WO2018056208A1 - 光波長測定装置 - Google Patents
光波長測定装置 Download PDFInfo
- Publication number
- WO2018056208A1 WO2018056208A1 PCT/JP2017/033445 JP2017033445W WO2018056208A1 WO 2018056208 A1 WO2018056208 A1 WO 2018056208A1 JP 2017033445 W JP2017033445 W JP 2017033445W WO 2018056208 A1 WO2018056208 A1 WO 2018056208A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wavelength
- output
- light
- optical
- tunable filter
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 67
- 238000001514 detection method Methods 0.000 claims abstract description 21
- 238000004364 calculation method Methods 0.000 claims abstract description 17
- 230000003287 optical effect Effects 0.000 claims description 146
- 230000008859 change Effects 0.000 claims description 67
- 239000000284 extract Substances 0.000 claims description 3
- 238000000926 separation method Methods 0.000 description 28
- 238000001228 spectrum Methods 0.000 description 20
- 230000000694 effects Effects 0.000 description 14
- 239000013307 optical fiber Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J9/00—Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
Definitions
- the present invention relates to an optical wavelength measuring device.
- An optical wavelength change sensor having a fiber Bragg grating (FBG) element that outputs a wavelength corresponding to a physical quantity, and an optical wavelength measurement device using other sensors are known.
- FBG fiber Bragg grating
- an optical wavelength measurement device there is an optical sensor measurement device that acquires a reflection spectrum of a plurality of FBG sensors using a wavelength variable light source and measures a peak wavelength value in the spectrum (Patent Document 1).
- the variable wavelength light source sweeps the wavelength of the output light in synchronization with the control clock.
- the wavelength tunable light source sweeps light having a wavelength of ⁇ s to ⁇ e and reaches the reflection wavelength of each FBG sensor, the reflected light passes through a circulator and is converted into a voltage by a photoelectric conversion circuit. By measuring which wavelength the wavelength tunable light source outputs, the peak of the voltage waveform is obtained, and the wavelength of the peak can be obtained.
- an acoustooptic wavelength tunable filter to which a light source having an FBG, reference light output from the light source and measured light output from the sensor are input, and output light output from the acoustooptic wavelength filter are provided.
- an optical spectrum analyzer that includes a light receiver for receiving light, and that corrects the wavelength of the selected light obtained from the light to be measured by an arithmetic unit based on the wavelength and excitation frequency of the selected light when the reference light is incident (patent) Reference 2).
- a waveguide type acoustooptic wavelength tunable filter to which light to be measured is input a heating adjustment heater for heating and keeping the waveguide type acoustooptic wavelength tunable filter, and a waveguide acoustooptic wavelength tunable filter
- a light receiver that receives output light that is output
- an optical spectrum analyzer that calculates an optical spectrum of measured light based on an output signal from the light receiver
- JP 2010-151601 A International Publication No. 2007/083609 International Publication No. 2008/152879
- Patent Document 1 since a plurality of threshold values are set, the structure of the apparatus is complicated and expensive. Furthermore, the setting itself becomes complicated and inconvenient.
- the reference light itself does not have temperature characteristics. Since the reference light is FBG, it is necessary to athermalize the temperature control function for keeping the FBG at a constant temperature and the FBG itself, but there is no disclosure of means for achieving it.
- a Peltier element or a resistance heater is used as a heating adjustment heater for heating and keeping the waveguide type acoustooptic wavelength tunable filter. Expensive means are required.
- An object of the present invention is to provide an optical wavelength measuring apparatus having a simple structure, high stability with respect to temperature changes, and capable of performing a wide range of measurement with high accuracy.
- An optical wavelength measuring device of the present invention includes an acoustooptic wavelength tunable filter that selectively extracts a predetermined wavelength from input light, a high frequency voltage generation circuit that excites the acoustooptic wavelength tunable filter by adding a high frequency signal, and an arbitrary reference
- a reference wavelength generator that outputs wavelength light
- an optical wavelength change sensor that outputs light of a wavelength according to a physical quantity installed on the object to be measured, and the output light output from the acoustooptic wavelength tunable filter is the reference wavelength.
- a filter temperature detector for detecting the temperature of the variable filter, and a control for controlling a frequency signal output from the high frequency voltage generation circuit to the acousto-optic wavelength tunable filter based on a temperature signal output from the filter temperature detector And a section.
- a predetermined wavelength is selectively extracted from the input light by an acousto-optic wavelength tunable filter called AOTF.
- the selectively extracted output light is input to the reference wavelength generator and the optical wavelength change sensor by the input unit.
- the optical wavelength change type sensor light having a wavelength corresponding to a physical quantity is output, and this output light is sent to a measuring light receiver by an input unit.
- the output light output from the reference wavelength generator is sent to the measuring light receiver.
- the signal output from the measuring light receiver is sent to the arithmetic circuit, and the arithmetic circuit calculates the wavelength according to the physical quantity of the optical wavelength sensor.
- the filter temperature detection unit and the control unit are provided, the temperature of the acousto-optic wavelength tunable filter is detected by the filter temperature detection unit, and the control unit has a high frequency based on the temperature signal from the filter temperature detection unit.
- the frequency signal output to the acousto-optic tunable filter is controlled by the voltage generation circuit.
- the wavelength range of the output light sent from the acousto-optic wavelength tunable filter to the reference wavelength generator and the optical wavelength change type sensor becomes the wavelength range of the output light whose temperature is corrected. Therefore, output light having a specific wavelength can be output from the acoustooptic wavelength tunable filter without being affected by temperature change, and an optical wavelength measuring device having high stability against temperature change can be provided.
- a generator temperature detector for detecting the temperature of the reference wavelength generator is provided, and the arithmetic circuit is output from the reference wavelength generator based on a temperature signal output from the generator temperature detector.
- a configuration having a wavelength calculation unit for calculating the wavelength of output light is preferable. In this configuration, since the temperature detector for the generator is provided in the reference wavelength generator, even when a reference wavelength generator that is affected by a temperature change is used, the reference wavelength generator is detected using the detected temperature signal of the reference wavelength generator. It is possible to improve the measurement accuracy by calculating the wavelength of the output light output from the wavelength calculating unit.
- an optical amplifier disposed on a light input side or a light output side of the acoustooptic wavelength tunable filter, and output light output from one of the acoustooptic wavelength tunable filter and the optical amplifier is changed to the acoustooptic wavelength tunable.
- a configuration including a filter and a feedback unit that feeds back to the other of the optical amplifiers is preferable. With this configuration, it is possible to easily increase the intensity of light input to the reference wavelength generator and the optical wavelength change sensor and the wavelength range of the sweep.
- the acoustooptic wavelength tunable filter and the filter temperature detecting unit are disposed in the same casing.
- the acousto-optic wavelength tunable filter and the filter temperature detecting unit disposed in the same casing are in an approximate temperature environment, the temperature of the acousto-optic wavelength tunable filter is correctly detected by the filter temperature detecting unit. As a result, the measurement accuracy can be improved.
- the acoustooptic wavelength tunable filter and the reference wavelength generator are arranged in the same casing.
- the filter temperature detection unit can also serve as the generator temperature detection unit. Reduction can be achieved.
- the measuring light receiver is disposed in the same casing as the acoustooptic wavelength tunable filter and the reference wavelength generator.
- the measuring light receiver is disposed in the same casing together with the acousto-optic tunable filter and the reference wavelength generator, so that an optical cable for connecting these members is not necessary, and the cost can be reduced.
- the input unit inputs the output light output from the acoustooptic wavelength tunable filter to the reference wavelength generator, and the output light output from the acoustooptic wavelength tunable filter A second input unit for inputting to the optical wavelength variation sensor, wherein the measurement light receiver includes a first optical receiver that receives the output light output from the reference wavelength generator, and the optical wavelength variation type A reference light receiver having a second light receiver for receiving the output light output from the sensor via the second input unit, and further receiving the output light output from the acoustooptic wavelength tunable filter A separation unit that separates output light output from the acoustooptic wavelength tunable filter into the second input unit and the reference light receiver, and an output value of a signal output from the reference light receiver
- the first receiver and the second receiver A divider for dividing an output value of the signal output from at least one of the vessels, configurations with are preferred.
- the output light output from the acoustooptic wavelength tunable filter is sent to the reference wavelength generator by the first input unit, and the reference wavelength light is sent from the reference wavelength generator to the first light receiver.
- the output light output from the acousto-optic wavelength tunable filter is separated into the second input unit and the reference light receiver by the separation unit.
- the output light sent to the second input unit is sent to the optical wavelength change type sensor, and the reflected light reflected by the optical wavelength change type sensor is sent as measurement light to the second light receiver via the second input unit.
- the output light sent from the separation unit is sent to the reference light receiver as reference light.
- An output signal is sent from the first light receiver, the second light receiver, and the reference light receiver to the divider, and the divider outputs the reference light output value and the reference light output value. Division is performed.
- the reference wavelength generator and the optical wavelength change type depend on the type and individual difference of the light source that inputs the input light to the acousto-optic wavelength change filter, as well as the type and individual difference of the acousto-optic wavelength tunable filter itself, temperature change, change over time, etc.
- the structure of the optical wavelength measuring device can be simplified. Furthermore, because the measuring light receiver is divided into a first light receiver and a second light receiver, the reference light and the output light output from the optical wavelength change type sensor are set to the same optical wavelength band. Therefore, a wide range of measurements can be accurately performed with a simple structure.
- the graph which shows the relationship between time and the received light intensity output from a light-receiving part.
- the graph which shows the relationship between the wavelength of the signal output from the light receiver for reference light, and a voltage.
- the graph which shows the relationship between the wavelength of the signal output from the light receiver for measurement light, and a voltage.
- the graph which shows the relationship between the wavelength of the signal output from a divider, and a voltage.
- the graph which shows the relationship between the wavelength of the output light output from a reference
- FIG. 1 shows a schematic configuration of the optical wavelength measuring device 1.
- an optical wavelength measuring device 1 includes an optical module 10, an optical wavelength change sensor 20, a light receiving unit 3A, a control unit 40, a high-frequency voltage generation circuit 50, and a light receiving unit 3A connected to the optical module 10, respectively.
- the light receiving unit 3A includes a measuring light receiver 30 and a reference light receiver 33.
- the light source 80 is composed of a broadband light source.
- the optical module 10 includes an acoustooptic wavelength tunable filter 12, a reference wavelength generator 13, an input unit 140, and a separation unit 151 that are provided in the casing 11.
- the input unit 140 includes a beam splitter or a circulator.
- adjacent members are connected by an optical fiber.
- the separation unit 151 and the reference light receiver 33 and the input unit 140 and the measurement light receiver 30 are connected by optical fibers or connected via a space, respectively.
- the acoustooptic wavelength tunable filter 12 is an element that selectively extracts a predetermined wavelength from input light, and is referred to as an AOTF (Acoustro Optical Tunable Filter).
- the acoustooptic wavelength tunable filter 12 is a waveguide filter having an IDT 120 that receives input light from the light source 80 and a high-frequency signal from the high-frequency voltage generation circuit 50.
- IDT 120 is an Inter Digital Transducer (comb electrode).
- the reference wavelength generator 13 includes elements such as an etalon, a gas cell (Hydrogen CiaNyde; HCN), a fiber Bragg grating (FBG), and a dielectric multilayer filter.
- the reference wavelength generator 13 outputs the output light output from the acousto-optic wavelength tunable filter 12 to the optical wavelength change type sensor 20, and the input unit 140 uses the output light from the optical wavelength change type sensor 20 as an arbitrary reference wavelength light. Send to.
- the input unit 140 outputs the output light (measurement light) corresponding to the physical quantity of the optical wavelength change sensor 20 from the optical wavelength change sensor 20 and the reference wavelength light output from the reference wavelength generator 13 to the measurement light receiver 30.
- the separation unit 151 is disposed between the acoustooptic wavelength tunable filter 12 and the input unit 140, and outputs output light output from the acoustooptic wavelength tunable filter 12 to the input unit 140 and reference light. The light is separated into reference light traveling toward the light receiver 33.
- the optical wavelength change sensor 20 is composed of a single or a plurality of sensors in an optical fiber, and is installed in a measurement object (not shown).
- the sensor includes a derivative multilayer filter type, an FBG type, and a Fabry-Perot interference type.
- the optical wavelength change type sensor 20 inputs the output light of the acousto-optic wavelength tunable filter 12 via the input unit 140 and emits reflected light toward the input unit 140.
- the reflected light output from the optical wavelength change sensor 20 corresponds to the change in the physical quantity of the measurement object on which the optical wavelength change sensor 20 is installed.
- the arithmetic circuit 60 receives a signal output from each of the measuring light receiver 30 and the reference light receiver 33, and receives the output signal from the divider 600. And a wavelength calculation unit 63 for calculating.
- FIG. 2 shows the relationship between time and the received light intensity output from the light receiving unit 3A.
- the received light intensity of the reference wavelength light output from the measuring light receiver 30 peaks at wavelengths ⁇ r1 , ⁇ r2 , ⁇ r3 , ⁇ r4 , and ⁇ r5 .
- the received light intensity of the measurement light output from the measurement light receiver 30 has a peak at wavelengths ⁇ f1 and ⁇ f2 .
- the time at ⁇ f1 is t f1
- the time at ⁇ f2 is t f2 .
- the wavelength calculation unit 63 obtains the wavelength ⁇ f1 and the wavelength ⁇ f2 of the optical wavelength change sensor 20 by the following calculation formula.
- the wavelength calculated by the wavelength calculation unit 63 is output to the output unit 70.
- the wavelength calculation method is obtained from the relative time difference between ⁇ rn and ⁇ fn, and is not limited to the method using the above-described calculation formula.
- the output unit 70 may be a display unit that displays the wavelength value calculated by the wavelength calculation unit 63, or may be a memory such as a Lan, a hard disk (HD), or an SD card.
- a measuring light receiver 30 and a reference light receiver 33 each have an amplifier, and constitute a photoelectric conversion circuit.
- the output light output from the acoustooptic wavelength tunable filter 12 is branched into two by the separation unit 151.
- One of the output lights branched into two by the separation unit 151 is sent to the optical wavelength change sensor 20 via the input unit 140.
- the output from the optical wavelength change type sensor 20, that is, the reflected light ( ⁇ 1 , ⁇ 2 ,... ⁇ n ) is received by the measurement light receiver 30 as measurement light.
- the measuring light is converted into a spectrum waveform signal by the measuring light receiver 30. This spectrum is shown in FIG. 3B. It can be seen that the spectrum waveform shown in FIG. 3B has a mountain shape with a high voltage in the vicinity of the wavelength of 1545 nm.
- the other of the output lights branched in two by the separation unit 151 is received by the reference light receiver 33 as reference light.
- the reference light is converted into a spectrum waveform signal by the reference light receiver 33.
- This spectrum is shown in FIG. 3A.
- the spectral shape of the output light output from the acousto-optic wavelength tunable filter 12 and changes with time are shown.
- Th indicates a threshold value.
- the threshold value Th is 0.6V.
- the signal having the spectrum waveform shown in FIG. 3B is obtained by multiplying the reflection spectrum of the optical wavelength change type sensor 20 by the spectrum of the acoustooptic wavelength tunable filter 12.
- Signals output from the measurement light receiver 30 and the reference light receiver 33 are sent to the divider 600.
- the divider 600 divides the output value of the signal output from the measurement light receiver 30 by the output value of the signal output from the reference light receiver 33. As shown in FIG. 3C, it can be seen that the spectral waveform signal after the division is less influenced by the spectrum of the acousto-optic tunable filter 12.
- a high-frequency voltage generation circuit 50 excites a high-frequency signal to the acousto-optic wavelength tunable filter 12 and amplifies a high-frequency signal generation element 51 and a high-frequency signal output from the high-frequency signal generation element 51. And an amplifier 52 for sending to the IDT 120.
- the high-frequency signal generating element 51 includes a voltage controlled oscillator (VCO) and a digital IC (Direct Digital Synthesizer) that generates a waveform using a DA converter.
- VCO voltage controlled oscillator
- digital IC Direct Digital Synthesizer
- the casing 11 is provided with a filter temperature detector 91 that detects the temperature of the acoustooptic wavelength tunable filter 12.
- the filter temperature detection unit 91 is configured by an element that detects a temperature, such as a thermocouple, a thermistor, or a platinum resistance thermometer.
- the temperature signal of the acousto-optic wavelength tunable filter 12 detected by the filter temperature detection unit 91 is sent to the control unit 40, and the high-frequency signal generating element 51 is controlled by the control unit 40.
- FIG. 4 shows the relationship between the sweep frequency input to the acoustooptic wavelength tunable filter 12 from the high frequency voltage generation circuit 50 and the temperature.
- the sweep frequency region input from the high-frequency voltage generation circuit 50 to the acoustooptic wavelength tunable filter 12 is indicated by hatching.
- the sweep start position is indicated by fa, and the end of sweep is indicated by fb.
- the sweep start position fa is expressed by the following expression that expresses the temperature t as a variable.
- fa fr + ⁇ (t ⁇ tr)
- ⁇ is a frequency temperature coefficient, which is a specific value of the acoustooptic wavelength tunable filter 12, and is usually 0.1 MHz / ° C.
- tr is a reference temperature (for example, 25 ° C.)
- fr is a sweep start frequency at the reference temperature. From this equation, the sweep start frequency is determined. That is, the control unit 40 that has received the signal of the temperature tr detected by the filter temperature detecting unit 91 determines the sweep start frequency fr based on the above-described equation and the graph of FIG. A signal is sent to the high-frequency signal generating element 51 so as to sweep in the range of C (for example, 10 MHz).
- a generator temperature detector 92 that detects the temperature of the reference wavelength generator 13 is disposed inside the casing 11.
- the temperature signal of the reference wavelength generator 13 detected by the generator temperature detector 92 is sent to the wavelength calculator 63.
- the wavelength calculator 63 corrects the wavelength of the output light output from the reference wavelength generator 13 based on the temperature signal output from the generator temperature detector 92.
- FIG. 5 shows the relationship between the wavelength of the output light output from the reference wavelength generator 13 and the transmittance.
- the transmittances of the wavelength ⁇ rm ⁇ 1, the wavelength ⁇ rm, and the wavelength ⁇ rm + 1 are centered around the temperature of 30 ° C.
- the wavelength is small at the temperature of 0 ° C.
- the wavelength at the temperature of 60 ° C. Is big.
- the wavelength of the output light output from the reference wavelength generator 13 changes due to the influence of temperature.
- the amount of change is a change between 30 ° C. and 60 ° C., and a change between 0 ° C. and 30 ° C., respectively. 5 pm / ° C.
- FIG. 6 shows the relationship between the temperature and wavelength of the output light output from the reference wavelength generator 13.
- the wavelengths ⁇ rm ⁇ 1, ⁇ rmm, and ⁇ rm + 1 increase.
- the wavelength ⁇ rm of the reference wavelength generator 13 is expressed by the following equation using the temperature t as a variable.
- ⁇ rm ⁇ tr + ⁇ (t ⁇ tr)
- ⁇ is a wavelength temperature coefficient, which is a specific value of the reference wavelength generator 13.
- t is the temperature obtained by the generator temperature detector 92
- tr is the reference temperature
- ⁇ tr is the wavelength of the output light output from the reference wavelength generator 13 at the reference temperature tr.
- the temperature of the acoustooptic wavelength tunable filter 12 is detected by the filter temperature detecting unit 91, and the control unit 40 uses the high frequency voltage generating circuit 50 to control the acoustooptic wavelength tunable filter based on the temperature signal from the filter temperature detecting unit 91.
- the frequency signal output to 12 is controlled. Therefore, the output light sent from the acousto-optic wavelength tunable filter 12 to the reference wavelength generator 13 and the optical wavelength change sensor 20 can be temperature-corrected output light, and the optical wavelength measurement has high stability against temperature change.
- An apparatus can be provided.
- the generator temperature detector 92 Since the generator temperature detector 92 is provided in the reference wavelength generator 13, the calculation result of the reference wavelength output from the reference wavelength generator 13 using the detected temperature signal of the reference wavelength generator 13 is used as the wavelength calculator.
- the measurement accuracy can be improved by correcting at 63.
- the acousto-optic wavelength tunable filter 12 and the filter temperature detecting unit 91 are disposed inside the same casing 11, these members are in an approximate temperature environment. Therefore, the temperature of the acousto-optic wavelength tunable filter 12 is accurately detected by the filter temperature detector 91, and the measurement accuracy can be improved.
- the reference wavelength generator 13 and the generator temperature detector 92 are disposed in the same casing 11, these members are in an approximate temperature environment. Therefore, the temperature of the reference wavelength generator 13 is accurately detected by the generator temperature detector 92, and the measurement accuracy can be further improved.
- the filter temperature detection unit 91 can also serve as the generator temperature detection unit 92, and the number of components can be reduced.
- the filter temperature detection unit 91 also serves as the generator temperature detection unit 92, the temperature signal S from the filter temperature detection unit 91 of FIG. 1 is sent to the wavelength calculation unit 63.
- the reference light receiver 33 that receives the output light output from the acoustooptic wavelength tunable filter 12, the output light output from the acoustooptic wavelength tunable filter 12, the input unit 140, and the reference light receiver 33
- the divider 600 that divides the output value of the signal output from the measurement light receiver 30 by the output value of the signal output from the reference light receiver 33.
- FIG. 7 shows a schematic configuration of the optical wavelength measuring device 2 according to the second embodiment.
- the optical wavelength measuring device 2 includes a casing 11, an acoustooptic wavelength tunable filter 12, a filter temperature detection unit 91, an input unit 140, a separation unit 151, and a reference wavelength generator, which are disposed inside the casing 11. 13, a generator temperature detector 92 and a light receiver 3A.
- the acoustooptic wavelength tunable filter 12, the separation unit 151, the input unit 140, the reference wavelength generator 13, the measurement light receiver 30, and the reference light receiver 33 are each arranged on a straight line with a predetermined gap. Unlike the first embodiment, an optical fiber is not disposed between them, but is a space. Also in the present embodiment, as in the first embodiment, the acousto-optic wavelength tunable filter 12, the separation unit 151, the input unit 140, the reference wavelength generator 13, the measurement light receiver 30, and the reference light receiver 33 are used. They may be connected by optical fibers.
- the measurement light receiver 30 and the reference light receiver 33 are arranged in the same casing 11 as the acoustooptic wavelength tunable filter 12 and the reference wavelength generator 13. Therefore, by providing a space between these members, an optical cable for connecting them becomes unnecessary, and the cost can be reduced.
- FIG. 8 shows a schematic configuration of the optical wavelength measuring device 3 according to the third embodiment.
- the optical wavelength measurement device 3 includes a casing 11 and an acoustooptic wavelength tunable filter 12, a filter temperature detection unit 91, an input unit 140, a separation unit 151, and a reference wavelength generator, which are disposed inside the casing 11. And a generator temperature detector 92 and a light receiver 3A, and an arithmetic circuit 60 connected to the light receiver 3A.
- the light receiving unit 3 ⁇ / b> A includes a measurement light receiver and a reference light receiver 33, and the measurement light receiver 30 includes a first light receiver 31 and a second light receiver 32.
- the input unit 140 includes a first input unit 141 disposed between the acoustooptic wavelength tunable filter 12 and the separation unit 151, and a second input unit disposed between the separation unit 151 and the optical wavelength change sensor 20. 142.
- the first input unit 141 inputs the output light output from the acoustooptic wavelength tunable filter 12 to the reference wavelength generator 13.
- the second input unit 142 sends the output light from the acousto-optic wavelength tunable filter 12 via the separation unit 151 to the optical wavelength change sensor 20, and outputs the output light corresponding to the physical quantity of the optical wavelength change sensor 20 as the measurement light. This is output to the two light receivers 32.
- the reference wavelength generator 13 inputs the output light output from the acousto-optic wavelength tunable filter 12 via the first input unit 141 and outputs arbitrary reference wavelength light to the first light receiver 31.
- the separation unit 151 separates output light output from the acoustooptic wavelength tunable filter 12 into output light directed to the second input unit 142 and reference light directed to the reference light receiver 33.
- the reference light traveling from the separation unit 151 to the reference light receiver 33 and the output light traveling from the separation unit 151 to the second input unit 142 are in a predetermined ratio, for example, a ratio of 1: 9 to 1:19. Divided.
- Each of the first input unit 141, the second input unit 142, and the separation unit 151 includes a beam splitter.
- separation part 151 are contained in the optical system comprised with an optical fiber, these elements are comprised from an optical coupler.
- the second input unit 142 may be constituted by a circulator.
- the optical wavelength change type sensor 20 inputs the output light of the acousto-optic wavelength tunable filter 12 via the second input unit 142 and emits reflected light toward the second input unit 142.
- the reflected light output from the optical wavelength change sensor 20 corresponds to the change in the physical quantity of the measurement object on which the optical wavelength change sensor 20 is installed. Examples of physical quantities of the object to be measured include displacement, acceleration, inclination, strain, temperature, and the like.
- the divider 600 is output from the first divider 61 that receives the signals output from the first light receiver 31 and the reference light receiver 33, the second light receiver 32, and the reference light receiver 33, respectively. And a second divider 62 for receiving the signal.
- the measurement method in the third embodiment is the same as that in the first embodiment. That is, the output light output from the acoustooptic wavelength tunable filter 12 is branched into two by the separation unit 151. One of the two branched output lights is sent to the optical wavelength change sensor 20 via the second input unit 142. It reflected light from the optical wavelength change sensor 20 ( ⁇ 1, ⁇ 2, ⁇ ⁇ n) again through the second input unit 142, is received as the measurement light by the second light receiver 32. The measurement light is converted into a spectrum waveform signal by the second light receiver 32. The other of the two branched output lights is received by the reference light receiver 33 as reference light. Signals output from the second light receiver 32 and the reference light receiver 33 are sent to the second divider 62.
- the second divider 62 divides the output value of the signal output from the reference light receiver 33 by the output value of the signal output from the second light receiver 32. That is, the second divider 62 functions as a differential amplifier, and the light obtained by the second light receiver 32 is the spectrum waveform of the acoustooptic wavelength tunable filter 12 obtained by the reference light receiver 33. The spectrum of the reflected light from the wavelength change type sensor 20 is divided (measurement light / reference light).
- the principles of the first light receiver 31, the reference light receiver 33, and the first divider 61 are also the same as in the examples of FIGS. 3A to 3C.
- the first divider 61 is configured to divide the output value of the signal output from the first light receiver 31 by the output value of the signal output from the reference light receiver 33.
- the measurement light receiver 30 receives the reference light output from the reference wavelength generator 13 and the second light reception for receiving the output light output from the optical wavelength change sensor 20. Therefore, the reference wavelength light and the output light output from the optical wavelength change type sensor can be set to the same optical wavelength band, and a wide range of measurements can be made with a simple and accurate structure. It can be carried out.
- FIG. 9 shows a schematic configuration of the optical wavelength measuring device 4.
- the input unit in the optical wavelength measurement device 4, includes an optical amplifier 81 and a feedback unit 152 that feeds back the output light output from the acoustooptic wavelength tunable filter 12 to the optical amplifier 81.
- the optical amplifier 81 includes an erbium-doped fiber amplifier (EDFA) or a semiconductor optical amplifier (SOA).
- the feedback unit 152 is composed of the same elements as the first input unit 141 and the second input unit 142, and feeds back the output light output from the acoustooptic wavelength tunable filter 12 to the optical amplifier 81 and also to the first input unit 141. send.
- the feedback unit 152 is disposed between the acoustooptic wavelength tunable filter 12 and the first input unit 141.
- the position of the feedback unit 152 is not limited.
- the feedback unit 152 is between the first input unit 141 and the separation unit 151, between the separation unit 151 and the second input unit 142, or between the second input unit 142 and the optical wavelength change sensor 20. It may be arranged in.
- An input unit that inputs input light to the acoustooptic wavelength tunable filter 12 includes an optical amplifier 81 and a feedback unit 152 that feeds back output light output from the acoustooptic wavelength tunable filter 12 to the optical amplifier 81. Since it is configured, it is possible to easily increase the intensity of light input to the reference wavelength generator 13 and the optical wavelength change sensor 20, and further, it is possible to expand the wavelength sweep range.
- FIG. 10 shows a schematic configuration of the optical wavelength measuring device 5.
- the optical amplifier 81 constituting the input unit is disposed between the acousto-optic wavelength variable filter 12 and the feedback unit 152.
- the feedback unit 152 feeds back the output light output from the acoustooptic wavelength tunable filter 12 to the optical amplifier 81.
- the same effects as (1) to (6), (8) and (9) of the fourth embodiment can be obtained.
- FIG. 11 shows a schematic configuration of the optical wavelength measuring device 6.
- an input unit 140 is disposed between the acoustooptic wavelength tunable filter 12 and the reference wavelength generator 13, and the reference wavelength light and the measurement light transmitted from the input unit 140 are measured light.
- Sent to the optical receiver 30 An output signal from the measurement light receiver 30 is sent to the wavelength calculation unit 63, and the wavelength calculation unit 63 calculates the measurement wavelength.
- the same effects as (1) to (5) of the first embodiment can be obtained.
- FIG. 12 shows a schematic configuration of the optical wavelength measuring device 7.
- the temperature information of the reference wavelength generator 13 is not sent to the wavelength calculation unit 63.
- FIG. 13 shows a schematic configuration of the optical wavelength measuring device 8.
- the reference wavelength generator 13 is disposed between the input unit 140 and the measurement light receiver 30, and the light input from the input unit 140 to the reference wavelength generator 13 is the reference. It is sent to the light receiver 30 for measurement light as wavelength light.
- a beam splitter 153 is disposed inside the casing 11 between the input unit 140 and the optical wavelength change type sensor 20, and a beam splitter 154 is disposed between the reference wavelength generator 13 and the measurement light receiver 30. Placed inside. Light from the input unit 140 is sent to the optical wavelength change sensor 20 through the beam splitter 153, and the light reflected from the optical wavelength change sensor 20 is reflected by the beam splitter 153 and disposed inside the casing 11. The light is sent as measurement light to the light receiver 30 for measurement light via the mirror 155 and the beam splitter 154.
- the same effects as (1), (3) and (5) of the first embodiment can be obtained.
- FIG. 14 shows a schematic configuration of the optical wavelength measuring device 9.
- an input unit 140 is disposed inside the casing 11 between the acoustooptic wavelength tunable filter 12 and the optical wavelength change sensor 20.
- the input unit 140 includes a first input unit 141 disposed on the acoustooptic wavelength tunable filter 12 side and a second input unit 142 disposed on the optical wavelength change type sensor 20 side.
- a reference wavelength generator 13 is disposed between the first input unit 141 and the measurement light receiver 30.
- the measurement light receiver 30 includes a first light receiver 31 disposed between the reference wavelength generator 13 and the divider 600, and a second light receiver disposed between the second input unit 142 and the divider 600.
- Instrument 32 In the ninth embodiment, the same effects as (1), (3), and (5) of the first embodiment and (8) of the third embodiment can be achieved.
- FIG. 15 shows a schematic configuration of the optical wavelength measuring device 1A.
- a generator temperature detector 92 that detects the temperature of the reference wavelength generator 13 is disposed inside the casing 11. The temperature signal of the reference wavelength generator 13 detected by the generator temperature detector 92 is sent to the wavelength calculator 63.
- the same effects as (1) to (6) of the first embodiment and (8) of the third embodiment can be achieved.
- FIG. 16 shows a schematic configuration of the optical wavelength measuring device 1B.
- the generator temperature detection unit 92 that detects the temperature of the reference wavelength generator 13 is omitted, and the wavelength calculation unit 63 measures the wavelength without correcting the temperature. Is done.
- the same effects as (1), (3) to (6) of the first embodiment can be obtained.
- the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
- the acoustooptic wavelength tunable filter 12 of the present invention is not limited to the waveguide type.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
音響光学波長可変フィルタ(12)に高周波信号を加えて励振する高周波電圧発生回路(50)、基準波長発生器(13)、光波長変化型センサ(20)、音響光学波長可変フィルタ(12)から出力された出力光を基準波長発生器(13)と光波長変化型センサ(20)とに入力させる入力部(140)、基準波長発生器(13)から出力された出力光と光波長変化型センサ(20)で出力された出力光とを受光する測定光用受光器(30)、測定光用受光器(30)から出力される信号に基づいて光波長変化型センサ(20)の波長を演算する演算回路(60)、音響光学波長可変フィルタ(12)の温度を検知するフィルタ用温度検知部(91)、及びフィルタ用温度検知部(91)からの温度信号に基づいて音響光学波長可変フィルタ(12)に出力する周波数信号を制御する制御部(40)を備えた。
Description
本発明は、光波長測定装置に関する。
物理量に応じた波長を出力するファイバブラッググレーティング(FBG)の素子を有する光波長変化型センサ、その他のセンサを用いた光波長測定装置が知られている。
光波長測定装置の従来例として、波長可変光源を用いて、複数のFBGセンサの反射スペクトルを取得し、そのスペクトル中のピーク波長の値を計測する光センサ測定装置がある(特許文献1)。特許文献1の従来例では、波長可変光源は、制御クロックに同期して出力光の波長を掃引する。波長可変光源がλs~λeの波長の光を掃引し、各FBGセンサの反射波長に到達すると、その反射光はサーキュレータを通り、光電変換回路で電圧に変換される。波長可変光源が、どの波長を出力した時に電圧波形のピークが得られたかを計測すれば、そのピークの波長を求めることができる。
光波長測定装置の従来例として、波長可変光源を用いて、複数のFBGセンサの反射スペクトルを取得し、そのスペクトル中のピーク波長の値を計測する光センサ測定装置がある(特許文献1)。特許文献1の従来例では、波長可変光源は、制御クロックに同期して出力光の波長を掃引する。波長可変光源がλs~λeの波長の光を掃引し、各FBGセンサの反射波長に到達すると、その反射光はサーキュレータを通り、光電変換回路で電圧に変換される。波長可変光源が、どの波長を出力した時に電圧波形のピークが得られたかを計測すれば、そのピークの波長を求めることができる。
別の従来例として、FBGを有する光源と、光源から出力される基準光とセンサから出力される被測定光とが入力する音響光学波長可変フィルタと、音響光学波長フィルタから出力される出力光を受光する受光器とを備え、基準光を入射した際の選択光の波長と励振周波数とに基づいて、被測定光から得られる選択光の波長を演算装置で補正する光スペクトラムアナライザがある(特許文献2)。
別の従来例として、被測定光が入力される導波路型音響光学波長可変フィルタと、導波路型音響光学波長可変フィルタを加熱保温する加熱調整用ヒータと、導波路型音響光学波長可変フィルタから出力される出力光を受光する受光器とを備え、受光器からの出力信号に基づいて被測定光の光スペクトラムを演算する光スペクトラムアナライザがある(特許文献3)。
特許文献1の従来例では、複数の閾値を設定する構成としたので、装置の構造が複雑化され、高価なものとなる。さらに、設定自体が煩雑となり、使い勝手の悪いものとなる。
特許文献2の従来例では、基準光自体が温度特性を持たないことが前提となっている。基準光がFBGであるため、FBGを一定温度に保つ温度調節機能やFBG自体をアサーマル化する必要があるが、それを達成するための手段の開示がない。
特許文献3の従来例では、導波路型音響光学波長可変フィルタを加熱保温する加熱調整用ヒータとして、ペルチェ素子や抵抗ヒータが用いられているので、周辺の温度変化に対する追従性が悪く、複雑かつ高価な手段が必要となる。
特許文献2の従来例では、基準光自体が温度特性を持たないことが前提となっている。基準光がFBGであるため、FBGを一定温度に保つ温度調節機能やFBG自体をアサーマル化する必要があるが、それを達成するための手段の開示がない。
特許文献3の従来例では、導波路型音響光学波長可変フィルタを加熱保温する加熱調整用ヒータとして、ペルチェ素子や抵抗ヒータが用いられているので、周辺の温度変化に対する追従性が悪く、複雑かつ高価な手段が必要となる。
本発明の目的は、簡易な構造で、温度変化に対する安定性が高く、広範囲な測定を精度よく行える光波長測定装置を提供することにある。
本発明の光波長測定装置は、入力光から所定波長を選択的に抽出する音響光学波長可変フィルタと、前記音響光学波長可変フィルタに高周波信号を加えて励振する高周波電圧発生回路と、任意の基準波長光を出力する基準波長発生器と、被測定物に設置され物理量に応じた波長の光を出力する光波長変化型センサと、前記音響光学波長可変フィルタから出力された出力光を前記基準波長発生器と前記光波長変化型センサとにそれぞれに入力させる入力部と、前記基準波長発生器から出力された出力光を受光し、かつ、前記光波長変化型センサで出力された出力光を、前記入力部を介して受光する測定光用受光器と、前記測定光用受光器から出力される信号に基づいて前記光波長変化型センサの波長を演算する演算回路と、前記音響光学波長可変フィルタの温度を検知するフィルタ用温度検知部と、前記フィルタ用温度検知部から出力された温度信号に基づいて前記高周波電圧発生回路が前記音響光学波長可変フィルタに出力する周波数信号を制御する制御部と、を備えたことを特徴とする。
本発明では、高周波電圧発生回路を駆動すると、AOTFと称される音響光学波長可変フィルタにより、入力光から所定波長が選択的に抽出される。選択的に抽出された出力光は、入力部によって基準波長発生器と光波長変化型センサとに入力される。光波長変化型センサでは、物理量に応じた波長の光が出力され、この出力光が入力部によって測定光用受光器に送られる。基準波長発生器から出力された出力光は測定光用受光器に送られる。測定光用受光器から出力された信号は演算回路に送られ、この演算回路により、光波長型センサの物理量に応じた波長が演算される。
しかも、フィルタ用温度検知部と制御部とを備えているから、音響光学波長可変フィルタの温度をフィルタ用温度検知部で検知し、フィルタ用温度検知部からの温度信号に基づいて制御部が高周波電圧発生回路で音響光学波長可変フィルタに出力される周波数信号を制御する。これにより、音響光学波長可変フィルタから基準波長発生器と光波長変化型センサとに送られる出力光の波長範囲は、温度が補正された出力光の波長範囲となる。そのため、温度変化に影響されることなく、音響光学波長可変フィルタから特定の波長の出力光を出力することができることになり、温度変化に対する安定性が高い光波長測定装置を提供することができる。
しかも、フィルタ用温度検知部と制御部とを備えているから、音響光学波長可変フィルタの温度をフィルタ用温度検知部で検知し、フィルタ用温度検知部からの温度信号に基づいて制御部が高周波電圧発生回路で音響光学波長可変フィルタに出力される周波数信号を制御する。これにより、音響光学波長可変フィルタから基準波長発生器と光波長変化型センサとに送られる出力光の波長範囲は、温度が補正された出力光の波長範囲となる。そのため、温度変化に影響されることなく、音響光学波長可変フィルタから特定の波長の出力光を出力することができることになり、温度変化に対する安定性が高い光波長測定装置を提供することができる。
本発明では、前記基準波長発生器の温度を検知する発生器用温度検知部を備え、前記演算回路は、前記発生器用温度検知部から出力された温度信号に基づいて前記基準波長発生器から出力される出力光の波長を演算する波長演算部を有する構成が好ましい。
この構成では、基準波長発生器に発生器用温度検知部を設けたから、温度変化の影響を受ける基準波長発生器を使用した場合でも、検知した基準波長発生器の温度信号を用いて基準波長発生器から出力される出力光の波長を波長演算部で演算して測定精度を向上させることができる。
この構成では、基準波長発生器に発生器用温度検知部を設けたから、温度変化の影響を受ける基準波長発生器を使用した場合でも、検知した基準波長発生器の温度信号を用いて基準波長発生器から出力される出力光の波長を波長演算部で演算して測定精度を向上させることができる。
本発明では、前記音響光学波長可変フィルタの光入力側又は光出力側に配置された光増幅器と、前記音響光学波長可変フィルタと前記光増幅器の一方から出力される出力光を前記音響光学波長可変フィルタと前記光増幅器の他方に帰還させる帰還部とを備えた構成が好ましい。
この構成では、基準波長発生器や光波長変化型センサに入力する光の強さや、掃引の波長範囲を容易に上げることが可能となる。
この構成では、基準波長発生器や光波長変化型センサに入力する光の強さや、掃引の波長範囲を容易に上げることが可能となる。
本発明では、前記音響光学波長可変フィルタと前記フィルタ用温度検知部とは同一ケーシング内に配置される構成が好ましい。
この構成では、同一ケーシング内に配置される音響光学波長可変フィルタとフィルタ用温度検知部とは、近似した温度環境下にあるため、音響光学波長可変フィルタの温度がフィルタ用温度検知部により正しく検知されることになり、測定精度を向上させることができる。
この構成では、同一ケーシング内に配置される音響光学波長可変フィルタとフィルタ用温度検知部とは、近似した温度環境下にあるため、音響光学波長可変フィルタの温度がフィルタ用温度検知部により正しく検知されることになり、測定精度を向上させることができる。
本発明では、前記音響光学波長可変フィルタと前記基準波長発生器とは同一ケーシング内に配置されている構成が好ましい。
この構成では、同一ケーシングにある音響光学波長可変フィルタと基準波長発生器とが近似した温度環境下にあるため、フィルタ用温度検知部が発生器用温度検知部を兼ねることが可能となり、部品点数の減少を図ることができる。
この構成では、同一ケーシングにある音響光学波長可変フィルタと基準波長発生器とが近似した温度環境下にあるため、フィルタ用温度検知部が発生器用温度検知部を兼ねることが可能となり、部品点数の減少を図ることができる。
本発明では、前記測定光用受光器は、前記音響光学波長可変フィルタ及び前記基準波長発生器と同一ケーシング内に配置される構成が好ましい。
この構成では、測定光用受光器が音響光学波長可変フィルタと基準波長発生器とともに同一ケーシングに配置されるので、これらの部材を接続するための光ケーブルが不要となり、コスト低減を図ることができる。
この構成では、測定光用受光器が音響光学波長可変フィルタと基準波長発生器とともに同一ケーシングに配置されるので、これらの部材を接続するための光ケーブルが不要となり、コスト低減を図ることができる。
本発明では、前記入力部は、前記音響光学波長可変フィルタから出力された出力光を前記基準波長発生器に入力させる第一入力部と、前記音響光学波長可変フィルタから出力された出力光を前記光波長変化型センサに入力させる第二入力部とを有し、前記測定光用受光器は、前記基準波長発生器から出力された出力光を受光する第一受光器と、前記光波長変化型センサで出力された出力光を、前記第二入力部を介して受光する第二受光器とを有し、さらに、前記音響光学波長可変フィルタから出力された出力光を受光する参照光用受光器と、前記音響光学波長可変フィルタから出力される出力光を前記第二入力部と前記参照光用受光器とに分離する分離部と、前記参照光用受光器から出力される信号の出力値で、前記第一受光器と前記第二受光器との少なくとも一方から出力される信号の出力値を除算する除算器と、を備えた構成が好ましい。
この構成では、音響光学波長可変フィルタから出力される出力光は、第一入力部により基準波長発生器に送られ、基準波長発生器から基準波長光が第一受光器に送られる。音響光学波長可変フィルタから出力される出力光は、分離部によって、第二入力部と参照光用受光器とに分離される。第二入力部に送られる出力光は光波長変化型センサに送られ、光波長変化型センサで反射された反射光が測定光として第二入力部を介して第二受光器に送られる。分離部から送られる出力光は参照光として参照光用受光器に送られる。第一受光器、第二受光器及び参照光用受光器から出力信号が除算器に送られ、除算器によって、参照光の出力値で、基準波長光の出力値と測定光の出力値との除算が実施される。
音響光学波長変化フィルタに入力光を入力させる光源の種類や個体差、さらには、音響光学波長可変フィルタ自体の種類や個体差、温度変化や経時変化等によって、基準波長発生器と光波長変化型センサに入力する光スペクトルプロファイルの変動が生じるが、前述の構成により、光スペクトルプロファイルの変動影響を安価で容易に低減できる。しかも、複数の閾値を設定する構成を採用することを要せず、光波長測定装置の構造を簡易なものにできる。
さらに、測定光用受光器を第一受光器と第二受光器とに分けて構成しているから、基準光と光波長変化型センサから出力される出力光とを同じ光波長帯にすることが可能となり、簡易な構造で、広範囲な測定を精度よく行うことができる。
この構成では、音響光学波長可変フィルタから出力される出力光は、第一入力部により基準波長発生器に送られ、基準波長発生器から基準波長光が第一受光器に送られる。音響光学波長可変フィルタから出力される出力光は、分離部によって、第二入力部と参照光用受光器とに分離される。第二入力部に送られる出力光は光波長変化型センサに送られ、光波長変化型センサで反射された反射光が測定光として第二入力部を介して第二受光器に送られる。分離部から送られる出力光は参照光として参照光用受光器に送られる。第一受光器、第二受光器及び参照光用受光器から出力信号が除算器に送られ、除算器によって、参照光の出力値で、基準波長光の出力値と測定光の出力値との除算が実施される。
音響光学波長変化フィルタに入力光を入力させる光源の種類や個体差、さらには、音響光学波長可変フィルタ自体の種類や個体差、温度変化や経時変化等によって、基準波長発生器と光波長変化型センサに入力する光スペクトルプロファイルの変動が生じるが、前述の構成により、光スペクトルプロファイルの変動影響を安価で容易に低減できる。しかも、複数の閾値を設定する構成を採用することを要せず、光波長測定装置の構造を簡易なものにできる。
さらに、測定光用受光器を第一受光器と第二受光器とに分けて構成しているから、基準光と光波長変化型センサから出力される出力光とを同じ光波長帯にすることが可能となり、簡易な構造で、広範囲な測定を精度よく行うことができる。
本発明の実施形態を図面に基づいて説明する。ここで、各実施形態の説明において、同一構成要素は同一符号を付して説明を省略する。
[第1実施形態]
図1に基づいて、第1実施形態にかかる光波長測定装置1を説明する。
図1には光波長測定装置1の概略構成が示されている。
図1において、光波長測定装置1は、光学モジュール10と、光学モジュール10にそれぞれ接続される光波長変化型センサ20、受光部3A、制御部40及び高周波電圧発生回路50と、受光部3Aに接続される演算回路60と、演算回路60に接続される出力部70と、光源80とを備えている。
受光部3Aは測定光用受光器30及び参照光用受光器33を備える。
光源80は広帯域光源から構成されている。
[第1実施形態]
図1に基づいて、第1実施形態にかかる光波長測定装置1を説明する。
図1には光波長測定装置1の概略構成が示されている。
図1において、光波長測定装置1は、光学モジュール10と、光学モジュール10にそれぞれ接続される光波長変化型センサ20、受光部3A、制御部40及び高周波電圧発生回路50と、受光部3Aに接続される演算回路60と、演算回路60に接続される出力部70と、光源80とを備えている。
受光部3Aは測定光用受光器30及び参照光用受光器33を備える。
光源80は広帯域光源から構成されている。
光学モジュール10は、ケーシング11にそれぞれ設けられた音響光学波長可変フィルタ12、基準波長発生器13、入力部140及び分離部151を備えている。入力部140は、ビームスプリッタやサーキュレータで構成される。
これらの音響光学波長可変フィルタ12、基準波長発生器13、入力部140、分離部151のうち隣り合う部材は光ファイバで接続されている。さらに、分離部151と参照光用受光器33との間、入力部140と測定光用受光器30との間は、それぞれ光ファイバで接続され、もしくは、空間を介して接続されている。
音響光学波長可変フィルタ12は、入力光から所定波長を選択的に抽出する素子であって、AOTF(Acoustro Optical Tunable Filter)と称される。
音響光学波長可変フィルタ12は、光源80から入力光と、高周波電圧発生回路50から高周波信号とを受けるIDT120を有する導波路型フィルタである。IDT120は、Inter Digital Transducer(櫛歯電極)である。基準波長発生器13は、エタロン、ガスセル(シアン化水素(Hydrogen CiaNyde;HCN))、ファイバブラッググレーティング(FBG)、誘電体多層膜フィルタ、等の素子から構成される。
基準波長発生器13は、音響光学波長可変フィルタ12で出力された出力光を光波長変化型センサ20に出力し、光波長変化型センサ20からの出力光を任意の基準波長光として入力部140に送る。
これらの音響光学波長可変フィルタ12、基準波長発生器13、入力部140、分離部151のうち隣り合う部材は光ファイバで接続されている。さらに、分離部151と参照光用受光器33との間、入力部140と測定光用受光器30との間は、それぞれ光ファイバで接続され、もしくは、空間を介して接続されている。
音響光学波長可変フィルタ12は、入力光から所定波長を選択的に抽出する素子であって、AOTF(Acoustro Optical Tunable Filter)と称される。
音響光学波長可変フィルタ12は、光源80から入力光と、高周波電圧発生回路50から高周波信号とを受けるIDT120を有する導波路型フィルタである。IDT120は、Inter Digital Transducer(櫛歯電極)である。基準波長発生器13は、エタロン、ガスセル(シアン化水素(Hydrogen CiaNyde;HCN))、ファイバブラッググレーティング(FBG)、誘電体多層膜フィルタ、等の素子から構成される。
基準波長発生器13は、音響光学波長可変フィルタ12で出力された出力光を光波長変化型センサ20に出力し、光波長変化型センサ20からの出力光を任意の基準波長光として入力部140に送る。
入力部140は、光波長変化型センサ20から光波長変化型センサ20の物理量に応じた出力光(測定光)と基準波長発生器13から出力される基準波長光とを測定光用受光器30に入力させるものである。
分離部151は、音響光学波長可変フィルタ12と入力部140との間に配置されるものであり、音響光学波長可変フィルタ12から出力される出力光を入力部140に向かう出力光と、参照光用受光器33に向かう参照光とに分離するものである。
分離部151は、音響光学波長可変フィルタ12と入力部140との間に配置されるものであり、音響光学波長可変フィルタ12から出力される出力光を入力部140に向かう出力光と、参照光用受光器33に向かう参照光とに分離するものである。
光波長変化型センサ20は、光ファイバに単一もしくは複数のセンサから構成されており、図示しない被測定物に設置されている。ここで、センサには、誘導体多層膜フィルタタイプ、FBGタイプ、ファブリペロー干渉タイプが含まれる。
光波長変化型センサ20は、音響光学波長可変フィルタ12の出力光を、入力部140を経由して入力するとともに、入力部140に向けて反射光を出射する。ここで、光波長変化型センサ20で出力される反射光は、光波長変化型センサ20が設置される被測定物の物理量変化に応じたものである。
演算回路60は、測定光用受光器30と参照光用受光器33とからそれぞれ出力される信号を受ける除算器600と、除算器600からの出力信号を受けて光波長変化型センサ20の波長を演算する波長演算部63とを備えて構成されている。
光波長変化型センサ20は、音響光学波長可変フィルタ12の出力光を、入力部140を経由して入力するとともに、入力部140に向けて反射光を出射する。ここで、光波長変化型センサ20で出力される反射光は、光波長変化型センサ20が設置される被測定物の物理量変化に応じたものである。
演算回路60は、測定光用受光器30と参照光用受光器33とからそれぞれ出力される信号を受ける除算器600と、除算器600からの出力信号を受けて光波長変化型センサ20の波長を演算する波長演算部63とを備えて構成されている。
図2に基づいて、波長演算部63を用いて光波長変化型センサ20で検出される物理量を演算する方法を説明する。図2には、時間と受光部3Aから出力される受光強度との関係が示されている。
図2において、測定光用受光器30から出力される基準波長光の受光強度は、波長λr1、λr2、λr3、λr4、λr5の時にピークとなる。λr1の時の時間がtr1であり、λr2の時の時間がtr2であり、λr3の時の時間がtr3であり、λr4の時の時間がtr4であり、λr5の時の時間がtr5である。
仮に、光波長変化型センサ20を2つ用いた場合、測定光用受光器30から出力される測定光の受光強度は、波長λf1、λf2の時にピークとなる。λf1の時の時間がtf1であり、λf2の時の時間がtf2である。
波長演算部63は、例えば、次の演算式により光波長変化型センサ20の波長λf1と波長λf2とを求める。
λf1={(λr3-λr2)/(tr3-tr2)}・tf1+λr2
λf2={(λr5-λr4)/(tr5-tr4)}・tf2+λr4
波長演算部63で演算された波長は、出力部70に出力される。波長の演算方法は、λrnとλfnとの相対的な時間差から求められるものであり、前述の演算式による方法に限定されない。
出力部70は、波長演算部63で演算された波長の値を表示する表示部であってもよく、Lan、ハードディスク(HD)、SDカード等のメモリであってもよい。
図2において、測定光用受光器30から出力される基準波長光の受光強度は、波長λr1、λr2、λr3、λr4、λr5の時にピークとなる。λr1の時の時間がtr1であり、λr2の時の時間がtr2であり、λr3の時の時間がtr3であり、λr4の時の時間がtr4であり、λr5の時の時間がtr5である。
仮に、光波長変化型センサ20を2つ用いた場合、測定光用受光器30から出力される測定光の受光強度は、波長λf1、λf2の時にピークとなる。λf1の時の時間がtf1であり、λf2の時の時間がtf2である。
波長演算部63は、例えば、次の演算式により光波長変化型センサ20の波長λf1と波長λf2とを求める。
λf1={(λr3-λr2)/(tr3-tr2)}・tf1+λr2
λf2={(λr5-λr4)/(tr5-tr4)}・tf2+λr4
波長演算部63で演算された波長は、出力部70に出力される。波長の演算方法は、λrnとλfnとの相対的な時間差から求められるものであり、前述の演算式による方法に限定されない。
出力部70は、波長演算部63で演算された波長の値を表示する表示部であってもよく、Lan、ハードディスク(HD)、SDカード等のメモリであってもよい。
図1において、測定光用受光器30及び参照光用受光器33は、それぞれアンプを有するものであり、光電変換回路を構成する。
音響光学波長可変フィルタ12から出力された出力光は、分離部151により2分岐される。分離部151で2分岐された出力光のうち一方は、入力部140を経由して、光波長変化型センサ20に送られる。光波長変化型センサ20からの出力、すなわち、反射光(λ1、λ2、・・・λn)は、測定光として測定光用受光器30で受光される。測定光は測定光用受光器30によりスペクトル波形の信号に変換される。このスペクトルが図3Bに示されている。図3Bで示されるスペクトル波形は、波長が1545nm付近で電圧が高く、山形となっていることがわかる。
音響光学波長可変フィルタ12から出力された出力光は、分離部151により2分岐される。分離部151で2分岐された出力光のうち一方は、入力部140を経由して、光波長変化型センサ20に送られる。光波長変化型センサ20からの出力、すなわち、反射光(λ1、λ2、・・・λn)は、測定光として測定光用受光器30で受光される。測定光は測定光用受光器30によりスペクトル波形の信号に変換される。このスペクトルが図3Bに示されている。図3Bで示されるスペクトル波形は、波長が1545nm付近で電圧が高く、山形となっていることがわかる。
分離部151で2分岐された出力光のうち他方は、参照光として参照光用受光器33で受光される。参照光は参照光用受光器33によりスペクトル波形の信号に変換される。このスペクトルが図3Aに示される。
参照光用受光器33では、音響光学波長可変フィルタ12で出力される出力光のスペクトル形状と経時的な変化が示されている。図3B、図3Cにおいて、Thは閾値を示す。閾値Thは、0.6Vである。
図3Bで示されるスペクトル波形の信号は、光波長変化型センサ20の反射スペクトルに音響光学波長可変フィルタ12のスペクトルが掛け合わされたものである。
参照光用受光器33では、音響光学波長可変フィルタ12で出力される出力光のスペクトル形状と経時的な変化が示されている。図3B、図3Cにおいて、Thは閾値を示す。閾値Thは、0.6Vである。
図3Bで示されるスペクトル波形の信号は、光波長変化型センサ20の反射スペクトルに音響光学波長可変フィルタ12のスペクトルが掛け合わされたものである。
測定光用受光器30と参照光用受光器33とから出力される信号は除算器600に送られる。
除算器600は、測定光用受光器30から出力される信号の出力値を、参照光用受光器33から出力される信号の出力値で除算する。図3Cで示される通り、除算後のスペクトル波形の信号は、音響光学波長可変フィルタ12のスペクトルの影響が少ないことがわかる。
除算器600は、測定光用受光器30から出力される信号の出力値を、参照光用受光器33から出力される信号の出力値で除算する。図3Cで示される通り、除算後のスペクトル波形の信号は、音響光学波長可変フィルタ12のスペクトルの影響が少ないことがわかる。
図1において、高周波電圧発生回路50は、音響光学波長可変フィルタ12に高周波信号を加えて励振するものであり、高周波信号発生素子51と、高周波信号発生素子51から出力される高周波信号を増幅してIDT120に送る増幅器52とを有する。
高周波信号発生素子51は、電圧制御発振子(VCO:Voltage Control Oscillator)や、DAコンバータを用いて波形を生成するデジタルIC(Direct Digital Synthesizer)から構成される。
ケーシング11には、音響光学波長可変フィルタ12の温度を検知するフィルタ用温度検知部91が設けられている。
フィルタ用温度検知部91は、熱電対、サーミスタ、白金測温抵抗体等の温度を検知する素子から構成される。
フィルタ用温度検知部91で検知される音響光学波長可変フィルタ12の温度信号は、制御部40に送られ、制御部40によって高周波信号発生素子51が制御される。
高周波信号発生素子51は、電圧制御発振子(VCO:Voltage Control Oscillator)や、DAコンバータを用いて波形を生成するデジタルIC(Direct Digital Synthesizer)から構成される。
ケーシング11には、音響光学波長可変フィルタ12の温度を検知するフィルタ用温度検知部91が設けられている。
フィルタ用温度検知部91は、熱電対、サーミスタ、白金測温抵抗体等の温度を検知する素子から構成される。
フィルタ用温度検知部91で検知される音響光学波長可変フィルタ12の温度信号は、制御部40に送られ、制御部40によって高周波信号発生素子51が制御される。
図4には、高周波電圧発生回路50から音響光学波長可変フィルタ12に入力する掃引周波数と温度との関係が示されている。
図4において、高周波電圧発生回路50から音響光学波長可変フィルタ12に入力する掃引周波数領域が斜線で示されている。
掃引開始位置がfaで示され、掃引終了がfbで示されている。Cを定数とすると、
fa-fb=Cである。
Cを、例えば、10MHzとし、faを、例えば、180MHzとすると、fbは、170MHzである。
図4において、高周波電圧発生回路50から音響光学波長可変フィルタ12に入力する掃引周波数領域が斜線で示されている。
掃引開始位置がfaで示され、掃引終了がfbで示されている。Cを定数とすると、
fa-fb=Cである。
Cを、例えば、10MHzとし、faを、例えば、180MHzとすると、fbは、170MHzである。
掃引開始位置faは、温度tを変数として表す次式で示される。
fa=fr+α(t―tr)
ここで、αは、周波数温度係数で、音響光学波長可変フィルタ12の固有の値であり、通常、0.1MHz/℃である。
trは基準温度(例えば、25℃)、frは基準温度の時の掃引開始周波数である。
この式により、掃引開始周波数が決定される。
つまり、フィルタ用温度検知部91で検知される温度trの信号を受領した制御部40は、前述の式や図4のグラフに基づいて掃引開始の周波数frを決定し、この周波数frから定数値C(例えば、10MHz)の範囲で、掃引するように高周波信号発生素子51に信号を送る。
fa=fr+α(t―tr)
ここで、αは、周波数温度係数で、音響光学波長可変フィルタ12の固有の値であり、通常、0.1MHz/℃である。
trは基準温度(例えば、25℃)、frは基準温度の時の掃引開始周波数である。
この式により、掃引開始周波数が決定される。
つまり、フィルタ用温度検知部91で検知される温度trの信号を受領した制御部40は、前述の式や図4のグラフに基づいて掃引開始の周波数frを決定し、この周波数frから定数値C(例えば、10MHz)の範囲で、掃引するように高周波信号発生素子51に信号を送る。
図1において、ケーシング11の内部には、基準波長発生器13の温度を検知する発生器用温度検知部92が配置されている。
発生器用温度検知部92で検知される基準波長発生器13の温度信号は、波長演算部63に送られる。波長演算部63では、後述する通り、発生器用温度検知部92から出力された温度信号に基づいて基準波長発生器13が出力する出力光の波長を補正する。
発生器用温度検知部92で検知される基準波長発生器13の温度信号は、波長演算部63に送られる。波長演算部63では、後述する通り、発生器用温度検知部92から出力された温度信号に基づいて基準波長発生器13が出力する出力光の波長を補正する。
図5には、基準波長発生器13から出力される出力光の波長と透過率との関係が示されている。
図5に示される通り、波長λrm-1、波長λrm、波長λrm+1の透過率は、それぞれ、温度30℃の場合を中心として、温度0℃では、波長が小さく、温度60℃では、波長が大きい。このように、基準波長発生器13から出力される出力光は、温度の影響を受けて波長が変化する。例えば、基準波長発生器13として石英製のソリッドエタロンを用いた場合には、変化量は30℃と60℃との間での変化、0℃と30℃との間での変化で、それぞれ約5pm/℃である。
図5に示される通り、波長λrm-1、波長λrm、波長λrm+1の透過率は、それぞれ、温度30℃の場合を中心として、温度0℃では、波長が小さく、温度60℃では、波長が大きい。このように、基準波長発生器13から出力される出力光は、温度の影響を受けて波長が変化する。例えば、基準波長発生器13として石英製のソリッドエタロンを用いた場合には、変化量は30℃と60℃との間での変化、0℃と30℃との間での変化で、それぞれ約5pm/℃である。
図6には、基準波長発生器13から出力される出力光の温度と波長との関係が示されている。
図6において、温度が上がると、波長λrm-1、波長λrm、波長λrm+1の波長がそれぞれ大きくなる。ここで、基準波長発生器13の波長λrmは、温度tを変数として次の式で表される。
λrm=λtr+β(t-tr)
ここで、βは波長温度係数で、基準波長発生器13の固有の値である。tは発生器用温度検知部92で求められた温度であり、trは基準温度、λtrは基準温度trの時の基準波長発生器13で出力される出力光の波長である。
図6において、温度が上がると、波長λrm-1、波長λrm、波長λrm+1の波長がそれぞれ大きくなる。ここで、基準波長発生器13の波長λrmは、温度tを変数として次の式で表される。
λrm=λtr+β(t-tr)
ここで、βは波長温度係数で、基準波長発生器13の固有の値である。tは発生器用温度検知部92で求められた温度であり、trは基準温度、λtrは基準温度trの時の基準波長発生器13で出力される出力光の波長である。
従って、第1実施形態では、次の効果を奏することができる。
(1)音響光学波長可変フィルタ12の温度をフィルタ用温度検知部91で検知し、フィルタ用温度検知部91からの温度信号に基づいて制御部40が高周波電圧発生回路50で音響光学波長可変フィルタ12に出力される周波数信号を制御する。そのため、音響光学波長可変フィルタ12から基準波長発生器13と光波長変化型センサ20とに送られる出力光を温度補正された出力光とすることができ、温度変化に対する安定性が高い光波長測定装置を提供することができる。
(1)音響光学波長可変フィルタ12の温度をフィルタ用温度検知部91で検知し、フィルタ用温度検知部91からの温度信号に基づいて制御部40が高周波電圧発生回路50で音響光学波長可変フィルタ12に出力される周波数信号を制御する。そのため、音響光学波長可変フィルタ12から基準波長発生器13と光波長変化型センサ20とに送られる出力光を温度補正された出力光とすることができ、温度変化に対する安定性が高い光波長測定装置を提供することができる。
(2)基準波長発生器13に発生器用温度検知部92を設けたから、検知した基準波長発生器13の温度信号を用いて基準波長発生器13から出力される基準波長の演算結果を波長演算部63で補正し、測定精度を向上させることができる。
(3)音響光学波長可変フィルタ12とフィルタ用温度検知部91とは同一のケーシング11の内部に配置されるから、これらの部材は、近似した温度環境下にあることになる。そのため、音響光学波長可変フィルタ12の温度がフィルタ用温度検知部91により正確に検知されることになり、測定精度を向上させることができる。
(4)基準波長発生器13と発生器用温度検知部92とは同一のケーシング11の内部に配置されるから、これらの部材は、近似した温度環境下にあることになる。そのため、基準波長発生器13の温度が発生器用温度検知部92により正確に検知されることになり、測定精度をより向上させることができる。
(4)基準波長発生器13と発生器用温度検知部92とは同一のケーシング11の内部に配置されるから、これらの部材は、近似した温度環境下にあることになる。そのため、基準波長発生器13の温度が発生器用温度検知部92により正確に検知されることになり、測定精度をより向上させることができる。
(5)音響光学波長可変フィルタ12と基準波長発生器13とは同一のケーシング11の内部に配置されているから、これらの部材は近似した温度環境下にあることになる。そのため、フィルタ用温度検知部91が発生器用温度検知部92を兼ねることが可能となり、部品点数の減少を図ることができる。フィルタ用温度検知部91が発生器用温度検知部92を兼ねる場合では、図1のフィルタ用温度検知部91からの温度信号Sを波長演算部63に送る。
(6)音響光学波長可変フィルタ12から出力された出力光を受光する参照光用受光器33と、音響光学波長可変フィルタ12から出力される出力光を入力部140と参照光用受光器33とに分離する分離部151と、測定光用受光器30から出力される信号の出力値を、参照光用受光器33から出力される信号の出力値で除算する除算器600を備えたから、音響光学波長可変フィルタ12の種類や個体差、温度変化や経時変化等によって生じる基準波長発生器13と光波長変化型センサ20に入力する光スペクトルプロファイルの変動影響を安価で容易に低減できる。
[第2実施形態]
次に、本発明の第2実施形態を図7に基づいて説明する。
第2実施形態は、受光部3Aがケーシング11の内部に配置されている点が第1実施形態と異なるものであり、他の構成は第1実施形態と同じである。
図7には第2実施形態にかかる光波長測定装置2の概略構成が示されている。
図7において、光波長測定装置2は、ケーシング11と、ケーシング11の内部にそれぞれ配置された音響光学波長可変フィルタ12、フィルタ用温度検知部91、入力部140、分離部151、基準波長発生器13、発生器用温度検知部92及び受光部3Aとを備えている。
次に、本発明の第2実施形態を図7に基づいて説明する。
第2実施形態は、受光部3Aがケーシング11の内部に配置されている点が第1実施形態と異なるものであり、他の構成は第1実施形態と同じである。
図7には第2実施形態にかかる光波長測定装置2の概略構成が示されている。
図7において、光波長測定装置2は、ケーシング11と、ケーシング11の内部にそれぞれ配置された音響光学波長可変フィルタ12、フィルタ用温度検知部91、入力部140、分離部151、基準波長発生器13、発生器用温度検知部92及び受光部3Aとを備えている。
音響光学波長可変フィルタ12、分離部151、入力部140、基準波長発生器13、測定光用受光器30及び参照光用受光器33は、それぞれ所定の隙間をもって直線上に配置されているが、第1実施形態とは異なり、これらの間は、光ファイバが配置されるものではなく、空間とされる。なお、本実施形態においても、第1実施形態と同様に、音響光学波長可変フィルタ12、分離部151、入力部140、基準波長発生器13、測定光用受光器30及び参照光用受光器33の間をそれぞれ光ファイバで接続するものでもよい。
第2実施形態では、第1実施形態の(1)~(6)と同様の効果を奏することができる他、次の効果を奏することができる。
(7)測定光用受光器30と参照光用受光器33とは、音響光学波長可変フィルタ12及び基準波長発生器13と同一のケーシング11の内部に配置されている。そのため、これらの部材の間を空間とすることで、これらを接続するための光ケーブルが不要となり、コスト低減を図ることができる。
(7)測定光用受光器30と参照光用受光器33とは、音響光学波長可変フィルタ12及び基準波長発生器13と同一のケーシング11の内部に配置されている。そのため、これらの部材の間を空間とすることで、これらを接続するための光ケーブルが不要となり、コスト低減を図ることができる。
[第3実施形態]
次に、本発明の第3実施形態を図8に基づいて説明する。
第3実施形態は、入力部140、測定光用受光器30、除算器600がそれぞれ2つから構成されている点が第1実施形態と異なるものであり、他の構成は第1実施形態と同じである。
図8には第3実施形態にかかる光波長測定装置3の概略構成が示されている。
図8において、光波長測定装置3は、ケーシング11と、ケーシング11の内部にそれぞれ配置された、音響光学波長可変フィルタ12、フィルタ用温度検知部91、入力部140、分離部151、基準波長発生器13、発生器用温度検知部92及び受光部3Aと、受光部3Aに接続される演算回路60と、を備えている。
次に、本発明の第3実施形態を図8に基づいて説明する。
第3実施形態は、入力部140、測定光用受光器30、除算器600がそれぞれ2つから構成されている点が第1実施形態と異なるものであり、他の構成は第1実施形態と同じである。
図8には第3実施形態にかかる光波長測定装置3の概略構成が示されている。
図8において、光波長測定装置3は、ケーシング11と、ケーシング11の内部にそれぞれ配置された、音響光学波長可変フィルタ12、フィルタ用温度検知部91、入力部140、分離部151、基準波長発生器13、発生器用温度検知部92及び受光部3Aと、受光部3Aに接続される演算回路60と、を備えている。
受光部3Aは、測定光用受光器と参照光用受光器33とを備え、測定光用受光器30は、第一受光器31及び第二受光器32を有する。
入力部140は、音響光学波長可変フィルタ12と分離部151との間に配置された第一入力部141と、分離部151と光波長変化型センサ20との間に配置された第二入力部142とを備える。
第一入力部141は、音響光学波長可変フィルタ12から出力された出力光を基準波長発生器13に入力させるものである。
第二入力部142は、音響光学波長可変フィルタ12から分離部151を経由した出力光を光波長変化型センサ20に送り、光波長変化型センサ20の物理量に応じた出力光を測定光として第二受光器32に出力するものである。
入力部140は、音響光学波長可変フィルタ12と分離部151との間に配置された第一入力部141と、分離部151と光波長変化型センサ20との間に配置された第二入力部142とを備える。
第一入力部141は、音響光学波長可変フィルタ12から出力された出力光を基準波長発生器13に入力させるものである。
第二入力部142は、音響光学波長可変フィルタ12から分離部151を経由した出力光を光波長変化型センサ20に送り、光波長変化型センサ20の物理量に応じた出力光を測定光として第二受光器32に出力するものである。
基準波長発生器13は、音響光学波長可変フィルタ12で出力された出力光を、第一入力部141を介して入力し、任意の基準波長光を第一受光器31に出力するものである。
分離部151は、音響光学波長可変フィルタ12から出力される出力光を第二入力部142に向かう出力光と、参照光用受光器33に向かう参照光とに分離するものである。ここで、分離部151から参照光用受光器33に向かう参照光と、分離部151から第二入力部142へ向かう出力光とは、所定割合、例えば、1:9~1:19の割合で分割される。
第一入力部141、第二入力部142及び分離部151は、それぞれビームスプリッタから構成される。なお、第一入力部141、第二入力部142及び分離部151が光ファイバで構成される光学系に含まれる場合には、これらの素子は、光カプラーから構成される。さらに、第二入力部142はサーキュレータから構成されるものでもよい。
分離部151は、音響光学波長可変フィルタ12から出力される出力光を第二入力部142に向かう出力光と、参照光用受光器33に向かう参照光とに分離するものである。ここで、分離部151から参照光用受光器33に向かう参照光と、分離部151から第二入力部142へ向かう出力光とは、所定割合、例えば、1:9~1:19の割合で分割される。
第一入力部141、第二入力部142及び分離部151は、それぞれビームスプリッタから構成される。なお、第一入力部141、第二入力部142及び分離部151が光ファイバで構成される光学系に含まれる場合には、これらの素子は、光カプラーから構成される。さらに、第二入力部142はサーキュレータから構成されるものでもよい。
光波長変化型センサ20は、第二入力部142を経由して音響光学波長可変フィルタ12の出力光を入力するとともに、第二入力部142に向けて反射光を出射する。ここで、光波長変化型センサ20で出力される反射光は、光波長変化型センサ20が設置される被測定物の物理量変化に応じたものである。被測定物の物理量として、変位、加速度、傾斜、歪み、温度等を例示できる。
除算器600は、第一受光器31と参照光用受光器33とからそれぞれ出力される信号を受ける第一除算器61と、第二受光器32と参照光用受光器33とからそれぞれ出力される信号を受ける第二除算器62とを備えている。
除算器600は、第一受光器31と参照光用受光器33とからそれぞれ出力される信号を受ける第一除算器61と、第二受光器32と参照光用受光器33とからそれぞれ出力される信号を受ける第二除算器62とを備えている。
第3実施形態における測定方法は第1実施形態と同じである。
つまり、音響光学波長可変フィルタ12から出力された出力光は、分離部151により2分岐される。2分岐された出力光のうち、一方は、第二入力部142を経由して、光波長変化型センサ20に送られる。光波長変化型センサ20からの反射光(λ1、λ2、・・・λn)は、再び、第二入力部142を通り、測定光として第二受光器32で受光される。測定光は第二受光器32によりスペクトル波形の信号に変換される。
2分岐された出力光のうち他方は、参照光として参照光用受光器33で受光される。
第二受光器32と参照光用受光器33とから出力される信号は第二除算器62に送られる。第二除算器62は参照光用受光器33から出力される信号の出力値を、第二受光器32から出力される信号の出力値で除算する。つまり、第二除算器62は、差動アンプとして機能するものであり、参照光用受光器33で得られた音響光学波長可変フィルタ12のスペクトル波形で、第二受光器32で得られた光波長変化型センサ20からの反射光のスペクトルを除算する(測定光/参照光)。なお、第一受光器31、参照光用受光器33及び第一除算器61の原理も図3A~図3Cの例と同じである。第一除算器61は、参照光用受光器33から出力される信号の出力値で、第一受光器31から出力される信号の出力値を除算する構成である。
つまり、音響光学波長可変フィルタ12から出力された出力光は、分離部151により2分岐される。2分岐された出力光のうち、一方は、第二入力部142を経由して、光波長変化型センサ20に送られる。光波長変化型センサ20からの反射光(λ1、λ2、・・・λn)は、再び、第二入力部142を通り、測定光として第二受光器32で受光される。測定光は第二受光器32によりスペクトル波形の信号に変換される。
2分岐された出力光のうち他方は、参照光として参照光用受光器33で受光される。
第二受光器32と参照光用受光器33とから出力される信号は第二除算器62に送られる。第二除算器62は参照光用受光器33から出力される信号の出力値を、第二受光器32から出力される信号の出力値で除算する。つまり、第二除算器62は、差動アンプとして機能するものであり、参照光用受光器33で得られた音響光学波長可変フィルタ12のスペクトル波形で、第二受光器32で得られた光波長変化型センサ20からの反射光のスペクトルを除算する(測定光/参照光)。なお、第一受光器31、参照光用受光器33及び第一除算器61の原理も図3A~図3Cの例と同じである。第一除算器61は、参照光用受光器33から出力される信号の出力値で、第一受光器31から出力される信号の出力値を除算する構成である。
第3実施形態では、第1実施形態の(1)~(6)と同様の効果を奏することができる他、次の効果を奏することができる。
(8)測定光用受光器30を、基準波長発生器13から出力される基準光を受光する第一受光器31と、光波長変化型センサ20から出力される出力光を受光する第二受光器32とに分けて構成しているから、基準波長光と光波長変化型センサから出力される出力光とを同じ光波長帯にすることが可能となり、広範囲な測定を精度よく簡易な構造で行うことができる。
(8)測定光用受光器30を、基準波長発生器13から出力される基準光を受光する第一受光器31と、光波長変化型センサ20から出力される出力光を受光する第二受光器32とに分けて構成しているから、基準波長光と光波長変化型センサから出力される出力光とを同じ光波長帯にすることが可能となり、広範囲な測定を精度よく簡易な構造で行うことができる。
[第4実施形態]
次に、本発明の第4実施形態を図9に基づいて説明する。
第4実施形態は、音響光学波長可変フィルタ12に入力光を入力させる構成が第3実施形態とは相違するものであり、他の構成は第3実施形態と同じである。
図9は光波長測定装置4の概略構成が示されている。
図9において、光波長測定装置4では、入力部は、光増幅器81と、音響光学波長可変フィルタ12から出力される出力光を光増幅器81に帰還させる帰還部152とを備えている。
次に、本発明の第4実施形態を図9に基づいて説明する。
第4実施形態は、音響光学波長可変フィルタ12に入力光を入力させる構成が第3実施形態とは相違するものであり、他の構成は第3実施形態と同じである。
図9は光波長測定装置4の概略構成が示されている。
図9において、光波長測定装置4では、入力部は、光増幅器81と、音響光学波長可変フィルタ12から出力される出力光を光増幅器81に帰還させる帰還部152とを備えている。
光増幅器81は、エルビウムドープファイバーアンプ(EDFA)や、半導体光アンプ(SOA)から構成される。
帰還部152は、第一入力部141や第二入力部142と同じ素子から構成され、音響光学波長可変フィルタ12から出力される出力光を光増幅器81に帰還させるとともに、第一入力部141に送る。
帰還部152は、図9では、音響光学波長可変フィルタ12と第一入力部141との間に配置されているが、本実施形態では、帰還部152の配置位置は限定されるものではない。例えば、帰還部152は、第一入力部141と分離部151との間、分離部151と第二入力部142との間、あるいは、第二入力部142と光波長変化型センサ20との間に配置されるものであってもよい。
帰還部152は、第一入力部141や第二入力部142と同じ素子から構成され、音響光学波長可変フィルタ12から出力される出力光を光増幅器81に帰還させるとともに、第一入力部141に送る。
帰還部152は、図9では、音響光学波長可変フィルタ12と第一入力部141との間に配置されているが、本実施形態では、帰還部152の配置位置は限定されるものではない。例えば、帰還部152は、第一入力部141と分離部151との間、分離部151と第二入力部142との間、あるいは、第二入力部142と光波長変化型センサ20との間に配置されるものであってもよい。
第4実施形態では、第3実施形態の(1)~(6)(8)と同様の効果を奏することができる他、次の効果を奏することができる。
(9)音響光学波長可変フィルタ12に入力光を入力させる入力部を、光増幅器81と、音響光学波長可変フィルタ12から出力される出力光を光増幅器81に帰還させる帰還部152とを備えて構成したから、基準波長発生器13や光波長変化型センサ20に入力する光の強さを容易に上げることが可能となり、さらに、波長の掃引範囲を拡大することができる。
(9)音響光学波長可変フィルタ12に入力光を入力させる入力部を、光増幅器81と、音響光学波長可変フィルタ12から出力される出力光を光増幅器81に帰還させる帰還部152とを備えて構成したから、基準波長発生器13や光波長変化型センサ20に入力する光の強さを容易に上げることが可能となり、さらに、波長の掃引範囲を拡大することができる。
[第5実施形態]
次に、本発明の第5実施形態を図10に基づいて説明する。
第5実施形態は、光増幅器81の配置位置が第4実施形態とは異なるもので、他の構成は第4実施形態と同じである。
図10は光波長測定装置5の概略構成が示されている。
図10において、光波長測定装置5では、入力部を構成する光増幅器81は、音響光学波長可変フィルタ12と帰還部152との間に配置されている。
帰還部152は、音響光学波長可変フィルタ12から出力される出力光を光増幅器81に帰還させる。
第5実施形態では第4実施形態の(1)~(6)(8)(9)と同様の効果を奏することができる。
次に、本発明の第5実施形態を図10に基づいて説明する。
第5実施形態は、光増幅器81の配置位置が第4実施形態とは異なるもので、他の構成は第4実施形態と同じである。
図10は光波長測定装置5の概略構成が示されている。
図10において、光波長測定装置5では、入力部を構成する光増幅器81は、音響光学波長可変フィルタ12と帰還部152との間に配置されている。
帰還部152は、音響光学波長可変フィルタ12から出力される出力光を光増幅器81に帰還させる。
第5実施形態では第4実施形態の(1)~(6)(8)(9)と同様の効果を奏することができる。
[第6実施形態]
次に、本発明の第6実施形態を図11に基づいて説明する。
第6実施形態は、分離部151、参照光用受光器33及び除算器600が省略されている点が第1実施形態とは異なるものであり、他の構成は第1実施形態と同じである。
図11には光波長測定装置6の概略構成が示されている。
図11において、光波長測定装置6では、音響光学波長可変フィルタ12と基準波長発生器13との間に入力部140が配置され、入力部140から送られる基準波長光と測定光とが測定光用受光器30に送られる。測定光用受光器30からの出力信号が波長演算部63に送られて、波長演算部63で測定波長が演算される。
第6実施形態では第1実施形態の(1)~(5)と同様の効果を奏することができる。
次に、本発明の第6実施形態を図11に基づいて説明する。
第6実施形態は、分離部151、参照光用受光器33及び除算器600が省略されている点が第1実施形態とは異なるものであり、他の構成は第1実施形態と同じである。
図11には光波長測定装置6の概略構成が示されている。
図11において、光波長測定装置6では、音響光学波長可変フィルタ12と基準波長発生器13との間に入力部140が配置され、入力部140から送られる基準波長光と測定光とが測定光用受光器30に送られる。測定光用受光器30からの出力信号が波長演算部63に送られて、波長演算部63で測定波長が演算される。
第6実施形態では第1実施形態の(1)~(5)と同様の効果を奏することができる。
[第7実施形態]
次に、本発明の第7実施形態を図12に基づいて説明する。
第7実施形態は、発生器用温度検知部92が省略されている点が第6実施形態とは異なるものであり、他の構成は第6実施形態と同じである。
図12には光波長測定装置7の概略構成が示されている。
図12において、光波長測定装置7では、基準波長発生器13の温度情報が波長演算部63に送られることがない。
第7実施形態では、第1実施形態の(1)(3)(5)と同様の効果を奏することができる。
次に、本発明の第7実施形態を図12に基づいて説明する。
第7実施形態は、発生器用温度検知部92が省略されている点が第6実施形態とは異なるものであり、他の構成は第6実施形態と同じである。
図12には光波長測定装置7の概略構成が示されている。
図12において、光波長測定装置7では、基準波長発生器13の温度情報が波長演算部63に送られることがない。
第7実施形態では、第1実施形態の(1)(3)(5)と同様の効果を奏することができる。
[第8実施形態]
次に、本発明の第8実施形態を図13に基づいて説明する。
第8実施形態は、測定光と基準波長光とが測定光用受光器30に入光する経路が第7実施形態とは異なるものであり、他の構成は第7実施形態と同じである。
図13には光波長測定装置8の概略構成が示されている。
図13において、光波長測定装置8では、基準波長発生器13が入力部140と測定光用受光器30との間に配置され、入力部140から基準波長発生器13に入力される光は基準波長光として測定光用受光器30に送られる。
入力部140と光波長変化型センサ20との間にはビームスプリッタ153がケーシング11の内部に配置され、基準波長発生器13と測定光用受光器30との間にはビームスプリッタ154がケーシング11の内部に配置される。入力部140からの光はビームスプリッタ153を通って光波長変化型センサ20に送られ、光波長変化型センサ20から反射された光はビームスプリッタ153で反射され、ケーシング11の内部に配置されたミラー155とビームスプリッタ154とを介して測定光用受光器30に測定光として送られる。
第8実施形態では、第1実施形態の(1)(3)(5)と同様の効果を奏することができる。
次に、本発明の第8実施形態を図13に基づいて説明する。
第8実施形態は、測定光と基準波長光とが測定光用受光器30に入光する経路が第7実施形態とは異なるものであり、他の構成は第7実施形態と同じである。
図13には光波長測定装置8の概略構成が示されている。
図13において、光波長測定装置8では、基準波長発生器13が入力部140と測定光用受光器30との間に配置され、入力部140から基準波長発生器13に入力される光は基準波長光として測定光用受光器30に送られる。
入力部140と光波長変化型センサ20との間にはビームスプリッタ153がケーシング11の内部に配置され、基準波長発生器13と測定光用受光器30との間にはビームスプリッタ154がケーシング11の内部に配置される。入力部140からの光はビームスプリッタ153を通って光波長変化型センサ20に送られ、光波長変化型センサ20から反射された光はビームスプリッタ153で反射され、ケーシング11の内部に配置されたミラー155とビームスプリッタ154とを介して測定光用受光器30に測定光として送られる。
第8実施形態では、第1実施形態の(1)(3)(5)と同様の効果を奏することができる。
[第9実施形態]
次に、本発明の第9実施形態を図14に基づいて説明する。
第9実施形態は、発生器用温度検知部92、分離部151及び参照光用受光器33をそれぞれ省略した点、及び基準波長発生器13の位置が第1実施形態とは異なるものであり、他の構成は第1実施形態と同じである。
図14には光波長測定装置9の概略構成が示されている。
図14において、光波長測定装置9では、音響光学波長可変フィルタ12と光波長変化型センサ20との間であってケーシング11の内部に入力部140が配置されている。入力部140は、音響光学波長可変フィルタ12側に配置された第一入力部141と、光波長変化型センサ20側に配置された第二入力部142とを有する。第一入力部141と測定光用受光器30との間には基準波長発生器13が配置されている。測定光用受光器30は、基準波長発生器13と除算器600との間に配置された第一受光器31と、第二入力部142と除算器600との間に配置された第二受光器32とを有する。
第9実施形態では、第1実施形態の(1)(3)(5)と第3実施形態の(8)と同様の効果を奏することができる。
次に、本発明の第9実施形態を図14に基づいて説明する。
第9実施形態は、発生器用温度検知部92、分離部151及び参照光用受光器33をそれぞれ省略した点、及び基準波長発生器13の位置が第1実施形態とは異なるものであり、他の構成は第1実施形態と同じである。
図14には光波長測定装置9の概略構成が示されている。
図14において、光波長測定装置9では、音響光学波長可変フィルタ12と光波長変化型センサ20との間であってケーシング11の内部に入力部140が配置されている。入力部140は、音響光学波長可変フィルタ12側に配置された第一入力部141と、光波長変化型センサ20側に配置された第二入力部142とを有する。第一入力部141と測定光用受光器30との間には基準波長発生器13が配置されている。測定光用受光器30は、基準波長発生器13と除算器600との間に配置された第一受光器31と、第二入力部142と除算器600との間に配置された第二受光器32とを有する。
第9実施形態では、第1実施形態の(1)(3)(5)と第3実施形態の(8)と同様の効果を奏することができる。
[第10実施形態]
次に、本発明の第10実施形態を図15に基づいて説明する。
第10実施形態は、第9実施形態の基準波長発生器13に発生器用温度検知部92を設けた点が第9実施形態とは異なるものであり、他の構成は第9実施形態と同じである。
図15には光波長測定装置1Aの概略構成が示されている。
図15において、光波長測定装置1Aでは、基準波長発生器13の温度を検知する発生器用温度検知部92がケーシング11の内部に配置されている。
発生器用温度検知部92で検知される基準波長発生器13の温度信号は、波長演算部63に送られる。
第10実施形態では、第1実施形態の(1)~(6)と第3実施形態の(8)と同様の効果を奏することができる。
次に、本発明の第10実施形態を図15に基づいて説明する。
第10実施形態は、第9実施形態の基準波長発生器13に発生器用温度検知部92を設けた点が第9実施形態とは異なるものであり、他の構成は第9実施形態と同じである。
図15には光波長測定装置1Aの概略構成が示されている。
図15において、光波長測定装置1Aでは、基準波長発生器13の温度を検知する発生器用温度検知部92がケーシング11の内部に配置されている。
発生器用温度検知部92で検知される基準波長発生器13の温度信号は、波長演算部63に送られる。
第10実施形態では、第1実施形態の(1)~(6)と第3実施形態の(8)と同様の効果を奏することができる。
[第11実施形態]
次に、本発明の第11実施形態を図16に基づいて説明する。
第11実施形態は、第1実施形態の基準波長発生器13から発生器用温度検知部92を省略した点が第1実施形態とは異なるものであり、他の構成は第1実施形態と同じである。
図16には光波長測定装置1Bの概略構成が示されている。
図16において、光波長測定装置1Bでは、基準波長発生器13の温度を検知する発生器用温度検知部92が省略されており、波長演算部63では、温度の補正がされない状態で、波長が測定される。
第11実施形態では、第1実施形態の(1)(3)~(6)と同様の効果を奏することができる。
次に、本発明の第11実施形態を図16に基づいて説明する。
第11実施形態は、第1実施形態の基準波長発生器13から発生器用温度検知部92を省略した点が第1実施形態とは異なるものであり、他の構成は第1実施形態と同じである。
図16には光波長測定装置1Bの概略構成が示されている。
図16において、光波長測定装置1Bでは、基準波長発生器13の温度を検知する発生器用温度検知部92が省略されており、波長演算部63では、温度の補正がされない状態で、波長が測定される。
第11実施形態では、第1実施形態の(1)(3)~(6)と同様の効果を奏することができる。
なお、本発明は前述の各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、本発明の音響光学波長可変フィルタ12は、導波路型に限定されるものではない。
例えば、本発明の音響光学波長可変フィルタ12は、導波路型に限定されるものではない。
1,2,3,4,5,6,7,8,9,1A,1B…光波長測定装置、12…音響光学波長可変フィルタ、13…基準波長発生器、140…入力部、141…第一入力部、142…第二入力部、151…分離部、152…帰還部、20…光波長変化型センサ、3A…受光部、30…測定光用受光器、31…第一受光器、32…第二受光器、33…参照光用受光器、40…制御部、50…高周波電圧発生回路、51…高周波信号発生素子、52…増幅器、60…演算回路、600…除算器、61…第一除算器、62…第二除算器、63…波長演算部、80…広帯域光源、81…光増幅器、91…フィルタ用温度検知部、92…発生器用温度検知部
Claims (7)
- 入力光から所定波長を選択的に抽出する音響光学波長可変フィルタと、
前記音響光学波長可変フィルタに高周波信号を加えて励振する高周波電圧発生回路と、
任意の基準波長光を出力する基準波長発生器と、
被測定物に設置され物理量に応じた波長の光を出力する光波長変化型センサと、
前記音響光学波長可変フィルタから出力された出力光を前記基準波長発生器と前記光波長変化型センサとにそれぞれに入力させる入力部と、
前記基準波長発生器から出力された出力光を受光し、かつ、前記光波長変化型センサで出力された出力光を、前記入力部を介して受光する測定光用受光器と、
前記測定光用受光器から出力される信号に基づいて前記光波長変化型センサの波長を演算する演算回路と、
前記音響光学波長可変フィルタの温度を検知するフィルタ用温度検知部と、
前記フィルタ用温度検知部から出力された温度信号に基づいて前記高周波電圧発生回路が前記音響光学波長可変フィルタに出力する周波数信号を制御する制御部と、を備えた
ことを特徴とする光波長測定装置。 - 請求項1に記載された光波長測定装置において、
前記基準波長発生器の温度を検知する発生器用温度検知部を備え、
前記演算回路は、前記発生器用温度検知部から出力された温度信号に基づいて前記基準波長発生器から出力される出力光の波長を演算する波長演算部を有する
ことを特徴とする光波長測定装置。 - 請求項1又は請求項2に記載された光波長測定装置において、
前記音響光学波長可変フィルタの光入力側又は光出力側に配置された光増幅器と、前記音響光学波長可変フィルタと前記光増幅器の一方から出力される出力光を前記音響光学波長可変フィルタと前記光増幅器の他方に帰還させる帰還部とを備えた
ことを特徴とする光波長測定装置。 - 請求項1ないし請求項3のいずれか1項に記載された光波長測定装置において、
前記音響光学波長可変フィルタと前記フィルタ用温度検知部とは同一ケーシング内に配置される
ことを特徴とする光波長測定装置。 - 請求項2ないし請求項4のいずれか1項に記載された光波長測定装置において、
前記音響光学波長可変フィルタと前記基準波長発生器とは同一ケーシング内に配置されている
ことを特徴とする光波長測定装置。 - 請求項5に記載された光波長測定装置において、
前記測定光用受光器は、前記音響光学波長可変フィルタ及び前記基準波長発生器と同一ケーシング内に配置される
ことを特徴とする光波長測定装置。 - 請求項1ないし請求項6のいずれか1項に記載された光波長測定装置において、
前記入力部は、前記音響光学波長可変フィルタから出力された出力光を前記基準波長発生器に入力させる第一入力部と、前記音響光学波長可変フィルタから出力された出力光を前記光波長変化型センサに入力させる第二入力部とを有し、
前記測定光用受光器は、前記基準波長発生器から出力された出力光を受光する第一受光器と、前記光波長変化型センサで出力された出力光を、前記第二入力部を介して受光する第二受光器とを有し、
さらに、前記音響光学波長可変フィルタから出力された出力光を受光する参照光用受光器と、前記音響光学波長可変フィルタから出力される出力光を前記第二入力部と前記参照光用受光器とに分離する分離部と、前記参照光用受光器から出力される信号の出力値で、前記第一受光器と前記第二受光器との少なくとも一方から出力される信号の出力値を除算する除算器と、を備えた
ことを特徴とする光波長測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018541043A JP6775024B2 (ja) | 2016-09-20 | 2017-09-15 | 光波長測定装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016183076 | 2016-09-20 | ||
JP2016-183076 | 2016-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018056208A1 true WO2018056208A1 (ja) | 2018-03-29 |
Family
ID=61690896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/033445 WO2018056208A1 (ja) | 2016-09-20 | 2017-09-15 | 光波長測定装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6775024B2 (ja) |
WO (1) | WO2018056208A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1038690A (ja) * | 1996-07-29 | 1998-02-13 | Opt Giken Kk | 温度ドリフトを回避した分光分析装置 |
JP2001511895A (ja) * | 1997-02-14 | 2001-08-14 | オプトプラン・アクティーゼルスカブ | 光波長測定装置 |
JP2002368317A (ja) * | 2001-06-07 | 2002-12-20 | Fujitsu Ltd | 音響光学チューナブルフィルタを用いた多波長光源 |
US6624889B1 (en) * | 2002-04-29 | 2003-09-23 | Oplink Communications, Inc. | Cascaded filter employing an AOTF and narrowband birefringent filters |
WO2007083609A1 (ja) * | 2006-01-17 | 2007-07-26 | Murata Manufacturing Co., Ltd. | 光スペクトラムアナライザ |
WO2009054193A1 (ja) * | 2007-10-26 | 2009-04-30 | Murata Manufacturing Co., Ltd. | 光スペクトラムアナライザ |
-
2017
- 2017-09-15 JP JP2018541043A patent/JP6775024B2/ja active Active
- 2017-09-15 WO PCT/JP2017/033445 patent/WO2018056208A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1038690A (ja) * | 1996-07-29 | 1998-02-13 | Opt Giken Kk | 温度ドリフトを回避した分光分析装置 |
JP2001511895A (ja) * | 1997-02-14 | 2001-08-14 | オプトプラン・アクティーゼルスカブ | 光波長測定装置 |
JP2002368317A (ja) * | 2001-06-07 | 2002-12-20 | Fujitsu Ltd | 音響光学チューナブルフィルタを用いた多波長光源 |
US6624889B1 (en) * | 2002-04-29 | 2003-09-23 | Oplink Communications, Inc. | Cascaded filter employing an AOTF and narrowband birefringent filters |
WO2007083609A1 (ja) * | 2006-01-17 | 2007-07-26 | Murata Manufacturing Co., Ltd. | 光スペクトラムアナライザ |
WO2009054193A1 (ja) * | 2007-10-26 | 2009-04-30 | Murata Manufacturing Co., Ltd. | 光スペクトラムアナライザ |
Also Published As
Publication number | Publication date |
---|---|
JP6775024B2 (ja) | 2020-10-28 |
JPWO2018056208A1 (ja) | 2019-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7268884B2 (en) | Wavelength reference system for optical measurements | |
US7813046B2 (en) | Wavelength monitored and stabilized source | |
AU2005225034A1 (en) | Interferometric sensor | |
JP2002365142A (ja) | 波長測定装置、光学特性測定装置、波長測定方法及びフトウエア製品 | |
WO2008023695A1 (fr) | Capteur de température à fibre optique | |
US9164027B2 (en) | Frequency tunable laser system | |
US20230228616A1 (en) | Distributed optical fibre sensor | |
CN108429123B (zh) | 利用时间塔尔博特效应产生激光脉冲和光谱 | |
CA2899044C (en) | Multi-peak reference grating | |
RU102256U1 (ru) | Устройство для измерения параметров физических полей | |
JP4693097B2 (ja) | 波長導出装置および該装置を備えた波長計、波長導出方法、プログラムおよび記録媒体 | |
US7560685B2 (en) | Spectrally stabilized broadband optical source | |
JP4932629B2 (ja) | 物理量の温度補償方法及び温度補償型光ファイバセンサ | |
WO2018056208A1 (ja) | 光波長測定装置 | |
WO2014081295A1 (en) | A method of interrogating a multiple number of optic sensors, a computer program product and an interrogating unit | |
JP5023094B2 (ja) | 光ヘテロダインスペクトラムアナライザ | |
CN104697634A (zh) | 一种极高分辨率光谱测量装置及方法 | |
JP2007266654A (ja) | 周波数可変光源並びに周波数校正システム及び方法 | |
JP4613110B2 (ja) | 光干渉型位相検出装置 | |
EP3150969B1 (en) | Sensor for measuring the distribution of physical magnitudes in an optical fibre and associated measuring method | |
JP4996669B2 (ja) | 電磁波処理装置及び電磁波処理方法 | |
JP3761025B2 (ja) | 光スペクトラムアナライザ | |
JPH02240546A (ja) | チューナブルエタロンを用いたガスセンサ | |
WO2011126372A1 (en) | Scanning wavelength system and method calibrating such a system | |
TW387055B (en) | Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17852981 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018541043 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17852981 Country of ref document: EP Kind code of ref document: A1 |