WO2018054344A1 - 一种电气化铁路分区所自动过分相系统及其控制方法 - Google Patents
一种电气化铁路分区所自动过分相系统及其控制方法 Download PDFInfo
- Publication number
- WO2018054344A1 WO2018054344A1 PCT/CN2017/102830 CN2017102830W WO2018054344A1 WO 2018054344 A1 WO2018054344 A1 WO 2018054344A1 CN 2017102830 W CN2017102830 W CN 2017102830W WO 2018054344 A1 WO2018054344 A1 WO 2018054344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- switch
- supply arm
- segmenter
- thyristor switch
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60M—POWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
- B60M3/00—Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
- B60M3/04—Arrangements for cutting in and out of individual track sections
Definitions
- the invention relates to the field of electrified railway traction power supply, in particular to an automatic over-phase separation technology of an electrified railway section.
- China's electrified railways generally adopt single-phase power frequency AC system.
- electrified railways In order to make the three-phase load of power system as balanced as possible, electrified railways often adopt the scheme of rotating phase sequence and phase-division power supply.
- the adjacent power supply section at the split phase division is divided by air or insulator, referred to as electrical phase separation or phase separation.
- the in-phase power supply can fundamentally eliminate the phase separation at the exit of the traction substation, so that the train can pass through the power continuously.
- the power grid does not allow bilateral power supply, the excessive phase problem of the sub-area still needs to be solved.
- the automatic over-phase method is divided into two types: the vehicle automatic over-phase and the ground switch.
- the on-vehicle automatic over-phase is based on the cooperation of the train and the ground signal, and the driver is manually over-phased on the train through the train control system.
- the train In the process of automatic over-phase separation of the vehicle, the train has a long power-off time and a large speed loss. At the same time, there is a risk of power supply dead zone and parking, especially in the road section of the long slope.
- the current ground switch automatic over-phase method is to match the train ground position signal, and the power supply arm voltages at both ends of the phase separation are sequentially switched to the neutral section through the ground switch, and the train does not need to be switched.
- the power-off time is only two sets of ground switch switching time, and the time is short, generally 200ms to 400ms, which has little effect on the train speed loss, and there is no power supply dead zone.
- some traction trains of high-speed trains are unacceptable, and need to be restarted after excessive phase separation, which affects the performance of the train.
- the switch switching will generate a transient process, easy to cause operating over-voltage or over-current, and even damage components, causing failure.
- the utility model utilizes two power supply arms on both sides of the partition to supply the same phase voltage, which can improve the automatic over-phase separation technology of the train to a new advanced level of uninterrupted power supply, is suitable for various trains, and can effectively suppress transients. Electrical processes and overvoltages and overcurrents do not adversely affect the power grid.
- the object of the present invention is to provide an automatic over-phase separation system for an electrified railway section, which can effectively solve the problem of automatic over-phase separation under the condition of uninterrupted power supply of the electrified railway section.
- Another object of the present invention is to provide a control method for an electrified railway automatic over-phase system, which can effectively solve the control problem of an automatic over-phase system of an uninterrupted power supply in an electrified railway sub-area.
- the technical solution adopted by the present invention for achieving the purpose thereof is an automatic over-phase separation system of an electrified railway section, including a normally-off thyristor switch (T1) and a thyristor switch 2 (T2), and a normally closed load switch 1 (K1) ) and load switch two (K2), usually divided standby switch one (K11) and spare switch two (K22), resistor one (R1) and resistor two (R2), current transformer one (H1) and current transformer two (H2) and voltage transformer (V);
- the power supply arm is divided into the power supply arm one (A1), the power supply arm two (A2), and the power supply arm one (A1) is passed through the segmenter one (S1) and the neutral section (A0) Connected at one end, the power supply arm two (A2) is connected to the other end of the neutral section (A0) through the sectionalizer 2 (S2); on the pillar at the end of the power supply arm one (A1) near the segmenter one (S1) Match A pantograph
- the remote control unit (YD) can also be connected to the control unit (CU).
- an automatic over-phase system control method for an electrified railway sub-area is: a thyristor switch when a train enters a neutral section (A0) via a segmenter 1 (S1) One (T1) is turned off, and the thyristor switch 2 (T2) is turned on immediately after the thyristor switch (T1) current zero-crossing is turned off, and the power supply arm one (A1) to the power supply arm two (A2) current zero-crossing point is instantaneously switched.
- the neutral section (A0) is disconnected from the power supply arm (A1) and directly connected to the power supply arm 2 (A2) to realize uninterrupted power supply.
- resistor one R1
- resistor two R2
- work alone or work together
- the specific control order is:
- the pantograph identifier (P1) senses that the train (L) drives from the power supply arm one (A1) to the segmenter one (S1)
- the control unit (CU) selects the voltage transformer (V) output waveform voltage to zero, immediately turns on the thyristor switch (T1), so that the neutral segment (A0) is directly connected to the power supply arm (A1); , resistor one (R1) is shorted, and resistor two (R2) is operated;
- the control unit (CU) turns off the thyristor switch (T1).
- the thyristor switch 2 (T2) is turned on, that is, the neutral segment (A0) and the power supply arm are one ( A1) is blocked and directly connected to the power supply arm 2 (A2); at this time, the resistance one (R1) resumes operation, and the resistance two (R2) is short-circuited;
- the output signal of the pantograph identifier three (P3) signal terminal is 1, that is, the train enters the power supply arm two (A2) from the neutral segment (A0) via the segmenter 2 (S2), the control unit (CU) order
- the thyristor switch 2 (T2) is turned off, that is, the neutral section (A0) and the power supply arm 2 (A2) are blocked; at this time, the resistor 2 (R2) resumes operation; that is, the pantograph identifier 1 (P1), receives power
- the signal recognition signal of the bow recognition instrument 2 (P2) and the pantograph recognizer 3 (P3) is reset back to 0, and the system returns to the initial state A; the uninterrupted power supply switching of the power supply arm one (A1) to the power supply arm two (A2) is completed. .
- the thyristor switch one (T1) and the thyristor switch two (T2) are both bidirectional thyristor AC switches.
- the resistor one (R1) and the second resistor (R2) are high voltage and high resistance resistors, and the rated voltage to the ground satisfies 27.5 kV, the voltage at both ends is greater than or equal to 10 kV, and the resistance value is greater than or equal to 500 ⁇ ; the resistance one (R1) and the resistance two (R2) Working alone or working together can suppress equalizing current and suppress transient processes.
- the control unit (CU) disconnects the load switch one (K1) and the load switch two (K2), and cuts off the thyristor switch (T1) and the thyristor Off two (T2), then replace the thyristor switch one (T1) and the thyristor switch two (T2) to replace the thyristor switch one (T1) and the thyristor switch two (T2) to perform automatic over-phase operation, and the control method and the traditional ground automatically over-the-counter The same.
- control unit can also collect load switch one (K1) and load switch two (K2), thyristor switch one (T1) and thyristor switch two (T2), standby switch one (K11) and standby switch two (K22). Breaking information, and further analysis of their working status, timely detection of faults.
- the resistor one (R1) and the resistor two (R2) branch should be connected in series with the isolating switch; when the resistor one (R1) or the resistor two (R2) exits, the system can still run, but when When the thyristor switch (T1) and the thyristor switch 2 (T2) are not properly matched, it will cause a large transient process or equalized current.
- a high-voltage high-resistance resistor can be connected in parallel between the neutral section (A0) and the rail ground.
- the working principle of the invention is that the two power supply arms on both sides of the partition are powered by the same phase voltage or line voltage of the three-phase power grid; compared with the 50 Hz power frequency circuit, the power on and off time of the power electronic switch such as the thyristor is very Short, can be ignored, that is, the thyristor switch is instantaneously turned on and off. When the voltage crosses zero, the thyristor switch is triggered to be turned on to short-circuit the resistor, which can effectively reduce the voltage shock.
- the thyristor switch Immediately after the thyristor switch has a current zero crossing, the thyristor switch is turned on to complete the instantaneous switching of the power supply arm to the power supply arm two current zero-crossing point, that is, the power supply of the train is switched from the power supply arm to the power supply arm 2 for an uninterrupted operation. powered by.
- the high-voltage and high-resistance resistors connected in series with the system, the resistors 2 or work alone, or work together, can suppress the equalization current, reduce the interference to the power grid to a minimum, allowable degree, and at the same time exert a damping effect to suppress the traction power supply system. Transient processes and overvoltages and overcurrents that may occur.
- the invention turns on the thyristor switch two after the thyristor switch has a current zero-crossing, and completes the instantaneous switching of the power supply arm to the power supply arm two current zero-crossing point, and realizes uninterrupted power supply to the train, that is, the switching time is 0.
- Applicable to all kinds of trains, and the current ground switch automatically switches over phase Most of them are between 200ms and 400ms.
- the traction drive system of some models of high-speed trains cannot be accepted. After the phase separation, it needs to be restarted, which affects the normal performance of the train.
- the resistors 1, the resistors 2 or work alone, or work together can suppress the equalization current, reduce the interference to the power grid to a minimum, allowable degree, and at the same time exert a damping effect to suppress the traction power supply. Transient processes and overvoltages and overcurrents that may occur in the system.
- the invention has a system fault identification and switching function, which can avoid accident expansion.
- the invention has advanced technology, superior performance and easy implementation.
- FIG. 1 is a schematic structural view of an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a control unit in accordance with an embodiment of the present invention.
- an automatic over-phase separation system for an electrified railway sub-division comprising a power supply arm one (A1), a neutral section (A0), a power supply arm two (A2), and a power supply arm (A1) is connected to one end of the neutral segment (A0) through the segmenter one (S1), and the power supply arm two (A2) is connected to the other end of the neutral segment (A0) through the segmenter 2 (S2), and is powered
- a pantograph identifier (P1) is provided on the pillar at the end of the arm (A1) near the segmenter (S1), and a pantograph identifier is provided on the pillar provided with the segmenter (S1).
- the signal receiving end of the pantograph identifier one (P1), the pantograph identifier two (P2), the pantograph identifier three (P3), the current transformer one (H1) and the output of the current transformer two (H2) and the output of the voltage transformer (V) are connected to the control unit (CU);
- the trigger end of the thyristor switch one (T1) and the thyristor switch two (T2) , the operating end of the load switch one (K1) and the load switch two (K2), the operating ends of the standby switch one (K11) and the standby switch two (K22) are connected to the control unit (CU);
- the remote control device ( YD) can also be connected to the Control Unit (CU).
- the thyristor switch one (T1) and the thyristor switch two (T2) are both bidirectional thyristor AC switches; the thyristor switch one (T1), the thyristor switch two (T2) are normally turned off; the load switch one (K1) and the load switch two ( K2) is normally closed; the standby switch one (K11) and the standby switch two (K22) are normally disconnected.
- the resistor one (R1) and the second resistor (R2) are high voltage and high resistance resistors, the rated voltage to the ground satisfies 27.5 kV, the voltage at both ends is greater than or equal to 10 kV, and the resistance value is generally greater than or equal to 500 ⁇ ; the resistance one (R1) and the resistance two ( R2) Separate work or work together can suppress the equalization current and suppress the transient process; for the convenience of maintenance, according to common sense, the resistance one (R1) and the resistance two (R2) branch should be connected in series with the isolating switch; resistance one (R1) Or when the resistor 2 (R2) exits, the system can still run, but when the thyristor switch (T1) and the thyristor switch 2 (T2) are not properly matched, it will cause a large transient process or equalization current.
- the voltage transformer (V) is used to detect the voltage of the power supply arm.
- the resistor (R1) and the resistor 2 (R2) are operated, the power supply arm (A1) and the neutral section (A0) and the power supply arm 2 (A2) In the same phase, the voltage transformer (V) can be placed on the power supply arm (A1) or in the neutral position (A0) or the power supply arm two (A2).
- a high-voltage high-resistance resistor can be connected in parallel between the neutral section (A0) and the rail ground.
- the pantograph identifier (P1) signal terminal is 1, that is, the pantograph identifier (P1) senses that the train (L) drives from the power supply arm one (A1) to the segmenter one (S1)
- the control unit (CU) selects the voltage transformer (V) output waveform voltage zero-crossing
- the thyristor switch (T1) is turned on, so that the neutral segment (A0) is directly connected to the power supply arm (A1).
- the resistor One (R1) is shorted and the second (R2) is operated;
- the control unit (CU) turns off the thyristor switch (T1), and immediately turns on the thyristor switch 2 (T2) after the thyristor switch (T1) current zero-off, that is, the neutral section (A0) and the power supply arm one (A1) Blocking and directly communicating with the power supply arm two (A2), at this time, the resistance one (R1) resumes operation, and the resistance two (R2) is short-circuited;
- the output signal of the pantograph identifier three (P3) signal terminal is 1, that is, the train enters the power supply arm two (A2) from the neutral segment (A0) via the segmenter 2 (S2), the control unit (CU) order
- the thyristor switch 2 (T2) is turned off, that is, the neutral section (A0) and the power supply arm 2 (A2) are blocked.
- the resistor 2 (R2) resumes operation; the pantograph identifier 1 (P1) is received.
- the signal recognition signal of the bow recognition instrument 2 (P2) and the pantograph recognizer 3 (P3) is reset back to 0, and the system returns to the initial state A; the uninterrupted power supply switching of the power supply arm one (A1) to the power supply arm two (A2) is completed. .
- FIG. 2 is a schematic diagram of a control unit according to an embodiment of the present invention.
- Pantograph 1 P1
- pantograph recognizer 2 P2
- pantograph recognizer 3 P3
- current transformer 1 H1
- current transformer 2 H2
- V the output of the voltage transformer
- T1 the trigger end of the thyristor switch
- T2 the thyristor switch 2
- K1 the load switch 1
- K2 the standby switch 1
- the operating terminals of (K11) and standby switch 2 (K22) are connected to the control unit (CU); the remote control unit (YD) can also be connected to the control unit (CU).
- Pick up P1
- pantograph recognizer 2 P2
- pantograph recognizer 3 P3
- current transformer 1 H1
- H2 current transformer 2
- V the output of the voltage transformer
- V the trigger end of the thyristor switch
- T2 the thyristor switch 2
- K1 the load switch 1
- K2 the load switch
- the pantograph recognizer one (P1), the pantograph recognizer two (P2), and the pantograph recognizer three (P3) output the detection signal to the control unit (CU) via the signal terminal, and the control unit (CU) accordingly It is judged that the train is in the specific position of the power supply arm one (A1), the neutral section (A0), and the power supply arm two (A2), and the thyristor switch one (T1) and the thyristor switch two (T2) are turned on or off to complete the command.
- the power supply arm switches to the power supply arm two current zero-crossing point instantaneously, and provides uninterrupted power supply to the train, and then commands the pantograph identifier one (P1), the pantograph identifier two (P2), and the pantograph identifier three ( The signal output signal of P3) is reset back to 0, and the system returns to the initial state.
- the control unit (CU) disconnects the load switch one (K1) and the load switch two (K2), cuts off the thyristor switch one (T1) and the thyristor switch two (T2), and then makes the standby switch one (K11) and the standby switch two (K22) replace the thyristor switch one (T1) and the thyristor switch two (T2) to perform the automatic over-phase operation, that is, the same as the current ground switch automatic over-phase method, with the pantograph identification instrument output signal, through the standby switch one (K11 And the standby switch 2 (K22) sequentially switches the power supply arm one (A1) and the power supply arm two (A2) to the neutral section as a backup mode to realize automatic over-phase
- control unit can also collect load switch one (K1) and load switch two (K2), thyristor switch one (T1) and thyristor switch two (T2), standby switch one (K11) and standby switch two (K22). Breaking information, and further analysis of their working status, timely detection of faults.
- the remote control unit (YD) obtains information through the control unit (CU) and issues a command.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
一种电气化铁路分区所自动过分相系统及方法,该系统包括:受电弓识别仪,用于感知列车的行驶位置及方向;电压互感器,用于检测第一供电臂的电压;第一电阻和第一晶闸管开关,分别并联在第一分段器两端;第二电阻和第二晶闸管开关,分别并联在第二分段器两端;以及控制单元,用于:在所述列车从所述第一供电臂驶向所述第一分段器的情况下,在所述第一供电臂的电压过零时,控制所述第一晶闸管开关导通;在所述列车从所述第一供电臂经所述第一分段器进入中性段的情况下,控制所述第一晶闸管开关关断,此时通过第一晶闸管开关的电流过零,同时控制所述第二晶闸管开关导通;以及在所述列车从所述中性段经所述第二分段器进入所述第二供电臂的情况下,控制所述第二晶闸管开关关断。
Description
本发明涉及电气化铁路牵引供电领域,特别涉及电气化铁路分区所自动过分相技术。
我国电气化铁道普遍采用单相工频交流制,为使电力系统三相负荷尽可能平衡,电气化铁道往往采用轮换相序、分相分区供电的方案。分相分区处的相邻供电区间用空气或绝缘子分割,简称电分相或分相。
为防止电力机车带电通过分相因燃弧而烧坏接触网悬挂部件,甚至导致相间短路等事故,列车过分相时,司机需手动进行退级、关辅助机组、断主开关,靠列车惯性驶过分相区,再合主开关、合辅助机组、进级恢复功率,完成过分相过程,俗称降弓过分相。随着列车速度的提升和过分相频繁,司机劳动强度大或者手动反应不及而无法完成过分相,必须采用措施。主要措施可分为自动过分相技术和取消分相的同相供电技术。同相供电可以从根本上取消牵引变电所出口处的分相,使列车不断电通过,但在电网不允许双边供电时,分区所的过分相问题依旧需要解决。现阶段常用自动过分相方式可分为车载自动过分相和地面开关自动过分相两种。
车载自动过分相是通过列车与地面信号的配合,在列车上通过列车控制系统模拟司机手动过分相。车载自动过分相过程中,列车断电时间较长,速度损失较大,同时存在供电死区和停车风险,特别在长大坡道路段停车风险更大。
现行地面开关自动过分相的方法是配合列车地面位置信号,通过地面开关把分相两端的供电臂电压依次切换到中性段上,列车不需要做切换动
作,其断电时间仅为两组地面开关切换时间,用时较短,一般为200ms到400ms,对列车速度损失影响较小,不存在供电死区。但是,尽管这种方案的开关切换用时较短,仍有一些高铁列车的牵引传动系统不能接受,过分相后需要重新启动,影响列车性能的良好发挥。
另外,不论是车载自动过分相,还是地面开关自动过分相,其中的开关投切会产生暂态过程,易引起操作过电压或过电流,甚至损坏元器件、引发故障。
本申请利用分区所两侧的两个供电臂为同相电压供电的特点,可将列车自动过分相技术提高到不间断供电的新的高级水平上,适用于各种列车,并且能有效抑制暂态电气过程及过电压、过电流,也不会对电网造成不良影响。
发明内容
本发明的目的是提供一种电气化铁路分区所自动过分相系统,它能有效地解决电气化铁道分区所在不间断供电情况下的自动过分相问题。
本发明的另一个目的是提供一种电气化铁路自动过分相系统的控制方法,它能有效地解决电气化铁路分区所不间断供电自动过分相系统的控制问题。
本发明实现其目的所采用的技术方案为,一种电气化铁路分区所自动过分相系统,包括通常关断的晶闸管开关一(T1)和晶闸管开关二(T2),通常闭合的负荷开关一(K1)和负荷开关二(K2),通常分断的备用开关一(K11)和备用开关二(K22),电阻一(R1)和电阻二(R2),电流互感器一(H1)和电流互感器二(H2)以及电压互感器(V);供电臂分供电臂一(A1)、供电臂二(A2),供电臂一(A1)通过分段器一(S1)与中性段(A0)的一端相连,供电臂二(A2)通过分段器二(S2)与中性段(A0)的另一端相连;在供电臂一(A1)末段靠近分段器一(S1)处的支柱上配
备受电弓识别仪一(P1),在设有分段器一(S1)的支柱上配备受电弓识别仪二(P2),在设有分段器二(S2)的支柱上配备受电弓识别仪三(P3);负荷开关一(K1)和晶闸管开关一(T1)及电流互感器一(H1)顺序串联后并联在分段器一(S1)两端,电阻一(R1)以及备用开关一(K11)也分别并联在分段器一(S1)两端;负荷开关二(K2)和晶闸管开关二(T2)及电流互感器二(H2)顺序串联后并联在分段器二(S2)两端,电阻二(R2)以及备用开关二(K22)也分别并联在分段器二(S2)两端;在供电臂一(A1)与分段器一(S1)的连接处与轨地之间并接电压互感器(V);受电弓识别仪一(P1)、受电弓识别仪二(P2)、受电弓识别仪三(P3)的信号端,电流互感器一(H1)和电流互感器二(H2)的输出端以及电压互感器(V)的输出端均与控制单元(CU)相连接;晶闸管开关一(T1)和晶闸管开关二(T2)的触发端,负荷开关一(K1)和负荷开关二(K2)的操动端,备用开关一(K11)和备用开关二(K22)的操动端均与控制单元(CU)相连接。
远动装置(YD)也可与控制单元(CU)相连接。
本发明的第二个目的是通过以下技术方案来实现的:一种电气化铁路分区所自动过分相系统控制方法是:列车经分段器一(S1)进入中性段(A0)时,晶闸管开关一(T1)关断,在晶闸管开关一(T1)电流过零关断后立即令晶闸管开关二(T2)导通,完成供电臂一(A1)到供电臂二(A2)电流过零点瞬间切换,即将中性段(A0)与供电臂一(A1)断开而与供电臂二(A2)直接连通,实现不间断供电。其中电阻一(R1)、电阻二(R2)或单独工作,或共同工作,均可抑制均衡电流,把对电网的干扰减少到最小的、允许的程度,同时抑制牵引供电系统可能产生的暂态过程。其具体控制顺序是:
A.系统初始状态:中性段(A0)无列车;受电弓识别仪一(P1)、受电弓识别仪二(P2)、受电弓识别仪三(P3)的信号端输出信号为0;
B.若受电弓识别仪一(P1)信号端输出信号为1,即受电弓识别仪一(P1)感知列车(L)从供电臂一(A1)驶向分段器一(S1)时,控制单元(CU)选择电压互感器(V)输出波形电压过零,立即令晶闸管开关一(T1)导通,使中性段(A0)与供电臂一(A1)直接连通;此时,电阻一(R1)被短接,电阻二(R2)工作;
C.若受电弓识别仪二(P2)信号端输出信号为1,即列车(L)从供电臂一(A1)经分段器一(S1)进入中性段(A0)时,控制单元(CU)令晶闸管开关一(T1)关断,在晶闸管开关一(T1)电流过零关断后,立即令晶闸管开关二(T2)导通,即中性段(A0)与供电臂一(A1)阻断而与供电臂二(A2)直接连通;此时,电阻一(R1)恢复工作,电阻二(R2)被短接;
D.若受电弓识别仪三(P3)信号端输出信号为1,即列车从中性段(A0)经分段器二(S2)进入供电臂二(A2)时,控制单元(CU)令晶闸管开关二(T2)关断,即中性段(A0)与供电臂二(A2)阻断;此时,电阻二(R2)恢复工作;即受电弓识别仪一(P1)、受电弓识别仪二(P2)、受电弓识别仪三(P3)的信号端信号复位回0,系统恢复初始状态A;完成供电臂一(A1)到供电臂二(A2)的不间断供电切换。
所述晶闸管开关一(T1)和晶闸管开关二(T2)均为双向晶闸管交流开关。
所述电阻一(R1)和电阻二(R2)为高压高阻电阻,对地额定电压满足27.5kV,两端电压大于等于10kV,电阻值大于等于500Ω;电阻一(R1)和电阻二(R2)单独工作或共同工作均可抑制均衡电流和抑制暂态过程。
当电流互感器一(H1)、电流互感器二(H2)的输出端测得的电流同时大于0时,即晶闸管开关一(T1)、晶闸管开关二(T2)同时导通,则视为故障(经远动装置(YD)进行故障报警),控制单元(CU)令负荷开关一(K1)和负荷开关二(K2)分断,切除晶闸管开关一(T1)和晶闸管开
关二(T2),然后令备用开关一(K11)和备用开关二(K22)分别替代晶闸管开关一(T1)和晶闸管开关二(T2)执行自动过分相操作,其控制方法与传统地面自动过分相相同。
显然,控制单元(CU)也可以收集负荷开关一(K1)和负荷开关二(K2)、晶闸管开关一(T1)和晶闸管开关二(T2)、备用开关一(K11)和备用开关二(K22)的开断信息,并进一步分析它们的工作状态,及时发现故障。
为了检修方便,按常识,所述电阻一(R1)和电阻二(R2)支路均应串接隔离开关;电阻一(R1)或电阻二(R2)退出时,系统仍可运行,但当晶闸管开关一(T1)和晶闸管开关二(T2)配合不当时,会引起较大的暂态过程或均衡电流。
为了配合晶闸管的触发导通和增强对暂态过程的阻尼性能,可以在中性段(A0)与轨地之间并联一套高压高阻电阻。
本发明的工作原理是:分区所两侧的两个供电臂由三相电网的同一相电压或线电压供电;相对50Hz工频电路而言,晶闸管等电力电子开关的导通和关断时间很短,可以忽略,即认为晶闸管开关是瞬间导通和关断的。在电压过零时触发晶闸管开关使其导通来短接电阻,可以有效降低电压冲击。在晶闸管开关一电流过零关断后立即令晶闸管开关二导通可以完成供电臂一到供电臂二电流过零点瞬间切换,即将列车的供电从供电臂一瞬间切换到供电臂二,实现不间断供电。串接于系统的高压高阻电阻一、电阻二或单独工作,或共同工作,均可抑制均衡电流,把对电网的干扰减少到最小的、允许的程度,同时发挥阻尼作用,抑制牵引供电系统可能产生的暂态过程和过电压、过电流。
与现有技术相比,本发明的有益效果是:
一、本发明在晶闸管开关一电流过零关断后立即令晶闸管开关二导通,完成供电臂一到供电臂二电流过零点瞬间切换,且对列车实现不间断供电,即切换时间为0,适用于各种各型列车,而现行地面开关自动过分相切换时
间大多为200ms到400ms,一些型号的高铁列车的牵引传动系统不能接受,过分相后需要重新启动,影响列车性能的正常发挥。
二、本发明在切换过程中,电阻一、电阻二或单独工作,或共同工作,均可抑制均衡电流,把对电网的干扰减少到最小的、允许的程度,同时发挥阻尼作用,抑制牵引供电系统可能产生的暂态过程和过电压、过电流。
三、本发明具有系统故障识别与切换功能,可以避免事故扩大化。
四、本发明技术先进,性能优越,易于实施。
图1是本发明实施例的结构示意图。
图2是本发明实施例的控制单元示意图。
下面结合附图和具体实施方式对本发明作进一步的描述。
图1示出,本发明的一种具体实施方式,一种电气化铁路分区所自动过分相系统,包括供电臂一(A1)、中性段(A0)、供电臂二(A2),供电臂一(A1)通过分段器一(S1)与中性段(A0)的一端相连,供电臂二(A2)通过分段器二(S2)与中性段(A0)的另一端相连,在供电臂一(A1)末段靠近分段器一(S1)处的支柱上配备受电弓识别仪一(P1),在设有分段器一(S1)的支柱上配备受电弓识别仪二(P2),在设有分段器二(S2)的支柱上配备受电弓识别仪三(P3);负荷开关一(K1)和晶闸管开关一(T1)及电流互感器一(H1)顺序串联后并联在分段器一(S1)两端,电阻一(R1)以及备用开关一(K11)也分别并联在分段器一(S1)两端;负荷开关二(K2)和晶闸管开关二(T2)及电流互感器二(H2)顺序串联后并联在分段器二(S2)两端,电阻二(R2)以及备用开关二(K22)也分别并联在分段器二(S2)两端;在供电臂一(A1)与分段器一(S1)连接处与轨地之间并
接电压互感器(V),测量对地电压;受电弓识别仪一(P1)、受电弓识别仪二(P2)、受电弓识别仪三(P3)的信号端,电流互感器一(H1)和电流互感器二(H2)的输出端以及电压互感器(V)的输出端均与控制单元(CU)相连接;晶闸管开关一(T1)、晶闸管开关二(T2)的触发端,负荷开关一(K1)和负荷开关二(K2)的操动端,备用开关一(K11)和备用开关二(K22)的操动端均与控制单元(CU)相连接;远动装置(YD)也可与控制单元(CU)相连接。
所述晶闸管开关一(T1)和晶闸管开关二(T2)均为双向晶闸管交流开关;晶闸管开关一(T1)、晶闸管开关二(T2)通常关断;负荷开关一(K1)和负荷开关二(K2)通常闭合;备用开关一(K11)和备用开关二(K22)通常分断。
所述电阻一(R1)和电阻二(R2)为高压高阻电阻,对地额定电压满足27.5kV,两端电压大于等于10kV,电阻值一般大于等于500Ω;电阻一(R1)、电阻二(R2)单独工作或共同工作均可抑制均衡电流,抑制暂态过程;为了检修方便,按常识,电阻一(R1)和电阻二(R2)支路均应串接隔离开关;电阻一(R1)或电阻二(R2)退出时,系统仍可运行,但当晶闸管开关一(T1)和晶闸管开关二(T2)配合不当时,会引起较大的暂态过程或均衡电流。
电压互感器(V)用于检测供电臂电压,所述电阻一(R1)和电阻二(R2)工作时,由于供电臂一(A1)与中性段(A0)、供电臂二(A2)同相位,电压互感器(V)可以设置在供电臂一(A1)上,也可以设置在中性段(A0)或供电臂二(A2)的合适位置。
为了配合晶闸管的触发导通和增强对暂态过程的阻尼性能,可以在中性段(A0)与轨地之间并联一套高压高阻电阻。
使上述电气化铁路分区所自动过分相系统完成进行自动过分相的控制顺序是:
A.系统初始状态:中性段(A0)无列车;受电弓识别仪一(P1)、受电弓识别仪二(P2)、受电弓识别仪三(P3)的信号端输出信号为0;
B.若受电弓识别仪一(P1)信号端输出信号为1,即受电弓识别仪一(P1)感知列车(L)从供电臂一(A1)驶向分段器一(S1)时,控制单元(CU)选择电压互感器(V)输出波形电压过零时令晶闸管开关一(T1)导通,使中性段(A0)与供电臂一(A1)直接连通,此时,电阻一(R1)被短接,电阻二(R2)工作;
C.若受电弓识别仪二(P2)信号端输出信号为1,即列车(L)从供电臂一(A1)经分段器一(S1)进入中性段(A0)时,控制单元(CU)令晶闸管开关一(T1)关断,在晶闸管开关一(T1)电流过零关断后立即令晶闸管开关二(T2)导通,即中性段(A0)与供电臂一(A1)阻断而与供电臂二(A2)直接连通,此时,电阻一(R1)恢复工作,电阻二(R2)被短接;
D.若受电弓识别仪三(P3)信号端输出信号为1,即列车从中性段(A0)经分段器二(S2)进入供电臂二(A2)时,控制单元(CU)令晶闸管开关二(T2)关断,即中性段(A0)与供电臂二(A2)阻断,此时,电阻二(R2)恢复工作;令受电弓识别仪一(P1)、受电弓识别仪二(P2)、受电弓识别仪三(P3)的信号端信号复位回0,系统恢复初始状态A;完成供电臂一(A1)到供电臂二(A2)的不间断供电切换。
图中所示之例是假定列车自左至右行驶,同理可完成自右至左的自动过分相步骤,不再赘述。
如图2示出,本发明实施例的控制单元示意图。受电弓识别仪一(P1)、受电弓识别仪二(P2)、受电弓识别仪三(P3)的信号端,电流互感器一(H1)、电流互感器二(H2)的输出端,电压互感器(V)的输出端,晶闸管开关一(T1)、晶闸管开关二(T2)的触发端,负荷开关一(K1)和负荷开关二(K2)的操动端,备用开关一(K11)和备用开关二(K22)的操动端均与控制单元(CU)相连接;远动装置(YD)也可与控制单元(CU)相连
接。
受电弓识别仪一(P1)、受电弓识别仪二(P2)、受电弓识别仪三(P3)将探测信号经信号端输出至控制单元(CU),控制单元(CU)据此判断列车所处于供电臂一(A1)、中性段(A0)、供电臂二(A2)的具体位置,发出晶闸管开关一(T1)、晶闸管开关二(T2)导通或关断命令,完成供电臂一到供电臂二电流过零点瞬间切换,且对列车实现不间断供电,再命令受电弓识别仪一(P1)、受电弓识别仪二(P2)、受电弓识别仪三(P3)的信号端输出信号复位回0,系统恢复初始状态。
当电流互感器一(H1)、电流互感器二(H2)的输出端测得的电流同时大于0时,即判断晶闸管开关一(T1)、晶闸管开关二(T2)同时导通,则视为故障,控制单元(CU)令负荷开关一(K1)和负荷开关二(K2)分断,切除晶闸管开关一(T1)和晶闸管开关二(T2),然后令备用开关一(K11)和备用开关二(K22)分别替代晶闸管开关一(T1)和晶闸管开关二(T2)执行自动过分相操作,即与现行地面开关自动过分相方法一样,配合受电弓识别仪输出信号,通过备用开关一(K11)和备用开关二(K22)把供电臂一(A1)和供电臂二(A2)依次切换到中性段上,作为后备方式,实现自动过分相。
显然,控制单元(CU)也可以收集负荷开关一(K1)和负荷开关二(K2)、晶闸管开关一(T1)和晶闸管开关二(T2)、备用开关一(K11)和备用开关二(K22)的开断信息,并进一步分析它们的工作状态,及时发现故障。
另外,远动装置(YD)通过控制单元(CU)得到信息,并下发命令。
Claims (10)
- 一种电气化铁路分区所自动过分相系统,其特征在于,该系统包括:受电弓识别仪,用于感知列车的行驶位置及方向;电压互感器,用于检测第一供电臂的电压;第一电阻和第一晶闸管开关,分别并联在第一分段器两端,该第一分段器位于所述第一供电臂与中性段之间;第二电阻和第二晶闸管开关,分别并联在第二分段器两端,该第二分段器位于所述中性段与第二供电臂之间;以及控制单元,用于执行以下操作中的一者或多者:在所述列车从所述第一供电臂驶向所述第一分段器的情况下,在所述第一供电臂的电压过零时,控制所述第一晶闸管开关导通;在所述列车从所述第一供电臂经所述第一分段器进入所述中性段的情况下,控制所述第一晶闸管开关关断,此时通过第一晶闸管开关的电流过零,同时控制所述第二晶闸管开关导通;以及在所述列车从所述中性段经所述第二分段器进入所述第二供电臂的情况下,控制所述第二晶闸管开关关断。
- 根据权利要求1所述的电气化铁路分区所自动过分相系统,其特征在于,所述第一及第二电阻的对地额定电压满足27.5kV,两端电压大于等于10kV,电阻值大于等于500Ω。
- 根据权利要求1或2所述的电气化铁路分区所自动过分相系统,其特征在于,该系统还包含:第一负荷开关、第一电流互感器以及第一备用开关,所述第一负荷开关与所述第一晶闸管开关及所述第一电流互感器相串联,该三者所构成的串联回路并联在所述第一分段器两端,所述第一备用开关并联在所述第一 分段器两端;以及第二负荷开关、第二电流互感器以及第二备用开关,所述第二负荷开关与所述第二晶闸管开关及所述第二电流互感器相串联,该三者所构成的串联回路并联在所述第二分段器两端,所述第二备用开关并联在所述第二分段器两端,所述控制单元还用于执行以下操作:在所述第一电流互感器及所述第二电流互感器均检测到大于0的电流的情况下,控制所述第一及第二负荷开关断开,并将即将应用于所述第一及第二晶闸管开关的控制操作分别应用于所述第一及第二备用开关。
- 根据权利要求3所述的电气化铁路分区所自动过分相系统,其特征在于,该系统还包含:远动装置,所述控制单元还用于在所述第一电流互感器及所述第二电流互感器均检测到大于0的电流的情况下,向所述远动装置发送故障报警。
- 根据权利要求1所述的电气化铁路分区所自动过分相系统,其特征在于,在所述第一电阻及所述第二电阻工作时,所述第一供电臂、所述中性段及所述第二供电臂处于相同的相位,所述电压互感器设置在所述第一供电臂上,或设置在所述中性段或所述第二供电臂上。
- 一种电气化铁路分区所自动过分相方法,其特征在于,在位于第一供电臂与中性段之间的第一分段器两端分别并联有第一电阻及第一晶闸管开关,在位于所述中性段与第二供电臂之间的第二分段器两端分别并联有第二电阻及第二晶闸管开关,该方法包括:感知列车的行驶位置及方向;检测所述第一供电臂的电压;以及以下步骤中的一者或多者:在所述列车从所述第一供电臂驶向所述第一分段器的情况下,在所述第一供电臂的电压过零时,控制所述第一晶闸管开关导通;在所述列车从所述第一供电臂经所述第一分段器进入所述中性段的情况下,控制所述第一晶闸管开关关断,此时通过第一晶闸管开关的电流过零,同时控制所述第二晶闸管开关导通;以及在所述列车从所述中性段经所述第二分段器进入所述第二供电臂的情况下,控制所述第二晶闸管开关关断。
- 根据权利要求6所述的电气化铁路分区所自动过分相方法,其特征在于,所述第一及第二电阻的对地额定电压满足27.5kV,两端电压大于等于10kV,电阻值大于等于500Ω。
- 根据权利要求6或7所述的电气化铁路分区所自动过分相方法,其特征在于,该方法还包括:在第一电流互感器及第二电流互感器均检测到大于0的电流的情况下,控制所述第一及第二负荷开关断开,并将即将应用于所述第一及第二晶闸管开关的控制操作分别应用于第一及第二备用开关,其中,所述第一晶闸管开关与所述第一电流互感器及所述第一负荷开关相串联,该三者所构成的串联回路并联在所述第一分段器两端,所述第一备用开关并联在所述第一分段器两端;所述第二闸管开关与所述第二电流互感器及所述第二负荷开关相串联,该三者所构成的串联回路并联在所述第二分段器两端,所述第二备用开关并联在所述第二分段器两端。
- 根据权利要求8所述的电气化铁路分区所自动过分相方法,其特征在于,该方法还包含:在所述第一电流互感器及所述第二电流互感器均检测到大于0的电流的情况下,向远动装置发送故障报警。
- 根据权利要求6所述的电气化铁路分区所自动过分相方法,其特征在于,在所述第一电阻及所述第二电阻工作时,所述第一供电臂、所述中性段及所述第二供电臂处于相同的相位,所述电压互感器设置在所述第一供电臂上,或设置在所述中性段或所述第二供电臂上。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17852412.0A EP3492309B1 (en) | 2016-09-23 | 2017-09-22 | Automatic passing phase-separation system for section post of electrified railway, and control method therefor |
JP2019516124A JP6813674B2 (ja) | 2016-09-23 | 2017-09-22 | 電化鉄道のセクションポストの自動分相通過システム及びその制御方法 |
RU2019109568A RU2714329C1 (ru) | 2016-09-23 | 2017-09-22 | Система автоматического пересечения мест разделения фаз для постов электрифицированных участков железных дорог и способ управления такой системой |
CN201780057930.2A CN109789810B (zh) | 2016-09-23 | 2017-09-22 | 一种电气化铁路分区所自动过分相系统及其控制方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610844202.3 | 2016-09-23 | ||
CN201610844202.3A CN106183897B (zh) | 2016-09-23 | 2016-09-23 | 一种电气化铁路分区所自动过分相系统及其控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018054344A1 true WO2018054344A1 (zh) | 2018-03-29 |
Family
ID=58067130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/102830 WO2018054344A1 (zh) | 2016-09-23 | 2017-09-22 | 一种电气化铁路分区所自动过分相系统及其控制方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3492309B1 (zh) |
JP (1) | JP6813674B2 (zh) |
CN (2) | CN106183897B (zh) |
RU (1) | RU2714329C1 (zh) |
WO (1) | WO2018054344A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109088534A (zh) * | 2018-08-27 | 2018-12-25 | 北京千驷驭电气有限公司 | 牵引变流器、混动车牵引变流器过分相控制系统及方法 |
CN110481388A (zh) * | 2019-07-17 | 2019-11-22 | 中车永济电机有限公司 | 大功率永磁直驱机车牵引系统自动过分相控制方法 |
CN110542820A (zh) * | 2019-10-09 | 2019-12-06 | 北京铁道工程机电技术研究所股份有限公司 | 一种自动过分相的检测装置及自动过分相检测系统 |
RU2726592C1 (ru) * | 2019-10-01 | 2020-07-14 | Юрий Леонидович Беньяш | Способ электропитания управляемой вставки контактной сети переменного тока со съездом |
CN112014675A (zh) * | 2020-09-02 | 2020-12-01 | 中车大同电力机车有限公司 | 自动过分相系统的检测电路与检测装置 |
CN112124361A (zh) * | 2020-09-03 | 2020-12-25 | 交控科技股份有限公司 | 自动过分相方法、系统及装置 |
CN112550087A (zh) * | 2019-09-26 | 2021-03-26 | 株洲中车时代电气股份有限公司 | 列车过分相开关组件切换方法、过分相方法、切换装置及过分相装置 |
CN115432033A (zh) * | 2022-09-23 | 2022-12-06 | 西南交通大学 | 适用于多车共臂下的牵引变压器二次侧过电压防护方法 |
CN116774129A (zh) * | 2023-08-18 | 2023-09-19 | 成都国铁电气设备有限公司 | 一种车载自动过分相地磁检测系统出厂检验平台及方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106183897B (zh) * | 2016-09-23 | 2018-08-10 | 西南交通大学 | 一种电气化铁路分区所自动过分相系统及其控制方法 |
CN108859872A (zh) * | 2017-05-15 | 2018-11-23 | 中车株洲电力机车研究所有限公司 | 一种虚拟贯通交流牵引供电系统 |
CN109305065B (zh) * | 2017-08-15 | 2020-06-02 | 北京易菲盛景科技有限责任公司 | 一种交流电气化铁路不停电智能分相器 |
CN107627906A (zh) * | 2017-09-08 | 2018-01-26 | 中国船舶重工集团公司第七〇二研究所 | 一种铁路接触网锚段关节式电分段电弧抑制装置及其方法 |
CN110095712B (zh) * | 2018-01-31 | 2021-07-23 | 株洲中车时代电气股份有限公司 | 开关状态检测电路、过分相装置、检测方法及控制方法 |
CN110091759B (zh) * | 2018-01-31 | 2022-11-08 | 株洲中车时代电气股份有限公司 | 一种地面自动过分相装置及方法 |
CN108875259B (zh) * | 2018-07-05 | 2022-09-09 | 西南交通大学 | 一种动车组车载自动过分相的车-网模型构建方法 |
CN108808641B (zh) * | 2018-08-24 | 2024-07-05 | 成都尚华电气有限公司 | 电气化铁路at所分段器隔离开关测控装置及其测控方法 |
CN108995563B (zh) * | 2018-08-24 | 2023-06-20 | 西南交通大学 | 一种电气化铁路开闭所供电构造 |
CN109572490B (zh) * | 2018-12-10 | 2021-02-26 | 中铁第四勘察设计院集团有限公司 | 一种列车进出关节式电分相精确时刻获取方法和装置 |
CN112406637B (zh) * | 2019-08-20 | 2021-08-17 | 北京诚骋成科技发展有限公司 | 铁路接触网压差消除系统、方法及机器可读存储介质 |
CN111319517B (zh) * | 2020-03-04 | 2022-05-10 | 西南交通大学 | 虚拟同相供电系统中列车受电弓位置检测方法 |
CN112406636B (zh) * | 2020-11-04 | 2022-01-28 | 西南交通大学 | 一种多所协同的再生制动能量利用系统及其控制方法 |
CN114336643B (zh) * | 2022-03-17 | 2022-05-17 | 西南交通大学 | 一种分区所双边供电牵引网穿越功率利用系统及控制方法 |
CN114851920B (zh) * | 2022-04-15 | 2022-12-20 | 西南交通大学 | 一种电气化铁路柔性过分相装置及控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60191834A (ja) * | 1984-03-14 | 1985-09-30 | Meidensha Electric Mfg Co Ltd | 交流式電気鉄道の給電切換方法 |
CN105539208A (zh) * | 2016-01-25 | 2016-05-04 | 西南交通大学 | 一种基于级联多电平地面过电分相系统功率控制方法 |
CN105799553A (zh) * | 2016-04-22 | 2016-07-27 | 中国船舶重工集团公司第七〇二研究所 | 一种电子式地面自动过分相装置 |
CN105835727A (zh) * | 2015-01-15 | 2016-08-10 | 哈尔滨帕特尔科技股份有限公司 | 一种地面式无触点自动过分相装置 |
CN106183897A (zh) * | 2016-09-23 | 2016-12-07 | 西南交通大学 | 一种电气化铁路分区所自动过分相系统及其控制方法 |
CN206086435U (zh) * | 2016-09-23 | 2017-04-12 | 西南交通大学 | 一种电气化铁路分区所自动过分相系统 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9903091L (sv) * | 1999-09-02 | 2001-01-15 | Daimler Chrysler Ag | Anläggning för matning av elektrisk effekt till spårgående fordon |
RU2307745C1 (ru) * | 2006-06-19 | 2007-10-10 | Ооо "Нииэфа-Энерго" | Система электроснабжения электрифицированной железной дороги переменного тока |
CN102343835B (zh) * | 2011-07-13 | 2013-03-20 | 北京兰德迅捷科技有限公司 | 采用电力电子变换装置实现列车带电自动过分相方法 |
CN102765333B (zh) * | 2012-08-06 | 2015-12-09 | 李子晗 | 一种电气化铁道阻尼式自动切换过分相装置 |
CN103057439B (zh) * | 2012-12-06 | 2015-04-22 | 西南交通大学 | 一种电气化铁道星形阻尼式开关自动切换过分相系统 |
CN203126567U (zh) * | 2012-12-18 | 2013-08-14 | 西南交通大学 | 一种电气化铁道电分相阻尼构造 |
CN103625309B (zh) * | 2013-11-05 | 2016-02-03 | 西南交通大学 | 一种电气化铁道自动过分相系统及其自动过分相方法 |
CN203766547U (zh) * | 2013-11-05 | 2014-08-13 | 西南交通大学 | 电气化铁道自动过分相装置 |
CN103625310B (zh) * | 2013-11-05 | 2016-06-15 | 西南交通大学 | 一种电气化铁道分区所自动过分相系统及其自动过分相方法 |
CN105034856B (zh) * | 2015-07-06 | 2017-11-07 | 北京交通大学 | 一种交流电气化铁路智能电分相装置 |
CN205523769U (zh) * | 2016-03-22 | 2016-08-31 | 铁道第三勘察设计院集团有限公司 | 基于固态切换开关的电气化铁路用地面自动过分相系统 |
CN105922894B (zh) * | 2016-04-22 | 2018-01-19 | 中国船舶重工集团公司第七一二研究所 | 一种基于大功率变流装置的过分相系统及其控制方法 |
-
2016
- 2016-09-23 CN CN201610844202.3A patent/CN106183897B/zh active Active
-
2017
- 2017-09-22 CN CN201780057930.2A patent/CN109789810B/zh active Active
- 2017-09-22 JP JP2019516124A patent/JP6813674B2/ja active Active
- 2017-09-22 EP EP17852412.0A patent/EP3492309B1/en active Active
- 2017-09-22 WO PCT/CN2017/102830 patent/WO2018054344A1/zh unknown
- 2017-09-22 RU RU2019109568A patent/RU2714329C1/ru active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60191834A (ja) * | 1984-03-14 | 1985-09-30 | Meidensha Electric Mfg Co Ltd | 交流式電気鉄道の給電切換方法 |
CN105835727A (zh) * | 2015-01-15 | 2016-08-10 | 哈尔滨帕特尔科技股份有限公司 | 一种地面式无触点自动过分相装置 |
CN105539208A (zh) * | 2016-01-25 | 2016-05-04 | 西南交通大学 | 一种基于级联多电平地面过电分相系统功率控制方法 |
CN105799553A (zh) * | 2016-04-22 | 2016-07-27 | 中国船舶重工集团公司第七〇二研究所 | 一种电子式地面自动过分相装置 |
CN106183897A (zh) * | 2016-09-23 | 2016-12-07 | 西南交通大学 | 一种电气化铁路分区所自动过分相系统及其控制方法 |
CN206086435U (zh) * | 2016-09-23 | 2017-04-12 | 西南交通大学 | 一种电气化铁路分区所自动过分相系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3492309A4 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109088534A (zh) * | 2018-08-27 | 2018-12-25 | 北京千驷驭电气有限公司 | 牵引变流器、混动车牵引变流器过分相控制系统及方法 |
CN110481388A (zh) * | 2019-07-17 | 2019-11-22 | 中车永济电机有限公司 | 大功率永磁直驱机车牵引系统自动过分相控制方法 |
CN112550087A (zh) * | 2019-09-26 | 2021-03-26 | 株洲中车时代电气股份有限公司 | 列车过分相开关组件切换方法、过分相方法、切换装置及过分相装置 |
CN112550087B (zh) * | 2019-09-26 | 2022-08-02 | 株洲中车时代电气股份有限公司 | 列车过分相开关组件切换方法、过分相方法、切换装置及过分相装置 |
RU2726592C1 (ru) * | 2019-10-01 | 2020-07-14 | Юрий Леонидович Беньяш | Способ электропитания управляемой вставки контактной сети переменного тока со съездом |
CN110542820A (zh) * | 2019-10-09 | 2019-12-06 | 北京铁道工程机电技术研究所股份有限公司 | 一种自动过分相的检测装置及自动过分相检测系统 |
CN112014675A (zh) * | 2020-09-02 | 2020-12-01 | 中车大同电力机车有限公司 | 自动过分相系统的检测电路与检测装置 |
CN112014675B (zh) * | 2020-09-02 | 2023-08-29 | 中车大同电力机车有限公司 | 自动过分相系统的检测电路与检测装置 |
CN112124361A (zh) * | 2020-09-03 | 2020-12-25 | 交控科技股份有限公司 | 自动过分相方法、系统及装置 |
CN112124361B (zh) * | 2020-09-03 | 2022-07-19 | 交控科技股份有限公司 | 自动过分相方法、系统及装置 |
CN115432033A (zh) * | 2022-09-23 | 2022-12-06 | 西南交通大学 | 适用于多车共臂下的牵引变压器二次侧过电压防护方法 |
CN115432033B (zh) * | 2022-09-23 | 2023-10-27 | 西南交通大学 | 适用于多车共臂下的牵引变压器二次侧过电压防护方法 |
CN116774129A (zh) * | 2023-08-18 | 2023-09-19 | 成都国铁电气设备有限公司 | 一种车载自动过分相地磁检测系统出厂检验平台及方法 |
CN116774129B (zh) * | 2023-08-18 | 2023-11-10 | 成都国铁电气设备有限公司 | 一种车载自动过分相地磁检测系统出厂检验平台及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3492309A4 (en) | 2020-04-01 |
EP3492309A1 (en) | 2019-06-05 |
JP6813674B2 (ja) | 2021-01-13 |
CN109789810A (zh) | 2019-05-21 |
CN106183897A (zh) | 2016-12-07 |
CN106183897B (zh) | 2018-08-10 |
CN109789810B (zh) | 2022-04-01 |
EP3492309B1 (en) | 2022-10-05 |
RU2714329C1 (ru) | 2020-02-14 |
JP2019532863A (ja) | 2019-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018054344A1 (zh) | 一种电气化铁路分区所自动过分相系统及其控制方法 | |
CN105799553B (zh) | 一种电子式地面自动过分相装置 | |
CN107351730B (zh) | 一种电气化铁路列车不断电自动过分相系统及其运行方法 | |
EP3321125A1 (en) | Intelligent electric phase splitting device for alternating-current electrified railway | |
CN102343835B (zh) | 采用电力电子变换装置实现列车带电自动过分相方法 | |
CN103231668B (zh) | 电气化铁道自检式自动过分相系统及其自动过分相方法 | |
CN103057439B (zh) | 一种电气化铁道星形阻尼式开关自动切换过分相系统 | |
CN106114294B (zh) | 一种动车组不分闸过分相系统及故障识别方法 | |
CN203032416U (zh) | 一种电气化铁道星形阻尼式开关自动切换过分相装置 | |
CN206086435U (zh) | 一种电气化铁路分区所自动过分相系统 | |
CN108621865B (zh) | 地面开关过分相弓网电弧抑制方法、抑制装置及过分相装置 | |
CN102765333B (zh) | 一种电气化铁道阻尼式自动切换过分相装置 | |
CN110116658B (zh) | 用于分区所电子开关地面过分相车网匹配的方法及装置 | |
CN101767540A (zh) | 一种电气化铁道无开关切换自动过分相装置 | |
CN202669541U (zh) | 电气化铁道阻尼式自动切换过分相设备 | |
CN113103929B (zh) | 一种应用于铁路地面自动过分相系统的复合开关结构 | |
CN205686215U (zh) | 一种动车组不分闸过分相系统 | |
CN207028910U (zh) | 一种电气化铁路列车不断电自动过分相系统 | |
CN110091760A (zh) | 一种柔性地面过分相电流控制方法及装置 | |
CN108859868B (zh) | 一种同相供电方式下的车载自动过分相的方法和系统 | |
CN102916482A (zh) | 一种低压切换电路 | |
CN107834525B (zh) | 一种轨道交通多流制供电系统的保护系统及方法 | |
CN112537230B (zh) | 用于电气化轨道交通的地面选相控制过分相系统及方法 | |
CN220973977U (zh) | 地面带电自动过分相装置 | |
CN113060003B (zh) | 一种双流制轨道交通车辆高压系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17852412 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017852412 Country of ref document: EP Effective date: 20190226 |
|
ENP | Entry into the national phase |
Ref document number: 2019516124 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |