WO2018061446A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2018061446A1
WO2018061446A1 PCT/JP2017/027232 JP2017027232W WO2018061446A1 WO 2018061446 A1 WO2018061446 A1 WO 2018061446A1 JP 2017027232 W JP2017027232 W JP 2017027232W WO 2018061446 A1 WO2018061446 A1 WO 2018061446A1
Authority
WO
WIPO (PCT)
Prior art keywords
host
group
general formula
organic electroluminescent
organic
Prior art date
Application number
PCT/JP2017/027232
Other languages
English (en)
French (fr)
Inventor
淳也 小川
匡志 多田
裕士 池永
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to US16/334,576 priority Critical patent/US11171295B2/en
Priority to EP17855404.4A priority patent/EP3522246B1/en
Priority to KR1020197009790A priority patent/KR102356995B1/ko
Priority to CN201780060065.7A priority patent/CN109791997B/zh
Priority to JP2018541950A priority patent/JP6894913B2/ja
Publication of WO2018061446A1 publication Critical patent/WO2018061446A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to an organic electroluminescent device (referred to as an organic EL device). Specifically, the present invention relates to an organic EL element having a light emitting layer containing a first host, a second host, and a light emitting dopant material.
  • Patent Document 1 discloses an organic EL element using a TTF (Triplet-Triplet Fusion) mechanism, which is one of delayed fluorescence mechanisms.
  • TTF Triplet-Triplet Fusion
  • the TTF mechanism uses the phenomenon that singlet excitons are generated by collision of two triplet excitons, and it is theoretically thought that the internal quantum efficiency can be increased to 40%.
  • Patent Document 2 discloses an organic EL element using a TADF (Thermally Activated Delayed Fluorescence) mechanism.
  • the TADF mechanism utilizes the phenomenon that reverse intersystem crossing from triplet excitons to singlet excitons occurs in materials where the energy difference between singlet and triplet levels is small. It is thought to be raised to 100%. However, there is a demand for further improvement in the life characteristics as in the phosphorescent light emitting device.
  • Patent Document 3 discloses the use of an indolocarbazole compound as a host material.
  • Patent Document 4 discloses the use of a biscarbazole compound as a host material.
  • Patent Documents 5 and 6 disclose the use of a biscarbazole compound as a mixed host.
  • Patent Documents 7, 8, and 9 disclose using an indolocarbazole compound and a biscarbazole compound as a mixed host.
  • Patent Document 10 discloses the use of a host material in which a plurality of hosts containing an indolocarbazole compound are premixed. However, none of them are sufficient, and further improvements are desired.
  • An object of the present invention is to provide a practically useful organic EL device having high efficiency and high driving stability while having a low driving voltage in view of the above-described present situation.
  • the present invention relates to an organic EL device comprising one or more light emitting layers between an anode and a cathode facing each other, wherein at least one light emitting layer produced by vacuum deposition is represented by the following general formula (1)
  • An organic EL device comprising a first host selected from the group consisting of a second host selected from the compounds represented by the following general formula (2), and a light-emitting dopant material.
  • ring A is an aromatic hydrocarbon ring represented by formula (1a)
  • ring B is a heterocycle represented by formula (1b)
  • ring A and ring B are each an adjacent ring and Condensate at any position.
  • Ar 1 is a phenyl group, a biphenyl group or a terphenyl group.
  • R is independently an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms, or an aromatic heterocyclic group having 3 to 12 carbon atoms.
  • a, b, and c represent the number of substitutions, and each independently represents an integer of 0 to 3.
  • m and n represent the number of repetitions, and each independently represents an integer of 0 to 2.
  • Ar 2 and Ar 3 represent an aromatic hydrocarbon group having 6 to 14 carbon atoms or a group in which two aromatic hydrocarbon groups are linked, and the linked aromatic hydrocarbon groups may be the same.
  • L 1 represents a direct bond or a phenylene group having any one of formulas (2a) to (2c), and L 2 represents a divalent phenylene group represented by formula (2c). .
  • the first host and the second host are preferably premixed before use. Also, the difference in 50% weight reduction temperature between the first host and the second host is within 20 ° C, or the ratio of the first host is less than 20wt% with respect to the total of the first host and the second host. More than 55 wt% is preferable.
  • the luminescent dopant material can be a phosphorescent dopant material, a fluorescent luminescent dopant material, or a thermally activated delayed fluorescent luminescent dopant material.
  • the phosphorescent dopant material include organometallic complexes containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold.
  • the organic EL element can be provided with a hole blocking layer adjacent to the light emitting layer, and the hole blocking layer can contain the compound represented by the general formula (1).
  • the material used for the organic layer has high durability against electric charges.
  • the indolocarbazole compound represented by the general formula (1) has high skeletal stability and can control both charge injection and transport properties to some extent by isomers and substituents. In addition, it is difficult to control both charge injection and transport amounts within a preferable range.
  • biscarbazole compounds represented by the general formula (2) can be controlled at a high level of charge injection / transport by changing the type and number of substituents, and in addition, skeletal stability is the same as indolocarbazole compounds. Therefore, by using a mixture of an indolocarbazole compound and the biscarbazole compound, the amount of charge injected into the organic layer can be adjusted more precisely than when each is used alone.
  • the amount of charge injected into the organic layer can be adjusted more precisely than when each is used alone.
  • a light emitting layer in the case of a delayed fluorescent light emitting EL device or a phosphorescent light emitting EL device, it has a minimum excited triplet energy sufficiently high to confine the excitation energy generated in the light emitting layer. Therefore, there is no outflow of energy from the light emitting layer, and high efficiency and long life can be achieved at a low voltage.
  • the organic EL device of the present invention has one or more light-emitting layers between an anode and a cathode facing each other, and at least one of the light-emitting layers is produced by vacuum deposition, and includes a first host, a second host, and Contains a luminescent dopant material.
  • the first host is a compound represented by the general formula (1)
  • the second host is a compound represented by the general formula (2).
  • This organic EL element has an organic layer composed of a plurality of layers between an anode and a cathode facing each other, but at least one of the plurality of layers may be a light emitting layer, and there may be a plurality of light emitting layers.
  • Ring A is an aromatic hydrocarbon ring represented by Formula (1a)
  • Ring B is a heterocycle represented by Formula (1b)
  • Ring A and Ring B are each in an arbitrary position with an adjacent ring. Condensate.
  • Ar 1 represents a phenyl group, a biphenyl group, or a terphenyl group.
  • a phenyl group and a biphenyl group are preferable, and a phenyl group is more preferable.
  • the biphenyl group is a group represented by -Ph-Ph
  • the terphenyl group is a group represented by -Ph-Ph-Ph or -Ph (-Ph) -Ph.
  • Ph is a phenyl group or a phenylene group.
  • R independently represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms, or an aromatic heterocyclic group having 3 to 12 carbon atoms.
  • it represents an aliphatic hydrocarbon group having 1 to 8 carbon atoms, a phenyl group, or an aromatic heterocyclic group having 3 to 9 carbon atoms. More preferably, it is an aliphatic hydrocarbon group having 1 to 6 carbon atoms, a phenyl group, or an aromatic heterocyclic group having 3 to 6 carbon atoms.
  • aliphatic hydrocarbon group having 1 to 10 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and the like.
  • aromatic hydrocarbon group having 6 to 10 carbon atoms or the aromatic heterocyclic group having 3 to 12 carbon atoms include benzene, naphthalene, pyridine, pyrimidine, triazine, thiophene, isothiazole, thiazole, pyridazine, Pyrrole, pyrazole, imidazole, triazole, thiadiazole, pyrazine, furan, isoxazole, oxazole, oxadiazole, quinoline, isoquinoline, quinoxaline, quinazoline, thiadiazole, benzotriazine, phthalazine, tetrazole, indole, benzofuran, benzothiophene, benzoxazole, benzo Thiazole, indazole, benzimidazole, benzotriazole, benzoisothiazole, benzothiadiazole, dibenzofuran, dibenzothiophen
  • A, b, and c represent the number of substitutions, each independently represents an integer of 0 to 3, preferably an integer of 0 or 1.
  • m and n represent the number of repetitions, and each independently represents an integer of 0 to 2, preferably an integer of 0 or 1.
  • m + n is preferably 0 or an integer of 1 or more, more preferably an integer of 1, 2 or 3.
  • Ar 2 and Ar 3 represent an aromatic hydrocarbon group having 6 to 14 carbon atoms, or a group in which 1 to 2 aromatic hydrocarbon groups are linked. Preferably, it represents an aromatic hydrocarbon group having 6 to 12 carbon atoms, more preferably an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • Ar 2 and Ar 3 are obtained by taking one H from any aromatic compound such as benzene, naphthalene, anthracene, phenanthrene, fluorene, or a compound in which two aromatic rings of these aromatic compounds are connected.
  • Aromatic groups or linked aromatic groups can be mentioned. Preferred is an aromatic group derived from benzene, naphthalene, anthracene, phenanthrene or a linked aromatic group in which two of these aromatic groups are linked, more preferably an aromatic group derived from benzene, naphthalene, or phenanthrene. . More preferably, Ar 3 is a phenyl group.
