WO2018053892A1 - 一种可变气门挺柱 - Google Patents

一种可变气门挺柱 Download PDF

Info

Publication number
WO2018053892A1
WO2018053892A1 PCT/CN2016/102665 CN2016102665W WO2018053892A1 WO 2018053892 A1 WO2018053892 A1 WO 2018053892A1 CN 2016102665 W CN2016102665 W CN 2016102665W WO 2018053892 A1 WO2018053892 A1 WO 2018053892A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
tappet
valve
seat
chamber
Prior art date
Application number
PCT/CN2016/102665
Other languages
English (en)
French (fr)
Inventor
田维
赵家辉
韩志强
张洵
刘智
Original Assignee
西华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西华大学 filed Critical 西华大学
Priority to GB1903051.9A priority Critical patent/GB2568621B/en
Priority to CA3034548A priority patent/CA3034548C/en
Publication of WO2018053892A1 publication Critical patent/WO2018053892A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
    • F01L1/245Hydraulic tappets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/20Adjusting or compensating clearance
    • F01L1/22Adjusting or compensating clearance automatically, e.g. mechanically
    • F01L1/24Adjusting or compensating clearance automatically, e.g. mechanically by fluid means, e.g. hydraulically
    • F01L1/245Hydraulic tappets
    • F01L1/25Hydraulic tappets between cam and valve stem
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0031Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of tappet or pushrod length

