WO2018056171A1 - 高炉用表面検出装置 - Google Patents

高炉用表面検出装置 Download PDF

Info

Publication number
WO2018056171A1
WO2018056171A1 PCT/JP2017/033300 JP2017033300W WO2018056171A1 WO 2018056171 A1 WO2018056171 A1 WO 2018056171A1 JP 2017033300 W JP2017033300 W JP 2017033300W WO 2018056171 A1 WO2018056171 A1 WO 2018056171A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
reflector
opening
blast furnace
cover
Prior art date
Application number
PCT/JP2017/033300
Other languages
English (en)
French (fr)
Inventor
早衛 萱野
憲二 黒瀬
Original Assignee
株式会社Wadeco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Wadeco filed Critical 株式会社Wadeco
Priority to US16/335,008 priority Critical patent/US11021765B2/en
Priority to KR1020197007733A priority patent/KR102421754B1/ko
Priority to EP17852948.3A priority patent/EP3517633B1/en
Publication of WO2018056171A1 publication Critical patent/WO2018056171A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/28Arrangements of monitoring devices, of indicators, of alarm devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0028Devices for monitoring the level of the melt
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0003Monitoring the temperature or a characteristic of the charge and using it as a controlling value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0035Devices for monitoring the weight of quantities added to the charge
    • F27D2021/0042Monitoring the level of the solid charge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver

Definitions

  • the present invention transmits detection waves such as microwaves and millimeter waves into a blast furnace, receives detection waves reflected by iron ore and coke (charges) charged in the furnace,
  • the present invention relates to an apparatus for detecting the surface profile of a slab.
  • charge iron ore and coke
  • the lance is inserted into the furnace from the side wall of the blast furnace as a method for measuring the surface profile, and a detection wave such as a microwave is transmitted from the antenna attached to the tip of the lance toward the surface of the charge. It is common to measure the distance from the antenna to the surface of the charge by receiving the reflected wave from the surface of the surface of the load, and measure the surface profile of the charge by moving the lance horizontally. Looking for.
  • the lance moves linearly, a profile of the entire surface of the charge cannot be obtained. Also, since the lance needs to be as long as the inner diameter of the furnace, and is long and heavy, if it is inserted into the furnace for a long time, it will hang down due to its own weight and will not come out of the furnace. Since the stroke is large, a large space outside the furnace is required. Furthermore, a drive unit for moving the lance is required separately, which increases equipment costs and operation costs. In addition, a charging operation cannot be performed during profile measurement, and a quick charging operation according to the measured profile cannot be performed.
  • Patent Document 1 the surface profile of the charge is detected in a planar shape by the surface detection device 100 having the configuration shown in FIG.
  • a reflecting plate 120 is disposed immediately above the opening 2 of the blast furnace 1, and an antenna 111 is disposed facing the reflecting plate 120.
  • a connecting member 115 is attached to the front surface of the antenna 111, and support members 117 and 117 extend from the connecting member 115.
  • the antenna 111 is connected to a detection wave transceiver 110 via a waveguide 112, and a waveguide-side gear 132 is attached to the outer peripheral surface of the waveguide 112.
  • the waveguide side gear 132 is engaged with the motor side gear 131 of the motor 130, and by driving the motor 130, the waveguide 112 rotates in the direction of the arrow X around the axis.
  • the reflection plate 120 has pin-shaped support shafts 121 and 121 protruding at both ends of the diameter, and the support shafts 121 and 121 are supported by support members 117 and 117. Therefore, the reflector 120 rotates in the direction of arrow X at the same angle as the rotation of the waveguide 112. Then, by the rotation of the reflecting plate 120 in the arrow X direction, the detection wave from the antenna 111 is swung in the front-rear direction of the paper surface and sent into the furnace.
  • a mounting piece 122 is provided on the back surface of the reflecting plate 120, and a rod-shaped member 127 connected to the tip of the piston rod 126 of the cylinder 125 is connected to the mounting piece 122. Then, by driving the cylinder 125, the piston rod 126 moves forward (moves to the right in the figure) or moves backward (moves to the left in the figure) as indicated by the arrow F, and when the piston rod 126 moves forward, it interlocks with the rod-shaped member 127. Then, the mounting piece 122 is also moved to the antenna side, and the reflecting plate 120 is inclined so that the reflecting surface 120 a faces the opening 2 of the blast furnace 1.
  • the piston rod 126 moves backward, the attachment piece 122 is moved to the side opposite to the antenna, and accordingly, the reflecting plate 120 is inclined so that the reflecting surface 120a faces the antenna 111.
  • the reflecting plate 120 can be rotated about the support shafts 121 and 121 in the direction of the arrow Y by driving the cylinder 125.
  • the detection wave is swung in the left-right direction in the figure as indicated by M and sent into the furnace.
  • the surface of the charge 3 in the furnace can be scanned in a planar shape by the detection wave by combining the rotation in the arrow X direction and the arrow Y direction. A surface profile is obtained.
  • the surface detection device 100 of Patent Document 1 has a heat resistance that transmits a detection wave to the front surface of the antenna 111.
  • a non-breathable partition wall 145 made of a material (for example, ceramics) and a breathable filter 140 are arranged, and an inert gas is supplied to a space between the two to pass the inert gas from the filter 140 to the reflector side. Erupting.
  • an inert gas is supplied to prevent dust from entering the apparatus and adhering to the reflecting surface 120a of the reflecting plate 120.
  • the connecting member 115 rotates together with the waveguide 112
  • a reflection plate 120 and a waveguide side gear 132 for rotating the reflection plate 120 in the arrow X direction are attached.
  • the waveguide 112 has a certain length in order to attach the gland packing 180 and the waveguide side gear 132, but the detection wave from the transceiver 110 is attenuated by the waveguide 112.
  • the shorter waveguide 112 is advantageous for detection accuracy.
  • the coupler 135 is attached to prevent the rotation of the waveguide 112 from being transmitted to the transmitter / receiver 110, which complicates the apparatus configuration.
  • the length of the coupler 135 is required, and the distance from the antenna 111 to the transmitter / receiver 110 is further increased, so that the installation space of the entire apparatus is widened.
  • the present invention has been made in view of such a situation.
  • the surface profile of the charge in the furnace can be detected linearly or planarly, the apparatus configuration is simplified, and the waveguide is made as short as possible.
  • the object is to reduce the attenuation of the detection wave and improve the detection accuracy.
  • the present invention provides the following surface detection apparatus for a blast furnace. (1) Installed outside the blast furnace, sends detection waves from the transmitter / receiver to the reflector, reflects off the reflector, and transmits to the furnace through the blast furnace opening.
  • a container attached to the opening and having a part of the bottom surface corresponding to the opening;
  • the reflector disposed immediately above the opening in the container;
  • the antenna disposed opposite to the reflector and fixed to the container;
  • a tilt angle variable mechanism provided in a space on the opposite side of the reflector from the antenna and capable of varying the tilt angle of the reflector toward the antenna side or the non-antenna side; and propagation of the detection wave through the reflector
  • a rotation mechanism that rotates at a predetermined angle about the axis, and
  • the variable tilt angle mechanism includes a first link having one end fixed to a surface of the reflector opposite to the antenna, a second link coupled to the first link via a coupling pin, and the second link.
  • a slider connected to the link via a connecting pin, and slider driving means for moving the slider forward or backward to the antenna side or the non-antenna side
  • the pivot mechanism pivotally supports a support shaft that protrudes from both ends of the diameter of the reflector, a tube to which the support arm is attached, and the tube that rotates about the axis.
  • a tube rotating means for moving, and The variable tilt angle mechanism and the rotation mechanism have a double tube structure in which the slider is an inner tube and the tube body is an outer tube, A surface detecting apparatus for a blast furnace, wherein the variable tilt angle mechanism and the rotating mechanism cooperate to scan the detection wave in a linear or planar manner on the surface of the charge.
  • a surface detecting apparatus for a blast furnace according to (1), further comprising a cover that moves to the space on the opposite side and opens the opening.
  • the cover has a cover-side protruding piece inside the cover,
  • the support arm that supports the reflector has a reflector-side projection piece, The above (2), wherein the reflecting plate is rotated and the cover-side protruding piece is pushed by the reflecting-plate-side protruding piece, and the cover is moved between a measurement position and a non-measurement position.
  • Surface detector for blast furnace is
  • the rotation mechanism is freely attached, Any one of the above (1) to (5), wherein the antenna is removed together with the antenna mounting wall at the time of maintenance, and the tilt angle varying mechanism and the reflecting plate are removed from the opening together with the rotating mechanism.
  • the surface detection apparatus for blast furnaces as described in the item.
  • the reflection angle of the reflection plate alone is changed in cooperation with the tilt angle variable mechanism and the rotation mechanism, so that the antenna can be fixed to the container, and the antenna is rotated. Therefore, the length of the waveguide connecting the antenna and the transmitter / receiver can be shortened as much as possible. Further, since the antenna is fixed, a device for rotating the waveguide and a coupler for preventing the transmission / reception of the transmitter / receiver are not required, and the device configuration is simplified.
  • FIG. 1 It is sectional drawing which shows the surface detection apparatus of this invention.
  • FIG. 1 it is the figure which looked at the periphery of an antenna and a reflecting plate from the upper surface. It is a figure which shows the motion of a cover when the cover for plugging up the opening part of a blast furnace is attached. It is the schematic which shows the surface detection apparatus described in patent document 1.
  • FIG. 1 is a cross-sectional view showing the entire structure of the surface detection device of the present invention
  • FIG. 2 is a top view showing the periphery of the antenna and the reflector.
  • a container 150 is attached to the opening 2 of the blast furnace 1. A part of the bottom of the container 150 corresponds to the opening 2 and is continuously attached to the opening 2.
  • the one side surface (left end portion in FIG. 1) of the container 150 is open, and the opening portion is closed by the antenna mounting wall 151.
  • the antenna mounting wall 151 is detachably attached to the container 150 with bolts or the like.
  • the antenna 111 is attached to the antenna attachment wall 151.
  • the antenna 111 is connected to a detection wave transceiver 110. Note that a microwave or a millimeter wave can be used as the detection wave.
  • the antenna 111 is not configured to rotate as in Patent Document 1, the waveguide side gear 132 for rotating the waveguide 112 shown in FIG. 130 and the motor side gear 131 are unnecessary, and further, the gland packing 180 is also unnecessary, so that the length of the waveguide 112 is only a portion required for the nuts 113 and 113 that connect the antenna 111 and the transceiver 110. Can be significantly shortened.
  • the antenna 111 is directly connected to the transceiver 110 without using the waveguide 112.
  • the waveguide 112 becomes shorter or unnecessary in this way, the attenuation of the detection wave in the waveguide 112 can be suppressed as much as possible. Further, the coupler 135 shown in FIG. 4 is not necessary, the waveguide 112 can be shortened, the entire apparatus can be miniaturized, and installation space can be reduced.
  • the antenna 111 is not limited to the illustrated horn antenna, and for example, a dielectric lens 114 can be attached to increase the directivity of the detection wave or shorten the horn length.
  • a reflector 120 is disposed immediately above the opening 2 of the container 150.
  • the support shafts 121 and 121 protrude from both ends of the diameter of the reflecting plate 120, and the support arms 121 and 121 are rotatably supported by the support arms 160 and 160. Further, the support arms 160 and 160 are fixed to the end portion (tip end) of the tubular body 161 on the reflecting plate side.
  • a gear 164 is attached to the outer peripheral surface in the vicinity of the rear end of the tubular body 161 and is engaged with the gear 171 of the motor 170.
  • the tubular body 161 is rotated in the direction of the arrow X around its own axis by driving the motor 170, and the reflector 120 supported by the support arms 160 and 160 is also rotated in the same direction along with the rotation.
  • a bearing 162 is fitted on the outer peripheral surface of the tube body 161 and is attached to the container 150 via a standing piece 163 attached to the outer ring of the bearing 162.
  • the standing piece 163 is detachably attached to the container 150 with a bolt or the like.
  • the link mechanism 200 is connected to the back surface 120 a of the reflector 120.
  • the first link 201 is fixed to the center of the back surface 120a of the reflecting plate 120
  • the second link 202 is rotatably connected to the first link 201 via a connecting pin 204.
  • a slider 203 is rotatably connected to the two links 202 via a connecting pin 205.
  • the slider 203 is a long bar having a circular cross section, and a rack gear 208 is formed at the rear end thereof.
  • the rack gear 208 is engaged with the gear of the motor 210, and the slider 203 moves back and forth linearly in the arrow H direction by driving the motor 210.
  • the reflecting plate 120 is inclined downward in the drawing so as to face the opening 2, and when the slider 203 moves backward toward the non-antenna side, the reflecting plate 120 faces the antenna 111 in the drawing. Tilt upwards.
  • the slider 203 is on the extension of the propagation axis of the detection wave transmitted from the antenna 111, and the support shafts 121 and 121 of the reflector 120 are also on the extension of the propagation axis of the detection wave. Therefore, the reflector 120 rotates in the arrow Y direction around the detection wave propagation axis as the slider 203 moves forward and backward.
  • the tube 161 and the slider 203 have a double tube structure in which the tube 161 is an outer tube and the slider 203 is an inner tube. Further, a groove is formed at the end of the slider 203 on the reflecting plate side, and a seal member 165 such as an O-ring is attached to the groove so as to slidably close a gap with the tubular body 161.
  • the reflector 120 is rotated in the arrow X direction and the arrow Y direction.
  • the detection wave transmitted from the opening 2 scans the surface of the charge in a planar shape, and a planar surface profile is obtained. It is also possible to obtain a linear surface profile by driving only one of the motor 170 and the motor 210 and rotating the reflector 120 only in one of the arrow X direction and the arrow Y direction.
  • the reflector 120 may be a circular plate, but is preferably an elliptical plate having a short axis as a segment between the support shafts 121 and 121 as shown in FIG. Since the distance between the antenna 111 and the reflection plate 120 is short, most of the detection waves from the antenna 111 travel to the vicinity of the center of the reflection plate 120, so even if the line segments along the support shafts 121 and 121 become short axes. It does not affect the detection wave reflection. By making the reflecting plate 120 an elliptical plate, the weight becomes lighter than that of a circular plate, the load on the motor 170 is reduced, and the rotation in the arrow X direction can be made faster. In addition, since the support arms 160 and 160 are narrowed and the tubular body 161 can be made thin, the container 150 can be downsized.
  • a non-breathable partition wall 145 made of a heat-resistant material that transmits a detection wave and a filter 140 made of the same material are disposed in front of the antenna 111, and an inert gas is interposed between the filter 140 and the partition wall 145. And inert gas may be ejected from the filter 140 toward the reflector.
  • the filter 140 for example, a woven fabric made of “Tyranno fiber” manufactured by Ube Industries, Ltd. can be used.
  • the filter 140 and the partition wall 145 are attached to a frame body 118 protruding from the opening edge of the antenna 111, and through a through hole 119 opened in a space between the filter 140 and the partition wall 145 of the frame body 118.
  • An inert gas is supplied and ejected from the filter 140. It should be noted that the attachment portion of the frame 118 with the filter 140 is bent toward the container, and the hull of the bent portion forms a small gap between the inner wall of the container 150.
  • FIG. 3 is a view of the reflector 120 as viewed from the antenna side.
  • the cover 190 has an arcuate cross-sectional shape perpendicular to the axis thereof, and is, for example, a hemisphere, a semi-cylindrical body, or a semi-conical body having a semi-cylindrical shape at the center and gradually decreasing in diameter toward both ends. Can be used.
  • a protrusion piece 191 (hereinafter referred to as “cover-side protrusion piece”) is provided at a suitable position inside the cover 190 (for example, the center of the arc), and both ends are bent outward to form a stopper 192.
  • a weight 193 is attached to one stopper 192 (right side in the figure).
  • the cover 190 is rotated in the rotating direction of the reflecting plate 120 in a state where the end portion is fitted in a guide groove provided in the container 150 and floats in the space outside the reflecting plate 120. Is slidably held in the direction of the arrow X.
  • one of the support arms 160 and 160 (right side in the figure) that supports the reflector 120 is provided with a protrusion 128 that is in contact with the cover-side protrusion 191 on the extension line of the support shaft 121 (hereinafter referred to as “reflector-side protrusion”). ) Is projected. Further, a stopper receiver 152 that abuts against the stopper 192 of the cover 190 protrudes from the inner wall of the container 150 at a position facing the support arms 160 and 160 or slightly below.
  • FIG. 3A is a view corresponding to FIG. 1 and shows positions of the reflector 120 and the cover 190 at the time of measurement.
  • the cover-side projection piece 191 of the cover 190 and the reflector-side projection piece 128 of the reflector 120 are offset by 90 °.
  • one stopper 192 of the cover 190 is placed on the upper surface of the stopper receiver 152 of the container 150. In this state, the stopper 192 of the cover 190 is placed on the stopper receiver 152 and further a weight 193 is added, so that the cover 190 does not rotate to the other side of the weight 193 (the left side in the figure) and measurement is performed. This state is maintained throughout the period.
  • FIG. 3C shows a state at the time of non-measurement.
  • the reflector 120 is rotated 360 ° in the reverse direction as indicated by the arrow X3. Then, the reflecting plate side protruding piece 128 is brought into contact with the other surface of the cover side protruding piece 191.
  • the reflector 120 is rotated 180 ° in the same direction as indicated by an arrow X4. As a result, the cover-side protrusion piece 191 pushes the reflector-side protrusion piece 128 in the same direction, and the state shown in FIG. Thereafter, as shown in FIG.
  • the reflecting plate 120 is rotated 270 ° in the reverse direction as indicated by an arrow X5.
  • the cover 190 moves from the opening 2 to above the reflector 120 to return to the original state shown in FIG. 3F, that is, FIG. 3A, and the opening 2 opens to resume measurement. be able to.
  • the cover 190 is made of a steel plate or the like so as to withstand the collision of a relatively large-diameter iron ore or coke from the inside of the furnace, and is a heavy object having a certain thickness. Therefore, when the reflector 120 is rotated following the rotation of the reflector 120, the load on the motor 170 that rotates the tube body 161 increases, but it also disappears. Further, the cover 190 can be connected to the tubular body 161.
  • the antenna 111 is attached to the antenna mounting wall 151 of the container 150, the antenna 111, the partition wall 145 connected to the antenna 111, and the filter 140 are removed by removing the antenna mounting wall 151 from the container 150. Can be pulled out from the container 150, and the antenna 111, the partition wall 145, and the filter 140 can be maintained while the container 150 is attached to the blast furnace 1.
  • the pipe body 161 and the slider 203 have a double pipe structure and are integrated as a whole, and are attached to the container 150 with bolts or the like via a standing piece 163 provided on the bearing 162 of the pipe body 161. Therefore, the reflecting plate 120 is inclined so as to be substantially flush with the slider 203, and the tube body 161 is removed from the container 150, so that the reflecting plate 120, the link mechanism 200, and the rotation can be rotated while the container 150 remains attached to the opening 2. Means, and further, maintenance of the cover 190 can be performed.
  • the observation window is formed in the upper portion of the reflection plate 120 of the container 150, and the reflection plate 120 is rotated so as to face the observation window, so that the dust adheres to the reflection plate 120. Can also be observed.
  • the present invention provides a surface detection device capable of detecting the surface profile of the charge in the furnace linearly or in a planar shape, further simplifying the device configuration and further shortening the waveguide as much as possible to reduce the attenuation of the detected wave.
  • the detection accuracy can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Blast Furnaces (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

高炉の開口部に取り付けられ、該開口部に対応して底面が開口している容器の側面にアンテナを固定し、反射板を、容器内の開口部の直上にて、該開口部及びアンテナと対向配置するとともに、反射板の傾斜角度可変機構と回動機構とを2重管構造にして、反射板の反アンテナ側に設置した高炉用表面検出装置。

Description

高炉用表面検出装置
 本発明は、マイクロ波やミリ波等の検出波を高炉内に送信し、炉内に装入された鉄鉱石やコークス(装入物)で反射された検出波を受信して、装入物の表面プロフィールを検出する装置に関する。
 高炉では鉄鉱石とコークスとを交互に装入しながら操業を行っているが、鉄鉱石やコークス(以下「装入物」)を適正に堆積させることにより、炉内のガス流れが安定し、燃料費低減や炉体の長寿命化が可能となる。そのためには、装入物の表面プロフィールを短時間で正確に測定し、炉況の変化に対応して適正な装入を行う必要がある。
 表面プロフィールの測定方法として従来では、ランスを高炉の側壁から炉内に挿入し、ランスの先端に装着したアンテナから装入物の表面に向けてマイクロ波等の検出波を送信し、装入物の表面からの反射波をアンテナで受信してアンテナから装入物の表面までの距離を測定する方法が一般的であり、ランスを水平に移動させながら測定することにより装入物の表面プロフィールを求めている。
 しかしながら、ランスは直線状に移動するため、装入物の表面全面のプロフィールが得られない。また、ランスは炉の内径ほどの長さが必要であり、長尺で、高荷重でもあるため、炉内に長く挿入しておくと自重により垂れ下がって炉から抜けなくなり、更には移動の際のストロークも大きいため炉外に大きなスペースが必要になる。更に、ランスを移動させるための駆動ユニットが別途必要であり、設備費や運転コストが高くなる。加えて、プロフィール測定中に装入操作を行うことができず、測定したプロフィールに応じた迅速な装入操作ができない。
 そこで本出願人は、特許文献1において、図4に示す構成の表面検出装置100により、装入物の表面プロフィールを面状に検出することを提案している。図示されるように、表面検出装置100では、高炉1の開口部2の直上に反射板120を配置し、反射板120と対向してアンテナ111を配置している。
 アンテナ111の前面には連結部材115が付設しており、連結部材115から支持部材117、117が延出している。また、アンテナ111は、導波管112を介して検出波の送受信器110に連結しており、導波管112の外周面には導波管側ギア132が取り付けられている。この導波管側ギア132は、モータ130のモータ側ギア131と係合しており、モータ130を駆動することにより、導波管112はその軸線を中心に矢印X方向に回動する。
 反射板120は、その直径両端にピン状の支軸121,121が突出しており、支軸121,121が支持部材117,117で支持されている。そのため、反射板120は、導波管112の回動と同角度で矢印X方向に回動する。そして、この反射板120の矢印X方向への回動により、アンテナ111からの検出波は、紙面前後方向に振られて炉内へと送られる。
 また、反射板120の裏面には取付片122が設けられており、この取付片122に、シリンダ125のピストンロッド126の先端に連結する棒状部材127が連結している。そして、シリンダ125を駆動することにより、ピストンロッド126が矢印Fのように前進(図中右側に移動)または後退(図中左側に移動)し、ピストンロッド126が前進したときには棒状部材127と連動して取付片122もアンテナ側に移動し、それに伴って反射面120aが高炉1の開口部2を向くように反射板120を傾斜させる。一方、ピストンロッド126が後退したときには、取付片122を反アンテナ側に移動させ、それに伴って反射面120aがアンテナ111を向くように反射板120を傾斜させる。このようなリンク機構により、シリンダ125の駆動により、反射板120を、支軸121,121を中心に矢印Y方向に回動させることができる。それにより、検出波は、Mで示すように図中左右方向に振られて炉内へと送られる。
 従って、この表面検出装置100では、矢印X方向と矢印Y方向への回動を組み合わせることにより、検出波により炉内の装入物3の表面を面状に走査することができ、面状の表面プロフィールが得られる。
国際公開第2015/133005号明細書
 高炉用の表面検出装置では、炉内からの粉塵の浸入を防止するための対策が施されており、特許文献1の表面検出装置100では、アンテナ111の前面に検出波を透過する耐熱性の材料(例えば、セラミックス)からなる非通気性の隔壁145と、通気性のフィルタ140とを配置し、両者の間の空間に不活性ガスを供給してフィルタ140から反射板側に不活性ガスを噴出している。また、内部に不活性ガスを供給して粉塵の装置内への侵入、並びに反射板120の反射面120aへの付着を防止している。
 しかし、連結部材115は、導波管112とともに回動するため、容器150の内壁との間には隙間があり、気密性を確保するために容器150と導波管112との連結部分をグランドパッキン180等でシールする必要がある。また、導波管112の外周面には、反射板120及び自身を矢印X方向に回動させるための導波管側ギア132が付設されている。
 そのため、導波管112は、グランドパッキン180や導波管側ギア132を取り付けるために、ある程度の長尺になっているが、送受信器110からの検出波は導波管112で減衰するため、検出精度のためには導波管112は短い方が有利である。また、導波管112の回動を送受信器110に伝えないためにカプラー135を取り付けており、装置構成が複雑になる。しかも、長尺の導波管112に加えてカプラー135の長さが必要になり、アンテナ111から送受信器110までの距離が更に長くなるため、装置全体の設置スペースも広くなる。
 本発明はこのような状況に鑑みてなされたものであり、炉内の装入物の表面プロフィールを線状または面状に検出できるとともに、装置構成を簡素にし、更には導波管を極力短くして検出波の減衰を少なくし、検出精度の向上を図ることを目的とする。
 上記課題を解決するために本発明は、下記の高炉用表面検出装置を提供する。
(1)高炉の炉外に設置され、送受信器からの検出波をアンテナから反射板に送り、前記反射板で反射して前記高炉の開口部を通じて炉内に送信し、炉内の装入物の表面で反射され、前記開口部を通じて前記反射板に至る前記検出波を、前記反射板で反射して前記アンテナに送り前記送受信器で受信して前記装入物の表面プロフィールを検出する高炉用表面検出装置において、
 前記開口部に取り付けられ、該開口部に対応して底面の一部が開口している容器と、
 前記容器内の前記開口部の直上に配置された前記反射板と、
 前記反射板と対向配置され、前記容器に固定された前記アンテナと、
 前記反射板の、前記アンテナとは反対側の空間に設けられ、該反射板のアンテナ側または反アンテナ側への傾斜角度を可変にする傾斜角度可変機構と、該反射板を前記検出波の伝搬軸を中心に所定の角度で回動させる回動機構とを備えるとともに、
 前記傾斜角度可変機構が、前記反射板の前記アンテナとは反対側の面に一端が固定された第1リンクと、前記第1リンクと連結ピンを介して連結した第2リンクと、前記第2リンクと連結ピンを介して連結したスライダと、前記スライダをアンテナ側または反アンテナ側に前進後退させるスライダ駆動手段とを備え、
 前記回動機構が、前記反射板の直径両端から突出する支軸を回動自在に支持する支持腕と、前記支持腕が取り付けられた管体と、前記管体を、その軸線を中心に回動させる管体回動手段とを備え、かつ、
 前記傾斜角度可変機構と前記回動機構とが、前記スライダを内管とし、前記管体を外管とする2重管構造であり、
 前記傾斜角度可変機構と前記回動機構とを協働して、前記検出波を、前記装入物の表面を線状または面状に走査することを特徴とする高炉用表面検出装置。
(2)前記反射板を中心に旋回し、非測定時には前記反射板と前記開口部との間の空間に移動して前記開口部を塞ぐとともに、測定時には前記反射板の、前記開口部とは反対側の空間に移動して前記開口部を開口するカバーを備えることを特徴とする上記(1)記載の高炉用表面検出装置。
(3)前記カバーは、該カバーの内側にカバー側突起片を有し、
 前記反射板を支持する支持腕に、反射板側突起片を有しており、
 前記反射板を回動させて前記反射板側突起片で前記カバー側突起片を押し、前記カバーを測定時の位置と非測定時の位置とに移動させることを特徴とする上記(2)記載の高炉用表面検出装置。
(4)前記アンテナと前記送受信器とが、導波管を介在せずに、直結していることを特徴とする上記(1)~(3)の何れか1項に記載の高炉用表面検出装置。
(5)前記反射板が、支軸間を短軸とする楕円板であることを特徴とする上記(1)~(4)の何れか1項に記載の高炉用表面検出装置。
(6)前記容器の一側面が開口して、着脱可能なアンテナ取付壁で閉鎖されているとともに、前記アンテナ取付壁に前記アンテナが取り付けられており、
 前記容器の前記アンテナ取付壁と対向する面が開口して、前記傾斜角度可変機構及び前記回動機構が挿入され、前記開口に前記管体の外周面の軸受に設けた立片を介して着脱自在に前記回動機構が取り付けられており、
 メンテナンス時に、前記アンテナ取付壁ごと前記アンテナを取り外すとともに、前記開口から前記回動機構ごと前記傾斜角度可変機構及び前記反射板を抜き取ることを特徴とする上記(1)~(5)の何れか1項に記載の高炉用表面検出装置。
 本発明の表面検出装置は、反射板のみを傾斜角度可変機構と回動機構とを協働して反射角度を変えるため、アンテナを容器に固定した構成とすることができ、アンテナを回動させるための機構が不要で、グランドパッキンのようなシール部材も不要になるため、アンテナと送受信器とを連結する導波管の長さを極力短くすることができる。また、アンテナを固定しているため、導波管を回動する装置や、送受信機の供回りを防ぐためのカプラーも不要になり、装置構成が簡素になる。
本発明の表面検出装置を示す断面図である。 図1に示す表面検出装置において、アンテナ及び反射板の周辺を上面から見た図である。 高炉の開口部を塞ぐためのカバーを付設した時の、カバーの動きを示す図である。 特許文献1に記載された表面検出装置を示す概略図である。
 以下、本発明に関して図面を参照して詳細に説明する。
 図1は本発明の表面検出装置の全体構造を示す断面図であり、図2はアンテナ及び反射板の周辺を示す上面図である。図示されるように、高炉1の開口部2には、容器150が取り付けられている。この容器150は、開口部2に対応して底部の一部が開口しており、開口部2に連続して取り付けられている。
 容器150の一側面(図1では左側端部)が開口しており、開口部分がアンテナ取付壁151で閉鎖されている。アンテナ取付壁151は、ボルト等により着脱可能に容器150に取り付けられている。そして、アンテナ取付壁151にアンテナ111が取り付けられている。また、アンテナ111には、検出波の送受信器110が連結している。尚、検出波としてはマイクロ波やミリ波を用いることができる。
 本発明の表面検出装置100では、特許文献1のようにアンテナ111が回動する構成ではないため、図4に示した導波管112を回動させるための導波管側ギア132や、モータ130及びモータ側ギア131が不要であり、更にはグランドパッキン180も不要になることから、導波管112の長さがアンテナ111と送受信器110とを連結するナット113,113に要する部分だけですみ、大幅に短くすることができる。好ましくは、アンテナ111を、導波管112を介さずに、送受信器110に直結する。
 このように導波管112が短くなる、あるいは不要になるため、導波管112での検出波の減衰を極力抑えることができる。また、図4に示したカプラー135も不要であり、導波管112の短尺化とともに、装置全体を小型化することができ、設置スペースも少なくてすむ。
 尚、アンテナ111は、図示されるホーンアンテナに限らず、例えば誘電体レンズ114を付設して検出波の指向性を高めたり、ホーン長を短くすることができる。
 容器150の開口部2の直上には反射板120が配置されている。反射板120の直径両端からは支軸121,121が突出しており、支軸121,121を支持腕160,160が回動自在に支持している。また、支持腕160,160は、管体161の反射板側の端部(先端)に固定されている。
 管体161の後端近傍の外周面にはギア164が取り付けられており、モータ170のギア171と係合している。そして、管体161は、モータ170の駆動により自身の軸線を中心に矢印X方向に回動し、この回動に伴って支持腕160、160で支持されている反射板120も同方向に回動する。また、管体161の外周面には軸受162が嵌合しており、軸受162の外輪に取り付けた立片163を介して容器150に取り付けられる。立片163は、ボルト等により着脱自在に容器150に取り付けられる。この軸受162により、管体161は、回動自在に容器150に支持される。
 反射板120の裏面120aには、リンク機構200が連結している。このリンク機構200は、反射板120の裏面120aの中心に第1リンク201が固定されており、第1リンク201には連結ピン204を介して第2リンク202が回動自在に連結し、第2リンク202には連結ピン205を介してスライダ203が回動自在に連結している。スライダ203は、断面円形の長尺の棒材であり、その後端にはラックギア208が形成されている。このラックギア208は、モータ210のギアと係合しており、モータ210を駆動することにより、スライダ203が矢印H方向に往復直線移動する。そして、スライダ203がアンテナ側に前進すると、反射板120が開口部2を向くように図中下向きに傾斜し、スライダ203が反アンテナ側に後退すると反射板120がアンテナ111を向くように図中上向きに傾斜する。
 スライダ203は、アンテナ111から送信される検出波の伝搬軸の延長線上にあり、反射板120の支軸121,121もこの検出波の伝搬軸の延長線上にある。そのため、反射板120は、検出波の伝搬軸を中心に、スライダ203の前進後退に伴って、矢印Y方向に回動する。
 図示されるように、管体161とスライダ203とは、管体161を外管とし、スライダ203を内管とする2重管構造になっている。また、スライダ203の反射板側の端部には、溝が形成されており、この溝にOリング等のシール部材165が装着され、管体161との隙間を摺動自在に塞いでいる。
 そして、管体161を駆動するモータ170と、スライダ203を駆動するモータ210とを協働することにより、反射板120を矢印X方向及び矢印Y方向に回動する。これにより、開口部2から送信された検出波は、装入物の表面を面状に走査し、面状の表面プロフィールが得られる。尚、モータ170とモータ210の何れか一方のみを駆動して、反射板120を矢印X方向または矢印Y方向の一方にのみ回動させることにより、線状の表面プロフィールを得ることもできる。
 尚、反射板120は、円板であってもよいが、図2に示すように、支軸121,121で挟まれた線分を短軸とする楕円板にすることが好ましい。アンテナ111と反射板120との距離が短いため、アンテナ111からの検出波は、その殆どが反射板120の中心近傍に進むため、支軸121,121に沿った線分が短軸なっても検出波の反射に影響することはない。反射板120を楕円板にすることにより、円板の場合よりも軽量になり、モータ170の負荷が小さくなり、矢印X方向への回動をより高速にすることもできる。また、支持腕160、160の幅が狭まり、管体161を細くすることができるため、容器150の小型化も図られる。
 炉内から開口部2を通じて粉塵が侵入するため、容器150の内部に不活性ガスを供給することが好ましい。また、アンテナ111の前面に検出波を透過する耐熱性の材料からなる非通気性の隔壁145と、同様の材料からなるフィルタ140とを配置し、フィルタ140と隔壁145との間に不活性ガスを供給してフィルタ140から不活性ガスを反射板側に噴出させてもよい。尚、フィルタ140としては、例えば宇部興産(株)製の「チラノ繊維」からなる織布を用いることができる。
 また、フィルタ140及び隔壁145は、アンテナ111の開口端縁から突出する枠体118に取り付けられており、この枠体118のフィルタ140と隔壁145との間の空間に開けられた貫通孔119を通じて不活性ガスを供給し、フィルタ140から噴出させる。尚、枠体118のフィルタ140の取り付け部は容器側に屈曲しており、屈曲部の船体は容器150の内壁との間に小さな隙間を形成している。
 また、粉塵対策として、図3に示すように、反射板120を中心に旋回するカバー190を用いることもできる。尚、図3は、反射板120をアンテナ側から見た図である。
 このカバー190は、その軸線に直交する断面形状が円弧状であり、例えば半球状、半円筒体、あるいは中央部が半円筒状で、その両側が端部に向かって徐々に縮径する半円錐状とすることができる。また、カバー190の内側の適所(例えば、円弧の中央部)には突起片191(以下「カバー側突起片」)が突設されており、両端が外方に屈曲してストッパー192を形成しており、更に一方のストッパー192(図では右側)にウエイト193が取り付けられている。
 また、カバー190は、図示は省略するが、その端部を容器150に設けた案内溝に嵌め込むなどして、反射板120の外側の空間に浮いた状態で、反射板120の回動方向である矢印X方向に摺動可能に保持されている。
 一方、反射板120を支持する支持腕160,160の一方(図では右側)には、支軸121の延長線上にカバー側突起片191と当接する突起片128(以下「反射板側突起片」)が突設されている。更に、容器150の内壁には、支持腕160,160と対向する位置、もしくは若干下方に、カバー190のストッパー192と当接するストッパー受け152が突設されている。
 図3の(a)は図1に相当する図であり、測定時の反射板120及びカバー190の各位置を示している。図示されるように、カバー190のカバー側突起片191と反射板120の反射板側突起片128とは90°角度がずれている。また、カバー190の一方のストッパー192が容器150のストッパー受け152の上面に載置されている。この状態で、カバー190のストッパー192は、ストッパー受け152に載置し、更にはウエイト193が加わるため、カバー190がウエイト193の他方の側(図の左側)に回動することがなく、測定の間中、この状態を維持する。
 そして、この状態から、反射板120を矢印X1のように90°回動させ、それに伴って反射板側突起片128をカバー側突起片191に当接させて図3(b)に示す状態とする。この状態から更に矢印X2のように反射板120を同方向に180°回動させると、反射板側突起片128がカバー側突起片191を同方向に押し、それに伴って図3(c)に示すように、カバー190が高炉の開口部2の直上に位置する。その結果、開口部2がカバー190で塞がれ、炉内からの粉塵、特に比較的大径の鉄鉱石やコークスから反射板120やフィルタ140(図1参照)等を防御することができる。この図3(c)が、非測定時の状態である。
 図3(c)に示す非測定時の状態から測定を再開するには、先ず、図3(c)に示すように、反射板120を矢印X3で示すように逆方向に360°回動させて反射板側突起片128をカバー側突起片191の他方の面に当接させる。次いで、図3(d)に示すように、反射板120を矢印X4で示すように同方向に180°回動させる。これによりカバー側突起片191が反射板側突起片128を同方向に押し、図3(e)の状態にする。その後、図3(e)に示すように、反射板120を矢印X5で示すように逆方向に270°回動させる。これにより、開口部2からカバー190が反射板120の上方に移動して図3(f)、即ち図3(a)に示す元の状態に戻り、開口部2が開口して測定を再開することができる。
 尚、上記のカバー190の回動は、ウエイト193による遠心力の作用により円滑に、かつ、高速に行うことができる。
 このように、カバー190による高炉1の開口部2の開閉に際して、反射板120を図示されるように回動させるだけでよいため、カバー190を旋回させるための別機構が不要である。従って、開口部2に開閉弁を設け、開閉機構で開閉させる構成が一般的であるが、これに比べて装置構成を簡素にすることができる。また、カバー190は反射板120を回動させる管体161と連結していないため、測定に際して反射板120の回動に追随しない。カバー190は、炉内からの比較的大径の鉄鉱石やコークスの衝突に耐え得るように鋼板等で作製され、ある程度の厚さを有する重量物である。そのため、反射板120の回動に追随して回動すると、管体161を回動させるモータ170への負荷が大きくなるが、それもなくなる。また、カバー190を管体161に連結することもできる。
 上記したように、アンテナ111は、容器150のアンテナ取付壁151に取り付けられているため、このアンテナ取付壁151を容器150から取り外すことにより、アンテナ111、並びにアンテナ111に連結した隔壁145及びフィルタ140を容器150から引き抜くことができ、高炉1に容器150を取り付けたままアンテナ111や隔壁145、フィルタ140のメンテナンスを行うことができる。
 また、管体161とスライダ203とは2重管構造であり、全体として一体化物であり、管体161の軸受162に設けた立片163を介して容器150にボルト等で取り付けている。そこで、反射板120をスライダ203と略同一面となるように傾斜させ、管体161ごと容器150から抜き取ることにより、容器150を開口部2に取り付けたままで反射板120やリンク機構200、回動手段、更にはカバー190のメンテナンスを行うことができる。
 このように、アンテナ111や反射板120のメンテナンスも容易になる。
 更には、図示は省略するが、容器150の反射板120の上方部分に観察窓を形成し、反射板120を回動させて観察窓と対向させることにより、反射板120への粉塵の付着状態を観察することもできる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2016年9月23日出願の日本特許出願(特願2016-185702)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、炉内の装入物の表面プロフィールを線状または面状に検出できる表面検出装置において、装置構成を簡素にし、更には導波管を極力短くして検出波の減衰を少なくし、検出精度の向上を図ることができる。
1 高炉
2 開口部
3 装入物
100 表面検出装置
110 送受信器
111 アンテナ
112 導波管
120 反射板
121 支軸
128 反射板側突起片
140 フィルタ
145 隔壁
150 容器
151 アンテナ取付壁
152 ストッパー受け
160 支持腕
161 管体
162 軸受
163 立片
164 ギア
165 シール部材
170 モータ
171 ギア
190 カバー
191 カバー側突起片
192 ストッパー
193 ウエイト
200 リンク機構
201 第1リンク
202 第2リンク
203 スライダ
208 ラックギア
210 モータ

Claims (6)

  1.  高炉の炉外に設置され、送受信器からの検出波をアンテナから反射板に送り、前記反射板で反射して前記高炉の開口部を通じて炉内に送信し、炉内の装入物の表面で反射され、前記開口部を通じて前記反射板に至る前記検出波を、前記反射板で反射して前記アンテナに送り前記送受信器で受信して前記装入物の表面プロフィールを検出する高炉用表面検出装置において、
     前記開口部に取り付けられ、該開口部に対応して底面の一部が開口している容器と、
     前記容器内の前記開口部の直上に配置された前記反射板と、
     前記反射板と対向配置され、前記容器に固定された前記アンテナと、
     前記反射板の、前記アンテナとは反対側の空間に設けられ、該反射板のアンテナ側または反アンテナ側への傾斜角度を可変にする傾斜角度可変機構と、該反射板を前記検出波の伝搬軸を中心に所定の角度で回動させる回動機構とを備えるとともに、
     前記傾斜角度可変機構が、前記反射板の前記アンテナとは反対側の面に一端が固定された第1リンクと、前記第1リンクと連結ピンを介して連結した第2リンクと、前記第2リンクと連結ピンを介して連結したスライダと、前記スライダをアンテナ側または反アンテナ側に前進後退させるスライダ駆動手段とを備え、
     前記回動機構が、前記反射板の直径両端から突出する支軸を回動自在に支持する支持腕と、前記支持腕が取り付けられた管体と、前記管体を、その軸線を中心に回動させる管体回動手段とを備え、かつ、
     前記傾斜角度可変機構と前記回動機構とが、前記スライダを内管とし、前記管体を外管とする2重管構造であり、
     前記傾斜角度可変機構と前記回動機構とを協働して、前記検出波を、前記装入物の表面を線状または面状に走査することを特徴とする高炉用表面検出装置。
  2.  前記反射板を中心に旋回し、非測定時には前記反射板と前記開口部との間の空間に移動して前記開口部を塞ぐとともに、測定時には前記反射板の、前記開口部とは反対側の空間に移動して前記開口部を開口するカバーを備えることを特徴とする請求項1記載の高炉用表面検出装置。
  3.  前記カバーは、該カバーの内側にカバー側突起片を有し、
     前記反射板を支持する支持腕に、反射板側突起片を有しており、
     前記反射板を回動させて前記反射板側突起片で前記カバー側突起片を押し、前記カバーを測定時の位置と非測定時の位置とに移動させる
    ことを特徴とする請求項2記載の高炉用表面検出装置。
  4.  前記アンテナと前記送受信器とが、導波管を介在せずに、直結していることを特徴とする請求項1~3の何れか1項に記載の高炉用表面検出装置。
  5.  前記反射板が、支軸間を短軸とする楕円板であることを特徴とする請求項1~4の何れか1項に記載の高炉用表面検出装置。
  6.  前記容器の一側面が開口して、着脱可能なアンテナ取付壁で閉鎖されているとともに、前記アンテナ取付壁に前記アンテナが取り付けられており、
     前記容器の前記アンテナ取付壁と対向する面が開口して、前記傾斜角度可変機構及び前記回動機構が挿入され、前記開口に前記管体の外周面の軸受に設けた立片を介して着脱自在に前記回動機構が取り付けられており、
     メンテナンス時に、前記アンテナ取付壁ごと前記アンテナを取り外すとともに、前記開口から前記回動機構ごと前記傾斜角度可変機構及び前記反射板を抜き取ることを特徴とする請求項1~5の何れか1項に記載の高炉用表面検出装置。
PCT/JP2017/033300 2016-09-23 2017-09-14 高炉用表面検出装置 WO2018056171A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/335,008 US11021765B2 (en) 2016-09-23 2017-09-14 Surface detection apparatus for blast furnace
KR1020197007733A KR102421754B1 (ko) 2016-09-23 2017-09-14 고로용 표면 검출 장치
EP17852948.3A EP3517633B1 (en) 2016-09-23 2017-09-14 Surface detection device for blast furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-185702 2016-09-23
JP2016185702A JP6770738B2 (ja) 2016-09-23 2016-09-23 高炉用表面検出装置

Publications (1)

Publication Number Publication Date
WO2018056171A1 true WO2018056171A1 (ja) 2018-03-29

Family

ID=61690415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033300 WO2018056171A1 (ja) 2016-09-23 2017-09-14 高炉用表面検出装置

Country Status (5)

Country Link
US (1) US11021765B2 (ja)
EP (1) EP3517633B1 (ja)
JP (1) JP6770738B2 (ja)
KR (1) KR102421754B1 (ja)
WO (1) WO2018056171A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151108B2 (ja) 2018-03-15 2022-10-12 株式会社リコー 情報処理装置、情報処理方法およびプログラム
BR112020019405B1 (pt) * 2018-03-28 2023-12-26 Jfe Steel Corporation Método de operação para um alto-forno usando um aparelho de altoforno
CN112313346B (zh) * 2019-05-31 2022-09-06 株式会社Wadeco 高炉内装入物的表面轮廓检测装置及操作方法
DE102020106020A1 (de) * 2020-03-05 2021-09-09 Endress+Hauser SE+Co. KG Füllstandsmessgerät

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033619A (ja) * 2009-07-09 2011-02-17 Wire Device:Kk 高炉における装入物プロフィールの測定方法及び測定装置
JP2014133922A (ja) * 2013-01-10 2014-07-24 Nippon Steel & Sumitomo Metal 高炉内装入物のプロフィル測定装置
WO2015133005A1 (ja) 2014-03-04 2015-09-11 株式会社ワイヤーデバイス 高炉への装入物の装入及び堆積方法、装入物の表面検出装置、並びに高炉の操業方法
JP2015219129A (ja) * 2014-05-19 2015-12-07 株式会社ワイヤーデバイス 高炉内装入物の表面検出装置
JP2016185702A (ja) 2015-03-27 2016-10-27 東罐興業株式会社 疎水性凹凸面を有する構造体及び疎水性凹凸面の形成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU81158A1 (fr) * 1979-04-13 1979-06-19 Wurth Paul Sa Dispositif de montage d'une sonde radar pour fours a cuve
DE3715762A1 (de) * 1987-05-12 1988-11-24 Dango & Dienenthal Maschbau Vorrichtung zum bestimmen des schuettprofils in einem schachtofen
TWI412598B (zh) * 2010-02-05 2013-10-21 China Steel Corp Design method of standing blast furnace material
JP5577525B2 (ja) * 2010-09-22 2014-08-27 株式会社ワイヤーデバイス 高炉への装入物の装入及び堆積方法、並びに高炉の操業方法
KR102056608B1 (ko) 2012-03-12 2019-12-17 바스프 에스이 피리피로펜 살곤충제의 수성 현탁액 농축물 제형의 제조 방법
JP6130234B2 (ja) * 2012-11-12 2017-05-17 株式会社Wadeco 高炉内装入物の表面検出装置
JP6204836B2 (ja) 2014-01-14 2017-09-27 東芝テック株式会社 商品販売データ処理装置
JP2016067340A (ja) 2014-10-02 2016-05-09 日健化学株式会社 飲食物
JP6573323B2 (ja) * 2016-03-25 2019-09-11 株式会社Wadeco 高炉装入物の表面検出装置及び検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033619A (ja) * 2009-07-09 2011-02-17 Wire Device:Kk 高炉における装入物プロフィールの測定方法及び測定装置
JP2014133922A (ja) * 2013-01-10 2014-07-24 Nippon Steel & Sumitomo Metal 高炉内装入物のプロフィル測定装置
WO2015133005A1 (ja) 2014-03-04 2015-09-11 株式会社ワイヤーデバイス 高炉への装入物の装入及び堆積方法、装入物の表面検出装置、並びに高炉の操業方法
JP2015219129A (ja) * 2014-05-19 2015-12-07 株式会社ワイヤーデバイス 高炉内装入物の表面検出装置
JP2016185702A (ja) 2015-03-27 2016-10-27 東罐興業株式会社 疎水性凹凸面を有する構造体及び疎水性凹凸面の形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517633A4

Also Published As

Publication number Publication date
JP2018048384A (ja) 2018-03-29
JP6770738B2 (ja) 2020-10-21
EP3517633A1 (en) 2019-07-31
EP3517633A4 (en) 2020-02-12
EP3517633B1 (en) 2022-07-06
KR20190057288A (ko) 2019-05-28
KR102421754B1 (ko) 2022-07-15
US20190249267A1 (en) 2019-08-15
US11021765B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2018056171A1 (ja) 高炉用表面検出装置
WO2017164358A1 (ja) 高炉装入物の表面検出装置及び検出方法
JP6405362B2 (ja) 高炉への装入物の装入及び堆積方法、装入物の表面検出装置、並びに高炉の操業方法
EP0017664B1 (fr) Dispositif de montage d'une sonde radar pour fours à cuve
WO2019168139A1 (ja) 高炉装入物の表面検出装置
JP5391458B2 (ja) 高炉における装入物プロフィールの測定方法及び測定装置
JP5577525B2 (ja) 高炉への装入物の装入及び堆積方法、並びに高炉の操業方法
JP5652735B2 (ja) コークス炉の装炭レベル測定装置
KR102087778B1 (ko) 고로에 장입된 물질의 표면 검출용 검출장치
WO2017022818A1 (ja) 高炉内装入物の表面検出装置及び装入方法、並びに高炉の操業方法
JP6857933B1 (ja) 高炉内装入物の表面プロフィール検出装置及び操業方法
JPH1056323A (ja) 容器内の充填レベルを測定するためのパラボラアンテナ
JP2015219129A (ja) 高炉内装入物の表面検出装置
JP2023181865A (ja) 高炉内装入物の表面プロフィール測定装置及び測定方法、並びに高炉の操業方法
JP6595265B2 (ja) 高炉への装入物の装入及び堆積方法、装入物の表面検出装置、並びに高炉の操業方法
JP2022179120A (ja) 高炉内装入物の表面プロフィール検出装置
JP6533938B2 (ja) 高炉内装入物の表面検出装置における粉塵付着状況の検知方法
JP7448990B1 (ja) 高炉内装入物の表面プロフィール検出装置
JP2021172877A (ja) 高炉内装入物の表面検出装置及び表面プロファイルの検出方法、並びに高炉の操業方法
JP2022135725A (ja) 距離計における距離信号の処理方法、物体検出装置及び高炉の操業方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852948

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007733

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017852948

Country of ref document: EP

Effective date: 20190423