WO2018056266A1 - 液体シンチレーションカウンタ及び液体シンチレーション計測方法 - Google Patents

液体シンチレーションカウンタ及び液体シンチレーション計測方法 Download PDF

Info

Publication number
WO2018056266A1
WO2018056266A1 PCT/JP2017/033752 JP2017033752W WO2018056266A1 WO 2018056266 A1 WO2018056266 A1 WO 2018056266A1 JP 2017033752 W JP2017033752 W JP 2017033752W WO 2018056266 A1 WO2018056266 A1 WO 2018056266A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
coincidence
liquid scintillation
coincidence pulse
scintillation counter
Prior art date
Application number
PCT/JP2017/033752
Other languages
English (en)
French (fr)
Inventor
孝良 古澤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018056266A1 publication Critical patent/WO2018056266A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/204Measuring radiation intensity with scintillation detectors the detector being a liquid

Definitions

  • the present invention relates to a liquid scintillation counter, and more particularly to a technique for determining whether or not a coincidence pulse generated by a coincidence event is a measurement target.
  • the liquid scintillation counter is used for identification and quantification of radioactive substances contained in a liquid sample.
  • a radioactive substance that emits ⁇ rays is a measurement target.
  • a liquid scintillation counter a liquid sample and a liquid scintillator are placed in a mixed state in a container such as a vial.
  • the container is installed inside a measurement chamber having a structure that shields extraneous radiation.
  • two photomultiplier tubes Photomultiplier Tubes
  • two photomultiplier tubes are installed in the measurement chamber. Specifically, two photomultiplier tubes are installed so that their light-receiving surfaces are close to and face the side of the container. Has been.
  • each photomultiplier tube When light emission occurs in the liquid scintillator due to ⁇ rays emitted from the liquid sample, the light is detected by two photomultiplier tubes.
  • An electric signal (charge signal or current signal) emitted from each photomultiplier tube is composed of a main pulse portion and a tail portion as an attenuation portion connected thereto.
  • the electrical signal includes thermal noise generated in the photomultiplier tube.
  • one or a plurality of afterpulses may be included in the tail portion.
  • coincidence counting circuit In a typical liquid scintillation counter, two electrical signals output from two photomultiplier tubes are input to a coincidence counting circuit (AND circuit, coincidence pulse generation circuit). As a result, it is possible to exclude thermal noise contained in the two electrical signals.
  • coincidence circuit only coincidence events (Coincident Events) are specified, and coincidence pulses () (coincidence pulses) are output corresponding to the coincidence events.
  • coincidence pulse is used as a data capture signal or a gate signal for data extraction.
  • the causes of afterpulses include the characteristics of scintillator materials, the incidence of high-energy radiation such as cosmic rays, the characteristics of photomultiplier tubes, and radioactive materials in glass vials.
  • a coincidence pulse is generated accordingly.
  • cosmic rays or natural radiation having high energy is incident on the liquid scintillator, or when radiation from a radioactive substance (eg, K-40) contained in a glass vial is incident on the liquid scintillator.
  • a radioactive substance eg, K-40
  • the probability of ⁇ -ray generation caused by decay of radioactive material contained in a sample generally follows a Poisson distribution. If many subsequent events occur beyond the probability of following a Poisson distribution, the main event itself is likely a non-measurable object or noise.
  • a burst generated after the occurrence of a coincidence event (main event) is observed, and based on the observation result, the main event is a measurement target event or a background event. It is identified.
  • the burst is generated by OR processing (addition processing) two detection signals from two photomultiplier tubes.
  • the technique described in Patent Document 1 can be cited.
  • the observation target signal (burst) is an output from the OR circuit, that is, a signal containing a lot of thermal noise. Therefore, it seems difficult to accurately determine whether the main event is a measurement target or a background.
  • An object of the present invention is to correctly determine whether or not a coincidence pulse is a true pulse in a liquid scintillation counter, that is, whether or not it is a measurement target.
  • the liquid scintillation counter disclosed in the present application includes a plurality of photodetectors that detect light generated in the liquid scintillator, and a coincidence coincidence pulse generated based on a plurality of detection signals output from the plurality of photodetectors ( Setting means for setting a pulse observation period after the relevant coincidence pulse with reference to (Specific Coincidence Pulse), and subsequent coincidence pulses (Subsequent Coincidence Pulse) generated based on the plurality of detection signals in the pulse observation period or by chance Observation means for observing a coincidence pulse (Accidental Coincidence Pulse) and determination means for judging whether or not the attention coincidence pulse is a true pulse based on the observation result of the observation means.
  • a pulse observation period is set after the noticed coincidence pulse by the setting means, and a predetermined coincidence pulse (preferably a subsequent coincidence pulse or a coincidence coincidence pulse) is observed by the observation means within the pulse observation period.
  • the observation result indicates the nature of the noticed coincidence pulse as the preceding event.
  • the authenticity of the attention coincidence pulse (that is, whether or not it is a measurement target) is determined based on the observation result of the observation means. For example, when a large number of predetermined coincidence pulses are observed during the pulse observation period, it is highly likely that the attention coincidence pulse is not caused by radiation from the sample (target radiation), and therefore the attention coincidence pulse is true. It is determined that the pulse is not. Conversely, if a small number of predetermined coincidence pulses are observed during the pulse observation period, or if none of them are observed, the attention coincidence pulse is likely to have originated from the target radiation. It is determined that the attention coincidence pulse is a true pulse.
  • the noted coincidence pulse is a coincidence pulse corresponding to a main event (preceding event) in a sequence of coincidence pulses generated by simultaneous counting processing of a plurality of detection signals.
  • the subsequent coincidence pulse is a coincidence pulse that follows the attention coincidence pulse in the train of coincidence pulses, and is also referred to as an after pulse.
  • the coincidence coincidence pulse is a coincidence pulse generated by the coincidence coincidence process (delayed coincidence process) of a plurality of detection signals. It is also conceivable to use the subsequent coincidence pulse observation and the coincidence coincidence pulse observation together. Alternatively, other types of coincidence pulses may be observed.
  • the frequency of radiation generation due to nuclear decay follows the Poisson distribution.
  • the generation of radiation can be said to be a random event that follows a Poisson distribution. If the coincidence event that occurs after the coincidence event as the main event is a random event that follows a Poisson distribution, the main event is caused by radiation from the sample. May be determined. Conversely, if the subsequent event is not a random event according to the Poisson distribution, it may be determined that the main event is not caused by radiation emitted from the sample.
  • the above configuration is based on such a concept. For example, when high energy cosmic rays are incident on a liquid scintillator, many subsequent events (afterpulses) follow the main event. According to the above configuration, based on the observation of many subsequent events, it is possible to reject a main event that occurred before that in data processing. When many subsequent events occur, accidental coincidence pulses also increase, so accidental coincidence pulses can be observed.
  • the observation unit includes a counting unit that counts the subsequent coincidence pulse or the coincidence coincidence pulse within the pulse observation period, and the determination unit is based on a count value of the counting unit. It is then determined whether or not the noted coincidence pulse is a true pulse.
  • the observation method includes the presence / absence of a subsequent event, the number of subsequent events (count value), the time interval between the main event and the subsequent event, and the like. Among them, the count value indicates the occurrence rate of subsequent events.
  • it is determined whether the main event is an original measurement target based on the count value, that is, whether the main event is an event caused by sample radiation or noise (background).
  • the determination unit determines that the noted coincidence pulse is a true pulse when the count value is equal to or less than a threshold value.
  • the pulse observation period and threshold value can be set adaptively.
  • the liquid scintillation counter further includes conversion means for generating peak value data indicating a peak value at the time of occurrence of the noted coincidence pulse based on at least one of the plurality of detection signals, and the peak value Data processing means for performing data processing based on data, and when the determination means determines that the attention coincidence pulse is not a true pulse, the peak value data corresponding to the attention coincidence pulse is the data processing A rejection signal is output so that it will not be used in.
  • the peak value data corresponding to the true pulse and the peak value data corresponding to noise can be identified in data processing.
  • the peak value data may be temporarily stored for the rejection process, and whether or not to use the stored peak value data may be determined according to the presence or absence of the rejection signal.
  • the liquid scintillation counter further includes a timing unit that measures a net measurement time, and the timing unit includes a non-detection period including the pulse observation period when the rejection signal is generated. A process of subtracting the non-detection period so as not to be included in the observation time is executed. According to this configuration, it is possible to correctly obtain the net measurement time. In addition to the pulse observation period, the coincidence pulse time length and the rejection pulse time length may be included in the non-detection period. When the rejection signal is not generated, the dead time in the conversion means (for example, analog-digital converter) may be subtracted from the net measurement time. When deduction processing is executed after completion of the determination, time information that may be deducted may be temporarily saved.
  • the liquid scintillation counter further includes a coincidence pulse generation unit that generates a train of coincidence pulses based on the plurality of detection signals, and the coincidence coincidence pulse corresponds to a preceding event in the train of coincidence pulses. It is a coincidence pulse, and the subsequent coincidence pulse is a coincidence pulse that follows the attention coincidence pulse in the train of coincidence pulses, and the observation means observes the subsequent coincidence pulse.
  • the liquid scintillation counter further includes a first coincidence pulse generation unit that generates a train of coincidence pulses based on the plurality of detection signals, a first detection signal and a second detection signal included in the plurality of detection signals.