Definitions

  • the invention relates to the technical field of engine valve trains, in particular to a variable valve tappet.
  • the conventional gas distribution mechanism of the engine mostly uses a camshaft to drive the intake and exhaust valves, and the timing and control of the valve phase are realized by mechanical transmission between the crankshaft and the camshaft, the camshaft and the valves; and the cam line design is According to the comprehensive evaluation value of each index under the operating conditions of the engine, it can only meet the performance requirements of the engine under certain working conditions, and can not maximize the performance of the engine under various working conditions; Compared with the gas distribution technology, the variable valve technology can provide the best valve timing or lift at various engine speeds to meet the engine power, economy and emission requirements; in the face of energy saving and environmental pollution Two major problems, variable valve technology has become one of the key technologies for internal combustion engine researchers to achieve efficient clean combustion technology. Most of the existing variable valve mechanisms can only achieve local functions such as early opening or late closing of the valve. Continuous adjustment under all engine conditions limits the optimal performance of the engine.
  • the invention provides a variable valve tappet capable of realizing valve timing and lift control within a range of engine speed conditions.
  • a variable valve tappet column comprising a tappet seat and a bracket
  • the tappet seat is a cylindrical structure with an inverted "convex" shaped hollow cylindrical groove at the upper portion, and a hollow cylinder is arranged outside
  • the outer sleeve of the structure, the outer surface of the tappet seat is matched with the inner surface of the taper sleeve; and the valve pusher seat of the cylindrical structure is included, and the lower outer surface cooperates with the inner surface of the small cylindrical groove of the hollow portion inside the tappet seat,
  • An additional lift chamber is formed between the surface and the tappet seat
  • the bracket is a hollow cylindrical structure, the upper surface of which extends outwardly along the outer edge of the cylinder and is connected to the inner surface of the tappet outer casing, and the lower surface extends inwardly along the inner edge of the cylinder Cooperating with the outer surface of the valve push rod seat; the upper surface of the valve push rod seat extends outward along the outer edge of the cylinder to cooperate with the inner surface
  • the lower part of the valve push rod seat is smaller than the upper diameter to form a two-stage cylinder; the outer surface of the lower cylinder is matched with the inner surface of the small cylindrical groove of the hollow part of the tappet seat; the outer surface of the upper cylinder and the lower surface of the bracket are rounded The inner edge of the barrel is fitted inwardly.
  • valve push rod seat is provided with a "concave” spherical surface recessed toward the inside thereof, and under the valve push rod The surface matches.
  • the tappet seat is provided with two oil grooves that are not connected to each other along the moving direction thereof; one oil groove is connected to the oil inlet port, and the upper end is connected to the oil pressure chamber through an oil inlet oil passage disposed on the tappet seat; The other oil sump is connected to the oil return port, and the upper end is connected to the additional lift chamber through a return oil passage provided on the tappet seat.
  • the surface of the bracket is provided with an oil inlet check valve communicating with the oil pressure chamber and the oil storage chamber along the inner edge of the cylinder.
  • a finite pressure valve is disposed on the pressure limiting oil passage.
  • bracket is connected to the tappet casing by a fixing screw.
  • valve push rod seat is provided with a hydraulic oil passage, and the hydraulic oil passage is connected to the oil storage chamber and the additional lift chamber.
  • taper sleeve, the tappet seat, the bracket and the valve push rod seat are coaxially arranged.
  • the invention can realize the control of valve timing and lift within the range of engine speed conditions
  • the invention can dynamically adjust the additional lift value of the maximum valve lift time by changing the volume of the oil storage chamber and the additional lift chamber, protect the valve assembly, and maximize the face value of the valve lift curve;
  • the invention can be applied to various types of valve control mechanisms, and has strong applicability
  • the additional lift curve of the present invention depends on the mechanical structure, the oil inlet solenoid valve and the oil return solenoid valve, and has high reliability.
  • Figure 1 is a schematic view of the structure of the present invention.
  • 1-cam 2-oil sump, 3, oil filter, 4-low pressure oil pump, 5-intake solenoid valve, 6-pressure regulator, 7-relief valve, 8-inlet port, 9-Tall column, 10-in oil passage, 11-pressure chamber, 12-bracket, 13-position screw, 14-trailer jacket, 15-valve push rod, 16-valve push rod seat, 17-storage Oil chamber, 18-inlet check valve, 19-tall spring, 20-addition lift chamber, 21-return oil passage, 22-return port, 23-return solenoid valve, 24-pressure limiting valve, 25-Limited pressure oil passage.
  • a variable valve tappet is characterized in that it comprises a tappet seat 9 and a bracket 12; the tappet seat 9 is a cylindrical structure with an inverted “convex” shaped hollow cylindrical groove at the upper portion, and the outer portion thereof
  • a tappet casing 14 having a hollow cylindrical structure is provided, and an outer surface of the tappet seat 9 is matched with an inner surface of the tappet casing 14; a valve strut seat 16 of a cylindrical structure is further included, and a lower outer surface and a hollow inner portion of the tappet seat 9 are hollow.
  • bracket 12 is a hollow cylindrical structure, the upper surface of which extends outward along the outer edge of the cylinder and is connected to the inner surface of the tappet casing 14, and the lower surface extends inwardly along the inner edge of the cylinder to the outer surface of the valve stem seat 16.
  • the upper surface of the valve push rod seat 16 extends outwardly along the outer edge of the cylinder to cooperate with the inner surface of the bracket 12, and forms an oil storage chamber 17 with the inner surface of the bracket 12; the additional lift chamber 20 communicates with the oil storage chamber 17;
  • the outer surface, the inner surface of the tappet outer sleeve 14 and the tappet seat 9 form a pressure oil chamber 11; outside the valve push rod seat 16, the pressure oil chamber 11 is provided with a tappet spring 19; the tappet outer sleeve 14 is provided with a connection for The oil inlet 8 of the oil system and the oil return port 22 connected to the oil return system; the oil inlet 8 communicates with the pressure oil chamber 11, and the oil return port 22 communicates with the additional lift chamber 20; the oil pressure chamber 11 passes through the oil inlet check valve 18
  • the oil storage chamber 17 is connected; the pressure column oil passage 25 is connected to the tappet seat 9 to connect the additional lift chamber 20; the upper surface of the valve push rod seat 16 is connected with the valve push rod 15; and the cam
  • the lower diameter of the valve push rod seat 16 is smaller than the upper diameter to form a two-stage cylinder; the outer surface of the lower cylinder is matched with the inner surface of the small cylindrical groove of the hollow portion of the tappet seat 9; the outer surface of the upper cylinder is under the bracket 12 The surface is matched along the inner edge of the inner edge of the cylinder; the upper surface of the valve push rod seat 16 extends outward along the outer edge of the cylinder to form a sealing surface with the inner surface of the bracket 12, and the outer surface of the upper cylinder and the lower surface of the bracket 12 are along the inner edge of the cylinder
  • the inwardly extending portion forms a sealing surface, and the outer surface of the lower cylinder forms a sealing surface with the inner surface of the small cylindrical groove of the hollow portion inside the tappet seat 9.
  • valve stem seat 16 is provided with a "concave" spherical surface recessed toward the inside thereof, and cooperates with the lower surface of the valve push rod 15.
  • the tappet base 9 is provided with two oil grooves that are not connected to each other along the moving direction thereof; one of the oil grooves is connected to the oil inlet port 8, and the upper end is connected by the oil inlet oil passage 10 disposed on the tappet base 9
  • the oil groove is always connected with the oil inlet 8 during the movement of the tappet seat 9; the other oil groove is connected to the oil return port 22, and the upper end is connected to the additional lift chamber through the oil return passage 21 provided on the tappet seat 9. 20.
  • the oil groove is always connected with the oil return port 22; the oil groove ends are arc-shaped.
  • the surface of the bracket 12 is provided with an oil inlet check valve 18 communicating with the oil pressure chamber 11 and the oil storage chamber 17 along the inner edge of the cylinder; the oil inlet check valve 18 can ensure that the hydraulic oil can only be It enters the oil reservoir 17 from the oil pressure chamber 11 and cannot flow back.
  • the pressure limiting oil passage 25 is provided with a finite pressure valve 24; it can be ensured that the additional lift generated by the additional lift chamber 20 is not greater than the maximum valve additional lift in any case.
  • bracket 12 is connected to the tappet casing 14 by a fixing screw 13; the tappet casing 14 is machined with a threaded through hole, and the upper surface of the bracket 12 is provided with a thread on the outer sleeve of the outer cylinder along the outer edge of the cylinder. A through hole to the mating threaded hole.
  • valve push rod seat 16 is provided with a hydraulic oil passage, and the hydraulic oil passage is connected to the oil storage chamber 17 and the additional lift chamber 20; it is ensured that the oil storage chamber 17 and the additional lift chamber 20 are in communication in any case.
  • the tappet casing 14, the tappet seat 9, the bracket 12 and the valve stem seat 16 are coaxially disposed.
  • the oil inlet 8 is connected to the oil inlet system through the oil inlet solenoid valve 5, and the oil return port 22 is connected to the oil return system through the oil return solenoid valve 23;
  • the oil inlet system includes an oil filter connected to the oil pan 2 3 and the relief valve 7, the oil filter 3 is connected to the low pressure oil pump 4, the low pressure oil pump 4 is connected to the pressure regulating valve 6, and the pressure regulating valve 6 is connected to the oil inlet solenoid valve 5.
  • the pressure limiting value of the pressure limiting valve 24 is calculated as follows:
  • k is the stiffness of the valve spring
  • ⁇ l is the maximum additional lift of the valve
  • s is the area of the force of the valve pusher 15 in the additional lift chamber 20
  • L is the original lift of the valve
  • F k is the maximum total lift of the valve
  • variable valve tappet working process includes the following parts:
  • the oil inlet solenoid valve 5 and the oil return solenoid valve 23 are opened.
  • the tappet seat 9 descends with the cam 1
  • the tappet casing 14 and the bracket 12 are fixedly connected, the oil pressure chamber 11 is negative due to the increase of the volume V 1 thereof.
  • the hydraulic oil passes through the oil supply system, the oil inlet 8 and the oil inlet 10 to fill the pressure oil chamber 11; the valve push rod seat 16 descends with the tappet seat 9, and the volume V 2 of the oil storage chamber 17 is reduced, and the oil is stored.
  • the hydraulic oil in the chamber 17 flows to the additional lift chamber 20, and then enters the oil return system via the return oil passage 21; during this process, the volume V 3 of the additional lift chamber 20 remains unchanged, and the valve lift line depends on the cam lift. Process curve.
  • the pressure p 3 increases; the valve stem seat 16 and the tappet seat 9 are relatively displaced, that is, an additional lift is generated; after the valve reaches the maximum additional lift, the pressure p 3 of the additional lift chamber 20 exceeds the opening pressure of the pressure limiting valve 24 Value, the pressure limiting valve 24 is opened, the hydraulic oil pressure limiting valve 24 flows back to the oil return system, and the additional lift maintains dynamic balance.
  • the valve additional lift increase amount ⁇ l 3 depends on s 2 /s 3 , where s 2 is the equivalent area of the oil storage chamber 17, and s 3 is the equivalent area of the additional lift chamber 20, when the oil return solenoid valve 23 is opened, The hydraulic oil entering and returning oil system flows back to the hydraulic oil pool, and the valve additional lift disappears.
  • the oil inlet solenoid valve 5 and the oil return solenoid valve 23 are opened.
  • the tappet seat 9 descends with the cam 1
  • the oil pressure chamber 11 is negative due to the increase of the volume V 1 thereof.
  • Pressure, hydraulic oil through the oil supply system, the oil inlet 8, the oil inlet 10 fills the pressure oil chamber 11; the valve push rod seat 16 descends, the volume V 2 of the oil storage chamber 17 decreases, the hydraulic pressure in the oil storage chamber 17
  • the oil flows to the additional lift chamber 20 and enters the oil return system via the return oil passage 21; during this process, the volume V 3 of the additional lift chamber 20 remains unchanged, and the valve lift profile depends on the cam lift curve.
  • the oil inlet solenoid valve 5 and the oil return solenoid valve 23 are closed, and the tappet seat 9 moves upward under the action of the cam 1 to "squeeze" the pressure oil chamber 11, and the volume V 1 of the pressure oil chamber 11 is reduced, and the pressure p 1
  • the hydraulic oil enters the oil storage chamber 17 and the additional lift chamber 20 via the oil inlet check valve 18, and the volume V 2 and the pressure p 2 of the oil storage chamber 17 increase, and the volume V 3 and the pressure p of the additional lift chamber 20 are increased.
  • valve stem seat 16 and the tappet seat 9 are relatively displaced, that is, an additional lift is generated; when the additional lift value reaches the target additional lift value, the oil inlet solenoid valve 5 is opened, the cam 1 continues to rise, and the oil is pressed.
  • the hydraulic oil in the chamber 11 flows back to the hydraulic oil pool through the oil inlet system.
  • the volume V 2 of the oil storage chamber 17 increases, and the hydraulic oil flows into the oil storage chamber 17 through the additional lift chamber 20, and the volume of the lift chamber 20 is added.
  • V 3 is reduced and the valve additional lift is slowly reduced;
  • valve additional lift reduction amount ⁇ l 3 depends on s 2 /s 3 .
  • valve additional lift increase amount ⁇ l 3 depends on s 2 /s 3 ; when the oil return solenoid valve 23 is opened, the valve additional lift disappears.
  • the oil inlet solenoid valve 5 and the oil return solenoid valve 23 are opened.
  • the tappet seat 9 descends with the cam 1
  • the oil pressure chamber 11 is negative due to the increase of the volume V 1 thereof.
  • Pressure, hydraulic oil through the oil supply system, the oil inlet 8, the oil inlet 10 fills the pressure oil chamber 11; the valve push rod seat 16 descends, the volume V 2 of the oil storage chamber 17 decreases, the hydraulic pressure in the oil storage chamber 17
  • the oil flows to the additional lift chamber 20 and enters the oil return system via the return oil passage 21; during this process, the volume V 3 of the additional lift chamber 20 remains unchanged, and the valve lift profile depends on the cam lift curve.
  • the solenoid valve 5 is opened into the oil, oil return solenoid valve 23 closed, the seat lifter 9 in the upward movement of the cam 1 and the "squeezing" the pressure oil chamber 11, the volume V 1 of the pressure oil chamber 11 is reduced, the pressure P 1 maintains a pressure value close to the hydraulic oil sump; the valve push rod seat 16 moves upward under the push of the tappet seat 9, the reservoir volume V 2 increases, and the volume V 3 of the additional lift chamber 20 remains unchanged.
  • the pressure p 2 is reduced; part of the hydraulic oil in the oil pressure chamber 11 is sucked into the oil storage chamber 17 through the oil inlet check valve 18, and the valve push rod seat 16 and the tappet seat 9 are not displaced relatively, that is, no additional lift is generated. Until the cam 1 lift reaches its maximum value.
  • valve additional lift increase amount ⁇ l 3 depends on s 2 /s 3 ; when the oil return solenoid valve 23 is opened, the valve additional lift disappears.
  • the oil intake solenoid valve 5 and the return oil solenoid valve 23 are kept open, and the valve operates according to the cam 1 type line of the original machine.
  • the invention can realize the control of the valve timing and the lift in the range of the engine speed conditions, and the work required to generate the oil pressure of the additional lift is provided by the self-movement of the cam 1 without an additional high-pressure oil pump, which simplifies the system, The cost is saved; the additional lift curve depends on the mechanical structure of the device and the inlet and return solenoid valves, and the reliability is high; and the maximum valve lift timing is dynamically adjusted by rationally designing the area of the oil storage chamber 17 and the additional lift chamber 20.
  • the additional lift value protects the valve assembly and maximizes the face value of the valve lift curve, and the present invention can be applied to various types of valve control mechanisms with high applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