  • the linked aromatic group is a group represented by a formula such as —Ar 4 —Ar 6 , —Ar 4 —Ar 5 —Ar 6 , or —Ar 4 (—Ar 5 ) —Ar 6 , Ar 4 , Ar 5 and Ar 6 are each independently an aromatic hydrocarbon group having 6 to 14 carbon atoms.
  • Ar 4 is a divalent or trivalent group
  • Ar 5 is a monovalent or divalent group
  • Ar 6 is a monovalent group.
  • L 1 represents a direct bond or a divalent phenylene group composed of any one of formulas (2a) to (2c), preferably a divalent phenylene group represented by formulas (2a) and (2b).
  • L 2 represents a divalent phenylene group represented by the formula (2c).
  • the aromatic group directly bonded to N of the carbazole ring is a phenylene group, it is understood that this is L 1 .
  • Excellent organic EL by using a first host selected from the compound represented by the general formula (1) and a second host selected from the compound represented by the general formula (2) as the host material of the light emitting layer.
  • An element can be provided.
  • the first host and the second host can be used by vapor deposition from different vapor deposition sources, but they are premixed before vapor deposition into a premix, and the premix is simultaneously vapor deposited from one vapor deposition source to emit light. It is preferable to form a layer.
  • the pre-mixture may be mixed with a light-emitting dopant material necessary for forming the light-emitting layer or other host used if necessary, but there is a large difference in temperature at which a desired vapor pressure is obtained. In this case, it is preferable to deposit from another deposition source.
  • the mixing ratio (weight ratio) of the first host and the second host is such that the ratio of the first host is 20 to 60%, preferably more than 20%, with respect to the total of the first host and the second host. %, More preferably 40 to 50%.
  • the electron affinity (EA) difference between the first host and the second host is larger than 0.1 eV and smaller than 0.6 eV.
  • the EA value can be calculated by measuring the ionization potential (IP) value obtained by photoelectron spectroscopy in the host material thin film and the absorption spectrum, and using the energy gap value obtained from the absorption edge. it can.
  • FIG. 1 is a cross-sectional view showing a structural example of a general organic EL device used in the present invention, wherein 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, and 5 is a light emitting layer. , 6 represents an electron transport layer, and 7 represents a cathode.
  • the organic EL device of the present invention may have an exciton blocking layer adjacent to the light emitting layer, or may have an electron blocking layer between the light emitting layer and the hole injection layer.
  • the exciton blocking layer can be inserted on either the cathode side or the cathode side of the light emitting layer, or both can be inserted simultaneously.
  • the organic EL device of the present invention has an anode, a light emitting layer, and a cathode as essential layers, but preferably has a hole injecting and transporting layer and an electron injecting and transporting layer in addition to the essential layers, and further has a light emitting layer and an electron injecting layer. It is preferable to have a hole blocking layer between the transport layers.
  • the hole injection / transport layer means either or both of the hole injection layer and the hole transport layer
  • the electron injection / transport layer means either or both of the electron injection layer and the electron transport layer.
  • the structure opposite to that shown in FIG. 1, that is, the cathode 7, the electron transport layer 6, the light emitting layer 5, the hole transport layer 4 and the anode 2 can be laminated in this order on the substrate 1. Addition and omission are possible.
  • the organic EL element of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited, and any substrate that has been conventionally used for an organic EL element can be used.
  • a substrate made of glass, transparent plastic, quartz, or the like can be used.
  • anode material in the organic EL element a material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) that can form a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or the pattern accuracy is not required (about 100 ⁇ m or more). May form a pattern through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Or when using the substance which can be apply
  • the transmittance be greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the cathode material a material made of a metal (electron injecting metal), an alloy, an electrically conductive compound, or a mixture thereof having a small work function (4 eV or less) is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this such as a magnesium / silver mixture, magnesium, from the viewpoint of electron injectability and durability against oxidation, etc.
  • the cathode can be produced by forming a thin film of these cathode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance of the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
  • a transparent or translucent cathode can be produced by forming the conductive transparent material mentioned in the description of the anode on the cathode.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting layer includes an organic light emitting dopant material and a host material.
  • a first host represented by the general formula (1) and a second host represented by the general formula (2) are used. Furthermore, one or a plurality of known host materials may be used in combination, but the amount used is 50 wt% or less, preferably 25 wt% or less, based on the total of the host materials.
  • the first host and the second host may be vapor-deposited from different vapor deposition sources, or the first host and the second host may be vapor-deposited simultaneously from one vapor deposition source by premixing before vapor deposition. .
  • the 50% weight loss temperature is the temperature at which the weight is reduced by 50% when the temperature is raised from room temperature to 550 ° C at a rate of 10 ° C per minute in the TG-DTA measurement under a nitrogen stream reduced pressure (50 Pa). . Near this temperature, vaporization due to evaporation or sublimation is considered to occur most frequently.
  • the difference between the 50% weight loss temperature of the first host and the second host is preferably within 20 ° C, more preferably within 15 ° C.
  • a known method such as pulverization and mixing can be adopted, but it is desirable to mix as uniformly as possible.
  • the phosphorescent dopant when a phosphorescent dopant is used as the luminescent dopant material, the phosphorescent dopant includes an organometallic complex containing at least one metal selected from ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold. What to do is good. Specifically, iridium complexes described in J. Am. Chem. Soc. 2001, 123,4304 and JP-T-2013-53051 are preferably used, but are not limited thereto.
  • Only one kind of phosphorescent light emitting dopant material may be contained in the light emitting layer, or two or more kinds may be contained.
  • the content of the phosphorescent dopant material is preferably 0.1 to 30 wt%, more preferably 1 to 20 wt% with respect to the host material.
  • the phosphorescent dopant material is not particularly limited, but specific examples include the following:
  • the fluorescent dopant is not particularly limited.
  • benzoxazole derivatives benzothiazole derivatives, benzimidazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenylbutadiene derivatives, tetraphenyls.
  • Preferred examples include condensed aromatic derivatives, styryl derivatives, diketopyrrolopyrrole derivatives, oxazine derivatives, pyromethene metal complexes, transition metal complexes, or lanthanoid complexes, more preferably naphthalene, pyrene, chrysene, triphenylene, benzo [c] phenanthrene.
  • Benzo [a] anthracene pentacene, perylene, fluoranthene, acenaphthofluoranthene, dibenzo [a, j] anthracene, dibenzo [a, h] anthracene, benzo [a] naphthalene, hexacene, naphtho [2,1-f ] Isoquinoline, ⁇ -naphthaphenanthridine, phenanthrooxazole, quinolino [6,5-f] quinoline, benzothiophanthrene, and the like. These may have an alkyl group, an aryl group, an aromatic heterocyclic group, or a diarylamino group as a substituent.
  • the content of the fluorescent light-emitting dopant material is preferably from 0.1 to 20% by weight, more preferably from 1 to 10% by weight, based on the host material.
  • the thermally activated delayed fluorescence emission dopant is not particularly limited, but may be a metal complex such as a tin complex or a copper complex, or described in WO2011 / 070963 Indolocarbazole derivatives, cyanobenzene derivatives described in Nature ⁇ 2012,492,234, carbazole derivatives, phenazine derivatives described in Nature ⁇ Photonics 2014,8,326, oxadiazole derivatives, triazole derivatives, sulfone derivatives, phenoxazine derivatives, acridine derivatives, etc. It is done.
  • the heat-activated delayed fluorescent light-emitting dopant material is not particularly limited, and specific examples include the following.
  • thermally activated delayed fluorescent light-emitting dopant material Only one kind of thermally activated delayed fluorescent light-emitting dopant material may be contained in the light emitting layer, or two or more kinds thereof may be contained. Further, the thermally activated delayed fluorescent dopant may be used in combination with a phosphorescent dopant or a fluorescent dopant.
  • the content of the thermally activated delayed fluorescent light-emitting dopant material is preferably 0.1 to 50%, more preferably 1 to 30% with respect to the host material.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes in the light emitting layer can be improved by preventing the above.
  • a known hole blocking layer material can be used for the hole blocking layer, but it is preferable to contain a compound represented by the general formula (1).
  • the electron blocking layer has the function of a hole transport layer in a broad sense. By blocking electrons while transporting holes, the probability of recombination of electrons and holes in the light emitting layer can be improved. .
  • the material for the electron blocking layer a known electron blocking layer material can be used, and the material for the hole transport layer described later can be used as necessary.
  • the thickness of the electron blocking layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted between two adjacent light emitting layers in an element in which two or more light emitting layers are adjacent.
  • a known exciton blocking layer material can be used as the material for the exciton blocking layer.
  • Examples thereof include 1,3-dicarbazolylbenzene (mCP) and bis (2-methyl-8-quinolinolato) -4-phenylphenolatoaluminum (III) (BAlq).
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • any known compound can be selected and used.
  • Examples of such hole transport materials include porphyrin derivatives, arylamine derivatives, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives.
  • Porphyrin derivatives, arylamine derivatives, and styryl It is preferable to use an amine derivative, and it is more preferable to use an arylamine compound.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material (which may also serve as a hole blocking material), it is sufficient if it has a function of transmitting electrons injected from the cathode to the light emitting layer.
  • any known compound can be selected and used.
  • polycyclic aromatic derivatives such as naphthalene, anthracene, phenanthroline, tris (8-quinolinolato) aluminum (III) Derivatives, phosphine oxide derivatives, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, bipyridine derivatives, quinoline derivatives, oxadiazole derivatives, benzimidazoles Derivatives, benzothiazole derivatives, indolocarbazole derivatives and the like.
  • Premix H1 Compound 1-11 (0.20 g) and compound 2-2 (0.80 g) were weighed and mixed while being ground in a mortar to prepare Premix H1. Similarly, premixes H2 to H9 were prepared using the first and second hosts shown in Table 2.
  • Table 2 shows the types and mixing ratios of the first host and the second host.
  • corresponds to the number attached
  • Table 1 shows compounds 1-1, 1-2, 1-3, 1-4, 1-11, 1-157, 2-2, 2-4, and 50% weight loss temperature (T 50 ) of compound A. , Shows electron affinity (EA).
  • Example 1 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa by a vacuum evaporation method on a glass substrate on which an anode made of ITO having a thickness of 110 nm was formed.
  • HAT-CN was formed as a hole injection layer with a thickness of 25 nm on ITO, and then NPD was formed as a hole transport layer with a thickness of 30 nm.
  • HT-1 was formed to a thickness of 10 nm as an electron blocking layer.
  • the preliminary mixture H1 as a host and Ir (ppy) 3 as a luminescent dopant were co-deposited from different vapor deposition sources to form a luminescent layer with a thickness of 40 nm.
  • the co-evaporation was performed under the deposition conditions in which the concentration of Ir (ppy) 3 was 10 wt%.
  • ET-1 was formed to a thickness of 20 nm as an electron transport layer.
  • lithium fluoride (LiF) was formed to a thickness of 1 nm as an electron injection layer on the electron transport layer.
  • aluminum (Al) was formed as a cathode to a thickness of 70 nm on the electron injection layer, and an organic EL device was produced.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that any of the premixtures H2 to H9 was used as the host.
  • Example 10 is the same as Example 3 except that after the light emitting layer was formed, Compound 1-11 was formed to a thickness of 10 nm as a hole blocking layer, and ET-1 was formed to a thickness of 10 nm as an electron transport layer. In the same manner, an organic EL device was produced.
  • Example 11 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa by a vacuum evaporation method on a glass substrate on which an anode made of ITO having a thickness of 110 nm was formed.
  • HAT-CN was formed as a hole injection layer with a thickness of 25 nm on ITO, and then NPD was formed as a hole transport layer with a thickness of 30 nm.
  • HT-1 was formed to a thickness of 10 nm as an electron blocking layer.
  • compound 1-11 as the first host, compound 2-2 as the second host, and Ir (ppy) 3 as the luminescent dopant are co-evaporated from different deposition sources to form a light emitting layer with a thickness of 40 nm.
  • the co-evaporation was performed under the deposition conditions in which the concentration of Ir (ppy) 3 was 10 wt% and the weight ratio of the first host to the second host was 40:60.
  • ET-1 was formed to a thickness of 20 nm as an electron transport layer.
  • LiF was formed to a thickness of 1 nm as an electron injection layer on the electron transport layer.
  • Al was formed to a thickness of 70 nm as a cathode, and an organic EL device was produced.
  • Example 12 An organic EL device was produced in the same manner as in Example 11 except that Compound 1-1 was used as the first host in Example 11 and Compound 2-2 was used as the second host.
  • Example 13 An organic EL device was produced in the same manner as in Example 11 except that Compound 1-2 was used as the first host and Compound 2-4 was used as the second host in Example 11.
  • Example 14 An organic EL device was produced in the same manner as in Example 11 except that Compound 1-3 was used as the first host and Compound 2-4 was used as the second host in Example 11.
  • Example 15 An organic EL device was produced in the same manner as in Example 11 except that Compound 1-157 was used as the first host in Example 11 and Compound 2-2 was used as the second host.
  • Example 16 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa by a vacuum evaporation method on a glass substrate on which an anode made of ITO having a thickness of 110 nm was formed.
  • HAT-CN was formed as a hole injection layer with a thickness of 25 nm on ITO, and then NPD was formed as a hole transport layer with a thickness of 45 nm.
  • HT-1 was formed to a thickness of 10 nm as an electron blocking layer.
  • the preliminary mixture H2 as a host and Ir (piq) 2 acac as a light emitting dopant were co-deposited from different vapor deposition sources to form a light emitting layer with a thickness of 40 nm.
  • co-evaporation was performed under the deposition conditions in which the concentration of Ir (piq) 2 acac was 6.0 wt%.
  • ET-1 was formed to a thickness of 10 nm as a hole blocking layer.
  • ET-1 was formed to a thickness of 27.5 nm as an electron transport layer.
  • LiF was formed to a thickness of 1 nm as an electron injection layer on the electron transport layer.
  • Al was formed to a thickness of 70 nm as a cathode, and an organic EL device was produced.
  • Example 16 an organic EL device was produced in the same manner as in Example 16 except that any one of the preliminary mixtures H3 and H4 was used as a host.
  • Example 19 In Example 17, after forming the light emitting layer, Example 17 except that Compound 1-11 was formed to a thickness of 10 nm as a hole blocking layer, and ET-1 was formed to a thickness of 10 nm as an electron transport layer. In the same manner, an organic EL device was produced.
  • Example 20 Each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 5 Pa by a vacuum evaporation method on a glass substrate on which an anode made of ITO having a thickness of 110 nm was formed.
  • HAT-CN was formed as a hole injection layer with a thickness of 25 nm on ITO, and then NPD was formed as a hole transport layer with a thickness of 45 nm.
  • HT-1 was formed to a thickness of 10 nm as an electron blocking layer.
  • compound 1-11 as the first host, compound 2-2 as the second host, and Ir (piq) 2 acac as the light emitting dopant were co-deposited from different vapor deposition sources to form a light emitting layer with a thickness of 40 nm.
  • co-evaporation was performed under the deposition conditions in which the concentration of Ir (piq) 2 acac was 6.0 wt% and the weight ratio of the first host to the second host was 30:70.
  • ET-1 was formed to a thickness of 10 nm as a hole blocking layer.
  • ET-1 was formed to a thickness of 27.5 nm as an electron transport layer.
  • LiF was formed to a thickness of 1 nm as an electron injection layer on the electron transport layer.
  • Al was formed to a thickness of 70 nm as a cathode, and an organic EL device was produced.
  • Example 21 an organic EL element was produced under the same conditions as in Example 20 except that co-evaporation was performed under the vapor deposition conditions where the weight ratio of the first host to the second host was 40:60.
  • Example 22 an organic EL device was produced under the same conditions as in Example 20 except that co-evaporation was performed under the vapor deposition conditions where the weight ratio of the first host to the second host was 50:50.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that Compound 1-11 was used alone as a host.
  • the thickness of the light emitting layer and the light emitting dopant concentration are the same as in Example 1.
  • Comparative Examples 2-6 An organic EL device was produced in the same manner as in Comparative Example 1 except that the compound shown in Table 3 was used alone as the host.
  • Comparative Example 7 An organic EL device was produced in the same manner as in Example 11 except that Compound 1-11 was used as the first host and Compound A was used as the second host in Example 11.
  • Comparative Example 8 An organic EL device was produced in the same manner as in Example 11 except that 1-157 was used as the first host and Compound A was used as the second host in Example 11.
  • Example 15 an organic EL device was produced in the same manner as in Example 15 except that Compound 1-2 or Compound 1-11 was used alone as a host.
  • Tables 2 and 3 show the types of the preliminary mixture of the first host and the second host, the types and ratios of the first host and the second host.
  • Tables 4 and 5 show the luminance, driving voltage, luminous efficiency, and luminance half-life of the produced organic EL elements.
  • luminance, driving voltage, and luminous efficiency are values at a driving current of 20 mA / cm 2 , and are initial characteristics.
  • LT70 is the time it takes for the brightness to decay to 70% of the initial brightness at an initial brightness of 9000 cd / m 2.
  • LT95 is the brightness of the initial brightness at an initial brightness of 3700 cd / m 2 . This is the time it takes to decay to 95%, all of which are life characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

低駆動電圧でありながら高効率で、高い駆動安定性を有した有機電界発光(有機EL)素子を提供する。 対向する陽極と陰極の間に形成された発光層中に、下記一般式(1)で表されるインドロカルバゾール化合物から選ばれる第1ホストと、下記一般式(2)で表されるカルバゾール化合物から選ばれる第2ホスト、及び発光性ドーパント材料を含有する有機電界発光素子。ここで、Ar、Arは芳香族炭化水素基類であり、Lは直接結合又はフェニレン基であり、Lはo-フェニレン基である。

Description

有機電界発光素子
 本発明は有機電界発光素子(有機EL素子という)に関するものである。詳しくは第1ホストと第2ホスト、及び発光性ドーパント材料を含む発光層を有する有機EL素子に関する。
 有機EL素子に電圧を印加することで、陽極から正孔が、陰極からは電子がそれぞれ発光層に注入される。そして発光層において、注入された正孔と電子が再結合し、励起子が生成される。この際、電子スピンの統計則により、一重項励起子及び三重項励起子が1:3の割合で生成する。一重項励起子による発光を用いる蛍光発光型の有機EL素子は、内部量子効率は25%が限界であるといわれている。一方で三重項励起子による発光を用いる燐光発光型の有機EL素子は、一重項励起子から項間交差が効率的に行われた場合には、内部量子効率が100%まで高められることが知られている。
 しかしながら、燐光発光型の有機EL素子に関しては、長寿命化が技術的な課題となっている。
 さらに最近では、遅延蛍光を利用した高効率の有機EL素子の開発がなされている。例えば特許文献1には、遅延蛍光のメカニズムの一つであるTTF(Triplet-Triplet Fusion)機構を利用した有機EL素子が開示されている。TTF機構は2つの三重項励起子の衝突によって一重項励起子が生成する現象を利用するものであり、理論上内部量子効率を40%まで高められると考えられている。しかしながら、燐光発光型の有機EL素子と比較すると効率が低いため、更なる効率の改良が求められている。
 一方で特許文献2では、TADF(Thermally Activated Delayed Fluorescence)機構を利用した有機EL素子が開示されている。TADF機構は一重項準位と三重項準位のエネルギー差が小さい材料において三重項励起子から一重項励起子への逆項間交差が生じる現象を利用するものであり、理論上内部量子効率を100%まで高められると考えられている。しかしながら、燐光発光型素子と同様に寿命特性の更なる改善が求められている。
WO2010/134350A WO2011/070963A WO2008/056746A 特開2003-133075号公報 WO2013/062075A US2014/0374728A US2014/0197386A US2015/0001488A US2015/0236262A WO2011/136755A
 特許文献3ではインドロカルバゾール化合物について、ホスト材料としての使用を開示している。特許文献4ではビスカルバゾール化合物について、ホスト材料としての使用を開示している。
 特許文献5、6ではビスカルバゾール化合物を混合ホストとして使用することを開示している。特許文献7、8、9ではインドロカルバゾール化合物とビスカルバゾール化合物を混合ホストとして使用することを開示している。
 特許文献10ではインドロカルバゾール化合物を含む複数のホストを予備混合したホスト材料の使用を開示している。
 しかしながら、いずれも十分なものとは言えず、更なる改良が望まれている。
 有機EL素子をフラットパネルディスプレイ等の表示素子、または光源に応用するためには素子の発光効率を改善すると同時に駆動時の安定性を十分に確保する必要がある。本発明は、上記現状を鑑み、低駆動電圧でありながら高効率かつ高い駆動安定性を有した実用上有用な有機EL素子を提供することを目的とする。
 本発明は、対向する陽極と陰極の間に、1つ以上の発光層を含む有機EL素子において、真空蒸着によって作製される少なくとも1つの発光層が、下記一般式(1)で表される化合物から選ばれる第1ホストと下記一般式(2)で表される化合物から選ばれる第2ホスト、そして発光性ドーパント材料を含有することを特徴とする有機EL素子である。
Figure JPOXMLDOC01-appb-C000004
 (ここで、環Aは式(1a)で表される芳香族炭化水素環であり、環Bは式(1b)で表される複素環であり、環A及び環Bはそれぞれ隣接する環と任意の位置で縮合する。
Ar1はフェニル基、ビフェニル基又はターフェニル基である。
Rは独立に炭素数1~10の脂肪族炭化水素基、炭素数6~10の芳香族炭化水素基又は炭素数3~12の芳香族複素環基である。
a、b、cは、置換数を表し、各々独立して0~3の整数を表す。
mとnは、繰り返し数を表し、各々独立して0~2の整数を表す。)
Figure JPOXMLDOC01-appb-C000005
 (ここで、ArとArは炭素数6~14の芳香族炭化水素基又は該芳香族炭化水素基が2個連結した基を表し、連結する芳香族炭化水素基は同一であっても異なっていても良い。Lは直接結合、または式(2a)~式(2c)のいずれかからなるフェニレン基を示し、Lは式(2c)で表される2価のフェニレン基を表す。)
 一般式(2)の好ましい態様としては、一般式(3)があり、より好ましくは一般式(4)である。
Figure JPOXMLDOC01-appb-C000006
 一般式(3)、(4)のArとLは一般式(2)のArとLと同意である。
 上記第1ホストと第2ホストは、蒸着前に予備混合して使用することが好ましい。また、上記第1ホストと第2ホストの50%重量減少温度の差が20℃以内であること、又は、第1ホストの割合が第1ホストと第2ホストの合計に対し、20wt%よりも多く、55wt%よりも少ないことが好ましい。
 上記発光性ドーパント材料は、燐光発光ドーパント材料、蛍光発光ドーパント材料又は熱活性化遅延蛍光発光ドーパント材料であることができる。燐光発光ドーパント材料としては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも一つの金属を含む有機金属錯体が挙げられる。
 また上記有機EL素子は、発光層に隣接する正孔阻止層を設け、該正孔阻止層中に一般式(1)で表される化合物を含有させることができる。
 素子特性向上のためには、有機層に使用する材料の電荷に対する耐久性が高いことが必要であり、特に発光層においては周辺層への励起子および電荷の漏れを抑えることが重要である。この電荷/励起子の漏れ抑制には、発光層中における発光領域の偏りの改善が有効で、そのためには発光層への両電荷(電子/正孔)注入量若しくは発光層中における両電荷輸送量を好ましい範囲に制御することが必要である。
 ここで、一般式(1)で代表されるインドロカルバゾール化合物は、骨格の安定性が高く、異性体や置換基によって両電荷注入輸送性をある程度制御することができるが単独では、上述のように両電荷注入輸送量を好ましい範囲に制御するのは難しい。一方で、一般式(2)に代表されるビスカルバゾール化合物は、置換基の種類・数を変えることで電荷注入輸送性が高いレベルで制御でき、加えてインドロカルバゾール化合物と同様に骨格安定性が高いため、インドロカルバゾール化合物と該ビスカルバゾール化合物を混合して用いることで、有機層への電荷注入量を各々単独で使用する場合に比べて、より精密に調節することができる。特に、発光層に使用した場合、遅延蛍光発光EL素子や燐光発光EL素子の場合にあっては、発光層で生成する励起エネルギーを閉じ込めるのに十分高い最低励起三重項エネルギーを有していることから、発光層内からのエネルギー流出がなく、低電圧で高効率かつ長寿命を達成できる。
有機EL素子の一例を示した模式断面図である。
 本発明の有機EL素子は、対向する陽極と陰極の間に、1つ以上の発光層を有し、発光層の少なくとも1層が、真空蒸着によって作製され、第1ホストと第2ホスト、及び発光性ドーパント材料を含有する。第1ホストは、上記一般式(1)で表される化合物であり、第2ホストは、上記一般式(2)で表される化合物である。この有機EL素子は、対向する陽極と陰極の間に複数の層からなる有機層を有するが、複数の層の少なくとも1層は、発光層であり、発光層は複数あってもよい。
 上記一般式(1)について、説明する。
 環Aは式(1a)で表される芳香族炭化水素環であり、環Bは式(1b)で表される複素環であり、環A及び環Bはそれぞれ隣接する環と任意の位置で縮合する。
 Ar1はフェニル基、ビフェニル基、またはターフェニル基を示す。好ましくは、フェニル基、ビフェニル基であり、より好ましくはフェニル基である。ここで、ビフェニル基は、-Ph-Phで表される基であり、ターフェニル基は、-Ph-Ph-Phまたは-Ph(-Ph)-Phで表される基である。ここで、Phはフェニル基又はフェニレン基等である。
 Rは独立に炭素数1~10の脂肪族炭化水素基、炭素数6~10の芳香族炭化水素基又は炭素数3~12の芳香族複素環基を示す。好ましくは、炭素数1~8の脂肪族炭化水素基、フェニル基、又は炭素数3~9の芳香族複素環基を示す。より好ましくは、炭素数1~6の脂肪族炭化水素基、フェニル基、又は炭素数3~6の芳香族複素環基である。
 上記炭素数1~10の脂肪族炭化水素基の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、へキシル、ヘプチル、オクチル、ノニル、デシル等が挙げられる。
 上記炭素数6~10の芳香族炭化水素基、又は炭素数3~12の芳香族複素環基の具体例としては、ベンゼン、ナフタレン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、オキサゾール、オキサジアゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、チアジアゾール、ベンゾトリアジン、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソチアゾール、ベンゾチアジアゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾセレノフェン、又はカルバゾールから1個のHをとって生じる芳香族基が挙げられる。好ましくは、ベンゼン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、オキサゾール、オキサジアゾール、キノリン、イソキノリン、キノキサリン、キナゾリン、チアジアゾール、ベンゾトリアジン、フタラジン、テトラゾール、インドール、ベンゾフラン、ベンゾチオフェン、ベンゾオキサゾール、ベンゾチアゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾイソチアゾール、又はベンゾチアジアゾールから生じる芳香族基が挙げられる。より好ましくは、ベンゼン、ピリジン、ピリミジン、トリアジン、チオフェン、イソチアゾール、チアゾール、ピリダジン、ピロール、ピラゾール、イミダゾール、トリアゾール、チアジアゾール、ピラジン、フラン、イソキサゾール、オキサゾール、又はオキサジアゾールから生じる芳香族基が挙げられる。
 a、b、cは、置換数を表し、各々独立して0~3の整数を表し、好ましくは0又は1の整数である。mとnは、繰り返し数を表し、各々独立して0~2の整数を表し、好ましくは0又は1の整数である。ここで、m+nは0又は1以上の整数であることが好ましく、より好ましくは1、2又は3の整数である。
 一般式(1)で表される化合物の具体的な例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
 次に、第2ホストとなる一般式(2)、(3)又は一般式(4)の化合物について、説明する。一般式(2)~(4)において、共通する記号は同じ意味を有する。
 Ar2とAr3は炭素数6~14の芳香族炭化水素基、または該芳香族炭化水素基が1~2個連結した基を表す。好ましくは、炭素数6~12の芳香族炭化水素基、より好ましくは炭素数6~10の芳香族炭化水素基を表す。
 Ar2とAr3の具体例は、ベンゼン、ナフタレン、アントラセン、フェナントレン、フルオレン等の任意の芳香族化合物、又はこれら芳香族化合物の芳香族環が2個連結した化合物からHを1個とって生じる芳香族基又は連結芳香族基が挙げられる。好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレンから生じる芳香族基又はこれらの芳香族基が2個連結した連結芳香族基が挙げられ、より好ましくはベンゼン、ナフタレン、又はフェナントレンから生じる芳香族基である。Arはフェニル基であることが更に好ましい。ここで、連結芳香族基は、-Ar-Ar、-Ar-Ar-Ar、又は-Ar(-Ar)-Arのような式で表される基であり、Ar、Ar、Arは独立に炭素数6~14の芳香族炭化水素基である。Arは2価又は3価の基であり、Arは1価又は2価の基であり、Arは1価の基である。
 Lは、直接結合又は、式(2a)~式(2c)のいずれからなる2価のフェニレン基を表し、好ましくは式(2a)、(2b)で表される2価のフェニレン基である。Lは式(2c)で表される2価のフェニレン基を表す。
 なお、カルバゾール環のNに直接結合する芳香族基がフェニレン基である場合は、これはLであると解する。
 一般式(2)~(4)で表される化合物の具体的な例を以下に示すが、これら例示化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
 前記一般式(1)で表される化合物から選ばれる第1ホストと前記一般式(2)で表される化合物から選ばれる第2ホストを発光層のホスト材料として使用することで優れた有機EL素子を提供することができる。
 第1ホストと第2ホストは、個々に異なる蒸着源から蒸着して使用することもできるが、蒸着前に予備混合して予備混合物とし、その予備混合物を1つの蒸着源から同時に蒸着して発光層を形成することが好ましい。この場合、予備混合物には、発光層を形成するために必要な発光性ドーパント材料又は必要により使用される他のホストを混合させてもよいが、所望の蒸気圧となる温度に大きな差がある場合は、別の蒸着源から蒸着させることがよい。
 第1ホストと第2ホストの混合比(重量比)は、第1ホストと第2ホストの合計に対し、第1ホストの割合が20~60%がよく、好ましくは20%よりも多く、55%よりも少ないことであり、より好ましくは40~50%である。
 また、第1ホストと第2ホストの電子親和力(EA)差が0.1 eVよりも大きく、0.6 eVよりも小さいことが好ましい。EAの値は、ホスト材料薄膜での、光電子分光法により得られたイオン化ポテンシャル(IP)の値と、吸収スペクトルを測定し、その吸収端から求めたエネルギーギャップの値を用いて算出することができる。
 次に、本発明の有機EL素子の構造について、図面を参照しながら説明するが、本発明の有機EL素子の構造はこれに限定されない。
 図1は本発明に用いられる一般的な有機EL素子の構造例を示す断面図であり、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表す。本発明の有機EL素子は発光層と隣接して励起子阻止層を有してもよく、また発光層と正孔注入層との間に電子阻止層を有してもよい。励起子阻止層は発光層の陰極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。本発明の有機EL素子では、陽極、発光層、そして陰極を必須の層として有するが、必須の層以外に正孔注入輸送層、電子注入輸送層を有することがよく、更に発光層と電子注入輸送層の間に正孔阻止層を有することがよい。なお、正孔注入輸送層は、正孔注入層と正孔輸送層のいずれか、または両者を意味し、電子注入輸送層は、電子注入層と電子輸送層のいずれか又は両者を意味する。
 図1とは逆の構造、すなわち基板1上に陰極7、電子輸送層6、発光層5、正孔輸送層4、陽極2の順に積層することも可能であり、この場合も必要により層を追加、省略することが可能である。
―基板―
 本発明の有機EL素子は、基板に支持されていることが好ましい。この基板については特に制限はなく、従来から有機EL素子に用いられているものであれば良く、例えばガラス、透明プラスチック、石英等からなるものを用いることができる。
―陽極―
 有機EL素子における陽極材料としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物又はこれらの混合物からなる材料が好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等の非晶質で、透明導電膜を作成可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成しても良く、あるいはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは有機導電性化合物のような塗布可能な物質を用いる場合には印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
―陰極―
 一方、陰極材料としては仕事関数の小さい(4eV以下)金属(電子注入性金属)、合金、電気伝導性化合物又はこれらの混合物からなる材料が用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム―カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの陰極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度は向上し、好都合である。
 また、陰極に上記金属を1~20nmの膜厚で形成した後に、陽極の説明で挙げた導電性透明材料をその上に形成することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
―発光層―
 発光層は陽極及び陰極のそれぞれから注入された正孔及び電子が再結合することにより励起子が生成した後、発光する層であり発光層には有機発光性ドーパント材料とホスト材料を含む。
 発光層におけるホスト材料としては、一般式(1)で表される第1ホストと一般式(2)で表される第2ホストを用いる。更に、公知のホスト材料を1種又は複数種類併用しても良いが、その使用量はホスト材料の合計に対し、50wt%以下、好ましくは25wt%以下とすることがよい。
 第1ホストと第2ホストは、それぞれ異なる蒸着源から蒸着するか、蒸着前に予備混合して予備混合物とすることで1つの蒸着源から第1ホストと第2ホストを同時に蒸着することもできる。
 第1ホストと第2ホストを予備混合して使用する場合は、良好な特性を有する有機EL素子を再現性良く作製するために、50%重量減少温度(T50)の差が小さいことが望ましい。50%重量減少温度は、窒素気流減圧(50Pa)下でのTG-DTA測定において、室温から毎分10℃の速度で550℃まで昇温したとき、重量が50%減少した際の温度をいう。この温度付近では、蒸発又は昇華による気化が最も盛んに起こると考えられる。
 第1ホストと第2ホストは、上記50%重量減少温度の差が20℃以内であることが好ましく、15℃以内であることがより好ましい。予備混合方法としては、粉砕混合等の公知の方法が採用できるが、可及的に均一に混合することが望ましい。
 発光性ドーパント材料として燐光発光ドーパントを使用する場合、燐光発光ドーパントとしては、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金から選ばれる少なくとも1つの金属を含む有機金属錯体を含有するものがよい。具体的には、J.Am.Chem.Soc.2001,123,4304や特表2013-53051号公報に記載されているイリジウム錯体が好適に用いられるが、これらに限定されない。
 燐光発光ドーパント材料は、発光層中に1種類のみが含有されても良いし、2種類以上を含有しても良い。燐光発光ドーパント材料の含有量はホスト材料に対して0.1~30wt%であることが好ましく、1~20wt%であることがより好ましい。
 燐光発光ドーパント材料は、特に限定されるものではないが、具体的には以下のような例が挙げられる
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
 発光性ドーパント材料として蛍光発光ドーパントを使用する場合、蛍光発光ドーパントとしては、特に限定されないが例えばベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、縮合芳香族化合物、ペリノン誘導体、オキサジアゾール誘導体、オキサジン誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、スチリルアミン誘導体、ジケトピロロピロール誘導体、芳香族ジメチリジン化合物、8-キノリノール誘導体の金属錯体やピロメテン誘導体の金属錯体、希土類錯体、遷移金属錯体に代表される各種金属錯体等、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン誘導体等が挙げられる。好ましくは縮合芳香族誘導体、スチリル誘導体、ジケトピロロピロール誘導体、オキサジン誘導体、ピロメテン金属錯体、遷移金属錯体、又はランタノイド錯体が挙げられ、より好ましくはナフタレン、ピレン、クリセン、トリフェニレン、ベンゾ[c]フェナントレン、ベンゾ[a]アントラセン、ペンタセン、ペリレン、フルオランテン、アセナフトフルオランテン、ジベンゾ[a,j]アントラセン、ジベンゾ[a,h]アントラセン、ベンゾ[a]ナフタレン、ヘキサセン、ナフト[2,1-f]イソキノリン、α‐ナフタフェナントリジン、フェナントロオキサゾール、キノリノ[6,5-f]キノリン、ベンゾチオファントレン等が挙げられる。これらは置換基としてアルキル基、アリール基、芳香族複素環基、又はジアリールアミノ基を有しても良い。
 蛍光発光ドーパント材料は、発光層中に1種類のみが含有されても良いし、2種類以上を含有しても良い。蛍光発光ドーパント材料の含有量は、ホスト材料に対して0.1~20 wt%であることが好ましく、1~10wt%であることがより好ましい。
 発光性ドーパント材料として熱活性化遅延蛍光発光ドーパントを使用する場合、熱活性化遅延蛍光発光ドーパントとしては、特に限定されないがスズ錯体や銅錯体等の金属錯体や、WO2011/070963号公報に記載のインドロカルバゾール誘導体、Nature 2012,492,234に記載のシアノベンゼン誘導体、カルバゾール誘導体、Nature Photonics 2014,8,326に記載のフェナジン誘導体、オキサジアゾール誘導体、トリアゾール誘導体、スルホン誘導体、フェノキサジン誘導体、アクリジン誘導体等が挙げられる。
 熱活性化遅延蛍光発光ドーパント材料は、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 
 熱活性化遅延蛍光発光ドーパント材料は、発光層中に1種類のみが含有されてもよいし、2種類以上を含有してもよい。また、熱活性化遅延蛍光発光ドーパントは燐光発光ドーパントや蛍光発光ドーパントと混合して用いてもよい。熱活性化遅延蛍光発光ドーパント材料の含有量は、ホスト材料に対して0.1~50%であることが好ましく、1~30%であることがより好ましい。
-注入層-
  注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
-正孔阻止層-
  正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで発光層中での電子と正孔の再結合確率を向上させることができる。
 正孔阻止層には公知の正孔阻止層材料を用いることができるが、一般式(1)で表される化合物を含有させることが好ましい。
-電子阻止層-
 電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送しつつ電子を阻止することで発光層中での電子と正孔が再結合する確率を向上させることができる。
  電子阻止層の材料としては、公知の電子阻止層材料を用いることができ、また後述する正孔輸送層の材料を必要に応じて用いることができる。電子阻止層の膜厚は好ましくは3~100nmであり、より好ましくは5~30nmである。
-励起子阻止層-
  励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は2つ以上の発光層が隣接する素子において、隣接する2つの発光層の間に挿入することができる。
  励起子阻止層の材料としては、公知の励起子阻止層材料を用いることができる。例えば、1,3-ジカルバゾリルベンゼン(mCP)や、ビス(2-メチル-8-キノリノラト)-4-フェニルフェノラトアルミニウム(III)(BAlq)が挙げられる。
-正孔輸送層-
  正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。正孔輸送層には従来公知の化合物の中から任意のものを選択して用いることができる。かかる正孔輸送材料としては例えば、ポルフィリン誘導体、アリールアミン誘導体、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン誘導体、アリールアミン誘導体及びスチリルアミン誘導体を用いることが好ましく、アリールアミン化合物を用いることがより好ましい。
-電子輸送層-
  電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層又は複数層設けることができる。
  電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。電子輸送層には、従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ナフタレン、アントラセン、フェナントロリン等の多環芳香族誘導体、トリス(8-キノリノラート)アルミニウム(III)誘導体、ホスフィンオキサイド誘導体、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ビピリジン誘導体、キノリン誘導体、オキサジアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、インドロカルバゾール誘導体等が挙げられる。更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 以下、本発明を実施例によって更に詳しく説明するが、本発明はこれらの実施例に限定されるものではなく、その要旨を超えない限りにおいて、種々の形態で実施することが可能である。
 化合物1-11(0.20g)と化合物2-2(0.80g)を量りとり、乳鉢ですり潰しながら混合することにより予備混合物H1を調製した。
 同様にして、表2に示す第1ホストと第2ホストを使用して、予備混合物H2~H9を調製した。
 第1ホストと第2ホストの種類及び配合比を表2に示す。なお、化合物番号は、上記例示化合物に付した番号に対応する。
 比較のためのホストとして使用した化合物Aの化学式を次に示す。
Figure JPOXMLDOC01-appb-C000026
 
 表1に化合物1-1、1-2、1-3、1-4、1-11、1-157、2-2、2-4、そして化合物Aの50%重量減少温度(T50)と、電子親和力(EA)を示す。
Figure JPOXMLDOC01-appb-T000027
実施例1
 膜厚110nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層した。まず、ITO上に正孔注入層としてHAT-CNを25nmの厚さに形成し、次に正孔輸送層としてNPDを30nmの厚さに形成した。次に、電子阻止層としてHT-1を10nmの厚さに形成した。そして、ホストとして予備混合物H1を、発光ドーパントとしてIr(ppy)3をそれぞれ異なる蒸着源から共蒸着し、40nmの厚さに発光層を形成した。この時、Ir(ppy)3の濃度が10wt%となる蒸着条件で共蒸着した。次に、電子輸送層としてET-1を20nmの厚さに形成した。更に、電子輸送層上に電子注入層としてフッ化リチウム(LiF)を1nmの厚さに形成した。最後に、電子注入層上に、陰極としてアルミニウム(Al)を70nmの厚さに形成し、有機EL素子を作製した。
実施例2~9
 実施例1において、ホストとして予備混合物H2~H9のいずれかを用いた以外は実施例1と同様にして有機EL素子を作製した。
 実施例10
 実施例3において、発光層を形成した後、正孔阻止層として化合物1-11を10nmの厚さに形成し、電子輸送層としてET-1を10nmの厚さに形成した以外は実施例3と同様にして有機EL素子を作製した。
実施例11
 膜厚110nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層した。まず、ITO上に正孔注入層としてHAT-CNを25nmの厚さに形成し、次に正孔輸送層としてNPDを30nmの厚さに形成した。次に電子阻止層としてHT-1を10nmの厚さに形成した。次に、第1ホストとして化合物1-11を、第2ホストとして化合物2-2を、発光ドーパントとしてIr(ppy)3をそれぞれ異なる蒸着源から共蒸着し、40nmの厚さに発光層を形成した。この時、Ir(ppy)3の濃度が10wt%、第1ホストと第2ホストの重量比が40:60となる蒸着条件で共蒸着した。次に電子輸送層としてET-1を20nmの厚さに形成した。更に電子輸送層上に電子注入層としてLiFを1nmの厚さに形成した。最後に、電子注入層上に、陰極としてAlを70nmの厚さに形成し、有機EL素子を作製した。
実施例12
 実施例11において第1ホストとして化合物1-1を、第2ホストとして化合物2-2を使用した以外は実施例11と同様にして有機EL素子を作製した。
実施例13
 実施例11において第1ホストとして化合物1-2を、第2ホストとして化合物2-4を使用した以外は実施例11と同様にして有機EL素子を作製した。
実施例14
 実施例11において第1ホストとして化合物1-3を、第2ホストとして化合物2-4を使用した以外は実施例11と同様にして有機EL素子を作製した。
実施例15
 実施例11において第1ホストとして化合物1-157を、第2ホストとして化合物2-2を使用した以外は実施例11と同様にして有機EL素子を作製した。
実施例16
 膜厚110nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層した。まず、ITO上に正孔注入層としてHAT-CNを25nmの厚さに形成し、次に正孔輸送層としてNPDを45nmの厚さに形成した。次に、電子阻止層としてHT-1を10nmの厚さに形成した。そしてホストとして予備混合物H2を、発光ドーパントとしてIr(piq)2acacをそれぞれ異なる蒸着源から共蒸着し、40nmの厚さに発光層を形成した。この時Ir(piq)2acacの濃度が6.0wt%となる蒸着条件で共蒸着した。更に、正孔阻止層としてET-1を10nmの厚さに形成した。次に電子輸送層としてET-1を27.5nmの厚さに形成した。そして電子輸送層上に電子注入層としてLiFを1nmの厚さに形成した。最後に、電子注入層上に、陰極としてAlを70nmの厚さに形成し、有機EL素子を作製した。
実施例17、18
 実施例16において、ホストとして予備混合物H3とH4のいずれかを使用した以外は実施例16と同様にして有機EL素子を作製した。
実施例19
 実施例17において、発光層を形成した後、正孔阻止層として化合物1-11を10nmの厚さに形成し、電子輸送層としてET-1を10nmの厚さに形成した以外は実施例17と同様にして有機EL素子を作製した。
実施例20
 膜厚110nmのITOからなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-5Paで積層した。まず、ITO上に正孔注入層としてHAT-CNを25nmの厚さに形成し、次に正孔輸送層としてNPDを45nmの厚さに形成した。次に、電子阻止層としてHT-1を10nmの厚さに形成した。そして第1ホストとして化合物1-11を、第2ホストとして化合物2-2を、発光ドーパントとしてIr(piq)2acacをそれぞれ異なる蒸着源から共蒸着し、40nmの厚さに発光層を形成した。この時、Ir(piq)2acacの濃度が6.0wt%、第1ホストと第2ホストの重量比が、30:70となる蒸着条件で共蒸着した。更に、正孔阻止層としてET-1を10nmの厚さに形成した。次に電子輸送層としてET-1を27.5nmの厚さに形成した。そして電子輸送層上に電子注入層としてLiFを1nmの厚さに形成した。最後に、電子注入層上に、陰極としてAlを70nmの厚さに形成し、有機EL素子を作製した。
実施例21
 実施例20において、第1ホストと第2ホストの重量比が40:60となる蒸着条件で共蒸着した以外は、実施例20と同様の条件で有機EL素子を作製した。
実施例22
 実施例20において、第1ホストと第2ホストの重量比が50:50となる蒸着条件で共蒸着した以外は、実施例20と同様の条件で有機EL素子を作製した。
比較例1
 実施例1において、ホストとして化合物1-11を単独で用いた以外は実施例1と同様にして有機EL素子を作製した。発光層の厚み、発光ドーパント濃度は実施例1と同様である。
比較例2~6
 ホストとして表3に示す化合物を単独で用いた以外は比較例1と同様にして有機EL素子を作製した。
比較例7
 実施例11において、第1ホストとして化合物1-11を、第2ホストとして化合物Aを使用した以外は実施例11と同様にして有機EL素子を作製した。
比較例8
 実施例11において、第1ホストとして1-157を、第2ホストとして化合物Aを使用した以外は実施例11と同様にして有機EL素子を作製した。
比較例9~10
 実施例15において、ホストとして化合物1-2又は化合物1-11を単独で使用した以外は、実施例15と同様にして有機EL素子を作製した。
 実施例で使用した化合物を次に示す。
Figure JPOXMLDOC01-appb-C000028
 
 第1ホストと第2ホストの予備混合物の種類、第1ホストと第2ホストの種類、及び割合を表2、3に示す。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 実施例1~15及び比較例1~8で作製された有機EL素子は、これに外部電源を接続し直流電圧を印加したところ、いずれも極大波長530nmの発光スペクトルが観測され、Ir(ppy)3からの発光が得られていることがわかった。
 また、実施例16~22及び比較例9、10で作製された有機EL素子は、これに外部電源を接続し直流電圧を印加したところ、いずれも極大波長620nmの発光スペクトルが観測され、Ir(pic)2acacからの発光が得られていることがわかった。
 作製した有機EL素子の輝度、駆動電圧、発光効率、輝度半減寿命を表4及び5に示す。表中で輝度、駆動電圧、発光効率は駆動電流20mA/cm2時の値であり、初期特性である。表4中でLT70は、初期輝度9000cd/m2時に輝度が初期輝度の70%まで減衰するまでにかかる時間であり、表5中でLT95は、初期輝度3700cd/m2時に輝度が初期輝度の95%まで減衰するまでにかかる時間であり、いずれも寿命特性である。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
 表4と表5から、一般式(1)で表される第1ホストと一般式(2)で表される第2ホストを混合して使用すると、それぞれを単独で使用した場合と比較し、寿命特性が著しく伸長することがわかる。また、第1ホストと第2ホストを混合して使用したとしても、一方が一般式(1)又は一般式(2)の化合物ではない場合、電力効率が低く、良好な寿命特性が得られないことが分かる。
 また、実施例10や19のように正孔阻止材料として一般式(1)で表される化合物を使用すると、寿命特性が伸長することが分かる。
1  基板、2  陽極、3  正孔注入層、4  正孔輸送層、5  発光層、6  電子輸送層、7  陰極
 
 

Claims (10)

  1.  対向する陽極と陰極の間に、1つ以上の発光層を含む有機電界発光素子において、少なくとも1つの発光層が、真空蒸着によって形成され、下記一般式(1)で表される化合物から選ばれる第1ホストと下記一般式(2)で表される化合物から選ばれる第2ホスト、及び発光性ドーパント材料を含有することを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001
     ここで、環Aは式(1a)で表される芳香族炭化水素環であり、環Bは式(1b)で表される複素環であり、環A及び環Bはそれぞれ隣接する環と任意の位置で縮合し、
    Ar1はフェニル基、ビフェニル基又はターフェニル基であり、
    Rは独立に炭素数1~10の脂肪族炭化水素基、炭素数6~10の芳香族炭化水素基又は炭素数3~12の芳香族複素環基であり、
    a、b、cは、各々独立して0~3の整数を表し、
    mとnは、各々独立して0~2の整数を表す。
    Figure JPOXMLDOC01-appb-C000002
     ここで、ArとArは炭素数6~14の芳香族炭化水素基、または該芳香族炭化水素基が2個連結した基を表し、連結する場合の芳香族炭化水素基は同一であっても異なっていても良い。Lは直接結合、または式(2a)~式(2c)のいずれかからなるフェニレン基を示し、Lは式(2c)で表されるフェニレン基を表す。
  2.  一般式(2)において、Arがフェニル基である請求項1に記載の有機電界発光素子。
  3.  一般式(2)で表される化合物が、下記一般式(4)で表される化合物である請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000003
     (ここで、Ar2、Lは一般式(2)のAr2、Lと同意である。)
  4.  第1ホストと第2ホストの合計に対し、第1ホストの割合が20wt%を超え、55wt%未満である請求項1に記載の有機電界発光素子。
  5.  発光性ドーパント材料が、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金及び金からなる群れから選ばれる少なくとも一つの金属を含む有機金属錯体である請求項1に記載の有機電界発光素子。
  6.  発光性ドーパント材料が、熱活性化遅延蛍光発光ドーパント材料である請求項1に記載の有機電界発光素子。
  7.  第1ホストと第2ホストの電子親和力(EA)の差が0.1 eVを超え、0.6 eV未満である請求項1に記載の有機電界発光素子。
  8.  発光層と隣接して正孔阻止層を有し、該正孔阻止層中に一般式(1)で表される化合物を含有する請求項1に記載の有機電界発光素子。
  9.  第1ホストと第2ホストを混合して予備混合物としたのち、これを含むホスト材料を蒸着させて発光層を形成させる工程を有する請求項1に記載の有機電界発光素子の製造方法。
  10.  第1ホストと第2ホストの50%重量減少温度の差が20℃以内であることを特徴する請求項9に記載の有機電界発光素子の製造方法。
     
     
     
PCT/JP2017/027232 2016-09-30 2017-07-27 有機電界発光素子 WO2018061446A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/334,576 US11171295B2 (en) 2016-09-30 2017-07-27 Organic electroluminescent element
EP17855404.4A EP3522246B1 (en) 2016-09-30 2017-07-27 Organic electroluminescent element
KR1020197009790A KR102356995B1 (ko) 2016-09-30 2017-07-27 유기 전계 발광 소자
CN201780060065.7A CN109791997B (zh) 2016-09-30 2017-07-27 有机电场发光元件及其制造方法
JP2018541950A JP6894913B2 (ja) 2016-09-30 2017-07-27 有機電界発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-194097 2016-09-30
JP2016194097 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061446A1 true WO2018061446A1 (ja) 2018-04-05

Family

ID=61760496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027232 WO2018061446A1 (ja) 2016-09-30 2017-07-27 有機電界発光素子

Country Status (7)

Country Link
US (1) US11171295B2 (ja)
EP (1) EP3522246B1 (ja)
JP (1) JP6894913B2 (ja)
KR (1) KR102356995B1 (ja)
CN (1) CN109791997B (ja)
TW (1) TWI728164B (ja)
WO (1) WO2018061446A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203202A1 (ja) * 2019-03-29 2020-10-08 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
WO2021131770A1 (ja) * 2019-12-27 2021-07-01 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
EP3975280A1 (en) 2020-09-29 2022-03-30 NIPPON STEEL Chemical & Material Co., Ltd. Composition for organic electroluminescent element and organic electroluminescent element
WO2022249932A1 (ja) * 2021-05-24 2022-12-01 キヤノン株式会社 有機発光素子、有機化合物、表示装置、光電変換装置、電子機器、照明装置、移動体、および、露光光源
JP2023551739A (ja) * 2021-11-18 2023-12-12 シャンシー ライト オプトエレクトロニクス マテリアル カンパニー リミテッド 有機エレクトロルミネッセンスデバイス及び電子装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102628129B1 (ko) 2016-12-27 2024-01-23 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자용 재료 및 유기 전계 발광 소자
JP6998366B2 (ja) * 2017-03-23 2022-01-18 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
KR102054806B1 (ko) * 2019-08-02 2019-12-10 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN112939985B (zh) 2021-01-22 2021-11-16 陕西莱特光电材料股份有限公司 一种有机化合物以及使用其的电子元件和电子装置
KR20230010978A (ko) * 2021-07-13 2023-01-20 엘티소재주식회사 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
CN117088781A (zh) * 2023-10-20 2023-11-21 浙江华显光电科技有限公司 一种有机化合物、具有该化合物的oled和有机发光装置

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133075A (ja) 2001-07-25 2003-05-09 Toray Ind Inc 発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2010134350A1 (ja) 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2011070963A1 (ja) 2009-12-07 2011-06-16 新日鐵化学株式会社 有機発光材料及び有機発光素子
WO2011136755A1 (en) 2010-04-28 2011-11-03 Universal Display Corporation Depositing premixed materials
WO2013062075A1 (ja) 2011-10-26 2013-05-02 出光興産株式会社 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子用材料
WO2014050588A1 (ja) * 2012-09-28 2014-04-03 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
US20140197386A1 (en) 2013-01-17 2014-07-17 Cheil Industries Inc. Material for organic optoelectronic device, organic light emitting diode including the same, and display including the organic light emitting diode
US20140374728A1 (en) 2012-01-26 2014-12-25 Universal Display Corporation Phosphorescent organic light emitting devices having a hole transporting cohost material in the emissive region
US20150001488A1 (en) 2013-07-01 2015-01-01 Soo-Hyun Min Composition and organic optoelectric device and display device
US20150236262A1 (en) 2014-02-14 2015-08-20 Samsung Display Co., Ltd. Organic light-emitting devices
WO2015156587A1 (en) * 2014-04-08 2015-10-15 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and organic electroluminescent device comprising the same
WO2016010402A1 (en) * 2014-07-18 2016-01-21 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
WO2016013875A1 (en) * 2014-07-22 2016-01-28 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
WO2016013867A1 (en) * 2014-07-22 2016-01-28 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
WO2016042997A1 (ja) * 2014-09-17 2016-03-24 新日鉄住金化学株式会社 有機電界発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795852B2 (en) * 2009-02-27 2014-08-05 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device with host materials having same or similar IP, EA and T1 values
EP2933851B1 (en) * 2012-12-17 2017-05-10 Nippon Steel & Sumikin Chemical Co., Ltd. Organic electroluminescent device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133075A (ja) 2001-07-25 2003-05-09 Toray Ind Inc 発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
WO2010134350A1 (ja) 2009-05-22 2010-11-25 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2011070963A1 (ja) 2009-12-07 2011-06-16 新日鐵化学株式会社 有機発光材料及び有機発光素子
WO2011136755A1 (en) 2010-04-28 2011-11-03 Universal Display Corporation Depositing premixed materials
WO2013062075A1 (ja) 2011-10-26 2013-05-02 出光興産株式会社 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子用材料
US20140374728A1 (en) 2012-01-26 2014-12-25 Universal Display Corporation Phosphorescent organic light emitting devices having a hole transporting cohost material in the emissive region
WO2014050588A1 (ja) * 2012-09-28 2014-04-03 新日鉄住金化学株式会社 有機電界発光素子用材料及びこれを用いた有機電界発光素子
US20140197386A1 (en) 2013-01-17 2014-07-17 Cheil Industries Inc. Material for organic optoelectronic device, organic light emitting diode including the same, and display including the organic light emitting diode
US20150001488A1 (en) 2013-07-01 2015-01-01 Soo-Hyun Min Composition and organic optoelectric device and display device
US20150236262A1 (en) 2014-02-14 2015-08-20 Samsung Display Co., Ltd. Organic light-emitting devices
WO2015156587A1 (en) * 2014-04-08 2015-10-15 Rohm And Haas Electronic Materials Korea Ltd. Multi-component host material and organic electroluminescent device comprising the same
WO2016010402A1 (en) * 2014-07-18 2016-01-21 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
WO2016013875A1 (en) * 2014-07-22 2016-01-28 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
WO2016013867A1 (en) * 2014-07-22 2016-01-28 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
WO2016042997A1 (ja) * 2014-09-17 2016-03-24 新日鉄住金化学株式会社 有機電界発光素子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 123, 2001, pages 4304
NATURE PHOTONICS, vol. 8, 2014, pages 326
NATURE, vol. 492, 2012, pages 234
See also references of EP3522246A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203202A1 (ja) * 2019-03-29 2020-10-08 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
JPWO2020203202A1 (ja) * 2019-03-29 2020-10-08
CN113661226A (zh) * 2019-03-29 2021-11-16 日铁化学材料株式会社 有机电场发光元件
EP3950882A4 (en) * 2019-03-29 2022-12-14 NIPPON STEEL Chemical & Material Co., Ltd. ORGANIC ELECTROLUMINESCENT ELEMENT
JP7539865B2 (ja) 2019-03-29 2024-08-26 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
WO2021131770A1 (ja) * 2019-12-27 2021-07-01 日鉄ケミカル&マテリアル株式会社 有機電界発光素子
EP4084105A4 (en) * 2019-12-27 2024-04-03 NIPPON STEEL Chemical & Material Co., Ltd. ORGANIC ELECTROLUMINESCENT ELEMENT
EP3975280A1 (en) 2020-09-29 2022-03-30 NIPPON STEEL Chemical & Material Co., Ltd. Composition for organic electroluminescent element and organic electroluminescent element
WO2022249932A1 (ja) * 2021-05-24 2022-12-01 キヤノン株式会社 有機発光素子、有機化合物、表示装置、光電変換装置、電子機器、照明装置、移動体、および、露光光源
JP2023551739A (ja) * 2021-11-18 2023-12-12 シャンシー ライト オプトエレクトロニクス マテリアル カンパニー リミテッド 有機エレクトロルミネッセンスデバイス及び電子装置
JP7554519B2 (ja) 2021-11-18 2024-09-20 シャンシー ライト オプトエレクトロニクス マテリアル カンパニー リミテッド 有機エレクトロルミネッセンスデバイス及び電子装置
US12102003B2 (en) 2021-11-18 2024-09-24 Shaanxi Lighte Optoelectronics Material Co., Ltd. Organic electroluminescent devices and electronic apparatus

Also Published As

Publication number Publication date
TWI728164B (zh) 2021-05-21
TW201829729A (zh) 2018-08-16
KR20190055122A (ko) 2019-05-22
JPWO2018061446A1 (ja) 2019-07-11
EP3522246A1 (en) 2019-08-07
US20210083195A1 (en) 2021-03-18
US11171295B2 (en) 2021-11-09
CN109791997A (zh) 2019-05-21
EP3522246B1 (en) 2021-09-01
KR102356995B1 (ko) 2022-01-28
EP3522246A4 (en) 2020-06-03
CN109791997B (zh) 2021-11-02
JP6894913B2 (ja) 2021-06-30

Similar Documents

Publication Publication Date Title
JP6663427B2 (ja) 有機電界発光素子
JP7030794B2 (ja) 有機電界発光素子
JP6786393B2 (ja) 有機電界発光素子
JP6894913B2 (ja) 有機電界発光素子
JP7456997B2 (ja) 有機電界発光素子用溶融混合物、及び有機電界発光素子
CN108780849B (zh) 有机电致发光元件
JP6860504B2 (ja) 有機電界発光素子
JP7426381B2 (ja) 有機電界発光素子
JP7539865B2 (ja) 有機電界発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541950

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009790

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017855404

Country of ref document: EP

Effective date: 20190430