WO2018054052A1 - 一种空调器及其化霜系统 - Google Patents

一种空调器及其化霜系统 Download PDF

Info

Publication number
WO2018054052A1
WO2018054052A1 PCT/CN2017/081611 CN2017081611W WO2018054052A1 WO 2018054052 A1 WO2018054052 A1 WO 2018054052A1 CN 2017081611 W CN2017081611 W CN 2017081611W WO 2018054052 A1 WO2018054052 A1 WO 2018054052A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
defrosting
compressor
air conditioner
Prior art date
Application number
PCT/CN2017/081611
Other languages
English (en)
French (fr)
Inventor
冯涛
李立民
焦华超
黄文豪
金孟孟
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to KR1020197003196A priority Critical patent/KR20190025967A/ko
Priority to JP2019505140A priority patent/JP2019530843A/ja
Priority to EP17852126.6A priority patent/EP3517861A4/en
Publication of WO2018054052A1 publication Critical patent/WO2018054052A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the field of air conditioner technology, and more particularly to an air conditioner and a defrosting system thereof.
  • the outdoor heat exchanger When the air conditioning system is operating in the heating mode in a humid and cold environment, the outdoor heat exchanger is used as an evaporator. Since the surface temperature of the outdoor heat exchanger is lower than 0 ° C, the gaseous humid air in the outdoor air is easily in the outdoor heat exchanger. The surface condenses into frost, and under the drainage of the external fan, the frost will fill the entire outdoor heat exchanger, blocking the heat exchange between the heat exchanger and the air, so that the external machine can not absorb heat from the outside, resulting in the internal air outlet temperature drop. , can not produce hot air, resulting in poor comfort, but also endanger the safety of the unit.
  • the air conditioning system In order to meet the user's requirements for comfort, the air conditioning system usually has a defrosting mode.
  • the outdoor defrosting temperature sensor package When entering the defrosting mode, the four-way valve is reversing, and the system is made.
  • the hot mode is converted into the cooling mode, and the outdoor heat exchanger is used as a condenser. Since the outdoor heat exchanger directly receives the high temperature and high pressure gaseous refrigerant discharged from the compressor, the high temperature refrigerant will adhere to the frost of the outdoor heat exchanger. After melting, liquid water is formed to flow out of the outdoor heat exchanger. After the defrosting is completed, the heating mode is again entered, and the outdoor heat exchanger can fully absorb heat from the outdoor environment to ensure the internal air outlet temperature.
  • an object of the present invention is to provide a defrosting system for an air conditioner which can shorten the defrosting time and satisfy the user's request for comfort. It is still another object of the present invention to provide an air conditioner including the above defrosting system.
  • the defrosting system of the air conditioner comprises a simmering compressor, an outdoor heat exchanger, an indoor heat exchanger and an economizer, the reinforced compressor comprising an intermediate pressure chamber and a medium pressure chamber a squirting port, the economizer having a first flow path and a second flow path, the first end of the first flow path being connected to the outdoor heat exchanger by a first piping system, the first flow path
  • the second end is connected to the indoor heat exchanger through a main road
  • the first end of the second flow path is connected to the main road through an auxiliary road
  • the second end of the second flow passage is passed through a second pipeline
  • the system is connected to the squirting port of the smashing compressor, and the second pipe system is provided with a valve device.
  • the valve device When the pressure of the refrigerant in the second flow channel reaches a preset value, the valve device is turned on, Allowing refrigerant in the second flow passage to be injected into the intermediate pressure chamber through the squirt; the auxiliary passage is provided with a throttle pressure reducing member, and throttling through the throttle pressure reducing member The pressurized refrigerant entering the second flow passage can absorb the heat of the refrigerant in the first flow passage.
  • the two ends of the third piping system are respectively in communication with the suction port of the enhanced compressor and the second end of the second flow passage, and
  • the third piping system is provided with a supercooling valve.
  • the third piping system is in communication with an intake port of the enhanced compressor through a gas-liquid separator of the air conditioner.
  • the first piping system is provided with a heating electronic expansion valve.
  • the throttle pressure reducing component is an economizer electronic expansion valve.
  • the opening of the economizer electronic expansion valve is proportional to the exhaust superheat of the enhanced compressor.
  • the method further includes an internal electronic expansion valve disposed on the main road to allow the refrigerant in the main passage to pass through the internal electronic expansion valve and then enter the indoor heat exchanger.
  • the invention also provides an air conditioner comprising the defrosting system of any of the above.
  • the compressor exhaust gas is increased, the high temperature and high pressure refrigerant enters the outdoor heat exchanger, and the refrigerant passing through the outdoor heat exchanger enters the economizer through the first pipeline system.
  • the refrigerant flowing out of the first flow path is divided into a main road and an auxiliary road.
  • the refrigerant in the main road enters the indoor heat exchanger and flows back to the boosting compressor to complete a cycle.
  • the refrigerant in the auxiliary road becomes a medium-pressure gaseous refrigerant, and then enters the second flow passage of the economizer, and absorbs the heat of the refrigerant in the first flow passage.
  • the valve device is at In the closed state, as the system pressure continues to increase, the pressure in the second flow channel increases continuously, and finally reaches the preset pressure, and the valve device is turned on, so that the refrigerant is injected into the intermediate pressure chamber of the enhanced compressor to achieve quasi-secondary compression. Process, eventually Increased exhaust volume and increased compressor power consumption.
  • the amount of refrigerant entering the gas is appropriately reduced, resulting in an increase in the temperature of the exhaust gas, although the refrigerant injected into the compressor will have a certain cooling effect on the compressor, but due to the suction
  • the amount of refrigerant is small, causing the exhaust gas temperature to increase more than the temperature drop range, and finally the exhaust gas temperature is increased, which can quickly defrost, effectively satisfying the user's requirements for the comfort of the air conditioner.
  • FIG. 1 is a schematic view of a defrosting system according to an embodiment of the present invention
  • valve device - 18 Increased compressor -11, outdoor heat exchanger -12, indoor heat exchanger -13, economizer -14, first flow channel -15, second flow channel -16, throttling and pressure reducing components -17, valve device - 18, the first pipeline system - 19, the second pipeline system - 20, the third pipeline system - 21, the supercooling valve - 22, gas-liquid separator - 23, heating electronic expansion valve - 24, internal machine electronics Expansion valve - 25.
  • the defrosting system of the air conditioner provided by the embodiment includes a boosting compressor 11 , an outdoor heat exchanger 12 , an indoor heat exchanger 13 , and an economizer 14 .
  • the booster compressor 11 includes a medium pressure chamber and a spray port communicating with the medium pressure chamber, and the high pressure refrigerant can be sprayed into the medium pressure chamber through the spray port.
  • the economizer 14 has a first flow path 15 and a second flow path 16, and the refrigerant in the first flow path 15 and the refrigerant in the second flow path 16 can exchange heat.
  • the first end of the first flow passage 15 of the economizer 14 is connected to the outdoor heat exchanger 12 through the first piping system 19, and the second end of the first flow passage 15 communicates with the indoor heat exchanger 13 through the main passage, when the air conditioner When the device is in the defrosting mode, the refrigerant output from the outdoor heat exchanger 12 enters the first flow passage 15 of the economizer 14 through the first piping system 19, and the refrigerant output from the first flow passage 15 enters the indoor heat exchanger through the main passage. 13.
  • the first end of the second flow path 16 of the economizer 14 is connected to the main road through the auxiliary road, that is, the refrigerant in the main road can be branched out and enters into the second flow passage 16 through the auxiliary passage, and the second flow passage 16
  • the second end is connected to the squirt opening of the enhanced compressor 11 via a second conduit system 20.
  • the auxiliary passage is provided with a throttle pressure reducing member 17, and the refrigerant that has been throttled and depressurized by the throttle pressure reducing member 17 enters the second flow passage 16 to
  • the refrigerant in the second flow path 16 can absorb the heat of the refrigerant in the first flow path 15, and the refrigerant in the second flow path 16 can be vaporized.
  • the second piping system 20 is provided with a valve device 18.
  • the valve device 18 When the refrigerant pressure in the second flow passage 16 reaches a preset value, the valve device 18 is turned on so that the refrigerant in the second flow passage 16 can be injected through the squirt opening. To the medium pressure chamber.
  • the compressor 11 when the air conditioner enters the defrosting mode, the compressor 11 is exhausted, the high temperature and high pressure refrigerant enters the outdoor heat exchanger 12, and the refrigerant passing through the outdoor heat exchanger 12 enters the economizer 14 through the first piping system 19.
  • the refrigerant flowing out of the first flow path 15 is divided into a main circuit and an auxiliary road.
  • the refrigerant in the main circuit enters the indoor heat exchanger 13 and flows back to the enhanced compressor 11 to complete one cycle.