一种可变气门挺柱,包括挺柱座(9)和支架(12);挺柱座(9)为上部设置有倒"凸"字形中空圆柱槽的圆柱体结构,其外部设置有中空圆筒结构的挺柱外套(14),还包括圆柱体结构的气门推杆座(16),下表面与挺柱座(9)之间构成附加升程腔(20);支架(12)为中空圆筒状结构,气门推杆座(16)上表面沿圆柱体外缘向外延伸与支架(12)内表面相配合,与支架(12)内表面之间构成储油腔(17);支架(12)外表面、挺柱外套(14)内表面与挺柱座(9)之间构成压油腔(11);气门推杆座(16)外,压油腔(11)内设置有挺柱弹簧(19);挺柱外套(14)上设置有连接供油系统的进油口(8)和连接回油系统的回油口(22);气门推杆座(16)上表面连接气门推杆(15);挺柱座(9)正下方设置有凸轮(1);该可变气门挺柱能在发动机各转速工况范围内实现气门正时和升程控制,成本低、适用性强、可靠性高。

Description

一种可变气门挺柱 技术领域
本发明涉及发动机配气机构技术领域,具体涉及一种可变气门挺柱。
背景技术
发动机传统的配气机构多采用凸轮轴驱动进排气门,通过曲轴与凸轮轴、凸轮轴与各气门之间的机械传动来实现配气相位的正时与控制;而凸轮线型的设计是根据发动机各工况转速下各项指标的综合评价值进行选择的,其只能满足发动机某一工况下的性能要求,不能将发动机各工况下的性能发挥到最佳状态;与发动机传统的配气技术相比,可变气门技术能在发动机各转速工况下提供最佳的气门正时或升程以满足发动机动力性、经济性和排放的要求;面对节能减排和环境污染两大难题,可变气门技术已成为各国内燃机研究者实现高效清洁燃烧技术路线的关键技术之一;而现有的可变气门机构大部分只能实现气门早开或晚关等局部功能,不能在发动机全工况下进行连续调节,进而限制了发动机最佳性能的发挥。
发明内容
本发明提供一种能在发动机各转速工况范围内实现气门正时和升程控制的可变气门挺柱。
本发明采用的技术方案是:一种可变气门挺柱,包括挺柱座和支架;挺柱座为上部设置有倒“凸”字形中空圆柱槽的圆柱体结构,其外部设置有中空圆筒结构的挺柱外套,挺柱座外表面与挺柱外套内表面相配合;还包括圆柱体结构的气门推杆座,下部外表面与挺柱座内部中空部分小圆柱槽内表面相配合,下表面与挺柱座之间构成附加升程腔;支架为中空圆筒状结构,其上表面沿圆筒外缘向外延伸与挺柱外套内表面连接,下表面沿圆筒内缘向内部延伸与气门推杆座外表面相配合;气门推杆座上表面沿圆柱体外缘向外延伸与支架内表面相配合,与支架内表面之间构成储油腔;附加升程腔连通储油腔;支架外表面、挺柱外套内表面与挺柱座之间构成压油腔;气门推杆座外,压油腔内设置有挺柱弹簧;挺柱外套上设置有连接供油系统的进油口和连接回油系统的回油口;进油口连通压油腔,回油口连通附加升程腔;压油腔通过进油单向阀连通储油腔;挺柱座上设置有连通附加升程腔的限压油道;气门推杆座上表面连接气门推杆;挺柱座正下方设置有凸轮。
进一步的,所述气门推杆座下部直径小于上部直径,构成两阶圆柱体;下部圆柱体外表面与挺柱座内部中空部分小圆柱槽内表面相配合;上部圆柱体外表面与支架下表面沿圆筒内缘向内延伸部相配合。
进一步的,所述气门推杆座上表面设置有向其内部凹陷的“凹”形球面,与气门推杆下 表面相配合。
进一步的,所述挺柱座上沿其运动方向上设置有两条互不连通的油槽;其中一条油槽连接进油口,上端通过设置在挺柱座上的进油油道连接压油腔;另一条油槽连接回油口,上端通过设置在挺柱座上的回油油道连接附加升程腔。
进一步的,所述支架表面沿圆筒内缘向内部延伸部位设置有连通压油腔和储油腔的进油单向阀。
进一步的,所述限压油道上设置有限压阀。
进一步的,所述支架通过固定螺钉连接挺柱外套。
进一步的,所述气门推杆座上设置有液压油道,液压油道连接储油腔和附加升程腔。
进一步的,所述挺柱外套、挺柱座、支架和气门推杆座同轴设置。
本发明的有益效果是:
(1)本发明能在发动机各转速工况范围内实现气门正时和升程的控制;
(2)本发明产生附加升程的油压所需的做功由凸轮的自身运动提供,无需额外高压油泵,简化了系统、节约了成本;
(3)本发明通过改变储油腔和附加升程腔的体积,可动态调整最大气门升程时刻的附加升程值,保护气门组件,最大化气门升程曲线时面值;
(4)本发明可用于各类型气门控制机构,适用性强;
(5)本发明附加升程曲线取决于机械结构、进油电磁阀和回油电磁阀,可靠性高。
附图说明
图1为本发明结构示意图。
图中:1-凸轮,2-油底壳,3、机油滤清器,4-低压油泵,5-进油电磁阀,6-调压阀,7-溢流阀,8-进油口,9-挺柱座,10-进油油道,11-压油腔,12-支架,13-定位螺钉,14-挺柱外套,15-气门推杆,16-气门推杆座,17-储油腔,18-进油单向阀,19-挺柱弹簧,20-附加升程腔,21-回油油道,22-回油口,23-回油电磁阀,24-限压阀,25-限压油道。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
如图1所示,一种可变气门挺柱,其特征在于:包括挺柱座9和支架12;挺柱座9为上部设置有倒“凸”字形中空圆柱槽的圆柱体结构,其外部设置有中空圆筒结构的挺柱外套14,挺柱座9外表面与挺柱外套14内表面相配合;还包括圆柱体结构的气门推杆座16,下部外表面与挺柱座9内部中空部分小圆柱槽内表面相配合,下表面与挺柱座9之间构成附加升程 腔20;支架12为中空圆筒状结构,其上表面沿圆筒外缘向外延伸与挺柱外套14内表面连接,下表面沿圆筒内缘向内部延伸与气门推杆座16外表面相配合;气门推杆座16上表面沿圆柱体外缘向外延伸与支架12内表面相配合,与支架12内表面之间构成储油腔17;附加升程腔20连通储油腔17;支架12外表面、挺柱外套14内表面与挺柱座9之间构成压油腔11;气门推杆座16外,压油腔11内设置有挺柱弹簧19;挺柱外套14上设置有连接供油系统的进油口8和连接回油系统的回油口22;进油口8连通压油腔11,回油口22连通附加升程腔20;压油腔11通过进油单向阀18连通储油腔17;挺柱座9上设置有连通附加升程腔20的限压油道25;气门推杆座16上表面连接气门推杆15;挺柱座9正下方设置有凸轮1。
进一步的,所述气门推杆座16下部直径小于上部直径,构成两阶圆柱体;下部圆柱体外表面与挺柱座9内部中空部分小圆柱槽内表面相配合;上部圆柱体外表面与支架12下表面沿圆筒内缘向内延伸部相配合;气门推杆座16上表面沿圆柱体外缘向外延伸与支架12内表面形成密封面,上部圆柱体外表面与支架12下表面沿圆筒内缘向内延伸部形成密封面,下部圆柱体外表面与挺柱座9内部中空部分小圆柱槽内表面形成密封面。
进一步的,所述气门推杆座16上表面设置有向其内部凹陷的“凹”形球面,与气门推杆15下表面相配合。
进一步的,所述挺柱座9上沿其运动方向上设置有两条互不连通的油槽;其中一条油槽连接进油口8,上端通过设置在挺柱座9上的进油油道10连接压油腔11,挺柱座9运动过程中油槽始终与进油口8连通;另一条油槽连接回油口22,上端通过设置在挺柱座9上的回油油道21连接附加升程腔20,挺柱座9运动过程中油槽始终与回油口22连通;油槽两端为圆弧状。
进一步的,所述支架12表面沿圆筒内缘向内部延伸部位设置有连通压油腔11和储油腔17的进油单向阀18;设置进油单向阀18可以保证液压油只能从压油腔11进入储油腔17而不能逆流。
进一步的,所述限压油道25上设置有限压阀24;可以确保任何情况下附加升程腔20所产生的附加升程不大于最大气门附加升程。
进一步的,所述支架12通过固定螺钉13连接挺柱外套14;挺柱外套14上加工有螺纹通孔,支架12上表面沿圆筒外缘向外延伸部位设置有与挺柱外套14上螺纹通孔向配合的螺纹孔。
进一步的,所述气门推杆座16上设置有液压油道,液压油道连接储油腔17和附加升程腔20;确保在任何情况下储油腔17和附加升程腔20连通。
进一步的,所述挺柱外套14、挺柱座9、支架12和气门推杆座16同轴设置。
使用时,进油口8通过进油电磁阀5与进油系统连接,回油口22通过回油电磁阀23与回油系统连接;进油系统包括与油底壳2连接的机油滤清器3和溢流阀7,机油滤清器3连接低压油泵4,低压油泵4连接调压阀6,调压阀6连接进油电磁阀5。
使用时,限压阀24的限压值计算方法如下:
Fk=k(L+Δl)=P0s即
P0=k(L+Δl)/s
式中:k为气门弹簧的刚度,Δl为气门最大附加升程,s为附加升程腔20内气门推杆15的受力面积,L为气门原升程,Fk为气门总升程最大时的弹簧力,P0为限压阀24的限压值;使用时,只需限压阀24的限压值略大于P0即可。
可变气门挺柱工作过程包括以下部分:
一、目标值为最大附加升程值的附加升程产生过程
1、开启进油电磁阀5和回油电磁阀23,当挺柱座9随凸轮1下行时,因为挺柱外套14和支架12固定连接,压油腔11因其体积V1增加而形成负压,液压油经供油系统、进油口8、进油油道10充满压油腔11;气门推杆座16随挺柱座9下行,储油腔17的体积V2减小,储油腔17内的液压油流向附加升程腔20,再经回油油道21进入回油系统;此过程中附加升程腔20的体积V3保持不变,气门升程型线取决于凸轮升程曲线。
2、关闭进油电磁阀5和回油电磁阀23,挺柱座9在凸轮1的作用下向上运动,从而“挤压”压油腔11,压油腔11的体积V1减小,压强p1增大;液压油经进油单向阀18进入储油腔17和附加升程腔20,储油腔17的体积V2和压强p2增加,附加升程腔20的体积V3和压强p3增加;气门推杆座16与挺柱座9产生相对位移,即产生附加升程;气门达最大附加升程后,附加升程腔20的压强p3超过限压阀24的开启压力值,限压阀24打开,液压油限压阀24流回回油系统,附加升程保持动态平衡。
3、当凸轮1下行,压油腔11的体积V1增大,液压油经供油系统进入压油腔11,此时储油腔17的体积V2减小,液压油经储油腔17流入附加升程腔20,附加升程腔20体积V2增加,气门附加升程缓慢增加;
ΔV2=ΔV3即s2Δl2=s3Δl3
气门附加升程增加量Δl3取决于s2/s3,其中s2为储油腔17的等效面积,s3为附加升程腔20的等效面积,当回油电磁阀23开启,液压油进回油系统流回液压油池,气门附加升程消失。
二、目标值小于最大附加升程值的附加升程产生过程
1、开启进油电磁阀5和回油电磁阀23,当挺柱座9随凸轮1下行时,因为挺柱外套14和支架12固定连接,压油腔11因其体积V1增加而形成负压,液压油经供油系统、进油口8、进油油道10充满压油腔11;气门推杆座16下行,储油腔17的体积V2减小,储油腔17内的液压油流向附加升程腔20,再经回油油道21进入回油系统;此过程中附加升程腔20的体积V3保持不变,气门升程型线取决于凸轮升程曲线。
2、关闭进油电磁阀5和回油电磁阀23,挺柱座9在凸轮1作用下向上运动而“挤压”压油腔11,压油腔11的体积V1减小,压强p1增大;液压油经进油单向阀18进入储油腔17和附加升程腔20,储油腔17的体积V2和压强p2增加,附加升程腔20的体积V3和压强p3增加;气门推杆座16与挺柱座9产生相对位移,即产生附加升程;当附加升程值达到目标附加升程值后,进油电磁阀5打开,凸轮1继续上行,压油腔11内的液压油经进油系统流回液压油池,此时储油腔17的体积V2增大,液压油经附加升程腔20流入储油腔17,附加升程腔20的体积V3减小,气门附加升程缓慢减小;由下式:
ΔV2=ΔV3即s2Δl2=s3Δl3
可知气门附加升程减小量Δl3取决于s2/s3
3、当凸轮1下行,压油腔11的体积V1增大,液压油经供油系统进入压油腔11,此时储油腔17的体积V2减小,液压油经储油腔17流入附加升程腔20;附加升程腔20的体积V3增加,气门附加升程缓慢增加,有下式:
ΔV2=ΔV3即s2Δl2=s3Δl3
可知,气门附加升程增加量Δl3取决于s2/s3;当回油电磁阀23开启,气门附加升程消失。
三、凸轮1上止点前不产生附加升程而凸轮1下降阶段产生附加升程
1、开启进油电磁阀5和回油电磁阀23,当挺柱座9随凸轮1下行时,因为挺柱外套14和支架12固定连接,压油腔11因其体积V1增加而形成负压,液压油经供油系统、进油口8、进油油道10充满压油腔11;气门推杆座16下行,储油腔17的体积V2减小,储油腔17内的液压油流向附加升程腔20,再经回油油道21进入回油系统;此过程中附加升程腔20的体积V3保持不变,气门升程型线取决于凸轮升程曲线。
2、打开进油电磁阀5,关闭回油电磁阀23,挺柱座9在凸轮1的作用下向上运动而“挤压”压油腔11,压油腔11的体积V1减小,压强p1保持与液压油池相近的压力值;气门推杆座16在挺柱座9的推动下向上运动,储油腔体积V2增大、附加升程腔20的体积V3保持不 变,压强p2减小;压油腔11中的部分液压油经进油单向阀18被吸入储油腔17,气门推杆座16与挺柱座9不产生相对位移,即不产生附加升程,直到凸轮1升程达到最大值。
3、当凸轮1下行,压油腔11的体积V1增大,液压油经供油系统进入压油腔11,此时储油腔17的体积V2减小,液压油经储油腔17进入附加升程腔20;附加升程腔20的体积V3增加,气门附加升程缓慢增加,由下式:
ΔV2=ΔV3即s2Δl2=s3Δl3
可知,气门附加升程增加量Δl3取决于s2/s3;当回油电磁阀23开启,气门附加升程消失。
四、不产生附加升程
当不需要产生附加升程时,进油电磁阀5和回油电磁阀23均保持开启,气门按原机的凸轮1型线工作。
本发明能在发动机各转速工况范围内实现气门正时和升程的控制,产生附加升程的油压所需的做功由凸轮1的自身运动提供,无需额外的高压油泵,简化了系统、节约了成本;附加升程曲线取决于装置的机械结构和进、回油电磁阀,可靠性高;并且通过合理设计储油腔17和附加升程腔20的面积,动态调整最大气门升程时刻的附加升程值,保护气门组件,最大化气门升程曲线时面值,并且本发明可用于各类型的气门控制机构,适用性强。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种可变气门挺柱,其特征在于:包括挺柱座(9)和支架(12);挺柱座(9)为上部设置有倒“凸”字形中空圆柱槽的圆柱体结构,其外部设置有中空圆筒结构的挺柱外套(14),挺柱座(9)外表面与挺柱外套(14)内表面相配合;还包括圆柱体结构的气门推杆座(16),下部外表面与挺柱座(9)内部中空部分小圆柱槽内表面相配合,下表面与挺柱座(9)之间构成附加升程腔(20);支架(12)为中空圆筒状结构,其上表面沿圆筒外缘向外延伸与挺柱外套(14)内表面连接,下表面沿圆筒内缘向内部延伸与气门推杆座(16)外表面相配合;气门推杆座(16)上表面沿圆柱体外缘向外延伸与支架(12)内表面相配合,与支架(12)内表面之间构成储油腔(17);附加升程腔(20)连通储油腔(17);支架(12)外表面、挺柱外套(14)内表面与挺柱座(9)之间构成压油腔(11);气门推杆座(16)外,压油腔(11)内设置有挺柱弹簧(19);挺柱外套(14)上设置有连接供油系统的进油口(8)和连接回油系统的回油口(22);进油口(8)连通压油腔(11),回油口(22)连通附加升程腔(20);压油腔(11)通过进油单向阀(18)连通储油腔(17);挺柱座(9)上设置有连通附加升程腔(20)的限压油道(25);气门推杆座(16)上表面连接气门推杆(15);挺柱座(9)正下方设置有凸轮(1)。
  2. 根据权利要求1所述的一种可变气门挺柱,其特征在于:所述气门推杆座(16)下部直径小于上部直径,构成两阶圆柱体;下部圆柱体外表面与挺柱座(9)内部中空部分小圆柱槽内表面相配合;上部圆柱体外表面与支架(12)下表面沿圆筒内缘向内延伸部相配合。
  3. 根据权利要求1所述的一种可变气门挺柱,其特征在于:所述气门推杆座(16)上表面设置有向其内部凹陷的“凹”形球面,与气门推杆(15)下表面相配合。
  4. 根据权利要求1所述的一种可变气门挺柱,其特征在于:所述挺柱座(9)上沿其运动方向上设置有两条互不连通的油槽;其中一条油槽连接进油口(8),上端通过设置在挺柱座(9)上的进油油道(10)连接压油腔(11);另一条油槽连接回油口(22),上端通过设置在挺柱座(9)上的回油油道(21)连接附加升程腔(20)。
  5. 根据权利要求1所述的一种可变气门挺柱,其特征在于:所述支架(12)表面沿圆筒内缘向内部延伸部位设置有连通压油腔(11)和储油腔(17)的进油单向阀(18)。
  6. 根据权利要求1所述的一种可变气门挺柱,其特征在于:所述限压油道(25)上设置有限压阀(24)。
  7. 根据权利要求1所述的一种可变气门挺柱,其特征在于:所述支架(12)通过固定螺钉(13)连接挺柱外套(14)。
  8. 根据权利要求1所述的一种可变气门挺柱,其特征在于:所述气门推杆座(16)上设置有液压油道,液压油道连接储油腔(17)和附加升程腔(20)。
  9. 根据权利要求1所述的一种可变气门挺柱,其特征在于:所述挺柱外套(14)、挺柱座(9)、支架(12)和气门推杆座(16)同轴设置。
PCT/CN2016/102665 2016-09-22 2016-10-20 一种可变气门挺柱 WO2018053892A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1903051.9A GB2568621B (en) 2016-09-22 2016-10-20 Variable valve tappet
CA3034548A CA3034548C (en) 2016-09-22 2016-10-20 Variable valve tappet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610841364.1 2016-09-22
CN201610841364.1A CN106285811B (zh) 2016-09-22 2016-09-22 一种可变气门挺柱

Publications (1)

Publication Number Publication Date
WO2018053892A1 true WO2018053892A1 (zh) 2018-03-29

Family

ID=57712651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102665 WO2018053892A1 (zh) 2016-09-22 2016-10-20 一种可变气门挺柱

Country Status (4)

Country Link
CN (1) CN106285811B (zh)
CA (1) CA3034548C (zh)
GB (1) GB2568621B (zh)
WO (1) WO2018053892A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116201620A (zh) * 2023-01-31 2023-06-02 重庆长安汽车股份有限公司 一种液压挺柱、发动机及车辆

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB566959A (en) * 1944-06-16 1945-01-22 Thomas Hindle Improvements in tappet mechanism for actuating poppet or like valves for internal combustion and other engines
GB627281A (en) * 1947-09-18 1949-08-04 Bernard Michael Francis Samuel Improvements in or relating to hydraulic tappets
JPS54155309A (en) * 1978-05-27 1979-12-07 Nissan Motor Co Ltd Valve moving system for internal combustion engine
US4258671A (en) * 1978-03-13 1981-03-31 Toyota Jidosha Kogyo Kabushiki Kaisha Variable valve lift mechanism used in an internal combustion engine
JPS59147806A (ja) * 1983-02-10 1984-08-24 Isuzu Motors Ltd 内燃機関のバルブ開閉制御装置
EP0323591A2 (de) * 1987-12-17 1989-07-12 Klöckner-Humboldt-Deutz Aktiengesellschaft Zweipunkt-Spritzversteller
CN101479445A (zh) * 2006-06-30 2009-07-08 瓦特西拉芬兰有限公司 用于活塞式发动机中气体交换阀的控制装置以及控制活塞式发动机中气体交换阀的方法
CN201588701U (zh) * 2009-12-11 2010-09-22 吴爽 无级可变气门升程机构
CN104564206A (zh) * 2015-01-23 2015-04-29 吉林大学 凸轮驱动式内燃机液压全可变气门机构
CN206071662U (zh) * 2016-09-22 2017-04-05 西华大学 一种可变气门挺柱

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19804323A1 (de) * 1998-02-04 1999-08-05 Schaeffler Waelzlager Ohg Auf unterschiedliche Hübe umschaltbarer Tassenstößel
US6357406B1 (en) * 2000-11-22 2002-03-19 Borgwarner Inc. Variable valve actuation system
KR100534833B1 (ko) * 2004-03-26 2005-12-08 현대자동차주식회사 자동차 엔진의 가변 밸브 리프트 장치
CN103742216A (zh) * 2014-01-24 2014-04-23 赵迎生 一种可变升程液力挺柱
CN104454070B (zh) * 2014-10-27 2017-03-01 中北大学 一种基于凸轮轴的气门升程连续可变的电控液压调节机构
CN104481625A (zh) * 2014-11-13 2015-04-01 浙江师范大学 一种可变配气相位系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB566959A (en) * 1944-06-16 1945-01-22 Thomas Hindle Improvements in tappet mechanism for actuating poppet or like valves for internal combustion and other engines
GB627281A (en) * 1947-09-18 1949-08-04 Bernard Michael Francis Samuel Improvements in or relating to hydraulic tappets
US4258671A (en) * 1978-03-13 1981-03-31 Toyota Jidosha Kogyo Kabushiki Kaisha Variable valve lift mechanism used in an internal combustion engine
JPS54155309A (en) * 1978-05-27 1979-12-07 Nissan Motor Co Ltd Valve moving system for internal combustion engine
JPS59147806A (ja) * 1983-02-10 1984-08-24 Isuzu Motors Ltd 内燃機関のバルブ開閉制御装置
EP0323591A2 (de) * 1987-12-17 1989-07-12 Klöckner-Humboldt-Deutz Aktiengesellschaft Zweipunkt-Spritzversteller
CN101479445A (zh) * 2006-06-30 2009-07-08 瓦特西拉芬兰有限公司 用于活塞式发动机中气体交换阀的控制装置以及控制活塞式发动机中气体交换阀的方法
CN201588701U (zh) * 2009-12-11 2010-09-22 吴爽 无级可变气门升程机构
CN104564206A (zh) * 2015-01-23 2015-04-29 吉林大学 凸轮驱动式内燃机液压全可变气门机构
CN206071662U (zh) * 2016-09-22 2017-04-05 西华大学 一种可变气门挺柱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116201620A (zh) * 2023-01-31 2023-06-02 重庆长安汽车股份有限公司 一种液压挺柱、发动机及车辆
CN116201620B (zh) * 2023-01-31 2024-05-17 重庆长安汽车股份有限公司 一种液压挺柱、发动机及车辆

Also Published As

Publication number Publication date
CN106285811B (zh) 2018-10-19
CN106285811A (zh) 2017-01-04
GB2568621A (en) 2019-05-22
CA3034548C (en) 2019-06-04
GB2568621B (en) 2019-10-09
GB201903051D0 (en) 2019-04-24
CA3034548A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
US20100294220A1 (en) Internal combustion engine with two intake valves per cylinder which are ac tuated hydraulically and have differentiated return springs
EP2315919B1 (en) A control arrangement in a piston engine
EP2722499B1 (en) Variable valve timing apparatus
CN203130181U (zh) 一种新型可调液压挺柱
CN103925037B (zh) 一种可调液压挺柱
CN110242460A (zh) 一种平衡式两位三通燃料喷射阀
CN108240244B (zh) 柴油机进气门可变系统及柴油机
US20090308340A1 (en) Cam-Driven Hydraulic Lost-Motion Mechanisms for Overhead Cam and Overhead Valve Valvetrains
JPH02264104A (ja) 内燃機関の動弁装置
US20030221644A1 (en) Engine valve actuation system
WO2018053892A1 (zh) 一种可变气门挺柱
CN207377616U (zh) 一种低压控制高压的液压驱动可变气门机构
CN206530374U (zh) 全可变液压气门机构气门升程控制装置及内燃机
CN205908328U (zh) 四气门发动机可变气门机构
CN206071662U (zh) 一种可变气门挺柱
CN214577485U (zh) 阀杆组件及高压燃料喷射阀
CN205400837U (zh) 凸轮驱动式发动机液压气门控制装置
WO2020124554A1 (zh) 气门配气机构及发动机
CN110593983B (zh) 一种集成式低压补油排气阀驱动装置
CN210396838U (zh) 一种电液式可变气门正时调节装置
CN201934411U (zh) 用于液压系统的节能减压阀
CN201041117Y (zh) 高速柴油机喷油泵
ITRM990645A1 (it) Dispositivo di freno motore a combustione interna.
US20030213444A1 (en) Engine valve actuation system
CN104295333B (zh) 一种发动机配气机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3034548

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 201903051

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20161020

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916631

Country of ref document: EP

Kind code of ref document: A1