter 11A caused by the first band elimination filter 11C (the first band elimination filter 11C).
  • the insertion loss of the first filter 11A due to the reflection coefficient of 11C) is the bundle loss of the second filter 12A due to the second band elimination filter 12C (the second filter due to the reflection coefficient of the second band elimination filter 12C). 12A insertion loss). For this reason, the reflection coefficient ⁇ B66 in the first frequency band of the first band elimination filter 11C is made larger than the reflection coefficient ⁇ B41 in the second frequency band of the second band elimination filter 12C, whereby the high frequency front end circuit 1B. Bundling loss can be effectively reduced.
  • the bundle loss of the first filter 11A and the second filter 12A can be effectively reduced without arranging a switch between the antenna element and the first filter 11A and the second filter 12A. It is possible to provide a small high-frequency front-end circuit that can maintain low-loss signal propagation characteristics even during operation.
  • a second band elimination filter 12C (band elimination filter with Band 41 as an attenuation band) is connected to the previous stage (antenna common terminal 100 side), and the first band elimination filter 11C (band elimination with Band 66 as an attenuation band).
  • the second band elimination filter 12C in the second frequency band (Band 41 pass band) when viewed from the antenna common terminal 100 side alone.
  • the reflection coefficient ⁇ B41 is preferably larger than the reflection coefficient ⁇ B66 in the first frequency band (Band 66 pass band) when the first band elimination filter 11C is viewed from the antenna common terminal 100 side as a single unit.
  • FIG. 9 is a specific circuit configuration diagram of the high-frequency front-end circuit 1C according to the third embodiment.
  • the high-frequency front-end circuit 1C shown in the figure includes a first filter 11A, a first band elimination filter 11D, a second filter 12A, a second band elimination filter 12D, an antenna common terminal 100, and an input / output terminal. 110, 120, and 130.
  • the high-frequency front-end circuit 1C is a demultiplexing / multiplexing circuit including a first filter 11A, a second filter 12A, and a first band removal filter 11D / second band removal filter 12D that are bundled at the antenna common terminal 100.
  • the high frequency front end circuit 1C is an example in which the high frequency front end circuit 1 is applied to an LTE reception demultiplexing circuit.
  • a middle high band (UHB: 3400-3800 MHz) is assigned as the third frequency band
  • a middle band (MB: 2110-2200 MHz) is assigned as the first frequency band
  • a high band is assigned as the second frequency band. (HB: 2496-2690 MHz) is allocated. That is, the first frequency band, the second frequency band, and the third frequency band are arranged in ascending order of frequency.
  • the high-frequency front end circuit 1C according to the present embodiment differs from the high-frequency front end circuit 1A according to the first embodiment in the filter pass characteristics of the first band elimination filter and the second band elimination filter.
  • the description of the high-frequency front end circuit 1C is omitted with respect to the same points as the high-frequency front end circuit 1A, and different points are mainly described.
  • FIG. 10 is a graph showing pass characteristics of the first filter 11A, the first band elimination filter 11D, the second filter 12A, and the second band elimination filter 12D of the high-frequency front-end circuit 1C according to the third embodiment.
  • the first filter 11A is a band pass filter having a filter pass characteristic having a band 66 (2110-2200 MHz) as a pass band.
  • the second filter 12A is a band-pass filter having a filter pass characteristic having a band 41 (2496-2690 MHz) as a pass band.
  • the first band elimination filter 11D is a band elimination filter having a filter pass characteristic with Band 66 (2110-2200 MHz) as an attenuation band, as shown in (a1) of FIG.
  • the second band elimination filter 12D is a band elimination filter having a filter pass characteristic with Band 41 (2496-2690 MHz) as an attenuation band, as shown in (a2) of FIG.
  • the series connection circuit of the first band elimination filter 11D and the second band elimination filter 12D has an ultra high band (UHB: 3400-3800 MHz) including Band 42 / Band 43 as a pass band.
  • Band 66 (2110-2200 MHz) and Band 41 (2496-2690 MHz) have a high-pass filter (high-pass filter) having a filter pass characteristic with an attenuation band.
  • the third frequency band whose frequency is located on the higher frequency side than the first frequency band and the second frequency band can be configured by the first band removal filter 11D and the second band removal filter 12D. It becomes.
  • the first band removal filter 11D is a band elimination filter having a band 41 (2496-2690 MHz) as an attenuation band
  • the second band removal filter 12D has a band 66 (2110-2200 MHz) as an attenuation band. It may be a band elimination filter. That is, a band elimination filter having Band 41 as an attenuation band is connected to the previous stage (antenna common terminal 100 side), and a band elimination filter having Band 66 as an attenuation band is connected to the subsequent stage (input / output terminal 120 side). Also good.
  • the series connection circuit of the first band elimination filter 11D and the second band elimination filter 12D is a high-pass filter (high-pass filter) in which only one of Band 42 (3400-3600 MHz) and Band 43 (3600-3800 MHz) is passed. Filter).
  • the reflection coefficient ⁇ B66 in the first frequency band (Band66 pass band) when the first band elimination filter 11D is viewed from the antenna common terminal 100 side alone is
  • the second band elimination filter 12D is preferably larger than the reflection coefficient ⁇ B41 in the second frequency band (Band 41 pass band) when viewed from the antenna common terminal 100 side as a single unit. Since the first band elimination filter 11D is connected to the antenna common terminal 100 side with respect to the second band elimination filter 12D, the bundle loss of the first filter 11A caused by the first band elimination filter 11D (the first band elimination filter 11D).
  • the insertion loss of the first filter 11A caused by the reflection coefficient of 11D is the bundle loss of the second filter 12A caused by the second band removal filter 12D (the second filter caused by the reflection coefficient of the second band removal filter 12D). 12A insertion loss). For this reason, the reflection coefficient ⁇ B66 in the first frequency band of the first band elimination filter 11D is made larger than the reflection coefficient ⁇ B41 in the second frequency band of the second band elimination filter 12D, so that the high frequency front end circuit 1C Bundling loss can be effectively reduced.
  • the bundle loss of the first filter 11A and the second filter 12A can be effectively reduced without arranging a switch between the antenna element and the first filter 11A and the second filter 12A. It is possible to provide a small high-frequency front-end circuit that can maintain low-loss signal propagation characteristics even during operation.
  • a second band elimination filter 12D (a band elimination filter having Band 41 as an attenuation band) is connected to the previous stage (on the antenna common terminal 100 side), and a first band elimination filter 11D (Band elimination having Band 66 as an attenuation band).
  • the second band elimination filter 12D in the second frequency band (Band 41 pass band) when viewed from the antenna common terminal 100 side alone.
  • the reflection coefficient ⁇ B41 is preferably larger than the reflection coefficient ⁇ B66 in the first frequency band (Band 66 pass band) when the first band elimination filter 11D is viewed alone from the antenna common terminal 100 side.
  • the first filter 11A, the second filter 12A, and the first band elimination filter 11B / second band elimination filter 12B are bundled at the antenna common terminal 100, and the first band elimination filter 11B
  • the second band elimination filter 12B In the configuration in which the second band elimination filter 12B is connected in series, it has been described that it is preferable to prioritize increasing the reflection coefficient in the first band elimination filter 11B having a large influence on the reflection characteristics.
  • the second band elimination filter 12B having a small influence on the reflection characteristics preferably has a configuration that ensures filter characteristics such as pass characteristics, attenuation characteristics, temperature characteristics, and bandwidth.
  • the combination of the structures of the first band elimination filter 11B and the second band elimination filter 12B is illustrated from the above viewpoint.
  • the first band elimination filter 11B and the second band elimination filter 12B are configured by elastic wave resonators and may have a ladder type filter structure.
  • the one or more elastic wave resonators disposed on the antenna common terminal 100 side include at least one of a series arm resonator and a parallel arm resonator.
  • first band elimination filter 11B and the second band elimination filter 12B may have a vertically coupled filter structure.
  • first band elimination filter 11B and the second band elimination filter 12B can be adapted to filter characteristics that require attenuation enhancement and the like.
  • examples of the structure of the acoustic wave resonator include a SAW resonator, a SMR (Solidly Mounted Resonator), and an FBAR (Film Bulk Acoustic Resonator) using BAW.
  • FIG. 11 is an example of a plan view and a cross-sectional view schematically illustrating the filter resonator according to the third embodiment.
  • FIG. 11 shows a case where the elastic wave resonator (series arm resonator and parallel arm resonator) according to the present embodiment is, for example, a SAW resonator.
  • a schematic plan view and a cross-sectional schematic diagram showing the structure of one acoustic wave resonator among the plurality of resonators constituting the first band elimination filter 11B and the second band elimination filter 12B are illustrated.
  • the elastic wave resonator shown in FIG. 11 is for explaining a typical structure of the plurality of resonators, and the number and length of electrode fingers constituting the electrode are the same. It is not limited.
  • Each resonator of the first band elimination filter 11B and the second band elimination filter 12B includes a substrate 80 having a piezoelectric layer 83 and comb-shaped IDT electrodes 71a and 71b.
  • the IDT electrode 71a includes a plurality of electrode fingers 172a that are parallel to each other and a bus bar electrode 171a that connects the plurality of electrode fingers 172a.
  • the IDT electrode 71b includes a plurality of electrode fingers 172b that are parallel to each other and a bus bar electrode 171b that connects the plurality of electrode fingers 172b.
  • the plurality of electrode fingers 172a and 172b are formed along a direction orthogonal to the X-axis direction.
  • the IDT electrode 71 composed of the plurality of electrode fingers 172a and 172b and the bus bar electrodes 171a and 171b has a laminated structure of the adhesion layer 72 and the main electrode layer 73 as shown in the sectional view of FIG. ing.
  • the adhesion layer 72 is a layer for improving the adhesion between the piezoelectric layer 83 and the main electrode layer 73, and Ti is used as a material, for example.
  • the film thickness of the adhesion layer 72 is, for example, about 10 nm.
  • the main electrode layer 73 is made of, for example, Al containing 1% Cu.
  • the film thickness of the main electrode layer 73 is, for example, about 130 nm.
  • the protective film 84 is formed so as to cover the IDT electrodes 71a and 71b.
  • the protective film 84 is a layer for the purpose of protecting the main electrode layer 73 from the external environment, adjusting frequency temperature characteristics, and improving moisture resistance.
  • the protective film 84 is a film mainly composed of silicon dioxide. .
  • the film thickness of the protective film 84 is about 30 nm, for example.
  • adherence layer 72, the main electrode layer 73, and the protective film 84 is not limited to the material mentioned above.
  • the IDT electrode 71 does not have to have the above laminated structure.
  • the IDT electrode 71 may be made of, for example, a metal or alloy such as Ti, Al, Cu, Pt, Au, Ag, or Pd, or may be made of a plurality of laminates made of the above metals or alloys. May be.
  • the protective film 84 may not be formed.
  • the substrate 80 includes a high sound speed support substrate 81, a low sound speed film 82, and a piezoelectric layer 83.
  • the high sound speed support substrate 81, the low sound speed film 82, and the piezoelectric layer 83 are It has a structure laminated in this order (sound velocity film laminated structure).
  • the piezoelectric layer 83 is made of, for example, a 42 ° Y-cut X-propagating LiTaO 3 piezoelectric single crystal or a piezoelectric ceramic (lithium tantalate unit cut along a plane whose normal is an axis rotated 42 ° from the Y axis with the X axis as the central axis.
  • a piezoelectric ceramic lithium tantalate unit cut along a plane whose normal is an axis rotated 42 ° from the Y axis with the X axis as the central axis.
  • the elastic wave resonator uses a leaky wave as an elastic wave.
  • the piezoelectric layer 83 is made of, for example, 128 ° Y-cut X-propagating LiNbO 3 piezoelectric single crystal or piezoelectric ceramic.
  • the elastic wave resonator uses a Rayleigh wave as an elastic wave.
  • the piezoelectric layer 83 is made of, for example, Y-cut X-propagating LiNbO 3 piezoelectric single crystal or piezoelectric ceramic.
  • the elastic wave resonator uses a Love wave as an elastic wave.
  • the single crystal material, the cut angle, and the laminated structure of the piezoelectric layer 83 are appropriately selected according to the required specifications of the filter (filter characteristics such as pass characteristics, attenuation characteristics, temperature characteristics, and bandwidth). .
  • the high sound velocity support substrate 81 is a substrate that supports the low sound velocity film 82, the piezoelectric layer 83 and the IDT electrode 71.
  • the high acoustic velocity support substrate 81 is a substrate in which the acoustic velocity of the bulk wave in the high acoustic velocity support substrate 81 is higher than the acoustic wave of the surface wave or boundary wave propagating through the piezoelectric layer 83, and the surface acoustic wave is
  • the piezoelectric layer 83 and the low acoustic velocity film 82 are confined in a laminated portion and function so as not to leak downward from the high acoustic velocity support substrate 81.
  • the high sound speed support substrate 81 is, for example, a silicon substrate and has a thickness of, for example, 200 ⁇ m.
  • the high sound velocity support substrate 81 includes (1) a piezoelectric body such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, sapphire, lithium tantalate, lithium niobate, or quartz, (2) alumina, Various ceramics such as zirconia, cordierite, mullite, steatite, or forsterite, (3) magnesia diamond, (4) materials based on the above materials, and (5) mixtures of the above materials as main components Or any of the materials described above.
  • the low acoustic velocity film 82 is a membrane in which the acoustic velocity of the bulk wave in the low acoustic velocity film 82 is lower than the acoustic velocity of the elastic wave propagating through the piezoelectric layer 83. Arranged between. Due to this structure and the property that energy is concentrated in a medium where acoustic waves are essentially low in sound velocity, leakage of surface acoustic wave energy to the outside of the IDT electrode is suppressed.
  • the low acoustic velocity film 82 is, for example, a film mainly composed of silicon dioxide.
  • the thickness of the low acoustic velocity film 82 is, for example, about 500 nm.
  • the Q value at the resonance frequency and the anti-resonance frequency can be greatly increased as compared with the conventional structure in which the piezoelectric substrate is used as a single layer. That is, since a surface acoustic wave resonator having a high Q value can be configured, a filter with a small insertion loss can be configured using the surface acoustic wave resonator.
  • the high sound velocity support substrate 81 has a structure in which a support substrate and a high sound velocity film in which the sound velocity of the propagating bulk wave is higher than the acoustic wave of the surface wave and boundary wave propagating in the piezoelectric layer 83 are laminated. You may have.
  • the support substrate is a piezoelectric material such as sapphire, lithium tantalate, lithium niobate, crystal, alumina, magnesia, silicon nitride, aluminum nitride, silicon carbide, zirconia, cordierite, mullite, steatite, forsterite, etc.
  • the high sound velocity film includes various materials such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film or diamond, a medium mainly composed of the above materials, and a medium mainly composed of a mixture of the above materials. High sound velocity material can be used.
  • the substrate on which the IDT electrode 71 is formed is a piezoelectric layer.
  • the piezoelectric substrate may be composed of 83 single layers.
  • the piezoelectric substrate in this case is composed of, for example, a LiTaO 3 piezoelectric single crystal or another piezoelectric single crystal such as LiNbO 3 .
  • the substrate on which the IDT electrode 71 is formed has a piezoelectric layer 83
  • a structure in which a piezoelectric layer is laminated on a support substrate may be used in addition to a piezoelectric layer as a whole.
  • the wavelength of the surface acoustic wave resonator is defined by a wavelength ⁇ that is a repetition period of the plurality of electrode fingers 172a or 172b constituting the IDT electrode 71 shown in the middle stage of FIG.
  • the electrode pitch is 1 ⁇ 2 of the wavelength ⁇
  • the line width of the electrode fingers 172a and 172b constituting the IDT electrodes 71a and 71b is W
  • the space width between the adjacent electrode fingers 172a and the electrode fingers 172b Is defined as (W + S).
  • the crossing width L of the IDT electrode is the length of the overlapping electrode fingers when viewed from the X-axis direction of the electrode finger 172a of the IDT electrode 71a and the electrode finger 172b of the IDT electrode 71b. It is.
  • the electrode duty of each resonator is the line width occupation ratio of the plurality of electrode fingers 172a and 172b, and is the ratio of the line width to the sum of the line width and the space width of the plurality of electrode fingers 172a and 172b. , W / (W + S).
  • FIG. 12A is a diagram for explaining reflection characteristics in the low band 1 of the band elimination filter according to the fourth embodiment.
  • the impedance characteristics of the acoustic wave resonator that constitutes the band elimination filter the resonance point where the impedance becomes the minimum value and the anti-resonance point where the impedance becomes the maximum value are confirmed near the attenuation band. Is done.
  • the impedance differs depending on the structure of the acoustic wave resonator, and the superiority or inferiority of the reflection characteristics exists depending on the magnitude of the impedance.
  • a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 (2) a leaky wave propagating through a piezoelectric layer made of LiTaO 3 , and (3) a piezoelectric layer made of LiNbO 3
  • the reflection coefficient in the low band 1 is larger in the structure using any of the propagating Love waves as the surface acoustic wave and (4) the sonic film laminated structure than in the SMR or FBAR.
  • FIG. 12B is a diagram illustrating a combination of configurations of the first band elimination filter 11B and the second band elimination filter 12B according to the fourth embodiment.
  • the third frequency band which is the pass band of the series connection circuit of the first band removal filter 11B and the second band removal filter 12B, is the pass band (first frequency band) of the first filter 11A and In the case where it is located on the higher frequency side than the pass band (second frequency band) of the second filter 12A (for example, in the case of the high frequency front-end circuit 1C according to the third embodiment), as shown in FIG.
  • the first band elimination filter 11B and the second band elimination filter 12B is a high frequency side filter, and the first filter 11A and the second filter 12A are low frequency side filters, the first band
  • the first band removal filter is used compared to the case of using another elastic wave for the first band removal filter 11B.
  • the reflection coefficient in the second frequency band of 11B can be increased.
  • the bundling loss of the second filter 12A can be reduced.
  • the elastic wave resonator may be composed of SMR or FBAR.
  • the first band elimination filter 11B and the second band elimination filter 12B are configured by the above configuration of the second band elimination filter 12B while increasing the reflection coefficient in the second frequency band of the first band elimination filter 11B.
  • the steepness of the attenuation band of the filter circuit can be secured.
  • each of the acoustic wave resonators constituting the first band elimination filter 11B has the above-described sound velocity film laminated structure, and in the second band elimination filter 12B, the acoustic wave resonator is an SMR. Or you may be comprised by FBAR.
  • the high-frequency front-end circuit it is possible to increase the reflection coefficient in the second frequency band of the first band removal filter 11B as compared to the case where SMR or FBAR is used for the first band removal filter 11B. . Therefore, the bundling loss of the second filter 12A can be reduced. Further, with the above configuration of the second band elimination filter 12B, it is possible to ensure the steepness of the attenuation band of the filter circuit configured by the first band elimination filter 11B and the second band elimination filter 12B.
  • the second band elimination filter 12B When the second band elimination filter 12B is connected to the front stage (antenna common terminal 100 side) and the first band elimination filter 11B is connected to the rear stage (input / output terminal 120 side), the second band elimination filter is used.
  • 12B (1) Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 , (2) Leaky wave propagating through a piezoelectric layer made of LiTaO 3 , and (3) Love propagating through a piezoelectric layer made of LiNbO 3 It is preferable to use a structure in which any one of the waves is used as a surface acoustic wave.
  • the second band when the elastic wave of any one of (1), (2), and (3) is used for the removal filter 12B, the second band removal filter is used compared to the case where another elastic wave is used for the second band removal filter 12B. It becomes possible to increase the reflection coefficient in the first frequency band of 12B. Thereby, the bundling loss of the first filter 11A can be reduced.
  • FIG. 13A is a diagram for explaining bulk wave leakage in the high band 1 of the band elimination filter according to the first modification of the fourth embodiment. As shown in the lower part of the figure, in the region on the higher frequency side than the antiresonance point of the acoustic wave resonator (high region 1 in FIG. 13A), impedance changes due to bulk wave leakage (unwanted wave) occur, and the impedance According to the change of the reflection characteristics, there are superiority and inferiority of reflection characteristics.
  • the reflection coefficient due to bulk wave leakage in the high region 1 is, in descending order, (1) a structure using Rayleigh waves propagating through a piezoelectric layer made of LiNbO 3 as an elastic wave, SMR, FBAR , (2) sound velocity film laminated structure, (3) a structure using a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as an elastic wave, and (4) a love wave propagating through a piezoelectric layer made of LiNbO 3 As a structure to use as.
  • FIG. 13B is a diagram illustrating a combination of configurations of the first band elimination filter 11B and the second band elimination filter 12B according to the first modification of the fourth embodiment.
  • the third frequency band which is the pass band of the series connection circuit of the first band removal filter 11B and the second band removal filter 12B, is the pass band (first frequency band) of the first filter 11A according to the superiority or inferiority order of the reflection coefficients.
  • the second filter 12A is located on the lower frequency side than the pass band (second frequency band) (for example, in the case of the high-frequency front-end circuit 1A according to Embodiment 1), as shown in FIG.
  • band elimination filter 11B (1) a structure using a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave, (2) an acoustic wave resonator is composed of SMR, and (3) an acoustic wave
  • the resonator may be any one of FBARs.
  • the first band elimination filter 11B and the second band elimination filter 12B is a low frequency side filter, and the first filter 11A and the second filter 12A are high frequency side filters
  • the first band removal filter is used compared to the case of using another elastic wave for the first band removal filter 11B.
  • the reflection coefficient in the second frequency band of 11B can be increased.
  • the bundling loss of the second filter 12A can be reduced.
  • the sound velocity film laminated structure (2) a structure using a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as a surface acoustic wave, and (3) a LiNbO 3 Any one of the structures using the Love wave propagating through the piezoelectric layer as the surface acoustic wave may be used.
