WO2018054362A1 - 用于烯烃聚合的催化剂组分、催化剂及其应用 - Google Patents

用于烯烃聚合的催化剂组分、催化剂及其应用 Download PDF

Info

Publication number
WO2018054362A1
WO2018054362A1 PCT/CN2017/103044 CN2017103044W WO2018054362A1 WO 2018054362 A1 WO2018054362 A1 WO 2018054362A1 CN 2017103044 W CN2017103044 W CN 2017103044W WO 2018054362 A1 WO2018054362 A1 WO 2018054362A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ethyl
butyl
acetylpyridine
catalyst component
Prior art date
Application number
PCT/CN2017/103044
Other languages
English (en)
French (fr)
Inventor
王军
高明智
刘海涛
马晶
马吉星
蔡晓霞
陈建华
胡建军
李昌秀
张志会
段瑞林
马长友
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610847281.3A external-priority patent/CN107868153B/zh
Priority claimed from CN201610847600.0A external-priority patent/CN107868155B/zh
Priority claimed from CN201610847284.7A external-priority patent/CN107868154B/zh
Priority claimed from CN201610847664.0A external-priority patent/CN107868149B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to EP17852430.2A priority Critical patent/EP3517555A4/en
Priority to JP2019515798A priority patent/JP7178991B2/ja
Priority to RU2019112055A priority patent/RU2757372C2/ru
Priority to KR1020197011214A priority patent/KR102466260B1/ko
Priority to US16/336,102 priority patent/US11325994B2/en
Publication of WO2018054362A1 publication Critical patent/WO2018054362A1/zh
Priority to SA519401395A priority patent/SA519401395B1/ar

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6423Component of C08F4/64 containing at least two different metals
    • C08F4/6425Component of C08F4/64 containing at least two different metals containing magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6495Catalysts containing a specific non-metal or metal-free compound organic containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/651Pretreating with non-metals or metal-free compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • C08F4/6543Pretreating with metals or metal-containing compounds with magnesium or compounds thereof halides of magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/04Broad molecular weight distribution, i.e. Mw/Mn > 6
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/15Isotactic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium

Definitions

  • the invention relates to a catalyst component, a catalyst and an application thereof for olefin polymerization, and belongs to the field of petrochemical industry.
  • Olefin polymerization catalysts can be classified into three broad categories, namely conventional Ziegler-Natta catalysts, metallocene catalysts, and non-metallocene catalysts.
  • the polyolefin catalyst is continuously updated with the development of electron-donating compounds in the catalyst.
  • the catalyst was developed from the first generation of TiCl 3 /AlCl 3 /AlEt 2 Cl system and the second generation TiCl 3 /AlEt 2 Cl system to the third generation of magnesium chloride as the carrier, monoester or aromatic dibasic acid ester.
  • the internal electron donor, the silane is an external electron donor
  • the TiCl 4 ⁇ ED ⁇ MgCl 2 /AlR 3 ⁇ ED system and the newly developed diether and diester are internal electron donor catalyst systems, and the catalytic polymerization of the catalyst
  • the activity and the degree of polypropylene obtained have been greatly improved.
  • a titanium catalyst system for propylene polymerization mostly uses magnesium, titanium, a halogen, and an electron donor as essential components, wherein the electron donating compound is one of the essential components in the catalyst component.
  • EP 0 728 769 a special 1,3-diether compound containing two ether groups is used as an electron donor such as 2-isopropyl. 2-isopentyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane and 9,9-bis(methoxymethyl)anthracene .
  • Brookhart et al. first discovered that the diimine post transition metal complex has high catalytic activity in catalyzing olefin polymerization. (Johnson LK, Killian CM, Brookhart M., J. Am. Chem. Soc., 1995, 117, 6414; Johnson LK, Ecking SM, Brookhart M., J. Am. Chem. Soc., 1996, 118, 267). Since then, research on non-metallocene organic complexes has attracted great interest. McConville et al.
  • Beta-diamine complexes are also an important class of non-metallocene olefin polymerization catalysts containing N-N ligands. Due to its structural characteristics, the steric hindrance and electronic effect of the ligand are easily regulated by the change of the substituent on the arylamine. The different metals and the ligand environment change, the ⁇ -diamine ligand can pass differently.
  • the bonding mode is compatible with different metals to form corresponding metal complexes
  • the ligand compounds have the characteristics of simple synthesis and easy structural adjustment, and are ideal complexes for studying the relationship between structure and catalyst performance, so Ligand compounds of the class structure have attracted widespread attention (Bourget-Merle L., Lappert MF, Severn JR, Chem. Rev., 2002, 102, 3031; Kim WK, Fevola MJ, Liable-Sands LM, Rheingold AL, Theopoid KH, Organometallics, 1998, 17, 4541; Jin X., Novak BM, Macromolecules, 2000, 33, 6205).
  • the polyethylene chamber of Sinopec Beijing Research Institute of Chemical Industry discloses a metal complex of a bidentate ligand in the patent CN00107258.7 for ethylene and its copolymerization.
  • a similar transition metal complex catalyst for ethylene and its copolymerization is disclosed in the patents CN02129548.4 (2002), patent 200410086388.8 (2004) and patent 200710176588.6 (2007), respectively.
  • the patents 201010554473.8 and 201010108695.7 of the Shanghai Institute of Organic Chemistry of the Chinese Academy of Sciences disclose a similar structure of multidentate ligand metal catalysts for the preparation of ultra-low-branched high molecular weight polyethylene by ethylene and its copolymerization.
  • the catalysts used for the polymerization of olefins are all corresponding ligand metal compounds. As of the end Until now, no such ligand compounds have been found to be directly applied to the preparation of propylene polymerization catalysts and related reports on propylene polymerization.
  • an object of the present invention to develop a catalyst component for olefin polymerization and its catalyst and use.
  • An internal electron donor (ketoimine compound) as shown in Formula I is added during the preparation of the catalyst to form a novel catalytic polymerization system.
  • the catalyst When the catalyst is used for the polymerization of olefins, especially propylene, it has a long period of high activity, good hydrogen sensitivity, and the obtained polymer has an adjustable isotactic index and a wide molecular weight distribution.
  • the present invention provides a catalyst component for olefin polymerization, the catalyst component comprising magnesium, titanium, a halogen and an internal electron donor, the internal electron donor comprising the formula I Ketoimine compounds,
  • R is selected from hydroxy, C 1 -C 20 alkyl groups with or without a halogen atom substituent, C 2 -C 20 alkenyl groups with or without a halogen atom substituent, or with or without halogen
  • An aromatic group of C 6 to C 30 of the atomic substituent; R 1 to R 5 may be the same or different and each independently represents hydrogen, a C 1 - C 20 alkyl group, a C 2 - C 20 alkenyl group, or a C 6 - a C 30 aralkyl group, a C 6 - C 30 alkaryl group, a C 9 - C 40 fused ring aromatic group, a halogen atom, a hydroxyl group or a C 1 - C 20 alkoxy group; X is selected from the group consisting of halogen and nitrogen.
  • R is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, hydroxyalkyl, phenyl, a halogenated phenyl group, an alkyl-substituted phenyl group, a naphthyl group, a biphenyl group or a group containing a heterocyclic compound;
  • the heterocyclic compound-containing group is preferably a pyrrole-containing group, a pyridine-containing group, or a pyrimidine-containing group. a group or a quinoline-containing group.
  • R is selected from the group consisting of 2,6-dialkylphenyl (eg 2,6-dimethylphenyl, 2,6-diethylphenyl, 2,6-diisopropyl) Phenyl), 2,4,6-trialkylphenyl (eg 2,4,6-trimethylphenyl, 2,4,6-triethylphenyl, 2,4,6-triisopropyl) Phenyl), hydroxyalkyl substituted phenyl (eg hydroxypropyl phenyl), 3-quinolyl, 1-naphthyl, benzyl and 8-quinolyl.
  • 2,6-dialkylphenyl eg 2,6-dimethylphenyl, 2,6-diethylphenyl, 2,6-diisopropyl
  • 2,4,6-trialkylphenyl eg 2,4,6-trimethylphenyl, 2,4,6-triethylphenyl, 2,4,6-triisopropyl
  • each of R 3 to R 5 is independently hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl or isobutyl.
  • R 1 and R 2 are each independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl and isobutyl.
  • X is a nitrogen atom or CH.
  • the ketimine compound represented by Formula I is preferably: 6-(butylimido)ethyl-2-acetylpyridine, 6-(heximido)ethyl-2-acetyl group Pyridine, 6-(pentylimido)ethyl-2-acetylpyridine, 6-(octimilinyl)ethyl-2-acetylpyridine, 6-(benzylimido)ethyl-2-acetyl Pyridine, 6-(4-hydroxybutylamido)ethyl-2-acetylpyridine, 6-(2-hydroxyphenylimino)ethyl-2-acetylpyridine, 6-(2,6- Dimethylanilinium)ethyl-2-acetylpyridine, 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine, 6-(phenylimido) Ethyl-2-acetylpyridine
  • the magnesium content is from 5 wt% to 50 wt%
  • the titanium content is from 1.0 wt% to 8.0 wt%
  • the halogen content is from 10 wt% to 70 wt%, based on the weight of the catalyst component.
  • the total content of the electron donor is from 0.1% by weight to 20% by weight.
  • the internal electron donor may further comprise at least one other electron donating compound.
  • the other electron-donating compound is one, two or three selected from the group consisting of an aromatic carboxylic acid ester compound, a glycol ester compound, a diphenol ester compound, and a diether compound.
  • the molar ratio of the ketimine compound of the formula I to the other electron donating compound is 1: (0.05-20), preferably 1: (0.1-10).
  • the aromatic carboxylic acid ester compound structure is as shown in Formula II,
  • R I is a C 1 -C 20 alkyl group having or not containing a halogen atom substituent, a C 2 -C 20 alkenyl group having or not containing a halogen atom substituent, or a halogen atom-containing substituent a C 2 -C 20 alkynyl group or a C 6 -C 30 alkaryl group having or not containing a halogen atom substituent;
  • R II is a C 1 - C 20 alkyl group, a C 2 - C 20 alkenyl group, a C 2 -C 20 alkynyl group or a C 6 -C 30 alkaryl or ester or amide group;
  • R III , R IV , R V and R VI are the same or different and are C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 1 -C 20 alkoxy, C 6 -C 30 aralkyl
  • R I is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, new Pentyl, hexyl, vinyl, allyl, ethynyl, phenyl, halophenyl, alkyl substituted phenyl, naphthyl or biphenyl.
  • R II is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, new Pentyl, hexyl, vinyl, allyl, ethynyl, phenyl, halophenyl, alkyl substituted phenyl, naphthyl, biphenyl, ethoxycarbonyl, propoxycarbonyl, isopropoxy Acyl, butoxycarbonyl, isobutoxycarbonyl, hexyloxycarbonyl, isohexyloxy, neohexyloxy, heptoxycarbonyl, isoheptanoyl, neoheptoyl, octyl Acyl, isooctyloxy or neooctyloxy.
  • the aromatic carboxylic acid ester compound may be selected from ethyl benzoate, propyl benzoate, butyl benzoate, amyl benzoate, hexyl benzoate, heptyl benzoate, octyl benzoate.
  • the structure of the glycol ester compound is as shown in Formula III,
  • X and Y are independently selected from carbon, oxygen, sulfur, nitrogen, boron or silicon; R 1 and R 2 are the same or different and are independently halogen, alkyl, cycloalkyl, aryl, alkene, respectively.
  • R 3 to R 6 are the same or different and are each independently hydrogen or a substituted or unsubstituted alkyl, cycloalkyl, aryl, alkene, fused ring aryl or ester group;
  • R I to R IV are the same or different and are each independently hydrogen or a substituted or unsubstituted alkyl, cycloalkyl, aryl, alkene, fused ring aryl or ester group;
  • the R IV group optionally contains one or more heteroatoms as carbon or hydrogen atoms or a substitution of both, which are oxygen, sulfur, nitrogen, boron, silicon, phosphorus or halogen atoms;
  • R 3 to R One or more of 6 and R I to R IV groups may be bonded to form a ring;
  • n is an integer from 0 to 10.
  • the structure of the glycol ester compound is as shown in formula IIIa:
  • R 1 , R 2 and R 3 to R 6 are the same or different and are each independently a C 1 - C 20 alkyl group, a C 3 - C 20 cycloalkyl group or a C 2 - C 20 alkenyl group.
  • R I and R II are the same or different and are each independently hydrogen C 1 - C 20 alkyl group, C 3 - C 20 cycloalkyl group, C 2 - C 20 alkenyl group, C 6 - C 30 aralkyl group, C 6 - C 30 alkaryl group, C a fused ring aromatic group or an ester group of 9 to C 40 ; optionally having one or more hetero atoms as a carbon or hydrogen atom or a substituent of the R 3 to R 6 and R I to R IV groups;
  • the hetero atom is oxygen, sulfur, nitrogen, boron, silicon, phosphorus or a halogen atom; one or more of the R 3 to R 6 , R I and R II groups may be bonded to form a ring; n is an integer of 1 to 5 .
  • the diol ester compound is a diphenol ester compound having the structural formula:
  • R 1 and R 2 are the same or different and each independently represents a C 1 - C 20 alkyl group, a C 3 - C 20 cycloalkyl group, a C 2 - C 20 alkenyl group, or a C 6 - C 30 group.
  • Ar is C 6 -C 30 aryl group, C 6 -C 30 alkaryl group Or a fused ring aromatic group of C 9 to C 40 .
  • R 1 and R 2 are independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl a group of a tert-butyl group, a pentyl group, a hexyl group, a hydroxyalkyl group, a phenyl group, a halophenyl group, an alkyl-substituted phenyl group, a naphthyl group, a biphenyl group or a heterocyclic compound;
  • the group is preferably a pyrrole-containing group, a pyridine-containing group, a pyrimidine group or a quinoline-containing group.
  • R I and R II are independently selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, A pentyl group, a hexyl group, a hydroxyalkyl group, a phenyl group, a halogenated phenyl group, an alkyl-substituted phenyl group, or the like.
  • R I and R II are joined to form a ring, such as a substituted or unsubstituted anthracene ring.
  • the glycol ester or diphenol ester compound is selected from the group consisting of 2-isopropyl-1,3-diphenylcarboxypropane, 2-butyl-1,3-diphenylcarboxypropane, 2- Cyclohexyl-1,3-diphenylcarboxypropane, 2-benzyl-1,3-diphenylcarboxypropane, 2-phenyl-1,3-diphenylcarboxypropane, 2-(1-naphthyl) )-1,3-Diphenylmethylcarboxypropane, 2-isopropyl-1,3-diethylcarboxypropane, 2-isopropyl-2-isopentyl-1,3-diphenylmethylcarboxypropane, 2 -isopropyl-2-isobutyl-1,3-diphenylmethylpropane, 2-isopropyl-2-isopentyl-1,3-dipropylcar
  • the structure of the diether compound is as shown in Formula IV,
  • R' and R" are the same or different and are each independently a C 1 - C 20 hydrocarbon group; n is an integer from 0 to 6; R I to R IV are the same or different and are independently hydrogen and alkoxy a group, a substituted amine group, a halogen atom, a C 1 - C 20 hydrocarbon group or a C 6 - C 20 aryl group, and two or more of the R I to R IV groups may be bonded to form a ring.
  • R 'and R " is a C 1 ⁇ C 20 alkyl group in accordance with some preferred embodiments, preferably methyl, ethyl or isopropyl.
  • R I to R IV are C 1 -C 20 alkyl, preferably methyl, ethyl, isopropyl, n-butyl, isobutyl, n-propyl, or Pentyl, isopentyl, n-hexyl or isohexyl.
  • the diether compound is preferably 2-isopropyl-1,3-dimethoxypropane, 2-butyl-1,3-dimethoxypropane, 2-cyclohexyl-1 , 3-dimethoxypropane, 2-benzyl-1,3-dimethoxypropane, 2-phenyl-1,3-dimethoxypropane, 2-(1-naphthyl)-1, 3-dimethoxypropane, 2-isopropyl-2-isopentyl-1,3-dimethoxypropane, 2-isopropyl-2-isobutyl-1,3-dimethoxy Propane, 2-isopropyl-2-butyl-1,3-dimethoxypropane, 2,2-dicyclopentyl-1,3-dibenzoyloxypropane, 2,2-dicyclohexyl -1,3-dimethoxypropane, 2,2-dibutyl-1,3-dimethoxypropane, 2,
  • the catalyst component provided by the present invention can be prepared by the following optional method:
  • Method 1 A homogeneous solution obtained by dissolving magnesium halide in an organic epoxy compound and an organic phosphorus compound may also be added with an inert diluent.
  • the above homogeneous solution is mixed with titanium tetrahalide or a derivative thereof, and when the precipitation aid is present in the reaction system, solid matter is precipitated.
  • the internal electron donor is supported on a solid matter, and then treated with titanium tetrahalide or an inert diluent to obtain a solid catalyst component including titanium, magnesium, a halogen, an electron donor or the like.
  • the organic epoxy compound preferably includes at least one of a C 2 - C 15 aliphatic alkane, an olefin, a diene, a halogenated aliphatic olefin, an oxide of a diene, a glycidyl ether, and an internal ether.
  • Specific compounds such as butylene oxide, propylene oxide, ethylene oxide, butadiene oxide, butadiene double oxide, epichlorohydrin, epoxy chlorobutane, epoxy chloropentane, methyl shrinkage Glycerol ether, diglycidyl ether, tetrahydrofuran, tetrahydropyran, and the like. More preferably, it includes ethylene oxide, propylene oxide, epichlorohydrin, tetrahydrofuran, tetrahydropyran.
  • the organophosphorus compound preferably includes a hydrocarbyl ester or a halogenated hydrocarbyl ester of orthophosphoric acid or phosphorous acid, and specific examples of the organophosphorus compound are trimethyl orthophosphate, triethyl orthophosphate, tributyl orthophosphate, orthophosphoric acid Amyl ester, trihexyl orthophosphate, triheptyl orthophosphate, trioctyl orthophosphate, triphenyl orthophosphate, trimethyl phosphite, triethyl phosphite, tributyl phosphite or benzyl phosphite Etc. Tributyl orthophosphate and triethyl orthophosphate are more preferred.
  • the inert diluent is preferably at least one of a C 5 - C 20 alkane, a cycloalkane and an aromatic hydrocarbon such as hexane, heptane, octane, decane, cyclohexane, benzene, toluene, xylene or More preferably, a derivative or the like includes hexane and toluene.
  • Method 2 Magnesium halide or organomagnesium compound, alcohol compound and titanate or titanium halide compound are thoroughly mixed and stirred in an inert solvent, heated and cooled to obtain a spherical carrier or an inert solvent to obtain a homogeneous alcoholate solution. Mixing the above carrier or homogeneous solution with titanium tetrahalide or a derivative thereof, heating at a low temperature for a period of time, heating, heating, adding an internal electron donor, then treating with titanium tetrahalide or an inert diluent, and finally filtering, washing, and drying. A solid catalyst component comprising titanium, magnesium, a halogen, an electron donor or the like is obtained.
  • the magnesium halide preferably includes at least one of magnesium dichloride, magnesium dibromide, magnesium diiodide, methoxy magnesium chloride, ethoxy magnesium chloride, propoxy magnesium chloride, butoxy magnesium chloride, and the like, more preferably magnesium dichloride and / or ethoxylated magnesium chloride.
  • the organomagnesium compound preferably includes dimethylmagnesium, diethylmagnesium, dipropylmagnesium, dibutylmagnesium, methylethylmagnesium, methylpropylmagnesium, methylbutylmagnesium,ethylpropylmagnesium. At least one of ethyl butyl magnesium, dimethoxy magnesium, diethoxy magnesium, dipropoxy magnesium, ethoxyethyl magnesium, dibutoxy magnesium, diisobutoxy magnesium, and the like. More preferably dibutyl magnesium, diethyl Magnesium or diethoxy magnesium.
  • Method 3 A homogeneous solution in which magnesium halide is dissolved in an organic epoxy compound and an organic phosphorus compound, or an inert diluent may be added to the internal electron donor. Mixing the above solution with titanium tetrahalide or a derivative thereof, heating at a low temperature for a period of time, heating and heating, then treating with titanium tetrahalide or an inert diluent, finally filtering, washing and drying to obtain titanium, magnesium, halogen, and A solid catalyst component of an electronic body or the like.
  • Method 4 A homogeneous solution in which magnesium halide is dissolved in an organic epoxy compound and an organic phosphorus compound, or an inert diluent may be added to the internal electron donor.
  • the above homogeneous solution is mixed with titanium tetrahalide or a derivative thereof, heated at a low temperature for a period of time, heated to a temperature, treated with titanium tetrahalide or an inert diluent, treated with an internal electron donor, and finally filtered, washed, and dried to obtain A solid catalyst component comprising titanium, magnesium, a halogen, an electron donor or the like.
  • the present invention also provides a catalyst for the polymerization of olefins, especially propylene, comprising: A) the catalyst component; B) an organoaluminum compound; and optionally C) an organosilicon compound.
  • components A) and B) are essential components of the catalyst, and component C) is an optional component of the catalyst.
  • the organoaluminum compound is selected from the group consisting of trialkyl aluminum, dialkyl aluminum chloride, alkyl aluminum chloride, alkyl aluminoxane, preferably C 1 - C 6 trialkyl aluminum chloride.
  • dialkyl aluminum chloride such as trimethyl aluminum, triethyl aluminum, tri-n-propyl aluminum, triisopropyl aluminum, tri-n-butyl aluminum, triisobutyl aluminum, trioctyl aluminum, monohydrogen At least one of diethylaluminum, diisobutylaluminum hydride, diethylaluminum chloroformate, dichlorodiisobutylaluminum, sesquiethylaluminum chloride, and ethylaluminum dichloride. More preferred is triethylaluminum and/or triisobutylaluminum.
  • the organosilicon compound of the present invention is preferably a compound represented by the formula R 5 m Si(OR 6 ) 4-m wherein, in the formula, 0 ⁇ m ⁇ 3, and R 5 and R 6 are the same or different alkyl groups. And a cycloalkyl group, an aryl group, a halogenated alkyl group, an amine group, and R 5 may also be a halogen or a hydrogen atom.
  • the organosilicon compound is selected from at least one of the following compounds: trimethylmethoxysilane, trimethylethoxysilane, trimethylphenoxysilane, tri-n-propylmethoxysilane , dimethyldimethoxysilane, dipropyldimethoxysilane, dibutyldimethoxysilane, dipentyldimethoxysilane, diisopropyldimethoxysilane, diisobutylene Dimethoxysilane, dimethyldiethoxysilane, cyclohexylmethyldiethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexyldimethylmethoxysilane, hexyldiethyl Methoxysilane, dicyclopentyldimethoxysilane, cyclopentyldiethylmethoxysilane, cyclopentylisopropyldimethoxy
  • the molar ratio of components A), B) and C) is preferably 1: (5-2000): (0-500), more preferably 1: (10-800): (0-300).
  • the invention also provides for the use of the catalyst component or catalyst in the field of olefin polymerization, especially in the field of propylene polymerization.
  • the invention also provides for the use of the catalyst in the field of olefin polymerization, especially in the field of propylene polymerization.
  • the invention has the beneficial effects that when the catalyst of the invention is used for the polymerization of propylene, the catalyst has high activity and long-period activity, the isotactic index of the obtained polymer is adjustable, and the molecular weight distribution of the obtained polymer is wide.
  • MI Polymer melt index
  • Isotactic index of propylene polymer (II) determined by heptane extraction method: 2 g of dried polymer sample was placed in an extractor and extracted with boiling heptane for 6 hours, and then the residue was dried to constant The ratio of the weight of the polymer obtained (g) to 2 (g) is isotacticity;
  • polymer molecular weight distribution MWD Mw / Mn: using PL-GPC220, using trichlorobenzene as solvent, measured at 150 ° C (standard: polystyrene, flow rate: 1.0mL / min, column: 3x Plgel 10um MlxED-B 300x 7.5nm).
  • catalyst activity (mass of prepared polyolefin) / (mass of catalyst solid component) g / g.
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour, and the solution was cooled to below -25 °C. TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • 6-(2,6-Diisopropylphenylimino)ethyl-2-acetylpyridine (0.006 mol) was added and the temperature was maintained for 1 hour. After hot filtration, 150 mL of toluene was added, and the mixture was washed twice to obtain a solid, and 100 mL of toluene was added thereto, and the mixture was stirred for 30 minutes, and the temperature was raised to 110 ° C, and washed three times for 10 minutes each. Further, it washed twice with 60 mL of hexane to obtain a catalyst component of 7.9 g, which contained Ti: 3.5%, Mg: 22.6%, and Cl: 51.3%.
  • catalyst component same as in Example 9A, replacing only 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine with 6-(4-chlorophenylimino) Keto-2-acetylpyridine.
  • catalyst component same as in Example 9A, replacing only 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine with 6-(8-quinolinimido)B Keto-2-acetylpyridine.
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour, and the solution was cooled to below -25 °C. TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • catalyst component same as in Example 13A, replacing only 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine with 6-(8-quinolinimido)B Keto-2-acetylpyridine.
  • catalyst component In a reactor fully replaced by high-purity nitrogen, 300 mL of TiCl 4 was added, the temperature was lowered to -20 ° C, and 7.0 g of a magnesium chloride alcoholate carrier (see Patent CN1330086A) was added, and the temperature was raised to 40 ° C in stages. Add 2,4-dibenzoyloxypentane (0.003 mol) and 6-(2,6-diisopropylphenylimido)ethyl-2-acetylpyridine (0.003 mol) to maintain temperature 2 hour. After filtration, 100 mL of TiCl 4 was added, and the temperature was raised to 110 ° C, and three treatments were carried out. It was further washed three times by adding 60 mL of hexane. The catalyst component was obtained in an amount of 7.2 g, and contained Ti: 2.7%, Mg: 20.2%, and Cl: 50.4%.
  • a magnesium chloride alcoholate carrier see Patent CN1330086A
  • catalyst component in the reactor fully replaced by high-purity nitrogen, add 300mL TiCl 4 , reduce the temperature to -20 ° C, add 7.0 g of ethoxy magnesium, stir the temperature to 40 ° C in stages, add 2,4- Dibenzoyloxypentane (0.003 mol) and 6-(2-naphthalenido)ethyl-2-acetylpyridine (0.003 mol) were maintained at a temperature of 3 hours. After filtration, 100 mL of TiCl 4 was added, and the temperature was raised to 110 ° C, and three treatments were carried out. It was further washed three times by adding 60 mL of hexane. A catalyst component of 6.7 g was obtained, which contained Ti: 3.0%, Mg: 20.7%, and Cl: 51.3%.
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour, and the solution was cooled to below -25 °C. TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • DNBP (0.006 mol) was added and the temperature was maintained for 1 hour. After hot filtration, 150 mL of toluene was added and washed twice to obtain a solid, and 100 mL of toluene was added thereto, and the temperature was raised to 110 ° C, and washing was performed three times for 10 minutes each. 60 mL of hexane was added, stirred for 30 minutes, and washed three times with 60 mL of hexane. The catalyst component was obtained in an amount of 7.4 g, and contained Ti: 2.3%, Mg: 22.5%, and Cl: 51.4%.
  • the catalyst of the present invention when used for the polymerization of propylene, the catalyst has high activity and long-period activity, and the obtained polymer has an isotactic index adjustable and a broad molecular weight distribution.
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour, and the solution was cooled to below -25 °C. TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour, and the solution was cooled to below -25 °C. TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • 2,4-Dibenzoylpentane (0.006 mol) was added and the temperature was maintained for 1 hour. After hot filtration, 150 mL of toluene was added, and the mixture was washed twice to obtain a solid, and 100 mL of toluene was added thereto, and the mixture was stirred for 30 minutes, and the temperature was raised to 110 ° C, and washed three times for 10 minutes each. Further, the mixture was washed twice with 60 mL of hexane to obtain a catalyst component of 7.8 g, which contained Ti: 3.8%, Mg: 20.2%, and Cl: 51.8%.
  • catalyst component In a reactor fully replaced by high-purity nitrogen, 300 mL of TiCl 4 was added, the temperature was lowered to -20 ° C, and 7.0 g of a magnesium chloride alcoholate carrier (see Patent CN1330086A) was added, and the temperature was raised to 40 ° C in stages. Add 2,4-dibenzoylpentane (0.003 mol) and 6-(2,6-diisopropylphenylimido)ethyl-2-acetylpyridine (0.003 mol), maintaining the temperature for 2 hours . After filtration, 100 mL of TiCl 4 was added, and the temperature was raised to 110 ° C, and three treatments were carried out. It was further washed three times by adding 60 mL of hexane. A catalyst component of 7.3 g was obtained, which contained Ti: 3.5%, Mg: 23.2%, and Cl: 54.2%.
  • a magnesium chloride alcoholate carrier see Patent CN1330086A
  • the solid component was 10 mg and 1.2 NL of hydrogen, and 2.5 L of liquid propylene was introduced.
  • the temperature was raised to 70 ° C, the temperature was maintained for 1 hour, the temperature was lowered, the pressure was released, and the PP resin was discharged. The results are shown in Table 2.
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour, and the solution was cooled to below -25 °C. TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • 2,4-Dibenzoylcarboxypentane (0.003 mol) was added and the temperature was maintained for 1 hour. After hot filtration, 150 mL of toluene was added and washed twice to obtain a solid, and 100 mL of toluene was added thereto, and the temperature was raised to 110 ° C, and washing was performed three times for 10 minutes each. 60 mL of hexane was added, stirred for 30 minutes, and washed three times with 60 mL of hexane. The catalyst component was obtained in an amount of 7.4 g, and contained Ti: 2.4%, Mg: 22.0%, and Cl: 50.6%.
  • the solid component was 10 mg and 7.2 NL of hydrogen, and 2.5 L of liquid propylene was introduced, and the temperature was raised to 70 ° C. The temperature was maintained for 1 hour, the temperature was lowered, and the pressure was released to obtain a PP resin.
  • Table 2 The results are shown in Table 2.
  • the ketimine compound represented by Formula I and the glycol ester compound represented by Formula III were used as a catalyst for the composite internal electron donor for propylene.
  • the hydrogen sensitivity of the catalyst is obviously improved, the catalyst activity is high and the long-period activity is obtained, and the molecular weight distribution of the obtained polymer is wide.
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour, and the solution was cooled to below -25 °C. TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • catalyst component As in Example 9C, only 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine was replaced by 6-(2,6 prepared in Example 4). - dimethylphenylimido)ethyl-2-acetylpyridine.
  • catalyst component In the same manner as in Example 9, only 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine was replaced by 6-(8-quinoline) prepared in Example 8. Phenylimido)ethyl-2-acetylpyridine.
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour, and the solution was cooled to below -25 °C. TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • 9,9'-Dimethoxymethylhydrazine (0.006 mol) was added to maintain the temperature for 1 hour. After hot filtration, 150 mL of toluene was added and washed twice to obtain a solid, and 100 mL of toluene was added thereto, and the mixture was stirred for 30 minutes, and the temperature was raised to 110 ° C, and washed three times for 10 minutes each. Further, 60 mL of hexane and 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine (0.006 mol) prepared in Example 3 were added, and the mixture was stirred for 30 minutes, and 60 mL of hexane was added to wash the two. Then, 6.8 g of a catalyst solid component was obtained, which contained Ti: 3.6%, Mg: 21.4%, and Cl: 52.3%.
  • catalyst component In a reactor fully replaced by high-purity nitrogen, 300 mL of TiCl 4 was added, the temperature was lowered to -20 ° C, and 7.0 g of a magnesium chloride alcoholate carrier (see Patent CN1330086A) was added, and the temperature was raised to 40 ° C under stirring. , 9,9'-dimethoxymethylhydrazine (0.003 mol) and 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine prepared in Example 3 (0.003 mol) ), maintain the temperature for 2 hours. After filtration, 100 mL of TiCl 4 was added, and the temperature was raised to 110 ° C, and three treatments were carried out. It was further washed three times by adding 60 mL of hexane. The catalyst solid component was obtained in an amount of 7.1 g, and contained Ti: 3.4%, Mg: 21.2%, and Cl: 50.7%.
  • a magnesium chloride alcoholate carrier see Patent
  • the prepared solid component 10 mg and 1.2 NL of hydrogen were passed through 2.5 L of liquid propylene, and the temperature was raised to 70 ° C. The temperature was maintained for 1 hour, the temperature was lowered, and the pressure was released to obtain a PP resin.
  • Table 3 The results are shown in Table 3.
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour. The solution was cooled to -25 ° C or lower, TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • 2-isopropyl-2-isopentyl-1,3-dimethoxypropane (0.003 mol) was added, the temperature was maintained for 1 hour, and after hot filtration, 150 mL of toluene was added and washed twice to obtain a solid, and toluene 100 mL was added. The temperature was raised to 110 ° C and washed three times for 10 minutes each. 60 mL of hexane was added and stirred for 30 minutes, and then washed with hexane 60 mL three times. A catalyst solid component of 7.4 g was obtained, which contained Ti: 2.4%, Mg: 22.0%, and Cl: 50.6%.
  • the solid component was 10 mg and 1.2 NL of hydrogen, and 2.5 L of liquid propylene was introduced, and the temperature was raised to 70 ° C. The temperature was maintained for 1 hour, the temperature was lowered, and the pressure was released to obtain a PP resin.
  • Table 3 The results are shown in Table 3.
  • the prepared solid component 10 mg and 1.2 NL of hydrogen were passed through 2.5 L of liquid propylene, and the temperature was raised to 70 ° C. The temperature was maintained for 2 hours, the temperature was lowered, and the pressure was released to obtain a PP resin. The results are shown in Table 3.
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour, and the solution was cooled to below -25 °C. TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • DNBP 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine
  • DNBP 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine
  • the temperature was maintained for 1 hour.
  • 150 mL of toluene was added, and the mixture was washed twice to obtain a solid, and 100 mL of toluene was added thereto, and the mixture was stirred for 30 minutes, and the temperature was raised to 110 ° C, and washed three times for 10 minutes each. Further, it was washed twice by adding 60 mL of hexane to obtain 7.5 g of a catalyst component containing Ti: 3.6%, Mg: 22.8%, and Cl: 52.6%.
  • catalyst component same as in Example 9D, replacing only 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine with 6-(8-quinolinimido)B Keto-2-acetylpyridine.
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour, and the solution was cooled to below -25 °C. TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • DNBP (0.006 mol) was added and the temperature was maintained for 1 hour. After hot filtration, 150 mL of toluene was added, and the mixture was washed twice to obtain a solid, and 100 mL of toluene was added thereto, and the mixture was stirred for 30 minutes, and the temperature was raised to 110 ° C, and washed three times for 10 minutes each. Further, 60 mL of hexane and 6-(2,6-diisopropylphenylimido)ethyl-2-acetylpyridine (0.006 mol) were added, and the mixture was stirred for 30 minutes, and washed with 60 mL of hexane to obtain a catalyst group. It is divided into 7.2 g, containing Ti: 3.8%, Mg: 22.1%, and Cl: 51.3%.
  • catalyst component In a reactor fully replaced by high-purity nitrogen, 300 mL of TiCl 4 was added, the temperature was lowered to -20 ° C, and 7.0 g of a magnesium chloride alcoholate carrier (see Patent CN1330086A) was added, and the temperature was raised to 40 ° C in stages. DNBP (0.003 mol) and 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine (0.003 mol) were added, and the temperature was maintained for 2 hours. After filtration, 100 mL of TiCl 4 was added, and the temperature was raised to 110 ° C, and three treatments were carried out. It was further washed three times by adding 60 mL of hexane. A catalyst component of 7.3 g was obtained, which contained Ti: 3.5%, Mg: 23.2%, and Cl: 54.2%.
  • a magnesium chloride alcoholate carrier see Patent CN1330086A
  • catalyst component In a reactor fully replaced by high-purity nitrogen, add 300mL of TiCl 4 , cool down to -20 ° C, add 7.0 g of ethoxymagnesium, and stir to a temperature of 40 ° C, add DNBP (0.003 mol) And 6-(2,6-diisopropylphenylimino)ethyl-2-acetylpyridine (0.003 mol), maintaining the temperature for 3 hours. After filtration, 100 mL of TiCl 4 was added, and the temperature was raised to 110 ° C, and three treatments were carried out. It was further washed three times by adding 60 mL of hexane. A catalyst component of 6.6 g was obtained, which contained Ti: 3.0%, Mg: 22.6%, and Cl: 52.0%.
  • the solid component was 10 mg and 1.2 NL of hydrogen, and 2.5 L of liquid propylene was introduced.
  • the temperature was raised to 70 ° C, the temperature was maintained for 1 hour, the temperature was lowered, the pressure was released, and the PP resin was discharged. The results are shown in Table 4.
  • catalyst component 4.8 g of magnesium chloride, 95 mL of toluene, 4 ml of epichlorohydrin and 12.5 mL of tributyl phosphate (TBP) were sequentially added to a reactor which was sufficiently substituted by high-purity nitrogen, and the temperature was raised to 50 ° C under stirring. Maintain for 2.5 hours. After the solid was completely dissolved, 1.4 g of phthalic anhydride was added, and the mixture was further maintained for 1 hour, and the solution was cooled to below -25 °C. TiCl 4 was added dropwise over 1 hour, and the temperature was slowly raised to 80 ° C, and the solid matter was gradually precipitated.
  • TBP tributyl phosphate
  • DNBP (0.006 mol) was added and the temperature was maintained for 1 hour. After hot filtration, 150 mL of toluene was added and washed twice to obtain a solid, and 100 mL of toluene was added thereto, and the temperature was raised to 110 ° C, and washing was performed three times for 10 minutes each. 60 mL of hexane was added, stirred for 30 minutes, and washed three times with 60 mL of hexane. The catalyst component was obtained in an amount of 7.4 g, and contained Ti: 2.4%, Mg: 22.0%, and Cl: 50.6%.

Abstract

本发明提供了一种用于烯烃聚合的催化剂组分,包括镁、钛、卤素和内给电子体,所述内给电子体包括式I所示的酮亚胺类化合物。本发明还提供了所述催化剂组分的制备方法,以及包含所述催化剂组分的烯烃聚合催化剂。该催化剂用于烯烃尤其是丙烯聚合反应时,具有长周期的较高活性和氢调敏感性,所得聚合物具有等规度高、分子量分布较宽的特点。

Description

用于烯烃聚合的催化剂组分、催化剂及其应用
相关技术的交叉引用
本申请要求享有2016年9月23日提交的申请文件的优先权:
1.“一种用于烯烃聚合的催化剂组分、催化剂及其应用”的中国专利申请CN 201610847284.7;
2.“一种用于烯烃聚合的催化剂组分、催化剂及其应用”的中国专利申请CN 201610847281.3;
3.“一种用于烯烃聚合的催化剂组分、催化剂及其应用”的中国专利申请CN 201610847600.0;
4.“一种用于烯烃聚合的催化剂组分、催化剂及其应用”的中国专利申请CN 201610847664.0。
上述文件的全部内容通过引用并入本文中。
技术领域
本发明涉及一种用于烯烃聚合的催化剂组分、催化剂及其应用,属于石油化工领域。
背景技术
烯烃聚合催化剂可分为三大类,即传统的Ziegler-Natta催化剂、茂金属催化剂以及非茂金属催化剂。对于传统的丙烯聚合Ziegler-Natta催化剂而言,随着催化剂中的给电子化合物的发展,聚烯烃催化剂也不断地更新换代。催化剂的研发从第一代的TiCl3/AlCl3/AlEt2Cl体系和第二代的TiCl3/AlEt2Cl体系,到第三代的以氯化镁为载体、单酯或芳香二元酸酯为内给电子体、硅烷为外给电子体的TiCl4·ED·MgCl2/AlR3·ED体系以及新开发的二醚类、二酯类为内给电子体的催化剂体系,催化剂的催化聚合反应活性以及所得到的聚丙烯等规度都有了很大幅度的提高。在现有技术中,用于丙烯聚合的钛催化剂体系多以镁、钛、卤素和给电子体作为基本成分,其中给电子化合物是催化剂组分中必不可少的组分之一。目前,已公开了多种给电子化合物,如一元羧酸酯或多元羧酸酯、酸酐、酮、单醚或多醚、醇、胺等及其衍生物,其中较为常用的是芳香二元羧酸酯类,例如邻苯二甲酸二正丁酯(DNBP)或邻苯二甲酸二异丁酯(DIBP)等,可参见美国专利US4784983。美国专利US4971937和欧洲专利EP0728769所公开的用于烯烃聚合反应催化剂的组分中,采用了特殊的含有两个醚基团的1,3-二醚类化 合物为给电子体,如2-异丙基-2-异戊基-1,3-二甲氧基丙烷、2,2-二异丁基-1,3-二甲氧基丙烷和9,9-二(甲氧甲基)芴等。其后又公开了一类特殊的二元脂肪族羧酸酯类化合物,如琥珀酸酯、丙二酸酯、戊二酸酯等(参见WO98/56830、WO98/56834、WO01/57099、WO01/63231和WO00/55215),这类给电子化合物的使用不仅可提高催化剂的活性,且所得丙烯聚合物的分子量分布明显加宽。
最常见的非茂金属烯烃聚合催化剂是含有C=N类多齿配体的过渡金属配合物,如Brookhart等人首次发现二亚胺后过渡金属配合物在催化烯烃聚合时具有较高的催化活性(Johnson L.K.,Killian C.M.,Brookhart M.,J.Am.Chem.Soc.,1995,117,6414;Johnson L.K.,Ecking S.M.,Brookhart M.,J.Am.Chem.Soc.,1996,118,267)。自此以后,对非茂金属有机配合物的研究引起了人们的极大兴趣。McConville等人于1996年报道了一类鳌合β-二胺的Ti、Zr金属配合物(如式1),其是第一例高活性催化烯烃聚合的含N-N类多齿配体的前过渡金属配合物(Scollard J.D.,Mcconville D.H.,Payne N.C.,Vittal J.J,Macromolecules,1996,29,5241;Scollard J.D.,Mcconville D.H.,J.Am.Chem.Soc.,1996,118,10008)。
Figure PCTCN2017103044-appb-000001
β-二胺类配合物(如式2)也是一类重要的含N-N类配体的非茂金属烯烃聚合催化剂。由于其结构的特点,配体的空间位阻和电子效应很容易通过芳胺上的取代基的改变而易于调控,不同的金属以及配体环境的改变,β-二胺类配体可以通过不同的成键方式与不同金属配伍形成相应的金属配合物,且该类配体化合物具有合成简单、易于进行结构方面的调控等特点,是较为理想的研究结构与催化剂性能关系的配合物,因此该类结构的配体化合物引起了人们的广泛关注(Bourget-Merle L.,Lappert M.F.,Severn J.R.,Chem.Rev.,2002,102,3031;Kim W.K.,Fevola M.J.,Liable-Sands L.M.,Rheingold A.L.,Theopoid K.H.,Organometallics,1998,17,4541;Jin X.,Novak B.M.,Macromolecules,2000,33,6205)。
中石化北京化工研究院聚乙烯室于专利CN00107258.7中公开了一类双齿配体的金属络合物,用于乙烯及其共聚合反应。随后分别于专利CN02129548.4(2002年)、专利200410086388.8(2004年)及专利200710176588.6(2007年)中公开了一种类似的过渡金属配合物催化剂,用于乙烯及其共聚合反应。中科院上海有机所的专利201010554473.8和201010108695.7公开了一类类似结构的多齿配体金属催化剂,用于乙烯及其共聚合反应制备超低支化度的高分子量聚乙烯。
在上述相关的专利报道中,用于烯烃聚合的催化剂均为相应的配体金属化合物。截至目 前为止,尚未见有该类配体化合物直接应用于丙烯聚合催化剂的制备及其在丙烯聚合反应方面的相关报道。
发明内容
鉴于以上现有技术的不足,本发明的目的在于研制一种用于烯烃聚合的催化剂组分及其催化剂和应用。在催化剂制备过程中加入如式I所示的内给电子体(酮亚胺类化合物),组成新型的催化聚合反应体系。使用该催化剂用于烯烃尤其是丙烯聚合反应时,具有长周期的较高活性,良好的氢调敏感性,所得聚合物等规度指数可调、分子量分布较宽的特点。
为实现上述目的,本发明提供了一种用于烯烃聚合的催化剂组分,所述催化剂组分中含有镁、钛、卤素和内给电子体,所述内给电子体包括式I所示的酮亚胺类化合物,
Figure PCTCN2017103044-appb-000002
在式I中,R选自羟基、含或不含卤素原子取代基的C1~C20的烷基、含或不含卤素原子取代基的C2~C20烯基或含或不含卤素原子取代基的C6~C30的芳香基;R1~R5可相同或不同,分别独立地为氢、C1~C20的烷基、C2~C20的烯基、C6~C30的芳烷基、C6~C30的烷芳基、C9~C40的稠环芳香基团、卤素原子、羟基或C1~C20的烷氧基;X选自卤素、氮、氧、磷或硅杂原子、取代或未取代的烷基、C5~C20的环烷基、C6~C30的芳基或C9~C40的稠环芳基。
根据一些优选实施例,R为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、己基、羟烷基、苯基、卤苯基、烷基取代的苯基、萘基、联苯基或含杂环化合物的基团;所述含杂环化合物的基团优选含吡咯的基团、含吡啶的基团、含嘧啶的基团或含喹啉的基团。根据一些更优选的实施例,R选自2,6-二烷基苯基(例如2,6-二甲基苯基、2,6-二乙基苯基、2,6-二异丙基苯基)、2,4,6-三烷基苯基(例如2,4,6-三甲基苯基、2,4,6-三乙基苯基、2,4,6-三异丙基苯基)、羟烷基取代的苯基(例如羟丙基苯基)、3-喹啉基、1-萘基、苄基和8-喹啉基。
根据一些优选实施例,R3~R5各自独立为氢、甲基、乙基、正丙基、异丙基、正丁基、叔丁基或异丁基。
根据一些优选实施例,R1和R2各自独立选自甲基、乙基、正丙基、异丙基、正丁基、叔丁基和异丁基。
根据一些优选实施例,X为氮原子或CH。
在本发明中,式I所示的酮亚胺类化合物优选为:6-(丁亚胺基)乙基-2-乙酰基吡啶、6-(己亚胺基)乙基-2-乙酰基吡啶、6-(戊亚胺基)乙基-2-乙酰基吡啶、6-(辛亚胺基)乙基-2-乙酰基吡啶、6-(苄亚胺基)乙基-2-乙酰基吡啶、6-(4-羟基丁亚胺基)乙基-2-乙酰基吡啶、6-(2-羟基苯亚胺基)乙基-2-乙酰基吡啶、6-(2,6-二甲基苯亚胺基)乙基-2-乙酰基吡啶、6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶、6-(苯亚胺基)乙基-2-乙酰基吡啶、6-(2-萘亚胺基)乙基-2-乙酰基吡啶、6-(1-萘亚胺基)乙基-2-乙酰基吡啶、6-(4-氯苯亚胺基)乙基-2-乙酰基吡啶、6-(4-三氟甲基苯亚胺基)乙基-2-乙酰基吡啶、6-(2-三氟甲基苯亚胺基)乙基-2-乙酰基吡啶、6-(2-羟基-4-氯苯亚胺基)乙基-2-乙酰基吡啶、6-(8-喹啉亚胺基)乙基-2-乙酰基吡啶、6-(4-喹啉亚胺基)乙基-2-乙酰基吡啶、6-(3-喹啉亚胺基)乙基-2-乙酰基吡啶、6-(2,4,6-三甲基苯亚胺基)乙基-2-乙酰基吡啶、6-(2-乙基苯亚胺基)乙基-2-乙酰基吡啶、6-(4-乙基苯亚胺基)乙基-2-乙酰基吡啶、6-(2-丙基苯亚胺基)乙基-2-乙酰基吡啶、6-(4-丙基苯亚胺基)乙基-2-乙酰基吡啶、6-(3-丙基苯亚胺基)乙基-2-乙酰基吡啶、6-(2-丁基苯亚胺基)乙基-2-乙酰基吡啶、6-(4-丁基苯亚胺基)乙基-2-乙酰基吡啶、3-(苯亚胺基)乙基苯乙酮、3-(2,6-二甲基苯亚胺基)乙基苯乙酮、3-(2,6-二异丙基苯亚胺基)乙基苯乙酮、3-(2-萘亚胺基)乙基苯乙酮、3-(苄亚胺基)乙基苯乙酮、3-(8-喹啉亚胺基)乙基苯乙酮、3-(2-喹啉亚胺基)乙基苯乙酮、6-(丁亚胺基)乙基-2-丙酰基吡啶、6-(己亚胺基)乙基-2-丙酰基吡啶、6-(2,6-二甲基苯亚胺基)乙基-2-丙酰基吡啶、6-(2,6-二异丙基苯亚胺基)乙基-2-丙酰基吡啶、6-(苯亚胺基)乙基-2-丙酰基吡啶、6-(戊亚胺基)乙基-2-丁酰基吡啶、6-(2-萘亚胺基)乙基-2-丁酰基吡啶、6-(丁亚胺基)丙基-2-丙酰基吡啶、6-(己亚胺基)丁基-2-丙酰基吡啶、6-(2,6-二甲基苯亚胺基)丙基-2-丙酰基吡啶、6-(2,6-二异丙基苯亚胺基)丙基-2-丙酰基吡啶、6-(苯亚胺基)丙基-2-丙酰基吡啶、6-(戊亚胺基)丙基-2-丁酰基吡啶和6-(2-萘亚胺基)丙基-2-丁酰基吡啶中的一种或多种。
根据一些优选实施方式,基于所述催化剂组分的重量,所述镁的含量为5wt%-50wt%,钛的含量为1.0wt%-8.0wt%,卤素的含量为10wt%-70wt%,内给电子体的总含量为0.1wt%-20wt%。
在本发明的优选实施方式中,所述内给电子体可进一步包括至少一种其他给电子化合物。优选地,所述其他给电子化合物选自芳香羧酸酯类化合物、二醇酯类化合物、二酚酯类化合物和二醚类化合中的一种、两种或三种。
在本发明的优选实施方式中,所述式I所示的酮亚胺类化合物与所述其他给电子化合物的摩尔比为1:(0.05-20),优选为1:(0.1-10)。
根据本发明的优选实施方式,所述芳香羧酸酯类化合物结构如式II所示,
Figure PCTCN2017103044-appb-000003
式II中,RI为含或不含卤素原子取代基的C1~C20的烷基、含或不含卤素原子取代基的C2~C20烯基、含或不含卤素原子取代基的C2~C20炔基、或含或不含卤素原子取代基的C6~C30的烷芳基;RII为C1~C20的烷基、C2~C20的烯基、C2~C20的炔基或C6~C30的烷芳基或酯基或酰胺基;RIII、RIV、RV和RVI相同或不同,为C1~C20的烷基、C2~C20烯基、C2~C20炔基、C1~C20的烷氧基、C6~C30的芳烷基、C6~C30的烷芳基、C9~C40的稠环芳香基团或卤素。
根据一些实施方式,式II中,RI为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、新戊基、己基、乙烯基、烯丙基、乙炔基、苯基、卤苯基、烷基取代的苯基、萘基或联苯基。
根据一些实施方式,式II中,RII为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、新戊基、己基、乙烯基、烯丙基、乙炔基、苯基、卤苯基、烷基取代的苯基、萘基、联苯基、乙氧甲酰基、丙氧甲酰基、异丙氧甲酰基、丁氧甲酰基、异丁氧甲酰基、己氧甲酰基、异已氧甲酰基、新已氧甲酰基、庚氧甲酰基、异庚氧甲酰基、新庚氧甲酰基、辛氧甲酰基、异辛氧甲酰基或新辛氧甲酰基。
在本发明中,所述芳香羧酸酯类化合物可以选自苯甲酸乙酯、苯甲酸丙酯、苯甲酸丁酯、苯甲酸戊酯、苯甲酸己酯、苯甲酸庚酯、苯甲酸辛酯、苯甲酸壬酯、苯甲酸癸酯、苯甲酸异丁酯、苯甲酸异戊酯、苯甲酸异己酯、苯甲酸异庚酯、苯甲酸异辛酯、苯甲酸异壬酯、苯甲酸异癸酯、苯甲酸新戊酯、苯甲酸新己酯、苯甲酸新庚酯、苯甲酸新辛酯、苯甲酸辛壬酯、苯甲酸新癸酯、邻苯二甲酸二乙酯、邻苯二甲酸二丙酯、邻苯二甲酸二异丁酯(DIBP)、邻苯二甲酸二正丁酯(DNBP)、邻苯二甲酸二正戊酯、邻苯二甲酸二异戊酯、邻苯二甲酸二新戊酯、邻苯二甲酸二己酯、邻苯二甲酸二庚酯、邻苯二甲酸二辛酯、邻苯二甲酸二壬酯、邻苯二甲酸二异己酯、邻苯二甲酸二异庚酯、邻苯二甲酸二异辛酯、邻苯二甲酸二异壬酯、3-甲基邻苯二甲酸二异丁酯、3-甲基邻苯二甲酸二正丁酯、3-甲基邻苯二甲酸 二异戊酯、3-甲基邻苯二甲酸二正戊酯、3-甲基邻苯二甲酸二异辛酯、3-甲基邻苯二甲酸二正辛酯、3-乙基邻苯二甲酸二异丁酯、3-乙基邻苯二甲酸二正丁酯、3-乙基邻苯二甲酸二正辛酯、3-乙基邻苯二甲酸二异丁酯、3-乙基邻苯二甲酸二正戊酯、3-乙基邻苯二甲酸二异戊酯、3-丙基邻苯二甲酸二异丁酯、3-丙基邻苯二甲酸二正丁酯、3-氯邻苯二甲酸二异丁酯、3-丁基邻苯二甲酸二异丁酯、3-丁基邻苯二甲酸二正丁酯、4-丁基邻苯二甲酸二正丁酯、4-丙基邻苯二甲酸二异丁酯、4-丁基邻苯二甲酸二异戊酯、4-氯邻苯二甲酸二正丁酯、4-氯邻苯二甲酸二异丁酯、4-氯邻苯二甲酸二正辛酯、4-甲氧基邻苯二甲酸二正丁酯和4-甲氧基邻苯二甲酸二异丁酯中的一种或多种。
根据本发明的优选实施方式,所述二醇酯类化合物的结构如式III所示,
Figure PCTCN2017103044-appb-000004
式III中,X和Y独立地选自碳、氧、硫、氮、硼或硅;R1和R2相同或不同,分别独立地为卤素、烷基、环烷基、芳基、烯烃基、稠环芳基或酯基;R3~R6相同或不同,分别独立地为氢或取代或未取代的烷基、环烷基、芳基、烯烃基、稠环芳基或酯基;RI~RIV相同或不同,分别独立地为氢或取代或未取代的烷基、环烷基、芳基、烯烃基、稠环芳基或酯基;R3~R6及RI~RIV基团上任选包含一个或多个杂原子作为碳或氢原子或二者的取代物,所述杂原子为氧、硫、氮、硼、硅、磷或卤素原子;R3~R6及RI~RIV基团中的一个或多个可以连接成环;n为0~10的整数。
根据一些优选实施例,所述二醇酯类化合物的结构如式IIIa所示:
Figure PCTCN2017103044-appb-000005
式IIIa中,R1、R2以及R3~R6相同或不同,分别独立地为C1~C20的烷基、C3~C20的环烷基、C2~C20的烯基、C6~C30的芳烷基、C6~C30的烷芳基、C9~C40的稠环芳香基团或酯基;RI和RII相同或不同,分别独立地为氢、C1~C20的烷基、C3~C20的环烷基、C2~C20的烯基、C6~C30的芳烷基、C6~C30的烷芳基、C9~C40的稠环芳香基团或酯基;R3~R6及RI~RIV基团上任选包含一个或多个杂原子作为碳或氢原子或二者的取代物,所述杂原子为氧、硫、氮、硼、硅、磷或卤素原子;R3~R6、RI、RII基团中的一个或多个可以连接成环;n为1~5的整数。
根据一个实施例,所述二醇酯类化合物为二酚酯类化合物,其结构式为:
Figure PCTCN2017103044-appb-000006
式IIIb中,R1、R2相同或不同,分别独立地为C1~C20的烷基、C3~C20的环烷基、C2~C20的烯基、C6~C30的芳烷基、C6~C30的烷芳基、C9~C40的稠环芳香基团或酯基;Ar为C6~C30的芳基、C6~C30的烷芳基或C9~C40的稠环芳香基团。
优选地,在式III、式IIIa和/或式IIIb中,R1和R2独立地选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、己基、羟烷基、苯基、卤苯基、烷基取代的苯基、萘基、联苯基或含杂环化合物的基团;所述含杂环化合物的基团优选含吡咯的基团、含吡啶的基团、嘧啶的基团或含喹啉的基团。
优选地,在式III和式IIIa中,RI和RII独立地选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、己基、羟烷基、苯基、卤苯基、烷基取代的苯基等。
根据一些优选实施例,在式III和/或式IIIa中,RI和RII连接成环,如取代的或未取代的芴环。
优选地,所述二醇酯类或二酚酯类化合物选自2-异丙基-1,3-二苯甲羧基丙烷、2-丁基-1,3-二苯甲羧基丙烷、2-环己基-1,3-二苯甲羧基丙烷、2-苄基-1,3-二苯甲羧基丙烷、2-苯基-1,3-二苯甲羧基丙烷、2-(1-萘基)-1,3-二苯甲羧基丙烷、2-异丙基-1,3-二乙羧基丙烷、2-异丙基-2-异戊基-1,3-二苯甲羧基丙烷、2-异丙基-2-异丁基-1,3-二苯甲羧基丙烷、2-异丙基-2-异戊基-1,3-二丙羧基丙烷、2-异丙基-2-丁基-1,3-二苯甲羧基丙烷、2-异丙基-2-异戊基-1-苯甲羧基-3-丁羧基丙烷、2-异丙基-2-异戊基-1-苯甲羧基-3-肉桂羧基丙烷、2-异丙基-2-异戊基-1-苯甲羧基-3-乙羧基丙烷、2,2-二环戊基-1,3-二苯甲羧基丙烷、2,2-二环己基-1,3-二苯甲羧基丙烷、2,2-二丁基-1,3-二苯甲羧基丙烷、2,2-二异丁基-1,3-二苯甲羧基丙烷、2,2-二异丙基-1,3-二苯羧基丙烷、2,2-二乙基-1,3-二苯羧基丙烷、2-乙基-2-丁基-1,3-二苯羧基丙烷、2,4-二苯甲羧基戊烷、3-乙基-2,4-二苯甲羧基戊烷、3-甲基-2,4-二苯甲羧基戊烷、3-丙基-2,4-二苯甲羧基戊烷、3-异丙基-2,4-二苯甲羧基戊烷、2,4-二(2-丙基苯甲羧基)戊烷、2,4-二(4-丙基苯甲羧基)戊烷、2,4-二(2,4-二甲基苯甲羧基)戊烷、2,4-二(2,4-二氯苯甲羧基)戊烷、2,4-二(4-氯苯甲羧基)戊烷、2,4-二(4-异丙基苯甲羧基)戊烷、2,4-二(4-丁基苯甲羧基)戊烷、2,4-二(4-异丁基苯甲羧基)戊烷、3,5-二苯甲羧基庚烷、4-乙基-3,5-二苯甲羧基庚烷、4-丙基-3,5-二苯甲羧基庚烷、4-异丙基-3,5-二苯甲羧基庚烷、3,5-二(4-丙基苯甲羧基)庚烷、3,5-二(4-异丙基苯甲羧基)庚烷、3,5-二(4-异丁基苯甲羧基)庚烷、3,5-二(4-丁基苯甲羧基)庚烷、2-苯甲羧基-4-(4-异丁基苯甲羧基)戊烷、2-苯甲羧基-4-(4-丁基苯甲羧基)戊烷、2-苯甲羧基-4-(4-丙基苯甲羧基)戊烷、3-苯甲羧基-5-(4-异丁基苯甲羧基)庚烷、3-苯甲羧基-5-(4-丁基苯甲羧基)庚烷、3-苯甲 羧基-5-(4-丙基苯甲羧基)庚烷、9,9-二苯甲羧基甲基芴、9,9-二丙羧基甲基芴、9,9-二异丁羧基甲基芴、9,9-二丁羧基甲基芴、9,9-二苯甲羧基甲基-4-叔丁基芴、9,9-二苯甲羧基甲基-4-丙基芴、9,9-二苯甲羧基甲基-1,2,3,4-四氢芴、9,9-二苯甲羧基甲基-1,2,3,4,5,6,7,8-八氢芴、9,9-二苯甲羧基甲基-2,3,6,7-二苯丙茚、9,9-二苯甲羧基甲基-1,8-二氯芴、7,7-二苯甲羧基甲基-2,5-二降冰片二烯、1,4-二苯甲羧基丁烷、2,3-二异丙基-1,4-二苯甲羧基丁烷、2,3-二丁基-1,4-二苯甲羧基丁烷、1,2-二苯甲羧基苯、3-乙基-1,2-二苯甲羧基苯、4-丁基-1,2-二苯甲羧基苯、1,8-二苯甲羧基萘、2-乙基-1,8-二苯甲羧基萘、2-丙基-1,8-二苯甲羧基萘、2-丁基-1,8-二苯甲羧基萘、4-丁基-1,8-二苯甲羧基萘、4-异丁基-1,8-二苯甲羧基萘、4-异丙基-1,8-二苯甲羧基萘和4-丙基-1,8-二苯甲羧基萘中的一种或多种。
根据本发明的优选实施方式,所述二醚类化合物的结构如式IV所示,
Figure PCTCN2017103044-appb-000007
式IV中,R′和R″相同或不同,分别独立地为C1~C20的烃基;n为0-6的整数;RI~RIV相同或不同,分别独立地为氢、烷氧基、取代的胺基、卤素原子、C1~C20的烃基或C6~C20的芳基,且RI~RIV基团中的两个或多个可键接成环。
根据一些优选实施例,式IV中,R′和R″为C1~C20的烷基,优选为甲基、乙基或异丙基。
根据一些优选实施例,式IV中,RI~RIV为C1~C20的烷基,优选为甲基、乙基、异丙基、正丁基、异丁基、正丙基、正戊基、异戊基、正己基或异己基。
在本发明中,所述二醚类化合物优选为2-异丙基-1,3-二甲氧基丙烷、2-丁基-1,3-二甲氧基丙烷、2-环己基-1,3-二甲氧基丙烷、2-苄基-1,3-二甲氧基丙烷、2-苯基-1,3-二甲氧基丙烷、2-(1-萘基)-1,3-二甲氧基丙烷、2-异丙基-2-异戊基-1,3-二甲氧基丙烷、2-异丙基-2-异丁基-1,3-二甲氧基丙烷、2-异丙基-2-丁基-1,3-二甲氧基丙烷、2,2-二环戊基-1,3-二苯酰氧基丙烷、2,2-二环己基-1,3-二甲氧基丙烷、2,2-二丁基-1,3-二甲氧基丙烷、2,2-二异丁基-1,3-二甲氧基丙烷、2,2-二异丙基-1,3-二甲氧基丙烷、2,2-二乙基-1,3-二甲氧基丙烷、2-乙基-2-丁基-1,3-二甲氧基丙烷、2,4-二甲氧基戊烷、3-乙基-2,4-二甲氧基戊烷、3-甲基-2,4-二甲氧基戊烷、3-丙基-2,4-二甲氧基戊烷、3-异丙基-2,4-二甲氧基戊烷、3,5-二甲氧基庚烷、4-乙基-3,5-二甲氧基庚烷、4-丙基-3,5-二甲氧基庚烷、4-异丙基-3,5-二甲氧基庚烷、9,9-二甲氧基甲基芴、9,9-二甲氧基甲基-4-叔丁基芴、9,9-二甲氧基甲基-4-丙基芴、9,9-二甲氧基甲基-1,2,3,4-四 氢芴、9,9-二甲氧基甲基-1,2,3,4,5,6,7,8-八氢芴、9,9-二甲氧基甲基-2,3,6,7-二苯丙茚、9,9-二甲氧基甲基-1,8-二氯芴、7,7-二甲氧基甲基-2,5-二降冰片二烯、1,4-二甲氧基丁烷、2,3-二异丙基-1,4-二甲氧基丁烷、2,3-二丁基-1,4-二甲氧基丁烷、1,2-二甲氧基苯、3-乙基-1,2-二甲氧基苯、4-丁基-1,2-二甲氧基苯、1,8-二甲氧基萘、2-乙基-1,8-二甲氧基萘、2-丙基-1,8-二甲氧基萘、2-丁基-1,8-二甲氧基萘、4-丁基-1,8-二甲氧基萘、4-异丁基-1,8-二甲氧基萘、4-异丙基-1,8-二甲氧基萘和4-丙基-1,8-二甲氧基萘中的一种或多种。
本发明提供的所述催化剂组分可通过以下任选的方法制备:
方法1:将卤化镁溶于有机环氧化合物和有机磷化合物而成的均匀溶液,也可以加入惰性稀释剂。上述均匀溶液与四卤化钛或其衍生物混合,而当反应体系中有助析出剂存在时,就有固体物析出。将内给电子体载附于固体物上,再用四卤化钛或惰性稀释剂处理,得到包括钛、镁、卤素、给电子体等成分的固体催化剂组分。
所述有机环氧化合物优选包括C2~C15的脂肪族烷烃、烯烃、二烯烃、卤代脂肪族烯烃、二烯烃的氧化物、缩水甘油醚和内醚中的至少一种。具体化合物如环氧丁烷、环氧丙烷、环氧乙烷、丁二烯氧化物,丁二烯双氧化物、环氧氯丙烷、环氧氯丁烷、环氧氯戊烷、甲基缩水甘油醚、二缩水甘油醚、四氢呋喃、四氢吡喃等。更优选包括环氧乙烷、环氧丙烷、环氧氯丙烷、四氢呋喃、四氢吡喃。
所述有机磷化合物优选包括正磷酸或亚磷酸的烃基酯或卤代烃基酯,该有机磷化合物的具体例子如正磷酸三甲酯、正磷酸三乙酯、正磷酸三丁酯、正磷酸三戊酯、正磷酸三己酯、正磷酸三庚酯、正磷酸三辛酯、正磷酸三苯酯、亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸三丁酯或亚磷酸苯甲酯等,更优选正磷酸三丁酯、正磷酸三乙酯。
所述惰性稀释剂优选自C5~C20的烷烃、环烷烃和芳烃中的至少一种,如己烷、庚烷、辛烷、癸烷、环己烷、苯、甲苯、二甲苯或其衍生物等,更优选包括己烷、甲苯。
方法2:将卤化镁或有机镁化合物、醇类化合物和钛酸酯类或卤化钛化合物在惰性溶剂中充分混合搅拌,加热后冷却得到球型载体或加入惰性溶剂得到均匀的醇合物溶液。将上述载体或均匀溶液与四卤化钛或其衍生物混合,低温下维持一段时间后加热升温,加入内给电子体,然后用四卤化钛或惰性稀释剂处理,最后经过过滤、洗涤、干燥后得到包括钛、镁、卤素、给电子体等成分的固体催化剂组分。
所述卤化镁优选包括二氯化镁、二溴化镁、二碘化镁、甲氧基氯化镁、乙氧基氯化镁、丙氧基氯化镁、丁氧基氯化镁等中的至少一种,更优选二氯化镁和/或乙氧基氯化镁。
所述有机镁化合物优选包括二甲基镁、二乙基镁、二丙基镁、二丁基镁、甲基乙基镁、甲基丙基镁、甲基丁基镁、乙基丙基镁、乙基丁基镁、二甲氧基镁、二乙氧基镁、二丙氧基镁、乙氧基乙基镁、二丁氧基镁、二异丁氧基镁等中的至少一种,更优选二丁基镁、二乙基 镁或二乙氧基镁。
方法3:将卤化镁溶于有机环氧化合物和有机磷化合物而成的均匀溶液,也可以加入惰性稀释剂,加入内给电子体。将上述溶液与四卤化钛或其衍生物混合,低温下维持一段时间后加热升温,再用四卤化钛或惰性稀释剂处理,最后经过滤、洗涤、干燥后得到包括钛、镁、卤素、给电子体等成分的固体催化剂组分。
方法4:将卤化镁溶于有机环氧化合物和有机磷化合物而成的均匀溶液,也可以加入惰性稀释剂,加入内给电子体。将上述均匀溶液与四卤化钛或其衍生物混合,低温下维持一段时间后加热升温,用四卤化钛或惰性稀释剂处理,再用内给电子体处理,最后经过滤、洗涤、干燥后得到包括钛、镁、卤素、给电子体等成分的固体催化剂组分。
本发明还提供了一种用于烯烃尤其是丙烯聚合的催化剂,包括:A)所述催化剂组分;B)有机铝化合物;以及任选地C)有机硅化合物。
其中,组分A)和B)为所述催化剂的必要组分,组分C)为所述催化剂的非必要组分。
在本发明中,所述的有机铝化合物选自三烷基铝、二烷基氯化铝、烷基氯化铝、烷基铝氧烷,优选C1-C6的三烷基氯化铝和二烷基氯化铝,如三甲基铝、三乙基铝、三正丙基铝、三异丙基铝、三正丁基铝、三异丁基铝、三辛基铝、一氢二乙基铝、一氢二异丁基铝、一氯二乙基铝、一氯二异丁基铝、倍半乙基氯化铝和二氯乙基铝中的的至少一种。更优选三乙基铝和/或三异丁基铝。
本发明所述有机硅化合物优选为通式R5 mSi(OR6)4-m所示的化合物,式中,式中0≤m≤3,R5和R6为相同或不同的烷基、环烷基、芳基、卤代烷基﹑胺基,R5也可以为卤素或氢原子。优选地,所述有机硅化合物选自以下化合物中的至少一种:三甲基甲氧基硅烷,三甲基乙氧基硅烷,三甲基苯氧基硅烷,三正丙基甲氧基硅烷,二甲基二甲氧基硅烷,二丙基二甲氧基硅烷,二丁基二甲氧基硅烷,二戊基二甲氧基硅烷,二异丙基二甲氧基硅烷,二异丁基二甲氧基硅烷,二甲基二乙氧基硅烷,环己基甲基二乙氧基硅烷,环己基甲基二甲氧基硅烷,环己基二甲基甲氧基硅烷,己基二乙基甲氧基硅烷,二环戊基二甲氧基硅烷,环戊基二乙基甲氧基硅烷,环戊基异丙基二甲氧基硅烷,环戊基异丁基二甲氧基硅烷,4-甲基环己基甲基二甲氧基硅烷,4-甲基环己基乙基二甲氧基硅烷,4-甲基环己基丙基二甲氧基硅烷,二(4-甲基环己基)二甲氧基硅烷,4-甲基环己基戊基二甲氧基硅烷,4-甲基环己基环戊基二甲氧基硅烷,二苯基二甲氧基硅烷,二苯基二乙氧基硅烷,苯基三乙氧基硅烷,苯基三甲氧基硅烷,乙烯基三甲氧基硅烷,四甲氧基硅烷,四乙氧基硅烷,四丙氧基硅烷,四丁氧基硅烷等有机硅化合物,可优选选自环己基甲基二甲氧基硅烷、二环戊基二甲氧基硅烷和/或二异丙基二甲氧基硅烷。这些有机硅化合物可以分别单独使用,也可以将两种或两种以上组合使用。
在本发明中,组分A)、B)和C)的摩尔比优选为1:(5-2000):(0-500),更优选为1:(10-800): (0-300)。
本发明还提供了所述催化剂组分或催化剂在烯烃聚合领域,尤其是丙烯聚合领域的应用。本发明还提供了所述催化剂在烯烃聚合领域,尤其是丙烯聚合领域的应用。
本发明的有益效果为:使用本发明所述的催化剂用于丙烯聚合反应时,催化剂活性较高且具有长周期活性,所得聚合物的等规指数可调,所得聚合物的分子量分布较宽。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
测试方法:
1、聚合物熔融指数(MI):根据GB/T3682-2000测定;
2、丙烯聚合物等规度指数(II):采用庚烷抽提法测定:2g干燥的聚合物样品,放在抽提器中用沸腾庚烷抽提6小时后,将剩余物干燥至恒重所得的聚合物重量(g)与2(g)的比值即为等规度;
3、聚合物分子量分布MWD(MWD=Mw/Mn):采用PL-GPC220,以三氯苯为溶剂,在150℃下测定(标样:聚苯乙烯,流速:1.0mL/min,柱子:3x Plgel 10um MlxED-B 300x 7.5nm)。
4、活性计算:催化剂活性=(制备的聚烯烃质量)/(催化剂固体组份质量)g/g。
实施例1A
合成6-(苯亚胺基)乙基-2-乙酰基吡啶:在250毫升三口瓶中,氮气吹排后加入3.26克2,6-二乙酰基吡啶、100毫升的异丙醇以及0.2毫升冰醋酸,室温下搅拌均匀。室温下缓慢滴加入溶解在20毫升异丙醇溶液中的1.96克苯胺,加完后搅拌反应2小时后升温回流反应12小时。反应溶液经减压浓缩,过柱层析分离后得到2.83克(产率62%)产品。1H-NMR(δ,ppm,TMS,CDCl3):8.46~8.42(2H,m,ArH),7.96~7.93(2H,m,ArH),7.32~7.28(2H,m,ArH),7.10~7.06(2H,m,ArH),2.35~2.32(3H,s,CH3),1.15~1.12(3H,s,CH3);质谱,FD-MS:238。
实施例2A
合成6-(4-氯苯亚胺基)乙基-2-乙酰基吡啶:在250毫升三口瓶中,氮气吹排后加入1.63克的2,6-二乙酰基吡啶、80毫升的异丙醇以及0.2毫升冰醋酸,室温下搅拌均匀。室温下缓慢滴加入溶解在20毫升异丙醇溶液中的1.27克对氯苯胺,加完后搅拌反应2小时后升温回流反应18小时。反应溶液经减压浓缩,过柱层析分离后得到1.63克(产率69%)产品。1H-NMR (δ,ppm,TMS,CDCl3):8.44~8.40(2H,m,ArH),816~8.14(1H,m,ArH),7.46~7.41(2H,m,ArH),7.12~7.08(2H,m,ArH),2.38~2.34(3H,s,CH3),1.12~1.09(3H,s,CH3);质谱,FD-MS:272。
实施例3A
合成6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶:在250毫升三口瓶中,氮气吹排后加入1.63克的2,6-二乙酰基吡啶、80毫升的异丙醇以及0.1毫升冰醋酸,室温下搅拌均匀。室温下缓慢滴加入溶解在20毫升异丙醇溶液中的1.78克2,6-二异丙基苯胺,加完后搅拌反应2小时后升温回流反应12小时。反应溶液经减压浓缩,经柱层析分离后得到2.32克(产率72%)产品。1H-NMR(δ,ppm,TMS,CDCl3):8.45~8.41(2H,m,ArH),7.96~7.92(2H,m,ArH),7.36~7.34(2H,m,ArH),3.22~3.18(2H,m,CH),2.27~2.24(3H,s,CH3),1.28~1.24(6H,m,CH3),1.14~1.10(6H,m,CH3),1.10~1.07(3H,s,CH3);质谱,FD-MS:322。
实施例4A
合成6-(2,6-二甲基苯亚胺基)乙基-2-乙酰基吡啶:在250毫升三口瓶中,氮气吹排后加入1.63克的2,6-二乙酰基吡啶、80毫升的异丙醇以及0.15克对甲苯磺酸,室温下搅拌均匀。室温下缓慢滴加入溶解在20毫升异丙醇溶液中的1.25克2,6-二甲基苯胺,加完后搅拌反应2小时后升温回流反应10小时。反应溶液经减压浓缩,经柱层析分离后得到1.85克(产率70%)产品。1H-NMR(δ,ppm,TMS,CDCl3):8.22~8.18(2H,m,ArH),7.68~7.64(2H,m,ArH),7.12~7.08(2H,m,ArH),2.30~2.27(3H,s,CH3),2.24~2.21(3H,s,CH3),2.10~2.06(3H,s,CH3),1.02~0.98(3H,s,CH3);质谱,FD-MS:266。
实施例5A
合成6-(3-喹啉亚胺基)-2-乙酰基吡啶:在250毫升三口瓶中,氮气吹排后加入1.63克的2,6-二乙酰基吡啶、80毫升的异丙醇以及0.15克对甲苯磺酸,室温下搅拌均匀。室温下缓慢滴加入溶解在20毫升异丙醇溶液中的1.38克2,4,6-三甲基苯胺,加完后搅拌反应2小时后升温回流反应16小时。反应溶液经减压浓缩,经柱层析分离后得到1.82克(产率65%)产品。1H-NMR(δ,ppm,TMS,CDCl3):8.56~8.53(3H,m,ArH),7.95~7.91(2H,m,ArH),7.32~7.28(2H,m,ArH),7.12~7.08(2H,m,ArH),2.35~2.31(3H,s,CH3),1.02~0.98(3H,s,CH3);质谱,FD-MS:289。
实施例6A
合成6-(1-萘亚胺基)乙基-2-乙酰基吡啶:在250毫升三口瓶中,氮气吹排后加入1.63克的2,6-二乙酰基吡啶、80毫升的异丙醇以及0.2毫升冰醋酸,室温下搅拌均匀。室温下缓慢滴加入溶解在20毫升异丙醇溶液中的1.45克1-萘胺,加完后搅拌反应2小时后升温回流反应14小时。反应溶液经减压浓缩,经柱层析分离后得到1.96克(产率68%)产品。1H-NMR(δ,ppm,TMS,CDCl3):8.50~8.46(1H,m,ArH),8.36~8.33(2H,m,ArH),7.78~7.75(2H,m,ArH), 7.32~7.28(2H,m,ArH),7.12~7.08(3H,m,ArH),2.26~2.24(3H,s,CH3),1.08~1.06(3H,s,CH3);质谱,FD-MS:288。
实施例7A
合成6-(苄亚胺基)乙基-2-乙酰基吡啶:在250毫升三口瓶中,氮气吹排后加入3.26克的2,6-二乙酰基吡啶、120毫升的异丙醇以及0.3毫升冰醋酸,室温下搅拌均匀。室温下缓慢滴加入溶解在30毫升异丙醇溶液中的2.20克苄基胺,加完后搅拌反应2小时后升温回流反应18小时。反应溶液经减压浓缩,经柱层析分离后得到3.43克(产率70%)产品。1H-NMR(δ,ppm,TMS,CDCl3):8.36~8.34(2H,m,ArH),7.96~7.93(1H,m,ArH),7.32~7.28(2H,m,ArH),7.12~7.08(3H,m,ArH),,2.62~2.58(2H,s,CH2),2.28~2.25(3H,s,CH3),1.10~1.07(3H,s,CH3);质谱,FD-MS:252。
实施例8A
合成6-(8-喹啉亚胺基)乙基-2-乙酰基吡啶:在250毫升三口瓶中,氮气吹排后加入1.63克的2,6-二乙酰基吡啶、70毫升的异丙醇以及0.15克对甲苯磺酸,室温下搅拌均匀。室温下缓慢滴加入溶解在35毫升异丙醇溶液中的1.48克8-氨基喹啉,加完后搅拌反应4小时后升温回流反应12小时。反应溶液经减压浓缩,经柱层析分离后得到1.82克(产率63%)产品。1H-NMR(δ,ppm,TMS,CDCl3):8.58~8.53(3H,m,ArH),7.98~7.95(2H,m,ArH),7.32~7.28(2H,m,ArH),7.08~7.05(2H,m,ArH),2.28~2.24(3H,s,CH3),1.10~1.06(3H,s,CH3);质谱,FD-MS:289。
实施例9A
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下。1小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶(0.006摩尔),维持温度1小时。热过滤后加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,搅拌30分钟,升温到110℃,进行三次洗涤,时间各为10分钟。再加入己烷60mL洗涤两次,得到催化剂组分7.9g,含Ti:3.5%、Mg:22.6%、Cl:51.3%。
实施例10A
制备催化剂组分:同实施例9A,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(4-氯苯亚胺基)乙基-2-乙酰基吡啶。
实施例11A
制备催化剂组分:同实施例9A,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(8-喹啉亚胺基)乙基-2-乙酰基吡啶。
实施例12A
制备催化剂组分:同实施例9A,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(2-萘亚胺基)乙基-2-乙酰基吡啶。
实施例13A
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下。1小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入2,4-二苯甲酰氧基戊烷(0.003摩尔)及6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶(0.003摩尔),维持温度1小时。热过滤后加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,搅拌30分钟,升温到110℃,进行三次洗涤,时间各为10分钟。再加入己烷60mL洗涤两次,得到催化剂组分7.9g,含Ti:3.8%、Mg:21.8%、Cl:50.8%。
实施例14A
制备催化剂组分:同实施例13A,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(对氯苯亚胺基)乙基-2-乙酰基吡啶。
实施例15A
制备催化剂组分:同实施例13A,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(8-喹啉亚胺基)乙基-2-乙酰基吡啶。
实施例16A
制备催化剂组分:同实施例13A,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(1-萘亚胺基)乙基-2-乙酰基吡啶。
实施例17A
制备催化剂组分:同实施例13A,仅将2,4-二苯甲酰氧基戊烷替换为9,9-二甲氧甲基芴。
实施例18A
制备催化剂组分:同实施例13A,仅将2,4-二苯甲酰氧基戊烷替换为DNBP。
实施例19A
制备催化剂组分:在经过高纯氮气充分置换的反应器中,加300mLTiCl4,降温至-20℃,加入氯化镁醇合物载体7.0g(参见专利CN1330086A),搅拌下分阶段升温至40℃时,加入2,4-二苯甲酰氧基戊烷(0.003摩尔)及6-(2,6-二异丙基苯亚胺基)乙基-2乙酰基吡啶(0.003摩尔),维持温度2小时。过滤后再加入TiCl4100mL,升温到110℃,进行三次处理。再加入己烷60mL洗涤三次。得到催化剂组分7.2g,含Ti:2.7%、Mg:20.2%、Cl:50.4%。
实施例20A
制备催化剂组分:在经过高纯氮气充分置换的反应器中,加300mLTiCl4,降温至-20℃,加入乙氧基镁7.0g,搅拌下分阶段升温至40℃时,加入2,4-二苯甲酰氧基戊烷(0.003摩尔)及6-(2-萘亚胺基)乙基-2-乙酰基吡啶(0.003摩尔),维持温度3小时。过滤后加入TiCl4100mL,升温到110℃,进行三次处理。再加入己烷60mL洗涤三次。得到催化剂组分6.7g,含Ti:3.0%、Mg:20.7%、Cl:51.3%。
实施例21A
丙烯聚合反应:5L不锈钢反应釜经气体丙烯充分置换后,加入AlEt32.5mL,甲基环己基二甲氧基硅烷(CHMMS)5ml使Al/Si(mol)=25,再加入实施例9A制备的固体组分10mg以及1.2NL氢气,通入液体丙烯2.5L。升温至70℃,维持此温度1小时,降温,放压,出料得PP树脂,结果见表1。
实施例22A
丙烯聚合反应:同实施例21A,仅用实施例10A中的催化剂组分替换其中的催化剂组分,结果见表1。
实施例23A
丙烯聚合反应:同实施例21A,仅用实施例11A中的催化剂组分替换其中的催化剂组分,结果见表1。
实施例24A
丙烯聚合反应:同实施例21A,仅用实施例12A中的催化剂组分替换其中的催化剂组分,结果见表1。
实施例25A
丙烯聚合反应:同实施例21A,仅用实施例13A中的催化剂组分替换其中的催化剂组分,结果见表1。
实施例26A
丙烯聚合反应:同实施例21A,仅用实施例14A中的催化剂组分替换其中的催化剂组分,结果见表1。
实施例27A
丙烯聚合反应:同实施例21A,仅用实施例15A中的催化剂组分替换其中的催化剂组分,结果见表1。
实施例28A
丙烯聚合反应:同实施例21A,仅用实施例16A中的催化剂组分替换其中的催化剂组分,结果见表1。
实施例29A
丙烯聚合反应:同实施例21A,仅用实施例17A中的催化剂组分替换其中的催化剂组分,结果见表1。
实施例30A
丙烯聚合反应:同实施例21A,仅用实施例18A中的催化剂组分替换其中的催化剂组分,结果见表1。
实施例31A
丙烯聚合反应:同实施例21A,仅用实施例19A中的催化剂组分替换其中的催化剂组分,结果见表1。
实施例32A
丙烯聚合反应:同实施例21A,仅用实施例20A中的催化剂组分替换其中的催化剂组分,结果见表1。
实施例33A
丙烯聚合反应:同实施例25A,仅将聚合反应时间延长为2小时,结果见表1。
实施例34A
丙烯聚合反应:同实施例25A,仅将的聚合反应时间延长为3小时,结果见表1。
实施例35A
丙烯聚合反应:同实施例26A,仅将的聚合反应时间延长为2小时,结果见表1。
实施例36A
丙烯聚合反应:同实施例27A,仅将聚合反应时间延长为2小时,结果见表1。
实施例37A
丙烯聚合反应:同实施例26A,仅将聚合反应时间延长为3小时,结果见表1。
实施例38A
丙烯聚合反应:同实施例27A,仅将聚合反应时间延长为3小时,结果见表1。
实施例39A
丙烯聚合反应:同实施例25A,仅将加氢量变为7.2NL,结果见表1。
实施例40A
丙烯聚合反应:同实施例29A,仅将聚合反应时间延长为2小时,结果见表1。
实施例41A
丙烯聚合反应:同实施例29A,仅将加氢量变为7.2NL,结果见表1。
实施例42A
丙烯聚合反应:同实施例30A,仅将聚合反应时间延长为2小时,结果见表1。
实施例43A
丙烯聚合反应:同实施例30A,仅将聚合反应时间延长为3小时,结果见表1。
对比例1A
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下。1小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入DNBP(0.006摩尔),维持温度1小时。热过滤后,加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,升温到110℃,进行三次洗涤,时间各为10分钟。加入己烷60mL,搅拌30分钟,再加入己烷60mL洗涤三次。得到催化剂组分7.4g,含Ti:2.3%、Mg:22.5%、Cl:51.4%。
丙烯聚合反应:5L经气体丙烯充分置换后,加入AlEt32.5mL和甲基环己基二甲氧基硅烷(CHMMS)5ml使Al/Si(mol)=25,再加入上述制备的催化剂组分10mg以及1.2NL氢气,通入液体丙烯2.5L,升温至70℃,维持此温度1小时,降温,放压,出料得PP树脂,结果见表1。
对比例2A
同对比例1A,仅将聚合反应时间延长为2小时,结果见表1。
表1
Figure PCTCN2017103044-appb-000008
Figure PCTCN2017103044-appb-000009
注:“-”表示未测。
由以上实施例和对比例可看出,使用本发明所述的催化剂用于丙烯聚合反应时,催化剂活性较高且具有长周期活性,所得聚合物的等规指数可调,分子量分布较宽。
实施例9B
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下。1小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入2,4-二苯甲羧基戊烷(0.003摩尔)及6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶(0.003摩尔),维持温度1小时。热过滤后加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,搅拌30分钟,升温到110℃,进行三次洗涤,时间各为10分钟。再加入己烷60mL洗涤两次,得到催化剂组分7.6g,含Ti:3.7%、Mg:24.8%、Cl:50.8%。
实施例10B
制备催化剂组分:同实施例9B,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(2,6-二甲基苯亚胺基)乙基-2-乙酰基吡啶。
实施例11B
制备催化剂组分:同实施例9B,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(2,4,6-三甲基苯亚胺基)乙基-2-乙酰基吡啶。
实施例12B
制备催化剂组分:同实施例9B,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(8-喹啉亚胺基)乙基-2-乙酰基吡啶。
实施例13B
制备催化剂组分:同实施例9B,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(1-萘亚胺基)乙基-2-乙酰基吡啶。
实施例14B
制备催化剂组分:同实施例9B,仅将2,4-二苯甲羧基戊烷替换为3-乙基-2,4-二苯甲羧基戊烷。
实施例15B
制备催化剂组分:同实施例9B,仅将2,4-二苯甲羧基戊烷替换为2,4-二(4-丙基苯甲羧基)戊烷。
实施例16B
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下。1小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入2,4-二苯甲羧基戊烷(0.006摩尔),维持温度1小时。热过滤后加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,搅拌30分钟,升温到110℃,进行三次洗涤,时间各为10分钟。再加入己烷60mL洗涤两次,得到催化剂组分7.8g,含Ti:3.8%、Mg:20.2%、Cl:51.8%。
实施例17B
制备催化剂组分:在经过高纯氮气充分置换的反应器中,加300mLTiCl4,降温至-20℃,加入氯化镁醇合物载体7.0g(参见专利CN1330086A),搅拌下分阶段升温至40℃时,加入2,4-二苯甲羧基戊烷(0.003摩尔)及6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶(0.003摩尔),维持温度2小时。过滤后再加入TiCl4100mL,升温到110℃,进行三次处理。再加入己烷60mL洗涤三次。得到催化剂组分7.3g,含Ti:3.5%、Mg:23.2%、Cl:54.2%。
实施例18B
丙烯聚合反应:5L不锈钢反应釜经气体丙烯充分置换后,加入AlEt32.5mL和甲基环己基二甲氧基硅烷(CHMMS)5ml使Al/Si(mol)=25,再加入实施例9B制备的固体组分10mg以及1.2NL氢气,通入液体丙烯2.5L。升温至70℃,维持此温度1小时,降温,放压,出料得PP树脂,结果见表2。
实施例19B
丙烯聚合反应:同实施例18B,仅用实施例10B中的催化剂组分替换其中的催化剂组分,结果见表2。
实施例20B
丙烯聚合反应:同实施例18B,仅用实施例11B中的催化剂组分替换其中的催化剂组分,结果见表2。
实施例21B
丙烯聚合反应:同实施例18B,仅用实施例12B中的催化剂组分替换其中的催化剂组分,结果见表2。
实施例22B
丙烯聚合反应:同实施例18B,仅用实施例13B中的催化剂组分替换其中的催化剂组分,结果见表2。
实施例23B
丙烯聚合反应:同实施例18B,仅用实施例14B中的催化剂组分替换其中的催化剂组分,结果见表2。
实施例24B
丙烯聚合反应:同实施例18B,仅用实施例15B中的催化剂组分替换其中的催化剂组分,结果见表2。
实施例25B
丙烯聚合反应:同实施例18B,仅用实施例16B中的催化剂组分替换其中的催化剂组分,结果见表2。
实施例26B
丙烯聚合反应:同实施例18B,仅用实施例17B中的催化剂组分替换其中的催化剂组分,结果见表2。
实施例27B
丙烯聚合反应:同实施例18B,仅将聚合反应时间延长为2小时,结果见表2。
实施例28B
丙烯聚合反应:同实施例18B,仅将的聚合反应时间延长为3小时,结果见表2。
实施例29B
丙烯聚合反应:同实施例20B,仅将的聚合反应时间延长为2小时,结果见表2。
实施例30B
丙烯聚合反应:同实施例20B,仅将聚合反应时间延长为3小时,结果见表2。
实施例31B
丙烯聚合反应:同实施例18B,仅将加氢量变为7.2NL,结果见表2。
实施例32B
丙烯聚合反应:同实施例20B,仅将加氢量变为7.2NL,结果见表2。
对比例1B
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。 待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下。1小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入2,4-二苯甲羧基戊烷(0.003摩尔),维持温度1小时。热过滤后,加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,升温到110℃,进行三次洗涤,时间各为10分钟。加入己烷60mL,搅拌30分钟,再加入己烷60mL洗涤三次。得到催化剂组分7.4g,含Ti:2.4%、Mg:22.0%、Cl:50.6%。
丙烯聚合反应:5L经气体丙烯充分置换后,加入AlEt32.5mL和甲基环己基二甲氧基硅烷(CHMMS)5ml使Al/Si(mol)=25,再加入上述制备的催化剂组分10mg以及1.2NL氢气,通入液体丙烯2.5L,升温至70℃,维持此温度1小时,降温,放压,出料得PP树脂,结果见表2。
对比例2B
丙烯聚合反应:5L不锈钢反应釜经气体丙烯充分置换后,加入AlEt32.5mL和甲基环己基二甲氧基硅烷(CHMMS)5ml使Al/Si(mol)=25,再加入对比例1制备的固体组分10mg以及7.2NL氢气,通入液体丙烯2.5L,升温至70℃,维持此温度1小时,降温,放压,出料得PP树脂,结果见表2。
表2
Figure PCTCN2017103044-appb-000010
注:“-”表示未测。
由以上实施例18B-32B和对比例1B-2B可看出,采用式I所示的酮亚胺类化合物与式III所示的二醇酯类化合物作为复合内给电子体的催化剂用于丙烯聚合反应时,催化剂的氢调敏感性能明显提高,催化剂活性较高且具有长周期活性,所得聚合物的分子量分布较宽。
实施例9C
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下。1小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入2-异丙基-2-异戊基-1,3-二甲氧基丙烷(0.003摩尔)及实施例3制备的6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶(0.003摩尔),维持温度1小时。热过滤后,加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,搅拌30分钟,升温到110℃,进行三次洗涤,时间各为10分钟。再加入己烷60mL洗涤两次,得到催化剂固体组分7.7g,含Ti:3.1%、Mg:22.8%、Cl:51.2%。
实施例10C
制备催化剂组分:与实施例9C相同,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为实施例4制备的6-(2,6-二甲基苯亚胺基)乙基-2-乙酰基吡啶。
实施例11C
制备催化剂组分:与实施例9C相同,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(2,4,6-三甲基苯亚胺基)乙基-2-乙酰基吡啶。
实施例12C
制备催化剂组分:与实施例9相同,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为实施例8制备的6-(8-喹啉亚胺基)乙基-2-乙酰基吡啶。
实施例13C
制备催化剂组分:与实施例9C相同,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(1-萘亚胺基)乙基-2-乙酰基吡啶。
实施例14C
制备催化剂组分:与实施例9C相同,仅将2-异丙基-2-异戊基-1,3-二甲氧基丙烷替换为9,9′-二甲氧甲基芴。
实施例15C
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下。1 小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入9,9′-二甲氧甲基芴(0.006摩尔)维持温度1小时。热过滤后,加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,搅拌30分钟,升温到110℃,进行三次洗涤,时间各为10分钟。再加入己烷60mL及实施例3制备的6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶(0.006摩尔),搅拌30分钟,加入己烷60mL洗涤两次,得到催化剂固体组分6.8g,含Ti:3.6%、Mg:21.4%、Cl:52.3%。
实施例16C
制备催化剂组分:在经过高纯氮气充分置换的反应器中,加300mLTiCl4,降温至-20℃,加入氯化镁醇合物载体7.0g(参见专利CN1330086A),搅拌下分段升温至40℃时,加入9,9′-二甲氧甲基芴(0.003摩尔)及实施例3制备的6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶(0.003摩尔),维持温度2小时。过滤后再加入TiCl4100mL,升温到110℃,进行三次处理。再加入己烷60mL洗涤三次。得到催化剂固体组分7.1g,含Ti:3.4%、Mg:21.2%、Cl:50.7%。
实施例17C
丙烯聚合反应:将5L不锈钢反应釜经气体丙烯充分置换后,加入AlEt32.5mL和甲基环己基二甲氧基硅烷(CHMMS)5ml使Al/Si(mol)=25,再加入实施例9C制备的固体组分10mg以及1.2NL氢气,通入液体丙烯2.5L,升温至70℃,维持此温度1小时,降温,放压,出料得PP树脂,结果见表3。
实施例18C
丙烯聚合反应:同实施例17C,仅将其中的固体组分替换为实施例10C制备的固体组分,结果见表3。
实施例19C
丙烯聚合反应:同实施例17C,仅将其中的固体组分替换为实施例11C制备的固体组分,结果见表3。
实施例20C
丙烯聚合反应:同实施例17C,仅将其中的固体组分替换为实施例12C制备的固体组分,结果见表3。
实施例21
丙烯聚合反应:同实施例17C,仅将其中的固体组分替换为实施例13C制备的固体组分,结果见表3。
实施例22C
丙烯聚合反应:同实施例17C,仅将其中的固体组分替换为实施例14C制备的固体组分,结果见表3。
实施例23C
丙烯聚合反应:同实施例17C,仅将其中的固体组分替换为实施例15C制备的固体组分,结果见表3。
实施例24C
丙烯聚合反应:同实施例17C,仅将其中的固体组分替换为实施例16C制备的固体组分,结果见表3。
实施例25C
丙烯聚合反应:同实施例17C,仅将其中的聚合反应时间延长为2小时,结果见表3。
实施例26C
丙烯聚合反应:同实施例17C,仅将其中的聚合反应时间延长为3小时,结果见表3。
实施例27C
丙烯聚合反应:同实施例23C,仅将其中的聚合反应时间延长为2小时,结果见表3。
实施例28C
丙烯聚合反应:同实施例23,仅将其中的聚合反应时间延长为3小时,结果见表3。
实施例29C
丙烯聚合反应:同实施例23,仅将其中的氢气的量改为7.2NL,结果见表3。
对比例1C
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下,1小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入2-异丙基-2-异戊基-1,3-二甲氧基丙烷(0.003摩尔),维持温度1小时,热过滤后,加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,升温到110℃,进行三次洗涤,时间各为10分钟。加入己烷60mL搅拌30分钟,再加入己烷60mL洗涤三次。得到催化剂固体组分7.4g,含Ti:2.4%、Mg:22.0%、Cl:50.6%。
丙烯聚合反应:将5L不锈钢反应釜经气体丙烯充分置换后,加入AlEt32.5mL和甲基环己基二甲氧基硅烷(CHMMS)5ml使Al/Si(mol)=25,再加入上述制备的固体组分10mg以及1.2NL氢气,通入液体丙烯2.5L,升温至70℃,维持此温度1小时,降温,放压,出料得PP树脂,结果见表3。
对比例2C
丙烯聚合反应:将5L不锈钢反应釜经气体丙烯充分置换后,加入AlEt32.5mL和甲基环己基二甲氧基硅烷(CHMMS)5ml使Al/Si(mol)=25,再加入对比例1制备的固体组分10mg以及1.2NL氢气,通入液体丙烯2.5L,升温至70℃,维持此温度2小时,降温,放压,出料 得PP树脂,结果见表3。
表3
Figure PCTCN2017103044-appb-000011
注:“-”表示未测。
由以上实施例17C-29C和对比例1C-2C可看出,采用式I所示的酮亚胺类化合物与式IV所示的二醚类化合物作为复合内给电子体的催化剂用于丙烯聚合反应时,催化剂活性和所得聚合物的等规指数高,具有长周期活性,所得聚合物的分子量分布较宽。
实施例9D
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下。1小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入DNBP(0.003摩尔)及6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶(0.003摩尔),维持温度1小时。热过滤后加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,搅拌30分钟,升温到110℃,进行三次洗涤,时间各为10分钟。再加入己烷60mL洗涤两次,得到催化剂组分7.5g,含Ti:3.6%、Mg:22.8%、Cl:52.6%。
实施例10D
制备催化剂组分:同实施例9D,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换 为6-(2,6-二甲基苯亚胺基)乙基-2-乙酰基吡啶。
实施例11D
制备催化剂组分:同实施例9D,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(2,4,6-三甲基苯亚胺基)乙基-2-乙酰基吡啶。
实施例12D
制备催化剂组分:同实施例9D,仅将6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶替换为6-(8-喹啉亚胺基)乙基-2-乙酰基吡啶。
实施例13D
制备催化剂组分:同实施例9D,仅将DNBP替换为DIBP。
实施例14D
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下。1小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入DNBP(0.006摩尔),维持温度1小时。热过滤后加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,搅拌30分钟,升温到110℃,进行三次洗涤,时间各为10分钟。再加入己烷60mL及6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶(0.006摩尔),搅拌30分钟,加入己烷60mL洗涤两次,得到催化剂组分7.2g,含Ti:3.8%、Mg:22.1%、Cl:51.3%。
实施例15D
制备催化剂组分:在经过高纯氮气充分置换的反应器中,加300mLTiCl4,降温至-20℃,加入氯化镁醇合物载体7.0g(参见专利CN1330086A),搅拌下分阶段升温至40℃时,加入DNBP(0.003摩尔)及6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶(0.003摩尔),维持温度2小时。过滤后再加入TiCl4100mL,升温到110℃,进行三次处理。再加入己烷60mL洗涤三次。得到催化剂组分7.3g,含Ti:3.5%、Mg:23.2%、Cl:54.2%。
实施例16D
制备催化剂组分:在经过高纯氮气充分置换的反应器中,加300mLTiCl4,降温至-20℃,加入乙氧基镁7.0g,搅拌下分阶段升温至40℃时,加入DNBP(0.003摩尔)及6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶(0.003摩尔),维持温度3小时。过滤后再加入TiCl4100mL,升温到110℃,进行三次处理。再加入己烷60mL洗涤三次。得到催化剂组分6.6g,含Ti:3.0%、Mg:22.6%、Cl:52.0%。
实施例17D
丙烯聚合反应:5L不锈钢反应釜经气体丙烯充分置换后,加入AlEt32.5mL和甲基环己 基二甲氧基硅烷(CHMMS)5ml使Al/Si(mol)=25,再加入实施例9D制备的固体组分10mg以及1.2NL氢气,通入液体丙烯2.5L。升温至70℃,维持此温度1小时,降温,放压,出料得PP树脂,结果见表4。
实施例18D
丙烯聚合反应:同实施例17D,仅用实施例10D中的催化剂组分替换其中的催化剂,结果见表4。
实施例19D
丙烯聚合反应:同实施例17D,仅用实施例11D中的催化剂组分替换其中的催化剂,结果见表4。
实施例20D
丙烯聚合反应:同实施例17D,仅用实施例12D中的催化剂组分替换其中的催化剂,结果见表4。
实施例21D
丙烯聚合反应:同实施例17D,仅用实施例13D中的催化剂组分替换其中的催化剂,结果见表4。
实施例22D
丙烯聚合反应:同实施例17D,仅用实施例14D中的催化剂组分替换其中的催化剂,结果见表4。
实施例23D
丙烯聚合反应:同实施例17D,仅用实施例15D中的催化剂组分替换其中的催化剂,结果见表4。
实施例24D
丙烯聚合反应:同实施例17D,仅用实施例16D中的催化剂组分替换其中的催化剂,结果见表4。
实施例25D
丙烯聚合反应:同实施例17D,仅将聚合反应时间延长为2小时,结果见表4。
实施例26D
丙烯聚合反应:同实施例17D,仅将聚合反应时间延长为3小时,结果见表4。
实施例27D
丙烯聚合反应:同实施例21D,仅将聚合反应时间延长为2小时,结果见表4。
实施例28D
丙烯聚合反应:同实施例21D,仅将聚合反应时间延长为3小时,结果见表4。
实施例29D
丙烯聚合反应:同实施例17D,仅将加氢量变为7.2NL,结果见表4。
对比例1D
制备催化剂组分:在经过高纯氮气充分置换的反应器中,依次加入氯化镁4.8g、甲苯95mL、环氧氯丙烷4ml和磷酸三丁酯(TBP)12.5mL,搅拌下升温至50℃,并维持2.5小时。待固体完全溶解后,加入邻苯二甲酸酐1.4g,继续维持1小时,将溶液冷却至-25℃以下。1小时内滴加TiCl4,缓慢升温至80℃,逐渐将固体物析出。加入DNBP(0.006摩尔),维持温度1小时。热过滤后,加入甲苯150mL,洗涤二次,得到固体,加入甲苯100mL,升温到110℃,进行三次洗涤,时间各为10分钟。加入己烷60mL,搅拌30分钟,再加入己烷60mL洗涤三次。得到催化剂组分7.4g,含Ti:2.4%、Mg:22.0%、Cl:50.6%。
丙烯聚合反应:5L经气体丙烯充分置换后,加入AlEt32.5mL和甲基环己基二甲氧基硅烷(CHMMS)5ml使Al/Si(mol)=25,再加入上述制备的催化剂组分10mg以及1.2NL氢气,通入液体丙烯2.5L,升温至70℃,维持此温度1小时,降温,放压,出料得PP树脂,结果见表4。
对比例2D
丙烯聚合反应:5L经气体丙烯充分置换后,加入AlEt32.5mL和甲基环己基二甲氧基硅烷(CHMMS)5ml使Al/Si(mol)=25,再加入上述制备的催化剂组分10mg以及7.2NL氢气,通入液体丙烯2.5L,升温至70℃,维持此温度1小时,降温,放压,出料得PP树脂,结果见表4。
对比例3D
同对比例1D,仅将聚合反应时间延长为2小时,结果见表4。
表4
Figure PCTCN2017103044-appb-000012
Figure PCTCN2017103044-appb-000013
注:“-”表示未测。
由以上实施例17D-29D和对比例1D-3D可看出,采用式I所示的酮亚胺类化合物与式II所示的芳香羧酸酯类化合物作为复合内给电子体的催化剂用于丙烯聚合反应时,催化剂活性和所得聚合物的等规指数高,催化剂的氢调敏感性好且具有长周期活性,所得聚合物的分子量分布较宽。
应当注意的是,以上所述的实施例仅用于解释本发明,并不构成对本发明的任何限制。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可扩展至其他所有具有相同功能的方法和应用。

Claims (18)

  1. 一种用于烯烃聚合的催化剂组分,所述催化剂组分中含有镁、钛、卤素和内给电子体,所述内给电子体包括式I所示的酮亚胺类化合物,
    Figure PCTCN2017103044-appb-100001
    在式I中,R选自羟基、含或不含卤素原子取代基的C1~C20的烷基、含或不含卤素原子取代基的C2~C20烯基或含或不含卤素原子取代基的C6~C30的芳香基;R1~R5可相同或不同,分别独立地为氢、C1~C20的烷基、C2~C20的烯基、C6~C30的芳烷基、C6~C30的烷芳基、C9~C40的稠环芳香基团、卤素原子、羟基或C1~C20的烷氧基;X选自卤素、氮、氧、磷或硅杂原子、取代或未取代的烷基、C5~C20的环烷基、C6~C30的芳基或C9~C40的稠环芳基。
  2. 根据权利要求1所述的催化剂组分,其特征在于,基于所述催化剂组分的重量,所述镁的含量为5wt%-50wt%,钛的含量为1.0wt%-8.0wt%,卤素的含量为10wt%-70wt%,内给电子体的含量为0.1wt%-20wt%。
  3. 根据权利要求1或2所述的催化剂组分,其特征在于,R为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、己基、羟烷基、苯基、卤苯基、烷基取代的苯基、萘基、联苯基或含杂环化合物的基团;所述含杂环化合物的基团优选含吡咯的基团、含吡啶的基团、含嘧啶的基团或含喹啉的基团。
  4. 根据权利要求1-3中任意一项所述的催化剂组分,其特征在于,R3~R5分别独立为氢、甲基、乙基、正丙基、异丙基、正丁基、叔丁基或异丁基。
  5. 根据权利要求1-4中任意一项所述的催化剂组分,其特征在于,X为氮原子或CH。
  6. 根据权利要求1-5中任意一项所述的催化剂组分,其特征在于,式I所示的酮亚胺类化合物为:6-(丁亚胺基)乙基-2-乙酰基吡啶、6-(己亚胺基)乙基-2-乙酰基吡啶、6-(戊亚胺基)乙基-2-乙酰基吡啶、6-(辛亚胺基)乙基-2-乙酰基吡啶、6-(苄亚胺基)乙基-2-乙酰基吡啶、6-(4-羟基丁亚胺基)乙基-2-乙酰基吡啶、6-(2-羟基苯亚胺基)乙基-2-乙酰基吡啶、6-(2,6-二甲基苯亚胺基)乙基-2-乙酰基吡啶、6-(2,6-二异丙基苯亚胺基)乙基-2-乙酰基吡啶、6-(苯亚胺基)乙基-2-乙酰基吡啶、6-(2-萘亚胺基)乙基-2-乙酰基吡啶、6-(1-萘亚胺基)乙基-2-乙酰基吡啶、6-(4-氯苯亚胺基)乙基-2-乙酰基吡啶、6-(4-三氟甲基苯亚胺基)乙基-2-乙酰基吡啶、6-(2-三氟甲基 苯亚胺基)乙基-2-乙酰基吡啶、6-(2-羟基-4-氯苯亚胺基)乙基-2-乙酰基吡啶、6-(8-喹啉亚胺基)乙基-2-乙酰基吡啶、6-(4-喹啉亚胺基)乙基-2-乙酰基吡啶、6-(3-喹啉亚胺基)乙基-2-乙酰基吡啶、6-(2,4,6-三甲基苯亚胺基)乙基-2-乙酰基吡啶、6-(2-乙基苯亚胺基)乙基-2-乙酰基吡啶、6-(4-乙基苯亚胺基)乙基-2-乙酰基吡啶、6-(2-丙基苯亚胺基)乙基-2-乙酰基吡啶、6-(4-丙基苯亚胺基)乙基-2-乙酰基吡啶、6-(3-丙基苯亚胺基)乙基-2-乙酰基吡啶、6-(2-丁基苯亚胺基)乙基-2-乙酰基吡啶、6-(4-丁基苯亚胺基)乙基-2-乙酰基吡啶、3-(苯亚胺基)乙基苯乙酮、3-(2,6-二甲基苯亚胺基)乙基苯乙酮、3-(2,6-二异丙基苯亚胺基)乙基苯乙酮、3-(2-萘亚胺基)乙基苯乙酮、3-(苄亚胺基)乙基苯乙酮、3-(8-喹啉亚胺基)乙基苯乙酮、3-(2-喹啉亚胺基)乙基苯乙酮、6-(丁亚胺基)乙基-2-丙酰基吡啶、6-(己亚胺基)乙基-2-丙酰基吡啶、6-(2,6-二甲基苯亚胺基)乙基-2-丙酰基吡啶、6-(2,6-二异丙基苯亚胺基)乙基-2-丙酰基吡啶、6-(苯亚胺基)乙基-2-丙酰基吡啶、6-(戊亚胺基)乙基-2-丁酰基吡啶、6-(2-萘亚胺基)乙基-2-丁酰基吡啶、6-(丁亚胺基)丙基-2-丙酰基吡啶、6-(己亚胺基)丁基-2-丙酰基吡啶、6-(2,6-二甲基苯亚胺基)丙基-2-丙酰基吡啶、6-(2,6-二异丙基苯亚胺基)丙基-2-丙酰基吡啶、6-(苯亚胺基)丙基-2-丙酰基吡啶、6-(戊亚胺基)丙基-2-丁酰基吡啶和6-(2-萘亚胺基)丙基-2-丁酰基吡啶中的一种或多种。
  7. 根据权利要求1-6中任一项所述的催化剂组分,其特征在于,所述内给电子体包括进一步包括至少一种其他给电子化合物,所述其他给电子化合物选自芳香羧酸酯类化合物、二醇酯类化合物和二醚类化合物中的一种、两种或三种。
  8. 根据权利要求7所述的催化剂组分,其特征在于,所述式I所示的酮亚胺类化合物与所述其他给电子化合物的摩尔比为1:(0.05-20),优选为1:(0.1-10)。
  9. 根据权利要求7或8所述的催化剂组分,其特征在于,所述芳香羧酸酯类化合物的结构如式II所示,
    Figure PCTCN2017103044-appb-100002
    式II中,RI为含或不含卤素原子取代基的C1~C20的烷基、含或不含卤素原子取代基的C2~C20烯基、含或不含卤素原子取代基的C2~C20炔基、或含或不含卤素原子取代基的C6~C30的烷芳基;RII为C1~C20的烷基、C2~C20的烯基、C2~C20的炔基或C6~C30的烷芳基或酯基或 酰胺基;RIII、RIV、RV和RVI相同或不同,为C1~C20的烷基、C2~C20烯基、C2~C20炔基、C1~C20的烷氧基、C6~C30的芳烷基、C6~C30的烷芳基、C9~C40的稠环芳香基团或卤素;
    所述二醇酯类化合物的结构如式III所示,
    Figure PCTCN2017103044-appb-100003
    式III中,X和Y独立地选自碳、氧、硫、氮、硼或硅;R1和R2相同或不同,分别独立地为卤素、烷基、环烷基、芳基、烯烃基、稠环芳基或酯基;R3~R6相同或不同,分别独立地为氢或取代或未取代的烷基、环烷基、芳基、烯烃基、稠环芳基或酯基;RI~RIV相同或不同,分别独立地为氢或取代或未取代的烷基、环烷基、芳基、烯烃基、稠环芳基或酯基;R3~R6及RI~RIV基团上任选包含一个或多个杂原子作为碳或氢原子或二者的取代物,所述杂原子为氧、硫、氮、硼、硅、磷或卤素原子;R3~R6及RI~RIV基团中的一个或多个可以连接成环;n为0~10的整数;和/或
    所述二醚类化合物的结构如式IV所示,
    Figure PCTCN2017103044-appb-100004
    式IV中,R′和R″相同或不同,分别独立地为C1~C20的烃基;n为0-6的整数;RI~RIV相同或不同,分别独立地为氢、烷氧基、取代的胺基、卤素原子、C1~C20的烃基或C6~C20的芳基,且RI~RIV基团中的两个或多个可键接成环。
  10. 根据权利要求9所述的催化剂组分,其特征在于,式II中,RI为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、新戊基、己基、乙烯基、烯丙基、乙炔基、苯基、卤苯基、烷基取代的苯基、萘基或联苯基;和/或,RII为甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、新戊基、己基、乙烯基、烯丙基、乙炔基、苯基、卤苯基、烷基取代的苯基、萘基、联苯基、乙氧甲酰基、丙氧甲酰基、异丙氧甲酰基、丁氧甲酰基、异丁氧甲酰基、己氧甲酰基、异已氧甲酰基、新已氧甲酰基、庚氧甲酰基、异庚氧甲酰基、新庚氧甲酰基、辛氧甲酰基、异辛氧甲酰基或新辛氧甲酰基。
  11. 根据权利要求7-9中任一项所述的催化剂组分,其特征在于,所述二醇酯类化合物的结构如式IIIa所示:
    Figure PCTCN2017103044-appb-100005
    式IIIa中,R1、R2以及R3~R6相同或不同,分别独立地为C1~C20的烷基、C3~C20的环烷基、C2~C20的烯基、C6~C30的芳烷基、C6~C30的烷芳基、C9~C40的稠环芳香基团或酯基;RI和RII相同或不同,分别独立地为氢、C1~C20的烷基、C3~C20的环烷基、C2~C20的烯基、C6~C30的芳烷基、C6~C30的烷芳基、C9~C40的稠环芳香基团或酯基;R3~R6及RI~RIV基团上任选包含一个或多个杂原子作为碳或氢原子或二者的取代物,所述杂原子为氧、硫、氮、硼、硅、磷或卤素原子;R3~R6、RI、RII基团中的一个或多个可以连接成环;n为1~5的整数。
  12. 根据权利要求11所述的催化剂组分,其特征在于,所述二醇酯类化合物的结构如式IIIb所示:
    Figure PCTCN2017103044-appb-100006
  13. 根据权利要求9-12中任一项所述的催化剂组分,其特征在于,在式III、式IIIa和/或式IIIb中,R1和R2独立地选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、己基、羟烷基、苯基、卤苯基、烷基取代的苯基、萘基、联苯基或含杂环化合物的基团;所述含杂环化合物的基团优选含吡咯的基团、含吡啶的基团、嘧啶的基团或含喹啉的基团。
  14. 根据权利要求9-13中任一项所述的催化剂组分,其特征在于,在式III中,RI和RII独立地选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基、己基、羟烷基、苯基、卤苯基、烷基取代的苯基等。
  15. 根据权利要求7-14中任一项所述的催化剂组分,其特征在于,所述芳香羧酸酯类化合物选自苯甲酸乙酯、苯甲酸丙酯、苯甲酸丁酯、苯甲酸戊酯、苯甲酸己酯、苯甲酸庚酯、苯甲酸辛酯、苯甲酸壬酯、苯甲酸癸酯、苯甲酸异丁酯、苯甲酸异戊酯、苯甲酸异己酯、苯甲酸异庚酯、苯甲酸异辛酯、苯甲酸异壬酯、苯甲酸异癸酯、苯甲酸新戊酯、苯甲酸新己酯、苯甲酸新庚酯、苯甲酸新辛酯、苯甲酸辛壬酯、苯甲酸新癸酯、邻苯二甲酸二乙酯、邻苯二甲酸二丙酯、邻苯二甲酸二异丁酯、邻苯二甲酸二正丁酯、邻苯二甲酸二正戊酯、邻苯二甲酸二异戊酯、邻苯二甲酸二新戊酯、邻苯二甲酸二己酯、邻苯二甲酸二庚酯、邻苯二甲酸二 辛酯、邻苯二甲酸二壬酯、邻苯二甲酸二异己酯、邻苯二甲酸二异庚酯、邻苯二甲酸二异辛酯、邻苯二甲酸二异壬酯、3-甲基邻苯二甲酸二异丁酯、3-甲基邻苯二甲酸二正丁酯、3-甲基邻苯二甲酸二异戊酯、3-甲基邻苯二甲酸二正戊酯、3-甲基邻苯二甲酸二异辛酯、3-甲基邻苯二甲酸二正辛酯、3-乙基邻苯二甲酸二异丁酯、3-乙基邻苯二甲酸二正丁酯、3-乙基邻苯二甲酸二正辛酯、3-乙基邻苯二甲酸二异丁酯、3-乙基邻苯二甲酸二正戊酯、3-乙基邻苯二甲酸二异戊酯、3-丙基邻苯二甲酸二异丁酯、3-丙基邻苯二甲酸二正丁酯、3-氯邻苯二甲酸二异丁酯、3-丁基邻苯二甲酸二异丁酯、3-丁基邻苯二甲酸二正丁酯、4-丁基邻苯二甲酸二正丁酯、4-丙基邻苯二甲酸二异丁酯、4-丁基邻苯二甲酸二异戊酯、4-氯邻苯二甲酸二正丁酯、4-氯邻苯二甲酸二异丁酯、4-氯邻苯二甲酸二正辛酯、4-甲氧基邻苯二甲酸二正丁酯和4-甲氧基邻苯二甲酸二异丁酯中的一种或多种;和/或
    所述二醚类化合物选自2-异丙基-1,3-二甲氧基丙烷、2-丁基-1,3-二甲氧基丙烷、2-环己基-1,3-二甲氧基丙烷、2-苄基-1,3-二甲氧基丙烷、2-苯基-1,3-二甲氧基丙烷、2-(1-萘基)-1,3-二甲氧基丙烷、2-异丙基-2-异戊基-1,3-二甲氧基丙烷、2-异丙基-2-异丁基-1,3-二甲氧基丙烷、2-异丙基-2-丁基-1,3-二甲氧基丙烷、2,2-二环戊基-1,3-二苯酰氧基丙烷、2,2-二环己基-1,3-二甲氧基丙烷、2,2-二丁基-1,3-二甲氧基丙烷、2,2-二异丁基-1,3-二甲氧基丙烷、2,2-二异丙基-1,3-二甲氧基丙烷、2,2-二乙基-1,3-二甲氧基丙烷、2-乙基-2-丁基-1,3-二甲氧基丙烷、2,4-二甲氧基戊烷、3-乙基-2,4-二甲氧基戊烷、3-甲基-2,4-二甲氧基戊烷、3-丙基-2,4-二甲氧基戊烷、3-异丙基-2,4-二甲氧基戊烷、3,5-二甲氧基庚烷、4-乙基-3,5-二甲氧基庚烷、4-丙基-3,5-二甲氧基庚烷、4-异丙基-3,5-二甲氧基庚烷、9,9-二甲氧基甲基芴、9,9-二甲氧基甲基-4-叔丁基芴、9,9-二甲氧基甲基-4-丙基芴、9,9-二甲氧基甲基-1,2,3,4-四氢芴、9,9-二甲氧基甲基-1,2,3,4,5,6,7,8-八氢芴、9,9-二甲氧基甲基-2,3,6,7-二苯丙茚、9,9-二甲氧基甲基-1,8-二氯芴、7,7-二甲氧基甲基-2,5-二降冰片二烯、1,4-二甲氧基丁烷、2,3-二异丙基-1,4-二甲氧基丁烷、2,3-二丁基-1,4-二甲氧基丁烷、1,2-二甲氧基苯、3-乙基-1,2-二甲氧基苯、4-丁基-1,2-二甲氧基苯、1,8-二甲氧基萘、2-乙基-1,8-二甲氧基萘、2-丙基-1,8-二甲氧基萘、2-丁基-1,8-二甲氧基萘、4-丁基-1,8-二甲氧基萘、4-异丁基-1,8-二甲氧基萘、4-异丙基-1,8-二甲氧基萘和4-丙基-1,8-二甲氧基萘中的一种或多种。
  16. 一种用于烯烃聚合的催化剂,包括:A)如权利要求1-15中任意一项所述的催化剂组分;B)有机铝化合物;以及任选地C)有机硅化合物。
  17. 根据权利要求16所述的催化剂,其特征在于,所述烯烃为丙烯。
  18. 根据权利要求1-15中任意一项所述的催化剂组分或权利要求16-17中任一项所述的催化剂在烯烃特别是丙烯聚合领域中的应用。
PCT/CN2017/103044 2016-09-23 2017-09-22 用于烯烃聚合的催化剂组分、催化剂及其应用 WO2018054362A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17852430.2A EP3517555A4 (en) 2016-09-23 2017-09-22 CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, CATALYST AND APPLICATIONS THEREFOR
JP2019515798A JP7178991B2 (ja) 2016-09-23 2017-09-22 オレフィン重合用の触媒成分、触媒およびその応用
RU2019112055A RU2757372C2 (ru) 2016-09-23 2017-09-22 Компонент катализатора для полимеризации олефина, катализатор и их применение
KR1020197011214A KR102466260B1 (ko) 2016-09-23 2017-09-22 올레핀 중합용 촉매 성분, 촉매, 및 이들의 용도
US16/336,102 US11325994B2 (en) 2016-09-23 2017-09-22 Catalyst component for olefin polymerization, catalyst, and use thereof
SA519401395A SA519401395B1 (ar) 2016-09-23 2019-03-23 مكون محفز لبلمرة ألفين، محفز، واستخدامهم

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201610847284.7 2016-09-23
CN201610847664.0 2016-09-23
CN201610847600.0 2016-09-23
CN201610847281.3A CN107868153B (zh) 2016-09-23 2016-09-23 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN201610847600.0A CN107868155B (zh) 2016-09-23 2016-09-23 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN201610847284.7A CN107868154B (zh) 2016-09-23 2016-09-23 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN201610847664.0A CN107868149B (zh) 2016-09-23 2016-09-23 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN201610847281.3 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018054362A1 true WO2018054362A1 (zh) 2018-03-29

Family

ID=61690749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103044 WO2018054362A1 (zh) 2016-09-23 2017-09-22 用于烯烃聚合的催化剂组分、催化剂及其应用

Country Status (7)

Country Link
US (1) US11325994B2 (zh)
EP (1) EP3517555A4 (zh)
JP (1) JP7178991B2 (zh)
KR (1) KR102466260B1 (zh)
RU (1) RU2757372C2 (zh)
SA (1) SA519401395B1 (zh)
WO (1) WO2018054362A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759673A (zh) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 一种烯烃聚合用催化剂、催化剂组分及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020249386A1 (en) * 2019-06-11 2020-12-17 Basell Poliolefine Italia S.R.L. Fiber comprising propylene ethylene random copolymer
EP3983582A1 (en) * 2019-06-11 2022-04-20 Basell Poliolefine Italia S.r.l. Core-skin fiber comprising propylene ethylene random copolymer
CN115043868A (zh) * 2021-03-09 2022-09-13 中国科学院化学研究所 五元环状氨基硅烷外给电子体及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321692A (zh) * 2000-04-30 2001-11-14 中国石油化工集团公司 双齿配体、过渡金属配合物、烯烃聚合催化体系以及该催化体系在烯烃聚合中的应用
CN101165074A (zh) * 2006-10-20 2008-04-23 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其催化剂
CN101165073A (zh) * 2006-10-20 2008-04-23 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分和催化剂
CN101580488A (zh) * 2008-05-16 2009-11-18 中国石油化工股份有限公司 三齿吡啶亚胺配体的制备方法及应用
CN101864009A (zh) * 2009-04-17 2010-10-20 中国石油化工股份有限公司 一种用于烯烃聚合反应的催化剂组分的制备方法及其催化剂
US20110130530A1 (en) * 2009-12-02 2011-06-02 Dow Global Technologies Inc. Two atom bridged dicarbonate compounds as internal donors in catalysts for polypropylene manufacture
WO2015055137A1 (zh) * 2013-10-18 2015-04-23 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分、其制备方法和包含它的催化剂
CN105085747A (zh) * 2014-04-24 2015-11-25 中国石油化工股份有限公司 用于丙烯聚合的催化剂组分及其催化剂

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1006071B (zh) 1985-04-01 1989-12-13 中国石油化工总公司 用于烯烃聚合和共聚合的催化剂体系
IT1227258B (it) 1988-09-30 1991-03-28 Himont Inc Componenti e catalizzatori per la polimerizzazione di olefine
IL117114A (en) 1995-02-21 2000-02-17 Montell North America Inc Components and catalysts for the polymerization ofolefins
IT1292108B1 (it) 1997-06-09 1999-01-25 Montell North America Inc Componenti e catalizzatori per la polimerizzazione di olefine
IT1292109B1 (it) 1997-06-09 1999-01-25 Montell North America Inc Componenti e catalizzatori per la polimerizzazione di olefine
EP1082359B1 (en) 1999-03-15 2006-07-19 Basell Poliolefine Italia S.r.l. Components and catalysts for the polymerization of olefins
US6818583B1 (en) * 1999-04-15 2004-11-16 Basell Poliolefine Italia S.P.A. Components and catalysts for the polymerization of olefins
ES2223887T3 (es) 2000-02-02 2005-03-01 Basell Poliolefine Italia S.P.A. Componentes y catalizadores para la polimerizacion de olefinas.
US6710006B2 (en) * 2000-02-09 2004-03-23 Shell Oil Company Non-symmetrical ligands and catalyst systems thereof for ethylene oligomerization to linear alpha olefins
AU2000232362A1 (en) 2000-02-22 2001-09-03 Biotools, Inc. Dual circular polarization modulation spectrometer
CN1151183C (zh) 2000-06-15 2004-05-26 中国石油化工股份有限公司 用于烯烃聚合或共聚合的球形催化剂组分及其催化剂
CN1169845C (zh) * 2002-02-07 2004-10-06 中国石油化工股份有限公司 用于烯烃聚合的固体催化剂组分和含该催化剂组分的催化剂及其应用
BR0309539A (pt) * 2002-05-06 2005-03-01 Union Carbide Chem Plastic Composições de catalisadores misturados para a produção de poliolefinas e seu uso
CN1204155C (zh) 2002-09-03 2005-06-01 中国石油化工股份有限公司 用于烯烃聚合催化剂的配体及其过渡金属配合物
CN100491416C (zh) 2004-10-27 2009-05-27 中国石油化工股份有限公司 一种用于乙烯聚合和共聚合前过渡金属催化体系、其制备方法和应用
CN101423574B (zh) 2007-10-31 2011-05-04 中国石油化工股份有限公司 一种负载化非茂单活性中心催化剂组分及其制备方法和应用
RU2532543C2 (ru) * 2009-04-17 2014-11-10 Чайна Петролеум Энд Кемикал Корпорейшн Компонент катализатора, применяемый для полимеризации олефинов, способ его получения и катализатор, содержащий такой компонент
CN101798362B (zh) 2010-02-10 2012-07-11 中国科学院上海有机化学研究所 一类具有单活性中心性质的齐格勒-纳塔烯烃聚合催化剂
CN102030844B (zh) 2010-09-14 2014-07-23 中国科学院上海有机化学研究所 烯烃聚合催化剂及超低支化度超高分子量聚乙烯
ITMI20122203A1 (it) * 2012-12-20 2014-06-21 Versalis Spa Procedimento per la preparazione di (co)polimeri di dieni coniugati in presenza di un sistema catalitico comprendente un complesso osso-azotato di cobalto
KR102293704B1 (ko) * 2014-04-24 2021-08-24 차이나 페트로리움 앤드 케미컬 코포레이션 올레핀 중합용 촉매 성분 및 이의 촉매
WO2015161825A1 (zh) * 2014-04-24 2015-10-29 中国石油化工股份有限公司 一种用于丙烯聚合的催化剂组分、制备方法及其催化剂

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321692A (zh) * 2000-04-30 2001-11-14 中国石油化工集团公司 双齿配体、过渡金属配合物、烯烃聚合催化体系以及该催化体系在烯烃聚合中的应用
CN101165074A (zh) * 2006-10-20 2008-04-23 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其催化剂
CN101165073A (zh) * 2006-10-20 2008-04-23 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分和催化剂
CN101580488A (zh) * 2008-05-16 2009-11-18 中国石油化工股份有限公司 三齿吡啶亚胺配体的制备方法及应用
CN101864009A (zh) * 2009-04-17 2010-10-20 中国石油化工股份有限公司 一种用于烯烃聚合反应的催化剂组分的制备方法及其催化剂
US20110130530A1 (en) * 2009-12-02 2011-06-02 Dow Global Technologies Inc. Two atom bridged dicarbonate compounds as internal donors in catalysts for polypropylene manufacture
WO2015055137A1 (zh) * 2013-10-18 2015-04-23 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分、其制备方法和包含它的催化剂
CN105085747A (zh) * 2014-04-24 2015-11-25 中国石油化工股份有限公司 用于丙烯聚合的催化剂组分及其催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517555A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112759673A (zh) * 2019-10-21 2021-05-07 中国石油化工股份有限公司 一种烯烃聚合用催化剂、催化剂组分及其应用
CN112759673B (zh) * 2019-10-21 2023-02-28 中国石油化工股份有限公司 一种烯烃聚合用催化剂、催化剂组分及其应用

Also Published As

Publication number Publication date
RU2757372C2 (ru) 2021-10-14
US11325994B2 (en) 2022-05-10
SA519401395B1 (ar) 2023-02-07
JP7178991B2 (ja) 2022-11-28
US20190211119A1 (en) 2019-07-11
RU2019112055A3 (zh) 2020-11-24
KR20190058536A (ko) 2019-05-29
JP2019529654A (ja) 2019-10-17
RU2019112055A (ru) 2020-10-23
KR102466260B1 (ko) 2022-11-10
EP3517555A4 (en) 2020-05-13
EP3517555A1 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
US20060287446A1 (en) Catalyst component for olefin polymerization and catalyst comprising the same
US10184017B2 (en) Catalyst component for propene polymerization, preparation method thereof, and catalyst containing the same
WO2018054362A1 (zh) 用于烯烃聚合的催化剂组分、催化剂及其应用
CN107868152B (zh) 一种用于烯烃聚合的催化剂组分、催化剂及其应用
WO2015161827A1 (zh) 一种用于烯烃聚合的催化剂组分及其催化剂
WO2018054363A1 (zh) 用于烯烃聚合的催化剂组分、催化剂及其应用
CN107868153B (zh) 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN107868147B (zh) 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN107868149B (zh) 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN107868150B (zh) 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN109553705B (zh) 一种用于烯烃聚合的催化剂组分及其制备方法
CN109553707B (zh) 一种用于烯烃聚合的催化剂组分、催化剂及应用
CN109553706B (zh) 一种用于烯烃聚合的催化剂组分、催化剂及应用
CN107868154B (zh) 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN107868155B (zh) 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN109553704B (zh) 一种用于烯烃聚合的催化剂组分、催化剂及应用
CN107868148B (zh) 一种用于烯烃聚合的催化剂组分、催化剂及其应用
CN109553703B (zh) 一种用于烯烃聚合的催化剂组分及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019515798

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011214

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017852430

Country of ref document: EP

Effective date: 20190423