WO2018055868A1 - Hygroscopic heat-generating fiber - Google Patents

Hygroscopic heat-generating fiber Download PDF

Info

Publication number
WO2018055868A1
WO2018055868A1 PCT/JP2017/024129 JP2017024129W WO2018055868A1 WO 2018055868 A1 WO2018055868 A1 WO 2018055868A1 JP 2017024129 W JP2017024129 W JP 2017024129W WO 2018055868 A1 WO2018055868 A1 WO 2018055868A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
salt type
surface layer
cross
acrylonitrile
Prior art date
Application number
PCT/JP2017/024129
Other languages
French (fr)
Japanese (ja)
Inventor
宏 小野
成明 中村
正雄 家野
Original Assignee
東洋紡株式会社
日本エクスラン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社, 日本エクスラン工業株式会社 filed Critical 東洋紡株式会社
Priority to JP2017551728A priority Critical patent/JP6247800B1/en
Priority to KR1020197000081A priority patent/KR102334183B1/en
Priority to CN201780048935.9A priority patent/CN109642349B/en
Publication of WO2018055868A1 publication Critical patent/WO2018055868A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/63Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with hydroxylamine or hydrazine

Definitions

  • the present invention relates to a moisture-absorbing exothermic fiber that has an initial temperature rise speed with respect to moisture-absorbing exothermic property, and has a high level of bulkiness and can quickly realize a warm environment comfortable to the human body. .
  • cross-linked acrylate fiber As a hygroscopic exothermic fiber, cross-linked acrylate fiber is most widely used in the clothing and industrial materials fields. Such cross-linked acrylate fibers are known to have harmonious functions such as pH buffering properties, antistatic properties, water retention, high moisture absorption rate, high moisture absorption rate, high moisture absorption rate difference, or temperature control / humidity control functions derived therefrom. (For example, Patent Documents 1 and 2).
  • the crosslinked acrylate fiber has a high moisture absorption rate, it has a feature that its bulkiness and form stability are lowered by the moisture absorbed. For this reason, card processing is difficult, and there has been a situation in which development for uses such as batting requires bulkiness.
  • a crosslinked acrylate system obtained by subjecting an acrylonitrile fiber having a side-by-side structure composed of two types of acrylonitrile polymers to a crosslinking treatment and a hydrolysis treatment with a nitrogen-containing compound.
  • a fiber was proposed (Patent Document 3).
  • This fiber has a hygroscopic exothermic property and bulkiness at a practical level, but because of its high bulkiness, it uses a polyvalent metal salt type cross-linked acrylate fiber such as Mg, Ca, etc.
  • Mg, Ca polyvalent metal salt type cross-linked acrylate fiber
  • JP 7-216730 A JP-A-5-132858 WO2015 / 041275
  • the present invention was devised in order to solve the problems of the prior art including Patent Document 3, and has an initial heat generation temperature rising speed with respect to moisture absorption heat generation, and has a high level of bulkiness. It is in providing the hygroscopic exothermic fiber which has.
  • the present inventor adopted Na salt type or K salt type as the crosslinked polyacrylate fiber to enhance the initial moisture absorption exothermic property, and Na salt type or K salt.
  • High bulkiness by compensating for low bulkiness, which is a defect of the mold, by adopting a specific composite structure with a small surface layer that expresses hygroscopic heat generation and a technology that increases the amount of carboxyl groups in the surface layer It was found that an initial high temperature rise due to moisture absorption exothermic property can be achieved while maintaining the above, and the present invention has been completed.
  • the center part Is a side-by-side structure consisting of two specific types of acrylonitrile-based polymers, and the surrounding layer that exhibits hygroscopic heat generation is made as small as possible to create a composite structure with increased bulkiness. Is performed under milder conditions with a lower concentration of alkali metal compound than before, and the subsequent acid treatment is performed under severer conditions at higher temperatures than in the past. It was found that sex can be expressed.
  • the graph which shows transition of the temperature for every elapsed time of the cross-linked polyacrylate type fiber of Na salt type or Mg salt type measured based on the measuring method and conditions of ISO18782: 2015 is shown in FIG.
  • the Na salt type is superior to the Mg salt type with respect to the initial rise temperature based on the hygroscopic exothermic property of the crosslinked polyacrylate fiber.
  • a composite fiber comprising a cross-linked structure and a surface layer portion having a Na salt type or K salt type carboxyl group, and a central portion of a side-by-side structure composed of two types of acrylonitrile-based polymers having different acrylonitrile content rates.
  • the moisture absorption is characterized in that the area occupied by the surface layer portion in the cross section of the composite fiber is 5% or more and less than 20%, and the saturated moisture absorption in an environment of 20 ° C. and relative humidity 65% is 20% or more.
  • Pyrogenic fiber is characterized in that the area occupied by the surface layer portion in the cross section of the composite fiber is 5% or more and less than 20%, and the saturated moisture absorption in an environment of 20 ° C. and relative humidity 65% is 20% or more.
  • the hygroscopic exothermic fiber of the present invention has an initial high elevated temperature due to hygroscopic exothermic properties, which cannot be achieved with conventional polyvalent metal salt type cross-linked polyacrylate fibers such as Mg salt type and Ca salt type. It has the effect of having a bulky level. Such an effect is brought about by the presence of hygroscopic exothermic property, a specific composite structure and a high concentration of carboxyl groups, which show a high temperature rise early in the Na salt type or K salt type cross-linked polyacrylate fiber.
  • the hygroscopic exothermic fiber of the present invention is capable of quickly absorbing a large amount of moist air taken in due to its high bulkiness and high hygroscopic exothermic property that quickly rises in temperature, and quickly transforming it into warm air of low humidity. Therefore, when used as a bedding or batting for autumn / winter outdoor clothing, the wearer can feel warmth and heat retention at an extremely fast stage.
  • the hygroscopic exothermic fiber of the present invention comprises a cross-linked structure and a surface layer part having a Na salt type or K salt type carboxyl group, and a central part of a side-by-side type structure composed of two types of acrylonitrile-based polymers having different acrylonitrile contents.
  • the area occupied by the surface layer portion in the cross section of the composite fiber is 5% or more and less than 20%, and the saturated moisture absorption in an environment of 20 ° C. and relative humidity 65% is 20% or more. It is characterized by that. Due to such characteristics, both moisture absorption exothermicity that quickly absorbs moisture and exhibits high exothermicity and bulkiness that provides sustained heat retention are provided at a high level.
  • the hygroscopic exothermic fiber of the present invention needs to be a crosslinked polyacrylate fiber having a monovalent metal Na salt type or K salt type carboxyl group.
  • Mg salt type or Ca salt type divalent metal salt type has high moisture absorption exothermic property and moderately high bulkiness, but since the initial rise temperature during moisture absorption exotherm is low, warmth and heat retention can be achieved early. There is a problem if you want to feel it.
  • other divalent metal salt types such as a Zn salt type are not preferable because they are inferior in hygroscopic heat generation and a comfortable environment cannot be obtained.
  • the monovalent metal salt type of the Na salt type or the K salt type has a high initial temperature rise during the hygroscopic heat generation, and thus can feel warmth at an early stage.
  • the Na salt type or K salt type cross-linked polyacrylate fiber has a special composite structure as described later in the present invention because the bulkiness is insufficient in the normal fiber form and the heat retention cannot be maintained.
  • the hygroscopic exothermic fiber of the present invention comprises a cross-linked structure and a surface layer part having a Na salt type or K salt type carboxyl group, and a central part of a side-by-side type structure composed of two types of acrylonitrile-based polymers having different acrylonitrile contents. It is necessary that the area occupied by the surface layer portion in the cross section of the composite fiber is 5% or more and less than 20%.
  • the hygroscopic exothermic fiber of the present invention has a composite structure consisting of a central portion and a surface layer portion around the central portion, and contributes to improvement in bulkiness by making a hard structure as large as possible in the central portion, and crosslinks at the surface layer portion.
  • the hygroscopic exothermic fiber of the present invention can have 3.5 mmol / g or more with respect to the total amount of carboxyl groups, and can be up to about 10 mmol / g. Actually, the entire amount of this carboxyl group is present in the surface layer portion. Further, it is possible to achieve 20% or more, further 30% or more with respect to the moisture absorption rate defined in the examples described later, and up to about 70% is possible.
  • the hygroscopic exothermic fiber of the present invention uses an acrylonitrile fiber as a raw fiber, and the acrylonitrile fiber can be produced from an acrylonitrile polymer by a known method.
  • the acrylonitrile polymer preferably has an acrylonitrile content of 50% by weight or more, more preferably 80% by weight or more. When the content of acrylonitrile is small, the cross-linked structure is reduced and the fiber properties may be deteriorated.
  • the crosslinked structure can be introduced into the fiber by reacting the nitrile group of the acrylonitrile polymer with a nitrogen-containing compound such as a hydrazine compound.
  • the hygroscopic exothermic fiber of the present invention has a composite structure in which two acrylonitrile polymers having different acrylonitrile contents are joined side by side.
  • a difference occurs in the degree of shrinkage during the hydrolysis treatment, and crimps can be expressed as a result. It can contribute to the improvement of bulkiness.
  • the difference in acrylonitrile content between the two acrylonitrile polymers is preferably 1 to 8% by weight, more preferably 1 to 5% by weight.
  • the composite ratio (weight ratio) of the acrylonitrile polymer is preferably 20/80 to 80/20, more preferably 30/70 to 70/30.
  • a cross-linked structure is introduced into the surface layer of the fiber having a composite structure as described above.
  • a conventionally known crosslinking agent may be used, but it is preferable to use a nitrogen-containing compound from the viewpoint of the introduction efficiency of the crosslinked structure.
  • the nitrogen-containing compound it is preferable to use an amino compound or a hydrazine compound having two or more primary amino groups.
  • amino compounds having two or more primary amino groups include diamine compounds such as ethylenediamine and hexamethylenediamine, diethylenetriamine, 3,3′-iminobis (propylamine), N-methyl-3,3′-iminobis ( Triamine compounds such as propylamine), triethylenetetramine, N, N′-bis (3-aminopropyl) -1,3-propylenediamine, N, N′-bis (3-aminopropyl) -1,4- Examples include tetramine compounds such as butylenediamine, polyvinylamine, polyallylamine, and the like, and polyamine compounds having two or more primary amino groups.
  • diamine compounds such as ethylenediamine and hexamethylenediamine, diethylenetriamine, 3,3′-iminobis (propylamine), N-methyl-3,3′-iminobis ( Triamine compounds such as propylamine), triethylenetetramine, N, N′-bis (3-aminopropy
  • hydrazine compound examples include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine hydrobromide, hydrazine carbonate, and the like.
  • the upper limit of the number of nitrogen atoms in one molecule is not particularly limited, but is preferably 12 or less, more preferably 6 or less, and particularly preferably 4 or less. When the number of nitrogen atoms in one molecule exceeds the above upper limit, the cross-linking agent molecule becomes large and it may be difficult to introduce a cross-linked structure into the fiber.
  • the conditions for introducing the cross-linked structure are not particularly limited, and can be appropriately selected in consideration of the reactivity between the cross-linking agent employed and the acrylonitrile fiber, the amount of the cross-linked structure, and the like.
  • a hydrazine compound is used as the cross-linking agent
  • the acrylonitrile fiber described above is immersed in an aqueous solution to which the hydrazine compound is added so that the hydrazine concentration is 0.1 to 10% by weight. And a method of treating at 2 ° C. for 2 to 10 hours.
  • hydrolysis treatment with an alkaline metal compound is performed, and nitrile groups present in the surface layer of the fiber are hydrolyzed to form carboxyl groups.
  • Specific treatment conditions may be set as appropriate in consideration of the amount of carboxyl groups described above, and the like, and various conditions such as the concentration of the treatment agent, reaction temperature, reaction time, etc. are preferably set, but preferably 0.5 to 10% by weight, More preferably, a means for treating in a 1 to 5% by weight treatment chemical aqueous solution at a temperature of 80 to 150 ° C. for 2 to 10 hours is preferred from the industrial and fiber viewpoints.
  • the above-described cross-linking introduction treatment and hydrolysis treatment are collectively performed simultaneously using an aqueous solution in which the respective treatment chemicals are mixed, rather than sequentially performing as described above.
  • the simultaneous treatment is performed under a milder condition of an alkali metal compound having a lower concentration than before, and the subsequent acid treatment is performed under severer conditions at a higher temperature than in the past.
  • the hygroscopic exothermic fiber of the present invention can have a structure in which more carboxyl groups are present in the narrow surface layer portion than before and a relatively hard acrylonitrile polymer is preserved in the center portion. .
  • the formed carboxyl group includes a salt-type carboxyl group whose counter ion is a cation other than a hydrogen ion, and an H-type carboxyl group whose counter ion is a hydrogen ion.
  • a salt-type carboxyl group whose counter ion is a cation other than a hydrogen ion
  • an H-type carboxyl group whose counter ion is a hydrogen ion In order to obtain a high moisture absorption rate, it is desirable that 50% or more of the carboxyl groups are salt-type carboxyl groups.
  • the cation constituting the salt-type carboxyl group is sodium or potassium alkali metal. When a polyvalent metal ion such as magnesium, calcium, or zinc is employed, the bulkiness is high, but the initial temperature rise due to moisture absorption is low, which is not preferable.
  • the hygroscopic exothermic fiber of the present invention is an acrylonitrile fiber in which two types of acrylonitrile polymers having different acrylonitrile contents are joined side by side under the conditions specific to the present invention as described above. It can be obtained by introducing a bridge and hydrolyzing to form a carboxyl group and selecting sodium or potassium as the counter ion.
  • Methods for adjusting the ratio of salt-type carboxyl groups to H-type carboxyl groups within the above range include ion exchange treatment with metal salts such as nitrates, sulfates and hydrochlorides, and acid treatments with nitric acid, sulfuric acid, hydrochloric acid, formic acid, etc.
  • metal salts such as nitrates, sulfates and hydrochlorides
  • acid treatments with nitric acid, sulfuric acid, hydrochloric acid, formic acid, etc Alternatively, a method of performing pH adjustment treatment with an alkaline metal compound or the like can be mentioned.
  • the area occupied by the surface layer portion in the cross section is 5% or more and less than 20%, preferably 10% or more and less than 20%.
  • the area of the surface layer portion is less than the above range, the carboxyl group cannot be sufficiently present in the fiber, and the high moisture absorption exothermic property cannot be exhibited.
  • the fibers tend to sag due to moisture absorption, causing a problem in bulkiness.
  • the area occupied by the surface layer of the fiber of the present invention is extremely small, and the area of the central part where the carboxyl group is substantially absent occupies a large area, so that the fiber sag due to moisture absorption, Na salt type or K salt type was adopted.
  • the influence of the decrease in bulkiness due to the is small, and high bulkiness can be achieved.
  • the Na salt-type or K-salt type cross-linked polyacrylate fiber has a high moisture absorption exothermic property (particularly, an initial rise temperature) as compared with a divalent metal salt such as an Mg salt type.
  • the features can be enjoyed as they are.
  • the hygroscopic exothermic fiber of the present invention is composed of the above-mentioned special composite structure Na salt type or K salt type cross-linked polyacrylate fiber, so that it is 6.0 within 5 minutes in an environment of 20 ° C. ⁇ 65% RH. Moisture absorption in the range of ⁇ 40% can be easily achieved.
  • the hygroscopic exothermic fiber of the present invention can realize a high hygroscopic exothermic effect (high temperature rise) within the first 5 minutes when human skin comes into contact.
  • the hygroscopic exothermic fiber of the present invention comprises the above-mentioned special composite structure Na salt type or K salt type cross-linked polyacrylate fiber, so that a specific volume in the range of 50 to 100 cm 3 / g is achieved. Can do. Such high bulkiness is brought about by the high bulkiness possessed by the special composite structure Na salt type or K salt type cross-linked polyacrylate fiber.
  • the specific volume is low, heat retention may not be sufficient because sufficient air is not taken in.
  • the specific volume is high, the shape may be easily lost by applying a little force, and the shape retention may be insufficient.
  • the hygroscopic exothermic fiber of the present invention can form a fiber structure by a conventionally known method alone or in combination with other materials. Appearance forms of such a fiber structure include cotton, yarn, knitted fabric, woven fabric, non-woven fabric, pile fabric, paper-like material, and the like.
  • the moisture-absorbing exothermic fiber of the present invention is contained in a form that is substantially uniformly distributed by mixing with other materials or in the case of a structure having a plurality of layers. Examples include a layer (one or plural) of which the hygroscopic exothermic fiber of the present invention is concentrated and the hygroscopic exothermic fiber of the present invention is distributed in a specific ratio in each layer.
  • Other materials that can be used in combination with the hygroscopic exothermic fiber of the present invention in the fiber structure include, for example, natural fibers, organic fibers, semi-synthetic fibers, synthetic fibers, and also inorganic fibers, glass fibers, etc. depending on the application. Can be adopted. Specific examples of the combination material include cotton, hemp, silk, wool, nylon, rayon, polyester, and acrylic fiber. In addition, the material used in combination may be a material such as feathers, resin, particles, and the like.
  • the fiber structure is batting
  • a combination with polyester is suitable.
  • a K salt type cross-linked polyacrylate fiber is a side-by-side type structure comprising a cross-linked structure and a surface layer portion having a Na salt type and / or K salt type carboxyl group, and two types of acrylonitrile polymers having different acrylonitrile contents.
  • a batting characterized in that the area occupied by the surface layer portion in the cross section of the composite fiber is 5% or more and less than 20%.
  • the hygroscopic exothermic fiber of the present invention can enjoy the advantages of hygroscopic exothermic heat and high bulkiness that can be realized at an early stage by using it together with other materials as necessary as a fiber structure. It has the comfort of being able to feel the warmth of low humidity that is not so early. For this reason, bedding (comforters, mattresses, pillows, etc.) or autumn / winter outer clothing using the moisture-absorbing and heat-generating fibers of the present invention immediately absorbs moisture released from the human body and quickly generates heat at a high temperature. It becomes warm, and it is possible to continuously feel the warmth due to the heat retention due to its high bulkiness.
  • (1) Amount of carboxyl group About 1 g of a fiber sample is immersed in 50 ml of a 1 mol / l hydrochloric acid aqueous solution for 30 minutes. The fiber sample is then immersed in water at a bath ratio of 1: 500. When it is confirmed that the bath pH is 4 or more after 15 minutes, the bath is dried (if the bath pH is less than 4, it is washed again with water). Next, about 0.2 g of a sufficiently dried fiber sample is precisely weighed (W1 [g]), 100 ml of water is added, and 15 ml of a 0.1 mol / l sodium hydroxide aqueous solution and 0.4 g of sodium chloride are added. And add phenolphthalein and stir.
  • the sample fiber is placed in a dyeing bath containing 2.5% cationic dye (Nichilon Black G 200) and 2% acetic acid with respect to the fiber weight, and the bath ratio is 1:80. After being soaked and boiled for 30 minutes, it is washed with water, dehydrated and dried. The obtained dyed fiber is sliced thinly perpendicular to the fiber axis, and the fiber cross section is observed with an optical microscope. At this time, the central portion made of the acrylonitrile-based polymer is dyed black, and the surface layer portion having many carboxyl groups becomes green because the dye is not sufficiently fixed.
  • the fiber diameter (D1) and the diameter (D2) of the center dyed black with the part starting to change from green to black as the boundary are measured, and the surface layer area ratio is calculated by the following formula To do.
  • the average value of the surface layer part area ratio of 10 samples be the surface layer part area ratio of a sample fiber.
  • Surface portion area ratio (%) [ ⁇ (( D1) / 2) 2 ⁇ - ((D2) / 2) 2 ⁇ / ((D1) / 2) 2 ⁇ ] ⁇ 100
  • the raw fiber was subjected to crosslinking introduction treatment and hydrolysis treatment simultaneously in an aqueous solution containing 0.5% by weight of hydrazine hydrate and 1.4% by weight of sodium hydroxide at 100 ° C. for 2 hours to obtain 8% by weight nitric acid.
  • the solution was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water.
  • the obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, washed with water, and dried to form a Na salt type crosslinked polyacrylate fiber having a Na salt type carboxyl group (surface layer area 13%) )
  • the details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
  • Example 2 In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.2% by weight, Na salt-type cross-linked polyacrylate fiber (surface layer area 8) %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
  • Example 3 In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the crosslinking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.6% by weight, the Na salt-type crosslinked polyacrylate fiber (surface layer area 18 %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
  • Example 4 A K salt type crosslinked polyacrylate fiber (surface area 13%) was obtained by the same method except that potassium hydroxide was used instead of sodium hydroxide added to adjust to pH 9 in Example 1. The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
  • Example 5 In the same manner as in Example 4 except that the concentration of potassium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4 wt% to 1.2 wt%, K salt type cross-linked polyacrylate fiber (surface layer area 8) %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
  • Example 6 In the same manner as in Example 4 except that the concentration of potassium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4 wt% to 1.6 wt%, K salt type cross-linked polyacrylate fiber (surface layer area 18) %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
  • Example 7 Na salt type crosslinked polyacrylate fibers were obtained in the same manner as in Example 1 except that the composition of the acrylonitrile polymer Ap was changed to 92% by weight of acrylonitrile and 8% by weight of methyl acrylate. The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
  • Example 8 A Na salt type crosslinked polyacrylate fiber was obtained in the same manner as in Example 1 except that the composite ratio (weight ratio) of Ap / Bp was changed from 50/50 to 40/60. The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
  • Example 9 A Na salt type crosslinked polyacrylate fiber was obtained in the same manner as in Example 1 except that the composite ratio (weight ratio) of Ap / Bp was changed from 50/50 to 60/40. The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
  • Example 1 In the same manner as in Example 1, except that the concentration of sodium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4 wt% to 0.5 wt%, Na salt type cross-linked polyacrylate fiber (surface layer area 3) %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
  • Example 2 In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.8% by weight, Na salt-type cross-linked polyacrylate fiber (surface layer area 25) %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
  • the raw fiber was subjected to crosslinking introduction treatment and hydrolysis treatment simultaneously in an aqueous solution containing 0.5% by weight of hydrazine hydrate and 1.4% by weight of sodium hydroxide at 100 ° C. for 2 hours to obtain 8% by weight nitric acid.
  • the solution was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water.
  • the obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, and then immersed in an aqueous solution in which magnesium nitrate corresponding to twice the amount of carboxyl groups contained in the fiber is dissolved at 50 ° C. for 1 hour.
  • the raw fiber was subjected to crosslinking introduction treatment and hydrolysis treatment simultaneously in an aqueous solution containing 0.5% by weight of hydrazine hydrate and 1.4% by weight of sodium hydroxide at 100 ° C. for 2 hours to obtain 8% by weight nitric acid.
  • the solution was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water.
  • the obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, and then immersed in an aqueous solution in which calcium nitrate corresponding to twice the amount of carboxyl groups contained in the fiber is dissolved at 50 ° C. for 1 hour.
  • the hygroscopic exothermic fibers of Examples 1 to 9 have both high hygroscopic exothermic properties (moisture absorption rate and rising temperature) and high bulkiness (specific volume), whereas Na salts Comparative Example 1 in which the surface layer part area of the type cross-linked polyacrylate fiber is small is inferior in hygroscopicity, and Comparative Example 2 in which the surface layer part area of the Na salt type cross-linked polyacrylate fiber is large is inferior in bulkiness, and Mg salt type cross-linking Comparative Examples 3 and 4 of the polyacrylate fiber had a problem of poor hygroscopicity. Moreover, the comparative example 5 of the Mg salt type
  • the hygroscopic exothermic fiber of the present invention has both high hygroscopic exothermic properties that can be realized at an early stage and high bulkiness that brings about heat retention, so that it can be comfortably used in bedding and clothing that touch human skin.

Abstract

Provided is a hygroscopic heat-generating fiber, which exhibits a rapid initial temperature rise related to hygroscopic heat generation, and has a high level of bulkiness. The hygroscopic heat-generating fiber comprises: a surface layer portion having a crosslinked structure and a Na salt- or K salt-type carboxyl group; and a core portion which has a side-by-side structure and is composed of two kinds of acrylonitrile polymers having different acrylonitrile contents. The hygroscopic heat-generating fiber is characterized in that the surface layer portion occupies at least 5% and less than 20% of the area of a cross section of the composite fiber, and the saturated moisture absorption rate is at least 20% in an environment in which the temperature is 20°C and the relative humidity is 65%.

Description

吸湿発熱性繊維Hygroscopic exothermic fiber
 本発明は、吸湿発熱性に関して初期の温度の立ち上がりの速さを有し、しかも高いレベルの嵩高性を有する、人体に対して快適な暖かい環境を早期に実感することができる吸湿発熱性繊維に関する。 The present invention relates to a moisture-absorbing exothermic fiber that has an initial temperature rise speed with respect to moisture-absorbing exothermic property, and has a high level of bulkiness and can quickly realize a warm environment comfortable to the human body. .
 吸湿発熱性繊維としては、架橋アクリレート系繊維が衣料分野や産業資材分野で最も広く使用されている。かかる架橋アクリレート系繊維は、pH緩衝性、制電性、保水性等の調和機能や高吸湿率、高吸湿速度、高吸湿率差あるいはそれに由来する調温・調湿機能を有することが知られている(例えば、特許文献1、2)。 As a hygroscopic exothermic fiber, cross-linked acrylate fiber is most widely used in the clothing and industrial materials fields. Such cross-linked acrylate fibers are known to have harmonious functions such as pH buffering properties, antistatic properties, water retention, high moisture absorption rate, high moisture absorption rate, high moisture absorption rate difference, or temperature control / humidity control functions derived therefrom. (For example, Patent Documents 1 and 2).
 しかしながら、架橋アクリレート系繊維は、高吸湿率を有するため、その吸湿した水分によって嵩高性及び形態安定性が低下するという特徴を有している。このため、カード加工が難しく、また、中綿などの嵩高性が求められる用途等への展開が進まない状況にあった。 However, since the crosslinked acrylate fiber has a high moisture absorption rate, it has a feature that its bulkiness and form stability are lowered by the moisture absorbed. For this reason, card processing is difficult, and there has been a situation in which development for uses such as batting requires bulkiness.
 かかる状況に対して、出願人は、2種類のアクリロニトリル系重合体からなるサイド・バイ・サイド構造を有するアクリロニトリル系繊維に窒素含有化合物による架橋処理および加水分解処理を施して得られた架橋アクリレート系繊維を提案した(特許文献3)。この繊維は、吸湿発熱性と嵩高性を実用的なレベルで併せ持つが、嵩高性の高さからMg,Caなどの多価金属塩型の架橋アクリレート系繊維を採用しているため、吸湿発熱性に関して吸湿後に短時間で高い温度に上昇しにくく、布団の中綿などに使用した場合に使用者が暖かさをすぐに実感できないという問題があり、さらなる改善の余地があった。 In response to this situation, the applicant has obtained a crosslinked acrylate system obtained by subjecting an acrylonitrile fiber having a side-by-side structure composed of two types of acrylonitrile polymers to a crosslinking treatment and a hydrolysis treatment with a nitrogen-containing compound. A fiber was proposed (Patent Document 3). This fiber has a hygroscopic exothermic property and bulkiness at a practical level, but because of its high bulkiness, it uses a polyvalent metal salt type cross-linked acrylate fiber such as Mg, Ca, etc. There is a problem that it is difficult to rise to a high temperature in a short time after moisture absorption, and that the user cannot immediately feel the warmth when used on a futon batting, etc., and there is room for further improvement.
特開平7-216730号公報JP 7-216730 A 特開平5-132858号公報JP-A-5-132858 WO2015/041275号公報WO2015 / 041275
 本発明は、かかる特許文献3を含む従来技術の問題を解消するために創案されたものであり、吸湿発熱性に関して初期の発熱温度の立ち上がりの速さを有し、しかも高いレベルの嵩高性を有する吸湿発熱性繊維を提供することにある。 The present invention was devised in order to solve the problems of the prior art including Patent Document 3, and has an initial heat generation temperature rising speed with respect to moisture absorption heat generation, and has a high level of bulkiness. It is in providing the hygroscopic exothermic fiber which has.
 本発明者は、上記の目的を達成するために鋭意検討した結果、架橋ポリアクリレート系繊維としてNa塩型またはK塩型を採用して初期の吸湿発熱性を高めるとともに、Na塩型またはK塩型の欠点である嵩高性の低さを、吸湿発熱性を発現する表層部を小さくした特定の複合構造と、表層部のカルボキシル基量を高める技術とを採用して補うことにより、高い嵩高性を維持しながら吸湿発熱性による初期の高い上昇温度を発現できることを見出し、本発明の完成に至った。 As a result of intensive studies to achieve the above object, the present inventor adopted Na salt type or K salt type as the crosslinked polyacrylate fiber to enhance the initial moisture absorption exothermic property, and Na salt type or K salt. High bulkiness by compensating for low bulkiness, which is a defect of the mold, by adopting a specific composite structure with a small surface layer that expresses hygroscopic heat generation and a technology that increases the amount of carboxyl groups in the surface layer It was found that an initial high temperature rise due to moisture absorption exothermic property can be achieved while maintaining the above, and the present invention has been completed.
 具体的には、架橋ポリアクリレート系繊維として吸湿発熱性に関してMg塩型又はCa塩型の多価金属塩型より優れるNa塩型又はK塩型のアルカリ金属塩型を採用したうえで、中心部を特定の二種類のアクリロニトリル系重合体からなるサイドバイサイド構造とし、その周囲の吸湿発熱性を発揮する表層部を極力小さくして嵩高性を高めた複合構造をとり、表層部の形成にあたり加水分解処理を従来より低濃度のアルカリ金属化合物の緩い条件で行い、その後の酸処理を従来より高温での厳しい条件で行うことにより、狭い表層部でも従来より高濃度でカルボキシル基を存在させて高い吸湿発熱性を発現させることができることを見出した。 Specifically, after adopting Na salt type or K salt type alkali metal salt type, which is superior to Mg salt type or Ca salt type polyvalent metal salt type in terms of moisture absorption exothermicity as the cross-linked polyacrylate fiber, the center part Is a side-by-side structure consisting of two specific types of acrylonitrile-based polymers, and the surrounding layer that exhibits hygroscopic heat generation is made as small as possible to create a composite structure with increased bulkiness. Is performed under milder conditions with a lower concentration of alkali metal compound than before, and the subsequent acid treatment is performed under severer conditions at higher temperatures than in the past. It was found that sex can be expressed.
 なお、ISO18782:2015の測定方法及び条件に準拠して測定したNa塩型またはMg塩型の架橋ポリアクリレート系繊維の経過時間ごとの温度の推移を示すグラフを図1に示す。図1からわかるように、架橋ポリアクリレート系繊維の吸湿発熱性に基づく初期の立ち上がり温度に関してNa塩型がMg塩型より優れていることがわかる。 In addition, the graph which shows transition of the temperature for every elapsed time of the cross-linked polyacrylate type fiber of Na salt type or Mg salt type measured based on the measuring method and conditions of ISO18782: 2015 is shown in FIG. As can be seen from FIG. 1, the Na salt type is superior to the Mg salt type with respect to the initial rise temperature based on the hygroscopic exothermic property of the crosslinked polyacrylate fiber.
 即ち、本発明は、上記の知見に基づいて完成されたものであり、以下の(1)~(4)の構成を有するものである。
(1)架橋構造及びNa塩型又はK塩型のカルボキシル基を有する表層部と、アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部とからなる複合繊維であって、複合繊維の横断面における表層部の占める面積が5%以上20%未満であり、かつ、20℃、相対湿度65%の環境下における飽和吸湿率が20%以上であることを特徴とする吸湿発熱性繊維。
(2)全カルボキシル基量が3.5mmol/g以上であることを特徴とする(1)に記載の吸湿発熱性繊維。
(3)ISO18782:2015に準拠して測定した上昇温度が4~10℃であることを特徴とする(1)又は(2)に記載の吸湿発熱性繊維。
(4)比容積が15~50cm/gであることを特徴とする(1)~(3)のいずれかに記載の吸湿発熱性繊維。
That is, the present invention has been completed on the basis of the above-described knowledge, and has the following configurations (1) to (4).
(1) A composite fiber comprising a cross-linked structure and a surface layer portion having a Na salt type or K salt type carboxyl group, and a central portion of a side-by-side structure composed of two types of acrylonitrile-based polymers having different acrylonitrile content rates. The moisture absorption is characterized in that the area occupied by the surface layer portion in the cross section of the composite fiber is 5% or more and less than 20%, and the saturated moisture absorption in an environment of 20 ° C. and relative humidity 65% is 20% or more. Pyrogenic fiber.
(2) The hygroscopic exothermic fiber according to (1), wherein the total carboxyl group amount is 3.5 mmol / g or more.
(3) The moisture-absorbing and exothermic fiber according to (1) or (2), wherein the rising temperature measured according to ISO18782: 2015 is 4 to 10 ° C.
(4) The hygroscopic exothermic fiber according to any one of (1) to (3), wherein the specific volume is 15 to 50 cm 3 / g.
 本発明の吸湿発熱性繊維は、従来のMg塩型およびCa塩型等の多価金属塩型架橋ポリアクリレート系繊維では達成できなかった、吸湿発熱性による初期の高い上昇温度を有するとともに、高レベルの嵩高性を併せ持つという効果を有する。かかる効果は、Na塩型またはK塩型の架橋ポリアクリレート系繊維が持つ早期に高い上昇温度を示す吸湿発熱性と特定の複合構造と高濃度のカルボキシル基量の存在からもたらされるものである。本発明の吸湿発熱性繊維は、その高い嵩高性と迅速に温度上昇する高い吸湿発熱性により取り込んでいる大量の湿った空気を迅速に吸湿発熱させてすぐに低湿度の暖かい空気に変化させることが可能であるため、寝装品、秋冬アウトドア衣料の中綿として使用されると、装着者は極めて速い段階で暖かさと保温性を実感することができる。 The hygroscopic exothermic fiber of the present invention has an initial high elevated temperature due to hygroscopic exothermic properties, which cannot be achieved with conventional polyvalent metal salt type cross-linked polyacrylate fibers such as Mg salt type and Ca salt type. It has the effect of having a bulky level. Such an effect is brought about by the presence of hygroscopic exothermic property, a specific composite structure and a high concentration of carboxyl groups, which show a high temperature rise early in the Na salt type or K salt type cross-linked polyacrylate fiber. The hygroscopic exothermic fiber of the present invention is capable of quickly absorbing a large amount of moist air taken in due to its high bulkiness and high hygroscopic exothermic property that quickly rises in temperature, and quickly transforming it into warm air of low humidity. Therefore, when used as a bedding or batting for autumn / winter outdoor clothing, the wearer can feel warmth and heat retention at an extremely fast stage.
ISO18782:2015の測定方法及び条件に準拠して測定したNa塩型またはMg塩型の架橋ポリアクリレート系繊維の経過時間ごとの温度の推移を示すグラフである。It is a graph which shows transition of the temperature for every elapsed time of Na salt type or Mg salt type crosslinked polyacrylate type fiber measured based on the measuring method and conditions of ISO18782: 2015.
 以下に本発明の吸湿発熱性繊維を詳細に説明する。 Hereinafter, the hygroscopic exothermic fiber of the present invention will be described in detail.
 本発明の吸湿発熱性繊維は、架橋構造及びNa塩型又はK塩型のカルボキシル基を有する表層部と、アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部とからなる複合繊維であって、複合繊維の横断面における表層部の占める面積が5%以上20%未満であり、かつ、20℃、相対湿度65%の環境下における飽和吸湿率が20%以上であることを特徴とする。かかる特徴により、迅速に吸湿して高い発熱性を示す吸湿発熱性と、持続的な保温性をもたらす嵩高性との両方を高いレベルでもたらすものである。 The hygroscopic exothermic fiber of the present invention comprises a cross-linked structure and a surface layer part having a Na salt type or K salt type carboxyl group, and a central part of a side-by-side type structure composed of two types of acrylonitrile-based polymers having different acrylonitrile contents. The area occupied by the surface layer portion in the cross section of the composite fiber is 5% or more and less than 20%, and the saturated moisture absorption in an environment of 20 ° C. and relative humidity 65% is 20% or more. It is characterized by that. Due to such characteristics, both moisture absorption exothermicity that quickly absorbs moisture and exhibits high exothermicity and bulkiness that provides sustained heat retention are provided at a high level.
 本発明の吸湿発熱性繊維は、一価金属のNa塩型またはK塩型のカルボキシル基を有する架橋ポリアクリレート系繊維であることが必要である。Mg塩型またはCa塩型の二価金属塩型は、高い吸湿発熱性を持ちながら、嵩高性も適度に高いが、吸湿発熱時の初期の上昇温度が低いため、早期に暖かさや保温性を実感することを希望する場合には問題がある。また、Zn塩型等の他の二価金属塩型では、そもそも吸湿発熱性に劣り、快適な環境が得られないため、好ましくない。Na塩型またはK塩型の一価の金属塩型は、吸湿発熱時の初期の上昇温度が高いため、早期に暖かさを実感することができる。但し、Na塩型またはK塩型の架橋ポリアクリレート系繊維は、通常の繊維形態では、嵩高性が不足し、保温性が持続できないため、本発明では後述するような特殊な複合構造をとる。 The hygroscopic exothermic fiber of the present invention needs to be a crosslinked polyacrylate fiber having a monovalent metal Na salt type or K salt type carboxyl group. Mg salt type or Ca salt type divalent metal salt type has high moisture absorption exothermic property and moderately high bulkiness, but since the initial rise temperature during moisture absorption exotherm is low, warmth and heat retention can be achieved early. There is a problem if you want to feel it. In addition, other divalent metal salt types such as a Zn salt type are not preferable because they are inferior in hygroscopic heat generation and a comfortable environment cannot be obtained. The monovalent metal salt type of the Na salt type or the K salt type has a high initial temperature rise during the hygroscopic heat generation, and thus can feel warmth at an early stage. However, the Na salt type or K salt type cross-linked polyacrylate fiber has a special composite structure as described later in the present invention because the bulkiness is insufficient in the normal fiber form and the heat retention cannot be maintained.
 本発明の吸湿発熱性繊維は、架橋構造およびNa塩型またはK塩型のカルボキシル基を有する表層部と、アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部とからなる複合繊維であり、複合繊維の横断面における表層部の占める面積が5%以上20%未満であることが必要である。本発明の吸湿発熱性繊維では、中心部とその周囲の表層部からなる複合構造を有しており、中心部で硬い構造をできるだけ大きく作ることにより嵩高性の向上に寄与させ、表層部で架橋構造およびNa塩型またはK塩型のカルボキシル基を存在させることにより高い吸湿発熱性の役割を担うようにしていることが特徴である。本発明では、吸湿発熱性繊維の横断面における表層部の占める面積を20%未満と極力少なくしているため、高い吸湿発熱性を実現できないように思われるが、後述するような方法で少ない表層部でもカルボキシル基量を増加しているため、高い吸湿発熱性を発現することができる。但し、表層部の占める面積が5%未満では、十分に高い吸湿発熱性を発揮できないため、好ましくない。本発明の吸湿発熱性繊維は、全カルボキシル基量に関して3.5mmol/g以上有することができ、最大10mmol/g程度まで可能である。実際には、このカルボキシル基量は、実質的に全量が表層部に存在する。また、後述の実施例で規定した吸湿率に関して20%以上、さらには30%以上を達成することができ、最大70%程度まで可能である。 The hygroscopic exothermic fiber of the present invention comprises a cross-linked structure and a surface layer part having a Na salt type or K salt type carboxyl group, and a central part of a side-by-side type structure composed of two types of acrylonitrile-based polymers having different acrylonitrile contents. It is necessary that the area occupied by the surface layer portion in the cross section of the composite fiber is 5% or more and less than 20%. The hygroscopic exothermic fiber of the present invention has a composite structure consisting of a central portion and a surface layer portion around the central portion, and contributes to improvement in bulkiness by making a hard structure as large as possible in the central portion, and crosslinks at the surface layer portion. It is characterized in that it plays a role of high hygroscopic exothermicity by the structure and the presence of Na salt type or K salt type carboxyl groups. In the present invention, since the area occupied by the surface layer portion in the cross section of the hygroscopic exothermic fiber is as small as less than 20%, it seems that a high hygroscopic exothermic property cannot be realized. Since the amount of carboxyl groups is also increased in the part, high moisture absorption exothermic properties can be expressed. However, if the area occupied by the surface layer portion is less than 5%, a sufficiently high hygroscopic exothermic property cannot be exhibited. The hygroscopic exothermic fiber of the present invention can have 3.5 mmol / g or more with respect to the total amount of carboxyl groups, and can be up to about 10 mmol / g. Actually, the entire amount of this carboxyl group is present in the surface layer portion. Further, it is possible to achieve 20% or more, further 30% or more with respect to the moisture absorption rate defined in the examples described later, and up to about 70% is possible.
 本発明の吸湿発熱性繊維は、原料繊維としてアクリロニトリル系繊維を使用し、アクリロニトリル系繊維は、アクリロニトリル系重合体から公知の方法で製造されることができる。アクリロニトリル系重合体は、アクリロニトリルが50重量%以上であることが好ましく、より好ましくは80重量%以上である。アクリロニトリルの含有量が少ない場合は、架橋構造が少なくなり、繊維物性が低下するおそれがある。架橋構造は、アクリロニトリル系重合体のニトリル基とヒドラジン系化合物等の窒素含有化合物を反応させることによって繊維中に導入されることができる。 The hygroscopic exothermic fiber of the present invention uses an acrylonitrile fiber as a raw fiber, and the acrylonitrile fiber can be produced from an acrylonitrile polymer by a known method. The acrylonitrile polymer preferably has an acrylonitrile content of 50% by weight or more, more preferably 80% by weight or more. When the content of acrylonitrile is small, the cross-linked structure is reduced and the fiber properties may be deteriorated. The crosslinked structure can be introduced into the fiber by reacting the nitrile group of the acrylonitrile polymer with a nitrogen-containing compound such as a hydrazine compound.
 本発明の吸湿発熱性繊維は、アクリロニトリル含有率が異なる2種のアクリロニトリル系重合体をサイドバイサイドで接合した複合構造を有する。このようにアクリロニトリル含有率に差を持たせた2種のアクリロニトリル重合体をサイドバイサイドで配置することにより加水分解処理時の収縮の度合いに差が発生して捲縮を発現させることができ、結果として嵩高性の向上に寄与することができる。なお、嵩高性を十分に向上させるためには、2種のアクリロニトリル系重合体間のアクリロニトリル含有率の差は1~8重量%、さらには1~5重量%であることが好ましく、2種のアクリロニトリル系重合体の複合比率(重量比)は20/80~80/20、さらには30/70~70/30であることが好ましい。 The hygroscopic exothermic fiber of the present invention has a composite structure in which two acrylonitrile polymers having different acrylonitrile contents are joined side by side. Thus, by arranging two kinds of acrylonitrile polymers having a difference in acrylonitrile content side by side, a difference occurs in the degree of shrinkage during the hydrolysis treatment, and crimps can be expressed as a result. It can contribute to the improvement of bulkiness. In order to sufficiently improve the bulkiness, the difference in acrylonitrile content between the two acrylonitrile polymers is preferably 1 to 8% by weight, more preferably 1 to 5% by weight. The composite ratio (weight ratio) of the acrylonitrile polymer is preferably 20/80 to 80/20, more preferably 30/70 to 70/30.
 上記のような複合構造の繊維に対して表層部に架橋構造が導入される。架橋構造の導入には、従来公知の架橋剤を使用してもよいが、架橋構造の導入効率の点から窒素含有化合物を使用することが好ましい。窒素含有化合物としては、2個以上の1級アミノ基を有するアミノ化合物やヒドラジン系化合物を使用することが好ましい。2個以上の1級アミノ基を有するアミノ化合物としては、エチレンジアミン、ヘキサメチレンジアミンなどのジアミン系化合物、ジエチレントリアミン、3,3’-イミノビス(プロピルアミン)、N-メチル-3,3’-イミノビス(プロピルアミン)などのトリアミン系化合物、トリエチレンテトラミン、N,N’-ビス(3-アミノプロピル)-1,3-プロピレンジアミン、N,N’-ビス(3-アミノプロピル)-1,4-ブチレンジアミンなどのテトラミン系化合物、ポリビニルアミン、ポリアリルアミンなどであって2個以上の1級アミノ基を有するポリアミン系化合物などが例示される。また、ヒドラジン系化合物としては、水加ヒドラジン、硫酸ヒドラジン、塩酸ヒドラジン、臭化水素酸ヒドラジン、ヒドラジンカーボネートなどが例示される。なお、1分子中の窒素原子の数の上限は特に限定されないが、12個以下であることが好ましく、さらに好ましくは6個以下であり、特に好ましくは4個以下である。1分子中の窒素原子の数が上記上限を超えると、架橋剤分子が大きくなり、繊維内に架橋構造を導入しにくくなる場合がある。架橋構造を導入する条件としては、特に限定されるものではなく、採用する架橋剤とアクリロニトリル系繊維との反応性や架橋構造の量などを勘案し、適宜選定することができる。例えば、架橋剤としてヒドラジン系化合物を用いる場合は、ヒドラジン濃度として0.1~10重量%となるように上記のヒドラジン系化合物を添加した水溶液に、上述したアクリロニトリル系繊維を浸漬し、80~150℃、2~10時間で処理する方法などが挙げられる。 A cross-linked structure is introduced into the surface layer of the fiber having a composite structure as described above. For the introduction of the crosslinked structure, a conventionally known crosslinking agent may be used, but it is preferable to use a nitrogen-containing compound from the viewpoint of the introduction efficiency of the crosslinked structure. As the nitrogen-containing compound, it is preferable to use an amino compound or a hydrazine compound having two or more primary amino groups. Examples of amino compounds having two or more primary amino groups include diamine compounds such as ethylenediamine and hexamethylenediamine, diethylenetriamine, 3,3′-iminobis (propylamine), N-methyl-3,3′-iminobis ( Triamine compounds such as propylamine), triethylenetetramine, N, N′-bis (3-aminopropyl) -1,3-propylenediamine, N, N′-bis (3-aminopropyl) -1,4- Examples include tetramine compounds such as butylenediamine, polyvinylamine, polyallylamine, and the like, and polyamine compounds having two or more primary amino groups. Examples of the hydrazine compound include hydrazine hydrate, hydrazine sulfate, hydrazine hydrochloride, hydrazine hydrobromide, hydrazine carbonate, and the like. The upper limit of the number of nitrogen atoms in one molecule is not particularly limited, but is preferably 12 or less, more preferably 6 or less, and particularly preferably 4 or less. When the number of nitrogen atoms in one molecule exceeds the above upper limit, the cross-linking agent molecule becomes large and it may be difficult to introduce a cross-linked structure into the fiber. The conditions for introducing the cross-linked structure are not particularly limited, and can be appropriately selected in consideration of the reactivity between the cross-linking agent employed and the acrylonitrile fiber, the amount of the cross-linked structure, and the like. For example, when a hydrazine compound is used as the cross-linking agent, the acrylonitrile fiber described above is immersed in an aqueous solution to which the hydrazine compound is added so that the hydrazine concentration is 0.1 to 10% by weight. And a method of treating at 2 ° C. for 2 to 10 hours.
 架橋構造が導入された後は、アルカリ性金属化合物による加水分解処理が施され、繊維の表層部に存在しているニトリル基が加水分解され、カルボキシル基が形成される。具体的な処理条件としては、上述したカルボキシル基量などを勘案し、処理薬剤の濃度、反応温度、反応時間等の諸条件を適宜設定すればよいが、好ましくは0.5~10重量%、さらに好ましくは1~5重量%の処理薬剤水溶液中、温度80~150℃で2~10時間処理する手段が工業的、繊維物性的にも好ましい。本発明においては、上述の架橋導入処理および加水分解処理は、上述のように順に行なうより、それぞれの処理薬剤を混合した水溶液を用いて、一括して同時処理することが好ましい。さらに、本発明では、この同時処理において、従来より低濃度のアルカリ金属化合物の緩い条件で行い、その後の酸処理を従来より高温での厳しい条件で行なうことが好ましい。このようにすることにより、本発明の吸湿発熱性繊維は、狭い表層部に従来より多くのカルボキシル基が存在し、中心部に比較的硬いアクリロニトリル系重合体が温存された構造をとることができる。 After the cross-linked structure is introduced, hydrolysis treatment with an alkaline metal compound is performed, and nitrile groups present in the surface layer of the fiber are hydrolyzed to form carboxyl groups. Specific treatment conditions may be set as appropriate in consideration of the amount of carboxyl groups described above, and the like, and various conditions such as the concentration of the treatment agent, reaction temperature, reaction time, etc. are preferably set, but preferably 0.5 to 10% by weight, More preferably, a means for treating in a 1 to 5% by weight treatment chemical aqueous solution at a temperature of 80 to 150 ° C. for 2 to 10 hours is preferred from the industrial and fiber viewpoints. In the present invention, it is preferable that the above-described cross-linking introduction treatment and hydrolysis treatment are collectively performed simultaneously using an aqueous solution in which the respective treatment chemicals are mixed, rather than sequentially performing as described above. Further, in the present invention, it is preferable that the simultaneous treatment is performed under a milder condition of an alkali metal compound having a lower concentration than before, and the subsequent acid treatment is performed under severer conditions at a higher temperature than in the past. By doing so, the hygroscopic exothermic fiber of the present invention can have a structure in which more carboxyl groups are present in the narrow surface layer portion than before and a relatively hard acrylonitrile polymer is preserved in the center portion. .
 形成されたカルボキシル基には、そのカウンターイオンが水素イオン以外の陽イオンである塩型カルボキシル基と、そのカウンターイオンが水素イオンであるH型カルボキシル基がある。高い吸湿率を得るためにカルボキシル基の50%以上を塩型カルボキシル基とすることが望ましい。塩型カルボキシル基を構成する陽イオンは、ナトリウムまたはカリウムのアルカリ金属である。多価の金属イオンであるマグネシウム、カルシウム、亜鉛などを採用した場合には、嵩高性が高いが、吸湿による初期の上昇温度が低いため、好ましくない。例えば、本発明の吸湿発熱性繊維は、アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体をサイド・バイ・サイドに接合したアクリロニトリル系繊維に対して、上述したような本発明に特有の条件で架橋導入、加水分解を施して、カルボキシル基を形成し、カウンターイオンにナトリウムまたはカリウムを選択すると得られる。 The formed carboxyl group includes a salt-type carboxyl group whose counter ion is a cation other than a hydrogen ion, and an H-type carboxyl group whose counter ion is a hydrogen ion. In order to obtain a high moisture absorption rate, it is desirable that 50% or more of the carboxyl groups are salt-type carboxyl groups. The cation constituting the salt-type carboxyl group is sodium or potassium alkali metal. When a polyvalent metal ion such as magnesium, calcium, or zinc is employed, the bulkiness is high, but the initial temperature rise due to moisture absorption is low, which is not preferable. For example, the hygroscopic exothermic fiber of the present invention is an acrylonitrile fiber in which two types of acrylonitrile polymers having different acrylonitrile contents are joined side by side under the conditions specific to the present invention as described above. It can be obtained by introducing a bridge and hydrolyzing to form a carboxyl group and selecting sodium or potassium as the counter ion.
 塩型カルボキシル基とH型カルボキシル基との比率を上記の範囲に調整する方法としては、硝酸塩、硫酸塩、塩酸塩などの金属塩によるイオン交換処理、硝酸、硫酸、塩酸、蟻酸などによる酸処理、あるいは、アルカリ性金属化合物などによるpH調整処理などを施す方法が挙げられる。 Methods for adjusting the ratio of salt-type carboxyl groups to H-type carboxyl groups within the above range include ion exchange treatment with metal salts such as nitrates, sulfates and hydrochlorides, and acid treatments with nitric acid, sulfuric acid, hydrochloric acid, formic acid, etc. Alternatively, a method of performing pH adjustment treatment with an alkaline metal compound or the like can be mentioned.
 本発明の吸湿発熱性繊維は、横断面における表層部の占める面積が5%以上20%未満、好ましくは10%以上20%未満である。表層部の面積が上記範囲未満であると、繊維中にカルボキシル基を十分に存在させることができず、高い吸湿発熱性を発揮することができない。また、上記範囲を超えると、吸湿で繊維がへたりやすくなり、嵩高性に問題を生じる。本発明の繊維の表層部の占める面積は極めて少なく、カルボキシル基が実質的に存在しない中心部の面積が多くを占めるため、吸湿による繊維のへたりやNa塩型やK塩型を採用したことによる嵩高性の低下の影響が小さく、高い嵩高性を達成することができる。また、Na塩型またはK塩型の架橋ポリアクリレート系繊維は、図1に示すようにMg塩型等の二価の金属塩と比べて高い吸湿発熱性(特に初期の上昇温度)の特徴を有しており、本発明では、その特徴をそのまま享受することができる。 In the hygroscopic exothermic fiber of the present invention, the area occupied by the surface layer portion in the cross section is 5% or more and less than 20%, preferably 10% or more and less than 20%. When the area of the surface layer portion is less than the above range, the carboxyl group cannot be sufficiently present in the fiber, and the high moisture absorption exothermic property cannot be exhibited. On the other hand, if the above range is exceeded, the fibers tend to sag due to moisture absorption, causing a problem in bulkiness. The area occupied by the surface layer of the fiber of the present invention is extremely small, and the area of the central part where the carboxyl group is substantially absent occupies a large area, so that the fiber sag due to moisture absorption, Na salt type or K salt type was adopted. The influence of the decrease in bulkiness due to the is small, and high bulkiness can be achieved. In addition, as shown in FIG. 1, the Na salt-type or K-salt type cross-linked polyacrylate fiber has a high moisture absorption exothermic property (particularly, an initial rise temperature) as compared with a divalent metal salt such as an Mg salt type. In the present invention, the features can be enjoyed as they are.
 本発明の吸湿発熱性繊維は、上述の特殊な複合構造のNa塩型またはK塩型の架橋ポリアクリレート系繊維からなるので、20℃×65%RHの環境下で5分以内に6.0~40%の範囲の吸湿率を容易に達成することができる。特に、本発明の吸湿発熱性繊維は、人間の肌が接触したときの最初の5分以内に高い吸湿発熱効果(高い上昇温度)を実感することができる。 The hygroscopic exothermic fiber of the present invention is composed of the above-mentioned special composite structure Na salt type or K salt type cross-linked polyacrylate fiber, so that it is 6.0 within 5 minutes in an environment of 20 ° C. × 65% RH. Moisture absorption in the range of ~ 40% can be easily achieved. In particular, the hygroscopic exothermic fiber of the present invention can realize a high hygroscopic exothermic effect (high temperature rise) within the first 5 minutes when human skin comes into contact.
 また、本発明の吸湿発熱性繊維は、上述の特殊な複合構造のNa塩型またはK塩型の架橋ポリアクリレート系繊維からなるので、50~100cm/gの範囲の比容積を達成することができる。このような高い嵩高性は、特殊な複合構造のNa塩型またはK塩型の架橋ポリアクリレート系繊維が持つ高い嵩高性によってもたらされる。比容積が低い場合、十分な空気を取り込んでいないために保温性が不十分となるおそれがある。比容積が高い場合、少しの力を加えただけで簡単に型崩れを起こしてしまい、保形性が不足するおそれがある。 Further, the hygroscopic exothermic fiber of the present invention comprises the above-mentioned special composite structure Na salt type or K salt type cross-linked polyacrylate fiber, so that a specific volume in the range of 50 to 100 cm 3 / g is achieved. Can do. Such high bulkiness is brought about by the high bulkiness possessed by the special composite structure Na salt type or K salt type cross-linked polyacrylate fiber. When the specific volume is low, heat retention may not be sufficient because sufficient air is not taken in. When the specific volume is high, the shape may be easily lost by applying a little force, and the shape retention may be insufficient.
 本発明の吸湿発熱性繊維は、単独で、あるいは、他の素材と組み合わせて、従来公知の方法で繊維構造物を形成させることができる。かかる繊維構造物の外観形態としては、綿、糸、編地、織物、不織布、パイル布帛、紙状物等がある。該構造物内における本発明の吸湿発熱性繊維の含有形態としては、他素材との混合により、実質的に均一に分布させたものや、複数の層を有する構造の場合には、いずれかの層(単数でも複数でも良い)に本発明の吸湿発熱性繊維を集中して存在させたものや、各層に本発明の吸湿発熱性繊維を特定比率で分布させたもの等が挙げられる。 The hygroscopic exothermic fiber of the present invention can form a fiber structure by a conventionally known method alone or in combination with other materials. Appearance forms of such a fiber structure include cotton, yarn, knitted fabric, woven fabric, non-woven fabric, pile fabric, paper-like material, and the like. In the structure, the moisture-absorbing exothermic fiber of the present invention is contained in a form that is substantially uniformly distributed by mixing with other materials or in the case of a structure having a plurality of layers. Examples include a layer (one or plural) of which the hygroscopic exothermic fiber of the present invention is concentrated and the hygroscopic exothermic fiber of the present invention is distributed in a specific ratio in each layer.
 繊維構造物において本発明の吸湿発熱性繊維と併用しうる他素材としては、例えば、天然繊維、有機繊維、半合成繊維、合成繊維が挙げられ、さらには無機繊維、ガラス繊維等も用途によっては採用しうる。具体的な併用素材としては、綿、麻、絹、羊毛、ナイロン、レーヨン、ポリエステル、アクリル繊維などを挙げることができる。また、併用される素材は、羽毛、樹脂、粒子等の素材であってもよい。 Other materials that can be used in combination with the hygroscopic exothermic fiber of the present invention in the fiber structure include, for example, natural fibers, organic fibers, semi-synthetic fibers, synthetic fibers, and also inorganic fibers, glass fibers, etc. depending on the application. Can be adopted. Specific examples of the combination material include cotton, hemp, silk, wool, nylon, rayon, polyester, and acrylic fiber. In addition, the material used in combination may be a material such as feathers, resin, particles, and the like.
 例えば、繊維構造物が中綿の場合であれば、ポリエステルとの組み合わせが好適である。具体的には、ポリエステル繊維を40~90重量%含有し、かつNa塩型および/またはK塩型の架橋ポリアクリレート系繊維を10~60重量%含有する中綿であって、Na塩型および/またはK塩型の架橋ポリアクリレート系繊維が、架橋構造およびNa塩型および/またはK塩型のカルボキシル基を有する表層部と、アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部とからなる複合繊維であり、複合繊維の横断面における表層部の占める面積が5%以上20%未満であることを特徴とする中綿が提供される。 For example, if the fiber structure is batting, a combination with polyester is suitable. Specifically, a batting containing 40 to 90% by weight of polyester fiber and 10 to 60% by weight of Na salt type and / or K salt type cross-linked polyacrylate fiber, wherein Na salt type and / or Alternatively, a K salt type cross-linked polyacrylate fiber is a side-by-side type structure comprising a cross-linked structure and a surface layer portion having a Na salt type and / or K salt type carboxyl group, and two types of acrylonitrile polymers having different acrylonitrile contents. There is provided a batting characterized in that the area occupied by the surface layer portion in the cross section of the composite fiber is 5% or more and less than 20%.
 以上のように本発明の吸湿発熱性繊維は、繊維構造物として、必要により他の素材と併用することにより、早期に実感できる吸湿発熱性と高い嵩高性の利点を享受することができ、従来にない早期の低湿度の暖かさを実感できるという快適性を有している。このため、本発明の吸湿発熱性繊維を使用した寝装品(掛け布団、敷き布団、枕など)あるいは秋冬用アウター衣料は、人体から放出される水分を吸着して早期に高い温度で発熱することですぐに暖かくなり、またこの暖かさを高い嵩高性による保温性により持続して実感することが可能である。 As described above, the hygroscopic exothermic fiber of the present invention can enjoy the advantages of hygroscopic exothermic heat and high bulkiness that can be realized at an early stage by using it together with other materials as necessary as a fiber structure. It has the comfort of being able to feel the warmth of low humidity that is not so early. For this reason, bedding (comforters, mattresses, pillows, etc.) or autumn / winter outer clothing using the moisture-absorbing and heat-generating fibers of the present invention immediately absorbs moisture released from the human body and quickly generates heat at a high temperature. It becomes warm, and it is possible to continuously feel the warmth due to the heat retention due to its high bulkiness.
 以下の実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中の比率は断りのない限り重量基準で示す。実施例中の特性の評価方法は以下の通りである。 The present invention will be specifically described with reference to the following examples, but the present invention is not limited thereto. In addition, the ratio in an Example is shown on a weight basis unless there is a notice. The evaluation method of characteristics in the examples is as follows.
(1)カルボキシル基量
 繊維試料約1gを、50mlの1mol/l塩酸水溶液に30分間浸漬する。次いで、繊維試料を、浴比1:500で水に浸漬する。15分後、浴pHが4以上であることを確認したら、乾燥させる(浴pHが4未満の場合は、再度水洗する)。次に、十分乾燥させた繊維試料約0.2gを精秤し(W1[g])、100mlの水を加え、さらに、15mlの0.1mol/l水酸化ナトリウム水溶液、0.4gの塩化ナトリウムおよびフェノールフタレインを添加して撹拌する。15分後、濾過によって試料繊維と濾液に分離し、引き続き試料繊維を、フェノールフタレインの呈色がなくなるまで水洗する。このときの水洗水と濾液をあわせたものを、フェノールフタレインの呈色がなくなるまで0.1mol/l塩酸水溶液で滴定し、塩酸水溶液消費量(V1[ml])を求める。得られた測定値から、次式によって全カルボキシル基量を算出する。
カルボキシル基量[mmol/g]=(0.1×15-0.1×V1)/W1
(1) Amount of carboxyl group About 1 g of a fiber sample is immersed in 50 ml of a 1 mol / l hydrochloric acid aqueous solution for 30 minutes. The fiber sample is then immersed in water at a bath ratio of 1: 500. When it is confirmed that the bath pH is 4 or more after 15 minutes, the bath is dried (if the bath pH is less than 4, it is washed again with water). Next, about 0.2 g of a sufficiently dried fiber sample is precisely weighed (W1 [g]), 100 ml of water is added, and 15 ml of a 0.1 mol / l sodium hydroxide aqueous solution and 0.4 g of sodium chloride are added. And add phenolphthalein and stir. After 15 minutes, the sample fibers and filtrate are separated by filtration, and the sample fibers are subsequently washed with water until there is no coloration of phenolphthalein. The combined washing water and filtrate at this time are titrated with 0.1 mol / l hydrochloric acid aqueous solution until the phenolphthalein is no longer colored, and the aqueous hydrochloric acid consumption (V1 [ml]) is determined. From the obtained measured value, the total carboxyl group amount is calculated by the following formula.
Amount of carboxyl group [mmol / g] = (0.1 × 15−0.1 × V1) / W1
(2)20℃×65%RH吸湿率
 繊維試料約2.5gを、熱風乾燥器で105℃、16時間乾燥して重量を測定する(W2[g])。次に、該繊維試料を、温度20℃、65%RHに調節した恒温恒湿器に5分間入れておく。このようにして吸湿した繊維試料の重量を測定する(W3[g])。これらの測定結果から、次式によって20℃×65%RH吸湿率を算出する。
20℃×65%RH吸湿率[%]=(W3-W2)/W2×100
(2) 20 ° C. × 65% RH moisture absorption About 2.5 g of the fiber sample is dried with a hot air dryer at 105 ° C. for 16 hours and weighed (W2 [g]). Next, the fiber sample is placed in a thermo-hygrostat adjusted to a temperature of 20 ° C. and 65% RH for 5 minutes. The weight of the fiber sample thus absorbed is measured (W3 [g]). From these measurement results, a 20 ° C. × 65% RH moisture absorption rate is calculated by the following equation.
20 ° C. × 65% RH moisture absorption [%] = (W3−W2) / W2 × 100
(3)比容積
 繊維試料50gを軽く開繊してから、カード機で開繊し、積層する。試験片を10cm×10cmの大きさになるように6個切り出し、バットに入れて恒温恒湿機内に24hr以上放置する。恒温恒湿機から取出し、質量が10.0g~10.5gになるように積み重ね、作られた試験片を正確に秤量する。試験片に10cm×10cmのアクリル板を載せ、おもり500gを30秒間載せ、次にこのおもりを除き、30秒間放置する。この操作を3回繰り返し、おもり500gを除いて30秒間放置した後、四すみの高さを測定して平均値を求め、次式により比容積を算出する。
 比容積(cm/g)=10×10×試料の四すみの高さの測定平均値(mm)/10/試験片の質量(g)
(3) Specific volume After 50 g of the fiber sample is lightly opened, the card sample is opened and laminated. Six test specimens are cut out so as to have a size of 10 cm × 10 cm, put into a bat and left in a thermo-hygrostat for 24 hours or more. Take out from the thermo-hygrostat, stack it so that the mass is 10.0g to 10.5g, and accurately weigh the test piece made. A 10 cm × 10 cm acrylic plate is placed on the test piece, a weight of 500 g is placed for 30 seconds, then the weight is removed and left for 30 seconds. This operation is repeated three times. After leaving the weight of 500 g and leaving for 30 seconds, the height of the four corners is measured to obtain an average value, and the specific volume is calculated by the following formula.
Specific volume (cm 3 / g) = 10 × 10 × measured average value of height of four corners of sample (mm) / 10 / mass of test piece (g)
(4)表層部の占める面積割合
 試料繊維を、繊維重量に対して2.5%のカチオン染料(Nichilon Black G 200)および2%の酢酸を含有する染色浴に、浴比1:80となるように浸漬し、30分間煮沸処理した後に、水洗、脱水、乾燥する。得られた染色済みの繊維を、繊維軸に垂直に薄くスライスし、繊維断面を光学顕微鏡で観察する。このとき、アクリロニトリル系重合体からなる中心部は黒く染色され、カルボキシル基が多く有する表層部は染料が十分に固定されず緑色になる。繊維断面における、繊維の直径(D1)、および、緑色から黒色へ変色し始める部分を境界として黒く染色されている中心部の直径(D2)を測定し、以下の式により表層部面積割合を算出する。なお、10サンプルの表層部面積割合の平均値をもって、試料繊維の表層部面積割合とする。
表層部面積割合(%)=[{((D1)/2)π-((D2)/2)π}/((D1)/2)π]×100
(4) Area ratio occupied by the surface layer portion The sample fiber is placed in a dyeing bath containing 2.5% cationic dye (Nichilon Black G 200) and 2% acetic acid with respect to the fiber weight, and the bath ratio is 1:80. After being soaked and boiled for 30 minutes, it is washed with water, dehydrated and dried. The obtained dyed fiber is sliced thinly perpendicular to the fiber axis, and the fiber cross section is observed with an optical microscope. At this time, the central portion made of the acrylonitrile-based polymer is dyed black, and the surface layer portion having many carboxyl groups becomes green because the dye is not sufficiently fixed. In the fiber cross section, the fiber diameter (D1) and the diameter (D2) of the center dyed black with the part starting to change from green to black as the boundary are measured, and the surface layer area ratio is calculated by the following formula To do. In addition, let the average value of the surface layer part area ratio of 10 samples be the surface layer part area ratio of a sample fiber.
Surface portion area ratio (%) = [{(( D1) / 2) 2 π - ((D2) / 2) 2 π} / ((D1) / 2) 2 π] × 100
(5)上昇温度
 ISO18782:2015に準拠して試料繊維の上昇温度を測定した。
(5) Rising temperature The rising temperature of the sample fiber was measured according to ISO18782: 2015.
[実施例1]
 アクリロニトリル90重量%、アクリル酸メチルエステル10重量%のアクリロニトリル系重合体Ap(30℃ジメチルホルムアミド中での極限粘度[η]=1.5)、アクリロニトリル88重量%、酢酸ビニル12重量%のアクリロニトリル系重合体Bp([η]=1.5)をそれぞれ48重量%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。特公昭39-24301号による複合紡糸装置にAp/Bpの複合比率(重量比)が50/50となるようにそれぞれの紡糸原液を導き、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、単繊維繊度3.3dtexの重合体ApとBpを複合させたサイド・バイ・サイド型原料繊維を得た。
[Example 1]
Acrylonitrile polymer Ap (90% by weight of acrylonitrile, 10% by weight of acrylic acid methyl ester (Intrinsic viscosity [η] = 1.5) in dimethylformamide at 30 ° C.), 88% by weight of acrylonitrile, 12% by weight of vinyl acetate Polymer Bp ([η] = 1.5) was dissolved in a 48% by weight aqueous rhodium soda solution to prepare a spinning dope. Each spinning undiluted solution is introduced into a compound spinning device according to Japanese Patent Publication No. 39-24301 so that the composite ratio (weight ratio) of Ap / Bp is 50/50, and spinning, washing, drawing, crimping and heat treatment are carried out according to conventional methods. Thus, a side-by-side raw material fiber in which the polymers Ap and Bp having a single fiber fineness of 3.3 dtex were combined was obtained.
 該原料繊維に、水加ヒドラジン0.5重量%および水酸化ナトリウム1.4重量%を含有する水溶液中で、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8重量%硝酸水溶液で、120℃×3時間処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整し、水洗、乾燥することにより、Na塩型カルボキシル基を有するNa塩型架橋ポリアクリレート系繊維(表層部面積13%)を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。なお、かかる繊維の赤外線吸収測定においては、ニトリル基に由来する2250cm-1付近に吸収があり、繊維表層部においてはニトリル基の加水分解が進行しているが、繊維中心部においてはニトリル基が残存していることが確認された。 The raw fiber was subjected to crosslinking introduction treatment and hydrolysis treatment simultaneously in an aqueous solution containing 0.5% by weight of hydrazine hydrate and 1.4% by weight of sodium hydroxide at 100 ° C. for 2 hours to obtain 8% by weight nitric acid. The solution was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water. The obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, washed with water, and dried to form a Na salt type crosslinked polyacrylate fiber having a Na salt type carboxyl group (surface layer area 13%) ) The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1. In the infrared absorption measurement of such a fiber, absorption is in the vicinity of 2250 cm −1 derived from the nitrile group, and the hydrolysis of the nitrile group proceeds in the fiber surface layer portion, but the nitrile group is present in the fiber center portion. It was confirmed that it remained.
[実施例2]
 実施例1において架橋導入・加水分解処理に用いる水酸化ナトリウムの濃度を1.4重量%から1.2重量%に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維(表層部面積8%)を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。
[Example 2]
In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.2% by weight, Na salt-type cross-linked polyacrylate fiber (surface layer area 8) %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[実施例3]
 実施例1において架橋導入・加水分解処理に用いる水酸化ナトリウムの濃度を1.4重量%から1.6重量%に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維(表層部面積18%)を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。
[Example 3]
In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the crosslinking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.6% by weight, the Na salt-type crosslinked polyacrylate fiber (surface layer area 18 %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[実施例4]
 実施例1においてpH9に調整するために添加される水酸化ナトリウムの代わりに水酸化カリウムを使用した以外は同じ方法でK塩型架橋ポリアクリレート系繊維(表層部面積13%)を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。
[Example 4]
A K salt type crosslinked polyacrylate fiber (surface area 13%) was obtained by the same method except that potassium hydroxide was used instead of sodium hydroxide added to adjust to pH 9 in Example 1. The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[実施例5]
 実施例4において架橋導入・加水分解処理に用いる水酸化カリウムの濃度を1.4重量%から1.2重量%に変更した以外は同じ方法でK塩型架橋ポリアクリレート系繊維(表層部面積8%)を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。
[Example 5]
In the same manner as in Example 4 except that the concentration of potassium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4 wt% to 1.2 wt%, K salt type cross-linked polyacrylate fiber (surface layer area 8) %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[実施例6]
 実施例4において架橋導入・加水分解処理に用いる水酸化カリウムの濃度を1.4重量%から1.6重量%に変更した以外は同じ方法でK塩型架橋ポリアクリレート系繊維(表層部面積18%)を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。
[Example 6]
In the same manner as in Example 4 except that the concentration of potassium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4 wt% to 1.6 wt%, K salt type cross-linked polyacrylate fiber (surface layer area 18) %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[実施例7]
 実施例1においてアクリロニトリル系重合体Apの組成をアクリロニトリル92重量%、アクリル酸メチルエステル8重量%に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。
[Example 7]
Na salt type crosslinked polyacrylate fibers were obtained in the same manner as in Example 1 except that the composition of the acrylonitrile polymer Ap was changed to 92% by weight of acrylonitrile and 8% by weight of methyl acrylate. The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[実施例8]
 実施例1においてAp/Bpの複合比率(重量比)を50/50から40/60に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。
[Example 8]
A Na salt type crosslinked polyacrylate fiber was obtained in the same manner as in Example 1 except that the composite ratio (weight ratio) of Ap / Bp was changed from 50/50 to 40/60. The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[実施例9]
 実施例1においてAp/Bpの複合比率(重量比)を50/50から60/40に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。
[Example 9]
A Na salt type crosslinked polyacrylate fiber was obtained in the same manner as in Example 1 except that the composite ratio (weight ratio) of Ap / Bp was changed from 50/50 to 60/40. The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[比較例1]
 実施例1において架橋導入・加水分解処理に用いる水酸化ナトリウムの濃度を1.4重量%から0.5重量%に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維(表層部面積3%)を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。
[Comparative Example 1]
In the same manner as in Example 1, except that the concentration of sodium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4 wt% to 0.5 wt%, Na salt type cross-linked polyacrylate fiber (surface layer area 3) %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[比較例2]
 実施例1において架橋導入・加水分解処理に用いる水酸化ナトリウムの濃度を1.4重量%から1.8重量%に変更した以外は同じ方法でNa塩型架橋ポリアクリレート系繊維(表層部面積25%)を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。
[Comparative Example 2]
In the same manner as in Example 1 except that the concentration of sodium hydroxide used for the cross-linking introduction / hydrolysis treatment was changed from 1.4% by weight to 1.8% by weight, Na salt-type cross-linked polyacrylate fiber (surface layer area 25) %). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[比較例3]
 アクリロニトリル90重量%、アクリル酸メチルエステル10重量%のアクリロニトリル系重合体Ap(30℃ジメチルホルムアミド中での極限粘度[η]=1.5)、アクリロニトリル88重量%、酢酸ビニル12重量%のアクリロニトリル系重合体Bp([η]=1.5)をそれぞれ48重量%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。特公昭39-24301号による複合紡糸装置にAp/Bpの複合比率が50/50となるようにそれぞれの紡糸原液を導き、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、単繊維繊度3.3dtexの重合体ApとBpを複合させたサイド・バイ・サイド型原料繊維を得た。
[Comparative Example 3]
Acrylonitrile polymer Ap (90% by weight of acrylonitrile, 10% by weight of acrylic acid methyl ester (Intrinsic viscosity [η] = 1.5) in dimethylformamide at 30 ° C.), 88% by weight of acrylonitrile, 12% by weight of vinyl acetate Polymer Bp ([η] = 1.5) was dissolved in a 48% by weight aqueous rhodium soda solution to prepare a spinning dope. Each spinning dope is introduced into a compound spinning device according to Japanese Examined Patent Publication No. 39-24301 so that the composite ratio of Ap / Bp is 50/50, followed by spinning, washing, drawing, crimping, and heat treatment according to conventional methods. A side-by-side raw material fiber in which the polymers Ap and Bp having a fiber fineness of 3.3 dtex were combined was obtained.
 該原料繊維に、水加ヒドラジン0.5重量%および水酸化ナトリウム1.4重量%を含有する水溶液中で、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8重量%硝酸水溶液で、120℃×3時間処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整した後、繊維に含まれるカルボキシル基量の2倍に相当する硝酸マグネシウムを溶解させた水溶液に50℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することによりMg塩型カルボキシル基を有するMg塩型架橋ポリアクリレート系繊維(表層部面積13%)を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。 The raw fiber was subjected to crosslinking introduction treatment and hydrolysis treatment simultaneously in an aqueous solution containing 0.5% by weight of hydrazine hydrate and 1.4% by weight of sodium hydroxide at 100 ° C. for 2 hours to obtain 8% by weight nitric acid. The solution was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water. The obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, and then immersed in an aqueous solution in which magnesium nitrate corresponding to twice the amount of carboxyl groups contained in the fiber is dissolved at 50 ° C. for 1 hour. As a result, an ion exchange treatment was carried out, followed by washing with water and drying to obtain an Mg salt-type crosslinked polyacrylate fiber having an Mg salt-type carboxyl group (surface layer area 13%). The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[比較例4]
 アクリロニトリル90重量%、アクリル酸メチルエステル10重量%のアクリロニトリル系重合体Ap(30℃ジメチルホルムアミド中での極限粘度[η]=1.5)、アクリロニトリル88重量%、酢酸ビニル12重量%のアクリロニトリル系重合体Bp([η]=1.5)をそれぞれ48重量%のロダンソーダ水溶液で溶解して、紡糸原液を調製した。特公昭39-24301号による複合紡糸装置にAp/Bpの複合比率が50/50となるようにそれぞれの紡糸原液を導き、常法に従って紡糸、水洗、延伸、捲縮、熱処理をして、単繊維繊度3.3dtexの重合体ApとBpを複合させたサイド・バイ・サイド型原料繊維を得た。
[Comparative Example 4]
Acrylonitrile polymer Ap (90% by weight of acrylonitrile, 10% by weight of acrylic acid methyl ester (Intrinsic viscosity [η] = 1.5) in dimethylformamide at 30 ° C.), 88% by weight of acrylonitrile, 12% by weight of vinyl acetate Polymer Bp ([η] = 1.5) was dissolved in a 48% by weight aqueous rhodium soda solution to prepare a spinning dope. Each spinning dope is introduced into a compound spinning device according to Japanese Examined Patent Publication No. 39-24301 so that the composite ratio of Ap / Bp is 50/50, followed by spinning, washing, drawing, crimping, and heat treatment according to conventional methods. A side-by-side raw material fiber in which the polymers Ap and Bp having a fiber fineness of 3.3 dtex were combined was obtained.
 該原料繊維に、水加ヒドラジン0.5重量%および水酸化ナトリウム1.4重量%を含有する水溶液中で、100℃×2時間、架橋導入処理および加水分解処理を同時に行い、8重量%硝酸水溶液で、120℃×3時間処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整した後、繊維に含まれるカルボキシル基量の2倍に相当する硝酸カルシウムを溶解させた水溶液に50℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することによりCa塩型カルボキシル基を有するCa塩型架橋ポリアクリレート系繊維(表層部面積13%)を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。 The raw fiber was subjected to crosslinking introduction treatment and hydrolysis treatment simultaneously in an aqueous solution containing 0.5% by weight of hydrazine hydrate and 1.4% by weight of sodium hydroxide at 100 ° C. for 2 hours to obtain 8% by weight nitric acid. The solution was treated with an aqueous solution at 120 ° C. for 3 hours and washed with water. The obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, and then immersed in an aqueous solution in which calcium nitrate corresponding to twice the amount of carboxyl groups contained in the fiber is dissolved at 50 ° C. for 1 hour. Thus, an ion exchange treatment was carried out, followed by washing with water and drying to obtain a Ca salt type cross-linked polyacrylate fiber (surface layer area 13%) having a Ca salt type carboxyl group. The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1.
[比較例5]
 実施例1において得られたサイド・バイ・サイド型原料繊維に、水加ヒドラジン0.5重量%および水酸化ナトリウム2.0重量%を含有する水溶液中で、100℃×1時間、架橋導入処理及び加水分解処理を同時に行い、さらに100℃×1時間、8重量%硝酸水溶液で処理し、水洗した。得られた繊維を水に浸漬し、水酸化ナトリウムを添加してpH9に調整した後、繊維に含まれるカルボキシル基量の2倍に相当する硝酸マグネシウムを溶解させた水溶液に50℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することにより、Mg塩型カルボキシル基を有するMg塩型架橋ポリアクリレート系繊維(表層部面積35%)を得た。得られた架橋ポリアクリレート系繊維の詳細と評価結果を表1に示す。なお、比較例5の加水分解処理は、実施例1より厳しい条件で行われ、酸処理は、実施例1より緩い条件で行われている。
[Comparative Example 5]
In the aqueous solution containing 0.5% by weight of hydrazine hydrate and 2.0% by weight of sodium hydroxide to the side-by-side type raw material fiber obtained in Example 1, 100 ° C. × 1 hour, crosslinking introduction treatment Then, the hydrolysis treatment was performed at the same time, and the mixture was further treated with an 8 wt% aqueous nitric acid solution at 100 ° C. for 1 hour and washed with water. The obtained fiber is immersed in water, adjusted to pH 9 by adding sodium hydroxide, and then immersed in an aqueous solution in which magnesium nitrate corresponding to twice the amount of carboxyl groups contained in the fiber is dissolved at 50 ° C. for 1 hour. As a result, an ion exchange treatment was carried out, followed by washing with water and drying to obtain a Mg salt-type crosslinked polyacrylate fiber (surface area 35%) having an Mg salt-type carboxyl group. The details and evaluation results of the obtained crosslinked polyacrylate fiber are shown in Table 1. In addition, the hydrolysis process of the comparative example 5 is performed on conditions severer than Example 1, and the acid treatment is performed on conditions looser than Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、実施例1~9の吸湿発熱性繊維は、高い吸湿発熱性(吸湿率及び上昇温度)と高い嵩高性(比容積)を両立しているのに対して、Na塩型架橋ポリアクリレート系繊維の表層部面積が少ない比較例1は、吸湿性に劣り、Na塩型架橋ポリアクリレート系繊維の表層部面積が多い比較例2は、嵩高性に劣り、Mg塩型架橋ポリアクリレート系繊維の比較例3,4は、吸湿性に劣る問題があった。また、従来条件で製造され、本発明のような特殊な構造を有していないMg塩型架橋ポリアクリレート系繊維の比較例5は、吸湿性に劣る問題があった。 As can be seen from Table 1, the hygroscopic exothermic fibers of Examples 1 to 9 have both high hygroscopic exothermic properties (moisture absorption rate and rising temperature) and high bulkiness (specific volume), whereas Na salts Comparative Example 1 in which the surface layer part area of the type cross-linked polyacrylate fiber is small is inferior in hygroscopicity, and Comparative Example 2 in which the surface layer part area of the Na salt type cross-linked polyacrylate fiber is large is inferior in bulkiness, and Mg salt type cross-linking Comparative Examples 3 and 4 of the polyacrylate fiber had a problem of poor hygroscopicity. Moreover, the comparative example 5 of the Mg salt type | mold bridge | crosslinking polyacrylate type fiber which was manufactured on the conventional conditions and does not have a special structure like this invention had a problem inferior to a hygroscopic property.
 本発明の吸湿発熱性繊維は、早期に実感できる高い吸湿発熱性と保温性をもたらす高い嵩高性とを併せ持つので、人肌に触れる寝装品や衣料品等において快適に使用することができる。 The hygroscopic exothermic fiber of the present invention has both high hygroscopic exothermic properties that can be realized at an early stage and high bulkiness that brings about heat retention, so that it can be comfortably used in bedding and clothing that touch human skin.

Claims (4)

  1.  架橋構造及びNa塩型又はK塩型のカルボキシル基を有する表層部と、アクリロニトリル含有率が異なる二種類のアクリロニトリル系重合体からなるサイドバイサイド型構造の中心部とからなる複合繊維であって、複合繊維の横断面における表層部の占める面積が5%以上20%未満であり、かつ、20℃、相対湿度65%の環境下における飽和吸湿率が20%以上であることを特徴とする吸湿発熱性繊維。 A composite fiber comprising a cross-linked structure and a surface layer portion having a Na salt type or K salt type carboxyl group, and a center portion of a side-by-side type structure comprising two types of acrylonitrile-based polymers having different acrylonitrile content ratios. The moisture-absorbing exothermic fiber is characterized in that the area occupied by the surface layer portion in the cross section of 5% or more and less than 20% and the saturated moisture absorption rate in an environment of 20 ° C. and relative humidity 65% is 20% or more. .
  2.  全カルボキシル基量が3.5mmol/g以上であることを特徴とする請求項1に記載の吸湿発熱性繊維。 The hygroscopic exothermic fiber according to claim 1, wherein the total amount of carboxyl groups is 3.5 mmol / g or more.
  3.  ISO18782:2015に準拠して測定した上昇温度が4~10℃であることを特徴とする請求項1又は2に記載の吸湿発熱性繊維。 The hygroscopic exothermic fiber according to claim 1 or 2, wherein the temperature rise measured according to ISO 18782: 2015 is 4 to 10 ° C.
  4.  比容積が15~50cm/gであることを特徴とする請求項1~3のいずれかに記載の吸湿発熱性繊維。 4. The hygroscopic exothermic fiber according to claim 1, wherein the specific volume is 15 to 50 cm 3 / g.
PCT/JP2017/024129 2016-09-26 2017-06-30 Hygroscopic heat-generating fiber WO2018055868A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017551728A JP6247800B1 (en) 2016-09-26 2017-06-30 Hygroscopic exothermic fiber
KR1020197000081A KR102334183B1 (en) 2016-09-26 2017-06-30 Hygroscopic exothermic fiber
CN201780048935.9A CN109642349B (en) 2016-09-26 2017-06-30 Moisture-absorbing heat-generating fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016187321 2016-09-26
JP2016-187321 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018055868A1 true WO2018055868A1 (en) 2018-03-29

Family

ID=61689393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024129 WO2018055868A1 (en) 2016-09-26 2017-06-30 Hygroscopic heat-generating fiber

Country Status (3)

Country Link
CN (1) CN109642349B (en)
TW (1) TWI707996B (en)
WO (1) WO2018055868A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536360A (en) * 1978-09-05 1980-03-13 Japan Exlan Co Ltd Novel water-swelling fiber and its production
WO2015041275A1 (en) * 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674429B2 (en) * 2001-09-18 2011-04-20 日本エクスラン工業株式会社 Black high moisture absorbing / releasing fiber
JP2006052489A (en) * 2004-08-11 2006-02-23 Toho Tenax Co Ltd Hygroscopic acrylic fiber fabric and method for producing the same
CN102575415B (en) * 2009-07-22 2014-02-19 日本爱克兰工业株式会社 Moisture-absorbing fiber dyeable with acid dyes and method for producing same
JP6079981B2 (en) * 2012-01-23 2017-02-15 日本エクスラン工業株式会社 Cross-linked acrylate fiber for anti-influenza virus and fiber structure for anti-influenza virus containing the fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536360A (en) * 1978-09-05 1980-03-13 Japan Exlan Co Ltd Novel water-swelling fiber and its production
WO2015041275A1 (en) * 2013-09-20 2015-03-26 日本エクスラン工業株式会社 Cross-linked acrylate fiber and fiber structure containing same

Also Published As

Publication number Publication date
CN109642349B (en) 2021-08-06
TWI707996B (en) 2020-10-21
CN109642349A (en) 2019-04-16
TW201817930A (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6455680B2 (en) Cross-linked acrylate fiber and fiber structure containing the fiber
JP6247800B1 (en) Hygroscopic exothermic fiber
JP6339861B2 (en) Filling, and futon and garment containing the filling
JP2009133036A (en) Knitted fabric having excellent heat-retaining property
WO2018061369A1 (en) Batting
WO2018055868A1 (en) Hygroscopic heat-generating fiber
JP6247801B1 (en) Batting
JP7210949B2 (en) Moisture-releasing and cooling fiber and fiber structure containing said fiber
JP7061292B2 (en) Batting
JP7177986B2 (en) Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7177982B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
WO2017179379A1 (en) High volume, long-lasting high heat generation fiber as well as fiber structure, odor-eliminating material and padding containing said fiber
JP6399378B1 (en) Hygroscopic granular cotton and batting containing the granular cotton
JP7177988B2 (en) Water-repellent and moisture-absorbing acrylonitrile-based fiber, method for producing said fiber, and fiber structure containing said fiber
JP7177987B2 (en) Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP7187911B2 (en) Hygroscopic acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2022132133A (en) Hydrophobized cross-linked hygroscopic fiber and fiber structure thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017551728

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000081

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852649

Country of ref document: EP

Kind code of ref document: A1