  • the second band elimination filter 12B has a sonic film laminated structure while increasing the reflection coefficient in the second frequency band of the first band elimination filter 11B, good temperature characteristics of the second band elimination filter 12B. Can be secured. Moreover, when the Love wave by LiNbO 3 is used as the surface acoustic wave in the second band elimination filter 12B, a wide attenuation bandwidth of the second band elimination filter 12B can be ensured.
  • each of the acoustic wave resonators constituting the first band elimination filter 11B has the above-mentioned sound velocity film laminated structure
  • the second band elimination filter 12B is composed of (1) LiTaO 3.
  • a structure using a leaky wave propagating through the piezoelectric layer as a surface acoustic wave, or (2) a structure using a Love wave propagating through a piezoelectric layer made of LiNbO 3 as the surface acoustic wave may be used.
  • the reflection in the second frequency band of the first band removal filter 11B is compared with the case where the surface acoustic waves of (1) and (2) are used for the first band removal filter 11B.
  • the coefficient can be increased. Therefore, the bundling loss of the second filter 12A can be reduced.
  • the Love wave generated by LiNbO 3 is used as the surface acoustic wave in the second band elimination filter 12B, the wide attenuation bandwidth of the filter circuit composed of the first band elimination filter 11B and the second band elimination filter 12B is increased. It can be secured.
  • the first band elimination filter 11B has a structure that uses a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as a surface acoustic wave
  • the second band elimination filter 12B has a piezoelectric layer made of LiNbO 3. You may have the structure which utilizes the propagating Love wave as a surface acoustic wave.
  • the second band of the first band elimination filter 11B is compared with the case where the leaky wave propagating through the piezoelectric layer made of LiTaO 3 is not used as the surface acoustic wave in the first band elimination filter 11B. It is possible to increase the reflection coefficient in the frequency band. Therefore, the bundling loss of the second filter 12A can be reduced. Further, when the Love wave generated by LiNbO 3 is used as the surface acoustic wave in the second band elimination filter 12B, the wide attenuation bandwidth of the filter circuit composed of the first band elimination filter 11B and the second band elimination filter 12B is increased. It can be secured.
  • the second band elimination filter 12B When the second band elimination filter 12B is connected to the front stage (antenna common terminal 100 side) and the first band elimination filter 11B is connected to the rear stage (input / output terminal 120 side), the second band elimination filter is used.
  • 12B (1) a structure using a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave, (2) the acoustic wave resonator is composed of SMR, and (3) the acoustic wave resonator is Any one of FBARs is preferable.
  • the second band when the elastic wave of any one of (1), (2), and (3) is used for the removal filter 12B, the second band removal filter is used compared to the case where another elastic wave is used for the second band removal filter 12B. It becomes possible to increase the reflection coefficient in the first frequency band of 12B. Thereby, the bundling loss of the first filter 11A can be reduced.
  • FIG. 14A is a diagram for explaining the occurrence of spurious in the low band 2 of the band elimination filter according to the second modification of the fourth embodiment.
  • the region on the lower frequency side than the resonance point of the acoustic wave resonator (the lower region 2 in FIG. 14A)
  • a Rayleigh wave spurious is generated in the vicinity of 0.76 times the resonance frequency.
  • the impedance changes due to the occurrence of the spurious, and the reflection coefficient decreases according to the change in the impedance.
  • FIG. 14B is a diagram illustrating a combination of configurations of the first band elimination filter 11B and the second band elimination filter 12B according to the second modification of the fourth embodiment.
  • the third frequency band which is the pass band of the series connection circuit of the first band removal filter 11B and the second band removal filter 12B, is the pass band (first frequency band) of the first filter 11A and the pass band of the second filter 12A.
  • the (second frequency band) for example, in the case of the high frequency front-end circuit 1C according to Embodiment 3
  • the first band elimination filter 11B includes (1) A structure using Rayleigh waves propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave, (2) a structure using leaky waves propagating through a piezoelectric layer made of LiTaO 3 as a surface acoustic wave, and (3) LiNbO 3 A structure using a Love wave propagating through a piezoelectric layer made of as surface acoustic wave, (4) an elastic wave resonator is composed of SMR, and (5) elastic wave resonance There composed of FBAR, is either a second band elimination filter 12B are elastic wave resonators may have the sound speed film laminate structure.
  • the reflection coefficient in the second frequency band of the first band elimination filter 11B can be increased by making the second band elimination filter 12B a sonic film laminated structure and not using the first band elimination filter 11B. Therefore, the bundling loss of the second filter 12A can be reduced in the high frequency front end circuit.
  • the first band elimination filter 11B includes (1) a structure using Rayleigh waves propagating through a piezoelectric layer made of LiNbO 3 as surface acoustic waves, and (2) a piezoelectric body made of LiNbO 3.
  • the second band elimination filter 12B may have a structure that uses a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as a surface acoustic wave.
  • the second band elimination filter 12B uses the LiTaO 3 leaky wave as an elastic wave, and the first band elimination filter 11B does not use the LiTaO 3 leaky wave as an elastic wave.
  • the reflection coefficient in two frequency bands can be increased. Therefore, the bundling loss of the second filter 12A can be reduced in the high frequency front end circuit.
  • the second band elimination filter 12B When the second band elimination filter 12B is connected to the front stage (antenna common terminal 100 side) and the first band elimination filter 11B is connected to the rear stage (input / output terminal 120 side), the second band elimination filter is used.
  • 12B includes (1) a structure using Rayleigh waves propagating through a piezoelectric layer made of LiNbO 3 as surface acoustic waves, and (2) a structure using leaky waves propagating through a piezoelectric layer made of LiTaO 3 as surface acoustic waves.
  • the acoustic wave resonator has the above-described sound velocity film laminated structure.
  • the reflection coefficient in the first frequency band of the second band elimination filter 12B can be increased by making the first band elimination filter 11B a sonic film laminated structure and not the second band elimination filter 12B having a sonic film lamination structure. Therefore, the bundle loss of the first filter 11A can be reduced in the high frequency front end circuit.
  • FIG. 15A is a diagram for explaining the generation of a high-order mode in the high band 2 of the band elimination filter according to the third modification of the fourth embodiment.
  • the high region 2 in FIG. 15A in particular, Rayleigh waves propagating through the piezoelectric layer made of LiNbO 3 are applied to the surface acoustic wave.
  • a structure using a Love wave propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave a high-order mode is generated near 1.2 times the resonance frequency.
  • the impedance changes due to the generation of the higher-order mode, and the reflection coefficient decreases according to the change in the impedance.
  • FIG. 15B is a diagram illustrating a combination of configurations of the first band elimination filter 11B and the second band elimination filter 12B according to the third modification of the fourth embodiment.
  • the third frequency band which is the pass band of the series connection circuit of the first band removal filter 11B and the second band removal filter 12B, is the pass band (first frequency band) of the first filter 11A and the pass band of the second filter 12A.
  • the sonic film laminated structure (2) a structure using a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as a surface acoustic wave, and (3) a love wave propagating through a piezoelectric layer made of LiNbO 3 being a surface acoustic wave.
  • one of the second band elimination filter 12B propagates a piezoelectric layer made of LiNbO 3 as
  • the Illy wave may have a structure to be used as a surface acoustic wave.
  • the second band elimination filter 12B uses the LiNbO 3 Rayleigh wave and the elastic wave, and the first band elimination filter 11B does not use the LiNbO 3 Rayleigh wave as the elastic wave.
  • the reflection coefficient in the frequency band can be increased. Therefore, the bundling loss of the second filter 12A can be reduced in the high frequency front end circuit.
  • the first band elimination filter 11B includes (1) a structure that uses Rayleigh waves propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave, and (2) the sound velocity film laminated structure, (3) A structure using a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as a surface acoustic wave, (4) SMR, and (5) FBAR.
  • the Love wave propagating piezoelectric layer made of LiNbO 3 may have a structure to be used as a surface acoustic wave that is, used as Love waves and acoustic waves LiNbO 3 in the second band elimination filter 12B, the by not utilizing the Love wave of one band elimination filter 11B in LiNbO 3 as an elastic wave, reflected at the second frequency band of the first band elimination filter 11B coefficient It can be increased. Therefore, the bundling loss of the second filter 12A can be reduced in the high frequency front end circuit.
  • the second band elimination filter 12B When the second band elimination filter 12B is connected to the front stage (antenna common terminal 100 side) and the first band elimination filter 11B is connected to the rear stage (input / output terminal 120 side), the second band elimination filter is used.
  • 12B includes (1) the above-mentioned sonic film laminated structure, (2) a structure that uses a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as a surface acoustic wave, and (3) a lab that propagates through a piezoelectric layer made of LiNbO 3.
  • the first band elimination filter 11B has any one of a structure using a wave as a surface acoustic wave, (4) SMR, and (5) FBAR, and the first band elimination filter 11B elastically transmits a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3. You may have the structure utilized as a surface wave.
  • the first band elimination filter 11B uses the LiNbO 3 Rayleigh wave and the elastic wave, and the second band elimination filter 12B does not use the LiNbO 3 Rayleigh wave as the elastic wave.
  • the reflection coefficient in the frequency band can be increased. Therefore, the bundle loss of the first filter 11A can be reduced in the high frequency front end circuit.
  • FIG. 16A is a diagram for explaining reflection characteristics in the low band 3 and bulk wave leakage in the high band 3 of the band elimination filter according to the fourth modification of the fourth embodiment.
  • the impedance varies depending on the structure of the acoustic wave resonator, and the reflection characteristic depends on the magnitude of the impedance.
  • the superiority or inferiority in the region on the higher frequency side than the antiresonance point of the acoustic wave resonator (high region 3 in FIG. 16A), a change in impedance due to bulk wave leakage (unnecessary wave) occurs, and the reflection characteristics according to the change in the impedance.
  • a superiority or inferiority in the region on the higher frequency side than the antiresonance point of the acoustic wave resonator
  • the reflection coefficient in the low band 3 is (1) a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 , (2) a leaky wave propagating through a piezoelectric layer made of LiTaO 3 , and (3)
  • the structure using any one of the Love waves propagating through the piezoelectric layer made of LiNbO 3 as the surface acoustic wave and (4) the sonic film laminated structure are larger than SMR or FBAR.
  • the reflection coefficient due to bulk wave leakage in the high region 3 is, in order from the largest, (1) a structure using Rayleigh waves propagating through a piezoelectric layer made of LiNbO 3 as an elastic wave, SMR, FBAR, (2) (3) Structure using a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as an elastic wave, (4) Structure using a Love wave propagating through a piezoelectric layer made of LiNbO 3 as an elastic wave .
  • FIG. 16B is a diagram illustrating a combination of configurations of the first band elimination filter 11B and the second band elimination filter 12B according to the fourth modification of the fourth embodiment.
  • the third frequency band which is the pass band of the series connection circuit of the first band removal filter 11B and the second band removal filter 12B, is the pass band (first frequency band) of the first filter 11A according to the superiority or inferiority order of the reflection coefficients.
  • the filter is located between the pass band (second frequency band) of the second filter 12A (for example, in the case of the high frequency front end circuit 1B according to Embodiment 2), as shown in FIG. 16B, the first band removal filter 11B has a structure in which Rayleigh waves propagating through a piezoelectric layer made of LiNbO 3 are used as surface acoustic waves, and the second band elimination filter 12B has (1) the sonic film laminated structure and (2) LiTaO 3.
  • the first band elimination filter 11B has the above-mentioned sound velocity film laminated structure.
  • the second band elimination filter 12B (1) leaky waves propagating through the piezoelectric layer made of LiTaO 3 are transmitted.
  • the second band elimination filter 12B When the second band elimination filter 12B is connected to the front stage (antenna common terminal 100 side) and the first band elimination filter 11B is connected to the rear stage (input / output terminal 120 side), the second band elimination filter is used.
  • 12B has a structure in which Rayleigh waves propagating through a piezoelectric layer made of LiNbO 3 are used as surface acoustic waves, and the first band elimination filter 11B has (1) the sonic film laminated structure and (2) LiTaO 3.
  • FIG. 17A is a diagram for explaining reflection characteristics due to spurious in the low band 4 and bulk wave leakage in the high band 4 of the band elimination filter according to the fifth modification of the fourth embodiment.
  • the above-mentioned sound velocity film laminated structure or a piezoelectric layer made of LiTaO 3 In the structure using the leaky wave propagating through the wave as an elastic wave, a Rayleigh wave spurious is generated in the vicinity of 0.76 times the resonance frequency.
  • FIG. 17B is a diagram illustrating a combination of configurations of the first band elimination filter 11B and the second band elimination filter 12B according to the fifth modification of the fourth embodiment.
  • the third frequency band which is the pass band of the series connection circuit of the first band removal filter 11B and the second band removal filter 12B, is the pass band (first frequency band) of the first filter 11A according to the superiority or inferiority order of the reflection coefficients.
  • the frequency band is located between the pass band (second frequency band) of the second filter 12A (for example, in the case of the high-frequency front-end circuit 1B according to Embodiment 2), as shown in FIG. 11B has a structure in which a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 is used as a surface acoustic wave, and the second band elimination filter 12B may have the above-described sound velocity film laminated structure. Thereby, the bundle loss of the 1st filter 11A or the 2nd filter 12A can be reduced.
  • the first band elimination filter 11B includes (1) a structure using Rayleigh waves propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave, and (2) the sonic film laminated structure.
  • the second band elimination filter 12B may have a structure that uses a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as a surface acoustic wave. Thereby, the bundle loss of the 1st filter 11A or the 2nd filter 12A can be reduced.
  • the second band elimination filter 12B When the second band elimination filter 12B is connected to the front stage (antenna common terminal 100 side) and the first band elimination filter 11B is connected to the rear stage (input / output terminal 120 side), the second band elimination filter is used.
  • 12B has a structure in which a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 is used as a surface acoustic wave, and the first band elimination filter 11B may have the above-described sound velocity film laminated structure. Thereby, the bundle loss of the 1st filter 11A or the 2nd filter 12A can be reduced.
  • FIG. 18A is a diagram illustrating a reflection characteristic in the low band 5 and a high-order mode in the high band 5 of the band elimination filter according to the sixth modification of the fourth embodiment.
  • the impedance varies depending on the structure of the acoustic wave resonator, and the reflection characteristic depends on the magnitude of the impedance. There is a superiority or inferiority. Further, in the region on the higher frequency side than the resonance point of the acoustic wave resonator (high region 5 in FIG.
  • a structure using Rayleigh waves propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave or
  • a structure using a Love wave propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave a higher-order mode is generated in the vicinity of 1.2 times the resonance frequency.
  • FIG. 18B is a diagram illustrating a combination of configurations of the first band elimination filter 11B and the second band elimination filter 12B according to the sixth modification of the fourth embodiment.
  • the third frequency band which is the pass band of the series connection circuit of the first band removal filter 11B and the second band removal filter 12B, is the pass band (first frequency band) of the first filter 11A according to the superiority or inferiority order of the reflection coefficients.
  • the frequency band is located between the pass band (second frequency band) of the second filter 12A (for example, in the case of the high-frequency front end circuit 1B according to Embodiment 2), as shown in FIG. 11B includes (1) the above-mentioned sonic film laminated structure, (2) a structure using a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as a surface acoustic wave, and (3) propagating through a piezoelectric layer made of LiNbO 3.
  • the second band elimination filter 12B is a Rayleigh wave propagating piezoelectric layer made of LiNbO 3 It may have a structure to be used as sex surface wave. Thereby, the bundle loss of the 1st filter 11A or the 2nd filter 12A can be reduced.
  • the first band elimination filter 11B includes (1) a structure that uses Rayleigh waves propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave, and (2) the sonic film laminated structure, And (3) the second band elimination filter 12B has a structure that uses a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as a surface acoustic wave, and the second band elimination filter 12B is a lab that propagates through a piezoelectric layer made of LiNbO 3 You may have a structure using a wave as a surface acoustic wave. Thereby, the bundle loss of the 1st filter 11A or the 2nd filter 12A can be reduced.
  • the second band elimination filter 12B When the second band elimination filter 12B is connected to the front stage (antenna common terminal 100 side) and the first band elimination filter 11B is connected to the rear stage (input / output terminal 120 side), the second band elimination filter is used.
  • 12B includes (1) the above-mentioned laminated structure of sonic films, (2) a structure using a leaky wave propagating through a piezoelectric layer made of LiTaO 3 as a surface acoustic wave, and (3) propagating through a piezoelectric layer made of LiNbO 3.
  • the first band elimination filter 11B may have any structure that uses a Love wave as a surface acoustic wave, and the first band elimination filter 11B may have a structure that uses a Rayleigh wave propagating through a piezoelectric layer made of LiNbO 3 as a surface acoustic wave. Good. Thereby, the bundle loss of the 1st filter 11A or the 2nd filter 12A can be reduced.
  • FIG. 19A is a graph showing the degradation of reflection loss due to the higher-order mode of the band elimination filter according to Embodiment 4.
  • the reflection loss of the first band elimination filter 11B viewed from the antenna common terminal 100 increases due to the higher order mode on the high frequency side of the resonance point (the broken line region in FIG. 19A).
  • the frequency at which the reflection loss increases due to the higher order mode can be shifted to the high frequency side or the low frequency side by changing the structural parameter of the acoustic wave resonator.
  • the inventors in the first band elimination filter 11B having a large influence on the reflection characteristics, change the generation frequency of higher order modes and spurious out of the pass band of the second filter 12A by changing the structural parameters. It has been found that in the second band elimination filter 12B that is shifted and has little influence on the reflection characteristics, the structural parameters are optimized in order to ensure filter characteristics such as attenuation characteristics, temperature characteristics, and attenuation bandwidth.
  • FIG. 19B is a diagram illustrating parameters that make the structures of the first band removal filter 11B and the second band removal filter 12B different from each other according to the seventh modification of the fourth embodiment.
  • Each of the elastic wave resonators constituting the first band elimination filter 11B is a surface acoustic wave resonator including a substrate 80 having a piezoelectric layer 83 and an IDT electrode 71 formed on the substrate.
  • a leaky wave propagating through a piezoelectric layer made of LiTaO 3 is used as a surface acoustic wave to constitute the first band elimination filter 11B.
  • the IDT electrode 71 to be used and the IDT electrode 71 constituting the second band elimination filter 12B have different electrode film thicknesses or duties.
  • the LiTaO 3 leaky wave When the LiTaO 3 leaky wave is used as an elastic wave, Rayleigh wave spurious is generated on the low frequency side of the resonance frequency of the elastic wave resonator.
  • the first band elimination filter 11B and the second band elimination filter 12B have different electrode film thicknesses or duties of the IDT electrode 71, thereby reducing the generation frequency of Rayleigh wave spurious in the first band elimination filter 11B. It is possible to shift outside the second frequency band (pass band of the second filter 12A on the low frequency side). Thereby, the reflection coefficient in the second frequency band of the first band removal filter 11B can be increased, and the bundling loss of the second filter 12A can be reduced.
  • the acoustic wave resonator has the above-mentioned sound velocity film laminated structure, and the first band elimination filter 11B and the second band elimination filter.
  • Any of the electrode film thickness of the IDT electrode 71, the duty of the IDT electrode 71, and the film thickness of the low sound velocity film 82 may be different from 12B.
  • the first band elimination filter 11B and the second band elimination filter 12B have different electrode film thicknesses or duties of the IDT electrode 71, thereby reducing the generation frequency of Rayleigh wave spurious in the first band elimination filter 11B. It is possible to shift outside the second frequency band (pass band of the second filter 12A on the low frequency side). Thereby, the reflection coefficient in the second frequency band of the first band removal filter 11B can be increased, and the bundling loss of the second filter 12A can be reduced.
  • FIG. 19C is a diagram illustrating parameters that make the structures of the first band elimination filter 11B and the second band elimination filter 12B different from each other according to the modification 8 of the fourth embodiment.
  • Each of the acoustic wave resonators constituting the first band elimination filter 11B and the second band elimination filter 12B includes a substrate 80 having a piezoelectric layer 83, an IDT electrode 71 formed on the substrate, and the IDT electrode 71. This is a surface acoustic wave resonator composed of the protective film 84 formed.
  • the first band elimination filter 11B and the second band elimination filter 12B as shown in FIG.
  • the first band elimination filter 11B and the second band elimination filter 12B are different in any one of the electrode film thickness of the IDT electrode 71, the duty of the IDT electrode 71, and the film thickness of the protective film 84. .
  • the first band elimination filter 11B and the second band elimination filter 12B have different electrode film thicknesses of the IDT electrode 71, the duty of the IDT electrode 71, or the film thickness of the low sound velocity film 82, so that It is possible to shift the generation frequency of the higher-order mode in the 1-band removal filter 11B to the outside of the second frequency band (pass band of the second filter 12A on the high frequency side). Thereby, the reflection coefficient in the second frequency band of the first band removal filter 11B can be increased, and the bundling loss of the second filter 12A can be reduced.
  • the acoustic wave resonator has the above-mentioned sound velocity film laminated structure, and the high sound velocity support substrate 81 is made of silicon crystal. Even if any of the film thickness of the piezoelectric layer 83, the film thickness of the low acoustic velocity film 82, and the silicon crystal orientation of the high acoustic velocity support substrate 81 is different between the first band elimination filter 11B and the second band elimination filter 12B. Good.
  • the film thickness of the piezoelectric layer 83, the film thickness of the low sound velocity film 82, or the silicon crystal orientation of the high sound velocity support substrate 81 is made different between the first band removal filter 11B and the second band removal filter 12B.
  • the reflection coefficient in the second frequency band of the first band removal filter 11B can be increased, and the bundling loss of the second filter 12A can be reduced.
  • FIG. 20 is a diagram illustrating parameters that make the structures of the first band elimination filter 11B and the second band elimination filter 12B according to the modification 9 of the fourth embodiment different.
  • Each of the acoustic wave resonators constituting the first band elimination filter 11B and the second band elimination filter 12B has an elastic surface composed of a substrate 80 having a piezoelectric layer 83 and an IDT electrode 71 formed on the substrate. It is a wave resonator.