  • Delay processing means for delaying the second detection signal among detection signals, and second coincidence pulse generation means for generating a coincidence pulse based on the first detection signal and the second detection signal after the delay processing
  • the coincidence pulse of interest is a coincidence pulse corresponding to a preceding event in the train of coincidence pulses
  • the coincidence coincidence pulse is a coincidence pulse generated by the second coincidence pulse generation unit
  • the observation means receives the coincidence coincidence pulse. Observe.
  • a step of setting a pulse observation period after the attention coincidence pulse based on the attention coincidence pulse generated by the simultaneous counting process for a plurality of radiation detection signals, and the pulse observation period Observing a subsequent coincidence pulse or a coincidence coincidence pulse generated by the coincidence counting process, and determining whether or not the attention coincidence pulse is a true pulse based on the observation result.
  • FIG. 1 is a block diagram showing a first embodiment of a liquid scintillation counter according to the present invention. It is a figure which shows a main pulse and an after pulse.
  • FIG. 2 is a block diagram illustrating a plurality of functions included in the arithmetic unit illustrated in FIG. 1. It is a figure which shows operation
  • FIG. 1 shows a block diagram of a first embodiment of a liquid scintillation counter.
  • This liquid scintillation counter is an apparatus for identifying or quantifying radioactive substances contained in a liquid sample. For example, the radioactivity for a given radionuclide is measured for each sample by a liquid scintillation counter.
  • the liquid scintillation counter has a transport table, and a plurality of racks are transported on the transport table. Each rack holds a plurality of vials. Individual vials held in each rack are sequentially measured. That is, the vial to be measured is transferred from the rack to the measurement location, where the radiation is measured. The vial after measurement is returned to the rack.
  • the configuration of the liquid scintillation counter will be described with reference to FIG. 1, and then the operation of the configuration will be described with reference to FIG.
  • FIG. 1 shows a measurement chamber 10 which is a measurement place.
  • two photomultiplier tubes 14 and 16 are arranged in the illustrated example. Each of them is a photodetector. Other types of photodetectors may be utilized.
  • the light receiving surfaces of the photomultiplier tubes 14 and 16 are opposed to each other in the state of being close to the side surface of the vial 12. Three or more photodetectors may be arranged.
  • the vial 12 is a container, which consists of a main body and a cap.
  • the vial 12 contains a liquid sample and a liquid scintillator in a mixed state.
  • the liquid sample contains radioactive materials, particularly ⁇ -ray emitting nuclides.
  • the liquid scintillator emits light by ⁇ rays emitted from the radioactive substance.
  • the light is detected by the two photomultiplier tubes 14 and 16.
  • the liquid scintillator may emit light due to external radiation, chemiluminescence, or the like.
  • Each photomultiplier tube 14 and 16 outputs two electrical signals.
  • the first electric signal is a signal having linearity with respect to the radiation energy, and is given to the SUM_AMP 18.
  • SUM_AMP 18 functions as a summing amplifier circuit and a waveform shaping circuit.
  • the second electrical signal is a non-linear signal or a saturated signal, which is provided to the AMPs 22 and 24. They function as an amplifier circuit and a waveform shaping circuit.
  • Each block shown in FIG. 1 represents hardware such as an electronic circuit and a processor.
  • the AMPs 22 and 24 have a signal amplification function, and output output signals AMP1AMPOUT and AMP2 OUT when a peak value exceeding a threshold value is input.
  • the output signals AMP1 OUT and AMP2 OUT are rectangular pulse signals, the amplitude of which is H level or L level, and the time width is about 20 ns. They may be referred to as detection signals. They are input to the AND circuit 26.
  • the AND circuit 26 functions as coincidence pulse generation means, and specifically is a circuit that performs coincidence processing.
  • a coincidence pulse AND_OUT as a logical product (AND) signal is output.
  • the coincidence pulse AND_OUT is sent to the ADC (digital / analog converter) 20 and the calculator 28.
  • the ADC 20 functions as a conversion means, and is a circuit that converts the analog signal SUM_AMP_OUT output from the SUM_AMP 18 into a digital signal. Specifically, at the timing when the coincidence pulse AND_OUT is given, that is, at the coincidence timing, the peak wave height value of the input analog signal SUM_AMP_OUT is converted into wave height value data as a digital signal. That is, the coincidence pulse AND_OUT functions as a conversion start signal or a trigger signal.
  • the ADC 20 has a peak hold function. In the conversion process in the ADC 20, a dead time occurs in which the next conversion process cannot be accepted. In the illustrated configuration example, a signal TD indicating the dead time length is sent to the timer circuit 30.
  • the clock circuit 30 is a circuit that calculates the net measurement time, as will be described later.
  • both the first electric signal and the second electric signal output from each photomultiplier tube are used separately, but only one of them may be used.
  • the computing unit 28 functions as setting means, observation means (counting means), determination means, signal generation means, and the like, as will be described later with reference to FIG. It is constituted by a logic circuit or a processor, for example.
  • the arithmetic unit 28, the time measuring circuit 30, and the MCA (multi-channel analyzer) 38 to be described later may be configured by a single processor or a plurality of processors.
  • the computing unit 28 identifies a coincidence pulse (a notable coincidence pulse) corresponding to the main event from a sequence of a plurality of coincidence pulses output from the AND circuit 26 (see AND_OUT), and uses that as a reference.
  • the pulse observation period is a time window for observing subsequent events that occur following the main event.
  • the coincidence pulse that is observed first after the end of the previous pulse observation period becomes the attention coincidence pulse.
  • a pulse observation period is set after each notice coincidence pulse.
  • the arithmetic unit 28 repeatedly executes such a series of processes. Specifically, the computing unit 28 sets a pulse observation period after using a notice coincidence pulse as a trigger and setting a certain delay time therefrom.
  • a time width of 20 ns for example, a time of 20 ns or longer is set as the delay time.
  • the calculator 28 counts coincidence pulses (subsequent coincidence pulses in the first embodiment) during the pulse observation period to obtain a count value.
  • the count value (exactly the count rate) is larger than the random probability according to the Poisson distribution, the main event is likely to be a background event.
  • the arithmetic unit 28 determines that the noticed coincidence pulse is not a true pulse (not a measurement target), and rejects the AD conversion result corresponding to the noticed coincidence pulse for data processing.
  • a REJECT pulse is generated as a signal.
  • the computing unit 28 determines that the attention coincidence pulse is a true pulse. In that case, the REJECT pulse is not output.
  • the REJECT pulse is output to the MCA 38 and the timing circuit 30.
  • the computing unit 28 generates a BUSY signal indicating a period including the attention coincidence pulse to the REJECT pulse (a processing period including the pulse observation period), and outputs the BUSY signal to the MCA 38 and the timing circuit 30.
  • the BUSY period (period in which the BUSY signal is H) is a non-detection period.
  • the notice coincidence pulse is a true pulse
  • the dead time integrated value of the ADC 20 in the BUSY period becomes the non-detection period. The next determination process is not accepted during the BUSY period.
  • the noticed coincidence pulse when it is determined that the noticed coincidence pulse is not a true pulse, the crest value data corresponding to the noticed coincidence pulse (and the crest value data corresponding to the number of subsequent coincidence pulses exceeding the threshold value) are processed. It is rejected in a lump.
  • the noticed coincidence pulse when it is determined that the noticed coincidence pulse is a true pulse, the peak value data corresponding to the noticed coincidence pulse (and the peak value data corresponding to the subsequent coincidence pulse equal to or lower than the threshold value) are used in data processing. .
  • a specific data acceptance / rejection method can be determined according to the application and circumstances.
  • the MCA 38 functions as a data processing means. Specifically, the MCA 38 is a circuit that generates a spectrum representing the occurrence frequency for each beta ray energy based on a plurality of peak value data. However, when the noticed coincidence pulse is a background event, the peak value data corresponding to the noticed coincidence pulse is excluded for data processing. Therefore, in the MCA 38, one or more input peak value data is temporarily stored in the buffer (buffer memory) 42 within the BUSY period or until the presence or absence of the REJECT signal is determined. . When the REJECT signal is generated, one or a plurality of peak value data stored in the buffer 42 is rejected. That is, they are excluded for data processing. At that time, the buffer 42 is cleared.
  • one or a plurality of peak value data stored in the buffer 42 is transferred to the memory 40, and these are subjected to data processing. Also in this case, the buffer 42 is cleared.
  • the data processing is spectrum generation processing. However, other processing such as radioactivity calculation may be executed.
  • the rejected peak value data may be stored separately and used in data verification, noise analysis, and the like.
  • a spectrum or the like generated by the MCA 38 is displayed on the display 44.
  • Time measuring circuit 30 is a circuit that calculates the net measurement time.
  • the net measurement time is measured in order to evaluate the reliability of the displayed spectrum or the calculated radioactivity, or to evaluate the validity of the measurement period.
  • the timing circuit 30 has a counter 34 that functions as a timer.
  • the timer circuit 30 temporarily stops the operation of the counter 34 until the determination by the calculator 28 is completed, that is, during the BUSY period.
  • the dead time information DT obtained from the ADC 20 is temporarily stored in the buffer 36 and totalized. That is, the buffer 36 holds a cumulative value (total value) of dead time information.
  • the timer circuit 30 increases the counter value by the net detection time obtained by subtracting the accumulated value from the elapsed time after the counter operation stops, and the buffer 36 To clear. Then, the operation of the counter 34 is resumed.
  • the timing circuit 30 restarts the operation of the counter 34 without increasing the value of the counter 34.
  • the buffer 36 is cleared. In that case, as a result, the BUSY period is subtracted from the net measurement time as a non-detection period.
  • the counter continues to operate even during the BUSY period. If no REJECT signal is generated, the above-mentioned accumulated dead time is subtracted from the value of the counter 34 at that time, and if a REJECT signal is generated, at that time. The time value corresponding to the BUSY period may be subtracted from the value of the counter 34. In any case, it is desirable to control the operation of the counter so that the net measurement time is calculated.
  • the timing circuit 30 sends a signal 32 for controlling the start and stop of the counting operation of the MCA 38 to the MCA 38.