  • the refrigerant in the auxiliary passage passes through the throttling and pressure reducing action of the throttle pressure reducing member 17, becomes the medium pressure gaseous refrigerant, and then enters the second flow passage 16 of the economizer 14, and absorbs the heat of the refrigerant in the first flow passage 15, and this
  • the valve device 18 is in the closed state, as the system pressure is continuously increased, the pressure in the second flow path 16 is continuously increased, and finally the preset pressure is reached, and the valve device 18 is turned on, so that the refrigerant is injected into the enhanced compressor 11 .
  • the quasi-secondary compression process is realized, and finally the exhaust amount is increased, and the power consumption of the boosting compressor 11 is increased.
  • the amount of the refrigerant entering the gas fraction is appropriately reduced, resulting in an increase in the exhaust gas temperature, although the refrigerant injected into the enhanced compressor 11 will provide some cooling to the boosting compressor 11. Function, but because the amount of refrigerant sucked in is small, the exhaust gas temperature rises more than the temperature drop range, and finally the exhaust gas temperature is increased, which can quickly defrost, effectively satisfying the user's requirements for the comfort of the air conditioner.
  • a third piping system 21 may be further included.
  • the two ends of the third piping system 21 are respectively connected to the suction port of the boosting compressor 11 and the second flow path 16 respectively.
  • the ends are in communication and the third line system 21 is provided with a subcooling valve 22.
  • the subcooling valve 22 when the air conditioner is in the non-defrosting mode, the subcooling valve 22 is in an open state, and the refrigerant discharged through the second flow path 16 of the economizer 14 enters the suction of the enhanced compressor 11 by the third piping system 21. mouth.
  • the subcooling valve 22 When the air conditioner is in the defrosting mode, the subcooling valve 22 is closed, and after the refrigerant in the second flow path 16 is accumulated to the preset pressure, the valve device 18 is opened to realize rapid defrosting of the sneezing.
  • the third piping system 21 is preferably in communication with the intake port of the enhanced compressor 11 through the gas-liquid separator 23 of the air conditioner, that is, when the supercooling valve 22 is opened, the third piping system
  • the refrigerant in 21 first passes through the separation of the gas-liquid separator 23, and then enters the suction port of the enthalpy compressor 11, so that the intake port of the enthalpy compressor 11 is prevented from sucking in a large amount of oil.
  • the first piping system 19 is provided with a heating electronic expansion valve 24.
  • the air conditioner When the air conditioner is in the defrosting mode, the refrigerant in the outdoor heat exchanger 12 first passes through the heating electronic expansion valve 24, and the refrigerant passes through the throttling and pressure reducing action of the heating electronic expansion valve 24, and then enters the economizer 14. At this time, the heating electronic expansion valve 24 maintains the maximum opening to minimize the resistance encountered by the refrigerant.
  • the above-described throttle reducing member 17 provided in the auxiliary passage may be an economizer electronic expansion valve.
  • the opening degree of the economizer electronic expansion valve can be adjusted according to the superheat degree of the exhaust of the enhanced compressor 11 .
  • the opening degree of the economizer electronic expansion valve is adjusted according to the superheat degree of the exhaust gas of the booster compressor 11, and when the superheat degree of the exhaust gas of the booster compressor 11 is high, the opening degree of the economizer electronic expansion valve increases.
  • the pre-sneezing is achieved such that the refrigerant in the second flow path 16 quickly reaches a preset pressure that enables the valve device 18 to conduct.
  • the internal electronic expansion valve 25 disposed in the main road is further included, so that the refrigerant in the main passage passes through the internal electronic expansion valve 25 and then enters the indoor heat exchanger 13, and similarly, in the defrost mode.
  • the internal electronic expansion valve 25 maintains the maximum opening degree and reduces the resistance of the main road refrigerant.
  • This embodiment also provides an air conditioner including the defrosting system as described in the above embodiment.
  • the air conditioner provided in this embodiment can shorten the defrosting time and meet the user's requirements for comfort.
  • the derivation process of the beneficial effect is substantially similar to the derivation process of the beneficial effects brought by the above defrosting system, and thus will not be described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种空调器及其化霜系统,化霜系统包括增焓压缩机(11)、室外换热器(12)、室内换热器(13)以及经济器(14),增焓压缩机(11)包括中压腔和与中压腔相连通的喷焓口,经济器(14)具有第一流道(15)和第二流道(16),第一流道(15)的第一端通过第一管路系统(19)与室外换热器(12)相连接,第一流道(15)的第二端通过主路与室内换热器(13)相连通,第二流道(16)的第一端通过辅路与主路相连接,第二流道(16)的第二端通过第二管路系统(20)与增焓压缩机(11)的喷焓口相连接,第二管路系统(20)设有阀门装置(18),辅路设有节流降压部件(17),且经过节流降压部件(17)的节流降压作用后的冷媒进入第二流道(16)能够吸收第一流道(15)中冷媒的热量,该空调器的化霜系统能够缩短化霜时间,满足用户对舒适性的要求。

Description

一种空调器及其化霜系统
本申请要求于2016年9月26日提交中国专利局、申请号为201610850888.7、发明名称为“一种空调器及其化霜系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空调器技术领域,更具体地说,涉及一种空调器及其化霜系统。
背景技术
空调系统在潮湿阴冷的环境下进行制热模式的运行时,室外换热器作为蒸发器使用,由于室外换热器表面温度低于0℃,室外空气中的气态湿空气容易在室外换热器的表面凝结成霜,并且在外风机的引流下,霜会布满整个室外换热器,阻隔了换热器与空气的热交换,从而外机无法从室外吸收热量,导致内机出风温度下降,无法产生热风,导致舒适性变差,同时也危害着机组安全。
为了能够满足用户对舒适性的要求,空调系统通常具有化霜模式,当室外化霜感温包小于预设数值后即进入化霜模式,进入化霜模式时四通阀换向,系统由制热模式转成制冷模式,室外换热器作为冷凝器使用,由于室外换热器直接接收压缩机排出的高温高压气态制冷剂,通过这种高温制冷剂,将附着在室外换热器的霜,进行融化,形成液态水流出室外换热器,完成化霜之后,再次进入制热模式下,室外换热器可以充分从室外环境吸收热量,保证了内机出风温度。
然而,现有技术中,空调系统大多采用普通变频高压腔涡旋压缩机,该类压缩机有着“同频,流量小、耗功低”的缺点。这一缺点,会造成化霜时间延长,降低用户舒适性体验的问题。
因此,如何缩短化霜时间,提高用户对舒适性的体验的问题,成为本领域技术人员所要解决的重要技术问题。
发明内容
有鉴于此,本发明的目的在于提供一种空调器的化霜系统,其能够缩短化霜时间,满足用户对舒适性的要求。本发明的目的还在于提供一种包括上述化霜系统的空调器。
本发明提供的空调器的化霜系统,包括增焓压缩机、室外换热器、室内换热器以及经济器,所述增焓压缩机包括中压腔和与所述中压腔相连通的喷焓口,所述经济器具有第一流道和第二流道,所述第一流道的第一端通过第一管路系统与所述室外换热器相连接,所述第一流道的第二端通过主路与所述室内换热器相连通,所述第二流道的第一端通过辅路与所述主路相连接,所述第二流道的第二端通过第二管路系统与所述增焓压缩机的喷焓口相连接,所述第二管路系统设有阀门装置,所述第二流道内的冷媒压力达到预设值时,所述阀门装置导通、以使所述第二流道内的冷媒能够通过所述喷焓口喷入至所述中压腔内;所述辅路设有节流降压部件,且经过所述节流降压部件的节流降压作用后的冷媒进入所述第二流道能够吸收所述第一流道中冷媒的热量。
优选地,还包括第三管路系统,所述第三管路系统的两端分别与所述增焓压缩机的吸气口和所述第二流道的第二端相连通,且所述第三管路系统设有过冷阀。
优选地,所述第三管路系统通过所述空调器的气液分离器与所述增焓压缩机的吸气口相连通。
优选地,所述第一管路系统设有制热电子膨胀阀。
优选地,所述节流降压部件为经济器电子膨胀阀。
优选地,所述经济器电子膨胀阀的开度与所述增焓压缩机的排气过热度成正比。
优选地,还包括设置在所述主路的内机电子膨胀阀、以使所述主路内的冷媒经过所述内机电子膨胀阀后再进入所述室内换热器。
本发明还提供了一种空调器,包括如上任一项所述的化霜系统。
本发明提供的技术方案中,当空调器进入化霜模式时,增焓压缩机排气,高温高压冷媒进入室外换热器,经过室外换热器的冷媒通过第一管路系统进入经济器的第一流道,由第一流道流出的冷媒分成主路和辅路两路,其中主路中的冷媒进入室内换热器后流回到增焓压缩机中,完成一次循环。辅路中的冷媒经过节流降压部件的节流降压作用后,变为中压气态冷媒,而后进入经济器的第二流道,并吸收第一流道中的冷媒热量,此时,阀门装置处于关闭状态,随着系统压力的不断提高,第二流道内的压力不断增加,最终达到预设压力,阀门装置导通,使冷媒喷入增焓压缩机的中压腔中,实现准二次压缩过程,最终 提高了排气量,增大压缩机耗功。同时,由于喷焓作用改变了冷媒流向,造成进入气分的冷媒量适当减少,导致排气温度升高,尽管喷入压缩机的制冷剂会对压缩机起到一定冷却作用,但是由于吸入的冷媒量较少,造成排气温度升高幅度大于降温幅度,最终排气温度得以升高,进而可以迅速化霜,有效满足了用户对空调器的舒适性的要求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中化霜系统示意图;
图1中:
增焓压缩机—11、室外换热器—12、室内换热器—13、经济器—14、第一流道—15、第二流道—16、节流降压部件—17、阀门装置—18、第一管路系统—19、第二管路系统—20、第三管路系统—21、过冷阀—22、气液分离器—23、制热电子膨胀阀—24、内机电子膨胀阀—25。
具体实施方式
本具体实施方式的目的在于提供一种空调器的化霜系统,其能够缩短化霜时间,满足用户对舒适性的要求。本具体实施方式的目的还在于提供一种包括上述化霜系统的空调器。
以下,参照附图对实施例进行说明。此外,下面所示的实施例不对权利要求所记载的发明内容起任何限定作用。另外,下面实施例所表示的构成的全部内容不限于作为权利要求所记载的发明的解决方案所必需的。
请参考图1,本具体实施方式提供的空调器的化霜系统,包括增焓压缩机11、室外换热器12、室内换热器13以及经济器14。
其中,增焓压缩机11包括中压腔和与中压腔相连通的喷焓口,通过喷焓口能够向中压腔喷入较高压力的冷媒。
经济器14具有第一流道15和第二流道16,第一流道15中的冷媒和第二流道16中的冷媒能够交换热量。经济器14的第一流道15的第一端通过第一管路系统19与室外换热器12相连接,第一流道15的第二端通过主路与室内换热器13相连通,当空调器处于化霜模式时,室外换热器12输出的冷媒通过第一管路系统19进入至经济器14的第一流道15内,第一流道15输出的冷媒通过主路进入至室内换热器13。
经济器14的第二流道16的第一端通过辅路与主路相连接,即主路中的冷媒能够分流出一部分、并通过辅路进入至第二流道16内,第二流道16的第二端通过第二管路系统20与增焓压缩机11的喷焓口相连接。另外,辅路设有节流降压部件17,经过节流降压部件17的节流降压作用后的冷媒进入第二流道16中,以 使第二流道16中的冷媒能够吸收第一流道15中冷媒的热量,进而使第二流道16中的冷媒实现气化。
第二管路系统20设有阀门装置18,第二流道16内的冷媒压力达到预设值时,阀门装置18导通、以使第二流道16内的冷媒能够通过喷焓口喷入至中压腔内。
如此设置,当空调器进入化霜模式时,增焓压缩机11排气,高温高压冷媒进入室外换热器12,经过室外换热器12的冷媒通过第一管路系统19进入经济器14的第一流道15,由第一流道15流出的冷媒分成主路和辅路两路,其中主路中的冷媒进入室内换热器13后流回到增焓压缩机11中,完成一次循环。
辅路中的冷媒经过节流降压部件17的节流降压作用后,变为中压气态冷媒,而后进入经济器14的第二流道16,并吸收第一流道15中的冷媒热量,此时,阀门装置18处于关闭状态,随着系统压力的不断提高,第二流道16内的压力不断增加,最终达到预设压力,阀门装置18导通,使冷媒喷入增焓压缩机11的中压腔中,实现准二次压缩过程,最终提高了排气量,增大增焓压缩机11的耗功。同时,由于喷焓作用改变了冷媒流向,造成进入气分的冷媒量适当减少,导致排气温度升高,尽管喷入增焓压缩机11的制冷剂会对增焓压缩机11起到一定冷却作用,但是由于吸入的冷媒量较少,造成排气温度升高幅度大于降温幅度,最终排气温度得以升高,进而可以迅速化霜,有效满足了用户对空调器的舒适性的要求。
另外,本实施例提供的技术方案中,还可以包括第三管路系统21,第三管路系统21的两端分别与增焓压缩机11的吸气口和第二流道16的第二端相连通,且第三管路系统21设有过冷阀22。
如此设置,当空调器处于非化霜模式时,过冷阀22为打开状态,经过经济器14第二流道16排出的冷媒由第三管路系统21进入至增焓压缩机11的吸气口。当空调器处于化霜模式时,过冷阀22关闭,第二流道16中的冷媒积累到预设压力后,阀门装置18打开,实现喷焓快速化霜。
需要说明的是,上述第三管路系统21优选地通过空调器的气液分离器23与增焓压缩机11的吸气口相连通,即当过冷阀22打开时,第三管路系统21中的冷媒首先经过气液分离器23的分离作用后,再进入增焓压缩机11的吸气口,避免增焓压缩机11的吸气口吸入较多的油。
另外,第一管路系统19设有制热电子膨胀阀24。当空调器处于化霜模式时,室外换热器12内的冷媒首先经过制热电子膨胀阀24,冷媒经过制热电子膨胀阀24的节流降压作用后,再进入经济器14中,此时,制热电子膨胀阀24保持最大开度,以使冷媒遇到的阻力最小。另外,需要说明的是,上述设置在辅路的节流降压部件17可以为经济器电子膨胀阀。
进一步地,本实施例提供的技术方案,经济器电子膨胀阀的开度能够根据增焓压缩机11的排气过热度进行调节。
如此设置,经济器电子膨胀阀的开度根据增焓压缩机11的排气过热度进行调节,当增焓压缩机11的排气过热度较高时,经济器电子膨胀阀的开度增加, 以使得第二流道16内的冷媒迅速达到能够使阀门装置18导通的预设压力,实现提前喷焓。
另外,本实施例中还包括设置在主路的内机电子膨胀阀25、以使主路内的冷媒经过内机电子膨胀阀25后再进入室内换热器13,同样,在化霜模式时,内机电子膨胀阀25保持最大开度,降低主路冷媒阻力。
本实施例还提供了一种空调器,包括如上实施例中所述的化霜系统。如此设置,本实施例提供的空调器,其能够缩短化霜时间,满足用户对舒适性的要求。该有益效果的推导过程与上述化霜系统所带来的有益效果的推导过程大体类似,故本文不再赘述。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种空调器的化霜系统,其特征在于,包括增焓压缩机(11)、室外换热器(12)、室内换热器(13)以及经济器(14),所述增焓压缩机(11)包括中压腔和与所述中压腔相连通的喷焓口,所述经济器(14)具有第一流道(15)和第二流道(16),所述第一流道(15)的第一端通过第一管路系统(19)与所述室外换热器(12)相连接,所述第一流道(15)的第二端通过主路与所述室内换热器(13)相连通,所述第二流道(16)的第一端通过辅路与所述主路相连接,所述第二流道(16)的第二端通过第二管路系统(20)与所述增焓压缩机(11)的喷焓口相连接,所述第二管路系统(20)设有阀门装置(18),所述第二流道(16)内的冷媒压力达到预设值时,所述阀门装置(18)导通、以使所述第二流道(16)内的冷媒能够通过所述喷焓口喷入至所述中压腔内;所述辅路设有节流降压部件(17),且经过所述节流降压部件(17)的节流降压作用后的冷媒进入所述第二流道(16)能够吸收所述第一流道(15)中冷媒的热量。
  2. 如权利要求1所述的化霜系统,其特征在于,还包括第三管路系统(21),所述第三管路系统(21)的两端分别与所述增焓压缩机(11)的吸气口和所述第二流道(16)的第二端相连通,且所述第三管路系统(21)设有过冷阀(22)。
  3. 如权利要求2所述的化霜系统,其特征在于,所述第三管路系统(21)通过所述空调器的气液分离器(23)与所述增焓压缩机(11)的吸气口相连通。
  4. 如权利要求1所述的化霜系统,其特征在于,所述第一管路系统(19)设有制热电子膨胀阀(24)。
  5. 如权利要求1所述的化霜系统,其特征在于,所述节流降压部件(17)为经济器电子膨胀阀。
  6. 如权利要求5所述的化霜系统,其特征在于,所述经济器电子膨胀阀的开度与所述增焓压缩机(11)的排气过热度成正比。
  7. 如权利要求1所述的化霜系统,其特征在于,还包括设置在所述主路的内机电子膨胀阀(25)、以使所述主路内的冷媒经过所述内机电子膨胀阀(25)后再进入所述室内换热器(13)。
  8. 一种空调器,其特征在于,包括如权利要求1-7任一项所述的化霜系统。
PCT/CN2017/081611 2016-09-26 2017-04-24 一种空调器及其化霜系统 WO2018054052A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197003196A KR20190025967A (ko) 2016-09-26 2017-04-24 공기 조화기 및 그 제상 시스템
JP2019505140A JP2019530843A (ja) 2016-09-26 2017-04-24 空調器及びその除霜システム
EP17852126.6A EP3517861A4 (en) 2016-09-26 2017-04-24 AIR CONDITIONER AND ITS DEFROSTING SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610850888.7A CN106352613A (zh) 2016-09-26 2016-09-26 一种空调器及其化霜系统
CN201610850888.7 2016-09-26

Publications (1)

Publication Number Publication Date
WO2018054052A1 true WO2018054052A1 (zh) 2018-03-29

Family

ID=57859907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081611 WO2018054052A1 (zh) 2016-09-26 2017-04-24 一种空调器及其化霜系统

Country Status (5)

Country Link
EP (1) EP3517861A4 (zh)
JP (1) JP2019530843A (zh)
KR (1) KR20190025967A (zh)
CN (1) CN106352613A (zh)
WO (1) WO2018054052A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645746A (zh) * 2019-10-23 2020-01-03 珠海格力电器股份有限公司 一种连续制热控制系统、方法及空调设备
CN112432399A (zh) * 2020-12-08 2021-03-02 合肥美的暖通设备有限公司 换热装置和空调系统
US20220268496A1 (en) * 2021-02-09 2022-08-25 Trane International Inc. Reversible heat pump
CN115435451A (zh) * 2022-09-15 2022-12-06 珠海格力电器股份有限公司 化霜判断方法、空调及计算机可读存储介质
US12038211B2 (en) 2019-10-23 2024-07-16 Gree Electric Appliances, Inc. Of Zhuhai Continuous heating control system and method, and air-conditioning device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352613A (zh) * 2016-09-26 2017-01-25 珠海格力电器股份有限公司 一种空调器及其化霜系统
CN107062720B (zh) * 2017-03-20 2020-04-14 青岛海尔空调电子有限公司 一种空调机组控制方法及空调机组
CN106969397B (zh) * 2017-05-04 2022-06-17 奥特朗电器(广州)有限公司 具有高效化霜系统的低温热泵采暖机组
CN109579156A (zh) * 2018-11-19 2019-04-05 珠海格力电器股份有限公司 一种极限温度制冷控制系统及多联机空调系统
CN112013515B (zh) * 2019-05-30 2022-02-11 广东美的制冷设备有限公司 空调器的控制方法
CN112013471B (zh) * 2019-05-30 2022-05-17 广东美的制冷设备有限公司 空调器及其控制方法
CN112665206A (zh) * 2019-10-16 2021-04-16 广东美的制冷设备有限公司 空调器及其化霜方法、可读存储介质
CN112833514B (zh) * 2019-11-22 2022-10-28 青岛海尔空调电子有限公司 用于空调系统的补气增焓控制方法及空调系统
CN111288691A (zh) * 2020-02-24 2020-06-16 广东美的暖通设备有限公司 热泵系统、热泵系统的控制方法和可读存储介质
CN113757980B (zh) * 2020-06-01 2022-09-23 广东美的暖通设备有限公司 空调系统、空调系统的控制方法和计算机可读存储介质
CN111692705B (zh) * 2020-06-08 2021-06-18 广东美的制冷设备有限公司 控制方法、控制装置、空调系统和计算机可读存储介质
CN112984708A (zh) * 2021-03-03 2021-06-18 广东Tcl智能暖通设备有限公司 空调器除霜方法、空调器控制方法和空调器
CN114754425A (zh) * 2022-04-11 2022-07-15 珠海市金品创业共享平台科技有限公司 一种热泵型三管式空调系统及其控制方法
WO2023238181A1 (ja) * 2022-06-06 2023-12-14 三菱電機株式会社 空気調和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2618397A1 (en) * 2007-01-19 2008-07-19 Hallowell International, Llc Heat pump apparatus and method
JP2008241176A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
CN203432134U (zh) * 2013-07-05 2014-02-12 广东长菱空调冷气机制造有限公司 一种空气源热泵热水器的热泵系统
CN103591733A (zh) * 2013-10-31 2014-02-19 江苏晨宇车业有限公司 高效车用电动冷暖空气热交换系统
CN105008823A (zh) * 2012-12-31 2015-10-28 特灵国际有限公司 热泵热水器
CN205174904U (zh) * 2015-10-27 2016-04-20 广东美的暖通设备有限公司 多联机系统
CN106352613A (zh) * 2016-09-26 2017-01-25 珠海格力电器股份有限公司 一种空调器及其化霜系统
CN106440579A (zh) * 2016-09-26 2017-02-22 珠海格力电器股份有限公司 一种空调器及其化霜系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU740993B2 (en) * 1997-11-17 2001-11-22 Daikin Industries, Ltd. Refrigerating apparatus
US20070251256A1 (en) * 2006-03-20 2007-11-01 Pham Hung M Flash tank design and control for heat pumps
JP4812606B2 (ja) * 2006-11-30 2011-11-09 三菱電機株式会社 空気調和装置
CN200996753Y (zh) * 2006-12-26 2007-12-26 海信集团有限公司 带经济器的中间补气压缩机制冷系统
JP4906894B2 (ja) * 2009-08-21 2012-03-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
CN101936600B (zh) * 2010-09-15 2012-08-01 江苏天舒电器有限公司 一种自调节稳态低温热泵热水器及其运行方法
CN102252487A (zh) * 2011-08-23 2011-11-23 合肥美的荣事达电冰箱有限公司 冰箱
CN102353126A (zh) * 2011-09-09 2012-02-15 大连旺兴机电工程建设有限公司 补气涡旋压缩机空调控制系统
JP6085255B2 (ja) * 2012-01-24 2017-02-22 三菱電機株式会社 空気調和装置
CN104121720A (zh) * 2013-04-26 2014-10-29 中国科学院理化技术研究所 一种采用空气源热泵的电动汽车空调系统
CN103388923B (zh) * 2013-08-20 2015-08-19 海信(山东)空调有限公司 喷射增焓空调系统
KR102242776B1 (ko) * 2014-03-20 2021-04-20 엘지전자 주식회사 공기조화기 및 그 제어방법
CN104567099B (zh) * 2014-12-22 2018-11-27 广东美的制冷设备有限公司 空调器
CN204943957U (zh) * 2015-08-26 2016-01-06 南京天加空调设备有限公司 一种喷气增焓风冷冷(热)水机组
CN105485767A (zh) * 2015-12-22 2016-04-13 珠海格力电器股份有限公司 多联机空调系统和控制方法
JP6161741B2 (ja) * 2016-01-20 2017-07-12 三菱電機株式会社 空気調和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2618397A1 (en) * 2007-01-19 2008-07-19 Hallowell International, Llc Heat pump apparatus and method
JP2008241176A (ja) * 2007-03-28 2008-10-09 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
CN105008823A (zh) * 2012-12-31 2015-10-28 特灵国际有限公司 热泵热水器
CN203432134U (zh) * 2013-07-05 2014-02-12 广东长菱空调冷气机制造有限公司 一种空气源热泵热水器的热泵系统
CN103591733A (zh) * 2013-10-31 2014-02-19 江苏晨宇车业有限公司 高效车用电动冷暖空气热交换系统
CN205174904U (zh) * 2015-10-27 2016-04-20 广东美的暖通设备有限公司 多联机系统
CN106352613A (zh) * 2016-09-26 2017-01-25 珠海格力电器股份有限公司 一种空调器及其化霜系统
CN106440579A (zh) * 2016-09-26 2017-02-22 珠海格力电器股份有限公司 一种空调器及其化霜系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3517861A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645746A (zh) * 2019-10-23 2020-01-03 珠海格力电器股份有限公司 一种连续制热控制系统、方法及空调设备
CN110645746B (zh) * 2019-10-23 2024-03-19 珠海格力电器股份有限公司 一种连续制热控制系统、方法及空调设备
US12038211B2 (en) 2019-10-23 2024-07-16 Gree Electric Appliances, Inc. Of Zhuhai Continuous heating control system and method, and air-conditioning device
CN112432399A (zh) * 2020-12-08 2021-03-02 合肥美的暖通设备有限公司 换热装置和空调系统
US20220268496A1 (en) * 2021-02-09 2022-08-25 Trane International Inc. Reversible heat pump
US11953240B2 (en) * 2021-02-09 2024-04-09 Trane International Inc. Reversible heat pump
CN115435451A (zh) * 2022-09-15 2022-12-06 珠海格力电器股份有限公司 化霜判断方法、空调及计算机可读存储介质

Also Published As

Publication number Publication date
EP3517861A1 (en) 2019-07-31
KR20190025967A (ko) 2019-03-12
CN106352613A (zh) 2017-01-25
JP2019530843A (ja) 2019-10-24
EP3517861A4 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
WO2018054052A1 (zh) 一种空调器及其化霜系统
WO2019128516A1 (zh) 空调器系统
WO2019200951A1 (zh) 空调热泵系统及控制方法
WO2015188656A1 (zh) 双级压缩空调系统及其控制方法
WO2019091241A1 (zh) 空调制冷循环系统及空调器
US11739991B2 (en) Air conditioning system and control method for air conditioning system
AU2016337938B2 (en) Heat pump unit control system
WO2019141029A1 (zh) 一种热泵系统及其控制方法
CN106440579B (zh) 一种空调器及其化霜系统
WO2019091240A1 (zh) 空调制热循环系统及空调器
WO2019128519A1 (zh) 空调器系统
CN203964436U (zh) 双级压缩空调系统
CN206861943U (zh) 热气旁通除霜结构、空调室外机及空调器
CN109059335A (zh) 一种低温空气源热泵机组
CN208901671U (zh) 一种低温空气源热泵机组
CN105588365B (zh) 一种强热型室外机、热泵系统及其控制方法
CN211552102U (zh) 一种多联式空调系统
WO2019128517A1 (zh) 空调器系统
KR101872783B1 (ko) 실외 열교환기
WO2019128518A1 (zh) 空调器系统
CN104344595A (zh) 空调系统
WO2021208584A1 (zh) 高效制热的风冷热泵空调系统
CN205448393U (zh) 压缩机系统
CN106556175A (zh) 空调系统和空调
CN106766333B (zh) 一种低温喷气增焓空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197003196

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019505140

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017852126

Country of ref document: EP