  • a leaky wave propagating through a piezoelectric layer made of LiTaO 3 or a Love wave propagating through a piezoelectric layer made of LiNbO 3 is used as a surface acoustic wave
  • the electrode band thickness of the IDT electrode 71 is different between the first band elimination filter 11B and the second band elimination filter 12B.
  • a bulk wave (unnecessary wave) is generated on the high frequency side of the resonance frequency of the acoustic wave resonator.
  • the electrode film thickness of the IDT electrode 71 between the first band elimination filter 11B and the second band elimination filter 12B the generation frequency of the bulk wave in the first band elimination filter 11B is changed to the second band elimination filter 11B. It is possible to shift outside the frequency band (pass band of the second filter 12A on the high frequency side). Thereby, the reflection coefficient in the second frequency band of the first band removal filter 11B can be increased, and the bundling loss of the second filter 12A can be reduced.
  • an inductor or a capacitor may be connected between terminals such as an input / output terminal and an antenna common terminal, or a circuit other than an inductor and a capacitor such as a resistance element. An element may be added.
  • the present invention can be widely used in communication equipment such as a mobile phone as a low-loss, small-sized, and low-cost high-frequency front-end circuit and communication device that can be applied to multiband and multimode frequency standards.

Abstract

高周波フロントエンド回路(1)は、アンテナ共通端子(100)と入出力端子(110)との間に接続され、第1周波数帯域を通過帯域とする第1フィルタ(11A)と、アンテナ共通端子(100)と入出力端子(130)との間に接続され、第2周波数帯域を通過帯域とする第2フィルタ(12A)と、アンテナ共通端子(100)と入出力端子(120)との間に接続され、第1周波数帯域を減衰帯域とする第1帯域除去フィルタ(11B)と、アンテナ共通端子(100)と入出力端子(120)との間であって第1帯域除去フィルタ(11B)と直列に接続され、第2周波数帯域を減衰帯域とする第2帯域除去フィルタ(12B)とを備える。

Description

高周波フロントエンド回路および通信装置
 本発明は、高周波フロントエンド回路および通信装置に関する。
 近年の携帯電話には、1つの端末で複数の周波数および無線方式に対応することが要求されている(マルチバンド化およびマルチモード化)。マルチバンド化およびマルチモード化に対応するフロントエンドモジュールには、複数の送受信信号を品質劣化させずに高速処理することが求められている。特に、複数のバンドの高周波信号を同時に送受信するキャリアアグリゲーションを行うことが求められている。
 図21は、特許文献1に記載された電気回路の回路構成図である。同図に記載された電気回路は、アンテナに接続されるフロントエンドのフィルタ回路であり、抽出フィルタ回路501および502を備える。抽出フィルタ回路501は、バンドパスフィルタ501Aおよびバンドストップフィルタ501Bを有し、抽出フィルタ回路502は、バンドパスフィルタ502Aおよびバンドストップフィルタ502Bを有する。入力端子In、バンドパスフィルタ501Aおよび出力端子Out1を含む第1信号経路では、例えばGPS信号を通過させる。また、入力端子In、バンドストップフィルタ501B、バンドパスフィルタ502A、および出力端子Out2を含む第2信号経路では、例えばWLAN信号を通過させる。また、入力端子In、バンドストップフィルタ501B、バンドストップフィルタ502Bおよび出力端子Out3を含む第3信号経路では、GPS信号およびWLAN信号以外の信号を通過させる。つまり、抽出フィルタ回路501と抽出フィルタ回路502とが、カスケード接続されることにより、これら2回路の後段では、2つの周波数帯域(GPSおよびWLAN)および当該2つの周波数帯域が除去された周波数帯域の3つの信号が分波されて出力される。
特表2007-511145号公報
 上述したように、特許文献1に記載されたフィルタ回路では、2つの周波数帯域(例えばGPSおよびWLAN)および当該2つの周波数帯域が除去された周波数帯域を分波して出力することが可能である。しかしながら、バンドパスフィルタ501Aとバンドストップフィルタ501Bとは、入力端子Inで共通接続されているため、バンドストップフィルタ501Bはバンドパスフィルタ501Aの影響を受け、フィルタ特性が劣化してしまう。また、バンドパスフィルタ502Aとバンドストップフィルタ502Bとは、バンドストップフィルタ501Bの出力端で共通接続されているため、バンドストップフィルタ502Bはバンドパスフィルタ502Aの影響を受け、フィルタ特性が劣化してしまう。さらに、第2信号経路に着目した場合、入力端子Inから入力された高周波信号は、バンドパスフィルタ502Aを通過する前段で、バンドストップフィルタ501Bも通過するため、単一のバンドパスフィルタを通過する場合と比較して、挿入損失が大きくなり伝搬特性が劣化してしまう。また、特許文献1に記載されたフィルタ回路を、さらにバンド数が増加したシステムに対応させる場合、バンドパスフィルタの前段に付加すべきバンドストップフィルタの数が多くなり、近年の高周波フロントエンドモジュールの小型化要求に対応することが困難となる。
 そこで、本発明は、上記課題を解決するためになされたものであって、低損失な信号伝搬特性を維持しつつ小型の高周波フロントエンド回路および通信装置を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る高周波フロントエンド回路は、アンテナ素子に接続されるアンテナ共通端子と、第1入出力端子、第2入出力端子および第3入出力端子と、前記アンテナ共通端子と前記第1入出力端子との間に接続され、第1周波数帯域を含む周波数帯域を通過帯域とする第1フィルタと、前記アンテナ共通端子と前記第2入出力端子との間に接続され、前記第1周波数帯域と異なる第2周波数帯域を含む周波数帯域を通過帯域とする第2フィルタと、前記アンテナ共通端子と前記第3入出力端子との間に接続され、前記第1周波数帯域を含み前記第1周波数帯域および前記第2周波数帯域と異なる第3周波数帯域を含まない周波数帯域を減衰帯域とする第1帯域除去フィルタと、前記アンテナ共通端子と前記第3入出力端子との間であって前記第1帯域除去フィルタと直列に接続され、前記第2周波数帯域を含み前記第3周波数帯域を含まない周波数帯域を減衰帯域とする第2帯域除去フィルタと、を備え、前記第1フィルタは、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタを経由せずに前記アンテナ共通端子および前記第1入出力端子に接続され、前記第2フィルタは、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタを経由せずに前記アンテナ共通端子および前記第2入出力端子に接続されている。
 上記構成によれば、第3周波数帯域を通過帯域とするフィルタは、2つの直列接続された帯域除去フィルタにより構成される。第2フィルタと第2帯域除去フィルタとは、アンテナ端子で共通接続されておらず電気的に独立しているため、第2帯域除去フィルタは第2フィルタの影響を受けない。これにより、第3周波数帯域の高周波信号を伝搬する信号経路では、第2フィルタと第2帯域除去フィルタとが電気的に独立していない場合(つまり共通接続されている場合)と比較して、通過帯域内の挿入損失を小さくできる。
 また、第1周波数帯域の高周波信号を伝搬する信号経路では、帯域除去フィルタを通過せず第1フィルタのみを経由する。また、第2周波数帯域の高周波信号を伝搬する信号経路では、帯域除去フィルタを通過せず第2フィルタのみを経由する。つまり、第2入出力端子を通過する信号は、第2帯域除去フィルタと電気的に独立している第2フィルタのみを通過するため、挿入損失を小さくできる。
 ここで、2つの帯域除去フィルタのうち第1帯域除去フィルタは、第1周波数帯域を減衰帯域とするフィルタである。このため、第1帯域除去フィルタを製造するにあたり、第1周波数帯域を通過帯域とする第1フィルタを構成する弾性波共振子の設計パラメータを適用でき、第1フィルタと同様の製造プロセスを適用できる。さらに、第1フィルタの弾性波共振子を流用することも可能である。また、2つの帯域除去フィルタのうち第2帯域除去フィルタは、第2周波数帯域を減衰帯域とするフィルタである。このため、第2帯域除去フィルタを製造するにあたり、第2周波数帯域を通過帯域とする第2フィルタを構成する弾性波共振子の設計パラメータを適用でき、第2フィルタと同様の製造プロセスを適用できる。さらに、第2フィルタの弾性波共振子を流用することも可能である。よって、マルチプレクサ回路を構成するにあたり、周波数帯域の数だけ帯域通過型フィルタを設ける必要がないので、製造工程の簡素化および小型化を達成できる。
 また、前記第1フィルタと前記第1帯域除去フィルタとは、同一チップに形成されており、前記第2フィルタと前記第2帯域除去フィルタとは、同一チップに形成されていてもよい。
 上述したように、第1帯域除去フィルタを製造するにあたり、第1周波数帯域を通過帯域とする第1フィルタを構成する弾性波共振子の設計パラメータを適用でき、第1フィルタと同様の製造プロセスを適用できる。さらに、第1フィルタの弾性波共振子を流用することも可能である。また、第2帯域除去フィルタを製造するにあたり、第2周波数帯域を通過帯域とする第2フィルタを構成する弾性波共振子の設計パラメータを適用でき、第2フィルタと同様の製造プロセスを適用できる。さらに、第2フィルタの弾性波共振子を流用することも可能である。よって、第1フィルタと第1帯域除去フィルタとを同一チップで形成し、第2フィルタと第2帯域除去フィルタとを同一チップで形成することが容易となる。これにより、製造工程のさらなる簡素化および小型化が可能となる。
 また、前記第1フィルタと前記第1帯域除去フィルタとは、第1チップに形成されており、前記第2フィルタと前記第2帯域除去フィルタとは、第2チップに形成されており、前記第1フィルタ、前記第1帯域除去フィルタ、前記第2フィルタ、および前記第2帯域除去フィルタは、それぞれ、1以上の弾性波共振子を含み、前記第1チップは、弾性表面波フィルタおよびBAW(Bulk Acoustic Wave)を用いた弾性波フィルタのうち、いずれかのみで構成されており、前記第2チップは、弾性表面波フィルタおよびBAWを用いた弾性波フィルタのうち、いずれかのみで構成されていてもよい。
 これにより、反射係数を大きく確保することに有利なBAW型フィルタと、帯域幅の自由度が高いSAW(Surface Acoustic Wave)型フィルタとを、チップ別に製造し分けることが可能となる。よって、第1周波数帯域および第2周波数帯域を通過する高周波信号の要求仕様に応じて、第1フィルタおよび第2フィルタを、SAWまたはBAWで作り分けることが可能となり、設計の自由度が向上する。
 また、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタは、前記アンテナ共通端子、前記第1帯域除去フィルタ、前記第2帯域除去フィルタ、および前記第3入出力端子の順に接続され、前記第1帯域除去フィルタを単体で前記アンテナ共通端子側から見た場合の前記第1周波数帯域における反射係数は、前記第2帯域除去フィルタを単体で前記アンテナ共通端子側から見た場合の前記第2周波数帯域における反射係数よりも大きくてもよい。
 分波/合波回路を構成する第1フィルタと、第2フィルタと、第1帯域除去フィルタ/第2帯域除去フィルタとが、アンテナ共通端子で共通に接続された構成の場合、第1フィルタの通過帯域における挿入損失は、第1フィルタ単体の挿入損失に加え、第1帯域除去フィルタのアンテナ共通端子側から見た反射特性の影響を受ける。また、第2フィルタの通過帯域における挿入損失は、第2フィルタ単体の挿入損失に加え、第2帯域除去フィルタのアンテナ共通端子側から見た反射特性の影響を受ける。より具体的には、第1フィルタの通過帯域における挿入損失は、第1帯域除去フィルタのアンテナ共通端子側から見た第1周波数帯域における反射係数が大きいほど減少し、第2フィルタの通過帯域における挿入損失は、第2帯域除去フィルタのアンテナ共通端子側から見た第2周波数帯域における反射係数が大きいほど減少する(以下、共通端子において阻止帯域が全反射しないことによる損失を束ねロスと呼ぶ)。
 ここで、第1帯域除去フィルタは、第2帯域除去フィルタよりもアンテナ共通端子側に接続されているため、第1帯域除去フィルタに起因する第1フィルタの束ねロスのほうが、第2帯域除去フィルタに起因する第2フィルタの束ねロスよりも大きくなる。このため、第1帯域除去フィルタの第1周波数帯域における反射係数を、第2帯域除去フィルタの第2周波数帯域における反射係数よりも大きくしている。
 よって、アンテナ素子と第1フィルタおよび第2フィルタとの間にスイッチを配置することなく、第1フィルタおよび第2フィルタの束ねロスを効果的に低減できるので、CA動作時であっても低損失な信号伝搬特性を維持できる小型の高周波フロントエンド回路を提供することが可能となる。
 また、周波数が低い順に、前記第3周波数帯域、前記第1周波数帯域、および前記第2周波数帯域が配置されており、前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、前記第3周波数帯域を含む周波数帯域を通過帯域とする低域通過型フィルタを構成していてもよい。
 これにより、最も周波数の低い第3周波数帯域を、第1帯域除去フィルタおよび第2帯域除去フィルタで構成することが可能となる。さらに、第3周波数帯域が低域通過型フィルタにより形成されるので、第3周波数帯域を広帯域化できる。
 また、前記第3周波数帯域は、ミドルローバンド(MLB:1475.9-2025MHz)であり、前記第1周波数帯域は、ミドルバンド(MB:2110-2200MHz)であり、前記第2周波数帯域は、ハイバンド(HB:2496-2690MHz)であり、前記第1フィルタは、LTE(Long Term Evolution)のBand66(受信帯域:2110-2200MHz)を通過帯域とするバンドパスフィルタであり、前記第2フィルタは、LTEのBand41(受信帯域:2496-2690MHz)を通過帯域とするバンドパスフィルタであり、前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、Band3(受信帯域:1805-1880MHz)を通過帯域とする低域通過型フィルタであってもよい。
 これにより、高周波フロントエンド回路を、例えば、ミドルローバンド、ミドルバンド、およびハイバンド対応の3分波回路に適用できる。よって、ミドルローバンド、ミドルバンド、およびハイバンド対応の3分波回路を含む構成において、低損失な信号伝搬特性を維持できる小型の高周波フロントエンド回路を実現できる。
 また、前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも低周波側に位置し、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、前記第1帯域除去フィルタでは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する、(2)弾性波共振子がSMR(Solidly Mounted Resonator)で構成される、および(3)弾性波共振子がFBAR(Film Bulk Acoustic Resonator)で構成される、のいずれかであってもよい。
 弾性波共振子の共振点および反共振点よりも高周波域では、バルク波漏洩による不要波が発生し、当該不要波強度は、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する、弾性波共振子をSMRで構成する、および弾性波共振子をFBARで構成する、のいずれかの場合、最も小さくできる。
 よって、第1帯域除去フィルタと第2帯域除去フィルタとの直列接続回路が低周波側フィルタであり、第1フィルタおよび第2フィルタが高周波側フィルタである場合において、第1帯域除去フィルタに上記(1)(2)(3)のいずれかの弾性波を利用する場合のほうが、第1帯域除去フィルタに他の弾性波を利用する場合よりも、第1帯域除去フィルタの第2周波数帯域における反射係数を大きくすることが可能となる。これにより、第2フィルタの束ねロスを低減できる。
 また、前記第2帯域除去フィルタでは、(1)弾性波共振子が、IDT電極が一方の主面上に形成された圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有する、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する、ならびに(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する、のいずれかであってもよい。
 これによれば、第1帯域除去フィルタの反射係数を増大させつつ、第2帯域除去フィルタを音速膜積層構造とした場合には、第2帯域除去フィルタの良好な温度特性を確保でき、また、第2帯域除去フィルタにおいてLiNbOによるラブ波を弾性表面波として利用した場合には、第2帯域除去フィルタの広い減衰帯域幅を確保できる。
 また、前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも低周波側に位置し、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタを構成する弾性波共振子のそれぞれは、圧電体層を有する基板と当該基板上に形成されたIDT電極とで構成された弾性表面波共振子であり、前記第1帯域除去フィルタでは、弾性波共振子が、前記IDT電極が一方の主面上に形成された前記圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有し、前記第2帯域除去フィルタでは、(1)LiTaOからなる前記圧電体層を伝搬するリーキー波を弾性表面波として利用する、または(2)LiNbOからなる前記圧電体層を伝搬するラブ波を弾性表面波として利用してもよい。
 弾性波共振子の共振点および反共振点よりも高周波域では、バルク波漏洩による不要波が発生し、当該不要波強度は、音速膜積層構造を採用した場合の方が、LiTaOのリーキー波を弾性表面波として利用する、またはLiNbOのラブ波を弾性表面波として利用する場合よりも小さくできる。
 よって、第1帯域除去フィルタと第2帯域除去フィルタとの直列接続回路が低周波側フィルタであり、第1フィルタおよび第2フィルタが高周波側フィルタである場合において、第1帯域除去フィルタに上記音速膜積層構造を利用する場合のほうが、第1帯域除去フィルタに他の構造を利用する場合よりも、第1帯域除去フィルタの第2周波数帯域における反射係数を大きくすることが可能となる。これにより、第2フィルタの束ねロスを低減できる。さらに、第2帯域除去フィルタにおいてLiNbOによるラブ波を弾性表面波として利用した場合には、広い減衰帯域幅を確保できる。
 また、前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも低周波側に位置し、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタを構成する弾性波共振子のそれぞれは、圧電体層を有する基板と当該基板上に形成されたIDT電極とで構成された弾性表面波共振子であり、前記第1帯域除去フィルタでは、LiTaOからなる前記圧電体層を伝搬するリーキー波を弾性表面波として利用し、前記第2帯域除去フィルタでは、LiNbOからなる前記圧電体層を伝搬するラブ波を弾性表面波として利用してもよい。
 弾性波共振子の共振点および反共振点よりも高周波域では、バルク波漏洩による不要波が発生し、当該不要波強度は、LiTaOのリーキー波を弾性表面波として利用する場合の方が、LiNbOのラブ波を弾性表面波として利用する場合よりも小さくできる。
 よって、第1帯域除去フィルタと第2帯域除去フィルタとの直列接続回路が低周波側フィルタであり、第1フィルタおよび第2フィルタが高周波側フィルタである場合において、第1帯域除去フィルタにLiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する場合のほうが、第1帯域除去フィルタにLiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する場合よりも、第1帯域除去フィルタの第2周波数帯域における反射係数を大きくすることが可能となる。これにより、第2フィルタの束ねロスを低減できる。さらに、第2帯域除去フィルタにおいてLiNbOによるラブ波を弾性表面波として利用した場合には、広い減衰帯域幅を確保できる。
 また、前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも低周波側に位置し、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、前記第1帯域除去フィルタでは、(1)弾性波共振子が、IDT電極が一方の主面上に形成された圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有する、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する、(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する、(4)弾性波共振子がSMRで構成される、ならびに(5)弾性波共振子がFBARで構成される、のいずれかであり、前記第2帯域除去フィルタでは、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用してもよい。
 LiNbOのレイリー波を弾性波として利用する場合には、弾性波共振子の共振周波数の1.2倍付近に高次モードが発生する。よって、第2帯域除去フィルタではLiNbOのレイリー波と弾性波として利用し、第1帯域除去フィルタではLiNbOのレイリー波を弾性波として利用しないことにより、第1帯域除去フィルタの第2周波数帯域における反射係数を、効果的に大きくできる。
 よって、第1帯域除去フィルタと第2帯域除去フィルタとの直列接続回路が低周波側フィルタであり、第1フィルタおよび第2フィルタが高周波側フィルタである場合において、第2フィルタの束ねロスを低減できる。
 また、前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも低周波側に位置し、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、前記第1帯域除去フィルタでは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する、(2)弾性波共振子が、IDT電極が一方の主面上に形成された圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有する、(3)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する、(4)弾性波共振子がSMRで構成される、ならびに(5)弾性波共振子がFBARで構成される、のいずれかであり、前記第2帯域除去フィルタでは、LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用してもよい。
 LiNbOのラブ波を弾性波として利用する場合には、弾性波共振子の共振周波数の1.2倍付近に高次モードが発生する。よって、第2帯域除去フィルタではLiNbOのラブ波と弾性波として利用し、第1帯域除去フィルタではLiNbOのラブ波を弾性波として利用しないことにより、第1帯域除去フィルタの第2周波数帯域における反射係数を、効果的に大きくできる。
 よって、第1帯域除去フィルタと第2帯域除去フィルタとの直列接続回路が低周波側フィルタであり、第1フィルタおよび第2フィルタが高周波側フィルタである場合において、第2フィルタの束ねロスを低減できる。
 また、周波数が低い順に、前記第1周波数帯域、前記第3周波数帯域、および前記第2周波数帯域が配置されており、前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、前記第3周波数帯域を含む周波数帯域を通過帯域としてもよい。
 これにより、周波数が第1周波数帯域と第2周波数帯域との間に位置する第3周波数帯域を、第1帯域除去フィルタおよび第2帯域除去フィルタで構成することが可能となる。