  • FIG. 2 illustrates the waveform of the electrical signal output from the photomultiplier tube.
  • the waveform is merely illustrative and each part in the waveform is exaggerated.
  • the horizontal axis is the time axis, and the vertical axis indicates the negative amplitude in this example.
  • Reference numeral 102 denotes a discrimination threshold value in the AMPs 22 and 24 shown in FIG. After the main pulse 100a corresponding to the main peak as the main event or the preceding event, a plurality of after pulses 100b, 100c, and 100d as a plurality of subsequent events occur.
  • a plurality of coincidence pulses are generated at timings indicated by reference numerals 104, 106, 108, and 110.
  • the leading coincidence pulse becomes the attention coincidence pulse
  • the pulse observation period is set based on the coincidence pulse.
  • a plurality of subsequent coincidence pulses (reference numerals 106, 108, 110) are observed during the pulse observation period.
  • FIG. 3 is a block diagram showing functions of the computing unit 28 shown in FIG.
  • the period setting device 60 inputs a coincidence pulse train (see AND_OUT), and sets a pulse observation period based on a noticed coincidence pulse in the coincidence pulse train.
  • the BUSY signal is output from the time when the notice coincidence pulse is detected.
  • the next pulse observation period is not set within the period during which the BUSY signal is output.
  • the counter 62 counts the number of coincidence pulses (subsequent coincidence pulses) during the pulse observation period.
  • the determiner 64 compares the count value of coincidence pulses within the pulse observation period with a threshold value, and outputs a REJECT signal when the count value is larger than the threshold value.
  • the REJECT signal When the count value is less than or equal to the threshold value, the REJECT signal is not output. In that case, a signal different from the REJECT signal may be output.
  • the determination device 64 also has a function of outputting the BUSY signal. As indicated by reference numeral 66, it is desirable that the threshold value be variably set from the outside. Further, it is desirable that the pulse observation period can be variably set according to the situation. Examples of the pulse observation method include observation of the number of pulses, observation of the presence / absence of a pulse, observation of a pulse interval, and the like.
  • FIG. 4 shows an operation example of the configuration shown in FIG. (A) shows AMP1 OUT, (B) shows AMP2 OUT, and (C) shows AND_OUT. (D) shows a pulse observation period (determination period). (E) shows the coincidence pulse count value (count value) during the pulse observation period. (F) shows a REJECT pulse, and (G) shows a BUSY signal.
  • a pulse observation period (determination period) 122 is set with a certain delay time 120 from the rising edge. The time width is shown as W. In the pulse observation period 122, the subsequent coincidence pulse is not detected, and the count value 124 is zero. That is, although AMP1 OUT (118) occurs in the pulse observation period 122, it does not appear in AND_OUT and is excluded as noise by the coincidence processing.
  • the BUSY signal 128 is generated from the rise of the notice coincidence pulse 116, and the BUSY signal 128 continues to take a value of 1 until the determination process is completed. The period during which the BUSY signal is output is the BUSY period. Reference numeral 126 indicates the absence of a REJECT pulse.
  • the pulse observation period 136 is set by the occurrence of the noticed coincidence pulse 130, and the subsequent coincidence pulses 132 and 134 are generated in the pulse observation period 136.
  • the count value 137 is 2. If the threshold is 1, the REJECT pulse 138 is generated because the count value 137 exceeds the threshold.
  • the REJECT pulse 138 is generated, the peak value data captured at the timing when the noticed coincidence pulse 130 is generated and the peak value data captured at the timing when the subsequent coincidence pulses 132 and 134 are generated are rejected for data processing. Will be.
  • the main event when a relatively large number of subsequent events are observed following the main event, the main event itself is regarded as a background event, and the peak value data group related to the background event is collectively displayed. Rejected. Conversely, if relatively few subsequent events are observed following the main event (or if no subsequent events are observed), the main event (and subsequent events) are considered to be observed events, The peak value data corresponding to the main event (and the peak value data corresponding to the subsequent event) are employed in the data processing. Thereby, the reliability of the measurement result by the liquid scintillation counter can be improved.
  • the timing circuit operates on the premise of the operation as described above, and the net measurement time can be correctly calculated according to the determination result.
  • the delay time from the rise of the notice coincidence pulse to the start of the pulse observation period is larger than the time corresponding to the resolution in the coincidence counting process. This is because if the delay time is not set larger than the time corresponding to the resolution, the main event itself is counted as a subsequent event (multiple event).
  • the temporal resolution is determined by the above-described operations of AMP1 and AMP2, and in the case of a general liquid scintillation counter, it is, for example, 20 ns.
  • a delay time may be set. Further, when it is known from the composition of the scintillator that multiplicity is recognized in the light emission characteristics, the delay time may be set so that the influence of the multiplicity is ignored or reduced. In that case, the threshold value may be manipulated.
  • the duration of the pulse observation period is too short, the total number of multiple events that last for a long time cannot be counted, and conversely if it is too long, the probability of counting the next random event is high. Becomes higher. It is desirable to set the pulse observation period in consideration of such both sides. Although depending on the count rate of the measurement target, for example, when the pulse observation period is 2 ms and the count rate is 50 cpm, the probability that the next random event will occur during the pulse observation period is 0.167%. Under the same conditions, if the count rate is 500 cpm, the probability of the next random event occurring during the pulse observation period is 1.67%. It is desirable to determine the length of the pulse observation period according to the situation and purpose.
  • FIG. 5 shows the configuration of the main part of the liquid scintillation counter according to the second embodiment.
  • the second embodiment basically has the same configuration as the first embodiment, but differs from the first embodiment in that a delay coincidence circuit is added.
  • the output pulse AMP1 OUT of the AMP 22 is input to one input terminal of the AND circuit 48.
  • the output pulse AMP2 OUT of the AMP 24 is delayed by the delay circuit 46, and the output pulse AMP2 OUT Delayed after the delay processing is input to the other input terminal of the AND circuit 48.
  • the AND circuit 48 accidentally outputs a coincidence pulse Delayed-COIN when an output pulse AMP1 OUT not subjected to delay processing and an output pulse AMP2 OUT Delayed subjected to delay processing are simultaneously input.
  • a coincidence coincidence pulse is also referred to as a delayed coincidence pulse.
  • a coincidence coincidence pulse is sent to the computing unit 28A.
  • the arithmetic unit 28A sets the pulse observation period with a predetermined delay time after the attention coincidence pulse as a reference.
  • coincidence pulses are counted by chance during the pulse observation period. Based on the counted value, it is determined whether or not the attention coincidence pulse is a true pulse.
  • FIG. 6 shows the operation of the second embodiment shown in FIG.
  • A shows AMP1 OUT
  • B shows AMP2 OUT
  • C shows AND_OUT.
  • D shows the output pulse AMP2 OUT Delayed after delay processing.
  • E shows a coincidence pulse Delayed-COIN.
  • F shows the pulse observation period (judgment period).
  • G) shows the count value (count value) of coincidence pulses during the pulse observation period.
  • H) shows a REJECT pulse
  • I shows a BUSY signal.
  • an output pulse AMP1 OUT (200) and an output pulse AMP2 OUT (202) are generated, and a coincidence coincidence pulse (204) as AND_OUT is generated by their simultaneous counting.
  • the output pulse AMP2 OUT 202 (202) subjected to the delay processing is the output pulse AMP2 OUT Delayed (206) after the delay processing.
  • a coincidence pulse is not generated by chance at the timing when it is generated (see (E)).
  • Reference numeral 208 denotes a delay time dT in the delay process.
  • the pulse observation period (determination period) 210 is set after a certain delay time 212 from the rise of the notice coincidence pulse (204). It has a predetermined time width. In the pulse observation period 210, no coincidence pulse is detected by chance (it does not occur), and the count value 214 is zero. A BUSY signal 218 is generated from the rise of the notice coincidence pulse 204, and the BUSY signal 218 continues to take a value of 1 until the determination process is completed.
  • Reference numeral 216 indicates the absence of a REJECT pulse.
  • an output pulse AMP1 OUT (220) and an output pulse AMP2 OUT (222) are generated, and a focused coincidence pulse 224 is generated based on them.
  • AMP1 OUT does not occur, that is, no coincidence pulse is generated by chance at that timing.
  • An output pulse AMP1 OUT (227) and an output pulse AMP2 OUT Delayed (230) after delay processing based on the output pulse AMP2 OUT (228) are generated simultaneously, and a coincidence pulse 232 is accidentally generated based on them.
  • the pulse observation period 234 is set on the basis of the noticed coincidence pulse 224, and the coincidence pulses 232 and 242 are detected by chance in the pulse observation period 234.
  • the count value 244 is 2. If the threshold is 1, the REJECT pulse 246 is generated because the count value 244 exceeds the threshold. When this REJECT pulse 246 is generated, the crest value data corresponding to the notice coincidence pulse 224 (the crest value data corresponding to the subsequent coincidence pulse, if any) is rejected for data processing. When no REJECT pulse is generated, the peak value data corresponding to the subsequent coincidence pulse generated within the pulse observation period can be adopted in the data processing.
  • the size of the delay time dT may be manipulated. Even when it is known that the characteristic of the scintillation light being measured has multiplicity, the delay time dT may be set so that the multiplicity is ignored. In general, it is desirable to set the delay time dT within a range from a time corresponding to the pulse resolution to several hundred ns. The delay time from the pulse of interest to the pulse observation period and the threshold value to be compared with the count value may be set as appropriate according to the purpose and situation of the measurement as in the first embodiment. In the second embodiment, it is basically necessary to set the delay time dT. However, if it is not necessary to avoid a specific multiplex phenomenon, the delay time may be provided as necessary. That is, it may be zero.
  • the second embodiment as in the first embodiment, it is possible to determine whether or not the main event is a measurement target based on the frequency of subsequent events following the main event. Since the crest value data which is not can be discarded in the data processing, the reliability of the measurement result in the liquid scintillation counter can be improved.
  • the stability processing according to the first embodiment and the determination processing according to the second embodiment may be combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

液体シンチレーションカウンタにおいて、AND回路からコインシデンスパルス列が出力される。演算器は、コインシデンスパルス列の中の注目コインシデンスパルスを基準とし、その後にパルス観測期間を設定し、その期間内で生じたコインシデンスパルス(後続コインシデンスパルス)を計数する。その計数値が閾値以下であれば注目コインシデンスパルスが真のパルスである(計測対象である)と判定される。後続コインシデンスパルスに代えて偶然コインシデンスパルスを計数するようにしてもよい。

Description

液体シンチレーションカウンタ及び液体シンチレーション計測方法
 本発明は液体シンチレーションカウンタ(Liquid Scintillation Counter)に関し、特に、コインシデンスイベントで生じるコインシデントパルス(Coincidence Pulse)が計測対象か否かを判定する技術に関する。
 液体シンチレーションカウンタは、液体サンプルに含まれる放射性物質の同定や定量等において利用されるものである。通常、β線を放出する放射性物質が測定対象となる。液体シンチレーションカウンタにおいては、バイアル等の容器内に液体サンプル及び液体シンチレータが混合状態で入れられている。容器は外来放射線を遮蔽する構造をもった測定室の内部に設置される。測定室内には例えば2つの光電子増倍管(Photomultiplier Tube)が設置されており、具体的には、それらの受光面が容器の側面に近接かつ対向するように、2つの光電子増倍管が設置されている。液体サンプルから出たβ線により液体シンチレータにおいて発光が生じると、その光が2つの光電子増倍管で検出される。各光電子増倍管から出る電気信号(電荷信号又は電流信号)はメインパルス部分とそれに連なる減衰部分としてのテール部分とからなる。その電気信号には光電子増倍管で生じた熱雑音も含まれる。また、そのテール部分に1又は複数のアフターパルス(Afterpluse)が含まれることもある。
 典型的な液体シンチレーションカウンタにおいては、2つの光電子増倍管から出力された2つの電気信号が同時計数回路(アンド回路、コインシデンスパルス生成回路)に入力される。これにより2つの電気信号に含まれる熱雑音を除外することが可能である。同時計数回路では同時計数事象(Coincident Events)だけが特定され、同時計数事象に対応してコインシデンスパルス()(同時計数パルス)が出力される。通常、コインシデンスパルスはデータ取込信号又はデータ抽出用のゲート信号として利用される。
 アフターパルスの発生原因としては、シンチレータ物質の特性、宇宙線等の高エネルギー放射線の入射、光電子増倍管の特性、ガラスバイアル中の放射性物質、等が挙げられる。2つの光電子増倍管から同時にアフターパルスが生じる場合、それに起因してコインシデンスパルスが生じる。例えば、液体シンチレータに対して高エネルギーをもった宇宙線又は自然放射線が入射した場合や、液体シンチレータに対してガラスバイアルに含まれる放射性物質(例えばK-40)からの放射線が入射した場合に、メインパルスに続いて多数のアフターパルスが生じることが知られている。つまり、そのような場合、主事象に相当するコインシデンスパルスに続いて、後続事象に相当する多くのコインシデンスパルスが生じる。サンプル中に含有されている放射性物質の崩壊により生じるβ線の発生確率は一般にポアソン分布に従う。ポアソン分布に従う確率を超えて多くの後続事象が生じる場合、主事象それ自体が非計測対象つまりノイズである可能性が高い。
 特許文献1に開示された液体シンチレーションカウンタにおいては、同時計数事象(主事象)の発生後において生じるバーストを観測し、その観測結果に基づいて、主事象が計測対象事象であるかバックグラウンド事象であるかを識別している。この技術において上記バーストは2つの光電子増倍管からの2つの検出信号をオア処理(加算処理)することにより生成される。
米国特許4651006号明細書
 液体シンチレーションカウンタにおいて、測定精度を高めるためには、ノイズに相当するコインシデンスパルスを識別することが望まれる。そのための手法として上記特許文献1に記載された技術が挙げられるが、その技術においては観測対象信号(バースト)がオア回路からの出力であり、つまり多くの熱雑音を含んだ信号であることから、主事象が計測対象なのかバックグランドなのかを正確に判定することは困難であると思われる。
 本発明の目的は、液体シンチレーションカウンタにおいて、コインシデンスパルスが真のパルスであるか否かつまり計測対象であるか否かを正しく判定する、ことにある。
 本願において開示された液体シンチレーションカウンタは、液体シンチレータで生じた光を検出する複数の光検出器と、前記複数の光検出器から出力された複数の検出信号に基づいて生成された注目コインシデンスパルス(Specific Coincidence Pulse)を基準とし、当該注目コインシデンスパルスの後にパルス観測期間を設定する設定手段と、前記パルス観測期間において前記複数の検出信号に基づいて生成された後続コインシデンスパルス(Subsequent Coincidence Pulse)又は偶然コインシデンスパルス(Accidental Coincidence Pulse)を観測する観測手段と、前記観測手段の観測結果に基づいて前記注目コインシデンスパルスが真のパルスか否かを判定する判定手段と、を含む。
 上記構成によれば、設定手段により、注目コインシデンスパルスの後にパルス観測期間が設定され、観測手段により、パルス観測期間内において所定のコインシデンスパルス(望ましくは、後続コインシデンスパルス又は偶然コインシデンスパルス)が観測される。その観測結果は、先行事象としての注目コインシデンスパルスの性質を示すものである。そのような考え方の下で、観測手段の観測結果に基づいて、注目コインシデンスパルスについての真偽(つまり計測対象か否か)が判定される。例えば、パルス観測期間において多数の所定のコインシデンスパルスが観測された場合、注目コインシデンスパルスがサンプルからの放射線(対象放射線)に起因して生じたものではない可能性が高いため、注目コインシデンスパルスが真のパルスではないと判定される。逆に、パルス観測期間において少数の所定のコインシデンスパルスが観測された場合あるいはそれが1つも観測されなかった場合、注目コインシデンスパルスが対象放射線に起因して生じたものである可能性が高いため、注目コインシデンスパルスが真のパルスであると判定される。
 上記構成においては、パルス観測期間内において、複数の検出信号の同時計数処理により生じたパルスが観測されているので、パルス観測期間内において検出信号をそのまま観測する場合に比べて、熱雑音等の影響を受け難く、より正確な真偽判定を行える。
 一般に、上記注目コインシデンスパルスは、複数の検出信号の同時計数処理により生じたコインシデンスパルスの列の中において、主事象(先行事象)に相当するコインシデンスパルスである。上記の後続コインシデンスパルスは、そのようなコインシデンスパルスの列の中において、注目コインシデンスパルスに続くコインシデンスパルスであり、それはアフターパルスとも称される。上記の偶然コインシデンスパルスは、複数の検出信号の偶然同時計数処理(遅延同時計数処理)により生成されるコインシデンスパルスである。後続コインシデンスパルスの観測と偶然コインシデンスパルスの観測とを併用することも考えられる。あるいは、他の種類のコインシデンスパルスを観測するようにしてもよい。
 一般に、原子核崩壊による放射線発生頻度はポアソン分布に従う。つまり、放射線の発生はポアソン分布に従うランダム事象と言い得る。主事象としての同時計数事象の発生後に引き続き発生する同時計数事象がポアソン分布に従うランダム事象であると言えるようなものであれば、主事象がサンプルから出た放射線に起因して生じたものであると判定してよい。逆に、後続事象がポアソン分布に従うランダム事象であるとは言えないようなものであれば、主事象がサンプルから出た放射線に起因して生じたものではないと判定してよい。上記構成は、そのような考え方を背景とするものである。例えば、高エネルギー宇宙線が液体シンチレータに入射した場合、主事象に続いて多くの後続事象(アフターパルス)が生じる。上記構成によれば、多くの後続事象を観測したことに基づいて、それ以前に生じた主事象をデータ処理上、棄却することが可能である。多くの後続事象が生じる場合、偶然コインシデンスパルスも増えることになるから、偶然コインシデンスパルスを観測対象とすることも可能である。
 実施形態に係る液体シンチレーションカウンタおいて、前記観測手段は、前記パルス観測期間内において前記後続コインシデンスパルス又は前記偶然コインシデンスパルスを計数する計数手段を含み、前記判定手段は前記計数手段の計数値に基づいて前記注目コインシデンスパルスが真のパルスであるか否かを判定する。観測手法としては、後続事象の有無、後続事象の個数(計数値)、主事象と後続事象の時間的な間隔、等があげられる。その内で計数値は後続事象の発生率を示すものである。実施形態に係る構成では、計数値に基づいて主事象が本来の計測対象であるか否か、つまりサンプル放射線に起因する事象であるかノイズ(バックグラウンド)であるか、が判定される。
 実施形態に係る液体シンチレーションカウンタおいて、前記判定手段は、前記計数値が閾値以下である場合に前記注目コインシデンスパルスを真のパルスであると判定する。パルス観測期間及び閾値は適応的に設定され得る。
 実施形態に係る液体シンチレーションカウンタは、更に、前記複数の検出信号の内の少なくとも1つに基づいて前記注目コインシデンスパルスの発生時の波高値を示す波高値データを生成する変換手段と、前記波高値データに基づいてデータ処理を実行するデータ処理手段と、を含み、前記判定手段は、前記注目コインシデンスパルスが真のパルスでないと判定した場合、前記注目コインシデンスパルスに対応する波高値データが前記データ処理で採用されないようにするために棄却信号を出力する。この構成によれば、真のパルスに対応する波高値データとノイズに対応する波高値データとをデータ処理上、識別できる。棄却処理のために波高値データを一時的に保存し、棄却信号の有無に応じて、保存された波高値データの採否を決定してもよい。
 実施形態に係る液体シンチレーションカウンタは、更に、正味の計測時間を計測する計時手段を含み、前記計時手段は、前記棄却信号が生成された場合に、前記パルス観測期間を含む不検出期間が前記正味の観測時間に含まれないように当該不検出期間を控除する処理を実行する。この構成によれば正味の計測時間を正しく求めることが可能となる。不検出期間に、パルス観測期間の他、注目コインシデンスパルス時間長、及び、棄却パルス時間長を含めるようにしてもよい。棄却信号が生成されない場合には、正味の計測時間から変換手段(例えばアナログデジタル変換器)におけるデットタイムが控除されてもよい。判定完了を待って控除処理を実行する場合、控除する可能性がある時間情報を一時的に保存しておけばよい。
 実施形態に係る液体シンチレーションカウンタは、更に、前記複数の検出信号に基づいてコインシデンスパルスの列を生成するコインシデンスパルス生成手段を含み、前記注目コインシデンスパルスは、前記コインシデンスパルスの列において先行事象に相当するコインシデンスパルスであり、前記後続コインシデンスパルスは、前記コインシデンスパルスの列において前記注目コインシデンスパルスに続くコインシデンスパルスであり、前記観測手段は前記後続コインシデンスパルスを観測する。
 実施形態に係る液体シンチレーションカウンタは、更に、前記複数の検出信号に基づいてコインシデンスパルスの列を生成する第1のコインシデンスパルス生成手段と、前記複数の検出信号に含まれる第1検出信号及び第2検出信号の内で前記第2検出信号を遅延処理する遅延処理手段と、前記第1検出信号と前記遅延処理後の第2検出信号とに基づいてコインシデンスパルスを生成する第2のコインシデンスパルス生成手段と、を含み、前記注目コインシデンスパルスは、前記コインシデンスパルスの列において先行事象に相当するコインシデンスパルスであり、前記偶然コインシデンスパルスは、前記第2のコインシデンスパルス生成手段により生成されたコインシデンスパルスであり、前記観測手段は前記偶然コインシデンスパルスを観測する。
 実施形態に係る液体シンチレーション計測方法は、複数の放射線検出信号に対する同時計数処理により生成された注目コインシデンスパルスを基準とし、当該注目コインシデンスパルスの後にパルス観測期間を設定する工程と、前記パルス観測期間において、前記同時計数処理により生成された後続コインシデンスパルス又は偶然コインシデンスパルスを観測する工程と、前記観測の結果に基づいて、前記注目コインシデンスパルスが真のパルスか否かを判定する工程と、を含む。
本発明に係る液体シンチレーションカウンタの第1実施形態を示すブロック図である。 メインパルス及びアフターパルスを示す図である。 図1に示した演算器が有する複数の機能を示すブロック図である。 図1に示した構成の動作を示す図である。 本発明に係る液体シンチレーションカウンタの第2実施形態を示すブロック図である。 図5に示した構成の動作を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 図1には、液体シンチレーションカウンタの第1実施形態がブロック図として示されている。この液体シンチレーションカウンタは、液体サンプルに含有されている放射性物質の同定や定量等を行うための装置である。例えば、液体シンチレーションカウンタによって、サンプルごとに所定の放射性核種についての放射能が測定される。図1に示されていないが、液体シンチレーションカウンタは搬送テーブルを有し、搬送テーブル上において複数のラックが搬送される。各ラックは複数のバイアルを保持している。各ラックに保持された個々のバイアルが順次、測定対象となる。すなわち、測定対象となったバイアルがラックから測定場所へ移送され、そこで放射線が測定される。測定後のバイアルはラックへ戻される。以下においては、まず図1を用いて液体シンチレーションカウンタの構成について説明し、その後に図4等を用いてその構成の動作を説明する。
 図1には、測定場所である測定室10が示されている。測定室10には、図示の例において、2つの光電子増倍管14,16が配置されている。それらはそれぞれ光検出器である。他のタイプの光検出器を利用してもよい。各光電子増倍管14,16の受光面がバイアル12の側面に近接した状態で対向している。なお、3つ以上の光検出器を配置してもよい。
 バイアル12は容器であり、それは本体とキャップとからなる。バイアル12内には液体サンプルと液体シンチレータとが混合状態で収容されている。液体サンプルには放射性物質、特にβ線放出核種が含まれる。放射性物質から出たβ線により液体シンチレータが発光する。その光が2つの光電子増倍管14,16で検出される。この他、外来放射線やケミルミネッセンス(Chemiluminescence)等に起因して液体シンチレータが発光することもある。
 各光電子増倍管14,16は2つの電気信号を出力している。第1の電気信号は放射線エネルギーに対して線形性を有する信号であり、それはSUM_AMP18に与えられている。SUM_AMP18は加算増幅回路及び波形整形回路として機能するものである。第2の電気信号は線形性を有しない信号又は飽和した信号であり、それはAMP22,24に与えられている。それらは増幅回路及び波形整形回路として機能する。なお、図1に示された各ブロックは、電子回路、プロセッサ等のハードウエアを表している。
 AMP22,24は、信号増幅作用を有し、閾値を超える波高値が入力された場合に、出力信号AMP1 OUT,AMP2 OUTを出力する。出力信号AMP1 OUT,AMP2 OUTは矩形のパルス信号であり、その振幅はHレベル又はLレベルをとり、その時間幅は20ns程度である。それらを検出信号と称してもよい。それらがアンド回路26に入力される。
 アンド回路26はコインシデンスパルス生成手段として機能し、具体的には同時計数処理を行う回路である。アンド回路26の2つの入力端子に同時に2つのパルス信号が入力された場合に、論理積(AND)信号としてのコインシデンスパルスAND_OUTが出力される。コインシデンスパルスAND_OUTは、ADC(デジタルアナログ変換器)20及び演算器28に送られている。
 ADC20は変換手段として機能し、SUM_AMP18から出力されたアナログ信号SUM_AMP_OUTをデジタル信号に変換する回路である。具体的には、コインシデンスパルスAND_OUTが与えられたタイミングで、つまり同時計数タイミングで、入力されたアナログ信号SUM_AMP_OUTのピーク波高値を、デジタル信号としての波高値データに変換する。つまり、コインシデンスパルスAND_OUTは、変換開始信号又はトリガ信号として機能する。ADC20はピークホールド機能を有している。ADC20での変換処理に際しては、次の変換処理を受け付けられないデットタイムが生じる。図示の構成例では、デットタイムの時間長を示す信号TDが計時回路30へ送られている。計時回路30は、後述するように、正味の計測時間を演算する回路である。
 なお、本実施形態では、各光電子増倍管から出力される第1の電気信号及び第2の電気信号の両方を別々に利用したが、いずれか一方だけを利用するようにしてもよい。
 演算器28は、後に図3を用いて説明するように、設定手段、観測手段(計数手段)、判定手段、信号生成手段等として機能する。それは例えば論理回路又はプロセッサによって構成される。演算器28、計時回路30及び後述するMCA(マルチチャンネルアナライザ)38の全体が、単一の又は複数のプロセッサにより構成されてもよい。
 演算器28は、アンド回路26から出力された複数のコインシデンスパルスからなる列(AND_OUTを参照)の内で、主事象に相当するコインシデンスパルス(注目コインシデンスパルス)を特定し、それを基準として、その後にパルス観測期間を設定する。パルス観測期間は、主事象に続いて生じる後続事象を観測するための時間窓である。前回のパルス観測期間の終了後に最初に観測されるコインシデンスパルスが注目コインシデンスパルスとなる。各注目コインシデンスパルス後にパルス観測期間が設定される。そのような一連の処理を演算器28が繰り返し実行する。具体的には、演算器28は、注目コインシデンスパルスをトリガとし、そこから一定時間の遅延時間をおいた後に、パルス観測期間を設定する。通常、個々のコインシデンスパルスが例えば20nsの時間幅を有する場合、遅延時間として例えば20ns又はそれよりも長い時間が設定される。
 演算器28は、パルス観測期間において、コインシデンスパルス(第1実施形態では後続コインシデンスパルス)を計数し、計数値を求める。一般に、その計数値(正確には計数率)がポアソン分布に従うランダム確率よりも大きい場合には主事象がバックグラウンド事象である可能性が高くなる。演算器28は、計数値が閾値を超える場合、注目コインシデンスパルスが真のパルスではない(計測対象でない)と判定し、注目コインシデンスパルスに対応するAD変換結果をデータ処理上除外するために、棄却信号としてのREJECTパルスを生成する。一方、演算器28は、計数値が閾値以下であれば、注目コインシデンスパルスが真のパルスであると判断する。その場合、REJECTパルスは出力されない。REJECTパルスはMCA38及び計時回路30に出力されている。演算器28は、注目コインシデンスパルスからREJECTパルスまでを含む期間(パルス観測期間を含んだ処理期間)を示すBUSY信号を生成し、それをMCA38及び計時回路30へ出力している。
 なお、注目コインシデンスパルスがバックグラウンド事象である場合、BUSY期間(BUSY信号がHである期間)が不検出期間となる。一方、注目コインシデンスパルスが真のパルスである場合、BUSY期間内におけるADC20のデッドタイム積算値が不検出期間となる。BUSY期間においては次の判定処理は受け付けられない。
 本実施形態では、注目コインシデンスパルスが真のパルスではないと判断された場合、注目コインシデンスパルスに対応する波高値データ(及び、閾値を超える数の後続コインシデンスパルスに対応する波高値データ)がデータ処理上、一括して棄却される。一方、注目コインシデンスパルスが真のパルスであると判断された場合、注目コインシデンスパルスに対応する波高値データ(及び、閾値以下の後続コインシデンスパルスに対応する波高値データ)がデータ処理上、採用される。もっとも、具体的なデータ採否方法については用途や事情に応じて定めることが可能である。
 MCA38は、データ処理手段として機能する。具体的にはMCA38は、複数の波高値データに基づいて、ベータ線エネルギーごとの発生頻度を表すスペクトルを生成する回路である。もっとも、注目コインシデンスパルスがバックグラウンド事象の場合には、注目コインシデンスパルスに対応する波高値データは、データ処理上、除外される。このため、MCA38においては、BUSY期間内においては、あるいは、REJECT信号の有無が判断されるまでは、入力される1又は複数の波高値データがバッファ(バッファメモリ)42に一時的に格納される。REJECT信号が生じた場合、バッファ42内に格納された1又は複数の波高値データが棄却される。つまりデータ処理上、それらは除外される。その際、バッファ42はクリアされる。一方、REJECT信号が生じない場合、バッファ42に格納された1又は複数の波高値データがメモリ40に転送され、それらがデータ処理の対象となる。その場合もバッファ42がクリアされる。本実施形態においてデータ処理はスペクトル生成処理である。但し、放射能演算等の他の処理が実行されてもよい。なお、棄却された波高値データを別途保存しておいて、それをデータ検証、ノイズ解析等において利用してもよい。MCA38により生成されたスペクトル等が表示器44に表示される。
 計時回路30は正味の計測時間を演算する回路である。例えば、表示されたスペクトルや演算された放射能の信頼性を評価するために、あるいは、測定期間の妥当性を評価するために、正味の計測時間が計測される。そのために計時回路30はタイマとして機能するカウンタ34を有する。計時回路30は、演算器28での判定が完了するまで、つまりBUSY期間の間、カウンタ34の動作を一時的に停止させる。その代わりに、ADC20から得たデットタイム情報DTをバッファ36に一時的に格納しつつそれを集計する。つまり、バッファ36にはデッドタイム情報の累積値(集計値)が保持される。計時回路30は、BUSY期間の最後にREJECT信号が生じなかった場合、カウンタ動作停止後の経過時間から上記累積値を引いて得られる正味の検出時間分だけ、カウンタの値を増加させ、バッファ36をクリアする。その上で、カウンタ34の動作を再開させる。一方、計時回路30は、BUSY期間の最後にREJECT信号が生じた場合、カウンタ34の値を増加させることなく、カウンタ34の動作を再開させる。同時にバッファ36をクリアする。その場合、結果として、BUSY期間が不検出期間として正味の計測時間から控除されることになる。
 BUSY期間中もカウンタの動作を継続させ、REJECT信号が生じなかった場合にはその時点でのカウンタ34の値から上記のデットタイム累積値を減算し、REJECT信号が生じた場合にはその時点でのカウンタ34の値からBUSY期間に相当する時間値を減算するようにしてもよい。いずれにしても正味の計測時間が演算されるようにカウンタの動作を制御するのが望ましい。
 本実施形態においては、計時回路30からMCA38に対して、MCA38の計数動作の開始(start)及び停止(stop)等を制御する信号32が送られている。
 図2には、光電子増倍管から出力された電気信号の波形が例示されている。その波形は説明上のものに過ぎず、波形中の各部分が誇張して描かれている。横軸は時間軸であり、縦軸はこの例では負側振幅を示している。符号102は図1に示したAMP22,24での弁別閾値を示している。主事象又は先行事象としての主ピークに相当するメインパルス100aの後に、複数の後続事象としての複数のアフターパルス100b,100c,100dが生じている。メインパルス100a及びアフターパルス100b,100c,100dが2つの光電子増倍管の出力として同時に生じる場合、符号104,106,108,110で示すタイミングにおいて複数のコインシデンスパルスが生じる。この場合、先頭のコインシデンスパルスが注目コインシデンスパルスとなり、それを基準としてパルス観測期間が設定される。そのパルス観測期間において複数の後続コインシデンスパルス(符号106,108,110)が観測されることになる。
 図3は図1に示した演算器28の機能を示すブロック図である。期間設定器60は、コインシデンスパルス列(AND_OUT参照)を入力し、コインシデンスパルス列の中の注目コインシデンスパルスに基づいて、パルス観測期間を設定する。上述したように、注目コインシデンスパルスの検出時点からBUSY信号が出力される。BUSY信号が出力されている期間内においては、次のパルス観測期間の設定は行われない。計数器62は、パルス観測期間において、コインシデンスパルス(後続コインシデンスパルス)の個数を計数するものである。判定器64は、パルス観測期間内におけるコインシデンスパルスの計数値を閾値と比較し、閾値よりも計数値が大きい場合にはREJECT信号を出力する。計数値が閾値以下の場合にはREJECT信号は出力されない。その場合にREJECT信号とは別の信号を出力してもよい。判定器64は、上記のBUSY信号を出力する機能も備えている。符号66で示すように、外部から閾値を可変設定できるように構成するのが望ましい。また、パルス観測期間も状況に応じて可変設定できるように構成するのが望ましい。パルス観測方法として、個数の観測の他、パルス有無の観測、パルス間隔の観測、等が挙げられる。
 図4には図1に示した構成の動作例が示されている。(A)はAMP1 OUTを示しており、(B)はAMP2 OUTを示しており、(C)はAND_OUTを示している。(D)はパルス観測期間(判定期間)を示している。(E)はパルス観測期間でのコインシデンスパルスの計数値(カウント値)を示している。(F)はREJECTパルスを示しており、(G)はBUSY信号を示している。
 主事象が発生すると、出力パルスAMP1 OUT(112),AMP2 OUT(114)が生じ、それらの同時計数により、AND_OUTとしての注目コインシデンスパルス(116)が生じる。その立ち上がりから一定の遅延時間120をおいてパルス観測期間(判定期間)122が設定される。その時間幅がWとして示されている。パルス観測期間122において後続コインシデンスパルスは検出されておらず、計数値124は0となる。すなわち、パルス観測期間122においてAMP1 OUT(118)が生じているものの、それはAND_OUTに現れておらず、同時計数処理によりノイズとして除外されている。注目コインシデンスパルス116の立ち上がりからBUSY信号128が発生し、BUSY信号128は判定処理の完了まで継続的に1の値をとり続ける。BUSY信号が出力されている期間がBUSY期間である。符号126はREJECTパルスの不発生を示している。
 一方、注目コインシデンスパルス130の発生によりパルス観測期間136が設定されており、そのパルス観測期間136内においては後続コインシデンスパルス132,134が生じている。その場合、計数値137は2となる。閾値が1であれば、計数値137がその閾値を超えることになるので、REJECTパルス138が生じる。このREJECTパルス138が生じると、注目コインシデンスパルス130が生じたタイミングで取り込まれた波高値データ、及び、後続コインシデンスパルス132,134が生じたタイミングで取り込まれた波高値データがデータ処理上、棄却されることになる。
 以上のように、主事象に続いて比較的に多くの後続事象が観測される場合、主事象それ自体がバックグラウンド事象であるとみなし、バックグラウンド事象に関連する波高値データ群が一括して棄却処理される。逆に言えば、主事象に続いて比較的に少ない後続事象が観測される場合(あるいは後続事象が観測されない場合)、主事象(及びそれに続く後続事象)が観測対象事象であるとみなして、主事象に対応する波高値データ(及び後続事象に対応する波高値データ)をデータ処理において採用するものである。これにより液体シンチレーションカウンタによる計測結果の信頼性を高められる。
 特に、本実施形態では、同時計数処理前の信号ではなく、同時計数処理後の信号を観測対象としたので、熱雑音等に影響されない正確な計測を実現できる。本実施形態では、更に、上記のような動作を前提して、計時回路が動作を行っており、判定結果に応じて正味の計測時間を正しく演算できる。
 上記の実施形態において、注目コインシデンスパルスの立ち上がりからパルス観測期間の始期までの遅延時間を、同時計数処理における分解能に相当する時間よりも大きく設定するのが望ましい。分解能に相当する時間よりも遅延時間を大きく設定しないと、主事象自体を後続事象(多重イベント)として計数してしまうからである。時間的な分解能は、上述したAMP1およびAMP2の動作によって定まり、一般的な液体シンチレーションカウンタの場合において、それは例えば20nsである。
 測定対象核種の崩壊形式から、主事象後に短時間で次の後続事象が発生することが既知であれば、次の後続事象が計数されないように、つまり、次の後続事象が無視されるように、遅延時間を設定してもよい。また、シンチレータの組成から、その発光特性に多重性が認められることが既知である場合、その多重性の影響が無視又は軽減されるように遅延時間を設定してもよい。その場合には閾値を操作してもよい。
 パルス観測期間の大きさが短すぎると、時間的に長く続く多重イベントの全体を数え切れず、逆にそれが長すぎると次のランダム事象を数える確率が高くなり、いずれの場合も誤識別のリスクが高くなる。そのような両面を考慮してパルス観測期間を設定するのが望ましい。測定対象のカウントレートにも依存するが、例えば、パルス観測期間が2msの場合、カウントレートが50cpmであれば、パルス観測期間中に次のランダム事象が発生する確率は0.167%となる。同じ条件の下、カウントレートが500cpmであれば、パルス観測期間中に次のランダム事象が発生する確率は1.67%となる。状況や目的に応じてパルス観測期間の長さを定めるのが望ましい。
 図5には、第2実施形態に係る液体シンチレーションカウンタの要部の構成が示されている。図5において、図1に示した構成と同様の構成には同一符号を付し、その説明を省略する。第2実施形態は、基本的には、第1実施形態と同様の構成を有しているが、遅延同時計数回路が付加されている点が第1実施形態と異なっている。
 具体的には、図5に示す第2実施形態において、AMP22の出力パルスAMP1 OUTがアンド回路48の一方の入力端子に入力されている。AMP24の出力パルスAMP2 OUTは遅延回路46で遅延処理されており、遅延処理後の出力パルスAMP2 OUT Delayedがアンド回路48の他方の入力端子に入力されている。アンド回路48は、遅延処理されていない出力パルスAMP1 OUTと遅延処理された出力パルスAMP2 OUT Delayedとが同時に入力された場合に、偶然コインシデンスパルスDelayed-COINを出力する。偶然コインシデンスパルスは遅延コインシデンスパルスとも称される。偶然コインシデンスパルスは演算器28Aに送られている。演算器28Aは、第1実施形態と同様に、注目コインシデンスパルスを基準とし、その後に所定の遅延時間をおいてパルス観測期間を設定する。第2実施形態では、そのパルス観測期間において、偶然コインシデンスパルスが計数される。その計数値に基づいて注目コインシデンスパルスが真のパルスであるか否かが判定される。
 図6には、図5に示した第2実施形態の動作が示されている。(A)はAMP1 OUTを示しており、(B)はAMP2 OUTを示しており、(C)はAND_OUTを示している。(D)は遅延処理後の出力パルスAMP2 OUT Delayedを示している。(E)は偶然コインシデンスパルスDelayed-COINを示している。(F)はパルス観測期間(判定期間)を示している。(G)はパルス観測期間でのコインシデンスパルスの計数値(カウント値)を示している。(H)はREJECTパルスを示しており、(I)はBUSY信号を示している。
 主事象が発生すると、出力パルスAMP1 OUT(200)及び出力パルスAMP2 OUT(202)が生じ、それらの同時計数によりAND_OUTとしての注目コインシデンスパルス(204)が生じる。一方、出力パルスAMP2 OUT(202)を遅延処理したものが遅延処理後の出力パルスAMP2 OUT Delayed(206)である。それが生成されたタイミングでは偶然コインシデンスパルスは生成されていない((E)を参照)。符号208は遅延処理での遅延時間dTを示している。
 注目コインシデンスパルス(204)の立ち上がりから一定の遅延時間212をおいてパルス観測期間(判定期間)210が設定される。それは所定の時間幅を有する。パルス観測期間210において、偶然コインシデンスパルスは検出されておらず(発生しておらず)、計数値214は0となる。注目コインシデンスパルス204の立ち上がりからBUSY信号218が発生し、BUSY信号218は判定処理の完了まで継続的に1の値をとり続ける。符号216はREJECTパルスの不発生を示している。
 一方、次の主事象が発生すると、出力パルスAMP1 OUT(220)及び出力パルスAMP2 OUT(222)が生じ、それらに基づいて注目コインシデンスパルス224が生じる。遅延処理後の出力パルスAMP2 OUT Delayed(226)が生じたタイミングでは、AMP1 OUTが生じておらず、つまり、そのタイミングでは偶然コインシデンスパルスは生成されていない。出力パルスAMP1 OUT(227)と出力パルスAMP2 OUT(228)に基づく遅延処理後の出力パルスAMP2 OUT Delayed(230)とが同時に生じており、それらに基づいて偶然コインシデンスパルス232が生じている。同じく、出力パルスAMP1 OUT(236)と出力パルスAMP2 OUT(238)に基づく遅延処理後の出力パルスAMP2 OUT Delayed(240)とが同時に生じており、それらに基づいて偶然コインシデンスパルス242が生じている。
 注目コインシデンスパルス224を基準として、パルス観測期間234が設定されており、そのパルス観測期間234内においては偶然コインシデンスパルス232,242が検出されている。その場合、計数値244は2となる。閾値が1であれば、計数値244が閾値を超えることになるので、REJECTパルス246が生じる。このREJECTパルス246が生じると、注目コインシデンスパルス224に対応する波高値データ(もしそれがあれば後続コインシデンスパルスに対応する波高値データ)がデータ処理上、棄却されることになる。なお、REJECTパルスが生じない場合、パルス観測期間内で生じる後続コインシデンスパルスに対応する波高値データがデータ処理において採用され得る。
 測定対象核種の崩壊形式から主事象後に次の事象が短時間で発生することが既知であり、それを多重イベントとして数える必要がない場合は、遅延時間dTの大きさを操作すればよい。測定しているシンチレーション光の特性として多重性があることが既知である場合も、その多重性が無視されるように遅延時間dTを設定すればよい。遅延時間dTとしては、一般に、パルス分解能に相当する時間から数百nsまでの範囲内で設定するのが望ましい。注目パルスからパルス観察期間までの遅延時間や、計数値と比較される閾値については、第1実施形態同様に、計測の目的や状況に応じて適宜設定すればよい。第2実施形態では基本的に遅延時間dTを必ず設定する必要があるが、特異的な多重現象を避ける必要がない場合、遅延時間は必要に応じて設ければよい。つまり、それがゼロであってもよい。
 この第2実施形態によれば、第1実施形態と同様に、主事象に続く後続事象の頻度に基づいて、主事象が測定対象であるのか否かを判定することができるから、つまり測定対象ではない波高値データがデータ処理上において棄却できるから、液体シンチレーションカウンタにおける計測結果の信頼性を高められる。第1実施形態による安定処理と第2実施形態による判定処理を組み合わせてもよい。

Claims (8)

  1.  液体シンチレータで生じた光を検出する複数の光検出器と、
     前記複数の光検出器から出力された複数の検出信号に基づいて生成された注目コインシデンスパルスを基準とし、当該注目コインシデンスパルスの後にパルス観測期間を設定する設定手段と、
     前記パルス観測期間において前記複数の検出信号に基づいて生成された後続コインシデンスパルス又は偶然コインシデンスパルスを観測する観測手段と、
     前記観測手段の観測結果に基づいて前記注目コインシデンスパルスが真のパルスか否かを判定する判定手段と、
     を含むことを特徴とする液体シンチレーションカウンタ。
  2.  請求項1記載の液体シンチレーションカウンタにおいて、
     前記観測手段は、前記パルス観測期間内において前記後続コインシデンスパルス又は前記偶然コインシデンスパルスを計数する計数手段を含み、
     前記判定手段は前記計数手段の計数値に基づいて前記注目コインシデンスパルスが真のパルスか否か判定する、
     ことを特徴とする液体シンチレーションカウンタ。
  3.  請求項2記載の液体シンチレーションカウンタにおいて、
     前記判定手段は、前記計数値が閾値以下である場合に前記注目コインシデンスパルスを真のパルスであると判定する、
     ことを特徴とする液体シンチレーションカウンタ。
  4.  請求項2記載の液体シンチレーションカウンタにおいて、
     前記複数の検出信号の内の少なくとも1つに基づいて前記注目コインシデンスパルスの発生時の波高値を示す波高値データを生成する変換手段と、
     前記波高値データに基づいてデータ処理を実行するデータ処理手段と、
     を含み、
     前記判定手段は、前記注目コインシデンスパルスが真のパルスでないと判定した場合に、前記注目コインシデンスパルスに対応する波高値データが前記データ処理で採用されないようにするための棄却信号を出力する、
     ことを特徴とする液体シンチレーションカウンタ。
  5.  請求項4記載の液体シンチレーションカウンタにおいて、
     正味の計測時間を計測する計時手段を含み、
     前記計時手段は、前記棄却信号が生成された場合に、前記パルス観測期間を含む不検出期間が前記正味の観測時間に含まれないように当該不検出期間を控除する処理を実行する、
     ことを特徴とする液体シンチレーションカウンタ。
  6.  請求項1記載の液体シンチレーションカウンタにおいて、
     前記複数の検出信号に基づいてコインシデンスパルスの列を生成するコインシデンスパルス生成手段を含み、
     前記注目コインシデンスパルスは、前記コインシデンスパルスの列において先行事象に相当するコインシデンスパルスであり、
     前記後続コインシデンスパルスは、前記コインシデンスパルスの列において前記注目コインシデンスパルスに続くコインシデンスパルスであり、
     前記観測手段は前記後続コインシデンスパルスを観測する、
     ことを特徴とする液体シンチレーションカウンタ。
  7.  請求項1記載の液体シンチレーションカウンタにおいて、
     前記複数の検出信号に基づいてコインシデンスパルスの列を生成する第1のコインシデンスパルス生成手段と、
     前記複数の検出信号に含まれる第1検出信号及び第2検出信号の内で前記第2検出信号を遅延処理する遅延処理手段と、
     前記第1検出信号と前記遅延処理後の第2検出信号とに基づいてコインシデンスパルスを生成する第2のコインシデンスパルス生成手段と、
     を含み、
     前記注目コインシデンスパルスは、前記コインシデンスパルスの列において先行事象に相当するコインシデンスパルスであり、
     前記偶然コインシデンスパルスは、前記第2のコインシデンスパルス生成手段により生成されたコインシデンスパルスであり、
     前記観測手段は前記偶然コインシデンスパルスを観測する、
     ことを特徴とする液体シンチレーションカウンタ。
  8.  複数の放射線検出信号に対する同時計数処理により生成された注目コインシデンスパルスを基準とし、当該注目コインシデンスパルスの後にパルス観測期間を設定する工程と、
     前記パルス観測期間において、前記同時計数処理により生成された後続コインシデンスパルス又は偶然コインシデンスパルスを観測する工程と、
     前記観測の結果に基づいて、前記注目コインシデンスパルスが真のパルスか否かを判定する工程と、
     を含むことを特徴とする、液体シンチレーション計測方法。
PCT/JP2017/033752 2016-09-26 2017-09-19 液体シンチレーションカウンタ及び液体シンチレーション計測方法 WO2018056266A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016187259A JP6316364B2 (ja) 2016-09-26 2016-09-26 液体シンチレーションカウンタ
JP2016-187259 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018056266A1 true WO2018056266A1 (ja) 2018-03-29

Family

ID=61690393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033752 WO2018056266A1 (ja) 2016-09-26 2017-09-19 液体シンチレーションカウンタ及び液体シンチレーション計測方法

Country Status (2)

Country Link
JP (1) JP6316364B2 (ja)
WO (1) WO2018056266A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023314B1 (ja) * 1968-11-08 1975-08-06
JPS54133887U (ja) * 1979-01-30 1979-09-17
JPS6330778A (ja) * 1986-07-17 1988-02-09 パッカード インスツルメント カンパニー インコーポレイテッド 液体シンチレ−ション測定装置
JPH0210288A (ja) * 1985-04-08 1990-01-16 Packard Instr Co Inc 液体シンチレーションの測定装置
JPH11271455A (ja) * 1998-03-25 1999-10-08 Aloka Co Ltd 放射線測定装置
JP2001042046A (ja) * 1999-08-04 2001-02-16 Tsubame Kawada 光電子増倍管を用いた計測装置及びアフターパルス低減方法
JP2009281739A (ja) * 2008-05-19 2009-12-03 Aloka Co Ltd 液体シンチレーションカウンタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023314B1 (ja) * 1968-11-08 1975-08-06
JPS54133887U (ja) * 1979-01-30 1979-09-17
JPH0210288A (ja) * 1985-04-08 1990-01-16 Packard Instr Co Inc 液体シンチレーションの測定装置
JPS6330778A (ja) * 1986-07-17 1988-02-09 パッカード インスツルメント カンパニー インコーポレイテッド 液体シンチレ−ション測定装置
JPH11271455A (ja) * 1998-03-25 1999-10-08 Aloka Co Ltd 放射線測定装置
JP2001042046A (ja) * 1999-08-04 2001-02-16 Tsubame Kawada 光電子増倍管を用いた計測装置及びアフターパルス低減方法
JP2009281739A (ja) * 2008-05-19 2009-12-03 Aloka Co Ltd 液体シンチレーションカウンタ

Also Published As

Publication number Publication date
JP6316364B2 (ja) 2018-04-25
JP2018054331A (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
US10852183B2 (en) Optical pulse detection device, optical pulse detection method, radiation counter device, and biological testing device
JP5027124B2 (ja) パルス波形分析による単一トランスデューサ内同時発生放射線の検出のための方法及び装置
US8890085B2 (en) Method and apparatus for analog pulse pile-up rejection
EP3361288A1 (en) Method and system for real-time processing of pulse pile-up event
JP2002350545A (ja) エネルギー測定方法及び測定装置
JP2016513788A (ja) 検出された放射量子のタイムスタンピング
US8969814B2 (en) System and method of determining timing triggers for detecting gamma events for nuclear imaging
CN112997102B (zh) 辐射检测系统和方法
US9945962B2 (en) Signal processor and radiation detection device
US8766206B2 (en) Neutron detection based on energy spectrum characteristics
CN103607205B (zh) 一种信号处理方法、装置及设备
CN106842277B (zh) 一种堆积事件处理方法及装置
US20120166120A1 (en) Method Capable Of Discriminating Between A Gamma Component And A Neutron Component In An Electronic Signal
JP2013061206A (ja) 放射線核種分析装置及びその偶発同時計数抑制方法
EP3264138A1 (en) Labr3 scintillation detector and specific event removal method
JP6316364B2 (ja) 液体シンチレーションカウンタ
JP4928502B2 (ja) 液体シンチレーションカウンタ
JP2017044518A (ja) 信号処理装置及び放射線測定装置
CN106821409B (zh) 堆积事件处理方法及装置
CN114252901A (zh) 死时间校正方法和系统
JP6294929B1 (ja) 放射線測定装置
JP2004279184A (ja) 放射線検出方法および装置
CN110389141B (zh) 位置读出设备、方法及装置
CN106405609A (zh) 一种多粒子事件的捕获方法与装置
JP6499850B2 (ja) 放射線計測装置、放射線計測における偶発同時計数成分算定方法、及び放射線計測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853038

Country of ref document: EP

Kind code of ref document: A1