WO2018056180A1 - 自動分析装置 - Google Patents
自動分析装置 Download PDFInfo
- Publication number
- WO2018056180A1 WO2018056180A1 PCT/JP2017/033331 JP2017033331W WO2018056180A1 WO 2018056180 A1 WO2018056180 A1 WO 2018056180A1 JP 2017033331 W JP2017033331 W JP 2017033331W WO 2018056180 A1 WO2018056180 A1 WO 2018056180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- altitude
- sample
- reagent
- reaction
- parameter
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/025—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1081—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00594—Quality control, including calibration or testing of components of the analyser
- G01N35/00693—Calibration
- G01N2035/00702—Curve-fitting; Parameter matching; Calibration constants
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00584—Control arrangements for automatic analysers
- G01N35/00722—Communications; Identification
- G01N2035/00891—Displaying information to the operator
- G01N2035/009—Displaying information to the operator alarms, e.g. audible
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0401—Sample carriers, cuvettes or reaction vessels
- G01N2035/0429—Sample carriers adapted for special purposes
- G01N2035/0432—Sample carriers adapted for special purposes integrated with measuring devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0439—Rotary sample carriers, i.e. carousels
- G01N2035/0443—Rotary sample carriers, i.e. carousels for reagents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/02—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
- G01N35/04—Details of the conveyor system
- G01N2035/0439—Rotary sample carriers, i.e. carousels
- G01N2035/0444—Rotary sample carriers, i.e. carousels for cuvettes or reaction vessels
Definitions
- the present invention relates to an automatic analyzer that performs qualitative and quantitative analysis of biological samples such as blood and urine.
- An automated analyzer that performs quantitative and qualitative analysis of specific components contained in a sample by adding multiple types of reagents loaded in advance on biological samples such as blood and urine (hereinafter referred to as samples) For example, an analysis method that uses a reagent that changes the color of the reaction solution by reacting with the analyte in the sample (colorimetric analysis). ) And an analysis method (immunoassay) for counting the label using a reagent in which the label is added to a substance that specifically binds directly or indirectly to the component to be analyzed.
- automatic analyzers are used not only in plains but also in facilities of various environments such as mountains and plateaus. Appropriate adjustments corresponding to the usage environment are required.
- the reference data obtained from the reference solution is compared to suppress individual differences between the devices, but it does not support adjustment of various parameters according to the usage environment of the automatic analyzer. It is difficult to obtain accurate analysis results. In addition, optimization of various parameters corresponding to the usage environment is diverse, so it takes a lot of time to individually adjust various parameters.
- the present invention has been made in view of the above, and an object thereof is to provide an automatic analyzer capable of easily adjusting various parameters corresponding to the use environment of the apparatus.
- the present invention provides a reaction in which a reagent disk on which a plurality of reagent containers containing reagents used for analyzing a sample are mounted and a plurality of reaction containers for reacting the sample and the reagent are arranged.
- a sample dispensing mechanism that dispenses the sample by immersing and dispensing a dispensing nozzle into the disk and the sample contained in the sample container, and then discharging the sample into the reaction container of the reaction disk;
- a reagent dispensing mechanism that dispenses the reagent by immersing and aspirating a dispensing nozzle into the reagent, and discharging the reagent into the reaction container of the reaction disk; and from the sample of the reaction container and the reaction solution of the reagent
- various parameters in the automatic analyzer that are optimized for each altitude at which the automatic analyzer is used Based on the altitude acquired by the parameter storage unit stored in correspondence with the altitude, the altitude information acquisition unit for acquiring the altitude information where the automatic analyzer is installed, and the altitude information acquisition unit, the parameter storage unit And a parameter setting unit that reads the parameters stored in the automatic analyzer and sets them in the automatic analyzer.
- FIG. 1 is a diagram schematically showing an overall configuration of an automatic analyzer according to the present invention. It is a functional block diagram which shows the structure of a control apparatus schematically. It is a figure which extracts and shows a sample dispensing mechanism with the peripheral structure typically. It is a processing flow which shows a parameter setting process. It is a figure which shows an example of an altitude-parameter table. It is a figure which shows the relationship between an altitude and atmospheric pressure. It is a figure which shows an example of the relationship between the setting electric current value of a vacuum pump, and the differential pressure
- An example of the time change of the detection result of the pressure sensor at the time of sample suction in the sample dispensing mechanism is shown, and a normal waveform and an abnormal waveform at an altitude of 0 m are compared and illustrated.
- An example of the time change of the detection result of the pressure sensor at the time of sample suction in the sample dispensing mechanism is shown, and a normal waveform and an abnormal waveform at an altitude of 2000 m are compared and illustrated. It is a figure which shows an example of the relationship between the setting voltage value of a thermal radiation fan, and the temperature rise in an automatic analyzer.
- FIG. 1 is a diagram schematically showing the overall configuration of the automatic analyzer according to the present embodiment.
- FIG. 2 is a functional block diagram schematically showing the configuration of the control device.
- an automatic analyzer 100 includes a sample transport mechanism 17, a reagent disk 9, a reaction disk 1, sample dispensing mechanisms 11 and 12, reagent dispensing mechanisms 7 and 8, stirring mechanisms 5 and 6, a spectrophotometer 4,
- the reaction vessel cleaning mechanism 3, the control device 21, etc. are roughly configured.
- the sample transport mechanism 17 transports a rack 16 on which a plurality of sample containers 15 containing biological samples such as blood and urine to be analyzed (hereinafter simply referred to as samples) are mounted.
- the mechanisms (sample dispensing mechanisms) 11 and 12 transport the rack 16 to various parts of the automatic analyzer 100 including the sample suction position for sucking the sample from the sample container 15.
- the reagent disk 9 is configured to carry a plurality of reagent containers 10 containing reagents used for analyzing a sample, arranged in the circumferential direction and transported.
- the reagent dispensing mechanisms (reagent dispensing mechanisms) 7 and 8 receive the reagents.
- the target reagent container 10 is rotated and conveyed to a reagent dispensing position to be aspirated.
- the reaction disk 1 is a device in which a plurality of reaction containers (reaction cells) 2 for mixing and reacting a sample and a reagent are arranged and carried in the circumferential direction, and the reaction container 2 is transported by sample dispensing mechanisms 11 and 12. The sample is transported to a sample discharge position or a reagent discharge position by the reagent dispensing mechanisms 7 and 8.
- the reaction disk 1 immerses the reaction vessel 2 in a constant temperature medium (not shown) to react the reaction liquid, which is a mixture of the sample and the reagent, at a constant temperature and stirs the reaction liquid by the stirring mechanisms 5 and 6. Positions such as a stirring position to be performed, an analysis position for measuring the reaction liquid (in this embodiment, transmitted light measurement by the spectrophotometer 4), a cleaning position for cleaning the reaction container 2 after the analysis by the reaction container cleaning mechanism 3 Rotate and transport.
- sample dispensing mechanisms 11, 12 immerse and suck sample dispensing nozzles (sample dispensing nozzles) 11 a, 12 a in the sample in the sample container 15 that has been transported to the sample dispensing position by the sample transport mechanism 17. Then, the sample is dispensed by being discharged into the reaction container 2 of the reaction disk 1.
- the sample dispensing mechanism 11 is provided so as to be rotatable and vertically movable, and the sample can be sucked only from the sample container after opening.
- the sample dispensing mechanism 12 is also provided so as to be able to rotate and move up and down, and the sample can be sucked from both the opened sample container and the closed sample container.
- the sample dispensing nozzle 11a of the sample dispensing mechanism 11 is connected to a sample pump 18c that sucks and discharges the sample and a pressure sensor 19c that detects the pressure of the sample pump 18c.
- the sample dispensing nozzle 12a of the sample dispensing mechanism 12 is connected to a sample pump 18d that sucks and discharges the sample and a pressure sensor 19d that detects the pressure of the sample pump 18d.
- the operating range of the sample dispensing mechanism 12 includes a water suction position 71 for sucking water by the sample dispensing nozzle 12a and a vacuum suction position 72 for sucking water adhering to the sample dispensing nozzle 12a. Is provided.
- FIG. 3 is a diagram schematically showing the sample dispensing mechanism extracted along with its peripheral configuration.
- the sample dispensing mechanism 11 includes an arm 42 disposed so as to extend in the horizontal direction, a sample dispensing nozzle 11 a disposed at one end of the arm 42 with its tip facing downward, and an arm 42. And an arm drive mechanism 41 for rotating the arm 42 in the horizontal direction and moving up and down.
- a syringe pump 51 (sample pump 18c) is connected to the sample dispensing nozzle 11a via a pipe line (not shown) installed through the arm drive mechanism 41, and is driven by the syringe pump drive mechanism 51a.
- a pressure sensor 19c is installed in the flow path between the syringe pump 51 and the sample dispensing nozzle 11a, and pressure fluctuations in the flow path generated by driving the syringe pump drive mechanism 51a are passed through the A / D converter 110.
- the waveform can be monitored by the control device 21.
- the syringe pump 51 is connected to a pump 53 for supplying system water 74 such as pure water stored in the water tank 81 into the syringe pump 51 and the sample dispensing nozzle 12a.
- Is provided with an electromagnetic valve 52 for opening and closing the pipe (switching between flow and shut-off).
- the sample dispensing nozzle 11a is inserted into the sample in the sample container 15 by the arm drive mechanism 41 to suck the sample, and the sample dispensing nozzle 11a is inserted into the reaction container 2 and discharged, thereby discharging the sample from the sample container 15. Dispense the sample into the reaction vessel 2.
- the sample in the sample container 15 is, for example, serum, but may contain solids such as fibrin, and when these solids are sucked, accurate sample dispensing cannot be performed. It is monitored by the pressure sensor 19c, and it is determined from the generated differential pressure whether or not the suction is normal including no solid matter.
- the sample dispensing mechanism 12 also has substantially the same configuration as the sample dispensing mechanism 11.
- the reagent dispensing mechanisms 7 and 8 immerse and suck the reagent dispensing nozzles 7a and 8a into the reagent in the reagent container 10 which has been transported to the reagent dispensing position by the reagent disk 9 and draw it into the reaction container 2 of the reaction disk 1. Dispense the reagent by discharging.
- the reagent dispensing nozzle 7a of the reagent dispensing mechanism 7 is connected to a reagent pump 18a that sucks and discharges the reagent and a pressure sensor 19a that detects the pressure of the reagent pump 18a.
- the reagent dispensing nozzle 8a of the reagent dispensing mechanism 8 is connected to a reagent pump 18b that sucks and discharges the reagent and a pressure sensor 19b that detects the pressure of the reagent pump 18b.
- the stirring mechanisms 5 and 6 are a mixture (reaction solution) of the sample dispensed into the reaction container 2 by the sample dispensing mechanisms 11 and 12 and the reagent dispensed into the reaction container 2 by the reagent dispensing mechanisms 7 and 8. Stirring is performed to promote the reaction.
- the sample dispensing mechanisms 11 and 12, the reagent dispensing mechanisms 7 and 8, and the stirring mechanisms 5 and 6 include sample dispensing nozzles 11a and 12a, reagent dispensing nozzles 7a and 8a, and a stirring mechanism.
- Cleaning tanks 13, 14, 30, 31, 32, and 33 for cleaning are provided.
- the cleaning tanks 13, 14, 30, 31, 32, and 33 have cleaning pumps 20 for supplying the cleaning liquid to the cleaning tanks 13, 14, 30, 31, 32, and 33 and the pressures of the cleaning pumps 20.
- a pressure sensor 19e for detection, a compression pump 23 for supplying compressed air to the cleaning tanks 13, 14, 30, 31, 32, 33, and a pressure sensor 19g for detecting the pressure of the compression pump 23 are connected. .
- a portion of the cleaning liquid and compressed air paths between the cleaning pump 20 and the compression pump 23 and the cleaning tanks 13, 14, 30, 31, 32, and 33 are not shown.
- the spectrophotometer 4 performs absorbance measurement by spectroscopically measuring the transmitted light irradiated to the reaction vessel 2 (in other words, the reaction solution) from a light source (not shown), and based on the result of the absorbance measurement. Colorimetric analysis is performed.
- the case where transmitted light is measured as the reaction measurement unit has been described as an example.
- the measurement result of the scattered light is measured using the reaction measurement unit that measures the scattered light by irradiating the reaction liquid with light.
- the reaction solution may be analyzed based on the above. Further, as in immunoassay, a fluorescent substance may be bound to cause the reaction solution to emit light, and the reaction solution may be analyzed based on the measurement result of the light emission amount. That is, the reaction measurement unit may take various forms with respect to the analysis principle, and may be any unit that measures the reaction from the reaction liquid of the specimen and the reagent, and is not limited to the measurement of transmitted light or scattered light.
- the reaction container cleaning mechanism 3 sucks the reaction liquid from the reaction container 2 that has been measured, and discharges the cleaning liquid into the reaction container 2 to clean the reaction container 2.
- the cleaning pump 20 for supplying the cleaning liquid to the reaction container cleaning mechanism 3 and the pressure sensor 19e for detecting the pressure of the cleaning pump 20
- a vacuum for sucking the liquid in the reaction container 2 by vacuum.
- the pump 22 and a pressure sensor 19f that detects the pressure of the vacuum pump 22 are connected.
- Each component of the automatic analyzer 100 is covered with a housing and a cover (not shown), and includes a heat radiating fan 24 for exhaust heat that exhausts heat from the automatic analyzer 100 covered with a housing and a cover. .
- the control device 21 is roughly configured by a control unit 21a, a storage unit 21b, a display unit 21c, and an input unit 21d.
- the control unit 21a controls the overall operation of the automatic analyzer 100, and controls the operation of each component of the automatic analyzer 100 based on various parameters, measurement programs, and the like stored in the storage unit 21b.
- the analysis operation is executed, the sample is analyzed based on the detection result of the spectrophotometer 4, the concentration of the predetermined component contained in the sample is stored in the storage unit 21b as the analysis result, and the display unit 21c, a printer (not shown), etc. Output to.
- the present invention is applied to the automatic analyzer 100 configured as described above.
- Various parameters in the automatic analyzer 100 that are optimized for each altitude at which the automatic analyzer 100 is used are shown.
- a parameter storage unit (corresponding to the storage unit 21b) stored in association with each altitude, an altitude information acquiring unit (corresponding to the input unit 21d) for acquiring information on the altitude where the automatic analyzer 100 is installed, and acquiring altitude information
- a parameter setting unit in the control unit 21a) that reads out the parameters stored in the parameter storage unit (equivalent to the storage unit 21b) and sets them in the automatic analyzer 100 based on the altitude acquired by the unit (equivalent to the input unit 21d) Equivalent).
- this invention can adjust the various parameters corresponding to the use environment of an apparatus easily by such a structure.
- FIG. 4 is a process flow showing the parameter setting process.
- step S100 when the altitude of the facility where the automatic analyzer 100 is installed is input from the operator by the input unit 21d (step S100), the control unit 21a has an altitude-parameter table 500 stored in the storage unit 21b.
- a parameter corresponding to the altitude input from (see FIG. 5 later) is referred to (step S110), and it is determined whether or not the parameter corresponding to the input altitude is within the specification (step S120).
- step S120 determines whether the parameter corresponding to the input altitude is within the specification range, in other words, if the altitude of the facility where the automatic analyzer 100 is installed is within the specification range.
- the parameter corresponding to the input altitude is applied to the automatic analyzer 100 (step S130), and the process is terminated. If the determination result in step S120 is NO, that is, if the parameter corresponding to the input altitude is out of the specification range, in other words, the altitude of the facility where the automatic analyzer 100 is installed is out of the specification range.
- step S100 an example in which an operator such as a serviceman directly inputs an altitude value based on GPS (Global Positioning System) from another information terminal not included in the control device 21 to the input unit 21d is illustrated.
- the device 21 has a device capable of acquiring position (elevation) information such as a GPS device, and the obtained altitude value can be automatically input.
- FIG. 5 is a diagram showing an example of the altitude-parameter table.
- the vacuum pump 22, the compression pump 23, the pressure sensor 19 c, and the heat radiating fan 24 will be described as examples of parameter adjustment targets.
- the parameters are, for example, input current to the vacuum pump 22, replacement period of parts such as a diaphragm, pulse motor driving speed to the compression pump 23, lubrication period to parts such as a bearing, and abnormality determination for the pressure sensor 19 c as described later.
- the input current, motor drive speed, and input voltage are parameters related to component control
- the replacement period and threshold are parameters related to management and operation of component and abnormality detection.
- parameters to be applied at every altitude of 1000 m are set for each parameter adjustment target.
- output adjustment by current control is assumed, and an exchange current of the diaphragm corresponding to the input current to the vacuum pump 22 and the operating time of the vacuum pump 22 is set.
- the input current parameter is set to 1.0 A
- the diaphragm replacement cycle parameter is set to 2 years.
- parameters are not set as out of specification. The same applies to other configurations.
- the compression air pressure is adjusted at the driving speed by the pulse motor, and the driving speed given to the pulse motor and the lubrication cycle of the parts that require lubrication such as bearings are set as parameters.
- a threshold value used when determining clogging associated with foreign object suction based on the suction pressure during sample suction is set as a parameter.
- the output of the heat radiating fan 24 is adjusted by voltage control, and an exchange period is set according to the input voltage control for the heat radiating fan 24 and the operating time of the heat radiating fan 24.
- FIG. 6 is a diagram showing the relationship between altitude and atmospheric pressure.
- the atmospheric pressure P [hPa] at an altitude h [m] is obtained by the following (Equation 1) using the atmospheric pressure P0 [hPa] and the temperature t0 [° C.] at 0 m above sea level.
- P P0 ⁇ (1 ⁇ 0.0065h / (t0 + 273.2)) ⁇ 5.258 (Expression 1)
- the relationship between the altitude and the atmospheric pressure shown in FIG. 6 can be obtained.
- the atmospheric pressure gradually decreases.
- the atmospheric pressure at an altitude of 3000 m decreases by about 30% relative to the atmospheric pressure at an altitude of 0 m.
- the altitude-parameter table 500 is set based on the relationship between altitude and atmospheric pressure.
- FIG. 7 shows an example of the relationship between the set current value of the vacuum pump and the differential pressure generated by the vacuum pump.
- the vertical axis indicates the set current value [A] of the vacuum pump, and the horizontal axis generates the vacuum pump by the vacuum pump.
- the differential pressure [kPa] is shown respectively.
- FIG. 7 the case where the altitude is 0 m and the case where the altitude is 2000 m are illustrated.
- the set voltage is 1.0 A at an altitude of 0 m.
- the differential pressure ( ⁇ 40 kPa) can be generated.
- the atmospheric pressure decreases by about 20% compared to the altitude of 0 m (that is, the air is thin). Only a pressure of -20 kPa can be generated. It can be seen that a set current value of 1.5 A is required to generate a differential pressure of ⁇ 40 kPa at an altitude of 2000 m.
- the optimum value for the input of the altitude value is set in the altitude-parameter table 500, such as the driving time of the diaphragm, the number of times of driving, the effective driving time, the effective driving frequency, the expiration date, etc.
- the user or serviceman inputs the replacement time in the storage unit and stores it in the storage unit, and the predetermined time after one to two years, which is the time corresponding to the set replacement cycle.
- Information prompting replacement immediately before or after can be displayed on the display unit. Note that the replacement time may be automatically detected.
- FIG. 8 shows an example of the relationship between the set pulse motor driving speed of the compression pump and the discharge pressure generated by the compression pump.
- the vertical axis shows the set pulse motor driving speed [pps] of the compression pump, and the horizontal axis shows the compression.
- the discharge pressure [kPa] generated by the pump is shown.
- the case where the altitude is 0 m and the case where the altitude is 2000 m are illustrated.
- the set pulse motor drive speed at an altitude of 0 m.
- the discharge pressure (20 kPa) can be generated at 3000 pps.
- the atmospheric pressure decreases by about 20% compared to the altitude of 0 m (that is, the air is thin), so even if the same compression pump 23 is used, the discharge pressure is set at the set pulse motor driving speed of 3000 pps. Only 15 kPa can be generated.
- a set pulse motor drive speed of 4000 pps is necessary to generate a discharge pressure of 20 kPa at an altitude of 2000 m. That is, at an altitude of 2000 m, a set pulse motor drive speed of 4000 pps for generating a discharge pressure of 20 kPa is applied as a parameter. And a desired discharge pressure can be generated.
- the drive speed of the linear motion mechanism increases in order to generate desired discharge, and deterioration of grease, for example, also progresses. Therefore, it is necessary to set the lubrication cycle short.
- the optimal value for the altitude value input such as the driving time of the linear drive mechanism, the number of times of driving, the effective driving time for the period after being mounted on the device, the number of effective driving times, the expiration date, etc.
- the table 500 By setting the table 500 and using it, it becomes possible to instruct the user or service person to lubricate at an appropriate timing.
- the lubrication time is stored in the storage unit by data input by the user or service person, and immediately before or immediately after the predetermined time after 1 to 2 years, which is the timing corresponding to the set lubrication cycle. It is possible to display information for prompting lubrication on the display unit. Note that the lubricated time may be automatically detected.
- FIG. 9 and FIG. 10 show an example of the time change of the detection result of the pressure sensor at the time of sample suction in the sample dispensing mechanism.
- the vertical axis represents the differential pressure [kPa] and the horizontal axis represents the time [s]. Each is shown.
- FIG. 9 illustrates a comparison between a normal waveform and an abnormal waveform at an altitude of 0 m
- FIG. 10 illustrates a comparison between a normal waveform and an abnormal waveform at an altitude of 2000 m.
- FIG. 11 shows an example of the relationship between the set voltage value of the heat radiating fan and the temperature rise in the automatic analyzer.
- the vertical axis shows the temperature rise [° C.]
- the horizontal axis shows the set voltage value [V] of the radiating fan. Respectively.
- FIG. 7 the case where the altitude is 0 m and the case where the altitude is 2000 m are illustrated.
- the temperature rise in FIG. 11, for example, if it is desired to keep the temperature rise in the automatic analyzer 100 at 2 ° C., the temperature rise (2 ° C.) can be kept at the set voltage value 20 V of the radiating fan 24 at an altitude of 0 m.
- the air pressure is reduced by about 20% compared to the altitude of 0 m (the air is thin).
- the temperature rise can only be limited to 3 ° C. It can be seen that a set voltage value of 22 V is required to keep the temperature rise at 2 ° C. at an altitude of 2000 m. In other words, by applying the set voltage value 22V for keeping the temperature rise to 2 ° C.
- the temperature rise in the apparatus can be controlled to be constant regardless of the influence of the altitude.
- the altitude-parameter table 500 sets optimum values for the altitude value input, such as the fan driving time, the number of times of driving, the effective driving time, the effective driving frequency, the expiration date, etc. By setting and using, it becomes possible to instruct the user or service person to exchange at an appropriate timing.
- the fan replacement cycle is stored in the storage unit by data input by the user or service person by the user or a serviceman, and a predetermined time after 1 to 4 years, which is a time corresponding to the set replacement cycle.
- Information prompting replacement immediately before or after can be displayed on the display unit. Note that the replacement time may be automatically detected.
- Automatic analyzers may be used not only in plain areas but also in various environmental facilities such as mountainous areas and plateaus, and appropriate adjustments corresponding to the usage environment are required.
- some conventional technologies try to suppress individual differences between devices by comparing the reference data obtained from the reference solution, it is possible to adjust various parameters according to the usage environment of the automatic analyzer. It is difficult to obtain accurate analysis results.
- optimization of various parameters corresponding to the usage environment is diverse, so it takes a lot of time to individually adjust various parameters.
- a storage unit 21b that stores various parameters in the automatic analyzer 100 that are optimized for each altitude at which the automatic analyzer 100 is used is associated with each altitude.
- an input unit 21d (elevation information acquisition unit) that acquires information on the altitude where the automatic analyzer 100 is installed, and an altitude acquired by the input unit 21d, are stored in the storage unit 21b. Since the control unit 21a (parameter setting unit) that reads out and sets the parameters in the automatic analyzer 100 is provided, various parameters corresponding to the use environment of the automatic analyzer 100 can be easily adjusted.
- this invention is not limited to each above-mentioned embodiment, Various modifications are included.
- the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
- Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
- reaction disk 1 reaction disk 2 reaction vessel (reaction cell) 3 Reaction container washing mechanism 4 Spectrophotometer 5 Stirring mechanism 6 Stirring mechanism 7 Reagent dispensing mechanism 7a Reagent dispensing nozzle 8 Reagent dispensing mechanism 8a Reagent dispensing nozzle 9 Reagent disc 10 Reagent container 11 Sample dispensing mechanism 11a Sample dispensing Nozzle 12 Sample dispensing mechanism 12a Sample dispensing nozzle 13, 14, 30, 31, 32, 33 Cleaning tank 15 Sample container 16 Rack 17 Sample transport mechanism 18a, 18b Reagent pump 18c, 18d Sample pump 19a, ...
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
自動分析装置100における各種パラメータであって、自動分析装置100が使用される標高毎に最適化されたパラメータを各標高と対応させて記憶した記憶部21bと、自動分析装置100の設置された標高の情報を取得する入力部21dと、入力部21dで取得された標高に基づいて、記憶部21bに記憶されたパラメータを読み出して自動分析装置100に設定する制御部21aとを備える。これにより、装置の使用環境に対応した各種パラメータの調整を容易に行うことができる。
Description
本発明は、血液や尿などの生体試料の定性・定量分析を行う自動分析装置に関する。
血液や尿等の生体試料(以下、試料と称する)に予め搭載した複数の種類の試薬を添加することにより試料に含まれる特定成分の定量・定性分析を行う自動分析装置は、分析結果の再現性や処理速度の高さなどから各種診断に欠かせないものとなっており、例えば、試料中の分析対象成分と反応して反応液の色が変わるような試薬を用いる分析法(比色分析)や、分析対象成分と直接あるいは間接的に特異的に結合する物質に標識体を付加した試薬を用いて標識体をカウントする分析法(免疫分析)などを実行する機能が設けられている。
このような自動分析装置においては、各装置間に性能の個体差が存在するため、その個体差の影響を抑制するために各種パラメータを調整する技術が知られており、例えば、例えば、特許文献1(特開平11-258244号公報)には、吸排ポンプの作動により管路および分注ノズルを介して所定液体を分注する間の分注ノズルまたは管路内の圧力を圧力センサにより検知し、該圧力センサからの圧力データに基づいて分注装置の異常を検知するに際し、異常検知用の基準液体の分注時の第1の圧力データを前記圧力センサにより検知し、前記所定液体の分注時の第2の圧力データを前記圧力センサにより検知し、前記第1および第2の圧力データの比に基づいて分注装置の異常を検知する技術が開示されている。
ところで、近年は先進各国の経済発展や自動分析装置による診断の一般化に伴い、自動分析装置は平野部に限らず山岳部や高原といった様々な環境の施設でも使用されるようになっており、使用環境に対応した適切な調整が必要である。
上記従来技術においては、基準溶液により得られる基準データを比較して各装置間の個体差を抑制しようとしているものの、自動分析装置の使用環境に合わせた各種パラメータの調整には対応しておらず、正確な分析結果を得ることが困難である。また、使用環境に対応した各種パラメータの最適化は多岐にわたるため、各種パラメータを個別に調整しようとすると多くの時間を要することになる。
本発明は上記に鑑みてなされたものであり、装置の使用環境に対応した各種パラメータの調整を容易に行うことができる自動分析装置を提供することを目的とする。
上記目的を達成するために、本発明は、試料の分析に用いる試薬を収容した複数の試薬容器が搭載される試薬ディスクと、前記試料と試薬とを反応させる複数の反応容器が配置された反応ディスクと、試料容器に収容された試料に分注ノズルを浸漬して吸引し、前記反応ディスクの前記反応容器に吐出することにより前記試料を分注する試料分注機構と、試薬容器に収容された試薬に分注ノズルを浸漬して吸引し、前記反応ディスクの前記反応容器に吐出することにより前記試薬を分注する試薬分注機構と、前記反応容器の前記試料と前記試薬の反応液から反応を測定する反応測定部とを備えた自動分析装置において、前記自動分析装置における各種パラメータであって、前記自動分析装置が使用される標高毎に最適化されたパラメータを各標高と対応させて記憶したパラメータ記憶部と、前記自動分析装置の設置された標高の情報を取得する標高情報取得部と、前記標高情報取得部で取得された標高に基づいて、前記パラメータ記憶部に記憶されたパラメータを読み出して前記自動分析装置に設定するパラメータ設定部とを備えたものとする。
本発明によれば、装置の使用環境に対応した各種パラメータの調整を容易に行うことができる。
以下、本発明の実施の形態を図面を参照しつつ説明する。
図1は、本実施の形態に係る自動分析装置の全体構成を概略的に示す図である。また、図2は、制御装置の構成を概略的に示す機能ブロック図である。
図1において、自動分析装置100は、試料搬送機構17、試薬ディスク9、反応ディスク1、試料分注機構11,12、試薬分注機構7,8、攪拌機構5,6、分光光度計4、反応容器洗浄機構3、制御装置21等から概略構成されている。
試料搬送機構17は、分析対象となる血液や尿等の生体試料(以下、単に試料と称する)を収容した複数の試料容器15を搭載したラック16を搬送するものであり、試料用の分注機構(試料分注機構)11,12が試料容器15から試料を吸引するための試料吸引位置を含む自動分析装置100の各所にラック16を搬送する。
試薬ディスク9は、試料の分析に用いる試薬を収容した複数の試薬容器10を周方向に並べて搭載し搬送するものであり、試薬用の分注機構(試薬分注機構)7,8が試薬を吸引する試薬分注位置などに対象の試薬容器10を回転搬送する。
反応ディスク1は、試料と試薬とを混合して反応させる複数の反応容器(反応セル)2を周方向に複数並べて搭載し搬送するものであり、反応容器2を試料分注機構11,12による試料の吐出位置や試薬分注機構7,8による試薬の吐出位置に搬送する。また、反応ディスク1は、反応容器2を図示しない恒温媒体に浸漬して試料と試薬の混合物である反応液を一定温度で保持して反応させるとともに、攪拌機構5,6により反応液の攪拌を行う攪拌位置や、反応液の測定(本実施の形態では分光光度計4による透過光測定)を行う分析位置、分析を終了した反応容器2を反応容器洗浄機構3により洗浄する洗浄位置などの位置に回転搬送する。
試料分注機構11,12は、試料搬送機構17により試料分注位置に搬送されてきた試料容器15の試料に試料分注用のノズル(試料分注ノズル)11a,12aを浸漬して吸引し、反応ディスク1の反応容器2に吐出することにより試料の分注を行う。試料分注機構11は、回転及び上下動可能に設けられており、開詮後の試料容器のみから試料の吸引が可能である。また、試料分注機構12も同様に回転及び上下動可能に設けられており、開栓後の試料容器及び閉詮した状態の試料容器の両方から試料の吸引が可能なである。試料分注機構11の試料分注ノズル11aには、試料の吸引・吐出を行う試料用ポンプ18cと、試料用ポンプ18cの圧力を検出する圧力センサ19cとが接続されている。また、試料分注機構12の試料分注ノズル12aには、試料の吸引・吐出を行う試料用ポンプ18dと、試料用ポンプ18dの圧力を検出する圧力センサ19dとが接続されている。なお、試料分注機構12の動作範囲には、試料分注ノズル12aにより水を吸引するための水吸引位置71と、試料分注ノズル12aに付着する水等を吸引する真空吸引位置72とが設けられている。
図3は、試料分注機構をその周辺構成とともに抜き出して模式的に示す図である。
図3において、試料分注機構11は、水平方向に延在するように配置されたアーム42と、アーム42の一端にその先端を下方に向けて配置された試料分注ノズル11aと、アーム42の他端に配置され、アーム42の水平方向への回転動作及び上下動作を行うアーム駆動機構41とを備えている。試料分注ノズル11aには、アーム駆動機構41内を通して設置された管路(図示せず)を介してシリンジポンプ51(試料用ポンプ18c)が接続されており、シリンジポンプ駆動機構51aにより駆動される。また、シリンジポンプ51と試料分注ノズル11aの間の流路には圧力センサ19cが設置され、シリンジポンプ駆動機構51aの駆動により発生する流路内の圧力変動をA/D変換器110を介して捉え制御装置21で波形をモニターすることが可能である。また、シリンジポンプ51には、水タンク81に貯留された純水などのシステム水74をシリンジポンプ51及び試料分注ノズル12a内に供給するポンプ53が接続されており、ポンプ53とシリンジポンプ51とを接続する管路には、管路の開閉(流通と遮断の切換)を行う電磁弁52が設けられている。試料分注ノズル11aはアーム駆動機構41により試料容器15内の試料に先端を挿入して試料を吸引し、試料分注ノズル11aを反応容器2に挿入して吐出することにより、試料容器15から反応容器2への試料の分注を行う。試料容器15内の試料は例えば血清等であるが、フィブリン等の固形物を含む場合があり、これらの固形物を吸引した際には正確な試料分注ができないので、吸引中の圧力波形を圧力センサ19cでモニターし、発生した差圧から固形物等を含まない正常な吸引であるか否かの判定を行う。なお、試料分注機構12においても試料分注機構11とほぼ同様の構成を有している。
試薬分注機構7,8は、試薬ディスク9により試薬分注位置に搬送されてきた試薬容器10の試薬に試薬分注ノズル7a,8aを浸漬して吸引し、反応ディスク1の反応容器2に吐出することにより試薬の分注を行う。試薬分注機構7の試薬分注ノズル7aには、試薬の吸引・吐出を行う試薬用ポンプ18aと、試薬用ポンプ18aの圧力を検出する圧力センサ19aとが接続されている。また、試薬分注機構8の試薬分注ノズル8aには、試薬の吸引・吐出を行う試薬用ポンプ18bと、試薬用ポンプ18bの圧力を検出する圧力センサ19bとが接続されている。
攪拌機構5,6は、試料分注機構11,12により反応容器2に分注された試料と試薬分注機構7,8により反応容器2に分注された試薬との混合液(反応液)の反応を促進するために攪拌を行う。
試料分注機構11,12、試薬分注機構7,8、及び、攪拌機構5,6の動作範囲には、試料分注ノズル11a,12a、試薬分注ノズル7a,8a、及び、攪拌機構をそれぞれ洗浄するための洗浄槽13,14,30,31,32,33が設けられている。洗浄槽13,14,30,31,32,33には、洗浄液を各洗浄槽13,14,30,31,32,33に供給するための洗浄用ポンプ20と、洗浄用ポンプ20の圧力を検出する圧力センサ19eと、圧縮空気を各洗浄槽13,14,30,31,32,33供給するための圧縮ポンプ23と、圧縮ポンプ23の圧力を検出する圧力センサ19gとが接続されている。なお、図示の簡単のため、洗浄用ポンプ20及び圧縮ポンプ23と各洗浄槽13,14,30,31,32,33の間の洗浄液及び圧縮空気の経路については一部図示を省略する。
分光光度計4は、図示しない光源から反応容器2(言い換えると反応液)に照射された光の透過光を分光して測光することで吸光度測定を行うものであり、この吸光度測定の結果に基づいて比色分析が行われる。なお、本実施の形態では、反応測定部として透過光を測定する場合を例示して説明したが、反応液に光を照射して散乱光を測定する反応測定部を用い、散乱光の測定結果に基づいて反応液の分析を行うように構成しても良い。また、免疫測定のように蛍光物質を結合させて反応液を発光させ、発光量の測定結果に基づいて反応液の分析を行うように構成しても良い。すなわち、反応測定部は、分析原理については様々な形態が考えられ、検体と試薬の反応液から反応を測定するものであれば良く、透過光や散乱光の測定に限られるものではない。
反応容器洗浄機構3は、測定を終了した反応容器2から反応液の吸引を行い、反応容器2内に洗浄液などを吐出して反応容器2の洗浄を行うものであり、反応容器洗浄機構3には、反応容器洗浄機構3に洗浄液を供給するための洗浄用ポンプ20と、洗浄用ポンプ20の圧力を検出する圧力センサ19eのほかに、反応容器2内の液体を真空により吸引するための真空ポンプ22と、真空ポンプ22の圧力を検出する圧力センサ19fとが接続されている。
自動分析装置100の各構成は、図示しない筺体及びカバーで覆われており、筐体及びカバーで覆われた自動分析装置100からの排熱を行う排熱用の放熱ファン24が備えられている。
制御装置21は、制御部21a、記憶部21b、表示部21c、および入力部21dにより概略構成されている。制御部21aは、自動分析装置100全体の動作を制御するものであり、記憶部21bに記憶されている各種パラメータや測定プログラム等に基づいて自動分析装置100の各構成の動作を制御することにより分析動作を実行し、分光光度計4の検出結果に基づいて試料の分析を行い、試料に含まれる所定成分の濃度を分析結果として記憶部21bに記憶するとともに、表示部21cや図示しないプリンタなどに出力する。
本願発明は以上のように構成された自動分析装置100に適用されるものであり、自動分析装置100における各種パラメータであって、自動分析装置100が使用される標高毎に最適化されたパラメータを各標高と対応させて記憶したパラメータ記憶部(記憶部21bに相当)と、自動分析装置100の設置された標高の情報を取得する標高情報取得部(入力部21dに相当)と、標高情報取得部(入力部21dに相当)で取得された標高に基づいて、パラメータ記憶部(記憶部21bに相当)に記憶されたパラメータを読み出して自動分析装置100に設定するパラメータ設定部(制御部21aに相当)とから構成されている。そして、本願発明はそのような構成により、装置の使用環境に対応した各種パラメータの調整を容易に行うことができる。
このように構成した本願発明について、まず、本実施の形態におけるパラメータ設定部としての制御部21aによるパラメータの設定処理について説明する。
図4は、パラメータ設定処理を示す処理フローである。
図4において、制御部21aは、オペレータから入力部21dにより自動分析装置100が設置されている施設の標高が入力されると(ステップS100)、記憶部21bに記憶されている標高-パラメータテーブル500(後の図5参照)から入力された標高に対応するパラメータを参照し(ステップS110)、入力された標高に対応するパラメータが仕様内であるかどうかを判定する(ステップS120)。ステップS120での判定結果がYESの場合、すなわち、入力された標高に対応するパラメータが仕様範囲内である場合、言い換えると、自動分析装置100が設置された施設の標高が仕様範囲内である場合には、入力された標高に対応するパラメータを自動分析装置100に適用し(ステップS130)、処理を終了する。また、ステップS120での判定結果がNOの場合、すなわち、入力された標高に対応するパラメータが仕様範囲外である場合、言い換えると、自動分析装置100が設置された施設の標高が仕様範囲外である場合には、パラメータの適用を中止するとともに、パラメータの設定が未反映であることを示すアラームを発行して表示部21c等に表示することによりオペレータに報知し(ステップS140)、処理を終了する。なお、ステップS100では、制御装置21には含まれない別の情報端末からGPS(Global Positioning System)による標高の値をサービスマン等のオペレータが入力部21dに直接入力する場合を例示したが、制御装置21にGPS装置等、位置(標高)情報を取得可能な装置を有し、得られた標高の値を自動で入力することもできる。
図5は、標高-パラメータテーブルの一例を示す図である。
図5においては、パラメータの調整対象として、真空ポンプ22、圧縮ポンプ23、圧力センサ19c、放熱ファン24を例示して説明する。パラメータは、例えば、後述のように、真空ポンプ22に対する入力電流、ダイヤフラム等の部品の交換周期、圧縮ポンプ23に対するパルスモータ駆動速度、ベアリング等の部品への注油周期、圧力センサ19cに対する異常判定に用いる判定用の閾値、放熱ファン24に対する入力電圧、交換周期などであり、自動分析装置における制御や管理に関する各種パラメータである。入力電流、モータ駆動速度、入力電圧は部品の制御に関するパラメータであり、交換周期、閾値は部品や異常検知の管理や運用に関するパラメータである。
図4では、パラメータの各調整対象に対して標高1000m毎に適用するパラメータを設定している。例えば、真空ポンプ22については、電流制御での出力調整を想定しており、真空ポンプ22に対する入力電流と、真空ポンプ22の稼働時間に応じたダイヤフラムの交換周期が設定される。例えば、標高(0m-1000m)では、入力電流のパラメータを1.0Aに設定し、ダイヤフラム交換周期のパラメータを2年に設定する。また、標高(4001m以上)では、仕様外としてパラメータの設定はしない。他の構成についても同様である。圧縮ポンプ23については、パルスモータによる駆動速度での圧縮空気圧の調整を想定しており、パルスモータに与える駆動速度と、ベアリング等の注油が必要な部分の注油周期がパラメータとして設定される。また、圧力センサ19cについては、試料吸引時の吸引圧力に基づいて異物吸引に伴う詰り判定を行う際に使用する閾値がパラメータとして設定される。また、放熱ファン24については、電圧制御で出力調整することを想定しており、放熱ファン24に対する入力電圧御と、放熱ファン24の稼働時間に応じた交換周期が設定される。
続いて、標高-パラメータテーブル500の設定原理について説明する。
図6は、標高と大気圧との関係を示す図である。
標高h[m]における大気圧P[hPa]は、海抜0mにおける気圧P0[hPa]と温度t0[℃]とを用いて以下の(式1)により求められる。
P=P0×(1-0.0065h/(t0+273.2))^5.258 ・・・(式1)
P=P0×(1-0.0065h/(t0+273.2))^5.258 ・・・(式1)
例えば、P0=1013.25[hPa]、t0=15℃とすると、図6に示した標高と大気圧の関係を得ることができる。このように、標高が高くなるのに従って序所に気圧は低くなり、例えば、標高3000mでの気圧は、海抜0mでの気圧に対して3割程度下がることがわかる。このような標高と気圧との関係に基づいて、標高-パラメータテーブル500を設定する。
図7は、真空ポンプの設定電流値と真空ポンプによって発生する差圧の関係の一例を示すものであり、縦軸に真空ポンプの設定電流値[A]を、横軸に真空ポンプによって発生する差圧[kPa]をそれぞれ示している。なお、図7では、標高0mの場合と標高2000mの場合とを例示している。
図7において、例えば、反応容器洗浄機構3などで用いる真空ポンプ22において、反応容器2内の液体を吸引するために必要な差圧が-40kPaであるとすると、標高0mでは設定電圧1.0Aでその差圧(-40kPa)を発生することができる。これに対して、標高2000mでは、標高0mの場合と比較して気圧が2割程低下する(すなわち、空気が薄い)ため、同じ真空ポンプ22を使用しても設定電流値1.0Aでは差圧-20kPaしか発生することができない。そして、標高2000mで差圧-40kPaを発生させるためには、設定電流値1.5Aが必要であることがわかる。つまり、標高2000mでは差圧-40kPaを発生させるための設定電流値1.5Aをパラメータとして適用することで、例えば、ダイヤフラムポンプのようなものであれば、単位時間当たりの駆動回数が上昇し、所望の差圧を発生させることができる。ただし、標高2000mの高地において所望の差圧を発生させるためには、単位時間当たりのダイヤフラムの駆動回数が増えるので、ダイヤフラムの交換周期は短く設定する必要がある。そこで、ダイヤフラムの駆動時間、駆動回数、装置に実装されてからの期間に対しする有効駆動時間、有効駆動回数、有効期限等を標高値のインプットに対して最適な値を標高-パラメータテーブル500に設定して用いることにより、ユーザあるいはサービスマンに適切なタイミングでの交換を指示することが可能となる。例えば、ダイヤフラム交換周期については、交換された時期をユーザあるいはサービスマンがデータ入力することで記憶部に記憶し、設定された交換周期に対応する時期である1年~2年後の所定時期の直前又は直後に交換を促す情報を表示部に表示することができる。なお、交換された時期を自動で検知してもよい。
図8は、圧縮ポンプの設定パルスモータ駆動速度と圧縮ポンプによって発生する吐出圧の関係の一例を示すものであり、縦軸に圧縮ポンプの設定パルスモータ駆動速度[pps]を、横軸に圧縮ポンプによって発生する吐出圧[kPa]をそれぞれ示している。なお、図8では、標高0mの場合と標高2000mの場合とを例示している。
図8において、例えば、洗浄槽33などで用いる圧縮ポンプ23において、試薬分注ノズル8aに付着した水滴の除去に必要な圧縮空気吐出圧が20kPaであるとすると、標高0mでは設定パルスモータ駆動速度3000ppsでその吐出圧(20kPa)を発生することができる。これに対して標高2000mでは、標高0mの場合と比較して気圧が2割程低下する(すなわち、空気が薄い)ため、同じ圧縮ポンプ23を使用しても設定パルスモータ駆動速度3000ppsでは吐出圧15kPaしか発生することができない。そして、標高2000mで吐出圧20kPaを発生させるためには、設定パルスモータ駆動速度4000ppsが必要であることがわかる。つまり、標高2000mでは吐出圧20kPa発生させるための設定パルスモータ駆動速度4000ppsをパラメータとして適用することで、例えば、ベローズを直動駆動機構で動かすようなものであれば、単位時間当たりのベローズ駆動量が増え、所望の吐出圧を発生させることができる。ただし、標高2000mの高地においては所望の吐出を発生させるために直動機構の駆動スピードが速くなり、例えばグリス等の劣化も進むため、注油周期は短く設定する必要がある。そこで、装置として直動駆動機構の駆動時間、駆動回数、装置に実装されてからの期間に対する有効駆動時間、有効駆動回数、有効期限等を標高値のインプットに対して最適な値を標高-パラメータテーブル500に設定して用いることにより、ユーザあるいはサービスマンに適切なタイミングでの注油を指示することが可能となる。例えば、注油周期については、注油時期をユーザあるいはサービスマンがデータ入力することで記憶部に記憶し、設定された注油周期に対応する時期である1年~2年後の所定時期の直前又は直後に注油を促す情報を表示部に表示することができる。なお、注油された時期を自動で検知してもよい。
図9及び図10は、試料分注機構における試料吸引時の圧力センサの検出結果の時間変化の一例を示すものであり、縦軸に差圧[kPa]を、横軸に時間[s]をそれぞれ示している。なお、図9では標高0mの場合の正常波形と異常波形を比較して例示し、図10では標高2000mの場合の正常波形と異常波形を比較して例示している。
図9及び図10に示すように、標高が2000mの環境では気圧が低くなるために、正常波形(正常な試料吸引時の波形)においても異常波形(固形物を含むような試料を吸引した異常時の波形)においても差圧の値が標高0mの場合と比較して相対的に小さくなっており、予め設定した閾値での吸引判定が正常に行えなくなることが考えられる。そこで、標高の上昇に伴う差圧の変化をあらかじめ標高-パラメータテーブル500として設定し、例えば、標高2000mの入力に対して、制御装置21で閾値25kPaをパラメータとして適用することで、適切な吸引異常判定を実現することができる。
図11は、放熱ファンの設定電圧値と自動分析装置内の温度上昇の関係の一例を示すものであり、縦軸に温度上昇[℃]を、横軸に放熱ファンの設定電圧値[V]をそれぞれ示している。なお、図7では、標高0mの場合と標高2000mの場合とを例示している。
図11において、例えば、自動分析装置100内の温度上昇を2℃にとどめたいとすると、標高0mでは放熱ファン24の設定電圧値20Vでその温度上昇(2℃)にとどめることができる。これに対して標高2000mでは、標高0mの場合と比較して気圧が2割程低下する(空気が薄い)ため、同じ放熱ファン24を使用しても熱交換率が下がり、自動分析装置100内の温度上昇を3℃までにとどめることしかできない。そして、標高2000mで温度上昇を2℃にとどめるためには、設定電圧値22Vが必要であることがわかる。つまり、標高2000mでは温度上昇2℃にとどめるための設定電圧値22Vをパラメータとして適用することで、標高の影響に依らず、装置内温度上昇を一定にコントロールすることができる。ただし、標高2000mの高地においては所望の排熱性能を発生させるために単位時間当たりのファンの回転数が増えるので、交換周期は短く設定する必要がある。そこで、装置としてファンの駆動時間、駆動回数、装置に実装されてからの期間に対する有効駆動時間、有効駆動回数、有効期限等を標高値のインプットに対して最適な値を標高-パラメータテーブル500に設定して用いることにより、ユーザあるいはサービスマンに適切なタイミングでの交換を指示することが可能となる。例えば、ファン交換周期については、交換された時期をユーザあるいはサービスマンがデータ入力することで記憶部に記憶し、設定された交換周期に対応する時期である1年~4年後の所定時期の直前又は直後に交換を促す情報を表示部に表示することができる。なお、交換された時期を自動で検知してもよい。
以上のように構成した本実施の形態の作用効果を説明する。
自動分析装置は平野部に限らず山岳部や高原といった様々な環境の施設でも使用される可能性があり、使用環境に対応した適切な調整が必要である。従来技術には、基準溶液により得られる基準データを比較して各装置間の個体差を抑制しようとしているものはあるものの、自動分析装置の使用環境に合わせた各種パラメータの調整には対応しておらず、正確な分析結果を得ることが困難である。また、使用環境に対応した各種パラメータの最適化は多岐にわたるため、各種パラメータを個別に調整しようとすると多くの時間を要することになる。
これに対して本実施の形態においては、自動分析装置100における各種パラメータであって、自動分析装置100が使用される標高毎に最適化されたパラメータを各標高と対応させて記憶した記憶部21b(パラメータ記憶部)と、自動分析装置100の設置された標高の情報を取得する入力部21d(標高情報取得部)と、入力部21dで取得された標高に基づいて、記憶部21bに記憶されたパラメータを読み出して自動分析装置100に設定する制御部21a(パラメータ設定部)とを備えて構成したので、自動分析装置100の使用環境に対応した各種パラメータの調整を容易に行うことができる。
なお、本発明は上記した各実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本願発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記の各構成、機能等は、それらの一部又は全部を、例えば集積回路で設計する等により実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
1 反応ディスク
2 反応容器(反応セル)
3 反応容器洗浄機構
4 分光光度計
5 攪拌機構
6 攪拌機構
7 試薬分注機構
7a 試薬分注ノズル
8 試薬分注機構
8a 試薬分注ノズル
9 試薬ディスク
10 試薬容器
11 試料分注機構
11a 試料分注ノズル
12 試料分注機構
12a 試料分注ノズル
13,14,30,31,32,33 洗浄槽
15 試料容器
16 ラック
17 試料搬送機構
18a,18b 試薬用ポンプ
18c,18d 試料用ポンプ
19a,・・・,19g 圧力センサ
20 洗浄用ポンプ
21 制御装置
21a 制御部
21b 記憶部
21c 表示部
21d 入力部
22 真空ポンプ
23 圧縮ポンプ
24 放熱ファン
41 アーム駆動機構
42 アーム
51 シリンジポンプ
51a シリンジポンプ駆動機構
52 電磁弁
53 ポンプ
71 水吸引位置
72 真空吸引位置
74 システム水
81 水タンク
100 自動分析装置
110 A/D変換器
500 標高-パラメータテーブル
2 反応容器(反応セル)
3 反応容器洗浄機構
4 分光光度計
5 攪拌機構
6 攪拌機構
7 試薬分注機構
7a 試薬分注ノズル
8 試薬分注機構
8a 試薬分注ノズル
9 試薬ディスク
10 試薬容器
11 試料分注機構
11a 試料分注ノズル
12 試料分注機構
12a 試料分注ノズル
13,14,30,31,32,33 洗浄槽
15 試料容器
16 ラック
17 試料搬送機構
18a,18b 試薬用ポンプ
18c,18d 試料用ポンプ
19a,・・・,19g 圧力センサ
20 洗浄用ポンプ
21 制御装置
21a 制御部
21b 記憶部
21c 表示部
21d 入力部
22 真空ポンプ
23 圧縮ポンプ
24 放熱ファン
41 アーム駆動機構
42 アーム
51 シリンジポンプ
51a シリンジポンプ駆動機構
52 電磁弁
53 ポンプ
71 水吸引位置
72 真空吸引位置
74 システム水
81 水タンク
100 自動分析装置
110 A/D変換器
500 標高-パラメータテーブル
Claims (3)
- 試料の分析に用いる試薬を収容した複数の試薬容器が搭載される試薬ディスクと、前記試料と試薬とを反応させる複数の反応容器が配置された反応ディスクと、試料容器に収容された試料に分注ノズルを浸漬して吸引し、前記反応ディスクの前記反応容器に吐出することにより前記試料を分注する試料分注機構と、試薬容器に収容された試薬に分注ノズルを浸漬して吸引し、前記反応ディスクの前記反応容器に吐出することにより前記試薬を分注する試薬分注機構と、前記反応容器の前記試料と前記試薬の反応液から反応を測定する反応測定部とを備えた自動分析装置において、
前記自動分析装置における各種パラメータであって、前記自動分析装置が使用される標高毎に最適化されたパラメータを各標高と対応させて記憶したパラメータ記憶部と、
前記自動分析装置の設置された標高の情報を取得する標高情報取得部と、
前記標高情報取得部で取得された標高に基づいて、前記パラメータ記憶部に記憶されたパラメータを読み出して前記自動分析装置に設定するパラメータ設定部と
を備えたことを特徴とする自動分析装置。 - 請求項1記載の自動分析装置において、
前記標高情報取得部は、オペレータによる標高の入力、または、位置の自動取得に基づく標高の算出により、前記標高の情報を取得することを特徴とする自動分析装置。 - 請求項1又は2記載の自動分析装置において、
前記パラメータ記憶部は、1つの標高に対して各種パラメータ毎に1つの値を対応させたパラメータテーブルを記憶することを特徴とする自動分析装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018541020A JP6991147B2 (ja) | 2016-09-21 | 2017-09-14 | 自動分析装置 |
EP17852953.3A EP3517969B1 (en) | 2016-09-21 | 2017-09-14 | Automatic analysis device |
CN201780056085.7A CN110612449B (zh) | 2016-09-21 | 2017-09-14 | 自动分析装置 |
US16/331,594 US11143665B2 (en) | 2016-09-21 | 2017-09-14 | Automatic analyzer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-184267 | 2016-09-21 | ||
JP2016184267 | 2016-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018056180A1 true WO2018056180A1 (ja) | 2018-03-29 |
Family
ID=61689578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/033331 WO2018056180A1 (ja) | 2016-09-21 | 2017-09-14 | 自動分析装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11143665B2 (ja) |
EP (1) | EP3517969B1 (ja) |
JP (1) | JP6991147B2 (ja) |
CN (1) | CN110612449B (ja) |
WO (1) | WO2018056180A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110036297B (zh) | 2016-12-13 | 2023-05-05 | 株式会社日立高新技术 | 自动分析装置 |
CN110926903A (zh) * | 2019-12-26 | 2020-03-27 | 中国原子能科学研究院 | 共沉淀装置 |
MX2022015436A (es) * | 2020-06-25 | 2023-03-15 | Siemens Healthcare Diagnostics Inc | Analizador de muestras biologicas con ajuste de enfriamiento termico automatico para altitud. |
CN115541897A (zh) * | 2021-06-30 | 2022-12-30 | 深圳市帝迈生物技术有限公司 | 血液分析仪预警方法和血液分析仪 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62178787A (ja) * | 1986-01-31 | 1987-08-05 | Oki Univac Kk | 真空ポンプ制御装置 |
JPH08220106A (ja) * | 1995-02-14 | 1996-08-30 | Toshiba Corp | 吸引吐出装置およびこの装置を用いた自動化学分析装置 |
JPH11258244A (ja) | 1998-03-16 | 1999-09-24 | Olympus Optical Co Ltd | 分注装置の異常検知方法および異常検知装置 |
JP2008020442A (ja) * | 2006-07-14 | 2008-01-31 | Eppendorf Ag | 電子計量装置 |
JP2009278849A (ja) * | 2008-05-19 | 2009-11-26 | Toyota Motor Corp | 回転電機の絶縁構造 |
JP2013068456A (ja) * | 2011-09-21 | 2013-04-18 | Nippon Koden Corp | ガス測定装置 |
JP2013068443A (ja) * | 2011-09-21 | 2013-04-18 | Hitachi High-Technologies Corp | 自動分析装置 |
JP2015141811A (ja) * | 2014-01-29 | 2015-08-03 | 三菱電機株式会社 | 光源装置 |
WO2016035140A1 (ja) * | 2014-09-02 | 2016-03-10 | 株式会社島津製作所 | 前処理装置及びこれを備えた分析システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3318629B2 (ja) * | 1993-06-18 | 2002-08-26 | ソニー株式会社 | 液体の吸引/排出装置及び方法 |
JP3367292B2 (ja) * | 1995-07-26 | 2003-01-14 | 株式会社島津製作所 | ガスクロマトグラフ装置 |
JP5669528B2 (ja) * | 2010-11-17 | 2015-02-12 | 株式会社日立ハイテクノロジーズ | 自動分析装置 |
WO2012120755A1 (ja) * | 2011-03-04 | 2012-09-13 | 株式会社 日立ハイテクノロジーズ | 分析装置 |
-
2017
- 2017-09-14 CN CN201780056085.7A patent/CN110612449B/zh active Active
- 2017-09-14 EP EP17852953.3A patent/EP3517969B1/en active Active
- 2017-09-14 US US16/331,594 patent/US11143665B2/en active Active
- 2017-09-14 JP JP2018541020A patent/JP6991147B2/ja active Active
- 2017-09-14 WO PCT/JP2017/033331 patent/WO2018056180A1/ja active Search and Examination
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62178787A (ja) * | 1986-01-31 | 1987-08-05 | Oki Univac Kk | 真空ポンプ制御装置 |
JPH08220106A (ja) * | 1995-02-14 | 1996-08-30 | Toshiba Corp | 吸引吐出装置およびこの装置を用いた自動化学分析装置 |
JPH11258244A (ja) | 1998-03-16 | 1999-09-24 | Olympus Optical Co Ltd | 分注装置の異常検知方法および異常検知装置 |
JP2008020442A (ja) * | 2006-07-14 | 2008-01-31 | Eppendorf Ag | 電子計量装置 |
JP2009278849A (ja) * | 2008-05-19 | 2009-11-26 | Toyota Motor Corp | 回転電機の絶縁構造 |
JP2013068456A (ja) * | 2011-09-21 | 2013-04-18 | Nippon Koden Corp | ガス測定装置 |
JP2013068443A (ja) * | 2011-09-21 | 2013-04-18 | Hitachi High-Technologies Corp | 自動分析装置 |
JP2015141811A (ja) * | 2014-01-29 | 2015-08-03 | 三菱電機株式会社 | 光源装置 |
WO2016035140A1 (ja) * | 2014-09-02 | 2016-03-10 | 株式会社島津製作所 | 前処理装置及びこれを備えた分析システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3517969A4 |
Also Published As
Publication number | Publication date |
---|---|
CN110612449A (zh) | 2019-12-24 |
EP3517969B1 (en) | 2023-08-02 |
EP3517969A4 (en) | 2020-04-22 |
JPWO2018056180A1 (ja) | 2019-07-04 |
US20190361042A1 (en) | 2019-11-28 |
EP3517969A1 (en) | 2019-07-31 |
CN110612449B (zh) | 2023-03-10 |
JP6991147B2 (ja) | 2022-01-14 |
US11143665B2 (en) | 2021-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018056180A1 (ja) | 自動分析装置 | |
EP2940477B1 (en) | Automatic analyzer | |
JP4251627B2 (ja) | 化学分析装置及びその分注方法 | |
US8802032B2 (en) | Analyzer | |
US11525837B2 (en) | Automatic analyzer | |
EP3511720A1 (en) | Automatic analyzer | |
JP2010133870A (ja) | 自動分析装置及び自動分析装置の精度管理方法 | |
JP6654881B2 (ja) | 自動分析装置及び自動分析装置の異常判定方法 | |
JPWO2015019880A1 (ja) | 自動分析装置 | |
WO2017145672A1 (ja) | 自動分析装置および洗浄方法 | |
JP2011099681A (ja) | 自動分析装置 | |
CN110869769B (zh) | 试验套件、试验方法、分注装置 | |
WO2007119785A1 (ja) | 自動分析装置の分析支援用液体の品質管理方法および自動分析装置 | |
CN113287022B (zh) | 自动分析装置、自动分析系统及样品的自动分析方法 | |
US20180292428A1 (en) | Liquid delivery method, liquid delivery apparatus and analyzer | |
US11906406B2 (en) | Automatic analyzer and analysis method | |
JP4969061B2 (ja) | 自動分析装置 | |
JP2010249755A (ja) | 自動分析装置 | |
WO2022196229A1 (ja) | 自動分析装置 | |
JP2010160078A (ja) | 自動分析装置 | |
JP5806769B2 (ja) | 分析方法、分注方法および昇温方法 | |
JP2010048585A (ja) | 自動分析装置 | |
JP2001124788A (ja) | 自動分析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17852953 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018541020 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017852953 Country of ref document: EP Effective date: 20190423 |