 また、前記第1周波数帯域は、ミドルバンド(MB:2110-2200MHz)であり、前記第3周波数帯域は、ミドルハイバンド(MHB:2300-2400MHz)であり、前記第2周波数帯域は、ハイバンド(HB:2496-2690MHz)であり、前記第1フィルタは、LTEのBand66(受信帯域:2110-2200MHz)を通過帯域とするバンドパスフィルタであり、前記第2フィルタは、LTEのBand41(受信帯域:2496-2690MHz)を通過帯域とするバンドパスフィルタであり、前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、Band40(受信帯域:2300-2400MHz)を通過帯域とするバンドパスフィルタであってもよい。
 これにより、高周波フロントエンド回路を、例えば、ミドルバンド、ミドルハイバンド、およびハイバンド対応の3分波回路に適用できる。よって、ミドルバンド、ミドルハイバンド、およびハイバンド対応の3分波回路を含む構成において、低損失な信号伝搬特性を維持できる小型の高周波フロントエンド回路を実現できる。
 また、周波数が低い順に、前記第1周波数帯域、前記第2周波数帯域、および前記第3周波数帯域が配置されており、前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、前記第3周波数帯域を含む周波数帯域を通過帯域とする高域通過型フィルタであってもよい。
 これにより、最も周波数の高い第3周波数帯域を、第1帯域除去フィルタおよび第2帯域除去フィルタで構成することが可能となる。さらに、第3周波数帯域が高域通過型フィルタにより形成されるので、第3周波数帯域を広帯域化できる。
 また、前記第3周波数帯域は、ウルトラハイバンド(UHB:3400-3800MHz)であり、前記第1周波数帯域は、ミドルバンド(MB:2110-2200MHz)であり、前記第2周波数帯域は、ハイバンド(HB:2496-2690MHz)であり、前記第1フィルタは、LTEのBand66(受信帯域:2110-2200MHz)を通過帯域とするバンドパスフィルタであり、前記第2フィルタは、LTEのBand41(受信帯域:2496-2690MHz)を通過帯域とするバンドパスフィルタであり、前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、Band42(受信帯域:3400-3600MHz)、Band43(受信帯域:3600-3800MHz)、またはその両方を通過帯域とする高域通過型フィルタであってもよい。
 これにより、高周波フロントエンド回路を、例えば、ミドルバンド、ハイバンド、およびウルトラハイバンド対応の3分波回路に適用できる。よって、ミドルバンド、ハイバンド、およびウルトラハイバンド対応の3分波回路を含む構成において、低損失な信号伝搬特性を維持できる小型の高周波フロントエンド回路を実現できる。
 また、前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも高周波側に位置し、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、前記第1帯域除去フィルタを構成する前記1以上の弾性波共振子のそれぞれは、圧電体層を有する基板と当該基板上に形成されたIDT電極とで構成された弾性表面波共振子であり、前記第1帯域除去フィルタでは、(1)LiNbOからなる前記圧電体層を伝搬するレイリー波、(2)LiTaOからなる前記圧電体層を伝搬するリーキー波、および(3)LiNbOからなる前記圧電体層を伝搬するラブ波、のいずれかを弾性表面波として利用してもよい。
 弾性波共振子の共振点および反共振点よりも低周波域における反射係数は、LiNbOからなる圧電体層を伝搬するレイリー波、LiTaOからなる圧電体層を伝搬するリーキー波、およびLiNbOからなる圧電体層を伝搬するラブ波、のいずれかを弾性表面波として利用する場合、他の弾性波を利用する場合よりも大きい。
 よって、第1帯域除去フィルタと第2帯域除去フィルタとの直列接続回路が高周波側フィルタであり、第1フィルタおよび第2フィルタが低周波側フィルタである場合において、第1帯域除去フィルタに上記(1)(2)(3)のいずれかの弾性波を利用する場合のほうが、第1帯域除去フィルタに他の弾性波を利用する場合よりも、第1帯域除去フィルタの第2周波数帯域における反射係数を大きくすることが可能となる。これにより、第2フィルタの束ねロスを低減できる。
 また、前記第2帯域除去フィルタでは、弾性波共振子がSMRまたはFBARで構成されてもよい。
 これによれば、第1帯域除去フィルタの反射係数を増大させつつ、第2帯域除去フィルタの減衰帯域の急峻性を確保できる。
 また、前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも高周波側に位置し、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、前記第1帯域除去フィルタを構成する前記1以上の弾性波共振子のそれぞれは、圧電体層を有する基板と当該基板上に形成されたIDT電極とで構成された弾性表面波共振子であり、前記第1帯域除去フィルタでは、弾性波共振子が、前記IDT電極が一方の主面上に形成された前記圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有し、前記第2帯域除去フィルタでは、弾性波共振子がSMRまたはFBARで構成されてもよい。
 弾性波共振子の共振点および反共振点よりも低周波域における反射係数は、音速膜積層構造を有する場合のほうが、弾性波共振子をSMRまたはFBARで構成する場合よりも大きい。
 よって、第1帯域除去フィルタと第2帯域除去フィルタとの直列接続回路が高周波側フィルタであり、第1フィルタおよび第2フィルタが低周波側フィルタである場合において、第1帯域除去フィルタに上記音速膜積層構造を利用する場合のほうが、第1帯域除去フィルタをSMRまたはFBARで構成する場合よりも、第1帯域除去フィルタの第2周波数帯域における反射係数を大きくすることが可能となる。これにより、第2フィルタの束ねロスを低減できる。また、第1帯域除去フィルタの反射係数を増大させつつ、第2帯域除去フィルタの減衰帯域の急峻性を確保できる。
 また、前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも高周波側に位置し、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、前記第1帯域除去フィルタでは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する、(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する、(4)弾性波共振子がSMRで構成される、および(5)弾性波共振子がFBARで構成される、のいずれかであり、前記第2帯域除去フィルタでは、弾性波共振子が、IDT電極が一方の主面上に形成された圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有してもよい。
 弾性波共振子として音速膜積層構造を有する場合には、弾性波共振子の共振周波数の0.76倍付近にレイリー波のスプリアスが発生する。よって、第2帯域除去フィルタを音速膜積層構造とし、第1帯域除去フィルタを音速膜積層構造としないことにより、第2帯域除去フィルタの良好な温度特性を確保しつつ第1帯域除去フィルタの第2周波数帯域における反射係数を大きくできる。
 よって、第1帯域除去フィルタと第2帯域除去フィルタとの直列接続回路が高周波側フィルタであり、第1フィルタおよび第2フィルタが低周波側フィルタである場合において、第2フィルタの束ねロスを低減できる。
 また、前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも高周波側に位置し、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、前記第1帯域除去フィルタでは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する、(2)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する、(3)弾性波共振子が、IDT電極が一方の主面上に形成された圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有する、(4)弾性波共振子がSMRで構成される、ならびに(5)弾性波共振子がFBARで構成される、のいずれかであり、前記第2帯域除去フィルタでは、LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用してもよい。
 LiTaOのリーキー波を弾性波として利用する場合には、弾性波共振子の共振周波数の0.76倍付近にレイリー波のスプリアスが発生する。よって、第2帯域除去フィルタではLiTaOのリーキー波を弾性波として利用し、第1帯域除去フィルタではLiTaOのリーキー波を弾性波として利用しないことにより、第1帯域除去フィルタの第2周波数帯域における反射係数を、効果的に大きくできる。
 よって、第1帯域除去フィルタと第2帯域除去フィルタとの直列接続回路が高周波側フィルタであり、第1フィルタおよび第2フィルタが低周波側フィルタである場合において、第2フィルタの束ねロスを低減できる。
 また、前記第1入出力端子に接続された第1増幅回路と、前記第2入出力端子に接続された第2増幅回路と、前記第3入出力端子に接続された第3増幅回路と、をさらに備えてもよい。
 これにより、各周波数帯域の高周波信号を低損失で伝搬でき、製造工程の簡素化および小型化が実現された高周波フロントエンド回路を提供することが可能となる。
 また、本発明の一態様に係る通信装置は、前記アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する上記記載の高周波フロントエンド回路と、を備える。
 これにより、各周波数帯域の高周波信号を低損失で伝搬でき、製造工程の簡素化および小型化が実現された通信装置を提供することが可能となる。
 本発明によれば、低損失な信号伝搬特性を維持しつつ、小型化および製造工程が簡素化された高周波フロントエンド回路および通信装置を提供することが可能となる。
図1は、実施の形態1に係る高周波フロントエンド回路の回路構成図である。 図2は、実施の形態1に係る高周波フロントエンド回路の具体的回路構成図である。 図3は、実施の形態1に係る高周波フロントエンド回路の各フィルタの通過特性を表すグラフである。 図4は、実施の形態1に係る高周波フロントエンド回路のチップレイアウトを示す図である。 図5は、実施の形態1に係る高周波フロントエンド回路の束ねロスを低減した反射係数の関係を示す図である。 図6は、実施の形態1の変形例に係る通信装置の回路構成図である。 図7は、実施の形態2に係る高周波フロントエンド回路の具体的回路構成図である。 図8は、実施の形態2に係る高周波フロントエンド回路の各フィルタの通過特性を表すグラフである。 図9は、実施の形態3に係る高周波フロントエンド回路の具体的回路構成図である。 図10は、実施の形態3に係る高周波フロントエンド回路の各フィルタの通過特性を表すグラフである。 図11は、実施の形態4に係るフィルタ共振子を模式的に表す平面図および断面図の一例である。 図12Aは、実施の形態4に係る帯域除去フィルタの低域1における反射特性を説明する図である。 図12Bは、実施の形態4に係る帯域除去フィルタの構成の組み合わせを表す図である。 図13Aは、実施の形態4の変形例1に係る帯域除去フィルタの高域1におけるバルク波漏洩を説明する図である。 図13Bは、実施の形態4の変形例1に係る帯域除去フィルタの構成の組み合わせを表す図である。 図14Aは、実施の形態4の変形例2に係る帯域除去フィルタの低域2におけるスプリアスの発生を説明する図である。 図14Bは、実施の形態4の変形例2に係る帯域除去フィルタの構成の組み合わせを表す図である。 図15Aは、実施の形態4の変形例3に係る帯域除去フィルタの高域2における高次モードの発生を説明する図である。 図15Bは、実施の形態4の変形例3に係る帯域除去フィルタの構成の組み合わせを表す図である。 図16Aは、実施の形態4の変形例4に係る帯域除去フィルタの低域3における反射特性および高域3におけるバルク波漏洩を説明する図である。 図16Bは、実施の形態4の変形例4に係る帯域除去フィルタの構成の組み合わせを表す図である。 図17Aは、実施の形態4の変形例5に係る帯域除去フィルタの低域4におけるスプリアスの発生および高域4におけるバルク波漏洩を説明する図である。 図17Bは、実施の形態4の変形例5に係る帯域除去フィルタの構成の組み合わせを表す図である。 図18Aは、実施の形態4の変形例6に係る帯域除去フィルタの低域5における反射特性および高域5における高次モードの発生を説明する図である。 図18Bは、実施の形態4の変形例6に係る帯域除去フィルタの構成の組み合わせを表す図である。 図19Aは、実施の形態4に係る帯域除去フィルタの高次モードによる反射損失の劣化を表すグラフである。 図19Bは、実施の形態4の変形例7に係る帯域除去フィルタの構造を異ならせるパラメータを表す図である。 図19Cは、実施の形態4の変形例8に係る帯域除去フィルタの構造を異ならせるパラメータを表す図である。 図20は、実施の形態4の変形例9に係る帯域除去フィルタの構造を異ならせるパラメータを表す図である。 図21は、特許文献1に記載された電気回路の回路構成図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
 (実施の形態1)
 [1.1 高周波フロントエンド回路の構成]
 図1は、実施の形態1に係る高周波フロントエンド回路1の回路構成図である。同図に示すように、高周波フロントエンド回路1は、第1フィルタ11Aと、第1帯域除去フィルタ11Bと、第2フィルタ12Aと、第2帯域除去フィルタ12Bと、アンテナ共通端子100と、入出力端子110、120および130とを備える。高周波フロントエンド回路1は、アンテナ共通端子100で束ねられた第1フィルタ11A、第2フィルタ12A、および第1帯域除去フィルタ11B/第2帯域除去フィルタ12Bを備える分波/合波回路である。
 アンテナ共通端子100は、例えば、アンテナ素子に接続可能であり、入出力端子110、120および130は、増幅回路を介して高周波信号処理回路に接続可能である。
 第1フィルタ11Aは、アンテナ共通端子100と入出力端子110との間に接続され、第1周波数帯域を含む周波数帯域を通過帯域とする帯域通過型(バンドパス)フィルタである。
 第2フィルタ12Aは、アンテナ共通端子100と入出力端子130との間に接続され、第1周波数帯域と異なる第2周波数帯域を含む周波数帯域を通過帯域とする帯域通過型(バンドパス)フィルタである。
 第1帯域除去フィルタ11Bは、アンテナ共通端子100と入出力端子120との間に接続され、第1周波数帯域を含み、第1周波数帯域および第2周波数帯域と異なる第3周波数帯域を含まない周波数帯域を減衰帯域とする帯域除去(バンドエリミネーション)フィルタである。
 第2帯域除去フィルタ12Bは、アンテナ共通端子100と入出力端子120との間であって第1帯域除去フィルタ11Bと直列に接続され、第2周波数帯域を含み第3周波数帯域を含まない周波数帯域を減衰帯域とする帯域除去(バンドエリミネーション)フィルタである。
 第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路は、第3周波数帯域を含む周波数帯域を通過帯域とし、第1周波数帯域および第2周波数帯域を減衰帯域とするフィルタ回路を構成している。
 第1フィルタ11Aは、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bを経由せずにアンテナ共通端子100と接続されている。また、第2フィルタ12Aは、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bを経由せずにアンテナ共通端子100と接続されている。
 従来では、異なる3つの周波数帯域に対応したマルチプレクサ回路を構成する場合、各周波数帯域の高周波信号を通過させる各信号経路に、各周波数帯域を通過帯域とする帯域通過型フィルタが配置される。つまり3つの周波数帯域に対して、3つの帯域通過側フィルタが必要とされる。
 これに対して、本実施の形態に係る高周波フロントエンド回路1によれば、第3周波数帯域を通過帯域とするフィルタは、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路により構成される。ここで、第1帯域除去フィルタ11Bは、第1フィルタ11Aの通過帯域である第1周波数帯域を減衰帯域とするフィルタである。このため、例えば、弾性波共振子で構成された第1帯域除去フィルタ11Bを設計および製造するにあたり、第1フィルタ11Aを構成する弾性波共振子の設計パラメータを適用でき、かつ、第1フィルタ11Aと同様の製造プロセスを適用できる。さらに、第1フィルタ11Aの弾性波共振子を、第1帯域除去フィルタ11Bの弾性波共振子として兼用することも可能である。
 また、第2帯域除去フィルタ12Bは、第2フィルタ12Aの通過帯域である第2周波数帯域を減衰帯域とするフィルタである。このため、例えば、弾性波共振子で構成された第2帯域除去フィルタ12Bを設計および製造するにあたり、第2フィルタ12Aを構成する弾性波共振子の設計パラメータを適用でき、かつ、第2フィルタ12Aと同様の製造プロセスを適用できる。さらに、第2フィルタ12Aの弾性波共振子を、第2帯域除去フィルタ12Bの弾性波共振子として兼用することも可能である。
 つまり、本実施の形態では、3つの周波数帯域に対応した分波/合波回路を設計および製造するにあたり、第1周波数帯域を通過帯域または減衰帯域とするフィルタ回路と、第2周波数帯域を通過帯域または減衰帯域とするフィルタ回路とを設計および製造すればよい。よって、分波/合波回路を構成するにあたり、周波数帯域の数だけ帯域通過型フィルタを設ける必要がないので、設計工数の削減、製造工程の簡素化および小型化を達成できる。
 また、上記構成によれば、第3周波数帯域を通過帯域とするフィルタは、2つの直列接続された第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bにより構成される。ここで、第2フィルタ12Aと第2帯域除去フィルタ12Bとは、アンテナ端子で共通接続されておらず電気的に独立しているため、第2帯域除去フィルタ12Bは第2フィルタ12Aの影響を受けない。これにより、第3周波数帯域の高周波信号を伝搬する信号経路では、第2フィルタ12Aと第2帯域除去フィルタ12Bとが電気的に独立していない場合(つまり共通接続されている場合)と比較して、通過帯域内の挿入損失を小さくできる。
 また、第1周波数帯域の高周波信号を伝搬する信号経路では、帯域除去フィルタを通過せず第1フィルタのみを経由する。また、第2周波数帯域の高周波信号を伝搬する信号経路では、帯域除去フィルタを通過せず第2フィルタのみを経由する。つまり、第2入出力端子を通過する信号は、第2帯域除去フィルタと電気的に独立している第2フィルタのみを通過するため、挿入損失を小さくできる。
 また、第1周波数帯域の高周波信号を伝搬する信号経路では、帯域除去フィルタ11Bおよび12Bを通過せず第1フィルタ11Aのみを経由する。また、第2周波数帯域の高周波信号を伝搬する信号経路では、帯域除去フィルタ11Bおよび12Bを通過せず第2フィルタ12Aのみを経由する。つまり、入出力端子130を通過する信号は、第2帯域除去フィルタ12Bと電気的に独立している第2フィルタ12Aのみを通過するため、挿入損失を小さくできる。第3周波数帯域の高周波信号を伝搬する信号経路では、帯域通過型フィルタを通過せず、2つの帯域除去フィルタ11Bおよび12Bのみを経由する。つまり、第3周波数帯域の高周波信号を伝搬する信号経路に2つの帯域除去フィルタ11Bおよび12Bのみを配置した場合であっても、第1および第2周波数帯域の高周波信号を伝搬する信号経路には、当該2つの帯域除去フィルタ11Bおよび12Bを経由させる必要がない。言い換えると、各周波数帯域に対応した信号経路において、帯域通過型フィルタおよび帯域除去フィルタの一方のみを経由させるので、各周波数帯域の高周波信号を低損失で伝搬できる。
 [1.2 高周波フロントエンド回路の適用例1]
 ここでは、本実施の形態に係る高周波フロントエンド回路1を、LTE(Long Term Evolution)のマルチバンドシステムに適用した例を示す。
 図2は、実施の形態1に係る高周波フロントエンド回路1Aの具体的回路構成図である。同図に示された高周波フロントエンド回路1Aは、高周波フロントエンド回路1をLTEの受信分波回路に適用した例である。高周波フロントエンド回路1Aでは、第3周波数帯域としてミドルローバンド(MLB:1475.9-2025MHz)が割り当てられ、第1周波数帯域としてミドルバンド(MB:2110-2200MHz)が割り当てられ、第2周波数帯域としてハイバンド(HB:2496-2690MHz)が割り当てられている。つまり、周波数が低い順に、第3周波数帯域、第1周波数帯域、および第2周波数帯域が配置されている。
 また、図3は、実施の形態1に係る高周波フロントエンド回路1Aの第1フィルタ11A、第1帯域除去フィルタ11B、第2フィルタ12A、第2帯域除去フィルタ12Bの通過特性を表すグラフである。
 第1フィルタ11Aは、図3の(b)に示すように、Band66(2110-2200MHz)を通過帯域とするフィルタ通過特性を有するバンドパスフィルタである。
 第2フィルタ12Aは、図3の(c)に示すように、Band41(2496-2690MHz)を通過帯域とするフィルタ通過特性を有するバンドパスフィルタである。
 第1帯域除去フィルタ11Bは、図3の(a1)に示すように、Band66(2110-2200MHz)を減衰帯域とするフィルタ通過特性を有するバンドエリミネーションフィルタである。
 第2帯域除去フィルタ12Bは、図3の(a2)に示すように、Band41((2496-2690MHz)を減衰帯域とするフィルタ通過特性を有するバンドエリミネーションフィルタである。
 第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路は、図3の(a)に示すように、Band3の受信帯域(1805-1880MHz)を含むミドルローバンド(MLB:1475.9-2025MHz)を通過帯域とし、Band66(2110-2200MHz)およびBand41(2496-2690MHz)を減衰帯域とするフィルタ通過特性を有する低域通過型フィルタ(ローパスフィルタ)を構成している。
 本適用例によれば、最も周波数の低い第3周波数帯域を、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bで構成することが可能となる。
 なお、本適用例において、第1帯域除去フィルタ11BがBand41(2496-2690MHz)を減衰帯域とするバンドエリミネーションフィルタであって、第2帯域除去フィルタ12BがBand66(2110-2200MHz)を減衰帯域とするバンドエリミネーションフィルタであってもよい。つまり、Band41を減衰帯域とするバンドエリミネーションフィルタが、前段(アンテナ共通端子100側)に接続され、Band66を減衰帯域とするバンドエリミネーションフィルタが、後段(入出力端子120側)に接続されてもよい。
 [1.3 高周波フロントエンド回路のチップレイアウト]
 図4は、実施の形態1に係る高周波フロントエンド回路1Aのチップレイアウトを示す図である。
 同図には、高周波フロントエンド回路1Aの構成要素である第1フィルタ11A、第2フィルタ12A、第1帯域除去フィルタ11B、および第2帯域除去フィルタ12Bのチップレイアウト(実装構成)が示されている。同図に示すように、高周波フロントエンド回路1Aは、第1チップ9および1第2チップ92で構成されている。
 第1チップ91には、第1フィルタ11Aと第1帯域除去フィルタ11Bとが形成されている。第2チップ92には、第2フィルタ12Aと第2帯域除去フィルタ12Bとが形成されている。
 第1フィルタ11Aは、第1チップ91上に形成された接続電極90bを経由してアンテナ共通端子100に接続され、第1チップ91上に形成された接続電極90dを経由して入出力端子110に接続されている。第1帯域除去フィルタ11Bは、第1チップ91上に形成された接続電極90aを経由してアンテナ共通端子100に接続され、第1チップ91上に形成された接続電極90cおよび第2チップ92上に形成された接続電極80aを経由して第2帯域除去フィルタ12Bに接続されている。
 第2フィルタ12Aは、第2チップ92上に形成された接続電極80bを経由してアンテナ共通端子100に接続され、第2チップ92上に形成された接続電極80dを経由して入出力端子130に接続されている。第2帯域除去フィルタ12Bは、第2チップ92上に形成された接続電極80cを経由して入出力端子120に接続されている。
 なお、第1チップ91と第2チップ92とは、第1チップ91および第2チップ92が実装される実装基板に形成された配線により電気接続されてもよいし、第1チップ91と第2チップ92とがボンディングワイヤにより直接電気接続されてもよい。
 高周波フロントエンド回路1Aが有する各フィルタは、例えば、弾性表面波(Surface Acoustic Wave)共振子で構成されている。この場合、各フィルタは、例えば、直列腕共振子および並列腕共振子を有するラダー型のフィルタ構成をとり、直列腕共振子および並列腕共振子は、圧電基板上に形成されたIDT(InterDigital Transducer)電極からなる。
 ここで、第1フィルタ11Aは、Band66(2110-2200MHz)を通過帯域とするフィルタ通過特性を有し、第1帯域除去フィルタ11Bは、同じBand66を減衰帯域とするフィルタ通過特性を有する。ラダー型のフィルタ構成の場合、通過帯域および減衰帯域は、直列腕共振子および並列腕共振子の共振点および反共振点で規定される。このため、第1フィルタ11Aを構成する共振子と第1帯域除去フィルタ11Bを構成する共振子とは、ほぼ同一の電極指ピッチを有するIDT電極で形成することが可能となる。これにより、第1フィルタ11Aと第1帯域除去フィルタ11Bとは、同一の製造プロセスを用いて、1枚の圧電基板上に形成することが容易となる。
 また、第2フィルタ12Aは、Band41(2496-2690MHz)を通過帯域とするフィルタ通過特性を有し、第2帯域除去フィルタ12Bは、同じBand41を減衰帯域とするフィルタ通過特性を有する。ラダー型のフィルタ構成の場合、通過帯域および減衰帯域は、直列腕共振子および並列腕共振子の共振点および反共振点で規定される。このため、第2フィルタ12Aを構成する共振子と第2帯域除去フィルタ12Bを構成する共振子とは、ほぼ同一の電極指ピッチを有するIDT電極で形成することが可能となる。これにより、第2フィルタ12Aと第2帯域除去フィルタ12Bとは、同一の製造プロセスを用いて、1枚の圧電基板上に形成することが容易となる。
 上記観点から、第1フィルタ11Aと第1帯域除去フィルタ11Bとは、1つの第1チップ91に形成され、第2フィルタ12Aと第2帯域除去フィルタ12Bとは、1つの第2チップ92に形成される。
 上記構成によれば、第1帯域除去フィルタ11Bを製造するにあたり、第1周波数帯域(Band66)を通過帯域とする第1フィルタ11Aを構成する弾性波共振子の設計パラメータを適用でき、第1フィルタ11Aと同様の製造プロセスを適用できる。さらに、第1フィルタ11Aの弾性波共振子を流用することも可能である。また、第2帯域除去フィルタ12Bを製造するにあたり、第2周波数帯域(Band41)を通過帯域とする第2フィルタ12Aを構成する弾性波共振子の設計パラメータを適用でき、第2フィルタ12Aと同様の製造プロセスを適用できる。さらに、第2フィルタ12Aの弾性波共振子を流用することも可能である。よって、第1フィルタ11Aと第1帯域除去フィルタ11Bとを同一の第1チップ91で形成し、第2フィルタ12Aと第2帯域除去フィルタ12Bとを同一の第2チップ92で形成することが容易となる。これにより、製造工程のさらなる簡素化および小型化が可能となる。
 なお、上述した高周波フロントエンド回路1Aのチップレイアウトにおいて、各フィルタとしてラダー型のSAWフィルタを例示したが、各フィルタはこれに限られない。各フィルタは、縦結合型フィルタ回路を含んでもよい。この場合であっても、第1フィルタ11Aと第1帯域除去フィルタ11Bとは、縦結合型フィルタ回路のIDT電極の電極指ピッチを揃えることができ、第2フィルタ12Aと第2帯域除去フィルタ12Bとは、当該電極指ピッチを揃えることができる。また、各フィルタは、SAWフィルタだけでなくBAW(Bulk Acoustic Wave)フィルタであってもよい。この場合であっても、第1フィルタ11Aと第1帯域除去フィルタ11Bとは、BAWフィルタを構成する共振子の構造パラメータを揃えることができ、第2フィルタ12Aと第2帯域除去フィルタ12Bとは、当該構造パラメータを揃えることができる。よって、第1フィルタ11Aと第1帯域除去フィルタ11Bとを、1つの第1チップ91に形成でき、また、第2フィルタ12Aと第2帯域除去フィルタ12Bとを、1つの第2チップ92に形成することが可能となる。
 また、第1チップ91に形成される第1フィルタ11Aおよび第1帯域除去フィルタ11Bは、SAWを用いた弾性波共振子で構成され、第2チップ92に形成される第2フィルタ12Aおよび第2帯域除去フィルタ12Bは、BAWを用いた弾性波共振子で構成されていてもよい。これにより、第2フィルタ12Aおよび第2帯域除去フィルタ12Bは、反射係数を大きく確保することが可能となり、第1フィルタ11Aおよび第1帯域除去フィルタ11Bは、帯域幅の自由度を高くできる。
 また、第1フィルタ11Aおよび第1帯域除去フィルタ11Bは、BAWを用いた弾性波共振子で構成され、第2フィルタ12Aおよび第2帯域除去フィルタ12Bは、SAWを用いた弾性波共振子で構成されていてもよい。この場合には、第1フィルタ11Aおよび第1帯域除去フィルタ11Bは、反射係数を大きく確保することが可能となり、第2フィルタ12Aおよび第2帯域除去フィルタ12Bは、帯域幅の自由度を高くできる。
 あるいは、第1フィルタ11A、第1帯域除去フィルタ11B、第2フィルタ12A、および第2帯域除去フィルタ12Bの全てを、BAWを用いた弾性波共振子で構成してもよいし、SAWを用いた弾性波共振子で構成してもよい。つまり、第1周波数帯域および第2周波数帯域を通過する高周波信号の要求仕様に応じて、第1フィルタ11Aおよび第2フィルタ12Aを、SAWまたはBAWで作り分けることが可能となり、設計の自由度が向上する。
 [1.4 高周波フロントエンド回路の束ねロス低減構成]
 図5は、実施の形態1に係る高周波フロントエンド回路1Aの束ねロスを低減した反射係数の関係を示す図である。同図の下段には、アンテナ共通端子100で束ねられた第1帯域除去フィルタ11B(B66BEF)および第2帯域除去フィルタ12B(B41BEF)の通過特性と、第1帯域除去フィルタ11B(B66BEF)および第2帯域除去フィルタ12B(B41BEF)の反射特性とが示されている。また、同図の上段に示すように、第1帯域除去フィルタ11Bがアンテナ共通端子100側に接続され、第2帯域除去フィルタ12Bが入出力端子120側に接続されている。ここで、本実施の形態に係る高周波フロントエンド回路1Aにおいて、第1帯域除去フィルタ11Bを単体でアンテナ共通端子100側から見た場合の第1周波数帯域(Band66通過帯域)における反射係数ΓB66は、第2帯域除去フィルタ12Bを単体でアンテナ共通端子100側から見た場合の第2周波数帯域(Band41通過帯域)における反射係数ΓB41よりも大きいことが好ましい。
 本実施の形態に係る高周波フロントエンド回路1Aのように、受信分波回路を構成する第1フィルタ11Aと、第2フィルタ12Aと、第1帯域除去フィルタ11B/第2帯域除去フィルタ12Bとが、アンテナ共通端子100で束ねられた構成の場合、第1フィルタ11Aの通過帯域(Band66)における挿入損失は、第1フィルタ11A単体の挿入損失に加え、その他のフィルタのアンテナ共通端子100側から見た反射特性の影響を受ける。また、第2フィルタ12Aの通過帯域(Band41)における挿入損失は、第2フィルタ12A単体の挿入損失に加え、その他のフィルタのアンテナ共通端子100側から見た反射特性の影響を受ける。この中で、第1フィルタ11Aの通過帯域における挿入損失は、第1帯域除去フィルタ11Bのアンテナ共通端子100側から見た第1周波数帯域における反射係数が大きいほど減少する。また、第2フィルタ12Aの通過帯域における挿入損失は、第2帯域除去フィルタ12Bのアンテナ共通端子100側から見た第2周波数帯域における反射係数が大きいほど減少する(第1帯域除去フィルタ11Bの反射係数に起因した第1フィルタ11Aの挿入損失、および、第2帯域除去フィルタ12Bの反射係数に起因した第2フィルタ12Aの挿入損失を束ねロスと呼ぶ)。
 ここで、第1帯域除去フィルタ11Bは、第2帯域除去フィルタ12Bよりもアンテナ共通端子100側に接続されているため、第1帯域除去フィルタ11Bに起因する第1フィルタ11Aの束ねロスのほうが、第2帯域除去フィルタ12Bに起因する第2フィルタ12Aの束ねロスよりも大きくなる。このため、第1帯域除去フィルタ11Bの第1周波数帯域における反射係数ΓB66を、第2帯域除去フィルタの第2周波数帯域における反射係数ΓB41よりも大きくすることで、高周波フロントエンド回路1Aの束ねロスを効果的に低減することが可能となる。
 よって、アンテナ素子と第1フィルタ11Aおよび第2フィルタ12Aとの間にスイッチを配置することなく、第1フィルタ11Aおよび第2フィルタ12Aの束ねロスを効果的に低減できるので、例えばCA(キャリアアグリゲーション)動作時であっても低損失な信号伝搬特性を維持できる小型の高周波フロントエンド回路を提供することが可能となる。
 なお、第2帯域除去フィルタ12B(Band41を減衰帯域とするバンドエリミネーションフィルタ)が、前段(アンテナ共通端子100側)に接続され、第1帯域除去フィルタ11B(Band66を減衰帯域とするバンドエリミネーションフィルタ)が、後段(入出力端子120側)に接続されている場合には、第2帯域除去フィルタ12Bを単体でアンテナ共通端子100側から見た場合の第2周波数帯域(Band41通過帯域)における反射係数ΓB41は、第1帯域除去フィルタ11Bを単体でアンテナ共通端子100側から見た場合の第1周波数帯域(Band66通過帯域)における反射係数ΓB66よりも大きいことが好ましい。これにより、高周波フロントエンド回路1Aの束ねロスを効果的に低減することが可能となる。
 [1.5 高周波フロントエンド回路を含む通信装置]
 図6は、実施の形態1の変形例に係る通信装置3の回路構成図である。同図には、本実施の形態に係る通信装置3が示されている。通信装置3は、本変形例に係る高周波フロントエンド回路2と、高周波信号処理回路(RFIC)40とで構成されている。
 高周波フロントエンド回路2は、アンテナ共通端子100と、分波回路10および14と、スイッチ21および22と、フィルタ回路15と、増幅回路30とを備える。
 分波回路10は、アンテナ共通端子100に接続され、ローパスフィルタ10A(通過帯域:699-960MHz)およびハイパスフィルタ10B(通過帯域:1475.9-2690MHz)で構成されている。
 分波回路14は、実施の形態1に係る高周波フロントエンド回路1が適用されたものであり、帯域通過型フィルタ14Aと、第1フィルタ14Bと、第1帯域除去フィルタ14C1と、第2帯域除去フィルタ14C2と、第2フィルタ14Dとを備える。
 帯域通過型フィルタ14Aは、ハイパスフィルタ10Bの出力端子とスイッチ21Aとの間に接続され、ミドルハイバンド(MHB:2300-2400MHz)を含む周波数帯域を通過帯域とするバンドパスフィルタである。
 第1フィルタ14Bは、ハイパスフィルタ10Bの出力端子に接続され、第1周波数帯域であるミドルバンド(MB:2110-2200MHz)を含む周波数帯域を通過帯域とするバンドパスフィルタである。第1フィルタ14Bは、実施の形態1にかかる高周波フロントエンド回路1の第1フィルタ11Aに相当する。
 第2フィルタ14Dは、ハイパスフィルタ10Bの出力端子とスイッチ21Dとの間に接続され、第2周波数帯域であるハイバンド(HB:2496-2690MHz)を含む周波数帯域を通過帯域とするバンドパスフィルタである。第2フィルタ14Dは、実施の形態1に係る高周波フロントエンド回路1の第2フィルタ12Aに相当する。
 第1帯域除去フィルタ14C1は、ハイパスフィルタ10Bの出力端子とスイッチ21Cとの間に接続され、第1周波数帯域であるミドルバンド(MB:2110-2200MHz)を減衰帯域とするバンドエリミネーションフィルタである。第1帯域除去フィルタ14C1は、実施の形態1にかかる高周波フロントエンド回路1の第1帯域除去フィルタ11Bに相当する。
 第2帯域除去フィルタ14C2は、ハイパスフィルタ10Bの出力端子とスイッチ21Cとの間であって第1帯域除去フィルタ14C1と直列に接続され、第2周波数帯域であるハイバンド(HB:2496-2690MHz)を減衰帯域とするバンドエリミネーションフィルタである。第2帯域除去フィルタ14C2は、実施の形態1に係る高周波フロントエンド回路1の第2帯域除去フィルタ12Bに相当する。
 第1帯域除去フィルタ14C1と第2帯域除去フィルタ14C2との直列接続回路は、第3周波数帯域であるミドルローバンド(MLB:1475.9-2025MHz)を通過帯域とし、第1周波数帯域であるミドルバンド(MB:2110-2200MHz)および第2周波数帯域であるハイバンド(HB:2496-2690MHz)を減衰帯域とするフィルタ回路を構成している。
 本適用例によれば、周波数が第1周波数帯域および第2周波数帯域よりも低周波側に位置する第3周波数帯域を、第1帯域除去フィルタ14C1および第2帯域除去フィルタ14C2で構成することが可能となる。これにより、4つの周波数帯域に対応した分波/合波回路を設計および製造するにあたり、MHBを通過帯域とするバンドパスフィルタ回路と、第1周波数帯域(MB)を通過帯域または減衰帯域とするフィルタ回路と、第2周波数帯域(HB)を通過帯域または減衰帯域とするフィルタ回路とを設計および製造すればよい。よって、分波/合波回路を構成するにあたり、周波数帯域の数だけ帯域通過型フィルタを設ける必要がないので、設計工数の削減、製造工程の簡素化および小型化を達成できる。
 スイッチ21は、スイッチ21A、21C、および21Dで構成されている。スイッチ22は、スイッチ22A、22B、22C、および22Dで構成されている。
 フィルタ回路15は、フィルタ13a、13b、13c、13d、13e、13f、13g、13h、13j、および13kで構成されている。
 増幅回路は、LNA31、32、33、34、35、および36で構成されている。
 分波回路14は、高周波信号の周波数帯域を、4つの周波数帯域群に分割する。より具体的には、帯域通過型フィルタ14Aは、ミドルハイバンド(MHB:2300-2400MHz)を通過帯域とし、Ba(バンドa)、Bb(バンドb)、Bc(バンドc)、Bd(バンドd)、およびBe(バンドe)の信号を通過させる。第1フィルタ14Bは、ミドルバンド(MB:2110-2200MHz)を通過帯域とし、Bp(バンドp)の信号を通過させる。第1帯域除去フィルタ14C1および第2帯域除去フィルタ14C2の直列接続で構成されたフィルタ回路は、ミドルローバンド(MLB:1475.9-2025MHz)を通過帯域とし、Bf(バンドf)およびBg(バンドg)の信号を通過させる。第2フィルタ14Dは、ハイバンド(HB:2496-2690MHz)を通過帯域とし、Bh(バンドh)、Bj(バンドj)、およびBk(バンドk)の信号を通過させる。
 スイッチ21Aは、共通端子が帯域通過型フィルタ14Aに接続され、各選択端子が、フィルタ13a(Ba)、13b(Bb)、13c(Bc)、13d/13e(Bd/Be)に接続されている。
 スイッチ21Cは、共通端子が第2帯域除去フィルタ14C2に接続され、各選択端子が、フィルタ13f(Bf)および13g(Bg)に接続されている。
 スイッチ21Dは、共通端子が第2フィルタ14Dに接続され、各選択端子が、フィルタ13h(Bh)、13j(Bj)、および13k(Bk)に接続されている。
 スイッチ22Bは、共通端子がLNA31に接続され、各選択端子が第1フィルタ14Bおよびフィルタ13dに接続されている。
 スイッチ22Aは、共通端子がLNA32に接続され、各選択端子がフィルタ13c、13b、および13eに接続されている。
 スイッチ22Dは、共通端子がLNA33に接続され、各選択端子がフィルタ13k、13h、および13jに接続されている。
 スイッチ22Cは、共通端子がLNA34に接続され、各選択端子がフィルタ13fおよび13gに接続されている。
 なお、帯域通過型フィルタ14Aの通過帯域(2300-2400MHz)は、フィルタ13a(Ba)、13b(Bb)、13c(Bc)、13d/13e(Bd/Be)の各通過帯域よりも広く、当該各通過帯域を包含している。第1フィルタ14Bは(2110-2200MHz)は、Bpの各通過帯域を包含している。第1帯域除去フィルタ14C1および第2帯域除去フィルタ14C2の直列接続で構成されたフィルタ回路の通過帯域(1475.9-2025MHz)は、フィルタ13f(Bf)および13g(Bg)の各通過帯域よりも広く、当該各通過帯域を包含している。第2フィルタ14Dの通過帯域(2496-2690MHz)は、フィルタ13h(Bh)、13j(Bj)、および13k(Bk)の各通過帯域よりも広く、当該各通過帯域を包含している。
 高周波信号処理回路(RFIC)40は、LNA31~36の出力端子に接続され、アンテナ素子から各バンドの受信信号経路を介して入力された高周波受信信号を、ダウンコンバートなどにより信号処理し、当該信号処理して生成された受信信号を、後段のベースバンド信号処理回路へ出力する。高周波信号処理回路40は、例えば、RFICである。また、高周波信号処理回路(RFIC)40は、使用されるバンドに応じて、制御信号S1A、S1C、S1D、S2A、S2B、S2C、およびS2Dを、それぞれ、スイッチ21A、21C、21D、22A、22B、22C、および22Dに出力する。これにより、各スイッチは信号経路の接続を切り替える。
 上記構成を有する通信装置3において、例えば、スイッチ21A、21Cおよび21Dを切り替えることにより、MLB(1475.9-2025MHz)、MB(2110-2200MHz)、MHB(2300-2400MHz)、およびHB(2496-2690MHz)から、それぞれ1バンドを選択することにより、CA動作が可能である。
 以上の構成によれば、分波回路14として実施の形態1に係る高周波フロントエンド回路1を適用することにより、CA動作させるバンドの数が多くなっても、低損失な信号伝搬特性を維持しつつ小型化および製造工程が簡素化された高周波フロントエンド回路および通信装置を提供することが可能となる。また、例えば、3GPP規格に規定されている全てのCA組み合わせに対応させることが可能となる。
 なお、本変形例では、アンテナ素子からの高周波信号を受信して高周波信号処理回路40へ伝達する、受信用の高周波フロントエンド回路を例示したが、送信用または送受信用の高周波フロントエンド回路であってもよい。送信用の高周波フロントエンド回路の場合には、増幅回路30はパワーアンプで構成される。また、送受信用の高周波フロントエンド回路の場合には、フィルタ回路15は、各バンドに割り当てられたデュプレクサで構成される。
 (実施の形態2)
 本実施の形態では、実施の形態1に係る高周波フロントエンド回路1Aと異なるLTEのマルチバンドシステムに適用した高周波フロントエンド回路1B、および高周波フロントエンド回路1B搭載した通信装置を説明する。
 [2.1 高周波フロントエンド回路の適用例2]
 図7は、実施の形態2に係る高周波フロントエンド回路1Bの具体的回路構成図である。同図に示された高周波フロントエンド回路1Bは、第1フィルタ11Aと、第1帯域除去フィルタ11Cと、第2フィルタ12Aと、第2帯域除去フィルタ12Cと、アンテナ共通端子100と、入出力端子110、120および130とを備える。高周波フロントエンド回路1Bは、アンテナ共通端子100で束ねられた第1フィルタ11A、第2フィルタ12A、および第1帯域除去フィルタ11C/第2帯域除去フィルタ12Cを備える分波/合波回路である。高周波フロントエンド回路1Bは、高周波フロントエンド回路1をLTEの受信分波回路に適用した例である。
 高周波フロントエンド回路1Bでは、第3周波数帯域としてミドルハイバンド(MHB:2300-2400MHz)が割り当てられ、第1周波数帯域としてミドルバンド(MB:2110-2200MHz)が割り当てられ、第2周波数帯域としてハイバンド(HB:2496-2690MHz)が割り当てられている。つまり、周波数が低い順に、第1周波数帯域、第3周波数帯域、および第2周波数帯域が配置されている。
 本実施の形態に係る高周波フロントエンド回路1Bは、実施の形態1に係る高周波フロントエンド回路1Aと比較して、第1帯域除去フィルタおよび第2帯域除去フィルタのフィルタ通過特性が異なる。以下、高周波フロントエンド回路1Bについて、高周波フロントエンド回路1Aと同じ点は説明を省略し、異なる点を中心に説明する。
 図8は、実施の形態2に係る高周波フロントエンド回路1Bの第1フィルタ11A、第1帯域除去フィルタ11C、第2フィルタ12A、第2帯域除去フィルタ12Cの通過特性を表すグラフである。
 第1フィルタ11Aは、図8の(a)に示すように、Band66(2110-2200MHz)を通過帯域とするフィルタ通過特性を有するバンドパスフィルタである。
 第2フィルタ12Aは、図8の(c)に示すように、Band41(2496-2690MHz)を通過帯域とするフィルタ通過特性を有するバンドパスフィルタである。
 第1帯域除去フィルタ11Cは、図8の(b2)に示すように、Band66(2110-2200MHz)を減衰帯域とするフィルタ通過特性を有するバンドエリミネーションフィルタである。
 第2帯域除去フィルタ12Cは、図8の(b1)に示すように、Band41(2496-2690MHz)を減衰帯域とするフィルタ通過特性を有するバンドエリミネーションフィルタである。
 第1帯域除去フィルタ11Cと第2帯域除去フィルタ12Cとの直列接続回路は、図8の(b)に示すように、Band40を含むミドルハイバンド(MLB:2300-2400MHz)を通過帯域とし、Band66(2110-2200MHz)およびBand41(2496-2690MHz)を減衰帯域とするフィルタ通過特性を有する帯域通過型フィルタ(バンドパスフィルタ)を構成している。
 本適用例によれば、周波数が第1周波数帯域と第2周波数帯域との間に位置する第3周波数帯域を、第1帯域除去フィルタ11Cおよび第2帯域除去フィルタ12Cで構成することが可能となる。
 なお、本適用例において、第1帯域除去フィルタ11CがBand41(2496-2690MHz)を減衰帯域とするバンドエリミネーションフィルタであって、第2帯域除去フィルタ12CがBand66(2110-2200MHz)を減衰帯域とするバンドエリミネーションフィルタであってもよい。つまり、Band41を減衰帯域とするバンドエリミネーションフィルタが、前段(アンテナ共通端子100側)に接続され、Band66を減衰帯域とするバンドエリミネーションフィルタが、後段(入出力端子120側)に接続されてもよい。
 ここで、本実施の形態に係る高周波フロントエンド回路1Bにおいて、第1帯域除去フィルタ11Cを単体でアンテナ共通端子100側から見た場合の第1周波数帯域(Band66通過帯域)における反射係数ΓB66は、第2帯域除去フィルタ12Cを単体でアンテナ共通端子100側から見た場合の第2周波数帯域(Band41通過帯域)における反射係数ΓB41よりも大きいことが好ましい。第1帯域除去フィルタ11Cは、第2帯域除去フィルタ12Cよりもアンテナ共通端子100側に接続されているため、第1帯域除去フィルタ11Cに起因する第1フィルタ11Aの束ねロス(第1帯域除去フィルタ11Cの反射係数に起因した第1フィルタ11Aの挿入損失)のほうが、第2帯域除去フィルタ12Cに起因する第2フィルタ12Aの束ねロス(第2帯域除去フィルタ12Cの反射係数に起因した第2フィルタ12Aの挿入損失)よりも大きくなる。このため、第1帯域除去フィルタ11Cの第1周波数帯域における反射係数ΓB66を、第2帯域除去フィルタ12Cの第2周波数帯域における反射係数ΓB41よりも大きくすることで、高周波フロントエンド回路1Bの束ねロスを効果的に低減することが可能となる。
 よって、アンテナ素子と第1フィルタ11Aおよび第2フィルタ12Aとの間にスイッチを配置することなく、第1フィルタ11Aおよび第2フィルタ12Aの束ねロスを効果的に低減できるので、例えばCA(キャリアアグリゲーション)動作時であっても低損失な信号伝搬特性を維持できる小型の高周波フロントエンド回路を提供することが可能となる。
 なお、第2帯域除去フィルタ12C(Band41を減衰帯域とするバンドエリミネーションフィルタ)が、前段(アンテナ共通端子100側)に接続され、第1帯域除去フィルタ11C(Band66を減衰帯域とするバンドエリミネーションフィルタ)が、後段(入出力端子120側)に接続されている場合には、第2帯域除去フィルタ12Cを単体でアンテナ共通端子100側から見た場合の第2周波数帯域(Band41通過帯域)における反射係数ΓB41は、第1帯域除去フィルタ11Cを単体でアンテナ共通端子100側から見た場合の第1周波数帯域(Band66通過帯域)における反射係数ΓB66よりも大きいことが好ましい。これにより、高周波フロントエンド回路1Bの束ねロスを効果的に低減することが可能となる。
 (実施の形態3)
 本実施の形態では、実施の形態1および2に係る高周波フロントエンド回路1Aおよび1Bと異なるLTEのマルチバンドシステムに適用した高周波フロントエンド回路1Cを説明する。
 [3.1 高周波フロントエンド回路の適用例3]
 図9は、実施の形態3に係る高周波フロントエンド回路1Cの具体的回路構成図である。同図に示された高周波フロントエンド回路1Cは、第1フィルタ11Aと、第1帯域除去フィルタ11Dと、第2フィルタ12Aと、第2帯域除去フィルタ12Dと、アンテナ共通端子100と、入出力端子110、120および130とを備える。高周波フロントエンド回路1Cは、アンテナ共通端子100で束ねられた第1フィルタ11A、第2フィルタ12A、および第1帯域除去フィルタ11D/第2帯域除去フィルタ12Dを備える分波/合波回路である。高周波フロントエンド回路1Cは、高周波フロントエンド回路1をLTEの受信分波回路に適用した例である。
 高周波フロントエンド回路1Cでは、第3周波数帯域としてミドルハイバンド(UHB:3400-3800MHz)が割り当てられ、第1周波数帯域としてミドルバンド(MB:2110-2200MHz)が割り当てられ、第2周波数帯域としてハイバンド(HB:2496-2690MHz)が割り当てられている。つまり、周波数が低い順に、第1周波数帯域、第2周波数帯域、および第3周波数帯域が配置されている。
 本実施の形態に係る高周波フロントエンド回路1Cは、実施の形態1に係る高周波フロントエンド回路1Aと比較して、第1帯域除去フィルタおよび第2帯域除去フィルタのフィルタ通過特性が異なる。以下、高周波フロントエンド回路1Cについて、高周波フロントエンド回路1Aと同じ点は説明を省略し、異なる点を中心に説明する。
 図10は、実施の形態3に係る高周波フロントエンド回路1Cの第1フィルタ11A、第1帯域除去フィルタ11D、第2フィルタ12A、第2帯域除去フィルタ12Dの通過特性を表すグラフである。
 第1フィルタ11Aは、図10の(b)に示すように、Band66(2110-2200MHz)を通過帯域とするフィルタ通過特性を有するバンドパスフィルタである。
 第2フィルタ12Aは、図10の(c)に示すように、Band41(2496-2690MHz)を通過帯域とするフィルタ通過特性を有するバンドパスフィルタである。
 第1帯域除去フィルタ11Dは、図10の(a1)に示すように、Band66(2110-2200MHz)を減衰帯域とするフィルタ通過特性を有するバンドエリミネーションフィルタである。
 第2帯域除去フィルタ12Dは、図10の(a2)に示すように、Band41(2496-2690MHz)を減衰帯域とするフィルタ通過特性を有するバンドエリミネーションフィルタである。
 第1帯域除去フィルタ11Dと第2帯域除去フィルタ12Dとの直列接続回路は、図10の(a)に示すように、Band42/Band43を含むウルトラハイバンド(UHB:3400-3800MHz)を通過帯域とし、Band66(2110-2200MHz)およびBand41(2496-2690MHz)を減衰帯域とするフィルタ通過特性を有する高域通過型フィルタ(ハイパスフィルタ)を構成している。
 本適用例によれば、周波数が第1周波数帯域および第2周波数帯域よりも高周波側に位置する第3周波数帯域を、第1帯域除去フィルタ11Dおよび第2帯域除去フィルタ12Dで構成することが可能となる。
 なお、本適用例において、第1帯域除去フィルタ11DがBand41(2496-2690MHz)を減衰帯域とするバンドエリミネーションフィルタであって、第2帯域除去フィルタ12DがBand66(2110-2200MHz)を減衰帯域とするバンドエリミネーションフィルタであってもよい。つまり、Band41を減衰帯域とするバンドエリミネーションフィルタが、前段(アンテナ共通端子100側)に接続され、Band66を減衰帯域とするバンドエリミネーションフィルタが、後段(入出力端子120側)に接続されてもよい。
 また、第1帯域除去フィルタ11Dと第2帯域除去フィルタ12Dとの直列接続回路は、Band42(3400-3600MHz)およびBand43(3600-3800MHz)のいずれかのみ通過帯域とする高域通過型フィルタ(ハイパスフィルタ)を構成してもよい。
 ここで、本実施の形態に係る高周波フロントエンド回路1Cにおいて、第1帯域除去フィルタ11Dを単体でアンテナ共通端子100側から見た場合の第1周波数帯域(Band66通過帯域)における反射係数ΓB66は、第2帯域除去フィルタ12Dを単体でアンテナ共通端子100側から見た場合の第2周波数帯域(Band41通過帯域)における反射係数ΓB41よりも大きいことが好ましい。第1帯域除去フィルタ11Dは、第2帯域除去フィルタ12Dよりもアンテナ共通端子100側に接続されているため、第1帯域除去フィルタ11Dに起因する第1フィルタ11Aの束ねロス(第1帯域除去フィルタ11Dの反射係数に起因した第1フィルタ11Aの挿入損失)のほうが、第2帯域除去フィルタ12Dに起因する第2フィルタ12Aの束ねロス(第2帯域除去フィルタ12Dの反射係数に起因した第2フィルタ12Aの挿入損失)よりも大きくなる。このため、第1帯域除去フィルタ11Dの第1周波数帯域における反射係数ΓB66を、第2帯域除去フィルタ12Dの第2周波数帯域における反射係数ΓB41よりも大きくすることで、高周波フロントエンド回路1Cの束ねロスを効果的に低減することが可能となる。
 よって、アンテナ素子と第1フィルタ11Aおよび第2フィルタ12Aとの間にスイッチを配置することなく、第1フィルタ11Aおよび第2フィルタ12Aの束ねロスを効果的に低減できるので、例えばCA(キャリアアグリゲーション)動作時であっても低損失な信号伝搬特性を維持できる小型の高周波フロントエンド回路を提供することが可能となる。
 なお、第2帯域除去フィルタ12D(Band41を減衰帯域とするバンドエリミネーションフィルタ)が、前段(アンテナ共通端子100側)に接続され、第1帯域除去フィルタ11D(Band66を減衰帯域とするバンドエリミネーションフィルタ)が、後段(入出力端子120側)に接続されている場合には、第2帯域除去フィルタ12Dを単体でアンテナ共通端子100側から見た場合の第2周波数帯域(Band41通過帯域)における反射係数ΓB41は、第1帯域除去フィルタ11Dを単体でアンテナ共通端子100側から見た場合の第1周波数帯域(Band66通過帯域)における反射係数ΓB66よりも大きいことが好ましい。これにより、高周波フロントエンド回路1Cの束ねロスを効果的に低減することが可能となる。
 (実施の形態4)
 実施の形態1~3では、第1フィルタ11Aと、第2フィルタ12Aと、第1帯域除去フィルタ11B/第2帯域除去フィルタ12Bとがアンテナ共通端子100で束ねられ、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとが直列接続される構成において、反射特性に影響の大きい第1帯域除去フィルタ11Bでは反射係数を大きくすることを優先させることが好ましいことを説明した。また、反射特性に影響の小さい第2帯域除去フィルタ12Bでは、通過特性、減衰特性、温度特性、および帯域幅などのフィルタ特性を確保する構成をとることが好ましい。本実施の形態では、上記観点から、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの構造の組み合わせについて例示する。
 本実施の形態において、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bは、弾性波共振子で構成されており、ラダー型のフィルタ構造を有していてもよい。この場合、アンテナ共通端子100側に配置された1以上の弾性波共振子は、直列腕共振子および並列腕共振子の少なくとも一方を含んでいる。これにより、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの低損失性を確保しつつ、高周波フロントエンド回路1の束ねロスを低減できる。
 また、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bは、縦結合型のフィルタ構造を有していてもよい。これにより、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bを、減衰強化等が要求されるフィルタ特性に適応させることが可能となる。
 また、弾性波共振子の構造としては、SAW共振子、SMR(Solidly Mounted Resonator)、およびBAWを用いたFBAR(Film Bulk Acoustic Resonator)などが例示される。
 以下では、前段の第1帯域除去フィルタ11Bで反射係数を増大させ、後段の第2帯域除去フィルタ12Bで減衰特性、温度特性、および減衰帯域幅などのフィルタ特性を向上させる具体的構成の組み合わせを例示する。
 まず、弾性波共振子の構造の一例について説明する。
 [4.1 弾性波共振子構造]
 図11は、実施の形態3に係るフィルタ共振子を模式的に表す平面図および断面図の一例である。図11では、本実施の形態に係る弾性波共振子(直列腕共振子および並列腕共振子)が、例えば、SAW共振子である場合を示している。なお、同図には、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bを構成する複数の共振子のうち、1つの弾性波共振子の構造を表す平面摸式図および断面模式図が例示されている。なお、図11に示された弾性波共振子は、上記複数の共振子の典型的な構造を説明するためのものであって、電極を構成する電極指の本数や長さなどは、これに限定されない。
 第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの各共振子は、圧電体層83を有する基板80と、櫛形形状を有するIDT電極71aおよび71bとで構成されている。
 図11の平面図に示すように、圧電体層83の上には、互いに対向する一対のIDT電極71aおよび71bが形成されている。IDT電極71aは、互いに平行な複数の電極指172aと、複数の電極指172aを接続するバスバー電極171aとで構成されている。また、IDT電極71bは、互いに平行な複数の電極指172bと、複数の電極指172bを接続するバスバー電極171bとで構成されている。複数の電極指172aおよび172bは、X軸方向と直交する方向に沿って形成されている。
 また、複数の電極指172aおよび172b、ならびに、バスバー電極171aおよび171bで構成されるIDT電極71は、図11の断面図に示すように、密着層72と主電極層73との積層構造となっている。
 密着層72は、圧電体層83と主電極層73との密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。密着層72の膜厚は、例えば、10nm程度である。
 主電極層73は、材料として、例えば、Cuを1%含有したAlが用いられる。主電極層73の膜厚は、例えば130nm程度である。
 保護膜84は、IDT電極71aおよび71bを覆うように形成されている。保護膜84は、主電極層73を外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする膜である。保護膜84の膜厚は、例えば30nm程度である。
 なお、密着層72、主電極層73および保護膜84を構成する材料は、上述した材料に限定されない。さらに、IDT電極71は、上記積層構造でなくてもよい。IDT電極71は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成されてもよく、また、上記の金属または合金から構成される複数の積層体から構成されてもよい。また、保護膜84は、形成されていなくてもよい。
 つぎに、基板80の積層構造について説明する。
 図11の下段に示すように、基板80は、高音速支持基板81と、低音速膜82と、圧電体層83とを備え、高音速支持基板81、低音速膜82および圧電体層83がこの順で積層された構造(音速膜積層構造)を有している。
 圧電体層83は、例えば、42°YカットX伝搬LiTaO圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸から42°回転した軸を法線とする面で切断したタンタル酸リチウム単結晶またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。この場合、弾性波共振子は、リーキー波を弾性波として利用する。
 また、圧電体層83は、例えば、128°YカットX伝搬LiNbO圧電単結晶または圧電セラミックスからなる。この場合、弾性波共振子は、レイリー波を弾性波として利用する。
 また、圧電体層83は、例えば、YカットX伝搬LiNbO圧電単結晶または圧電セラミックスからなる。この場合、弾性波共振子は、ラブ波を弾性波として利用する。
 なお、圧電体層83の単結晶材料、カット角、積層構造は、フィルタの要求仕様(通過特性、減衰特性、温度特性、および帯域幅などのフィルタ特性)などに応じて、適宜、選択される。
 高音速支持基板81は、低音速膜82、圧電体層83ならびにIDT電極71を支持する基板である。高音速支持基板81は、さらに、圧電体層83を伝搬する表面波や境界波の弾性波よりも、高音速支持基板81中のバルク波の音速が高速となる基板であり、弾性表面波を圧電体層83および低音速膜82が積層されている部分に閉じ込め、高音速支持基板81より下方に漏れないように機能する。高音速支持基板81は、例えば、シリコン基板であり、厚みは、例えば200μmである。なお、高音速支持基板81は、(1)窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、シリコン、サファイア、サファイア、リチウムタンタレート、リチウムニオベイト、または水晶等の圧電体、(2)アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、またはフォルステライト等の各種セラミック、(3)マグネシアダイヤモンド、(4)上記各材料を主成分とする材料、ならびに、(5)上記各材料の混合物を主成分とする材料、のいずれかで構成されていてもよい。
 低音速膜82は、圧電体層83を伝搬する弾性波の音速よりも、低音速膜82中のバルク波の音速が低速となる膜であり、圧電体層83と高音速支持基板81との間に配置される。この構造と、弾性波が本質的に低音速な媒質にエネルギーが集中するという性質とにより、弾性表面波エネルギーのIDT電極外への漏れが抑制される。低音速膜82は、例えば、二酸化ケイ素を主成分とする膜である。低音速膜82の厚みは、例えば500nm程度である。
 基板80の上記音速膜積層構造によれば、圧電基板を単層で使用している従来の構造と比較して、共振周波数および反共振周波数におけるQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性表面波共振子を構成し得るので、当該弾性表面波共振子を用いて、挿入損失が小さいフィルタを構成することが可能となる。
 なお、高音速支持基板81は、支持基板と、圧電体層83を伝搬する表面波や境界波の弾性波よりも、伝搬するバルク波の音速が高速となる高音速膜とが積層された構造を有していてもよい。この場合、支持基板は、サファイア、リチウムタンタレート、リチウムニオベイト、水晶等の圧電体、アルミナ、マグネシア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、ガラス等の誘電体またはシリコン、窒化ガリウム等の半導体及び樹脂基板等を用いることができる。また、高音速膜は、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜またはダイヤモンド、上記材料を主成分とする媒質、上記材料の混合物を主成分とする媒質等、様々な高音速材料を用いることができる。
 なお、上記説明では、弾性波共振子を構成するIDT電極71は、圧電体層83を有する基板80上に形成された例を示したが、IDT電極71が形成される基板は、圧電体層83の単層からなる圧電基板であってもよい。この場合の圧電基板は、例えば、LiTaOの圧電単結晶、または、LiNbOなどの他の圧電単結晶で構成される。
 また、IDT電極71が形成される基板は、圧電体層83を有する限り、全体が圧電体層からなるものの他、支持基板上に圧電体層が積層されている構造を用いてもよい。
 ここで、IDT電極71の設計パラメータについて説明する。弾性表面波共振子の波長とは、図11の中段に示すIDT電極71を構成する複数の電極指172aまたは172bの繰り返し周期である波長λで規定される。また、電極ピッチは、波長λの1/2であり、IDT電極71aおよび71bを構成する電極指172aおよび172bのライン幅をWとし、隣り合う電極指172aと電極指172bとの間のスペース幅をSとした場合、(W+S)で定義される。また、IDT電極の交叉幅Lは、図11の上段に示すように、IDT電極71aの電極指172aとIDT電極71bの電極指172bとのX軸方向から見た場合の重複する電極指長さである。また、各共振子の電極デューティーは、複数の電極指172aおよび172bのライン幅占有率であり、複数の電極指172aおよび172bのライン幅とスペース幅との加算値に対する当該ライン幅の割合であり、W/(W+S)で定義される。
 [4.2 弾性波共振子構造_低域1における反射係数]
 以下、第1帯域除去フィルタ11Bで反射係数を増大させ、第2帯域除去フィルタ12Bで減衰特性、温度特性、および減衰帯域幅などのフィルタ特性を向上させる具体的構成の組み合わせを例示する。
 図12Aは、実施の形態4に係る帯域除去フィルタの低域1における反射特性を説明する図である。同図の下段に示すように、帯域除去フィルタを構成する弾性波共振子のインピーダンス特性において、インピーダンスが極小値となる共振点、および、インピーダンスが極大値となる反共振点が減衰帯域近傍に確認される。ここで、共振点よりも低周波側の領域(図12Aの低域1)では、弾性波共振子の構造に応じてインピーダンスが異なり、当該インピーダンスの大小に応じて反射特性の優劣が存在する。より具体的には、(1)LiNbOからなる圧電体層を伝搬するレイリー波、(2)LiTaOからなる圧電体層を伝搬するリーキー波、および(3)LiNbOからなる圧電体層を伝搬するラブ波、のいずれかを弾性表面波として利用する構造、ならびに(4)上記音速膜積層構造、の方が、SMRまたはFBARよりも、低域1における反射係数が大きい。
 図12Bは、実施の形態4に係る第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの構成の組み合わせを表す図である。
 上記反射係数の関係より、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路の通過帯域である第3周波数帯域が、第1フィルタ11Aの通過帯域(第1周波数帯域)および第2フィルタ12Aの通過帯域(第2周波数帯域)よりも高周波側に位置する場合(例えば、実施の形態3に係る高周波フロントエンド回路1Cの場合)、図12Bに示すように、本実施の形態に係る高周波フロントエンド回路において、第1帯域除去フィルタ11Bでは、(1)LiNbOからなる圧電体層を伝搬するレイリー波、(2)LiTaOからなる圧電体層を伝搬するリーキー波、および(3)LiNbOからなる圧電体層を伝搬するラブ波、のいずれかを弾性表面波として利用する構造としてもよい。
 これにより、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路が高周波側フィルタであり、第1フィルタ11Aおよび第2フィルタ12Aが低周波側フィルタである場合において、第1帯域除去フィルタ11Bに上記(1)(2)(3)のいずれかの弾性波を利用する場合のほうが、第1帯域除去フィルタ11Bに他の弾性波を利用する場合よりも、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくすることが可能となる。これにより、第2フィルタ12Aの束ねロスを低減できる。
 一方、第2帯域除去フィルタ12Bでは、弾性波共振子がSMRまたはFBARで構成されてもよい。
 これにより、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を増大させつつ、第2帯域除去フィルタ12Bの上記構成により、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bで構成されるフィルタ回路の減衰帯域の急峻性を確保できる。
 また、図12Bに示すように、第1帯域除去フィルタ11Bを構成する弾性波共振子のそれぞれは、上述した音速膜積層構造を有し、第2帯域除去フィルタ12Bでは、弾性波共振子がSMRまたはFBARで構成されてもよい。
 これにより、高周波フロントエンド回路において、第1帯域除去フィルタ11BにSMRまたはFBARを利用する場合と比較して、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくすることが可能となる。よって、第2フィルタ12Aの束ねロスを低減できる。また、第2帯域除去フィルタ12Bの上記構成により、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bで構成されるフィルタ回路の減衰帯域の急峻性を確保できる。
 なお、第2帯域除去フィルタ12Bが前段(アンテナ共通端子100側)に接続され、第1帯域除去フィルタ11Bが後段(入出力端子120側)に接続されている場合には、第2帯域除去フィルタ12Bにおいて、(1)LiNbOからなる圧電体層を伝搬するレイリー波、(2)LiTaOからなる圧電体層を伝搬するリーキー波、および(3)LiNbOからなる圧電体層を伝搬するラブ波、のいずれかを弾性表面波として利用する構造とすることが好ましい。
 これにより、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路が高周波側フィルタであり、第1フィルタ11Aおよび第2フィルタ12Aが低周波側フィルタである場合において、第2帯域除去フィルタ12Bに上記(1)(2)(3)のいずれかの弾性波を利用する場合のほうが、第2帯域除去フィルタ12Bに他の弾性波を利用する場合よりも、第2帯域除去フィルタ12Bの第1周波数帯域における反射係数を大きくすることが可能となる。これにより、第1フィルタ11Aの束ねロスを低減できる。
 [4.3 弾性波共振子構造_高域1におけるバルク波漏洩]
 図13Aは、実施の形態4の変形例1に係る帯域除去フィルタの高域1におけるバルク波漏洩を説明する図である。同図の下段に示すように、弾性波共振子の反共振点よりも高周波側の領域(図13Aの高域1)では、バルク波漏洩(不要波)によるインピーダンスの変化が発生し、当該インピーダンスの変化に応じて反射特性の優劣が存在する。より具体的には、高域1でのバルク波漏洩による反射係数は、大きい方から順に、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性波として利用する構造、SMR、FBAR、(2)音速膜積層構造、(3)LiTaOからなる圧電体層を伝搬するリーキー波を弾性波として利用する構造、(4)LiNbOからなる圧電体層を伝搬するラブ波を弾性波として利用する構造、となる。
 図13Bは、実施の形態4の変形例1に係る第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの構成の組み合わせを表す図である。
 上記反射係数の優劣順位により、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路の通過帯域である第3周波数帯域が、第1フィルタ11Aの通過帯域(第1周波数帯域)および第2フィルタ12Aの通過帯域(第2周波数帯域)よりも低周波側に位置する場合(例えば、実施の形態1に係る高周波フロントエンド回路1Aの場合)、図13Bに示すように、第1帯域除去フィルタ11Bでは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造、(2)弾性波共振子がSMRで構成される、および(3)弾性波共振子がFBARで構成される、のいずれかであってもよい。
 これにより、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路が低周波側フィルタであり、第1フィルタ11Aおよび第2フィルタ12Aが高周波側フィルタである場合において、第1帯域除去フィルタ11Bに上記(1)(2)(3)のいずれかの弾性波を利用する場合のほうが、第1帯域除去フィルタ11Bに他の弾性波を利用する場合よりも、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくすることが可能となる。これにより、第2フィルタ12Aの束ねロスを低減できる。
 一方、第2帯域除去フィルタ12Bでは、(1)上記音速膜積層構造、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、および(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造、のいずれかを有していてもよい。
 これにより、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を増大させつつ、第2帯域除去フィルタ12Bを音速膜積層構造とした場合には、第2帯域除去フィルタ12Bの良好な温度特性を確保できる。また、第2帯域除去フィルタ12BにおいてLiNbOによるラブ波を弾性表面波として利用した場合には、第2帯域除去フィルタ12Bの広い減衰帯域幅を確保できる。
 また、図13Bに示すように、第1帯域除去フィルタ11Bを構成する弾性波共振子のそれぞれは、上記音速膜積層構造を有し、第2帯域除去フィルタ12Bでは、(1)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、または(2)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造を有していてもよい。
 これにより、高周波フロントエンド回路において、第1帯域除去フィルタ11Bに上記(1)および(2)の弾性表面波を利用する場合と比較して、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくすることが可能となる。よって、第2フィルタ12Aの束ねロスを低減できる。さらに、第2帯域除去フィルタ12BにおいてLiNbOによるラブ波を弾性表面波として利用した場合には、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bで構成されるフィルタ回路の広い減衰帯域幅を確保できる。
 また、第1帯域除去フィルタ11Bでは、LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造を有し、第2帯域除去フィルタ12Bでは、LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造を有していてもよい。
 これにより、高周波フロントエンド回路において、第1帯域除去フィルタ11BにLiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用しない場合と比較して、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくすることが可能となる。よって、第2フィルタ12Aの束ねロスを低減できる。さらに、第2帯域除去フィルタ12BにおいてLiNbOによるラブ波を弾性表面波として利用した場合には、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bで構成されるフィルタ回路の広い減衰帯域幅を確保できる。
 なお、第2帯域除去フィルタ12Bが前段(アンテナ共通端子100側)に接続され、第1帯域除去フィルタ11Bが後段(入出力端子120側)に接続されている場合には、第2帯域除去フィルタ12Bにおいて、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造、(2)弾性波共振子がSMRで構成される、および(3)弾性波共振子がFBARで構成される、のいずれかであることが好ましい。
 これにより、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路が低周波側フィルタであり、第1フィルタ11Aおよび第2フィルタ12Aが高周波側フィルタである場合において、第2帯域除去フィルタ12Bに上記(1)(2)(3)のいずれかの弾性波を利用する場合のほうが、第2帯域除去フィルタ12Bに他の弾性波を利用する場合よりも、第2帯域除去フィルタ12Bの第1周波数帯域における反射係数を大きくすることが可能となる。これにより、第1フィルタ11Aの束ねロスを低減できる。
 [4.4 弾性波共振子構造_低域2におけるスプリアス]
 図14Aは、実施の形態4の変形例2に係る帯域除去フィルタの低域2におけるスプリアスの発生を説明する図である。同図の下段に示すように、弾性波共振子の共振点よりも低周波側の領域(図14Aの低域2)では、特に、上記音速膜積層構造、または、LiTaOからなる圧電体層を伝搬するリーキー波を弾性波として利用する構造において、共振周波数の0.76倍付近にレイリー波のスプリアスが発生する。このスプリアス発生によりインピーダンスが変化し、当該インピーダンスの変化に応じて反射係数が小さくなる。
 図14Bは、実施の形態4の変形例2に係る第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの構成の組み合わせを表す図である。
 第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路の通過帯域である第3周波数帯域が、第1フィルタ11Aの通過帯域(第1周波数帯域)および第2フィルタ12Aの通過帯域(第2周波数帯域)よりも高周波側に位置する場合(例えば、実施の形態3に係る高周波フロントエンド回路1Cの場合)、図14Bに示すように、第1帯域除去フィルタ11Bは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造、(4)弾性波共振子がSMRで構成される、および(5)弾性波共振子がFBARで構成される、のいずれかであり、第2帯域除去フィルタ12Bは、弾性波共振子が、上記音速膜積層構造を有していてもよい。
 つまり、第2帯域除去フィルタ12Bを音速膜積層構造とし、第1帯域除去フィルタ11Bを音速膜積層構造としないことにより、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくできる。よって、高周波フロントエンド回路において、第2フィルタ12Aの束ねロスを低減できる。
 また、図14Bに示すように、第1帯域除去フィルタ11Bは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造、(2)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造、(3)上記音速膜積層構造、(4)弾性波共振子がSMRで構成される、および(5)弾性波共振子がFBARで構成される、のいずれかであり、第2帯域除去フィルタ12Bは、LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造を有していてもよい。
 つまり、第2帯域除去フィルタ12BではLiTaOのリーキー波を弾性波として利用し、第1帯域除去フィルタ11BではLiTaOのリーキー波を弾性波として利用しないことにより、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくできる。よって、高周波フロントエンド回路において、第2フィルタ12Aの束ねロスを低減できる。
 なお、第2帯域除去フィルタ12Bが前段(アンテナ共通端子100側)に接続され、第1帯域除去フィルタ11Bが後段(入出力端子120側)に接続されている場合には、第2帯域除去フィルタ12Bは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造、(4)弾性波共振子がSMRで構成される、および(5)弾性波共振子がFBARで構成される、のいずれかであり、第1帯域除去フィルタ11Bは、弾性波共振子が、上記音速膜積層構造を有していることが好ましい。
 つまり、第1帯域除去フィルタ11Bを音速膜積層構造とし、第2帯域除去フィルタ12Bを音速膜積層構造としないことにより、第2帯域除去フィルタ12Bの第1周波数帯域における反射係数を大きくできる。よって、高周波フロントエンド回路において、第1フィルタ11Aの束ねロスを低減できる。
 [4.5 弾性波共振子構造_高域2における高次モード]
 図15Aは、実施の形態4の変形例3に係る帯域除去フィルタの高域2における高次モードの発生を説明する図である。同図の下段に示すように、弾性波共振子の共振点よりも高周波側の領域(図15Aの高域2)では、特に、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造、または、LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造において、共振周波数の1.2倍付近に高次モードが発生する。この高次モード発生によりインピーダンスが変化し、当該インピーダンスの変化に応じて反射係数が小さくなる。
 図15Bは、実施の形態4の変形例3に係る第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの構成の組み合わせを表す図である。
 第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路の通過帯域である第3周波数帯域が、第1フィルタ11Aの通過帯域(第1周波数帯域)および第2フィルタ12Aの通過帯域(第2周波数帯域)よりも低周波側に位置する場合(例えば、実施の形態1に係る高周波フロントエンド回路1Aの場合)、図15Bに示すように、第1帯域除去フィルタ11Bは、(1)上記音速膜積層構造、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造、(4)SMR、および(5)FBAR、のいずれかを有し、第2帯域除去フィルタ12Bは、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造を有していてもよい。
 つまり、第2帯域除去フィルタ12BではLiNbOのレイリー波と弾性波として利用し、第1帯域除去フィルタ11BではLiNbOのレイリー波を弾性波として利用しないことにより第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくできる。よって、高周波フロントエンド回路において、第2フィルタ12Aの束ねロスを低減できる。
 また、図15Bに示すように、第1帯域除去フィルタ11Bは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造、(2)上記音速膜積層構造、(3)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、(4)SMR、および(5)FBARのいずれかを有しており、第2帯域除去フィルタ12Bでは、LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造を有していてもよい
 つまり、第2帯域除去フィルタ12BではLiNbOのラブ波と弾性波として利用し、第1帯域除去フィルタ11BではLiNbOのラブ波を弾性波として利用しないことにより、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくできる。よって、高周波フロントエンド回路において、第2フィルタ12Aの束ねロスを低減できる。
 なお、第2帯域除去フィルタ12Bが前段(アンテナ共通端子100側)に接続され、第1帯域除去フィルタ11Bが後段(入出力端子120側)に接続されている場合には、第2帯域除去フィルタ12Bは、(1)上記音速膜積層構造、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造、(4)SMR、および(5)FBAR、のいずれかを有し、第1帯域除去フィルタ11Bは、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造を有していてもよい。
 つまり、第1帯域除去フィルタ11BではLiNbOのレイリー波と弾性波として利用し、第2帯域除去フィルタ12BではLiNbOのレイリー波を弾性波として利用しないことにより第2帯域除去フィルタ12Bの第1周波数帯域における反射係数を大きくできる。よって、高周波フロントエンド回路において、第1フィルタ11Aの束ねロスを低減できる。
 [4.6 弾性波共振子構造_低域3&高域3におけるバルク波漏洩]
 図16Aは、実施の形態4の変形例4に係る帯域除去フィルタの低域3における反射特性および高域3におけるバルク波漏洩を説明する図である。同図の下段に示すように、共振点よりも低周波側の領域(図16Aの低域3)では、弾性波共振子の構造に応じてインピーダンスが異なり、当該インピーダンスの大小に応じて反射特性の優劣が存在する。また、弾性波共振子の反共振点よりも高周波側の領域(図16Aの高域3)では、バルク波漏洩(不要波)によるインピーダンスの変化が発生し、当該インピーダンスの変化に応じて反射特性の優劣が存在する。
 より具体的には、低域3における反射係数は、(1)LiNbOからなる圧電体層を伝搬するレイリー波、(2)LiTaOからなる圧電体層を伝搬するリーキー波、および(3)LiNbOからなる圧電体層を伝搬するラブ波、のいずれかを弾性表面波として利用する構造、ならびに(4)上記音速膜積層構造、の方が、SMRまたはFBARよりも大きい。
 また、高域3でのバルク波漏洩による反射係数は、大きい方から順に、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性波として利用する構造、SMR、FBAR、(2)音速膜積層構造、(3)LiTaOからなる圧電体層を伝搬するリーキー波を弾性波として利用する構造、(4)LiNbOからなる圧電体層を伝搬するラブ波を弾性波として利用する構造、となる。
 図16Bは、実施の形態4の変形例4に係る第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの構成の組み合わせを表す図である。
 上記反射係数の優劣順位により、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路の通過帯域である第3周波数帯域が、第1フィルタ11Aの通過帯域(第1周波数帯域)および第2フィルタ12Aの通過帯域(第2周波数帯域)の間に位置する場合(例えば、実施の形態2に係る高周波フロントエンド回路1Bの場合)、図16Bに示すように、第1帯域除去フィルタ11Bでは、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造であり、第2帯域除去フィルタ12Bでは、(1)上記音速膜積層構造、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造、および(4)SMRまたはFBARのいずれかであってもよい。これにより、第1フィルタ11Aまたは第2フィルタ12Aの束ねロスを低減できる。
 また、図16Bに示すように、第1帯域除去フィルタ11Bは、上記音速膜積層構造を有し、第2帯域除去フィルタ12Bでは、(1)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、(2)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造、および(3)SMRまたはFBARのいずれかであってもよい。これにより、第1フィルタ11Aまたは第2フィルタ12Aの束ねロスを低減できる。
 なお、第2帯域除去フィルタ12Bが前段(アンテナ共通端子100側)に接続され、第1帯域除去フィルタ11Bが後段(入出力端子120側)に接続されている場合には、第2帯域除去フィルタ12Bでは、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造であり、第1帯域除去フィルタ11Bでは、(1)上記音速膜積層構造、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造、および(4)SMRまたはFBARのいずれかであってもよい。これにより、第1フィルタ11Aまたは第2フィルタ12Aの束ねロスを低減できる。
 [4.7 弾性波共振子構造_低域4におけるスプリアス&高域4におけるバルク波漏洩]
 図17Aは、実施の形態4の変形例5に係る帯域除去フィルタの低域4におけるスプリアスによる反射特性および高域4におけるバルク波漏洩を説明する図である。同図の下段に示すように、弾性波共振子の共振点よりも低周波側の領域(図17Aの低域4)では、特に、上記音速膜積層構造、または、LiTaOからなる圧電体層を伝搬するリーキー波を弾性波として利用する構造において、共振周波数の0.76倍付近にレイリー波のスプリアスが発生する。また、弾性波共振子の反共振点よりも高周波側の領域(図17Aの高域4)では、バルク波漏洩(不要波)によるインピーダンスの変化が発生し、当該インピーダンスの変化に応じて反射特性の優劣が存在する。
 図17Bは、実施の形態4の変形例5に係る第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの構成の組み合わせを表す図である。
 上記反射係数の優劣順位により、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路の通過帯域である第3周波数帯域が、第1フィルタ11Aの通過帯域(第1周波数帯域)および第2フィルタ12Aの通過帯域(第2周波数帯域)の間に位置する場合(例えば、実施の形態2に係る高周波フロントエンド回路1Bの場合)、図17Bに示すように、第1帯域除去フィルタ11Bでは、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造であり、第2帯域除去フィルタ12Bは、上記音速膜積層構造を有してもよい。これにより、第1フィルタ11Aまたは第2フィルタ12Aの束ねロスを低減できる。
 また、図17Bに示すように、第1帯域除去フィルタ11Bは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造、および(2)上記音速膜積層構造のいずれかを有し、第2帯域除去フィルタ12Bは、LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造を有してもよい。これにより、第1フィルタ11Aまたは第2フィルタ12Aの束ねロスを低減できる。
 なお、第2帯域除去フィルタ12Bが前段(アンテナ共通端子100側)に接続され、第1帯域除去フィルタ11Bが後段(入出力端子120側)に接続されている場合には、第2帯域除去フィルタ12Bでは、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造であり、第1帯域除去フィルタ11Bは、上記音速膜積層構造を有してもてもよい。これにより、第1フィルタ11Aまたは第2フィルタ12Aの束ねロスを低減できる。
 [4.8 弾性波共振子構造_低域5&高域5における高次モード]
 図18Aは、実施の形態4の変形例6に係る帯域除去フィルタの低域5における反射特性および高域5における高次モードを説明する図である。同図の下段に示すように、共振点よりも低周波側の領域(図18Aの低域5)では、弾性波共振子の構造に応じてインピーダンスが異なり、当該インピーダンスの大小に応じて反射特性の優劣が存在する。また、弾性波共振子の共振点よりも高周波側の領域(図18Aの高域5)では、特に、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造、または、LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造において、共振周波数の1.2倍付近に高次モードが発生する。
 図18Bは、実施の形態4の変形例6に係る第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの構成の組み合わせを表す図である。
 上記反射係数の優劣順位により、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとの直列接続回路の通過帯域である第3周波数帯域が、第1フィルタ11Aの通過帯域(第1周波数帯域)および第2フィルタ12Aの通過帯域(第2周波数帯域)の間に位置する場合(例えば、実施の形態2に係る高周波フロントエンド回路1Bの場合)、図18Bに示すように、第1帯域除去フィルタ11Bは、(1)上記音速膜積層構造、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、および(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造のいずれかを有し、第2帯域除去フィルタ12Bは、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造を有してもよい。これにより、第1フィルタ11Aまたは第2フィルタ12Aの束ねロスを低減できる。
 また、図18Bに示すように、第1帯域除去フィルタ11Bは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造、(2)上記音速膜積層構造、および(3)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造のいずれかを有し、第2帯域除去フィルタ12Bは、LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造を有してもよい。これにより、第1フィルタ11Aまたは第2フィルタ12Aの束ねロスを低減できる。
 なお、第2帯域除去フィルタ12Bが前段(アンテナ共通端子100側)に接続され、第1帯域除去フィルタ11Bが後段(入出力端子120側)に接続されている場合には、第2帯域除去フィルタ12Bは、(1)上記音速膜積層構造、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する構造、および(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する構造のいずれかを有し、第1帯域除去フィルタ11Bは、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する構造を有してもよい。これにより、第1フィルタ11Aまたは第2フィルタ12Aの束ねロスを低減できる。
 [4.9 弾性波共振子構造パラメータの調整]
 図19Aは、実施の形態4に係る帯域除去フィルタの高次モードによる反射損失の劣化を表すグラフである。同図に示すように、アンテナ共通端子100から見た第1帯域除去フィルタ11Bの反射損失は、共振点の高域側において、高次モードにより増大する(図19Aの破線領域)。ここで、高次モードにより反射損失が増大する周波数を、弾性波共振子の構造パラメータを変化させることにより、高周波側または低周波側へシフトさせることが可能である。または、弾性波共振子の構造パラメータを変化させることにより、高次モードによる反射損失の増大を抑制することが可能である。
 この観点から、発明者らは、反射特性に影響の大きい第1帯域除去フィルタ11Bでは、構造パラメータを変化させることで高次モードやスプリアスなどの発生周波数を第2フィルタ12Aの通過帯域外へとシフトさせ、反射特性に影響の小さい第2帯域除去フィルタ12Bでは、減衰特性、温度特性、および減衰帯域幅などのフィルタ特性を確保するために構造パラメータを最適化することを見出した。
 図19Bは、実施の形態4の変形例7に係る第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの構造を異ならせるパラメータを表す図である。
 第1帯域除去フィルタ11Bを構成する弾性波共振子のそれぞれは、圧電体層83を有する基板80と当該基板上に形成されたIDT電極71とで構成された弾性表面波共振子である。第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bでは、図19Bに示すように、LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用し、第1帯域除去フィルタ11Bを構成するIDT電極71と、第2帯域除去フィルタ12Bを構成するIDT電極71とでは、電極膜厚またはデューティーが異なる。
 LiTaOのリーキー波を弾性波として利用する場合には、弾性波共振子の共振周波数の低周波側にレイリー波のスプリアスが発生する。これに対して、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとで、IDT電極71の電極膜厚またはデューティーを異ならせることにより、第1帯域除去フィルタ11Bにおけるレイリー波スプリアスの発生周波数を、第2周波数帯域(低周波側の第2フィルタ12Aの通過帯域)外へとシフトさせることが可能となる。これにより、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくでき、第2フィルタ12Aの束ねロスを低減できる。
 また、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bでは、図19Bに示すように、弾性波共振子が上記音速膜積層構造を有し、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとでは、IDT電極71の電極膜厚、IDT電極71のデューティー、および低音速膜82の膜厚、のいずれかが異なってもよい。
 音速膜積層構造を採用する場合には、弾性波共振子の共振周波数の低周波側にレイリー波のスプリアスが発生する。これに対して、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとで、IDT電極71の電極膜厚またはデューティーを異ならせることにより、第1帯域除去フィルタ11Bにおけるレイリー波スプリアスの発生周波数を、第2周波数帯域(低周波側の第2フィルタ12Aの通過帯域)外へとシフトさせることが可能となる。これにより、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくでき、第2フィルタ12Aの束ねロスを低減できる。
 図19Cは、実施の形態4の変形例8に係る第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの構造を異ならせるパラメータを表す図である。
 第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bを構成する弾性波共振子のそれぞれは、圧電体層83を有する基板80と当該基板上に形成されたIDT電極71と当該IDT電極71上に形成された保護膜84で構成された弾性表面波共振子である。第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bでは、図19Cに示すように、LiNbOからなる圧電体層を伝搬するレイリー波、または、LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用し、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとでは、IDT電極71の電極膜厚、IDT電極71のデューティー、および保護膜84の膜厚、のいずれかが異なる。
 LiNbOのレイリー波、またはLiNbOのラブ波を弾性表面波として利用する場合には、弾性波共振子の共振周波数の高周波側に高次モードが発生する。これに対して、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとで、IDT電極71の電極膜厚、IDT電極71のデューティー、または低音速膜82の膜厚を異ならせることにより、第1帯域除去フィルタ11Bにおける高次モードの発生周波数を、第2周波数帯域(高周波側の第2フィルタ12Aの通過帯域)外へとシフトさせることが可能となる。これにより、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくでき、第2フィルタ12Aの束ねロスを低減できる。
 また、第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bでは、図19Cに示すように、弾性波共振子が上記音速膜積層構造を有し、高音速支持基板81はシリコン結晶で構成され、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとでは、圧電体層83の膜厚、低音速膜82の膜厚、および高音速支持基板81のシリコン結晶方位、のいずれかが異なってもよい。
 音速膜積層構造を採用する場合には、弾性波共振子の共振周波数の高周波側に高次モードが発生する。これに対して、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとで、圧電体層83の膜厚、低音速膜82の膜厚、または高音速支持基板81のシリコン結晶方位を異ならせることにより、第1帯域除去フィルタ11Bにおける高次モードの発生周波数を、第2周波数帯域(高周波側の第2フィルタ12Aの通過帯域)外へとシフトさせることが可能となる。これにより、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくでき、第2フィルタ12Aの束ねロスを低減できる。
 図20は、実施の形態4の変形例9に係る第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bの構造を異ならせるパラメータを表す図である。
 第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bを構成する弾性波共振子のそれぞれは、圧電体層83を有する基板80と当該基板上に形成されたIDT電極71とで構成された弾性表面波共振子である。第1帯域除去フィルタ11Bおよび第2帯域除去フィルタ12Bでは、LiTaOからなる圧電体層を伝搬するリーキー波、または、LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用し、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとでは、IDT電極71の電極膜厚が異なる。
 LiTaOのリーキー波またはLiNbOのラブ波を弾性表面波として利用する場合には、弾性波共振子の共振周波数の高周波側にバルク波(不要波)が発生する。これに対して、第1帯域除去フィルタ11Bと第2帯域除去フィルタ12Bとで、IDT電極71の電極膜厚を異ならせることにより、第1帯域除去フィルタ11Bにおけるバルク波の発生周波数を、第2周波数帯域(高周波側の第2フィルタ12Aの通過帯域)外へとシフトさせることが可能となる。これにより、第1帯域除去フィルタ11Bの第2周波数帯域における反射係数を大きくでき、第2フィルタ12Aの束ねロスを低減できる。
 (その他の変形例など)
 以上、本発明の実施の形態に係る高周波フロントエンド回路および通信装置について、実施の形態およびその変形例を挙げて説明したが、本発明は、上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係る高周波フロントエンド回路および通信装置を内蔵した各種機器も本発明に含まれる。
 例えば、高周波フロントエンド回路および通信装置において、さらに、入出力端子およびアンテナ共通端子などの各端子の間に、インダクタやキャパシタが接続されていてもよいし、抵抗素子などのインダクタおよびキャパシタ以外の回路素子が付加されていてもよい。
 本発明は、マルチバンド化およびマルチモード化された周波数規格に適用できる低損失、小型および低コストの高周波フロントエンド回路および通信装置として、携帯電話などの通信機器に広く利用できる。
 1、1A、1B、2  高周波フロントエンド回路
 3  通信装置
 10、14  分波回路
 10A  ローパスフィルタ
 10B  ハイパスフィルタ
 11A、14B  第1フィルタ
 11B、11C、14C1、11D  第1帯域除去フィルタ
 12A、14D  第2フィルタ
 12B、12C、14C2、12D  第2帯域除去フィルタ
 13a、13b、13c、13d、13e、13f、13g、13h、13j、13k、13p  フィルタ
 14A  帯域通過型フィルタ
 15  フィルタ回路
 21、22、21A、21C、21D、22A、22B、22C、22D  スイッチ
 30  増幅回路
 31、32、33、34、35、36  LNA
 40  高周波信号処理回路(RFIC)
 71、71a、71b  IDT電極
 72  密着層
 73  主電極層
 80  基板
 80a、80b、80c、80d、90a、90b、90c、90d  接続電極
 81  高音速支持基板
 82  低音速膜
 83  圧電体層
 84  保護膜
 91  第1チップ
 92  第2チップ
 100  アンテナ共通端子
 110、120、130  入出力端子
 171a、171b  バスバー電極
 172a、172b  電極指
 500  高周波分波回路

Claims (23)

  1.  アンテナ素子に接続されるアンテナ共通端子と、
     第1入出力端子、第2入出力端子および第3入出力端子と、
     前記アンテナ共通端子と前記第1入出力端子との間に接続され、第1周波数帯域を含む周波数帯域を通過帯域とする第1フィルタと、
     前記アンテナ共通端子と前記第2入出力端子との間に接続され、前記第1周波数帯域と異なる第2周波数帯域を含む周波数帯域を通過帯域とする第2フィルタと、
     前記アンテナ共通端子と前記第3入出力端子との間に接続され、前記第1周波数帯域を含み前記第1周波数帯域および前記第2周波数帯域と異なる第3周波数帯域を含まない周波数帯域を減衰帯域とする第1帯域除去フィルタと、
     前記アンテナ共通端子と前記第3入出力端子との間であって前記第1帯域除去フィルタと直列に接続され、前記第2周波数帯域を含み前記第3周波数帯域を含まない周波数帯域を減衰帯域とする第2帯域除去フィルタと、を備え、
     前記第1フィルタは、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタを経由せずに前記アンテナ共通端子および前記第1入出力端子に接続され、
     前記第2フィルタは、前記第1帯域除去フィルタおよび前記第2帯域除去フィルタを経由せずに前記アンテナ共通端子および前記第2入出力端子に接続されている、
     高周波フロントエンド回路。
  2.  前記第1フィルタと前記第1帯域除去フィルタとは、同一チップに形成されており、
     前記第2フィルタと前記第2帯域除去フィルタとは、同一チップに形成されている、
     請求項1に記載の高周波フロントエンド回路。
  3.  前記第1フィルタと前記第1帯域除去フィルタとは、第1チップに形成されており、
     前記第2フィルタと前記第2帯域除去フィルタとは、第2チップに形成されており、
     前記第1フィルタ、前記第1帯域除去フィルタ、前記第2フィルタ、および前記第2帯域除去フィルタは、それぞれ、1以上の弾性波共振子を含み、
     前記第1チップは、弾性表面波フィルタおよびBAW(Bulk Acoustic Wave)を用いた弾性波フィルタのうち、いずれかのみで構成されており、
     前記第2チップは、弾性表面波フィルタおよびBAWを用いた弾性波フィルタのうち、いずれかのみで構成されている、
     請求項2に記載の高周波フロントエンド回路。
  4.  前記第1帯域除去フィルタおよび前記第2帯域除去フィルタは、
     前記アンテナ共通端子、前記第1帯域除去フィルタ、前記第2帯域除去フィルタ、および前記第3入出力端子の順に接続され、
     前記第1帯域除去フィルタを単体で前記アンテナ共通端子側から見た場合の前記第1周波数帯域における反射係数は、前記第2帯域除去フィルタを単体で前記アンテナ共通端子側から見た場合の前記第2周波数帯域における反射係数よりも大きい、
     請求項1~3のいずれか1項に記載の高周波フロントエンド回路。
  5.  周波数が低い順に、前記第3周波数帯域、前記第1周波数帯域、および前記第2周波数帯域が配置されており、
     前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、前記第3周波数帯域を含む周波数帯域を通過帯域とする低域通過型フィルタを構成している、
     請求項1~4のいずれか1項に記載の高周波フロントエンド回路。
  6.  前記第3周波数帯域は、ミドルローバンド(MLB:1475.9-2025MHz)であり、
     前記第1周波数帯域は、ミドルバンド(MB:2110-2200MHz)であり、
     前記第2周波数帯域は、ハイバンド(HB:2496-2690MHz)であり、
     前記第1フィルタは、LTE(Long Term Evolution)のBand66(受信帯域:2110-2200MHz)を通過帯域とするバンドパスフィルタであり、
     前記第2フィルタは、LTEのBand41(受信帯域:2496-2690MHz)を通過帯域とするバンドパスフィルタであり、
     前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、Band3(受信帯域:1805-1880MHz)を通過帯域とする低域通過型フィルタである、
     請求項5に記載の高周波フロントエンド回路。
  7.  前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも低周波側に位置し、
     前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、
     前記第1帯域除去フィルタでは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する、(2)弾性波共振子がSMR(Solidly Mounted Resonator)で構成される、および(3)弾性波共振子がFBAR(Film Bulk Acoustic Resonator)で構成される、のいずれかである、
     請求項4~6のいずれか1項に記載の高周波フロントエンド回路。
  8.  前記第2帯域除去フィルタでは、(1)弾性波共振子が、IDT電極が一方の主面上に形成された圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有する、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する、ならびに(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する、のいずれかである、
     請求項7に記載の高周波フロントエンド回路。
  9.  前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも低周波側に位置し、
     前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、
     前記第1帯域除去フィルタおよび前記第2帯域除去フィルタを構成する弾性波共振子のそれぞれは、圧電体層を有する基板と当該基板上に形成されたIDT電極とで構成された弾性表面波共振子であり、
     前記第1帯域除去フィルタでは、弾性波共振子が、前記IDT電極が一方の主面上に形成された前記圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有し、
     前記第2帯域除去フィルタでは、(1)LiTaOからなる前記圧電体層を伝搬するリーキー波を弾性表面波として利用する、または(2)LiNbOからなる前記圧電体層を伝搬するラブ波を弾性表面波として利用する、
     請求項4~6のいずれか1項に記載の高周波フロントエンド回路。
  10.  前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも低周波側に位置し、
     前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、
     前記第1帯域除去フィルタおよび前記第2帯域除去フィルタを構成する弾性波共振子のそれぞれは、圧電体層を有する基板と当該基板上に形成されたIDT電極とで構成された弾性表面波共振子であり、
     前記第1帯域除去フィルタでは、LiTaOからなる前記圧電体層を伝搬するリーキー波を弾性表面波として利用し、
     前記第2帯域除去フィルタでは、LiNbOからなる前記圧電体層を伝搬するラブ波を弾性表面波として利用する、
     請求項4~6のいずれか1項に記載の高周波フロントエンド回路。
  11.  前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも低周波側に位置し、
     前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、
     前記第1帯域除去フィルタでは、(1)弾性波共振子が、IDT電極が一方の主面上に形成された圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有する、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する、(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する、(4)弾性波共振子がSMRで構成される、ならびに(5)弾性波共振子がFBARで構成される、のいずれかであり、
     前記第2帯域除去フィルタでは、LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する、
     請求項4~6のいずれか1項に記載の高周波フロントエンド回路。
  12.  前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも低周波側に位置し、
     前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、
     前記第1帯域除去フィルタでは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する、(2)弾性波共振子が、IDT電極が一方の主面上に形成された圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有する、(3)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する、(4)弾性波共振子がSMRで構成される、ならびに(5)弾性波共振子がFBARで構成される、のいずれかであり、
     前記第2帯域除去フィルタでは、LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する、
     請求項4~6のいずれか1項に記載の高周波フロントエンド回路。
  13.  周波数が低い順に、前記第1周波数帯域、前記第3周波数帯域、および前記第2周波数帯域が配置されており、
     前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、前記第3周波数帯域を含む周波数帯域を通過帯域とする、
     請求項1~4のいずれか1項に記載の高周波フロントエンド回路。
  14.  前記第1周波数帯域は、ミドルバンド(MB:2110-2200MHz)であり、
     前記第3周波数帯域は、ミドルハイバンド(MHB:2300-2400MHz)であり、
     前記第2周波数帯域は、ハイバンド(HB:2496-2690MHz)であり、
     前記第1フィルタは、LTEのBand66(受信帯域:2110-2200MHz)を通過帯域とするバンドパスフィルタであり、
     前記第2フィルタは、LTEのBand41(受信帯域:2496-2690MHz)を通過帯域とするバンドパスフィルタであり、
     前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、Band40(受信帯域:2300-2400MHz)を通過帯域とするバンドパスフィルタである、
     請求項13に記載の高周波フロントエンド回路。
  15.  周波数が低い順に、前記第1周波数帯域、前記第2周波数帯域、および前記第3周波数帯域が配置されており、
     前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、前記第3周波数帯域を含む周波数帯域を通過帯域とする高域通過型フィルタである、
     請求項1~4のいずれか1項に記載の高周波フロントエンド回路。
  16.  前記第3周波数帯域は、ウルトラハイバンド(UHB:3400-3800MHz)であり、
     前記第1周波数帯域は、ミドルバンド(MB:2110-2200MHz)であり、
     前記第2周波数帯域は、ハイバンド(HB:2496-2690MHz)であり、
     前記第1フィルタは、LTEのBand66(受信帯域:2110-2200MHz)を通過帯域とするバンドパスフィルタであり、
     前記第2フィルタは、LTEのBand41(受信帯域:2496-2690MHz)を通過帯域とするバンドパスフィルタであり、
     前記第1帯域除去フィルタと前記第2帯域除去フィルタとは、Band42(受信帯域:3400-3600MHz)、Band43(受信帯域:3600-3800MHz)、またはその両方を通過帯域とする高域通過型フィルタである、
     請求項15に記載の高周波フロントエンド回路。
  17.  前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも高周波側に位置し、
     前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、
     前記第1帯域除去フィルタを構成する前記1以上の弾性波共振子のそれぞれは、圧電体層を有する基板と当該基板上に形成されたIDT電極とで構成された弾性表面波共振子であり、
     前記第1帯域除去フィルタでは、(1)LiNbOからなる前記圧電体層を伝搬するレイリー波、(2)LiTaOからなる前記圧電体層を伝搬するリーキー波、および(3)LiNbOからなる前記圧電体層を伝搬するラブ波、のいずれかを弾性表面波として利用する、
     請求項4、15、および16のいずれか1項に記載の高周波フロントエンド回路。
  18.  前記第2帯域除去フィルタでは、弾性波共振子がSMRまたはFBARで構成される、
     請求項17に記載の高周波フロントエンド回路。
  19.  前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも高周波側に位置し、
     前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、
     前記第1帯域除去フィルタを構成する前記1以上の弾性波共振子のそれぞれは、圧電体層を有する基板と当該基板上に形成されたIDT電極とで構成された弾性表面波共振子であり、
     前記第1帯域除去フィルタでは、弾性波共振子が、前記IDT電極が一方の主面上に形成された前記圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有し、
     前記第2帯域除去フィルタでは、弾性波共振子がSMRまたはFBARで構成される、
     請求項4、15、および16のいずれか1項に記載の高周波フロントエンド回路。
  20.  前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも高周波側に位置し、
     前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、
     前記第1帯域除去フィルタでは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する、(2)LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する、(3)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する、(4)弾性波共振子がSMRで構成される、および(5)弾性波共振子がFBARで構成される、のいずれかであり、
     前記第2帯域除去フィルタでは、弾性波共振子が、IDT電極が一方の主面上に形成された圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有する、
     請求項4、15、および16のいずれか1項に記載の高周波フロントエンド回路。
  21.  前記第3周波数帯域は前記第1周波数帯域および前記第2周波数帯域よりも高周波側に位置し、
     前記第1帯域除去フィルタおよび前記第2帯域除去フィルタのそれぞれは、1以上の弾性波共振子を含み、
     前記第1帯域除去フィルタでは、(1)LiNbOからなる圧電体層を伝搬するレイリー波を弾性表面波として利用する、(2)LiNbOからなる圧電体層を伝搬するラブ波を弾性表面波として利用する、(3)弾性波共振子が、IDT電極が一方の主面上に形成された圧電体層、前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が高速である高音速支持基板、および前記高音速支持基板と前記圧電体層との間に配置され前記圧電体層を伝搬する弾性波音速よりも伝搬するバルク波音速が低速である低音速膜で構成された音速膜積層構造を有する、(4)弾性波共振子がSMRで構成される、ならびに(5)弾性波共振子がFBARで構成される、のいずれかであり、
     前記第2帯域除去フィルタでは、LiTaOからなる圧電体層を伝搬するリーキー波を弾性表面波として利用する、
     請求項4、15、および16のいずれか1項に記載の高周波フロントエンド回路。
  22.  前記第1入出力端子に接続された第1増幅回路と、
     前記第2入出力端子に接続された第2増幅回路と、
     前記第3入出力端子に接続された第3増幅回路と、をさらに備える、
     請求項1~21のいずれか1項に記載の高周波フロントエンド回路。
  23.  前記アンテナ素子で送受信される高周波信号を処理するRF信号処理回路と、
     前記アンテナ素子と前記RF信号処理回路との間で前記高周波信号を伝達する請求項1~22のいずれか1項に記載の高周波フロントエンド回路と、を備える、
     通信装置。
PCT/JP2017/035065 2016-09-30 2017-09-27 高周波フロントエンド回路および通信装置 WO2018062321A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780060636.7A CN109792240B (zh) 2016-09-30 2017-09-27 高频前端电路以及通信装置
US16/360,248 US10756768B2 (en) 2016-09-30 2019-03-21 Radio-frequency front-end circuit and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194875 2016-09-30
JP2016194875 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/360,248 Continuation US10756768B2 (en) 2016-09-30 2019-03-21 Radio-frequency front-end circuit and communication device

Publications (1)

Publication Number Publication Date
WO2018062321A1 true WO2018062321A1 (ja) 2018-04-05

Family

ID=61760528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035065 WO2018062321A1 (ja) 2016-09-30 2017-09-27 高周波フロントエンド回路および通信装置

Country Status (3)

Country Link
US (1) US10756768B2 (ja)
CN (1) CN109792240B (ja)
WO (1) WO2018062321A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183985A1 (ja) * 2019-03-13 2020-09-17 株式会社村田製作所 マルチプレクサ、高周波モジュール及び通信装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10979019B2 (en) * 2019-06-11 2021-04-13 Globalfoundries Singapore Pte. Ltd. Reconfigurable resonator devices, methods of forming reconfigurable resonator devices, and operations thereof
JP2021010062A (ja) * 2019-06-28 2021-01-28 株式会社村田製作所 エクストラクタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503916A (ja) * 2008-09-24 2012-02-09 ノーテル・ネットワークス・リミテッド 少なくとも1つの帯域阻止フィルタを含むフィルタを有するデュプレクサ/マルチプレクサ
WO2012086639A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法
JP2015162905A (ja) * 2014-02-27 2015-09-07 アバゴ・テクノロジーズ・ジェネラル・アイピー(シンガポール)プライベート・リミテッド ドープされた圧電層を有するバルク音響共振器
WO2016111262A1 (ja) * 2015-01-07 2016-07-14 株式会社村田製作所 複合フィルタ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289467A (ja) * 1996-04-23 1997-11-04 Oki Electric Ind Co Ltd 移動通信機の高周波受信回路
DE10352642B4 (de) 2003-11-11 2018-11-29 Snaptrack, Inc. Schaltung mit verringerter Einfügedämpfung und Bauelement mit der Schaltung
JPWO2013118240A1 (ja) * 2012-02-06 2015-05-11 太陽誘電株式会社 フィルタ回路およびモジュール
EP2901558A4 (en) * 2012-09-26 2016-05-25 Ericsson Telefon Ab L M Multi-band receiver and signal processing method therefor
DE102014110905A1 (de) * 2014-07-31 2016-02-04 Epcos Ag Duplexer mit verbesserter Reflektivität
WO2018123698A1 (ja) * 2016-12-27 2018-07-05 株式会社村田製作所 高周波モジュールおよび通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012503916A (ja) * 2008-09-24 2012-02-09 ノーテル・ネットワークス・リミテッド 少なくとも1つの帯域阻止フィルタを含むフィルタを有するデュプレクサ/マルチプレクサ
WO2012086639A1 (ja) * 2010-12-24 2012-06-28 株式会社村田製作所 弾性波装置及びその製造方法
JP2015162905A (ja) * 2014-02-27 2015-09-07 アバゴ・テクノロジーズ・ジェネラル・アイピー(シンガポール)プライベート・リミテッド ドープされた圧電層を有するバルク音響共振器
WO2016111262A1 (ja) * 2015-01-07 2016-07-14 株式会社村田製作所 複合フィルタ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183985A1 (ja) * 2019-03-13 2020-09-17 株式会社村田製作所 マルチプレクサ、高周波モジュール及び通信装置

Also Published As

Publication number Publication date
CN109792240A (zh) 2019-05-21
CN109792240B (zh) 2023-03-10
US10756768B2 (en) 2020-08-25
US20190222236A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6822299B2 (ja) 高周波フロントエンド回路および通信装置
CN109417379B (zh) 多工器、高频前端电路及通信装置
CN108604890B (zh) 高频前端电路以及通信装置
KR101867792B1 (ko) 멀티플렉서, 송신 장치, 수신 장치, 고주파 프론트엔드 회로, 통신 장치, 및 멀티플렉서의 임피던스 정합 방법
CN109478880B (zh) 多工器、高频前端电路及通信装置
CN109286384B (zh) 多工器、高频前端电路以及通信装置
US9860006B1 (en) Multiplexer, high-frequency front-end circuit, and communication device
JP6658070B2 (ja) マルチプレクサ、送信装置および受信装置
US9998097B2 (en) Radio-frequency front-end circuit and communication device
US10812050B2 (en) Multiplexer, radio-frequency (RF) front-end circuit, and communication apparatus
KR20180097451A (ko) 멀티플렉서, 송신 장치 및 수신 장치
CN109417380B (zh) 多工器、高频前端电路及通信装置
CN111448758B (zh) 多工器、高频前端电路以及通信装置
WO2017159834A1 (ja) 高周波フィルタ素子、マルチプレクサ、送信装置および受信装置
CN111512548B (zh) 弹性波滤波器、多工器、高频前端电路以及通信装置
KR102431434B1 (ko) 필터 장치 및 멀티플렉서
US10756768B2 (en) Radio-frequency front-end circuit and communication device
JP2019004364A (ja) 弾性波フィルタ及びマルチプレクサ
CN109217837B (zh) 多工器
CN110932695A (zh) 提取器
JP7231007B2 (ja) フィルタ、マルチプレクサ、高周波フロントエンド回路及び通信装置
CN110809858B (zh) 多工器
WO2018212105A1 (ja) マルチプレクサ、送信装置および受信装置
WO2023074373A1 (ja) 弾性波共振子、弾性波フィルタ装置およびマルチプレクサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP