WO2018055761A1 - 香味吸引器 - Google Patents

香味吸引器 Download PDF

Info

Publication number
WO2018055761A1
WO2018055761A1 PCT/JP2016/078258 JP2016078258W WO2018055761A1 WO 2018055761 A1 WO2018055761 A1 WO 2018055761A1 JP 2016078258 W JP2016078258 W JP 2016078258W WO 2018055761 A1 WO2018055761 A1 WO 2018055761A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
aerosol
amount
atomization
atomization unit
Prior art date
Application number
PCT/JP2016/078258
Other languages
English (en)
French (fr)
Inventor
拓磨 中野
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2016/078258 priority Critical patent/WO2018055761A1/ja
Priority to PCT/JP2017/033889 priority patent/WO2018056300A1/ja
Priority to CN201780059389.9A priority patent/CN109788804B/zh
Priority to CA3037829A priority patent/CA3037829C/en
Priority to KR1020197011299A priority patent/KR102277293B1/ko
Priority to JP2018540259A priority patent/JP6803116B2/ja
Priority to EA201990821A priority patent/EA039066B1/ru
Priority to EP17853070.5A priority patent/EP3513667A4/en
Priority to TW106132618A priority patent/TWI679944B/zh
Publication of WO2018055761A1 publication Critical patent/WO2018055761A1/ja
Priority to US16/361,429 priority patent/US20190217028A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/30Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/60Devices with integrated user interfaces
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/65Devices with integrated communication means, e.g. wireless communication means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated

Definitions

  • the present invention relates to a flavor inhaler for sucking a flavor contained in an aerosol.
  • the flavor inhaler includes an atomization unit that atomizes an aerosol source without combustion, and a flavor source that is provided on the suction side of the atomization unit (see, for example, Patent Document 1).
  • the present invention has been made in view of the above points, and one of its purposes is to provide a flavor inhaler capable of independently controlling the aerosol to be sucked and the amount of flavor. .
  • one embodiment of the present invention is provided between a suction port, a first atomization unit that atomizes an aerosol source to generate aerosol, and the first atomization unit and the suction port.
  • the generated flavor source, the first flow path configured to guide the aerosol generated in the first atomization unit to the suction port through the flavor source, and the aerosol source are atomized to generate the aerosol
  • control unit independently controls an aerosol generation amount in the first atomization unit and an aerosol generation amount in the second atomization unit. It is a vessel.
  • the flavor source imparts an amount of a flavor component according to the amount of aerosol generated in the first atomization unit to the aerosol passing through the flavor source
  • the control unit is a flavor inhaler that controls an aerosol generation amount in the first atomization unit such that a given amount of the flavor component is delivered to the mouthpiece.
  • the apparatus further includes a user setting unit for setting an aerosol generation amount, and the control unit is configured to respond to a user instruction via the user setting unit. It is a flavor inhaler which changes the aerosol production amount in 2 atomization parts.
  • control unit receives a user instruction to change both the total aerosol amount and the flavor component amount delivered to the mouthpiece via the user setting unit. It is a flavor inhaler which changes the aerosol production amount in a said 1st atomization part and a said 2nd atomization part according to the said user instruction
  • the first atomization unit and the second atomization unit are configured to atomize the aerosol source by heating a heater.
  • the resistance value of the heater of an atomization part is a flavor suction device larger than the resistance value of the heater of a said 2nd atomization part.
  • the control unit when the continuous energization time to the first atomization unit exceeds the first cutoff time, the control unit supplies the first atomization unit to the first atomization unit.
  • the energization is stopped and the continuous energization time to the second atomization unit exceeds the second cut-off time, the energization to the second atomization unit is stopped, and the first cut is performed to the first atomization unit.
  • Another aspect of the present invention is the flavor inhaler according to the above aspect, wherein the first cut-off time is different from the second cut-off time.
  • Another aspect of the present invention is the flavor inhaler according to the above aspect, wherein the first cutoff time is shorter than the second cutoff time.
  • control unit changes the aerosol generation amount in at least one of the first atomization unit and the second atomization unit. It is a flavor suction device performed by changing either one of the supply electric power to an electric current or energization time.
  • control unit changes the aerosol generation amount in at least one of the first atomization unit and the second atomization unit.
  • This is a flavor inhaler, which is performed by changing both the power supplied to and the energization time.
  • the control unit determines an aerosol generation amount in at least one of the first atomization unit and the second atomization unit, and determines the aerosol generation amount.
  • the given energizing time is variable A flavor inhaler that selects a combination included in a range or a variable range of a given applied voltage, and drives the corresponding atomizing unit with the selected applied voltage and energization time.
  • the control unit determines an aerosol generation amount in at least one of the first atomization unit and the second atomization unit, and determines the aerosol generation amount.
  • the amount of power to be supplied to the corresponding atomizing unit is determined on the basis, and the voltage applied to the atomizing unit for obtaining the amount of power is determined based on a predetermined fixed energization time. It is a flavor suction device which drives the corresponding atomization part with the applied voltage and the fixed energization time.
  • control unit determines a combination of an applied voltage and energization time to at least one of the first atomizing unit and the second atomizing unit, Based on the combination, the amount of power supplied to the corresponding atomizing unit is calculated, and when the calculated value of the power amount exceeds a given upper limit value, the applied voltage and energization satisfying the power amount of the upper limit value It is a flavor suction device which drives the said corresponding atomization part by time.
  • Another aspect of the present invention is the flavor inhaler according to the above aspect, wherein the upper limit value decreases as the applied voltage increases.
  • control unit can change an aerosol generation amount in the first atomization unit by changing an energization time to the first atomization unit.
  • a flavor inhaler that can change the amount of aerosol generation in the second atomization unit by changing the power supplied to the second atomization unit.
  • control unit can change an aerosol generation amount in the second atomization unit, and a variable range of the aerosol generation amount in the second atomization unit. Is larger than the aerosol generation amount in the first atomization unit, and the lower limit of the variable range of the aerosol generation amount in the second atomization unit is smaller than the aerosol generation amount in the first atomization unit.
  • a flavor aspirator Is larger than the aerosol generation amount in the first atomization unit, and the lower limit of the variable range of the aerosol generation amount in the second atomization unit is smaller than the aerosol generation amount in the first atomization unit.
  • control unit can change an aerosol generation amount in the first atomization unit, and a variable range of the aerosol generation amount in the first atomization unit.
  • the lower limit of is a flavor inhaler greater than zero.
  • control unit can change an aerosol generation amount in both the first atomization unit and the second atomization unit, and the first fog
  • the variable range of the aerosol generation amount in the gasification unit is a flavor inhaler that is narrower than the width of the variable range of the aerosol generation amount in the second atomization unit.
  • control unit can change an aerosol generation amount in both the first atomization unit and the second atomization unit, and the first fog
  • the variable range of the aerosol generation amount in the conversion unit is a flavor inhaler included between the lower limit value and the upper limit value of the variable range of the aerosol generation amount in the second atomization unit.
  • control unit increases an aerosol generation amount in the first atomization unit according to an accumulated aerosol amount that has passed through the first flow path. It is a flavor suction device which determines the electric energy supplied to a said 1st atomization part.
  • control unit reduces an aerosol generation amount in the second atomization unit according to an accumulated aerosol amount that has passed through the first flow path. It is a flavor suction device which determines the electric energy supplied to a said 2nd atomization part.
  • another aspect of the present invention is the flavor inhaler according to the above aspect, wherein the control unit obtains the cumulative aerosol amount from the cumulative power amount supplied to the first atomization unit.
  • Another aspect of the present invention is the above-described aspect, further comprising a mixing chamber for mixing the aerosol that has passed through the first flow path and the aerosol that has passed through the second flow path. It is a flavor suction device connected to the mouthpiece.
  • Another aspect of the present invention is the flavor inhaler according to the above aspect, wherein the mixing chamber has a cross-sectional area larger than any cross-sectional area of the first flow path and the second flow path. .
  • Another aspect of the present invention is the flavor inhaler according to the above aspect, wherein at least one of the first flow path and the second flow path includes a plurality of flow paths.
  • Another aspect of the present invention is a flavor inhaler according to the above aspect, wherein the first flow path and the second flow path are arranged in parallel with each other.
  • the amount of aerosol and flavor to be sucked can be controlled independently of each other.
  • FIG. 6 is a diagram for explaining the amount of power supplied to the heater of the atomizing unit 104 when the user designates the energization time t through the user setting unit 150.
  • FIG. 6 is a diagram for explaining the amount of power supplied to the heater of the atomizing unit 104 when the user designates the applied voltage V through the user setting unit 150.
  • FIG. It is a figure for demonstrating the modification of control in case the user designates the applied voltage V through the user setting part 150.
  • FIG. It is a flowchart which shows operation
  • FIG. 1 is a configuration diagram of a flavor inhaler 100 according to an embodiment of the present invention.
  • FIG. 1 schematically and conceptually shows each element included in the flavor inhaler 100, and does not show the exact arrangement, shape, dimensions, positional relationship, etc. of each element and flavor inhaler 100. Please keep in mind.
  • the flavor inhaler 100 includes a reservoir 102 (first reservoir 102A and second reservoir 102B), an atomizer 104 (first atomizer 104A and second atomizer 104B), and a flavor source. 106, a suction member 108, an aerosol flow path 110 (a first aerosol flow path 110 ⁇ / b> A and a second aerosol flow path 110 ⁇ / b> B), and a mixing chamber 118.
  • These elements of the flavor inhaler 100 may be provided as a cartridge in which some of them are configured to be detachable.
  • the flavor source 106 may be configured as a cartridge that can be attached to and detached from the main body of the flavor inhaler 100, or the atomizing unit 104 and the reservoir 102 may be configured as a cartridge that can be attached to and detached from the battery 114.
  • a cartridge in which the flavor source 106, the reservoir 102, and the atomizing unit 104 are integrated may be detachably attached to the battery 114.
  • Reservoir 102 holds an aerosol source.
  • the reservoir 102 is made of a fibrous or porous material, and holds an aerosol source as a liquid in the gaps between the fibers or the pores of the porous material.
  • the reservoir 102 may be configured as a tank that accommodates the liquid in a flowable state.
  • the aerosol source is a liquid such as glycerin or propylene glycol.
  • the reservoir 102 has a configuration in which the aerosol source can be replenished, or a configuration in which the reservoir itself can be replaced when the aerosol source is exhausted.
  • the atomization unit 104 (the first atomization unit 104A and the second atomization unit 104B) is configured to atomize an aerosol source to generate an aerosol.
  • Each atomization unit 104 detects a user's suction action by a suction sensor 122 (for example, a pressure sensor that detects a pressure fluctuation in the air intake channel 116 or the aerosol channel 110 or an operation button that can be operated by the user). Then, aerosol is generated.
  • a wick (not shown) is provided so as to connect the first reservoir 102A and the first atomizing unit 104A. A portion of the wick leads to the interior of the first reservoir 102A and is in contact with the aerosol source.
  • the other part of the wick extends to the first atomizing portion 104A.
  • the aerosol source is carried from the first reservoir 102A to the first atomizer 104A by the capillary effect of the wick.
  • another wick (not shown) is provided to connect the second reservoir 102B and the second atomizing unit 104B.
  • Each atomization part 104 is provided with the heater electrically connected to the battery 114 as an example. The heater of each atomization part 104 is arrange
  • the atomizing unit 104 may be an ultrasonic atomizer that atomizes an aerosol source by ultrasonic vibration.
  • Each atomization unit 104 is connected to an air intake channel 116, and the air intake channel 116 communicates with the outside of the flavor inhaler 100.
  • the aerosols generated in the first atomization unit 104A and the second atomization unit 104B are mixed with the air taken in via the air intake flow channel 116, and the first aerosol flow channel 110A and the second aerosol flow, respectively. It is sent out to the road 110B.
  • the flavor source 106 is a unit for imparting flavor to the aerosol.
  • the flavor source 106 is disposed in the middle of the first aerosol flow path 110A.
  • a mixed fluid of aerosol and air generated by the first atomization unit 104A (hereinafter, the mixed fluid may be simply referred to as aerosol) is generated by the first aerosol flow path 110A by the user's suction action. It flows through the suction port (suction member 108). That is, the flavor source 106 is provided downstream of the first atomization unit 104A in the aerosol flow. In other words, the flavor source 106 is positioned closer to the inlet in the aerosol flow path 110 than the first atomizing unit 104A.
  • generated in 104 A of 1st atomization parts reaches
  • FIG. As the aerosol passes through the flavor source 106, flavor components from the flavor source 106 are imparted to the aerosol.
  • the flavor source 106 is made from tobacco or a non-tobacco plant (for example, mint or herb) such as chopped tobacco or a processed product obtained by shaping tobacco raw materials into a granular, sheet or powder form. It may be derived from non-tobacco tobacco.
  • the flavor source 106 includes a nicotine component.
  • the flavor source 106 may contain a fragrance component such as menthol.
  • the reservoir 102 may include a substance containing a flavor component.
  • the flavor inhaler 100 may be configured to hold a tobacco-derived flavor substance in the flavor source 106 and each reservoir 102 includes a non-tobacco-derived flavor substance.
  • the aerosol flow path 110 has a tubular structure for transporting a mixed fluid of aerosol and air generated in each atomization unit 104 to the mixing chamber 118.
  • the aerosol flow path 110 includes a first aerosol flow path 110A and a second aerosol flow path 110B.
  • the first aerosol channel 110A connects between the first atomization unit 104A and the mixing chamber 118
  • the second aerosol channel 110B connects between the second atomization unit 104B and the mixing chamber 118.
  • the first aerosol channel 110A and the second aerosol channel 110B are arranged in parallel to each other. At least one of the first aerosol channel 110A and the second aerosol channel 110B may be composed of a plurality of channels.
  • the flavor source 106 is provided in the middle of the first aerosol flow path 110A. That is, the first aerosol channel 110 ⁇ / b> A connects the first atomization unit 104 ⁇ / b> A and the mixing chamber 118 via the flavor source 106. Therefore, the aerosol generated by the first atomization unit 104A is sent to the first aerosol flow path 110A together with air, passes through the flavor source 106, is given a flavor component, and then is transported to the mixing chamber 118.
  • the 2nd aerosol flow path 110B has connected directly between the 2nd atomization part 104B and the mixing chamber 118 without the flavor source 106 being interposed.
  • the aerosol generated by the second atomization unit 104B and sent to the second aerosol flow path 110B does not pass through the flavor source 106, and thus is not mixed with the flavor component contained in the flavor source 106.
  • a flavor source different from the flavor source 106 for example, a flavor source capable of imparting a flavor component different from the flavor source 106 to the aerosol
  • the mixing chamber 118 is located at the terminal end (downstream end) of the first aerosol flow path 110A and the second aerosol flow path 110B, and mixes the aerosol carried through the aerosol flow paths 110A and 110B.
  • the mixing chamber 118 is configured to have a channel cross-sectional area larger than the channel cross-sectional area of the first aerosol channel 110A and the channel cross-sectional area of the second aerosol channel 110B. Is done.
  • the channel cross-sectional area means the cross-sectional area of the aerosol channel with a cross section perpendicular to the direction of aerosol flow (directions of arrows u and v shown in FIG. 1).
  • the suction member 108 is a member connected to the downstream side of the mixing chamber 118 and configured to open the aerosol in the mixing chamber 118 to the outside of the flavor inhaler 100.
  • the user picks up the suction member 108 and sucks it to take in the air containing the aerosol into the oral cavity.
  • the aerosol from the first aerosol flow path 110A and the aerosol from the second aerosol flow path 110B merge in the mixing chamber 118 and are inhaled by the user from the suction member 108.
  • the flavor inhaler 100 further includes a control unit 130, a memory 140, and a user setting unit 150.
  • the control unit 130 is an electronic circuit module configured as a microprocessor or a microcomputer, and is programmed to control the operation of the flavor inhaler 100 in accordance with computer-executable instructions stored in the memory 140.
  • the memory 140 is an information storage medium such as a ROM, a RAM, or a flash memory. The memory 140 stores setting data necessary for controlling the flavor inhaler 100 in addition to computer-executable instructions.
  • the user setting unit 150 allows the user to set the amount of aerosol generated in the atomization unit 104 (hereinafter referred to as aerosol generation amount).
  • the user setting unit 150 is configured as, for example, a button, switch, or knob that can be physically operated by the user.
  • the user setting unit 150 may be configured as a communication interface (for example, a USB terminal or a wireless interface) that receives an instruction from a user via a communication connection with an external computer.
  • the user can individually set the aerosol generation amount u in the first atomization unit 104A and the aerosol generation amount v in the second atomization unit 104B via the user setting unit 150, for example.
  • the control unit 130 causes the first atomization unit 104A to operate according to the setting.
  • the control unit 130 causes the second atomization unit 104B to operate according to the setting.
  • the control unit 104B is controlled.
  • the setting for the user setting unit 150 may be a setting for one of the aerosol generation amount u of the first atomization unit 104A and the aerosol generation amount v of the second atomization unit 104B, or to change both simultaneously. May be set.
  • the user can arbitrarily change the aerosol generation amount of the first atomization unit 104A and the aerosol generation amount of the second atomization unit 104B.
  • the aerosol generation amount of the first atomization unit 104A and the aerosol generation amount of the second atomization unit 104B can be changed within a predetermined range (variable range).
  • the aerosol generation amount of the second atomization unit 104B may be variable and the aerosol generation amount of the first atomization unit 104A may be fixed, and the variable range of the aerosol generation amount of the second atomization unit 104B is an upper limit value.
  • the aerosol generation amount of the first atomization unit 104A may be variable, and the variable range of the aerosol generation amount of the first atomization unit 104A is set to a value whose lower limit value is larger than zero.
  • both the aerosol generation amount of the first atomization unit 104A and the aerosol generation amount of the second atomization unit 104B may be variable, and the range of the aerosol generation amount of the first atomization unit 104A is variable.
  • the width is set to be narrower than the width of the variable range of the aerosol generation amount of the second atomization unit 104B, or the variable range of the aerosol generation amount of the first atomization unit 104A is that of the second atomization unit 104B. It is set so as to be included between the lower limit value and the upper limit value of the variable range of the aerosol generation amount. Thereby, the total amount of aerosol provided to the user can be changed in a wide range without greatly changing the amount of the flavor component provided to the user.
  • the user inhales (that is, is delivered to the mouthpiece member 108). And / or setting one or both of the total amount p of the aerosol and the flavor component amount q (hereinafter simply referred to as flavor component amount) from the flavor source 106 contained in the inhaled aerosol via the user setting unit 150. it can.
  • the total aerosol amount p delivered to the suction member 108 is equal to the sum u + v of the aerosol amounts generated in both the first atomization unit 104A and the second atomization unit 104B.
  • the flavor component from the flavor source 106 contained in the aerosol delivered to the mouthpiece member 108 is due to the aerosol from the first atomization unit 104A being vented to the flavor source 106.
  • the control unit 130 follows the equations (1) and (2).
  • the aerosol generation amounts u and v of the first atomization unit 104A and the second atomization unit 104B are determined from the set values, and the first atomization unit 104A and the second atomization unit 104B operate according to the determined values.
  • the first atomization unit 104A and the second atomization unit 104B are controlled so as to perform.
  • the control unit 130 performs the first atomization by an amount according to the change according to the equation (1).
  • the first atomization unit 104A is controlled so that the aerosol generation amount u of the unit 104A changes, and the second atomization unit according to the change of the aerosol generation amount u of the first atomization unit 104A according to the equation (2).
  • the second atomization unit 104B is controlled so that the aerosol generation amount v of 104B changes (so that the change in the aerosol generation amount u is offset by the change in the aerosol generation amount v).
  • the control unit 130 sets the second amount by the change amount according to the equation (2).
  • the second atomization unit 104B is controlled to change the aerosol generation amount v of the atomization unit 104B.
  • the aerosol generation amount u of the first atomization unit 104A and the aerosol generation amount v of the second atomization unit 104B are set as described above, or the total aerosol amount p and the flavor component amount q to be inhaled are set.
  • the user may directly set one or both of the voltage V applied to the heater of the atomization unit 104 and the energization time t thereof via the user setting unit 150.
  • R is a resistance value of the heater.
  • the control unit 130 controls the atomization unit 104 based on the setting. For the details of the control of this example, refer to the control of the second mode described later.
  • the control unit 130 can set the first atomization unit 104A according to the setting from the user.
  • the aerosol generation amount u and the aerosol generation amount v of the second atomization unit 104B are controlled independently.
  • an example of control by the control unit 130 will be described in detail.
  • FIG. 2 is a flowchart showing the operation of the control unit 130 according to the control of the first aspect.
  • the control of the first aspect is an example of control when one or both of the total aerosol amount p and the flavor component amount q are set via the user setting unit 150.
  • step S202 the control unit 130 determines whether or not a user instruction for changing at least one of the total aerosol amount p and the flavor component amount q is input via the user setting unit 150.
  • the total aerosol amount p and the flavor component amount q indicate target values for the total amount of aerosol and the amount of flavor component generated by the flavor inhaler 100.
  • step S214 the control unit 130 reads out the set values of the aerosol generation amount u of the first atomization unit 104A and the aerosol generation amount v of the second atomization unit 104B from the memory 140, and the first fog according to the read setting values.
  • the atomizing unit 104A and the second atomizing unit 104B are each driven. For example, initial setting values of the aerosol generation amounts of the first atomization unit 104A and the second atomization unit 104B that should be used when the flavor inhaler 100 starts operating are stored in the memory 140 in advance.
  • the control unit 130 reads out the initial setting values of these aerosol generation amounts from the memory 140, and performs the first atomization unit 104 ⁇ / b> A and the second atomization unit 104 ⁇ / b> A.
  • the atomization part 104B is driven.
  • the flavor suction device 100 was matched by the relationship of the initial setting value of aerosol production amount, and Formula (1) and (2) as one atomization operation
  • the operation is performed to provide the user with a fixed (constant) total aerosol amount p and flavor component amount q.
  • step S216 the control unit 130 determines whether or not to continue the operation of the flavor inhaler 100 (performs the next atomization operation corresponding to the user's next aspiration action) and continues the operation. The process returns to step S202. For example, when the detection value of the suction sensor (pressure sensor) 122 is below a predetermined threshold, the control unit 130 can determine that the user is about to perform the next suction action, and the processing from step S202 is performed. repeat. Note that step S216 is an optional step and may be omitted.
  • step S202 when it is determined in step S202 that a user instruction for changing at least one of the total aerosol amount p and the flavor component amount q is input via the user setting unit 150, the process proceeds to step S204, and the control is performed.
  • the unit 130 is an instruction to change only the total aerosol amount p, an instruction to change only the flavor component amount q, or the total aerosol amount p and the user instruction input via the user setting unit 150 It is determined whether the instruction is to change both of the flavor component amounts q.
  • the process proceeds to step S206.
  • step S204 When the user instruction is an instruction to change both the total aerosol quantity p and the flavor component quantity q, the process proceeds to step S208, and only the flavor component quantity q is obtained. If it is an instruction to change, the process proceeds to step S210.
  • the determination in step S204 is, for example, 1) when the control unit 130 detects an input of a user instruction, 2) after one atomization operation is completed, and 3) the user's suction action is detected by the suction sensor 122. It may be performed at any timing of 4) during the predetermined time lag time from when the atomization of the aerosol starts until 4) during the atomization operation (while the heater is energized).
  • step S206 the control unit 130 changes based on the formula (2) according to the total aerosol amount p according to the user instruction.
  • the aerosol generation amount v of the second atomization unit 104B is determined.
  • step S212 the control unit 130 updates the set value of the aerosol generation amount of the second atomization unit 104B stored in the memory 140 with the value of the new aerosol generation amount v determined in step S206.
  • step S214 the control unit 130 reads the set values of the aerosol generation amount u of the first atomization unit 104A and the aerosol generation amount v of the second atomization unit 104B from the memory 140, and sets the first generation value according to the read setting value.
  • Each of the first atomizing unit 104A and the second atomizing unit 104B is driven. More specifically, the control unit 130 drives the second atomization unit 104B in accordance with the new set value of the aerosol generation amount v determined in step S206, while the change in the flavor component amount q is included in the user instruction.
  • the first atomization unit 104A is driven according to the aerosol generation amount u of the first atomization unit 104A that is maintained at the same value from the relationship of the expression (1).
  • the total aerosol amount p delivered to the mouthpiece member 108 changes according to a user instruction to the user setting unit 150, while the flavor component amount q delivered to the mouthpiece member 108 is kept constant. Therefore, the flavor inhaler 100 can make the total aerosol amount p variable while keeping the flavor component amount q provided to the user constant.
  • the controller 130 determines whether or not to continue the operation of the flavor inhaler 100 as described above, and returns to step S202 if the operation is to be continued.
  • step S208 the control unit 130 determines the total aerosol amount p and the flavor component amount according to the user instruction. According to q, the aerosol generation amount u of the first atomization unit 104A and the aerosol generation amount v of the second atomization unit 104B after the change are determined based on the equations (1) and (2).
  • step S212 the control unit 130 sets the set value of each aerosol generation amount of the first atomization unit 104A and the second atomization unit 104B stored in the memory 140 as the new aerosol generation amount determined in step S208.
  • step S214 the control unit 130 reads the set values of the aerosol generation amount u of the first atomization unit 104A and the aerosol generation amount v of the second atomization unit 104B from the memory 140, and sets the first generation value according to the read setting value.
  • Each of the first atomizing unit 104A and the second atomizing unit 104B is driven.
  • both the total aerosol amount p and flavor component amount q delivered to the mouthpiece member 108 change according to a user instruction to the user setting unit 150. Therefore, the flavor inhaler 100 can independently adjust the total aerosol amount p and the flavor component amount q provided to the user.
  • step S216 the controller 130 determines whether or not to continue the operation of the flavor inhaler 100 as described above, and returns to step S202 if the operation is to be continued.
  • step S210 the control unit 130 changes based on the formula (1) according to the flavor component amount q according to the user instruction.
  • the aerosol generation amount u of the first atomization unit 104A is determined.
  • step S212 the control unit 130 updates the set value of the aerosol generation amount of the first atomization unit 104A stored in the memory 140 with the new aerosol generation amount u determined in step S210.
  • step S214 the control unit 130 reads the set values of the aerosol generation amount u of the first atomization unit 104A and the aerosol generation amount v of the second atomization unit 104B from the memory 140, and sets the first generation value according to the read setting value.
  • Each of the first atomizing unit 104A and the second atomizing unit 104B is driven.
  • the total aerosol amount p also changes with the change in the aerosol generation amount u, and an instruction to change only the flavor component amount q is given to the user setting unit 150.
  • control unit 130 further changes the aerosol generation amount v of the second atomization unit 104B as an option based on the equation (2), and uses the second value in the memory 140 with the new value after the change. Control may be performed to update the set value of the aerosol generation amount of the conversion unit 104B. Thereby, the flavor component amount q provided to the user can be changed according to the user instruction to the user setting unit 150, while the total aerosol amount p provided to the user can be kept constant. Thereafter, in step S216, the controller 130 determines whether or not to continue the operation of the flavor inhaler 100 as described above, and returns to step S202 if the operation is to be continued.
  • step S206 when the new aerosol generation amount u and / or v is determined according to the user instruction via the user setting unit 150 in step S206, step S208, and step S210, the value of the aerosol generation amount in the memory 140 is determined by the value.
  • the set value is updated. Therefore, when returning to step S202 to continue the operation of the flavor inhaler 100 thereafter (that is, after any of step S206, step S208, or step S210 is performed), the total aerosol amount p and the flavor component amount q In the case where the user instruction for changing at least one of these is not input via the user setting unit 150 and the process proceeds to step S214, the setting value of the aerosol generation amount u and / or v updated immediately before is stored in the memory 140.
  • the first atomization unit 104A and the second atomization unit 104B are driven according to the new set value.
  • the flavor inhaler 100 is the user input last time until the next user instruction for changing at least one of the total aerosol amount p and the flavor component amount q is newly input via the user setting unit 150. It operates to provide the user with a fixed (constant) total aerosol amount p and flavor component amount q as instructed.
  • the determined aerosol generation amount u and / or v is The maximum amount of aerosol that can be generated by each of the atomizing units 104A and 104B (for example, the maximum limit determined by the heating capacity of the heater, the power that can be supplied from the battery, and the like) may be exceeded.
  • the control unit 130 notifies the user of an error, and prompts the user to input step S202 again and input appropriate total aerosol amount p and flavor component amount q. It is good as well.
  • the control unit 130 drives each heater at the maximum power amount W max similar to step S512 described later so that each of the atomizing units 104A and 104B generates the maximum aerosol amount. Good.
  • the control unit 130 When driving the first atomization unit 104A or the second atomization unit 104B in step S214, the control unit 130 changes the amount of electric power W supplied from the battery 114 to the heater of each atomization unit 104, thereby The aerosol generation amount of the atomization unit 104 is controlled to a desired value. This is usually based on the fact that the amount of aerosol produced is determined by the energy given to the aerosol source. For example, data indicating the relationship between the amount of power supplied to the heater of each atomizing unit 104 and the amount of aerosol generated from the aerosol source when the heater is heated with that amount of power (hereinafter referred to as aerosol generation amount characteristic data). ) Is stored in the memory 140 in advance.
  • the controller 130 refers to the aerosol generation amount characteristic data to acquire the heater supply power value corresponding to the set values of the aerosol generation amounts u and v, and supplies the heater 114 of each atomization unit 104 from the battery 114 to the heater.
  • the supplied power amount W is controlled to match the acquired value.
  • the power amount W may be changed by changing the power supply P to the heater in both the first atomization unit 104A and the second atomization unit 104B, or the first atomization unit 104A and the second atomization unit. In both 104B, the electric energy W may be changed by changing the energization time t to the heater.
  • the electric energy W is changed by changing one of the electric power P supplied to the heater and the energization time t in the first atomizing unit 104A, and the electric energy is changed by changing the other in the second atomizing unit 104B. W may be changed.
  • the first atomization unit 104A changes the amount of electric power W by changing the energization time t to the heater, and the second atomization unit 104B supplies power P (substantially to the heater).
  • the amount of power W is changed by changing the applied voltage V).
  • the variation due to the control error of the flavor component amount q provided to the user (as described above, this depends only on the aerosol generation amount u of the first atomization unit 104A) is changed from the variation of the total aerosol amount p. Can also be reduced.
  • the resistance value R 1 of the heater of the first atomizing unit 104A has a large value is selected than the resistance value R 2 of the heater of the second atomizing unit 104B.
  • the fluctuation range of the supplied power amount is larger than the fluctuation range of the supplied power amount to the heater of the first atomizing unit 104A, as described above. Therefore, the variation of the total aerosol amount p can be easily increased as compared with the variation of the flavor component amount q provided to the user.
  • FIG. 3A is a flowchart showing an operation example of the control unit 130 for driving the atomization unit 104 so that a desired aerosol generation amount is obtained.
  • the control based on this flowchart more specifically shows the process of step S214 in the flowchart of FIG. 2, and is applied to both the control of the first atomizing unit 104A and the control of the second atomizing unit 104B without distinction. Is done.
  • step S ⁇ b> 302 the control unit 130 determines the amount of power W to be supplied to the heater of the atomization unit 104 based on the set value of the aerosol generation amount read from the memory 140.
  • the control unit 130 refers to the aerosol generation amount characteristic data stored in advance in the memory 140, thereby obtaining (that is, determining) a heater supply power amount value corresponding to the set value of the aerosol generation amount.
  • step S304 the control unit 130 specifies the variable range t Range of the energization time t to the heater of the atomizing unit 104 or the variable range V Range of the applied voltage V.
  • data indicating the energization time variable range t Range and the applied voltage variable range V Range is stored in the memory 140 in advance, and the control unit 130 reads data indicating the variable range t Range or V Range from the memory 140.
  • the energizing time variable range t Range is, for example, a predetermined time period (for example, a range of 1.0 to 2.5 seconds) that is equal to or less than a time (for example, 3.0 seconds) that is normally assumed as one suction time of the user.
  • variable range t Range may be zero, and the energization time t to the heater may be fixed to a predetermined single value (for example, 2.0 seconds).
  • the variable range V Range of the applied voltage indicates that the applied voltage V to the heater can be changed within this range.
  • the variable range V Range can be set as appropriate according to the type of the battery 114. When a lithium ion battery, for example, is used as the battery 114, voltage control by a DC-DC converter or the like is used, for example, 3.2V. It may be set in the range of ⁇ 4.2V. Further, the variable range V Range can be realized by changing the duty ratio of the voltage V applied to the heater in a range of, for example, 20% to 100% by pulse width modulation (PWM) control. Note that step S304 may be performed before step S302.
  • PWM pulse width modulation
  • the energization time variable range t Range is provided as follows. That is, if the energization time t to the heater is less than the lower limit of the variable range t Range , even if the maximum voltage is applied to the heater, the heater is supplied before the desired power supply amount (determined in step S302) is obtained. However, the energization time t to the heater may be less than the lower limit of the variable range t Range. If it is above, there is no such fear, and it is possible to always achieve the desired power supply amount by selecting an appropriate applied voltage value.
  • the heater driving time may exceed the time normally assumed as one suction time of the user, so the user There is also a possibility that the user's inhalation may end before the delivery of the total aerosol amount or flavor component amount set by is completed.
  • the energization time t to the heater is below the upper limit of the variable range t Range , the user is prevented from feeling uncomfortable, and the set total aerosol amount or flavor component amount is delivered during the user's suction action. Can be completed.
  • the variable range V Range of the applied voltage is provided for the following reason.
  • the voltage V applied to the heater is below the lower limit of the variable range V Range , the amount of heat generated by the heater per unit time may be insufficient, and appropriate aerosol generation may be hindered. If the applied voltage V is higher than the lower limit of the variable range V Range , a sufficient amount of heat generation per unit time can be given to the heater, and aerosol generation can be performed appropriately. Further, if the voltage V applied to the heater exceeds the upper limit of the variable range V Range , there is a possibility that the desired power supply amount may be exceeded even if the energization time to the heater is set to the shortest time. If the applied voltage V to the heater is below the upper limit of the variable range V Range , the desired amount of supplied power can be achieved without fail by selecting an appropriate energization time.
  • a combination of t and V in which energization time t is included in variable range t Range (FIG. 4A), or t and V in which applied voltage V is included in variable range V Range .
  • a combination (FIG. 4B) is selected.
  • FIG. 4A is a diagram for explaining a method of determining the energization time t and the applied voltage V of the heater of the atomizing unit 104 when the energization time variable range t Range is set.
  • the applied voltage V is a parameter
  • the amount of power W supplied to the heater of the atomizing unit 104 is expressed by a linear function of the energization time t to the heater.
  • Heater power supply amount determined in step S302 (the W 1) is depicted by a horizontal line L in FIG. 4A.
  • the value that the energization time can take is not limited to the variable range t Range , it corresponds to an arbitrary point on the straight line L (for example, Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 ).
  • the combination of the energization time t and the applied voltage V can be used to achieve the amount of power W 1.
  • the control unit 130 since the energization time to the heater is limited to the variable range t Range , the control unit 130 includes points on the line segment delimited by the horizontal axis (energization time) range t Range in the straight line L (for example, Q range).
  • FIG. 4B is a diagram for explaining a method of determining the energization time t and the applied voltage V of the heater of the atomizing unit 104 when the applied voltage variable range V Range is set.
  • the amount of power W supplied to the heater of the atomizing unit 104 is expressed by a quadratic function of the voltage V applied to the heater.
  • the control unit 130 includes a line segment delimited by the horizontal axis (applied voltage) range V Range in the straight line L determined by the heater supply power amount (W 1 ) determined in step S302.
  • step S308 the control unit 130 drives the heater of the atomization unit 104 using the combination of the energization time t and the applied voltage V selected as described above. Thereby, the atomization part 104 can be controlled by the optimal combination of the energization time t and the applied voltage V.
  • FIG. 3B is a flowchart showing an example of control for driving the heater of the atomizing unit 104 according to the energization time t and the applied voltage V.
  • the control according to this flowchart more specifically represents, for example, the process of step S308 in the flowchart of FIG. 3A. Also, the control according to this flowchart can be similarly applied to heater drive control in step S510 and step S512 in the flowchart of FIG. 5 (control of the second mode) described later.
  • step S312 the control unit 130 determines whether or not the user's suction action is detected based on the output of the suction sensor 122. If the user's suction action is detected, the process proceeds to step S314, and if not detected, step S312 is repeated.
  • step S314 the control unit 130 starts supplying the applied voltage V (for example, the applied voltage selected in step S306 in the flowchart of FIG. 3A) to the heater and the energization time thereof. Start counting.
  • V the applied voltage selected in step S306 in the flowchart of FIG. 3A
  • step S3108 the control unit 130 determines that the power amount W actually supplied to the heater up to the current time calculated in step S316 is the energization time t (for example, the energization time selected in step S306 in the flowchart of FIG. 3A). And the heater supply power amount W 1 calculated based on the applied voltage V (for example, the power amount determined in step S302 in the flowchart of FIG. 3A) is determined. Instead of this determination, the control unit 130 may determine whether or not the energization time count value t C has reached the energization time t (the two determination methods are equivalent).
  • step S318 (if the count value t C of the energization time reaches the energization time t) actual when the supply power amount W exceeds the W 1 to the heater, the control unit 130 in step S320 Stop energizing the heater.
  • an appropriate aerosol amount determined by the energization time t and the applied voltage V is delivered to the user.
  • step S318 determines whether or not the actual supply power amount W may not exceed the W 1 to the heater. If the user's suction action continues, the process returns to step S316. When the user's suction action is not continued, the process proceeds to step S320, and the control unit 130 stops energizing the heater. Accordingly, when the user stops the suction action before the atomization unit 104 finishes generating the desired aerosol amount, the generation of the aerosol is stopped as intended by the user.
  • FIG. 5 is a flowchart showing the operation of the control unit 130 according to the control of the second mode.
  • the control in the second mode is an example of control in the case where one or both of the applied voltage V to the heater of the atomizing unit 104 and the energization time t are directly set via the user setting unit 150 as described above. Yes, it is applied to both the control of the first atomizing unit 104A and the control of the second atomizing unit 104B without distinction.
  • step S502 the control unit 130 drives the atomization unit 104 (the first atomization unit 104A or the second atomization unit 104B) under a predetermined fixed condition.
  • Step S502 represents an initial state of operation of the control unit 130.
  • an initial setting value W 0 of the amount of power to be supplied to the heater of the atomizing unit 104 at the start of the operation of the flavor inhaler 100 is stored in the memory 140 in advance.
  • the control unit 130 reads an initial setting value of the amount of power supplied to the heater from the memory 140, and drives the atomization unit 104 according to the value of the read power amount. To do.
  • step S504 the control unit 130 determines whether or not a user instruction for changing at least one of the voltage V applied to the heater of the atomizing unit 104 and the energization time t is input via the user setting unit 150. Determine. If there is such a user instruction input, the process proceeds to step S506, and if not, the process returns to step S502.
  • the other for example, the energization time
  • the set value currently used for driving the heater Is used.
  • step S508 the control unit 130 determines whether or not the heater supply power amount W calculated in step S506 exceeds a predetermined upper limit value Wmax .
  • the upper limit value W max represents the maximum amount of power that is allowed to be supplied to the heater of the atomizing unit 104. For example, if the upper limit value W max is supplied to the heater with an amount of electric power exceeding the upper limit value Wmax , the consumption rate of the aerosol source increases due to overheating of the heater, and the aerosol source is easily depleted, or desired from the aerosol source. It is the amount of power that can generate a substance that cannot be broken.
  • the upper limit value W max may be an amount of power (for example, the maximum value of the output of the drive circuit) determined by the restriction of the drive circuit that supplies power to the heater.
  • the upper limit value of the variable range of the aerosol generation amounts u and v of the first atomization unit 104A and the second atomization unit 104B described above is a value determined by the upper limit value Wmax of the heater power supply amount. If the calculated value W of the electric energy exceeds the upper limit value Wmax , the process proceeds to step S512, and if not, the process proceeds to step S510.
  • step S510 the control unit 130 drives the heater of the atomization unit 104 according to the applied voltage V and / or the energization time t according to the user instruction in step S504.
  • the amount of power supplied to the heater at this time is the amount of power equal to or lower than the upper limit value W max as calculated in step S506.
  • the aerosol generation amount of the atomization unit 104 can be changed in accordance with a user instruction to the user setting unit 150 that specifies at least one of the heater applied voltage and the energization time.
  • step S512 the control unit 130 corrects the applied voltage V and / or energization time t according to the user instruction in step S504 so that the amount of power supplied to the heater of the atomizing unit 104 is equal to the upper limit value Wmax.
  • the heater of the atomizing unit 104 is driven with the corrected applied voltage and energization time. Thereby, even if the user instruction input via the user setting unit 150 indicates a heater power supply amount larger than the upper limit value W max , the heater of the atomization unit 104 is just at the upper limit value W max . It is controlled to be driven by the amount of electric power, and an excessive amount of electric power can be prevented from being supplied to the heater.
  • control unit 130 notifies the user that the calculated electric energy value W in step S506 exceeds the upper limit value Wmax as an error, performs step S504 again, and performs an appropriate applied voltage V and energization time. The user may be prompted to input a value of t.
  • FIG. 6A is a diagram for explaining the amount of power supplied to the heater of the atomizing unit 104 when the user designates the energization time t through the user setting unit 150.
  • the user changes only the heater energization time t and does not change the applied voltage V in accordance with a user instruction to the user setting unit 150.
  • the heater of the atomization unit 104 is driven with the applied voltage V 0 and the energization time t 0 so that the electric power W 0 is supplied to the heater (point Q A ).
  • step S506 If the user increases the energization time to t 1 through the user setting unit 150 and the power amount calculation value W 1 in step S506 is equal to or less than the upper limit value W max at this time, as described in step S510, the atomization unit 104 The heater is driven at the energization time t 1 as instructed by the user with the applied voltage V 0 , and the amount of power supplied to the heater is W 1 (point Q B ). It is assumed that the user further increases the energization time to t 2 through the user setting unit 150, and as a result, the electric energy calculation value W 2 in step S506 exceeds the upper limit value W max (point Q C ).
  • the control unit 130 corrects the applied voltage and energization time of the heater so that the amount of power supplied to the heater becomes equal to the upper limit value Wmax .
  • the control unit 130 adopts the energization time t 2 instructed by the user as it is, while reducing the applied voltage to V 1 (point Q D ).
  • Control unit 130 drives the heater of the atomization unit 104 by applying voltages V 1 and current supply time t 2 corresponding to the point Q D. In this way, when the energization time t to the heater of the atomization unit 104 is directly set via the user setting unit 150, the heater is driven so that the amount of power supplied to the heater does not exceed the upper limit value Wmax. be able to.
  • FIG. 6B is a diagram for explaining the amount of power supplied to the heater of the atomization unit 104 when the user designates the applied voltage V through the user setting unit 150.
  • the heater of the atomizing unit 104 is driven with the applied voltage V 0 and the energization time t 0 so that the electric power W 0 is supplied to the heater (point S A ).
  • the user increases the applied voltage to V 1 through the user setting unit 150, the heater of the atomizing unit 104 is driven at the applied voltage V 1 and the energization time t 0 , and the amount of power supplied to the heater is W 1 (point S). B ).
  • the power amount calculation value W 2 in step S506 exceeds the upper limit value W max (point S C ).
  • the control unit 130 atomizes the application voltage V 2 according to the user instruction and the energization time t 1 shorter than the initial energization time t 0 so that the amount of power supplied to the heater becomes equal to the upper limit value W max.
  • the heater of the unit 104 is driven (point S D ). In this way, when the voltage V applied to the heater of the atomization unit 104 is directly set via the user setting unit 150, the heater is driven so that the amount of power supplied to the heater does not exceed the upper limit value Wmax. be able to.
  • FIG. 7 is a diagram for explaining a modified example of the control when the user specifies the applied voltage V through the user setting unit 150. Also in this example, control is performed in the same manner as in FIG. 6B until the calculated value of the amount of power supplied to the heater exceeds the upper limit value W max (point S A and point S B ). However, as shown in FIG. 7, the upper limit value W max in this example is set so as to decrease as the applied voltage V increases. When the user increases the applied voltage to V 2 through the user setting unit 150 and the electric energy calculation value W 2 in step S506 exceeds the upper limit value W max (point S C ), the control unit 130 supplies the electric energy supplied to the heater.
  • the control unit 130 decreases the amount of power supplied to the heater to an upper limit value W max that is smaller than the amount of power corresponding to the point SD in FIG. 6B (point S E ).
  • the control unit 130 gradually decreases the amount of power supplied to the heater as the applied voltage V increases. As the applied voltage V increases, the amount of heat generated by the heater per unit time increases. Therefore, by gradually decreasing the amount of power supplied to the heater as the applied voltage V increases, overheating can be made difficult to occur.
  • control based on the maximum power amount W max as shown in FIGS. 6A, 6B, and 7 can be similarly applied to the control of the first aspect described above. That is, when the aerosol generation amount u and / or v determined in step S206, step S208, or step S210 in FIG. 2 exceeds the maximum aerosol amount that can be generated by the atomization unit 104, the control unit 130 The atomization unit 104 may be controlled such that the amount of power supplied to the heater of the atomization unit 104 is limited to the upper limit value W max as shown in FIG. 6A, FIG. 6B, or FIG.
  • FIG. 8 is a flowchart showing the operation of the control unit 130 according to the control of the third aspect.
  • the control of the third aspect is an example of control for stopping energization to the atomization unit 104 in accordance with the energization time to the atomization unit 104 in one atomization operation.
  • step S802 the control unit 130 determines whether or not the energization time for the first atomizing unit 104A in one atomization operation has exceeded the first cutoff time.
  • the process proceeds to step S804, and when it does not exceed, the process proceeds to step S810.
  • step S804 the control unit 130 stops energization from the battery 114 to the first atomizing unit 104A.
  • the predetermined time first cut-off time
  • the generation of the aerosol from the first atomization unit 104A stops, and thereby the flavor source Generation of flavor components from 106 is also stopped. Therefore, it is possible to prevent a flavor component equal to or larger than a predetermined amount (flavor component amount q set through the user setting unit 150) from being provided to the user during one suction action of the user.
  • the control unit 130 determines whether or not the energization time for the second atomizing unit 104B in one atomization operation has exceeded the second cutoff time.
  • the second cut-off time is such that the amount of aerosol generated when the first atomization unit 104A is energized for the first cut-off time differs from the amount of aerosol generated when the second atomization unit 104B is energized for the second cut-off time. It's a length of time.
  • the second cutoff time is a time having a different length from the first cutoff time.
  • the second cutoff time is longer than the first cutoff time.
  • the amount of power supplied to the heater when the second cutoff time has elapsed corresponds to the above-described upper limit value Wmax .
  • step S808 the control unit 130 stops energization from the battery 114 to the second atomizing unit 104B. Thereby, when the user performs one suction action continuously for a longer time than the predetermined time (second cut-off time), in addition to the generation of the aerosol from the first atomization unit 104A, the second atomization unit The generation of aerosol from 104B is also stopped.
  • step S809 the control unit 130 resets the energization time of the first atomizing unit 104A and the second atomizing unit 104B, and then returns to step S802.
  • step S810 the control unit 130 determines based on the output of the suction sensor 122 whether or not the user's one suction action continues. When one suction action is continued, the process returns to step S802 to repeat the determination of the first cutoff time, and when one suction action is completed, the process proceeds to step S812.
  • step S812 the control unit 130 stops energization from the battery 114 to the first atomization unit 104A and the second atomization unit 104B, and sets the energization time of the first atomization unit 104A and the second atomization unit 104B. After resetting, the process returns to step S802.
  • step S814 the control unit 130 determines based on the output of the suction sensor 122 whether or not the user's one suction action continues. If one suction action continues, the process returns to step S806 to repeat the determination of the second cutoff time, and if one suction action ends, the process proceeds to step S816.
  • step S816 the control unit 130 stops energization from the battery 114 to the first atomization unit 104A and the second atomization unit 104B, and determines the energization time of the first atomization unit 104A and the second atomization unit 104B. After resetting, the process returns to step S802.
  • the control of the third aspect forcibly stops the energization of the atomizing unit 104 even when the user continues intentionally or unintentionally a single suction action for a predetermined time or more. Is done. Thereby, it is possible to prevent the total aerosol amount p and flavor component amount q delivered to the user from exceeding the set values input via the user setting unit 150, and to prevent overheating of the heater of the atomization unit 104, Generation of unwanted substances from aerosol sources can be suppressed.
  • FIG. 9 is a flowchart showing the operation of the control unit 130 according to the control of the fourth aspect.
  • the control of the fourth aspect is an example of controlling the operation of the first atomization unit 104A and / or the second atomization unit 104B according to the accumulated value of the aerosol generation amount of the first atomization unit 104A.
  • the control unit 130 calculates a cumulative value of the aerosol amount generated in the first atomization unit 104A.
  • the amount of aerosol produced depends on the energy given to the aerosol source. For example, data indicating the relationship between the amount of power supplied to the heater of the first atomization unit 104A and the amount of aerosol generated from the aerosol source when the heater is heated with the amount of power (aerosol generation amount characteristic data), Stored in the memory 140 in advance.
  • the aerosol generation amount value corresponding to each value is sequentially acquired from the memory 140 and added, so that the cumulative value of the aerosol amount generated in the first atomization unit 104A is estimated.
  • the control unit 130 observes the energization time of the heater instead of the amount of power supplied to the heater, and generates aerosol from the accumulated value of the energization time. It is good also as calculating
  • the cumulative value of the aerosol amount may be a cumulative value during one suction period, or may be a value obtained by accumulating the aerosol amount at each time over a plurality of suction periods.
  • step S904 the control unit 130 determines whether or not the cumulative value of the aerosol amount generated in the first atomization unit 104A exceeds a threshold value. If the accumulated value of the aerosol generation amount exceeds the threshold value, the process proceeds to step S906, and if not, the process returns to step S902.
  • the determination in this step S904 is, for example, 1) after the completion of one atomization operation, and 2) a predetermined time lag from when the user's suction action is detected by the suction sensor 122 until the atomization of the aerosol is started. It may be performed at any timing during the time 3) during the atomization operation (during the energization period of the heater).
  • step S906 the control unit 130 drives the first atomizing unit 104A so as to increase the aerosol generation amount of the first atomizing unit 104A. Specifically, the control unit 130 determines the amount of power supplied to the heater of the first atomization unit 140A to a value larger than the current value, and the first atomization is performed so that the determined amount of power is supplied to the heater. The unit 104A is driven.
  • the flavor source 106 may gradually decrease the flavor component release ability due to the aeration of the aerosol, but the control of this step S906 can compensate for the decrease in the amount of the flavor component released from the flavor source 106. Thereby, the flavor suction device 100 can suppress the influence by consumption of a flavor source, and can provide a fixed amount of flavor to a user.
  • step S908 the control unit 130 drives the second atomizing unit 104B so as to reduce the amount of aerosol generated by the second atomizing unit 104B. Specifically, the control unit 130 determines the amount of power supplied to the heater of the second atomization unit 140B to a value smaller than the current value, and the second atomization so that the determined amount of power is supplied to the heater. The unit 104B is driven. As described above, the amount of the flavor component provided to the user can be kept constant in the control in step S906, but the aerosol provided to the user due to the increase in the amount of aerosol generated by the first atomization unit 104A. At the same time, the total amount of the message increases regardless of the user's intention.
  • the amount of aerosol from the second atomization unit 104B is reduced by the control in step S908 so as to offset the increase in the amount of aerosol from the first atomization unit 104A.
  • the flavor suction device 100 can hold
  • flavor inhaler 102A first reservoir 102B second reservoir 104A first atomization unit 104B second atomization unit 106 flavor source 108 suction member 110A first aerosol channel 110B second aerosol channel 114 battery 116 air intake channel 118 Mixing chamber 122 Suction sensor 130 Control unit 140 Memory 150 User setting unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Nozzles (AREA)
  • Medicinal Preparation (AREA)

Abstract

吸引するエアロゾルと香味の量を互いに独立して制御する。 香味吸引器は、吸口と、エアロゾル源を霧化してエアロゾルを生成する第1霧化部と、前記第1霧化部と前記吸口との間に設けられた香味源と、前記第1霧化部において生成されたエアロゾルを、前記香味源を通って前記吸口へ導くように構成された第1流路と、エアロゾル源を霧化してエアロゾルを生成する第2霧化部と、前記第2霧化部において生成されたエアロゾルを、前記香味源を通らずに前記吸口へ導くように構成された第2流路と、前記第1霧化部と前記第2霧化部の少なくとも一方におけるエアロゾル生成量を変更可能な制御部と、を備える。

Description

香味吸引器
 本発明は、香味をエアロゾルに含ませて吸引するための香味吸引器に関する。
 従来、燃焼を伴わずに香味を吸引するタイプの香味吸引器が知られている。一例として、香味吸引器は、燃焼を伴わずにエアロゾル源を霧化する霧化ユニットと、霧化ユニットよりも吸口側に設けられる香味源とを有する(例えば特許文献1を参照)。
国際公開第2015/179388号
 特許文献1に記載された香味吸引器では、吸引するエアロゾルと香味の量を互いに独立して制御することはできなかった。
 本発明は、上記の点に鑑みてなされたものであり、その目的の1つは、吸引するエアロゾルと香味の量を互いに独立して制御することが可能な香味吸引器を提供することにある。
 上述した課題を解決するために、本発明の一態様は、吸口と、エアロゾル源を霧化してエアロゾルを生成する第1霧化部と、前記第1霧化部と前記吸口との間に設けられた香味源と、前記第1霧化部において生成されたエアロゾルを、前記香味源を通って前記吸口へ導くように構成された第1流路と、エアロゾル源を霧化してエアロゾルを生成する第2霧化部と、前記第2霧化部において生成されたエアロゾルを、前記香味源を通らずに前記吸口へ導くように構成された第2流路と、前記第1霧化部と前記第2霧化部の少なくとも一方におけるエアロゾル生成量を変更可能な制御部と、を備える香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部におけるエアロゾル生成量及び前記第2霧化部におけるエアロゾル生成量を独立に制御する、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記香味源は、前記第1霧化部におけるエアロゾル生成量に応じた量の香味成分を当該香味源を通るエアロゾルに付与し、前記制御部は、所与の量の前記香味成分が前記吸口へ送達されるように前記第1霧化部におけるエアロゾル生成量を制御する、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、エアロゾル生成量を設定するためのユーザ設定部を更に備え、前記制御部は、前記ユーザ設定部を介したユーザ指示に応じて前記第2霧化部におけるエアロゾル生成量を変化させる、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記ユーザ設定部を介して、前記吸口へ送達される総エアロゾル量と香味成分量の両方を変更するユーザ指示が入力された場合、当該ユーザ指示に応じて前記第1霧化部及び前記第2霧化部におけるエアロゾル生成量を変化させる、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記第1霧化部及び前記第2霧化部は、ヒータの加熱によって前記エアロゾル源を霧化するように構成され、前記第1霧化部のヒータの抵抗値は、前記第2霧化部のヒータの抵抗値よりも大きい、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部への連続通電時間が第1カットオフ時間を超えた時に前記第1霧化部への通電を停止し、前記第2霧化部への連続通電時間が第2カットオフ時間を超えた時に前記第2霧化部への通電を停止し、前記第1霧化部へ前記第1カットオフ時間通電した時のエアロゾル生成量と前記第2霧化部へ前記第2カットオフ時間通電した時のエアロゾル生成量が異なる、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記第1カットオフ時間は前記第2カットオフ時間と異なる長さである、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記第1カットオフ時間は前記第2カットオフ時間よりも短い、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部と前記第2霧化部の少なくとも一方におけるエアロゾル生成量の変更を、それぞれの霧化部への供給電力と通電時間のいずれか一方を変更することによって行う、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部と前記第2霧化部の少なくとも一方におけるエアロゾル生成量の変更を、それぞれの霧化部への供給電力と通電時間の両方を変更することによって行う、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部と前記第2霧化部の少なくとも一方におけるエアロゾル生成量を決定し、当該エアロゾル生成量に基づいて対応する霧化部へ供給すべき電力量を決定し、当該電力量を得るための当該霧化部への印加電圧と通電時間の複数の組み合わせの中から、所与の通電時間の可変範囲又は所与の印加電圧の可変範囲に含まれる組み合わせを選択し、当該選択された印加電圧と通電時間で前記対応する霧化部を駆動する、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部と前記第2霧化部の少なくとも一方におけるエアロゾル生成量を決定し、当該エアロゾル生成量に基づいて対応する霧化部へ供給すべき電力量を決定し、当該電力量を得るための当該霧化部への印加電圧を予め定められた固定の通電時間に基づいて決定し、当該決定された印加電圧と前記固定の通電時間で前記対応する霧化部を駆動する、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部と前記第2霧化部の少なくとも一方への印加電圧と通電時間の組み合わせを決定し、当該組み合わせに基づいて対応する霧化部へ供給される電力量を算出し、当該電力量の算出値が所与の上限値を超える場合には、前記上限値の電力量を満たす印加電圧と通電時間で前記対応する霧化部を駆動する、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記上限値は前記印加電圧が増加するのに応じて減少する、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部への通電時間を変更することによって前記第1霧化部におけるエアロゾル生成量を変更可能であり、前記第2霧化部への供給電力を変更することによって前記第2霧化部におけるエアロゾル生成量を変更可能である、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第2霧化部におけるエアロゾル生成量を変更可能であり、前記第2霧化部におけるエアロゾル生成量の可変範囲の上限値は、前記第1霧化部におけるエアロゾル生成量よりも大きく、前記第2霧化部におけるエアロゾル生成量の可変範囲の下限値は、前記第1霧化部におけるエアロゾル生成量よりも小さい、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部におけるエアロゾル生成量を変更可能であり、前記第1霧化部におけるエアロゾル生成量の可変範囲の下限値はゼロよりも大きい、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部及び前記第2霧化部の双方におけるエアロゾル生成量を変更可能であり、前記第1霧化部におけるエアロゾル生成量の可変範囲の幅は、前記第2霧化部におけるエアロゾル生成量の可変範囲の幅よりも狭い、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部及び前記第2霧化部の双方におけるエアロゾル生成量を変更可能であり、前記第1霧化部におけるエアロゾル生成量の可変範囲は、前記第2霧化部におけるエアロゾル生成量の可変範囲の下限値と上限値との間に含まれる、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1流路を通過した累積エアロゾル量に応じて、前記第1霧化部におけるエアロゾル生成量を増やすように前記第1霧化部へ供給する電力量を決定する、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1流路を通過した累積エアロゾル量に応じて、前記第2霧化部におけるエアロゾル生成量を減らすように前記第2霧化部へ供給する電力量を決定する、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記制御部は、前記第1霧化部へ供給した累積電力量から前記累積エアロゾル量を求める、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記第1流路を通ったエアロゾルと前記第2流路を通ったエアロゾルを混合するための混合チャンバを更に備え、前記混合チャンバが前記吸口に連通している、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記混合チャンバは、前記第1流路及び前記第2流路のいずれの断面積よりも大きな断面積を有する、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記第1流路と前記第2流路の少なくとも一方は、複数の流路を備える、香味吸引器である。
 また、本発明の他の一態様は、上記一態様において、前記第1流路と前記第2流路は、互いに並列に配置される、香味吸引器である。
 本発明によれば、吸引するエアロゾルと香味の量を互いに独立して制御することができる。
一実施形態に係る香味吸引器100の構成図である。 第1態様の制御に係る制御部130の動作を示すフローチャートである。 所望のエアロゾル生成量が得られるように霧化部104を駆動するための制御部130の動作例を示すフローチャートである。 通電時間tと印加電圧Vに従って霧化部104のヒータを駆動する制御の例を示すフローチャートである。 通電時間の可変範囲tRangeが設定されている場合に霧化部104のヒータの通電時間tと印加電圧Vを決定する方法を説明するための図である。 印加電圧の可変範囲VRangeが設定されている場合に霧化部104のヒータの通電時間tと印加電圧Vを決定する方法を説明するための図である。 第2態様の制御に係る制御部130の動作を示すフローチャートである。 ユーザがユーザ設定部150を通じて通電時間tを指定した場合に霧化部104のヒータへ供給される電力量を説明するための図である。 ユーザがユーザ設定部150を通じて印加電圧Vを指定した場合に霧化部104のヒータへ供給される電力量を説明するための図である。 ユーザがユーザ設定部150を通じて印加電圧Vを指定した場合における制御の変形例を説明するための図である。 第3態様の制御に係る制御部130の動作を示すフローチャートである。 第4態様の制御に係る制御部130の動作を示すフローチャートである。
 以下、図面を参照しながら本発明の実施形態について詳しく説明する。
 図1は、本発明の一実施形態に係る香味吸引器100の構成図である。図1は香味吸引器100が備える各エレメントを概略的且つ概念的に示すものであり、それら各エレメント及び香味吸引器100の厳密な配置、形状、寸法、位置関係等を示すのではないことに留意されたい。
 図1に示されるように、香味吸引器100は、リザーバ102(第1リザーバ102A及び第2リザーバ102B)、霧化部104(第1霧化部104A及び第2霧化部104B)、香味源106、吸口部材108、エアロゾル流路110(第1エアロゾル流路110A及び第2エアロゾル流路110B)、及び混合チャンバ118を備える。香味吸引器100のこれらのエレメントは、そのうちのいくつかをまとめて着脱可能に構成されたカートリッジとして設けられてもよい。例えば、香味源106のみを香味吸引器100本体に対して着脱可能なカートリッジとして構成してもよいし、霧化部104とリザーバ102をバッテリ114に対して着脱可能なカートリッジとして構成してもよいし、香味源106、リザーバ102、及び霧化部104を一体化したカートリッジをバッテリ114に対して着脱可能に設けてもよい。
 リザーバ102(第1リザーバ102A及び第2リザーバ102B)は、エアロゾル源を保持する。例えば、リザーバ102は、繊維状又は多孔質性の素材から構成され、繊維間の隙間や多孔質材料の細孔に液体としてのエアロゾル源を保持する。あるいはまた、リザーバ102は、液体を流動可能な状態で収容するタンクとして構成されてもよい。エアロゾル源は、例えば、グリセリンやプロピレングリコールなどの液体である。リザーバ102は、エアロゾル源を補充可能な構成、又はエアロゾル源が消耗した際にリザーバ自体を交換可能な構成を有する。
 霧化部104(第1霧化部104A及び第2霧化部104B)は、エアロゾル源を霧化してエアロゾルを生成するように構成される。各霧化部104は、吸引センサ122(例えば、空気取込流路116若しくはエアロゾル流路110の圧力変動を検知する圧力センサ、又はユーザが操作可能な操作ボタン)によってユーザの吸引行為が検知されると、エアロゾルを生成する。例えば、不図示のウィックが、第1リザーバ102Aと第1霧化部104Aを連結するように設けられる。ウィックの一部は第1リザーバ102Aの内部に通じ、エアロゾル源と接触している。ウィックの他の一部は第1霧化部104Aへ延びている。エアロゾル源は、ウィックの毛細管効果によって第1リザーバ102Aから第1霧化部104Aへと運ばれる。同様に、不図示の別のウィックが、第2リザーバ102Bと第2霧化部104Bを連結するように設けられる。各霧化部104は、一例として、バッテリ114に電気的に接続されたヒータを備える。各霧化部104のヒータは、当該霧化部104のウィックと接触するように配置され、ウィックを通じて輸送されたエアロゾル源を加熱することによって霧化する。霧化部104の別の例は、エアロゾル源を超音波振動によって霧化する超音波式霧化器であってもよい。各霧化部104には空気取込流路116が接続され、空気取込流路116は香味吸引器100の外部へ通じている。第1霧化部104Aと第2霧化部104Bにおいて生成されたエアロゾルは、空気取込流路116を介して取り込まれた空気と混合されて、それぞれ第1エアロゾル流路110A及び第2エアロゾル流路110Bへと送り出される。
 香味源106は、エアロゾルに香味を付与するためのユニットである。香味源106は、第1エアロゾル流路110Aの途中に配置される。第1霧化部104Aで生成されたエアロゾルと空気との混合流体(以下、混合流体を単にエアロゾルと呼称する場合もあることに留意されたい)は、ユーザの吸引行為により第1エアロゾル流路110Aを通って吸口(吸口部材108)の側へ流れていく。即ち、香味源106は、エアロゾルの流れにおいて第1霧化部104Aよりも下流に設けられている。換言すれば、第1霧化部104Aよりも香味源106の方が、エアロゾル流路110の中で吸口に近い側に位置する。このように、第1霧化部104Aで生成されたエアロゾルは、香味源106を通過してから吸口へと達する。エアロゾルが香味源106を通過する際、香味源106からの香味成分が、エアロゾルに付与される。香味源106は、例えば、刻みたばこや、たばこ原料を粒状、シート状、若しくは粉末状に成形した加工物などの、たばこ由来のもの、又は、たばこ以外の植物(例えばミントやハーブ等)から作られた非たばこ由来のものであってよい。一例として、香味源106は、ニコチン成分を含む。香味源106は、メントールなどの香料成分を含有してもよい。なお、香味源106に加えて、リザーバ102(第1リザーバ102Aと第2リザーバ102Bの一方又は両方)も香味成分を含んだ物質を有していてよい。例えば、香味吸引器100は、香味源106にたばこ由来の香味物質を保持し、各リザーバ102には非たばこ由来の香味物質を含むように構成されてもよい。
 エアロゾル流路110は、各霧化部104において生成されたエアロゾルと空気との混合流体を混合チャンバ118まで輸送するための管状構造である。図1に示されるように、エアロゾル流路110は、第1エアロゾル流路110Aと第2エアロゾル流路110Bとを含む。第1エアロゾル流路110Aは、第1霧化部104Aと混合チャンバ118の間を連結し、第2エアロゾル流路110Bは、第2霧化部104Bと混合チャンバ118の間を連結する。図示されているように、第1エアロゾル流路110Aと第2エアロゾル流路110Bは、互いに並列に配置されている。第1エアロゾル流路110Aと第2エアロゾル流路110Bの少なくとも一方は、複数の流路から構成されてもよい。上述したように、第1エアロゾル流路110Aの途上には、香味源106が設けられる。即ち、第1エアロゾル流路110Aは、香味源106を介して、第1霧化部104Aと混合チャンバ118の間を連結している。したがって、第1霧化部104Aで生成されたエアロゾルは、空気と共に第1エアロゾル流路110Aへ送り出され、香味源106を通過して香味成分を付与された後、混合チャンバ118へと運ばれる。一方、第2エアロゾル流路110Bは、第2霧化部104Bと混合チャンバ118との間を、香味源106を介さずダイレクトに連結している。そのため、第2霧化部104Bで生成されて第2エアロゾル流路110Bへ送り出されたエアロゾルは、香味源106を通過することなく、したがって香味源106に含まれる香味成分を付与されることなく混合チャンバ118へと運ばれる。なお、香味源106とは別の香味源(例えば、香味源106とは異なる香味成分をエアロゾルに付与することができる香味源)が、第2エアロゾル流路110Bに付加的に設けられてもよい。
 混合チャンバ118は、第1エアロゾル流路110Aと第2エアロゾル流路110Bの終端(下流端)に位置し、各エアロゾル流路110A、110Bを通って運ばれてきたエアロゾルを混合する。エアロゾルの混合を促進するために、混合チャンバ118は、第1エアロゾル流路110Aの流路断面積、及び第2エアロゾル流路110Bの流路断面積よりも大きな流路断面積を有するように構成される。なお、流路断面積は、エアロゾルの流れの方向(図1中に示す矢印u、vの方向)に垂直な断面によるエアロゾル流路の断面積を意味するものとする。
 吸口部材108は、混合チャンバ118の下流側に接続され、混合チャンバ118内のエアロゾルを香味吸引器100の外部に対して開放するように構成された部材である。ユーザは、吸口部材108を咥えて吸引することで、エアロゾルを含んだ空気を口腔内へ取り込む。このように、第1エアロゾル流路110Aからのエアロゾルと第2エアロゾル流路110Bからのエアロゾルは、混合チャンバ118において合流し、吸口部材108からユーザに吸入される。
 本実施形態に係る香味吸引器100は、更に、制御部130と、メモリ140と、ユーザ設定部150とを備える。制御部130は、マイクロプロセッサ又はマイクロコンピュータとして構成された電子回路モジュールであり、メモリ140に格納されたコンピュータ実行可能命令に従って香味吸引器100の動作を制御するようにプログラムされる。メモリ140は、ROM、RAM、フラッシュメモリなどの情報記憶媒体である。メモリ140には、コンピュータ実行可能命令のほか、香味吸引器100の制御に必要な設定データが格納される。
 ユーザ設定部150は、霧化部104において生成されるエアロゾル量(以下、エアロゾル生成量と称する)をユーザが設定することを可能にする。ユーザ設定部150は、例えば、ユーザが物理的に操作することが可能なボタン、スイッチ、ツマミ等として構成される。別の例として、ユーザ設定部150は、外部のコンピュータとの通信接続を介してユーザからの指示を受け取る通信インターフェイス(例えばUSB端子や無線インターフェイス)として構成されてもよい。
 ユーザは、ユーザ設定部150を介して、例えば、第1霧化部104Aにおけるエアロゾル生成量uと第2霧化部104Bにおけるエアロゾル生成量vを個別に設定することができる。ユーザ設定部150を通じたユーザ操作により第1霧化部104Aのエアロゾル生成量uが設定された場合、制御部130は、その設定に従って第1霧化部104Aが動作するよう第1霧化部104Aを制御する。同様に、ユーザ設定部150を通じたユーザ操作により第2霧化部104Bのエアロゾル生成量vが設定された場合、制御部130は、その設定に従って第2霧化部104Bが動作するよう第2霧化部104Bを制御する。ユーザ設定部150に対する設定は、第1霧化部104Aのエアロゾル生成量uと第2霧化部104Bのエアロゾル生成量vのいずれか一方に対する設定であってもよいし、両方を同時に変更するための設定であってもよい。
 このようにユーザは、第1霧化部104Aのエアロゾル生成量と第2霧化部104Bのエアロゾル生成量を任意に変更することができる。第1霧化部104Aのエアロゾル生成量と第2霧化部104Bのエアロゾル生成量は、それぞれ予め決められたある範囲(可変範囲)内において変更可能である。一例として、第2霧化部104Bのエアロゾル生成量が可変且つ第1霧化部104Aのエアロゾル生成量が固定であってよく、第2霧化部104Bのエアロゾル生成量の可変範囲は、上限値が第1霧化部104Aのエアロゾル生成量(固定値)よりも大きい値に設定され、下限値が第1霧化部104Aの当該エアロゾル生成量(固定値)よりも小さい値に設定される。即ち、第2霧化部104Bのエアロゾル生成量は、第1霧化部104Aのエアロゾル生成量よりも広い範囲で変更可能である。これにより、ユーザに提供されるエアロゾルの総量を広い範囲で変更することができる。また、第1霧化部104Aのエアロゾル生成量が可変であってもよく、第1霧化部104Aのエアロゾル生成量の可変範囲は、下限値がゼロよりも大きい値に設定される。即ち、第1霧化部104Aからは常にゼロではない所定量のエアロゾルが生成され、したがって、このエアロゾルが香味源106へ通気されることにより、常にゼロではない所定量の香味成分がユーザに提供される。また別の例として、第1霧化部104Aのエアロゾル生成量と第2霧化部104Bのエアロゾル生成量が共に可変であってもよく、第1霧化部104Aのエアロゾル生成量の可変範囲の幅は、第2霧化部104Bのエアロゾル生成量の可変範囲の幅よりも狭く設定されるか、あるいは、第1霧化部104Aのエアロゾル生成量の可変範囲は、第2霧化部104Bのエアロゾル生成量の可変範囲の下限値と上限値の間に含まれるように設定される。これにより、ユーザに提供される香味成分の量を大きく変化させることなく、ユーザに提供されるエアロゾルの総量を広い範囲で変更することができる。
 上記のように第1霧化部104Aのエアロゾル生成量uと第2霧化部104Bのエアロゾル生成量vを個別に設定することに代えて、ユーザは、吸入する(即ち吸口部材108へ送達される)エアロゾルの総量pと、吸入するエアロゾルに含まれる香味源106からの香味成分量q(以下、単に香味成分量と記す)の一方又は両方を、ユーザ設定部150を介して設定することもできる。吸口部材108へ送達される総エアロゾル量pは、第1霧化部104Aと第2霧化部104Bの両方において生成されるエアロゾル量の和u+vに等しい。また前述したように、吸口部材108へ送達されたエアロゾルに含まれる香味源106からの香味成分は、第1霧化部104Aからのエアロゾルが香味源106に通気されることによるものであるから、その量(香味成分量q)は、第1霧化部104Aのエアロゾル生成量uにのみ依存する。即ち香味成分量qは、第1霧化部104Aのエアロゾル生成量uの関数としてq=f(u)と表すことができる(なお、関数fは、エアロゾルの通気によって徐々に香味源106からの香味成分の放出能力が低下する効果を加味したものであってもよい)。そのため、吸口部材108へ送達される総エアロゾル量pと香味成分量qの組が与えられると、第1霧化部104Aのエアロゾル生成量uと第2霧化部104Bのエアロゾル生成量vの組が次式(1)及び(2)のように一意に決まる。
    (1)  u=f-1(q)
    (2)  v=p-f-1(q)
 したがって、例えば、ユーザ設定部150を通じたユーザ操作により吸口部材108への総エアロゾル量pと香味成分量qの両方が設定された場合、制御部130は、式(1)及び(2)に従って、それら設定値から第1霧化部104Aと第2霧化部104Bのそれぞれのエアロゾル生成量u及びvを決定し、決定した値に従って第1霧化部104A及び第2霧化部104Bがそれぞれ動作するよう第1霧化部104Aと第2霧化部104Bを制御する。また例えば、ユーザ設定部150を通じたユーザ操作により香味成分量qのみを変更する設定がなされた場合には、制御部130は、式(1)に従って、その変更に応じた量だけ第1霧化部104Aのエアロゾル生成量uが変化するように第1霧化部104Aを制御すると共に、式(2)に従って、第1霧化部104Aのエアロゾル生成量uの変化に合わせて第2霧化部104Bのエアロゾル生成量vが変化するように(エアロゾル生成量vの変化によってエアロゾル生成量uの変化を相殺するように)第2霧化部104Bを制御する。更に、別の例として、ユーザ設定部150を通じたユーザ操作により総エアロゾル量pのみを変更する設定がなされた場合には、制御部130は、式(2)に従って、その変更量分だけ第2霧化部104Bのエアロゾル生成量vを変化させるよう第2霧化部104Bを制御する。これらの制御の詳細については、以下に説明する第1態様の制御を参照されたい。
 更に別の例として、上記のように第1霧化部104Aのエアロゾル生成量uと第2霧化部104Bのエアロゾル生成量vを設定したり、吸入する総エアロゾル量pと香味成分量qを設定したりすることに代えて、ユーザは、霧化部104のヒータへ印加する電圧Vとその通電時間tの一方又は両方を、ユーザ設定部150を介して直接的に設定してもよい。印加電圧Vと通電時間tの両方を設定する場合、それらを個別に設定するのではなく、霧化部104のヒータへの供給電力量W(=(V/R)×t)を直接的に設定するのであってもよい。但しRはヒータの抵抗値である。ユーザ設定部150を通じたユーザ操作により霧化部104(第1霧化部104A又は第2霧化部104B)のヒータへの印加電圧Vと通電時間tのいずれかが設定された場合、制御部130は、その設定に基づいて、当該霧化部104を制御する。この例の制御の詳細については、後述する第2態様の制御を参照されたい。
 このように、ユーザはいくつかの異なる方法で、ユーザ設定部150に対する設定を行うことができ、制御部130は、いずれの場合においても、ユーザからの設定に応じて、第1霧化部104Aのエアロゾル生成量uと第2霧化部104Bのエアロゾル生成量vを独立に制御する。以下、制御部130による制御の例を詳しく説明する。
<第1態様の制御>
 図2は、第1態様の制御に係る制御部130の動作を示すフローチャートである。第1態様の制御は、ユーザ設定部150を介して総エアロゾル量pと香味成分量qの一方又は両方が設定された場合の制御の例である。
 まずステップS202において、制御部130は、ユーザ設定部150を介して総エアロゾル量pと香味成分量qの少なくとも一方を変更するためのユーザ指示が入力されたか否かを判定する。総エアロゾル量pと香味成分量qは、香味吸引器100が生成するエアロゾルの総量と香味成分の量の目標値を示す。
 ユーザ設定部150を介して総エアロゾル量pと香味成分量qの少なくとも一方を変更するためのユーザ指示が入力されない場合、ステップS214へ進む。ステップS214において、制御部130は、メモリ140から第1霧化部104Aのエアロゾル生成量uと第2霧化部104Bのエアロゾル生成量vの各設定値を読み出し、読み出した設定値に従って第1霧化部104A及び第2霧化部104Bをそれぞれ駆動する。例えば、香味吸引器100の動作開始時に用いられるべき第1霧化部104Aと第2霧化部104Bの各エアロゾル生成量の初期設定値が、メモリ140に予め格納されている。香味吸引器100の動作が開始して最初にユーザ指示が入力されるまでは、制御部130は、メモリ140からこれらエアロゾル生成量の初期設定値を読み出して、第1霧化部104Aと第2霧化部104Bを駆動する。これにより、香味吸引器100は、ユーザの1回の吸引行為に対応する1回分の霧化動作として、エアロゾル生成量の初期設定値と式(1)及び(2)の関係で対応付けられた固定の(一定の)総エアロゾル量pと香味成分量qをユーザに提供するように動作を行う。制御部130はその後、ステップS216において、香味吸引器100の動作を継続する(ユーザの次の吸引行為に対応する次回分の霧化動作を行う)かどうかを判定し、動作を継続する場合はステップS202へ戻る。例えば、制御部130は、吸引センサ(圧力センサ)122の検出値が所定の閾値を下回っている場合、ユーザが次の吸引行為を行おうとしていると判断することができ、ステップS202からの処理を繰り返す。なお、ステップS216は任意のステップであり、省略されてもよい。
 一方ステップS202において、ユーザ設定部150を介して総エアロゾル量pと香味成分量qの少なくとも一方を変更するためのユーザ指示が入力されたとの判定がなされた場合には、ステップS204へ進み、制御部130は、ユーザ設定部150を介して入力されたユーザ指示が、総エアロゾル量pだけを変更する指示であるか、香味成分量qだけを変更する指示であるか、又は総エアロゾル量pと香味成分量qの両方を変更する指示であるかを判定する。ユーザ指示が総エアロゾル量pだけを変更する指示である場合、ステップS206へ進み、総エアロゾル量pと香味成分量qの両方を変更する指示である場合、ステップS208へ進み、香味成分量qだけを変更する指示である場合、ステップS210へ進む。本ステップS204の判定は、例えば、1)制御部130がユーザ指示の入力を検知した時、2)1回の霧化動作が終了した後、3)吸引センサ122によってユーザの吸引行為が検知されてからエアロゾルの霧化が開始されるまでの所定のタイムラグ時間の間、4)霧化動作中(ヒータへの通電期間中)、のいずれのタイミングで行ってもよい。
 ステップS204の判定の結果、ユーザ指示が総エアロゾル量pだけを変更する指示である場合、ステップS206において、制御部130は、ユーザ指示に係る総エアロゾル量pに従って、式(2)に基づき変更後の第2霧化部104Bのエアロゾル生成量vを決定する。次いで制御部130は、ステップS212において、メモリ140に格納されている第2霧化部104Bのエアロゾル生成量の設定値を、ステップS206で決定した新たなエアロゾル生成量vの値で更新する。更に、制御部130は、ステップS214において、メモリ140から第1霧化部104Aのエアロゾル生成量uと第2霧化部104Bのエアロゾル生成量vの各設定値を読み出し、読み出した設定値に従って第1霧化部104A及び第2霧化部104Bをそれぞれ駆動する。より具体的には、制御部130は、ステップS206で決定された新たなエアロゾル生成量vの設定値に従って第2霧化部104Bを駆動する一方、ユーザ指示に香味成分量qの変更が含まれないため式(1)の関係から同一値に維持される第1霧化部104Aのエアロゾル生成量uに従って、第1霧化部104Aを駆動する。これにより、吸口部材108へ送達される総エアロゾル量pが、ユーザ設定部150へのユーザ指示に応じて変化する一方、吸口部材108へ送達される香味成分量qは、一定に保持される。したがって、香味吸引器100は、ユーザに提供される香味成分量qを一定に保持しつつ総エアロゾル量pを可変にすることができる。制御部130はその後、ステップS216において、前述したように香味吸引器100の動作を継続するかどうかを判定し、動作を継続する場合はステップS202へ戻る。
 ステップS204の判定の結果、ユーザ指示が総エアロゾル量pと香味成分量qの両方を変更する指示である場合、ステップS208において、制御部130は、ユーザ指示に係る総エアロゾル量pと香味成分量qに従って、式(1)及び(2)に基づき変更後の第1霧化部104Aのエアロゾル生成量uと第2霧化部104Bのエアロゾル生成量vを決定する。次いで制御部130は、ステップS212において、メモリ140に格納されている第1霧化部104Aと第2霧化部104Bの各エアロゾル生成量の設定値を、ステップS208で決定した新たなエアロゾル生成量u、vの値でそれぞれ更新する。更に、制御部130は、ステップS214において、メモリ140から第1霧化部104Aのエアロゾル生成量uと第2霧化部104Bのエアロゾル生成量vの各設定値を読み出し、読み出した設定値に従って第1霧化部104A及び第2霧化部104Bをそれぞれ駆動する。これにより、吸口部材108へ送達される総エアロゾル量pと香味成分量qの両方が、ユーザ設定部150へのユーザ指示に応じて変化する。したがって、香味吸引器100は、ユーザに提供される総エアロゾル量pと香味成分量qを独立に調節することができる。制御部130はその後、ステップS216において、前述したように香味吸引器100の動作を継続するかどうかを判定し、動作を継続する場合はステップS202へ戻る。
 ステップS204の判定の結果、ユーザ指示が香味成分量qだけを変更する指示である場合、ステップS210において、制御部130は、ユーザ指示に係る香味成分量qに従って、式(1)に基づき変更後の第1霧化部104Aのエアロゾル生成量uを決定する。次いで制御部130は、ステップS212において、メモリ140に格納されている第1霧化部104Aのエアロゾル生成量の設定値を、ステップS210で決定した新たなエアロゾル生成量uの値で更新する。更に、制御部130は、ステップS214において、メモリ140から第1霧化部104Aのエアロゾル生成量uと第2霧化部104Bのエアロゾル生成量vの各設定値を読み出し、読み出した設定値に従って第1霧化部104A及び第2霧化部104Bをそれぞれ駆動する。このように第1霧化部104Aの動作条件のみを変更した場合、エアロゾル生成量uの変化に伴って総エアロゾル量pも変化し、ユーザ設定部150に香味成分量qだけを変更する指示を入力したにもかかわらず、吸入したエアロゾルの総量pに意図しない変化が生じるという違和感をユーザに与える可能性がある。これを回避するため、制御部130は、オプションとして更に、式(2)に基づき第2霧化部104Bのエアロゾル生成量vを変更し、変更後の新たな値でメモリ140内の第2霧化部104Bのエアロゾル生成量の設定値を更新する制御をしてもよい。これにより、ユーザに提供される香味成分量qをユーザ設定部150へのユーザ指示に応じて変化させることができる一方、ユーザに提供される総エアロゾル量pを一定に保持することができる。制御部130はその後、ステップS216において、前述したように香味吸引器100の動作を継続するかどうかを判定し、動作を継続する場合はステップS202へ戻る。
 このようにステップS206、ステップS208、及びステップS210においてユーザ設定部150を介したユーザ指示に従い新たなエアロゾル生成量u及び/又はvが決定されると、その値によってメモリ140内のエアロゾル生成量の設定値が更新される。したがって、その後(即ちステップS206、ステップS208、又はステップS210のいずれかが実施された後)香味吸引器100の動作を継続するためにステップS202へ戻った時に、総エアロゾル量pと香味成分量qの少なくとも一方を変更するためのユーザ指示がユーザ設定部150を介して入力されないことによりステップS214へ進んだ場合には、直前に更新されたエアロゾル生成量u及び/又はvの設定値がメモリ140から読み出されて、その新たな設定値に従って、第1霧化部104Aと第2霧化部104Bがそれぞれ駆動される。これにより、香味吸引器100は、ユーザ設定部150を介して総エアロゾル量pと香味成分量qの少なくとも一方を変更するための次のユーザ指示が新たに入力されるまで、前回入力されたユーザ指示による固定の(一定の)総エアロゾル量pと香味成分量qをユーザに提供するように動作する。
 なお、ステップS206、ステップS208、及びステップS210においてユーザ設定部150を介したユーザ指示に従い新たなエアロゾル生成量u及び/又はvを決定した際に、決定されたエアロゾル生成量u及び/又はvが、各霧化部104A、104Bによって生成することが可能な最大の(例えば、ヒータの加熱能力や、バッテリから供給可能な電力等によって決まる最大限度の)エアロゾル量を超えていることがあり得る。そのような場合には、制御部130は、例えば、ユーザに対してエラーを通知し、再度ステップS202を実施して適切な総エアロゾル量pと香味成分量qの値を入力するようユーザに促すこととしてもよい。あるいはまた、制御部130は、各霧化部104A、104Bが当該最大のエアロゾル量を生成するように、それぞれのヒータを後述するステップS512と同様の最大電力量Wmaxで駆動するのであってもよい。
 制御部130は、ステップS214において第1霧化部104A又は第2霧化部104Bを駆動するに当たり、バッテリ114から各霧化部104のヒータへ供給される電力量Wを変化させることで、各霧化部104のエアロゾル生成量を所望の値に制御する。これは、通常、エアロゾルの生成量は、エアロゾル源に与えられるエネルギーによって決まることに基づく。例えば、各霧化部104のヒータへの供給電力量と、その電力量でヒータが加熱された場合にエアロゾル源から発生するエアロゾル量との関係を示すデータ(以下、エアロゾル生成量特性データと称する)が、メモリ140に予め格納される。制御部130は、エアロゾル生成量特性データを参照することにより、エアロゾル生成量u及びvの設定値に対応するヒータ供給電力量の値を取得し、バッテリ114から各霧化部104のヒータへの供給電力量Wを、その取得した値に一致するよう制御する。
 制御部130は、霧化部104のヒータへ供給される電力量W(=電力P×通電時間t)を制御するために、ヒータへの供給電力Pと通電時間tのいずれか一方のみを変更(他方は固定)してもよいし、あるいは供給電力Pと通電時間tの両方を同時に変更してもよい。また、第1霧化部104Aと第2霧化部104Bの両方においてヒータへの供給電力Pの変更によって電力量Wを変化させてもよいし、第1霧化部104Aと第2霧化部104Bの両方においてヒータへの通電時間tの変更によって電力量Wを変化させてもよい。更に、第1霧化部104Aにおいてヒータへの供給電力Pと通電時間tのうちの一方を変更することによって電力量Wを変化させ、第2霧化部104Bにおいて他方を変更することによって電力量Wを変化させるのであってもよい。
 好ましい例は、第1霧化部104Aにおいてはヒータへの通電時間tの変更によって電力量Wを変化させ、第2霧化部104Bにおいてはヒータへの供給電力P(実質的にはヒータへの印加電圧V)の変更によって電力量Wを変化させることである。この場合、ヒータを駆動する際に通電時間tと印加電圧Vが同程度の制御誤差(目標値からのずれ)を有しているものと仮定すれば、W=P×t=(V/R)×tの関係(但しRはヒータの抵抗値)よりWはVの二乗に比例しtに比例することから、第1霧化部104Aのヒータへの供給電力量の変動(即ち第1霧化部104Aのエアロゾル生成量の変動)は、第2霧化部104Bのヒータへの供給電力量の変動(即ち第2霧化部104Bのエアロゾル生成量の変動)よりも小さくなる。したがって、ユーザに提供される香味成分量q(前述したようにこれは第1霧化部104Aのエアロゾル生成量uにのみ依存する)の制御誤差に起因する変動を、総エアロゾル量pの変動よりも小さくすることができる。
 なお、上記と同様の理由から、好ましくは、第1霧化部104Aのヒータの抵抗値Rは、第2霧化部104Bのヒータの抵抗値Rよりも大きな値が選択される。この場合、W=(V/R)×tの関係よりWはRに反比例するから、印加電圧Vと通電時間tの可変範囲が同程度であれば、第2霧化部104Bのヒータへの供給電力量の変動幅は、上記と同様に、第1霧化部104Aのヒータへの供給電力量の変動幅よりも大きくなる。したがって、ユーザに提供される香味成分量qの変動に比べて総エアロゾル量pの変動を容易に大きくすることができる。
 図3Aは、所望のエアロゾル生成量が得られるように霧化部104を駆動するための制御部130の動作例を示すフローチャートである。このフローチャートに基づく制御は、図2のフローチャートにおけるステップS214の処理をより具体的に示すものであり、第1霧化部104Aの制御と第2霧化部104Bの制御のいずれにも区別なく適用される。
 まずステップS302において、制御部130は、メモリ140から読み出したエアロゾル生成量の設定値に基づいて、霧化部104のヒータへ供給すべき電力量Wを決定する。例えば、制御部130は、メモリ140に予め格納されているエアロゾル生成量特性データを参照することにより、エアロゾル生成量の設定値に対応するヒータ供給電力量の値を取得(即ち決定)する。
 次にステップS304において、制御部130は、霧化部104のヒータへの通電時間tの可変範囲tRange、又は印加電圧Vの可変範囲VRangeを特定する。例えば、予めメモリ140に通電時間の可変範囲tRangeと印加電圧の可変範囲VRangeを示すデータが格納されており、制御部130はメモリ140から可変範囲tRange又はVRangeを示すデータを読み出す。通電時間の可変範囲tRangeは、例えばユーザの1回の吸引時間として通常想定される時間(例えば3.0秒)以下の所定範囲の時間期間(例えば1.0~2.5秒の範囲)であり、この範囲内でヒータへの通電時間tを変更することが許容されていることを示す。別の例として、可変範囲tRangeの幅がゼロであり、ヒータへの通電時間tが予め定められた単一値(例えば2.0秒)に固定されているのであってもよい。同様に、印加電圧の可変範囲VRangeは、この範囲内でヒータへの印加電圧Vを変更可能であることを示す。可変範囲VRangeはバッテリ114の種類等に応じて適宜設定することが可能であり、バッテリ114として例えばリチウムイオン電池を採用した場合、DC-DCコンバータ等による電圧制御を用いて、例えば3.2V~4.2Vの範囲に設定してもよい。また、パルス幅変調(PWM)制御によってヒータへの印加電圧Vのデューティ比を例えば20%~100%の範囲で変更することで、可変範囲VRangeを実現することもできる。なおステップS304はステップS302の前に実施してもよい。
 なお、通電時間の可変範囲tRangeを設けるのは次の理由による。即ち、もしヒータへの通電時間tが可変範囲tRangeの下限を下回っていると、たとえヒータへ最大電圧を印加したとしても所望の(ステップS302で決定した)供給電力量が得られる前にヒータへの通電が終了してしまい、吸引時間の大部分において空気のみが送達されることになってユーザに違和感を与えるおそれがあるが、ヒータへの通電時間tが可変範囲tRangeの下限よりも上にあれば、そのようなおそれはなく、適当な印加電圧値を選択することで必ず当該所望の供給電力量を達成可能である。また、もしヒータへの通電時間tが可変範囲tRangeの上限を上回っていると、ヒータの駆動時間がユーザの1回の吸引時間として通常想定される時間を超過する可能性があるため、ユーザが設定した総エアロゾル量又は香味成分量の送達が完了する前にユーザの吸引が終了してしまうおそれもある。しかしながら、ヒータへの通電時間tが可変範囲tRangeの上限よりも下にあれば、ユーザへの違和感を防止し、またユーザの吸引行為中に当該設定された総エアロゾル量又は香味成分量の送達を完了可能である。同様に、印加電圧の可変範囲VRangeを設けるのは次の理由による。即ち、もしヒータへの印加電圧Vが可変範囲VRangeの下限を下回っていると、単位時間当たりのヒータの発熱量が不十分となり、適切なエアロゾル生成が阻害されるおそれがあるが、ヒータへの印加電圧Vが可変範囲VRangeの下限よりも上にあれば、ヒータへ単位時間当たりに十分な発熱量を与えることができ、エアロゾル生成を適切に行うことが可能である。また、もしヒータへの印加電圧Vが可変範囲VRangeの上限を上回っていると、たとえヒータへの通電時間を最短時間に設定したとしても所望の供給電力量を超過してしまうおそれがあるが、ヒータへの印加電圧Vが可変範囲VRangeの上限よりも下にあれば、適当な通電時間を選択することで必ず当該所望の供給電力量を達成可能である。
 次にステップS306において、制御部130は、ステップS302で決定した霧化部104のヒータへの供給電力量に基づいて、電力量の関係式W=(V/R)×tを満たす通電時間tと印加電圧Vの組み合わせの中から、通電時間tが可変範囲tRange内に含まれるtとVの組み合わせ(図4A)、又は印加電圧Vが可変範囲VRange内に含まれるtとVの組み合わせ(図4B)を選択する。
 図4Aは、通電時間の可変範囲tRangeが設定されている場合に霧化部104のヒータの通電時間tと印加電圧Vを決定する方法を説明するための図である。図4Aに示されるように、印加電圧Vをパラメータとすると、霧化部104のヒータへの供給電力量Wはヒータへの通電時間tの一次関数で表される。ステップS302で決定されたヒータ供給電力量(Wとする)は、図4Aにおいて水平な直線Lで描かれている。もし通電時間のとり得る値が可変範囲tRangeに制限されていなければ、この直線L上の任意の点(例えばQ、Q、Q、Q、Q、Q)に対応する通電時間tと印加電圧Vの組み合わせを、電力量Wを達成するために用いることができる。しかしながら、ヒータへの通電時間は可変範囲tRangeに制限されているため、制御部130は、直線Lのうち横軸(通電時間)の範囲tRangeで区切られた線分上の点(例えばQ、Q、Q)に対応する通電時間tと印加電圧Vの組み合わせのみを、霧化部104のヒータを電力量Wで駆動するのに使用可能な設定値として採用(選択)する。なお、可変範囲tRangeの幅がゼロでありヒータへの通電時間tが単一値(例えば2.0秒)に固定されている場合には、図4Aから明らかなように(また関係式W=(V/R)×tからも明らかなように)、電力量Wを達成することができるヒータへの印加電圧Vの値は、当該固定の単一値から一意に決定することができる。
 同様に、図4Bは、印加電圧の可変範囲VRangeが設定されている場合に霧化部104のヒータの通電時間tと印加電圧Vを決定する方法を説明するための図である。図4Bに示されるように、通電時間tをパラメータとすると、霧化部104のヒータへの供給電力量Wはヒータへの印加電圧Vの二次関数で表される。制御部130は、図4Aの場合と同様にして、ステップS302で決定したヒータ供給電力量(W)で決まる直線Lのうち、横軸(印加電圧)の範囲VRangeで区切られた線分上の点(例えばS、S、S)に対応する通電時間tと印加電圧Vの組み合わせのみを、霧化部104のヒータを電力量Wで駆動するのに使用可能な設定値として採用(選択)する。
 制御部130は、次にステップS308において、上記のように選択した通電時間tと印加電圧Vの組み合わせを用いて、霧化部104のヒータを駆動する。これにより、最適な通電時間tと印加電圧Vの組み合わせで霧化部104を制御することができる。
 図3Bは、通電時間tと印加電圧Vに従って霧化部104のヒータを駆動する制御の例を示すフローチャートである。このフローチャートによる制御は、例えば図3AのフローチャートにおけるステップS308の処理をより具体的に表す。また、このフローチャートによる制御は、後述する図5のフローチャート(第2態様の制御)のステップS510及びステップS512におけるヒータの駆動制御にも同様に適用することができる。
 まずステップS312において、制御部130は、吸引センサ122の出力に基づいてユーザの吸引行為が検知されたか否かを判定する。ユーザの吸引行為が検知された場合、ステップS314へ進み、検知されなかった場合は、再びステップS312を繰り返す。
 ユーザの吸引行為が検知されると、ステップS314において、制御部130は、ヒータへ印加電圧V(例えば図3AのフローチャートのステップS306で選択された印加電圧)の供給を開始すると共に、その通電時間のカウントを開始する。
 次にステップS316において、制御部130は、通電時間のカウント値tとヒータへの印加電圧Vに基づいて、その時点までにヒータに供給された電力量W=(V/R)×tを算出する。
 次にステップS318において、制御部130は、ステップS316で算出した現時点までにヒータに実際に供給された電力量Wが、通電時間t(例えば図3AのフローチャートのステップS306で選択された通電時間)と印加電圧Vに基づき算出されるヒータ供給電力量W(例えば図3AのフローチャートのステップS302で決定された電力量)を上回っているか否かを判定する。なお、制御部130は、この判定に代えて、通電時間のカウント値tが通電時間tに達したか否かを判定することとしてもよい(2つの判定手法は等価である)。
 ステップS318の判定の結果、ヒータへの実際の供給電力量WがWを上回っている場合(通電時間のカウント値tが通電時間tに達した場合)、制御部130は、ステップS320において、ヒータへの通電を停止する。これにより、通電時間tと印加電圧Vにより定まる適切なエアロゾル量がユーザに送達される。
 一方、ステップS318の判定の結果、ヒータへの実際の供給電力量WがWを上回っていない場合(通電時間のカウント値tが通電時間tにまだ達していない場合)、制御部130は、ステップS322において、吸引センサ122の出力に基づいてユーザの吸引行為が継続しているか否かを判定する。ユーザの吸引行為が継続している場合、ステップS316へ戻る。ユーザの吸引行為が継続していない場合、ステップS320へ進み、制御部130はヒータへの通電を停止する。これにより、所望のエアロゾル量を霧化部104が生成し終える前にユーザが吸引行為を止めた場合に、ユーザが意図したとおりにエアロゾルの生成が中止される。
<第2態様の制御>
 図5は、第2態様の制御に係る制御部130の動作を示すフローチャートである。第2態様の制御は、前述したようにユーザ設定部150を介して霧化部104のヒータへの印加電圧Vと通電時間tの一方又は両方が直接的に設定された場合の制御の例であり、第1霧化部104Aの制御と第2霧化部104Bの制御のいずれにも区別なく適用される。
 まずステップS502において、制御部130は、霧化部104(第1霧化部104A又は第2霧化部104B)を所定の固定条件で駆動する。ステップS502は制御部130の動作の初期状態を表す。例えば、香味吸引器100の動作開始時に霧化部104のヒータへ供給されるべき電力量の初期設定値Wが、メモリ140に予め格納されている。ユーザが香味吸引器100の使用(吸引行為)を開始すると、制御部130は、メモリ140からヒータへの供給電力量の初期設定値を読み出し、読み出した電力量の値に従って霧化部104を駆動する。
 次にステップS504において、制御部130は、霧化部104のヒータへの印加電圧Vと通電時間tの少なくとも一方を変更するためのユーザ指示が、ユーザ設定部150を介して入力されたか否かを判定する。そのようなユーザ指示の入力があればステップS506へ進み、なければステップS502へ戻る。
 ステップS506において、制御部130は、ユーザ設定部150を介して入力されたユーザ指示に基づいて、霧化部104のヒータへ供給する変更後の電力量Wを電力量の関係式W=(V/R)×tに従って算出する。なおヒータの印加電圧Vと通電時間tの一方のみ(例えば印加電圧)がユーザ指示としてステップS504で入力されている場合には、他方(例えば通電時間)はヒータの駆動に現在用いている設定値を使用する。
 次にステップS508において、制御部130は、ステップS506で算出したヒータ供給電力量Wが所定の上限値Wmaxを超えているか否かを判定する。上限値Wmaxは、霧化部104のヒータへ供給することが許容される最大の電力量を表す。例えば、上限値Wmaxは、もしその値を超えた電力量をヒータへ供給したとすると、ヒータの過熱により、エアロゾル源の消費スピードが増加しエアロゾル源が枯渇しやすくなる、又はエアロゾル源から望まれない物質が発生し得るような電力量である。あるいは、上限値Wmaxは、ヒータへ電力を供給する駆動回路の制約によって定まる電力量(例えば駆動回路の出力の最大値)であってもよい。なお、前述した第1霧化部104Aと第2霧化部104Bの各エアロゾル生成量u、vの可変範囲の上限値は、このヒータ供給電力量の上限値Wmaxによって定まる値である。電力量の算出値Wが上限値Wmaxを超えている場合、ステップS512へ進み、そうでない場合はステップS510へ進む。
 ステップS510において、制御部130は、ステップS504のユーザ指示に係る印加電圧V及び/又は通電時間tに従って霧化部104のヒータを駆動する。このときのヒータへの供給電力量は、ステップS506で算出したとおりの、上限値Wmax以下の電力量である。こうして、ヒータの印加電圧と通電時間の少なくとも一方を指定するユーザ設定部150へのユーザ指示に応じて、霧化部104のエアロゾル生成量を変化させることができる。
 ステップS512において、制御部130は、ステップS504のユーザ指示に係る印加電圧V及び/又は通電時間tを、霧化部104のヒータへの供給電力量が上限値Wmaxに等しくなるように修正し、修正後の印加電圧と通電時間で霧化部104のヒータを駆動する。これにより、ユーザ設定部150を介して入力されたユーザ指示が上限値Wmaxよりも大きなヒータ供給電力量を指示するものであったとしても、霧化部104のヒータはちょうど上限値Wmaxの電力量で駆動されるように制御され、過剰な電力量がヒータへ供給されることを防止することができる。なお、制御部130は、ステップS506の電力量算出値Wが上限値Wmaxを超えていることをユーザに対してエラーとして通知し、再度ステップS504を実施して適切な印加電圧Vと通電時間tの値を入力するようユーザに促すこととしてもよい。
 図6Aは、ユーザがユーザ設定部150を通じて通電時間tを指定した場合に霧化部104のヒータへ供給される電力量を説明するための図である。説明を簡単にするため、ユーザはユーザ設定部150へのユーザ指示により、ヒータの通電時間tのみを変化させ印加電圧Vを変化させないものとする。初期状態において、霧化部104のヒータは、ヒータへ電力量Wが供給されるように印加電圧Vと通電時間tで駆動される(点Q)。ユーザがユーザ設定部150を通じて通電時間をtへ増加させ、このときステップS506の電力量算出値Wが上限値Wmax以下であったとすると、ステップS510で説明したように、霧化部104のヒータは、印加電圧Vのまま、ユーザから指示されたとおりの通電時間tで駆動され、ヒータへの供給電力量はWとなる(点Q)。ユーザが更にユーザ設定部150を通じて通電時間をtへ増加させ、その結果ステップS506の電力量算出値Wが上限値Wmaxを超えたとする(点Q)。すると、ステップS512で説明したように、制御部130は、ヒータへの供給電力量が上限値Wmaxに等しくなるようヒータの印加電圧と通電時間を修正する。例えば、制御部130は、ユーザから指示された通電時間tをそのまま採用する一方、印加電圧をVへ減少させる(点Q)。制御部130は、点Qに対応する印加電圧Vと通電時間tで霧化部104のヒータを駆動する。このようにして、ユーザ設定部150を介して霧化部104のヒータへの通電時間tを直接設定した場合に、ヒータへの供給電力量が上限値Wmaxを超えないようにヒータを駆動することができる。
 図6Bは、ユーザがユーザ設定部150を通じて印加電圧Vを指定した場合に霧化部104のヒータへ供給される電力量を説明するための図である。図6Aと同様、説明を簡単にするため、ユーザは通電時間tを変化させないものとする。初期状態において、霧化部104のヒータは、ヒータへ電力量Wが供給されるように印加電圧Vと通電時間tで駆動される(点S)。ユーザがユーザ設定部150を通じて印加電圧をVへ増加させ、霧化部104のヒータは印加電圧Vと通電時間tで駆動され、ヒータへの供給電力量はWとなる(点S)。ユーザが更にユーザ設定部150を通じて印加電圧をVへ増加させた結果、ステップS506の電力量算出値Wが上限値Wmaxを超える(点S)。制御部130は、ヒータへの供給電力量が上限値Wmaxに等しくなるように、例えば、ユーザ指示に係る印加電圧Vと、当初の通電時間tよりも短い通電時間tで霧化部104のヒータを駆動する(点S)。このようにして、ユーザ設定部150を介して霧化部104のヒータへの印加電圧Vを直接設定した場合に、ヒータへの供給電力量が上限値Wmaxを超えないようにヒータを駆動することができる。
 図7は、ユーザがユーザ設定部150を通じて印加電圧Vを指定した場合における制御の変形例を説明するための図である。この例においても、ヒータへの供給電力量の算出値が上限値Wmaxを超えるまでは、図6Bと同様に制御が行われる(点S及び点S)。しかしながら、図7に示されるように、この例における上限値Wmaxは、印加電圧Vが増加するにつれて減少するように設定されている。ユーザがユーザ設定部150を通じて印加電圧をVへ増加させ、ステップS506の電力量算出値Wが上限値Wmaxを超える(点S)と、制御部130は、ヒータへの供給電力量を、図6Bの点Sに対応する電力量よりも小さい上限値Wmaxまで減少させる(点S)。ユーザがユーザ設定部150を通じて更に印加電圧をVへ増加させると、制御部130は、ヒータへの供給電力量を、点Sよりも更に小さな上限値Wmaxまで減少させる(点S)。このように、制御部130は、印加電圧Vが増加するにつれてヒータへの供給電力量を漸減させる。印加電圧Vが大きいほどヒータの単位時間当たりの発熱量は大きいので、印加電圧Vが増加するにつれてヒータへの供給電力量を漸減させることによって、過熱が生じにくくすることができる。
 なお、図6A、図6B、及び図7に示されるような最大電力量Wmaxに基づく制御は、前述した第1態様の制御にも同様に適用することが可能である。即ち、図2のステップS206、ステップS208、又はステップS210で決定されたエアロゾル生成量u及び/又はvが霧化部104の生成可能な最大エアロゾル量を超えている場合に、制御部130は、霧化部104のヒータへの供給電力量が図6A、図6B、又は図7に示されるような上限値Wmaxに制限されるように、霧化部104を制御することとしてもよい。
<第3態様の制御>
 図8は、第3態様の制御に係る制御部130の動作を示すフローチャートである。第3態様の制御は、1回の霧化動作における霧化部104への通電時間に応じて霧化部104への通電を停止する制御の例である。
 まずステップS802において、制御部130は、1回の霧化動作における第1霧化部104Aへの通電時間が第1カットオフ時間を超えたか否かを判定する。1回の霧化動作における第1霧化部104Aへの通電時間が第1カットオフ時間を超えた場合、ステップS804へ進み、超えていない場合、ステップS810へ進む。
 ステップS804において、制御部130は、バッテリ114から第1霧化部104Aへの通電を停止する。これにより、ユーザが1回の吸引行為を所定時間(第1カットオフ時間)よりも長い時間継続して行った場合、第1霧化部104Aからのエアロゾルの生成が停止することにより、香味源106からの香味成分の生成も停止する。したがって、ユーザの1回の吸引行為中に所定量(ユーザ設定部150を介して設定された香味成分量q)以上の香味成分がユーザへ提供されることを防ぐことができる。
 次にステップ806において、制御部130は、1回の霧化動作における第2霧化部104Bへの通電時間が第2カットオフ時間を超えたか否かを判定する。第2カットオフ時間は、第1霧化部104Aへ第1カットオフ時間通電した時のエアロゾル生成量と第2霧化部104Bへ第2カットオフ時間通電した時のエアロゾル生成量が異なるような長さの時間である。例えば、第2カットオフ時間は、第1カットオフ時間と異なる長さの時間である。また別の例として、第2カットオフ時間は、第1カットオフ時間よりも長い時間である。第2カットオフ時間が経過した時のヒータへの供給電力量は、前述の上限値Wmaxに対応する。1回の霧化動作における第2霧化部104Bへの通電時間が第2カットオフ時間を超えた場合、ステップS808へ進み、超えていない場合、ステップS814へ進む。
 ステップS808において、制御部130は、バッテリ114から第2霧化部104Bへの通電を停止する。これにより、ユーザが1回の吸引行為を所定時間(第2カットオフ時間)よりも長い時間継続して行った場合、第1霧化部104Aからのエアロゾルの生成に加えて第2霧化部104Bからのエアロゾルの生成も停止する。次いで、制御部130は、ステップS809において、第1霧化部104Aと第2霧化部104Bの通電時間をリセットし、その後ステップS802へ戻る。
 ステップS810において、制御部130は、吸引センサ122の出力に基づいて、ユーザの1回の吸引行為が継続しているか否かを判定する。1回の吸引行為が継続している場合、ステップS802へ戻って第1カットオフ時間の判定を繰り返し、1回の吸引行為が終了した場合、ステップS812へ進む。
 ステップS812において、制御部130は、バッテリ114から第1霧化部104A及び第2霧化部104Bへの通電を停止すると共に、第1霧化部104Aと第2霧化部104Bの通電時間をリセットし、その後ステップS802へ戻る。
 ステップS814において、制御部130は、吸引センサ122の出力に基づいて、ユーザの1回の吸引行為が継続しているか否かを判定する。1回の吸引行為が継続している場合、ステップS806へ戻って第2カットオフ時間の判定を繰り返し、1回の吸引行為が終了した場合、ステップS816へ進む。
 ステップS816において、制御部130は、バッテリ114から第1霧化部104A及び第2霧化部104Bへの通電を停止すると共に、第1霧化部104Aと第2霧化部104Bの通電時間をリセットし、その後ステップS802へ戻る。
 このように、第3態様の制御により、例えばユーザが故意に又は意図せず所定時間以上にわたって1回の吸引行為を続けた場合であっても、強制的に霧化部104への通電が停止される。これにより、ユーザへ送達される総エアロゾル量pと香味成分量qがユーザ設定部150を介して入力された設定値を超過することを回避できると共に、霧化部104のヒータの過熱を防ぎ、エアロゾル源からの望まれない物質の発生を抑制することができる。
<第4態様の制御>
 図9は、第4態様の制御に係る制御部130の動作を示すフローチャートである。第4態様の制御は、第1霧化部104Aのエアロゾル生成量の累積値に応じて第1霧化部104A及び/又は第2霧化部104Bの動作を制御する例である。
 まずステップS902において、制御部130は、第1霧化部104Aにおいて生成されたエアロゾル量の累積値を算出する。通常、エアロゾルの生成量は、エアロゾル源に与えられるエネルギーによって決まる。例えば、第1霧化部104Aのヒータへの供給電力量と、その電力量でヒータが加熱された場合にエアロゾル源から発生するエアロゾル量との関係を示すデータ(エアロゾル生成量特性データ)が、メモリ140に予め格納される。制御部130は、バッテリ114から第1霧化部104Aのヒータへ供給される電力量(=電力×通電時間)を経時的に観測し、エアロゾル生成量特性データを参照することにより、それら各観測値にそれぞれ対応するエアロゾル生成量の値をメモリ140から逐次に取得して加算することで、第1霧化部104Aにおいて生成されたエアロゾル量の累積値を推定的に得る。ヒータへの単位時間当たりの供給電力が一定であるという条件の下では、制御部130は、ヒータへ供給される電力量の代わりにヒータの通電時間を観測し、通電時間の累積値からエアロゾル生成量の累積値を求めることとしてもよい。なお、エアロゾル量の累積値は、1回の吸引期間における累積値であってもよいし、複数回の吸引期間にわたって各回のエアロゾル量を累積した値であってもよい。
 次にステップS904において、制御部130は、第1霧化部104Aにおいて生成されたエアロゾル量の累積値が閾値を上回ったか否かを判定する。エアロゾル生成量の累積値が閾値を上回っていれば、ステップS906へ進み、そうでなければ、ステップS902へ戻る。本ステップS904の判定は、例えば、1)1回の霧化動作が終了した後、2)吸引センサ122によってユーザの吸引行為が検知されてからエアロゾルの霧化が開始されるまでの所定のタイムラグ時間の間、3)霧化動作中(ヒータへの通電期間中)、のいずれのタイミングで行ってもよい。
 ステップS906において、制御部130は、第1霧化部104Aのエアロゾル生成量を増加させるように第1霧化部104Aを駆動する。具体的に、制御部130は、第1霧化部140Aのヒータへ供給する電力量を現在の値よりも大きな値に決定し、決定した電力量がヒータに供給されるように第1霧化部104Aを駆動する。香味源106は、エアロゾルの通気によって徐々に香味成分の放出能力が低下することがあるが、本ステップS906の制御により、香味源106から放出される香味成分の量の低下を補うことができる。これによって、香味吸引器100は、香味源の消耗による影響を抑え、一定量の香味をユーザに提供することができる。
 次にステップS908において、制御部130は、第2霧化部104Bのエアロゾル生成量を減少させるように第2霧化部104Bを駆動する。具体的に、制御部130は、第2霧化部140Bのヒータへ供給する電力量を現在の値よりも小さな値に決定し、決定した電力量がヒータに供給されるように第2霧化部104Bを駆動する。上述したようにステップS906の制御ではユーザに提供される香味成分の量を一定に保持することができるが、第1霧化部104Aのエアロゾル生成量が増加したことにより、ユーザに提供されるエアロゾルの総量も同時にユーザの意図とは無関係に増加する。しかしながら、本ステップS908の制御により、第1霧化部104Aからのエアロゾル量の増加を相殺するように第2霧化部104Bからのエアロゾル量が減少する。これによって、香味吸引器100は、ユーザに提供される香味成分量と総エアロゾル量の両方を一定に保持することができる。
 以上、本発明の実施形態を説明したが、本発明はこれに限定されず、その要旨を逸脱しない範囲内において様々な変更が可能である。
100  香味吸引器
102A 第1リザーバ
102B 第2リザーバ
104A 第1霧化部
104B 第2霧化部
106  香味源
108  吸口部材
110A 第1エアロゾル流路
110B 第2エアロゾル流路
114  バッテリ
116  空気取込流路
118  混合チャンバ
122  吸引センサ
130  制御部
140  メモリ
150  ユーザ設定部

Claims (27)

  1.  吸口と、
     エアロゾル源を霧化してエアロゾルを生成する第1霧化部と、
     前記第1霧化部と前記吸口との間に設けられた香味源と、
     前記第1霧化部において生成されたエアロゾルを、前記香味源を通って前記吸口へ導くように構成された第1流路と、
     エアロゾル源を霧化してエアロゾルを生成する第2霧化部と、
     前記第2霧化部において生成されたエアロゾルを、前記香味源を通らずに前記吸口へ導くように構成された第2流路と、
     前記第1霧化部と前記第2霧化部の少なくとも一方におけるエアロゾル生成量を変更可能な制御部と、
     を備える香味吸引器。
  2.  前記制御部は、前記第1霧化部におけるエアロゾル生成量及び前記第2霧化部におけるエアロゾル生成量を独立に制御する、請求項1に記載の香味吸引器。
  3.  前記香味源は、前記第1霧化部におけるエアロゾル生成量に応じた量の香味成分を当該香味源を通るエアロゾルに付与し、
     前記制御部は、所与の量の前記香味成分が前記吸口へ送達されるように前記第1霧化部におけるエアロゾル生成量を制御する、請求項1又は2に記載の香味吸引器。
  4.  エアロゾル生成量を設定するためのユーザ設定部を更に備え、
     前記制御部は、前記ユーザ設定部を介したユーザ指示に応じて前記第2霧化部におけるエアロゾル生成量を変化させる、請求項3に記載の香味吸引器。
  5.  前記制御部は、前記ユーザ設定部を介して、前記吸口へ送達される総エアロゾル量と香味成分量の両方を変更するユーザ指示が入力された場合、当該ユーザ指示に応じて前記第1霧化部及び前記第2霧化部におけるエアロゾル生成量を変化させる、請求項4に記載の香味吸引器。
  6.  前記第1霧化部及び前記第2霧化部は、ヒータの加熱によって前記エアロゾル源を霧化するように構成され、
     前記第1霧化部のヒータの抵抗値は、前記第2霧化部のヒータの抵抗値よりも大きい、
     請求項1から5のいずれか1項に記載の香味吸引器。
  7.  前記制御部は、前記第1霧化部への連続通電時間が第1カットオフ時間を超えた時に前記第1霧化部への通電を停止し、前記第2霧化部への連続通電時間が第2カットオフ時間を超えた時に前記第2霧化部への通電を停止し、
     前記第1霧化部へ前記第1カットオフ時間通電した時のエアロゾル生成量と前記第2霧化部へ前記第2カットオフ時間通電した時のエアロゾル生成量が異なる、
     請求項1から6のいずれか1項に記載の香味吸引器。
  8.  前記第1カットオフ時間は前記第2カットオフ時間と異なる長さである、請求項7に記載の香味吸引器。
  9.  前記第1カットオフ時間は前記第2カットオフ時間よりも短い、請求項8に記載の香味吸引器。
  10.  前記制御部は、前記第1霧化部と前記第2霧化部の少なくとも一方におけるエアロゾル生成量の変更を、それぞれの霧化部への供給電力と通電時間のいずれか一方を変更することによって行う、請求項1から9のいずれか1項に記載の香味吸引器。
  11.  前記制御部は、前記第1霧化部と前記第2霧化部の少なくとも一方におけるエアロゾル生成量の変更を、それぞれの霧化部への供給電力と通電時間の両方を変更することによって行う、請求項1から9のいずれか1項に記載の香味吸引器。
  12.  前記制御部は、前記第1霧化部と前記第2霧化部の少なくとも一方におけるエアロゾル生成量を決定し、当該エアロゾル生成量に基づいて対応する霧化部へ供給すべき電力量を決定し、当該電力量を得るための当該霧化部への印加電圧と通電時間の複数の組み合わせの中から、所与の通電時間の可変範囲又は所与の印加電圧の可変範囲に含まれる組み合わせを選択し、当該選択された印加電圧と通電時間で前記対応する霧化部を駆動する、請求項11に記載の香味吸引器。
  13.  前記制御部は、前記第1霧化部と前記第2霧化部の少なくとも一方におけるエアロゾル生成量を決定し、当該エアロゾル生成量に基づいて対応する霧化部へ供給すべき電力量を決定し、当該電力量を得るための当該霧化部への印加電圧を予め定められた固定の通電時間に基づいて決定し、当該決定された印加電圧と前記固定の通電時間で前記対応する霧化部を駆動する、請求項11に記載の香味吸引器。
  14.  前記制御部は、前記第1霧化部と前記第2霧化部の少なくとも一方への印加電圧と通電時間の組み合わせを決定し、当該組み合わせに基づいて対応する霧化部へ供給される電力量を算出し、当該電力量の算出値が所与の上限値を超える場合には、前記上限値の電力量を満たす印加電圧と通電時間で前記対応する霧化部を駆動する、請求項11に記載の香味吸引器。
  15.  前記上限値は前記印加電圧が増加するのに応じて減少する、請求項14に記載の香味吸引器。
  16.  前記制御部は、前記第1霧化部への通電時間を変更することによって前記第1霧化部におけるエアロゾル生成量を変更可能であり、前記第2霧化部への供給電力を変更することによって前記第2霧化部におけるエアロゾル生成量を変更可能である、請求項1から9のいずれか1項に記載の香味吸引器。
  17.  前記制御部は、前記第2霧化部におけるエアロゾル生成量を変更可能であり、
     前記第2霧化部におけるエアロゾル生成量の可変範囲の上限値は、前記第1霧化部におけるエアロゾル生成量よりも大きく、前記第2霧化部におけるエアロゾル生成量の可変範囲の下限値は、前記第1霧化部におけるエアロゾル生成量よりも小さい、請求項1から16のいずれか1項に記載の香味吸引器。
  18.  前記制御部は、前記第1霧化部におけるエアロゾル生成量を変更可能であり、
     前記第1霧化部におけるエアロゾル生成量の可変範囲の下限値はゼロよりも大きい、請求項1から17のいずれか1項に記載の香味吸引器。
  19.  前記制御部は、前記第1霧化部及び前記第2霧化部の双方におけるエアロゾル生成量を変更可能であり、
     前記第1霧化部におけるエアロゾル生成量の可変範囲の幅は、前記第2霧化部におけるエアロゾル生成量の可変範囲の幅よりも狭い、請求項1から18のいずれか1項に記載の香味吸引器。
  20.  前記制御部は、前記第1霧化部及び前記第2霧化部の双方におけるエアロゾル生成量を変更可能であり、
     前記第1霧化部におけるエアロゾル生成量の可変範囲は、前記第2霧化部におけるエアロゾル生成量の可変範囲の下限値と上限値との間に含まれる、請求項1から19のいずれか1項に記載の香味吸引器。
  21.  前記制御部は、前記第1流路を通過した累積エアロゾル量に応じて、前記第1霧化部におけるエアロゾル生成量を増やすように前記第1霧化部へ供給する電力量を決定する、請求項1から20のいずれか1項に記載の香味吸引器。
  22.  前記制御部は、前記第1流路を通過した累積エアロゾル量に応じて、前記第2霧化部におけるエアロゾル生成量を減らすように前記第2霧化部へ供給する電力量を決定する、請求項21に記載の香味吸引器。
  23.  前記制御部は、前記第1霧化部へ供給した累積電力量から前記累積エアロゾル量を求める、請求項21又は22に記載の香味吸引器。
  24.  前記第1流路を通ったエアロゾルと前記第2流路を通ったエアロゾルを混合するための混合チャンバを更に備え、前記混合チャンバが前記吸口に連通している、請求項1から23のいずれか1項に記載の香味吸引器。
  25.  前記混合チャンバは、前記第1流路及び前記第2流路のいずれの断面積よりも大きな断面積を有する、請求項24に記載の香味吸引器。
  26.  前記第1流路と前記第2流路の少なくとも一方は、複数の流路を備える、請求項1から25のいずれか1項に記載の香味吸引器。
  27.  前記第1流路と前記第2流路は、互いに並列に配置される、請求項1から26のいずれか1項に記載の香味吸引器。
     
PCT/JP2016/078258 2016-09-26 2016-09-26 香味吸引器 WO2018055761A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP2016/078258 WO2018055761A1 (ja) 2016-09-26 2016-09-26 香味吸引器
PCT/JP2017/033889 WO2018056300A1 (ja) 2016-09-26 2017-09-20 香味吸引器
CN201780059389.9A CN109788804B (zh) 2016-09-26 2017-09-20 香味吸取器
CA3037829A CA3037829C (en) 2016-09-26 2017-09-20 Flavor inhaler
KR1020197011299A KR102277293B1 (ko) 2016-09-26 2017-09-20 향미 흡인기
JP2018540259A JP6803116B2 (ja) 2016-09-26 2017-09-20 香味吸引器
EA201990821A EA039066B1 (ru) 2016-09-26 2017-09-20 Ароматический ингалятор
EP17853070.5A EP3513667A4 (en) 2016-09-26 2017-09-20 TASTE INHALATOR
TW106132618A TWI679944B (zh) 2016-09-26 2017-09-22 香味吸嚐器
US16/361,429 US20190217028A1 (en) 2016-09-26 2019-03-22 Flavor inhaler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078258 WO2018055761A1 (ja) 2016-09-26 2016-09-26 香味吸引器

Publications (1)

Publication Number Publication Date
WO2018055761A1 true WO2018055761A1 (ja) 2018-03-29

Family

ID=61689496

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/078258 WO2018055761A1 (ja) 2016-09-26 2016-09-26 香味吸引器
PCT/JP2017/033889 WO2018056300A1 (ja) 2016-09-26 2017-09-20 香味吸引器

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033889 WO2018056300A1 (ja) 2016-09-26 2017-09-20 香味吸引器

Country Status (9)

Country Link
US (1) US20190217028A1 (ja)
EP (1) EP3513667A4 (ja)
JP (1) JP6803116B2 (ja)
KR (1) KR102277293B1 (ja)
CN (1) CN109788804B (ja)
CA (1) CA3037829C (ja)
EA (1) EA039066B1 (ja)
TW (1) TWI679944B (ja)
WO (2) WO2018055761A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039589A1 (ja) * 2018-08-24 2020-02-27 日本たばこ産業株式会社 吸引成分生成装置、吸引成分生成装置を制御する方法及びプログラム
JPWO2021001902A1 (ja) * 2019-07-01 2021-01-07

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123867A1 (de) * 2017-10-13 2019-04-18 Hauni Maschinenbau Gmbh Inhalator, insbesondere elektronisches Zigarettenprodukt, und Computerprogrammprodukt
CN108391852A (zh) * 2017-12-18 2018-08-14 卓尔悦欧洲控股有限公司 控制方法、装置及电子烟
US11191304B2 (en) * 2018-04-06 2021-12-07 Mark James Grote Multi-element vaporizer system and application
US20200154779A1 (en) * 2018-11-19 2020-05-21 Rai Strategic Holdings, Inc. Charging control for an aerosol delivery device
US20220053834A1 (en) * 2018-12-21 2022-02-24 Hexo Operations Inc. Vaporization device with residue prevention or reduction
KR102212378B1 (ko) * 2019-01-03 2021-02-04 주식회사 케이티앤지 전압 변환기를 포함하는 에어로졸 생성 장치 및 이를 제어하는 방법
CN109602091B (zh) * 2019-01-17 2023-09-15 云南中烟工业有限责任公司 一种支持多抽吸模式的雾化装置及其使用方法
KR20200144049A (ko) * 2019-06-17 2020-12-28 주식회사 케이티앤지 에어로졸 생성 장치 및 에어로졸 생성 물품
EP4000472A4 (en) * 2019-07-19 2023-08-30 Japan Tobacco Inc. AROMA DISPENSER
EP4125454A1 (en) * 2020-04-01 2023-02-08 Juul Labs, Inc. Vaporizer device
CN113519901A (zh) * 2020-04-15 2021-10-22 深圳市卓力能技术有限公司 雾化器、气溶胶产生装置及其控制方法
KR20230030625A (ko) * 2020-06-30 2023-03-06 필립모리스 프로덕츠 에스.에이. 퍼프 검출을 갖는 에어로졸 발생 장치 및 방법
EP4250987A1 (en) * 2020-11-29 2023-10-04 Ditch Labs Inc. Vaporization device with two liquid reservoirs
WO2022190211A1 (ja) * 2021-03-09 2022-09-15 日本たばこ産業株式会社 吸引装置、及びプログラム
KR102593730B1 (ko) * 2021-04-02 2023-10-24 주식회사 케이티앤지 멀티 카트리지 및 이를 포함하는 에어로졸 발생 장치
KR20230076620A (ko) * 2021-11-24 2023-05-31 주식회사 케이티앤지 에어로졸 생성 장치 및 그의 동작 방법
WO2023112338A1 (ja) * 2021-12-17 2023-06-22 日本たばこ産業株式会社 エアロゾル生成装置
CN114190592A (zh) * 2021-12-30 2022-03-18 深圳市华诚达精密工业有限公司 雾化机构、电子雾化装置及雾化机构工作控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115324A1 (ja) * 2013-01-28 2014-07-31 日本たばこ産業株式会社 非加熱型香味吸引具
WO2015046386A1 (ja) * 2013-09-30 2015-04-02 日本たばこ産業株式会社 非燃焼型香味吸引器
WO2016121143A1 (ja) * 2015-01-26 2016-08-04 日本たばこ産業株式会社 非燃焼型香味吸引器、香味源ユニット及び非燃焼型香味吸引器用部材の製造方法
WO2016135959A1 (ja) * 2015-02-27 2016-09-01 日本たばこ産業株式会社 非燃焼型香味吸引器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2625974A1 (en) * 2012-02-13 2013-08-14 Philip Morris Products S.A. Aerosol-generating article having a flavour-generating component
WO2014032276A1 (zh) * 2012-08-31 2014-03-06 Liu Qiuming 多口味电子烟
US8881737B2 (en) * 2012-09-04 2014-11-11 R.J. Reynolds Tobacco Company Electronic smoking article comprising one or more microheaters
US9955727B2 (en) * 2013-07-24 2018-05-01 Nu Mark Innovations Ltd. Solid core electronic cigarette
CN105636466B (zh) * 2013-09-30 2018-09-11 日本烟草产业株式会社 非燃烧型香味吸取器
CN103519351B (zh) * 2013-10-31 2017-02-15 红塔烟草(集团)有限责任公司 一种电加热卷烟
EP3100623B1 (en) * 2014-01-29 2018-12-26 Japan Tobacco, Inc. Noncombustion-type flavor inhaler
GB201413037D0 (en) * 2014-02-28 2014-09-03 Beyond Twenty Ltd Beyond 10
JP5660238B1 (ja) 2014-03-19 2015-01-28 カシオ計算機株式会社 プログラム電卓及びプログラム
CN106488714B (zh) * 2014-07-11 2020-07-07 菲利普莫里斯生产公司 一种包括筒检测的气溶胶生成系统
TWI680726B (zh) * 2014-10-13 2020-01-01 瑞士商菲利浦莫里斯製品股份有限公司 控制電熱式吸煙系統中之電加熱器的方法及電熱式吸煙系統
CN104397876B (zh) * 2014-10-24 2016-03-09 深圳市劲嘉科技有限公司 一种双功能低温非燃烧烟具
AU2014411336B2 (en) * 2014-11-10 2018-05-24 Japan Tobacco Inc. Non-burning type flavor inhaler
CN104783329B (zh) * 2015-03-03 2018-02-06 云南中烟工业有限责任公司 一种提高卷烟抽吸品质的方法
US20160325055A1 (en) * 2015-05-08 2016-11-10 Lunatech, Llc Device To Deliver Cannabidiol And Associated Compounds To Promote Health
CN205093591U (zh) * 2015-10-16 2016-03-23 上海烟草集团有限责任公司 电子烟雾化器
US10212964B2 (en) * 2016-07-07 2019-02-26 Altria Client Services Additive assembly for electronic vaping device
GB201700620D0 (en) * 2017-01-13 2017-03-01 British American Tobacco Investments Ltd Aerosol generating device and article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115324A1 (ja) * 2013-01-28 2014-07-31 日本たばこ産業株式会社 非加熱型香味吸引具
WO2015046386A1 (ja) * 2013-09-30 2015-04-02 日本たばこ産業株式会社 非燃焼型香味吸引器
WO2016121143A1 (ja) * 2015-01-26 2016-08-04 日本たばこ産業株式会社 非燃焼型香味吸引器、香味源ユニット及び非燃焼型香味吸引器用部材の製造方法
WO2016135959A1 (ja) * 2015-02-27 2016-09-01 日本たばこ産業株式会社 非燃焼型香味吸引器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039589A1 (ja) * 2018-08-24 2020-02-27 日本たばこ産業株式会社 吸引成分生成装置、吸引成分生成装置を制御する方法及びプログラム
JPWO2021001902A1 (ja) * 2019-07-01 2021-01-07
WO2021001902A1 (ja) * 2019-07-01 2021-01-07 日本たばこ産業株式会社 香味吸引器
JP7267422B2 (ja) 2019-07-01 2023-05-01 日本たばこ産業株式会社 香味吸引器

Also Published As

Publication number Publication date
TW201813529A (zh) 2018-04-16
TWI679944B (zh) 2019-12-21
EA039066B1 (ru) 2021-11-29
KR20190052703A (ko) 2019-05-16
EP3513667A4 (en) 2020-06-10
EP3513667A1 (en) 2019-07-24
JPWO2018056300A1 (ja) 2019-07-18
EA201990821A1 (ru) 2019-10-31
WO2018056300A1 (ja) 2018-03-29
CA3037829C (en) 2023-01-17
US20190217028A1 (en) 2019-07-18
CN109788804B (zh) 2021-08-03
CA3037829A1 (en) 2018-03-29
KR102277293B1 (ko) 2021-07-13
JP6803116B2 (ja) 2020-12-23
CN109788804A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2018055761A1 (ja) 香味吸引器
JP6704454B2 (ja) 香味吸引器
KR102311334B1 (ko) 향미 흡인기, 카트리지 및 향미 유닛
KR102490039B1 (ko) 흡인 장치와 이것을 동작시키는 방법 및 프로그램
CN109963607B (zh) 具有可调泵流速的气溶胶生成系统
JP6462965B2 (ja) 吸引装置並びにこれを動作させる方法及びプログラム
JP6462966B2 (ja) 吸引装置並びにこれを動作させる方法及びプログラム
RU2749258C1 (ru) Генерирующее аэрозоль устройство, способ приведения в действие генерирующего аэрозоль устройства и компьютерно-читаемый носитель данных, содержащий программу для приведения устройства в действие
CN110418582B (zh) 气溶胶生成装置以及气溶胶生成装置的控制方法及程序
KR102425243B1 (ko) 에어로졸 생성 장치 및 이를 동작시키는 방법 및 프로그램
WO2019082262A1 (ja) エアロゾル生成装置並びにこれを動作させる方法及びプログラム
JP6588669B1 (ja) エアロゾル吸引器用の制御装置、制御方法、プログラム、エアロゾル吸引器
KR102506602B1 (ko) 에어로졸 흡인기의 전원 유닛 및 에어로졸 흡인기
EA040739B1 (ru) Генерирующее аэрозоль устройство, способ и программа для приведения его в действие

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP