WO2018051568A1 - プラント異常診断装置及びプラント異常診断システム - Google Patents

プラント異常診断装置及びプラント異常診断システム Download PDF

Info

Publication number
WO2018051568A1
WO2018051568A1 PCT/JP2017/015419 JP2017015419W WO2018051568A1 WO 2018051568 A1 WO2018051568 A1 WO 2018051568A1 JP 2017015419 W JP2017015419 W JP 2017015419W WO 2018051568 A1 WO2018051568 A1 WO 2018051568A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
abnormality
category
art
abnormality diagnosis
Prior art date
Application number
PCT/JP2017/015419
Other languages
English (en)
French (fr)
Inventor
林 喜治
孝朗 関合
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP17850475.9A priority Critical patent/EP3514642B1/en
Priority to MYPI2019000066A priority patent/MY190087A/en
Priority to JP2018539511A priority patent/JP6674033B2/ja
Publication of WO2018051568A1 publication Critical patent/WO2018051568A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a plant abnormality diagnosis apparatus and a plant abnormality diagnosis system using an adaptive resonance theory (ART) which is one of clustering techniques.
  • ART adaptive resonance theory
  • ART adaptive resonance theory
  • ART is one of clustering analysis methods, and is a method of classifying input data into a plurality of categories (clusters).
  • a category represents a group of data having similarities.
  • a general clustering analysis method a plurality of input data is mapped on a multidimensional space, and a set of data is defined from a distance in the space.
  • category numbers are assigned to input data. Input data with the same category number indicates a high similarity.
  • Patent Document 1 a technique described in Patent Document 1 is known as an apparatus for diagnosing plant abnormality using such an ART.
  • an abnormality is detected based on the category information determined by the ART using the measurement data of the desalination plant. Signals with a high contribution rate are also selected.
  • the adjustment parameter ⁇ for adjusting the size of the category is used. The larger the adjustment parameter ⁇ , the smaller the category, and the input data can be classified finely. Therefore, even if it is slightly different from the normal data pattern, it is determined as a new category, so that sensitivity to abnormality can be increased. However, since it becomes easy to determine that the normal fluctuation included in the input data is abnormal, false detection increases. On the other hand, the smaller the adjustment parameter ⁇ , the larger the category and the rougher the data classification. Therefore, the sensitivity to abnormality is lowered, but false detection can be reduced.
  • normal / abnormal is determined by ART, and the degree of abnormality is determined according to the value of ⁇ determined to be abnormal. For example, when ⁇ is small, that is, even when the sensitivity to abnormality is low, if the ART is determined to be abnormal, it can be determined that the difference from normal is very large. Using this, alarm levels such as “Large”, “Medium”, and “Small” are evaluated. Moreover, in patent document 1, in order to select the signal with the high contribution rate to an abnormal condition, the positional relationship when input data are mapped on multidimensional space is utilized.
  • each signal in relation to the positional relationship between the input data in space and the centroid of the category closest to it The contribution ratio of each signal is obtained from the distance difference.
  • category determination processing is performed each time measurement data of a desalination plant, that is, measurement data obtained by each sensor installed in the desalination plant, is obtained, and measurement data from each sensor is obtained.
  • the contribution rate is calculated every time (each input signal), and no consideration is given to the point of early determination of abnormality in the entire plant.
  • category determination processing by ART is performed every time measurement data from each sensor is acquired. Since the category determination process involves a convergence calculation, the process takes time, and there may be a time delay until an abnormality is detected, and there is a concern that an unexpected abnormality in the entire plant may be overlooked.
  • the present invention provides a plant abnormality diagnosis apparatus and a plant abnormality diagnosis system that can determine an abnormality in the entire plant at an early stage in the abnormality diagnosis of the plant using the ART.
  • the plant abnormality diagnosis device is a data belonging to a category determined based on normal resonance data by adaptive resonance theory for a plurality of measurement data from various sensors installed in a diagnosis target plant. And an abnormality degree calculation unit for obtaining an abnormality degree of the whole plant to be diagnosed based on a difference in a spatial distance between the plurality of measurement data and the plurality of measurement data.
  • the plant abnormality diagnosis system includes a plant abnormality diagnosis device that diagnoses abnormality of a plant to be diagnosed, process control of the diagnosis target plant, and a plurality of sensors that are installed in the target plant.
  • a plant control device that transmits the measured data to the plant abnormality diagnosis device, and an input / output device having an input unit and a display unit, the plant abnormality diagnosis device from various sensors transmitted from the plant control device Based on the difference in spatial distance between the data belonging to the category determined by the normal data by the adaptive resonance theory and the plurality of measurement data, the degree of abnormality of the entire plant to be diagnosed is determined. It has the abnormality degree calculation part to obtain, It is characterized by the above-mentioned.
  • FIG. 1 It is a functional block diagram which shows the whole schematic structure of the plant abnormality diagnosis system of Example 1 which concerns on one Example of this invention. It is explanatory drawing of the concept of clustering. It is a block diagram which shows the principal part of the ART process part shown in FIG. It is a figure which shows the data structure of the category database shown in FIG. It is a figure which shows the data structure of the plant database shown in FIG. It is a figure which shows the data structure of the diagnostic result database shown in FIG. It is a figure which shows the data structure of the abnormal event database shown in FIG. It is a figure which shows the calculation method of an abnormality degree. It is a figure which shows the time change of an abnormality degree. It is a figure which shows the data structure of a diagnostic result database.
  • a display screen which displays the time change of an abnormality degree and the time change of a category number. It is an example of a display screen which displays the time change of an abnormality degree and the time change of a category number. It is an example of a display screen at the time of registration of an abnormal event. It is an example of the display screen which displays the abnormal change as a time change of a category number, and a diagnostic result.
  • Plants to which the plant abnormality diagnosis apparatus and the plant abnormality diagnosis system according to the embodiments of the present invention are applied include water treatment plants such as seawater desalination plants, sewage treatment plants, or water treatment plants, power generation plants, chemical plants, and the like. Including various industrial plants. Embodiments of the present invention will be described below with reference to the drawings.
  • FIG. 1 is a functional block diagram showing an overall schematic configuration of the plant abnormality diagnosis system according to the first embodiment of the present invention.
  • a plant abnormality diagnosis system 1 includes a plant abnormality diagnosis device 2 that diagnoses an abnormality in a plant 5, a plant control device 3 that performs monitoring and process control of the plant 5, and an input unit and an output unit. It is composed of an input / output device 4.
  • the input / output device 4 has an input device such as a keyboard or a mouse, for example, and is used when a user inputs and / or registers data to the plant abnormality diagnosis device 2.
  • the input / output device 4 is an output unit having a display device such as a liquid crystal display (LCD) or an organic EL display, and a print output device such as a printer.
  • An abnormality diagnosis result or a screen for interactive processing for the user of the plant abnormality diagnosis device 2 is displayed.
  • the plant control device 3 is realized by, for example, a control panel or SCADA (Supervision Control And Data Acquisition).
  • SCADA Supervision Control And Data Acquisition
  • the SCADA is installed in at least a programmable logic controller (PLC) that performs process control of various devices that constitute the plant 5, and various devices and piping that constitute the plant 5.
  • PLC programmable logic controller
  • a communication function for collecting measurement data from various sensors such as a flow meter, a pressure gauge, and a thermometer, and transmitting the collected measurement data from the various sensors to the plant abnormality diagnosis device 2.
  • the plant abnormality diagnosis apparatus 2 includes a data acquisition unit 101, a data preprocessing unit 102, an abnormality degree calculation unit 103, an ART control unit 104, an ART processing unit 105, an abnormality determination unit 106, an input / output control unit 107, a plant database 108, a category A database 109, a diagnostic result database 110, an abnormal event database 111, and a communication I / F 112 for receiving measurement data from various sensors transmitted from the plant control device 3 are provided, and these can be mutually accessed via an internal bus 113. It is connected.
  • the data acquisition unit 101, the data preprocessing unit 102, the abnormality degree calculation unit 103, the ART control unit 104, the ART processing unit 105, the abnormality determination unit 106, and the input / output control unit 107 constituting the plant abnormality diagnosis apparatus 2 are, for example, , A processor such as a CPU (Central Processing Unit) (not shown), a ROM that stores various programs, a RAM that temporarily stores operation process data, a storage device such as an external storage device, and a processor such as a CPU Reads out and executes various programs stored in the ROM, and stores the calculation result as the execution result in the RAM or the external storage device.
  • CPU Central Processing Unit
  • the data acquisition unit 101 acquires measurement data from the various sensors received from the plant control device 3 received via the communication I / F 112 via the internal bus 113, and performs, for example, A / D conversion processing and smoothing processing. (Noise removal) or normalization processing is executed. Further, the data acquisition unit 101 transfers measurement data obtained by the various sensors after the above-described processing to the plant database 108 via the internal bus 113. Thereby, the plant database 108 stores the data of the plant 5 which is measurement data by various sensors in time series.
  • the data preprocessing unit 102 accesses the plant database 108 via the internal bus 113, takes in data to be input for diagnostic processing by ART described later from data stored in the plant database 108, and further inputs ART processing. The data is normalized between 0 and 1 so that Further, the data preprocessing unit 102 transfers the normalized data to the abnormality degree calculation unit 103 via the internal bus 113.
  • the abnormality degree calculation unit 103 takes in the standardized data transferred from the data preprocessing unit 102 via the internal bus 113, and calculates the abnormality degree of the entire plant 5 to be diagnosed and the abnormality contribution degree of each signal. calculate.
  • each signal corresponds to measurement data obtained by the above-described various sensors included in the normalized data.
  • the ART control unit 104 takes in the degree of abnormality calculated by the degree of abnormality calculation unit 103 via the internal bus 113, and controls the execution timing of processing by ART according to the output tendency of the degree of abnormality.
  • the ART processing unit 105 executes ART processing.
  • the abnormality determination unit 106 takes in the category information, which is the output result of the ART processing unit 105, via the internal bus 113, and determines normality or abnormality based on the category information.
  • the abnormality determination unit 106 transfers a normal or abnormal determination result to the diagnosis result database 110 via the internal bus 113.
  • the diagnosis result database 110 stores the normal or abnormal determination result transferred from the abnormality determination unit 106 via the internal bus 113 as the diagnosis result of the plant 5.
  • the category database 109 stores characteristic data for each category used in the processing of the abnormality degree calculation unit 103 and the abnormality determination unit 106.
  • ART is used for diagnosis processing of the plant 5 that is a diagnosis target as described above.
  • the processing by the ART executed by the ART processing unit 105, the determination of the ART processing result executed by the abnormality determination unit 106, and the output processing of the diagnostic result database 110 of the diagnostic result will be described.
  • FIG. 2 is an explanatory diagram of the concept of clustering.
  • the upper diagram of FIG. 2 shows a state where values of two kinds of signals (signal X1, signal X2) are plotted in a two-dimensional space, that is, a correlation between these two signals (signal X1, signal X2).
  • the signal X1 that is the horizontal axis and the signal X2 that is the vertical axis are normalized between 0 and 1 by the data preprocessing unit 102.
  • the data plotted in the space is grouped together with data that are close to each other to define a group (cluster).
  • cluster In the example shown in the upper diagram of FIG.
  • 210a and 210b indicated by circles each represent one group.
  • each group is called a category, and different category numbers can be assigned to the categories 210a and 210b for identification. Therefore, the output of ART is the category number assigned to the input data. Data assigned with the same category number represents a similar tendency.
  • a two-dimensional case that is, a case where two signals (signal X1 and signal X2) are input is shown, but this is for ease of explanation. .
  • a large number of signals are set as inputs, and clustering processing is performed in a multidimensional space.
  • the category determination process is performed by the ART processing unit 105 by inputting the plant data defined as normal (measurement data by the various sensors described above). This process is called learning.
  • the category number output in the learning process represents normal.
  • the plant data for diagnosis is set as an input of the ART processing unit 105 to perform category determination processing, and the abnormality determination unit 106 performs normality / abnormality determination processing based on the category output from the ART processing unit 105.
  • the input data 211 is out of the category 210a and the category 210b defined as normal, the plant 5 is in a state different from the normal characteristics, and can be determined to be abnormal.
  • ART In the processing by ART, when data not corresponding to an existing category is input, a new category is created and a number is assigned. That is, when the category number determined by the ART processing unit 105 is different from the category number at the time of learning, the abnormality determination unit 106 determines that the plant 5 is in an abnormal state. When the plant 5 is a newly installed plant, the above learning process is performed during the trial operation of the plant 5. Moreover, what is necessary is just to learn using the past operation performance data (plant data), when incorporating the plant abnormality diagnosis apparatus 2 in the existing plant 5 newly.
  • FIG. 3 is a configuration diagram showing a main part of the ART processing unit 105 shown in FIG.
  • the ART processing unit 105 includes at least a normalization / noise removal unit (F0 layer) 310, an input pattern holding unit (F1 layer) 311, a category output unit (F2 layer) 312, and a category validity determination.
  • the algorithm executed by the ART processing unit 105 is the following Step 1 to Step 6.
  • Step 1 In the normalization / noise removal unit (F0 layer) 310, normalization is performed so that the size of the input vector becomes 1, and noise is removed.
  • Step 2 The input pattern holding unit (F1 layer) 311 performs short-term storage of data using a recurrence formula (also referred to as a difference equation).
  • a recurrence formula also referred to as a difference equation
  • Step 3 In the category output unit (F2 layer) 312, a category candidate is selected by comparing the input data input with the weighting coefficient stored in the memory 314.
  • Step 4 The category validity determination unit (Orienting Subsystem) 313 evaluates the validity of the category selected by the category output unit (F2 layer) 312. If it is determined to be valid, the input data is classified into the category, and the process proceeds to step 6. If it is not determined to be valid, the category is reset (excluded from the category candidates), and the candidate category number is selected again from step 2.
  • Step 5 In step 4, when all existing categories are reset (excluded from category candidates), that is, when it is determined that there is no valid category, a new category is created. At this time, a new weighting factor corresponding to the new category is also defined. The newly defined weighting factor is stored in the memory 314.
  • Step 6 When the input data is classified into categories, the weighting coefficient corresponding to the corresponding category is updated.
  • the update of the weighting coefficient is executed by the following equation (1).
  • WJ (new) Kw ⁇ p + (1 ⁇ Kw) ⁇ WJ (old) (1)
  • WJ (new) is a weighting factor corresponding to category J
  • WJ (old) is a past weighting factor
  • p input data (or data derived from input data)
  • Kw is a learning rate parameter
  • the above is the flow of clustering processing by the ART processing unit 105.
  • the ART processing unit 105 outputs a category number corresponding to the input data.
  • the feature of the clustering processing by the ART processing unit 105 is the processing in step 5. If the input data has a tendency different from that of the existing category (cluster) by the processing in step 5, a new category can be newly created without changing the existing category. For this reason, it is possible to create a category having a new data tendency while storing a category learned in the past.
  • the category number corresponding to the input data is output by the clustering process by the above-described ART processing unit 105, and the abnormality determination unit 106 determines normality / abnormality with respect to the category number output by the ART processing unit 105.
  • the learning process is executed in advance using normal data before performing the diagnosis process.
  • Information on normal categories defined in the learning process is stored in the category database 109.
  • FIG. 4 shows the data structure of the category database 109 shown in FIG.
  • the category database 109 includes a “category number” column, a “normal / abnormal” column indicating normality or abnormality, a “data number” column indicating the total number of data for each category number, and the plant 5.
  • An “input data average value” column indicating an average value for each signal, which is measurement data from various sensors installed in various devices and pipes, is stored in a table format.
  • a flag indicating normality / abnormality by 0/1, the number of corresponding input data, and an average value of the input data are stored.
  • the “category number” is “0”
  • the “normal / abnormal” column is “0” indicating the normal category defined in the learning process
  • the “number of data” column is “40”
  • “0.6” that is an average value of “signal A” and “0.3” that is an average value of “signal B” are stored.
  • FIG. 5 is a diagram showing a data structure of the plant database 108 shown in FIG.
  • FIG. 5 shows a power plant as an example of the plant 5.
  • the plant database 108 has a “date and time” column, a “generator output (MW) (signal A)” column, and a “fuel flow rate (kg / s) (signal B)” column in a table format.
  • MW generator output
  • MW fuel flow rate
  • kg / s fuel flow rate
  • the above-described abnormality determination unit 106 determines normality / abnormality based on the data stored in the category database 109 with respect to the category number output by the ART processing unit 105. That is, the abnormality determination unit 106 searches the category database 109 using the category number fetched from the ART processing unit 105 via the internal bus 113 as a search key, and determines whether the normal / abnormal is determined according to whether or not the category is registered as a normal category. Judgment can be made. The abnormality determination unit 106 determines that a category number that is not registered as normal in the category database 109 is abnormal, and stores this information in the category database 109. In the example shown in FIG.
  • the “category number” is determined to be “5” as abnormal.
  • “1” is stored in the “normal / abnormal” column.
  • the abnormality determination unit 106 calculates an average value of input data for each category for each signal, and outputs it to the category database 109 via the internal bus 113. Further, when the “category number” is determined to be “5” by the ART processing unit 105 during the diagnosis process, the abnormality determining unit 106 determines that the “category number” stored in the category database 109 is “5”. For the above data, the value in the “number of data” column is increased and the “input data average value” is updated.
  • FIG. 6 is a diagram showing a data structure of the diagnosis result database 110 shown in FIG.
  • the diagnosis result database 110 stores a “date and time” column, a “normal / abnormal” column, and a “category number” column in a table format. For example, when “date and time” is “June 1, 2016 0:00”, the “normal / abnormal” column includes “0” as a result of the normality determination by the abnormality determination unit 106 and the “category number” column.
  • the category number “0” output from the ART processing unit 105 is stored.
  • the “normal / abnormal” column includes “1” and “category number” columns as a result of the abnormality determination unit 106 determining that there is an abnormality.
  • the input / output control unit 107 (FIG. 1) constituting the plant abnormality diagnosis device 2 outputs data stored in the above-described diagnosis result database 110 and category database 109 to the input / output device 4 as diagnosis results.
  • a display form (display screen example) of the display device constituting the input / output device 4 will be described later.
  • the input / output control unit 107 captures data relating to an abnormal event that is input by the user via the input / output device 4. If the plant abnormality diagnosis system 1 outputs that an abnormality has occurred in the plant 5 and the cause of the abnormality is later determined, this can be registered in the plant abnormality diagnosis system 1.
  • the abnormality cause data input by the user via the input / output device 4 is stored in the abnormal event database 111 via the input / output control unit 107 and the internal bus 113.
  • FIG. 7 shows the data structure of the abnormal event database 111 shown in FIG.
  • the abnormal event database 111 stores a “category number” column and an “abnormal event” column in a table format. That is, the abnormal event database 111 stores text-format data relating to an abnormal event registered by the user via the input / output device 4 in association with the category number output by the ART processing unit 105. For example, when “Category Number” is “5”, “Pump Failure” is stored in the “Abnormal Event” column, and when “Category Number” is “10”, “Heat Exchanger Heat Transfer Efficiency” is displayed in the “Abnormal Event” column. "Decrease” is stored.
  • the input / output control unit 107 accesses the abnormal event database 111 via the internal bus 113 when the above-described abnormality determination unit 106 determines that there is an abnormality, and the abnormal events that occurred in the past stored in the abnormal event database 111 Search for the same thing.
  • the category number is used as a search key for the search.
  • the corresponding abnormal event data (text format data) is read and output to the input / output device 4.
  • the plant abnormality diagnosis system 1 not only determines whether the plant 5 is normal or abnormal, but also provides information to the user including the information (contents of the abnormal event) when the abnormal event has occurred in the past. can do.
  • the above is the flow of the diagnostic processing by ART.
  • the above-described processing by ART executed by the ART processing unit 105 and the plant diagnostic processing by the abnormality determination unit 106 are fixed.
  • the processing is performed only when the degree of abnormality calculated by the degree-of-abnormality calculation unit 103 described later satisfies the execution condition.
  • the category determination processing by the ART processing unit 105 performs calculation for convergence, and thus requires a calculation load. Therefore, the processing by the ART processing unit 105 is not executed every step, but the ART processing unit 105 is activated when the ART control unit 104 determines that the state is suitable for the category determination processing by the ART processing unit 105. To do.
  • FIG. 8 is a diagram illustrating a method of calculating the degree of abnormality.
  • a category is created in a two-dimensional space with two signals (signal X1 and signal X2) as inputs is shown.
  • normal category 1 and normal category 2 representing normality are created by the learning process.
  • the degree of abnormality is defined as the distance from the center of gravity of the closest category. In the example shown in the upper diagram of FIG.
  • the degree of abnormality calculation unit 103 calculates the degree of abnormality of the entire plant 5 that is a diagnosis target based on the distance to the input data 212 when the center of gravity of the normal category 1 is used as a reference. Also, the degree of abnormality of each signal (signal X1, signal X2) can be calculated from the positional relationship between the input data 212 and the normal category in the two-dimensional space.
  • the lower diagram of FIG. 8 shows an enlarged view of the centroid X of normal category 1 which is the closest category in the upper diagram of FIG. 8 and the plot points of the input data 212 extracted.
  • the distance difference between the respective axial directions that is, the axial direction of the signal X1 and the axial direction of the signal X2
  • the centroid X of the normal category 1 that is the closest category and the distance difference ⁇ X1 in the axial direction of the signal X1 of the input data 212 and the centroid X of the normal category 1 that is the closest category are input.
  • the abnormal contribution Rn for each signal (signal X1, signal X2) is obtained using the following equation (2). *
  • abnormal contribution R X1 of the signal X1 is determined as ⁇ X1 / ( ⁇ X1 + ⁇ X2)
  • abnormal contribution R X2 of the signal X2 is determined as ⁇ X2 / ( ⁇ X1 + ⁇ X2).
  • the abnormality degree Sn of the signal n is calculated using the following equation (3) using the abnormality contribution degree Rn.
  • Sn A ⁇ Rn (3) Therefore, the degree of abnormality S X1 of the signal X1 is (A ⁇ .DELTA.X1) obtained as / ( ⁇ X1 + ⁇ X2), abnormal degree S X2 of the signal X2 is determined as (A ⁇ ⁇ X2) / ( ⁇ X1 + ⁇ X2).
  • a value obtained by summing up the abnormalities Sn of the respective signals is equal to the abnormalities A of the entire plant 5 that is the diagnosis target.
  • FIG. 9 is a diagram showing temporal changes in the degree of abnormality.
  • the degree of abnormality is plotted on the vertical axis, the time is plotted on the horizontal axis, and the degree of abnormality Sn of each signal (signal X1, signal X2) is displayed in different colors.
  • the sum of the degree of abnormality (S X1 ) of the signal X1 and the degree of abnormality (S X2 ) of the signal X2 is the degree of abnormality A of the entire plant 5 that is the diagnosis target.
  • the degree of abnormality Sn of each signal (signal X1, signal X2) can be evaluated as a breakdown of each signal (signal X1, signal X2) with respect to the degree of abnormality A of the entire plant 5 that is the diagnosis target.
  • this display form when the value of the degree of abnormality Sn increases, it can be easily determined visually which signal n has a large deviation from the normal state.
  • FIG. 10 is a diagram illustrating a data structure of the diagnosis result database 110.
  • the diagnosis result database 110 shows the “date and time” column, the “abnormality” column indicating the abnormality degree A of the entire plant 5 to be diagnosed, and the abnormal contribution (Rn) of each signal n.
  • the “abnormality contribution (Rn)” column is stored in a table format. That is, the abnormality degree A of the entire plant 5 to be diagnosed and the abnormality contribution degree (Rn) of each signal n are stored in a time series format.
  • the (Rn) "field stores” a signal a 'of the abnormal contribution R a "0.1", the abnormal contribution R B of the "signal B", "0.5".
  • the abnormality contribution degree (Rn) of each signal n is stored.
  • the abnormality degree (Sn) of each signal n may be stored.
  • the ART control unit 104 illustrated in FIG. 1 controls the execution timing of the ART processing unit 105 based on the abnormality degree data output from the abnormality degree calculation unit 103.
  • the ART processing unit 105 newly creates a category by processing by ART, the efficiency is improved if a new category (abnormal category) is created when data outside the existing category (normal category) is accumulated.
  • FIG. 11 is an explanatory diagram of the concept of clustering by ART. In particular, as shown in FIG. 11, there are many cases where there are a large number of positions in a two-dimensional space. Based on this, the ART control unit 104 activates the ART processing unit 105 and executes processing by ART when any of the following conditions is satisfied.
  • Condition 1 The number of times that the degree of abnormality A of the entire plant 5 to be diagnosed exceeds the threshold is a certain number or more
  • Condition 2 The number of times that the degree of abnormality Sn of the signal n exceeds the threshold is a certain number or more (counted for each signal) 3: More than a certain number of times selected as the nearest normal category (counted by category)
  • the threshold value in each condition is, for example, the calculation result of the abnormality degree A of the whole plant 5 to be diagnosed or the abnormality degree Sn of the signal n in consideration of the data fluctuation (characteristics that the data has) during the learning process described above. Is set as appropriate.
  • the abnormality degree A of the whole plant 5 to be diagnosed, the abnormality degree Sn of the signal n, and the nearest normal category are all parameters calculated by the abnormality degree calculation unit 103.
  • the ART control unit 104 fetches the output of the abnormality degree calculation unit 103 via the internal bus 113 and counts the number of times, thereby determining the execution timing (startup timing) of the ART processing unit 105.
  • normality / abnormality is determined by the above-described processing by ART.
  • FIG. 12 is an example of a display screen that displays a temporal change in the degree of abnormality and a temporal change in the category number.
  • the display screen 410 of the display device that constitutes the input / output device 4 is output from the first display area 411 that displays the temporal change in the degree of abnormality Sn of the signal n and the ART processing unit 105. It is composed of a second display area 412 for displaying the time change of the category number.
  • the horizontal axis represents the date and time
  • the vertical axis represents the degree of abnormality
  • the degree of abnormality S A of signal A the degree of abnormality S B of signal B
  • the degree of abnormality of signal C S C
  • S C displays the temporal change of the abnormality degree S D of the signal D in different colors.
  • the sum of the abnormality degree S A of the signal A , the abnormality degree S B of the signal B , the abnormality degree S C of the signal C , and the abnormality degree S D of the signal D is the abnormality degree A of the entire plant 5 to be diagnosed.
  • the user grasps the change in the degree of abnormality A of the entire plant 5 to be diagnosed and the breakdown of the degree of abnormality Sn for each signal n visually.
  • the abnormality degree A of the whole plant 5 to be diagnosed has increased rapidly from around 2:00 on June 1, but it can be seen that the influence of the signal B is large.
  • the horizontal axis indicates the date and time
  • the vertical axis indicates the category number
  • the time change of the category number output from the above-described ART processing unit 105 is the normal category.
  • the abnormal category is displayed in an identifiable manner.
  • category numbers 1 to 4 are normal categories
  • category numbers exceeding that (category numbers 5 to 7) indicate abnormal categories.
  • FIG. 13 shows a state where the category determination process by the ART processing unit 105 is executed and the number of plot data of the category number is increased as compared with FIG.
  • the temporal change in the degree of abnormality displayed in the first display area 411 is the same as that in FIG.
  • the time change of the category number displayed in the second display area 412 the number of plot data having the category number of 7 is increased by 3 points as compared with FIG.
  • the time variation of the abnormality degree A of the entire plant 5 that is the diagnosis target displayed in the first display area 411 and the abnormality degree Sn for each signal n are calculated at regular time intervals and periodically displayed on the screen.
  • the time change of the category number displayed in the second display area 412 displays the data accumulated from the previous execution when the ART processing unit 105 executes.
  • FIG. 14 shows an example of a display screen when registering an abnormal event.
  • the display screen 410 of the display device constituting the input / output device 4 constitutes the first display area 411 for displaying the time change of the category number output from the ART processing unit 105 and the input / output device 4.
  • the time change of the category number displayed in the first display area 411 is the same as the display content displayed in the second display area 412 shown in FIG.
  • the input area 413 is an area that allows the user to input an abnormal event, and includes an area for selecting and inputting a “category number” and an area for inputting an abnormal event in a text format.
  • the category numbers 5 to 7 are input devices that constitute the input / output device 4 by the user.
  • the state of selection input via is shown.
  • “pump abnormality” is entered in the area where the abnormal event is entered in text format.
  • the mouse pointer is positioned on the registration button 414 by the operation of the mouse as an input device by the user, and when the mouse is clicked, the registration button 414 becomes active.
  • the “category number” column corresponds to “5”, “6”, and “7” in the abnormal event database 111 illustrated in FIG. 7 described above via the input / output control unit 107 and the internal bus 113.
  • “Pump abnormality” is stored in the “abnormal event” column.
  • the area for selecting and inputting “category number” may be configured such that the user selects and inputs a desired category number from a pull-down menu.
  • FIG. 15 is an example of a display screen that displays a time change of the category number and an abnormal event as a diagnosis result.
  • the example shown in FIG. 15 shows an example of a display screen on “July 15”, which is one month or more after “June 1” when “abnormal event registration” is performed by the above-described user.
  • the category number deviates from the normal category at “July 15 12:30”, and the ART processing unit 105 sets “5” as the category number. Is shown.
  • FIG. 15 shows an example of a display screen that displays a time change of the category number and an abnormal event as a diagnosis result.
  • the example shown in FIG. 15 shows an example of a display screen on “July 15”, which is one month or more after “June 1” when “abnormal event registration” is performed by the above-described user.
  • the category number deviates from the normal category at “July 15 12:30”, and the ART processing unit 105 sets “5” as the category number. Is
  • the plant abnormality diagnosis device 2 constituting the plant abnormality diagnosis system 1 is received from the plant control device 3 and installed in various devices and pipes constituting the plant 5 to be diagnosed. Based on a plurality of measurement data (signals) from the sensor, the abnormality degree A of the entire plant 5 and the abnormality degree Sn of each signal n are calculated. Then, the category determination process is executed by the process using ART according to the abnormality degree A of the whole plant 5 and / or the tendency of the abnormality degree Sn of each signal n.
  • the present embodiment it is possible to provide a plant abnormality diagnosis apparatus and a plant abnormality diagnosis system that can determine an abnormality in the entire plant at an early stage in the abnormality diagnosis of a plant using ART.
  • the category determination process by ART is not performed at regular time intervals, but the determination process is executed according to the tendency of the degree of abnormality or when data with a high degree of abnormality is accumulated.
  • the degree of abnormality for each signal is also displayed on the screen of the display device, so it is easy to visually determine which signal deviates from the normal category. it can.
  • the abnormality level of the entire diagnosis target plant described above can be detected for abnormalities similar to those that have occurred in the past.
  • information such as an abnormal event is provided to the user, which can be used for examination of the abnormality response.
  • Input pattern holding unit (F1 layer), 312 ..Category output unit (F2 layer), 313 ... Category validity determination unit (Orienting Subsystem), 314 ... Memory, 410 ... Display screen, 411 ... First display region, 412 ... Second display area, 413... Input area, 414... Registration button, 415.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

ARTを用いたプラントの異常診断において、プラント全体での異常を早期に判定し得るプラント異常診断装置及びプラント異常診断システムを提供する。プラント異常診断装置2は、診断対象のプラント5に設置される各種センサからの複数の計測データに対し、適応共鳴理論(Adaptive Resonance Theory:ART)により正常時のデータで判別したカテゴリーに属するデータと上記複数の計測データとの空間上の距離の差分に基づき、診断対象のプラント5全体の異常度Aを求める異常度算出部103を備える。

Description

プラント異常診断装置及びプラント異常診断システム
 本発明は、クラスタリング技術の1つである適応共鳴理論(Adaptive Resonance Theory:ART)を用いたプラントの異常診断装置及びプラント異常診断システムに関する。
 アラームが出力される前に、プラントの異常状態を早期に検知することは、運転信頼性を向上する点で有効である。早期にプラントの異常を検知する方法としては、予めプラントの正常時のデータパターンを学習しておき、これと計測データのパターンを比較することにより状態変化を検知することが有効である。このようなデータ解析手法の一つとして適応共鳴理論(Adaptive Resonance Theory:ART、以下ARTと称する)が挙げられる。ARTとはクラスタリング解析手法の1つであり、入力されたデータを、複数のカテゴリー(クラスタ)に分類する方法である。カテゴリーとは、類似性を持つデータのまとまりを表す。一般的なクラスタリング解析手法では、複数の入力データを多次元空間上にマッピングし、空間上の距離からデータのまとまりを定義する。ARTでは、入力データに対してカテゴリーの番号を割り当てる。同じカテゴリー番号となった入力データは、類似性が高いことを示す。
 ARTを用いてプラントの異常診断を行う場合は、先ず、正常時のプラントデータをARTの入力として設定し、カテゴリー番号を出力する。このとき出力されたカテゴリー番号は正常状態として定義される。以上の処理を正常状態の「学習」と呼ぶ。正常時でもプラントの運転条件が異なれば、それぞれに応じたカテゴリー番号が定義される。このため、正常を示すカテゴリー番号は複数存在する。 
 次に、プラントの計測データをARTの入力として設定し、カテゴリー番号を出力する。この処理を「診断」と呼ぶ。診断処理で出力されたカテゴリー番号が、学習処理で出力されたカテゴリー番号に含まれていれば正常と判断する。一方、学習処理では出力されなかったカテゴリー番号が新規に出力された場合、この入力データは正常データには含まれないデータパターンであり、異常と判断する。
 このようなARTを用いてプラントの異常診断を行うものとして、例えば、特許文献1に記載される技術が知られている。特許文献1に開示されるプラント監視支援システムでは、淡水化プラントの計測データを用いて、ARTにより判定したカテゴリーの情報を基に異常を検知する、更に、異常程度の評価と、異常状態への寄与率の高い信号の選定も行っている。異常程度を評価するために、カテゴリーの大きさを調整するための調整パラメータρを利用している。調整パラメータρを大きくするほどカテゴリーは小さくなり、入力データを細かく分類することができる。従って、正常のデータパターンと僅かに異なる場合でも、新規カテゴリーとして判定されるため、異常に対する感度を高くできる。しかし、入力データに含まれる通常の変動に対しても異常と判定し易くなるため、誤検知が増える。一方、調整パラメータρを小さくするほどカテゴリーは大きくなり、データの分類が粗くなる。従って、異常に対する感度は低くなるが、誤検知を低減することができる。
 調整パラメータρの値を変えた複数の条件で、ARTにより正常/異常を判定し、異常と判定したρの値に応じて異常程度を判定する。例えば、ρが小さい場合、すなわち、異常に対する感度が低い条件でも、ARTが異常と判定したのであれば、正常との差が非常に大きくなっていると判断できる。これを利用し、「大」、「中」、「小」などの警報レベルを評価している。
 また、特許文献1では、異常状態への寄与率の高い信号を選定するために、入力データを多次元空間にマッピングしたときの位置関係を利用している。診断処理において、入力データが正常を示すカテゴリーに含まれなかった場合、空間上での入力データと、それに最も近いカテゴリーの重心との位置関係に対して、各軸(各信号)の方向への距離差から各信号の寄与率を求めている。
特開2016―81482号公報
 しかしながら、特許文献1に記載される構成では、淡水化プラントの計測データ、すなわち、淡水化プラントに設置される各センサによる計測データが取得される毎にカテゴリー判定処理し、各センサからの計測データ毎(入力信号毎)に寄与率を算出するものであって、プラント全体での異常を早期に判定する点については、何ら考慮されていない。換言すれば、特許文献1に記載される構成では、各センサによる計測データが取得される毎にARTによるカテゴリー判定処理を行うものである。カテゴリー判定処理は収束計算を伴うため、処理に時間を要し、異常を検知するまでに時間の遅れが生じ得る、また、突発的なプラント全体での異常を見落とすことが危惧される。
 そこで、本発明は、ARTを用いたプラントの異常診断において、プラント全体での異常を早期に判定し得るプラント異常診断装置及びプラント異常診断システムを提供する。
 上記課題を解決するため、本発明のプラント異常診断装置は、診断対象のプラントに設置される各種センサからの複数の計測データに対し、適応共鳴理論により正常時のデータで判別したカテゴリーに属するデータと前記複数の計測データとの空間上の距離の差分に基づき、前記診断対象のプラント全体の異常度を求める異常度算出部を備えることを特徴とする。 
 また、本発明のプラント異常診断システムは、診断対象のプラントの異常を診断するプラント異常診断装置と、前記診断断対象のプラントのプロセス制御及び前記断対象のプラントに設置される各種センサからの複数の計測データを前記プラント異常診断装置に送信するプラント制御装置と、入力部及び表示部を有する入出力装置と、を備え、前記プラント異常診断装置は、前記プラント制御装置より送信される各種センサからの複数の計測データに対し、適応共鳴理論により正常時のデータで判別したカテゴリーに属するデータと前記複数の計測データとの空間上の距離の差分に基づき、前記診断対象のプラント全体の異常度を求める異常度算出部を有することを特徴とする。
 本発明によれば、ARTを用いたプラントの異常診断において、プラント全体での異常を早期に判定し得るプラント異常診断装置及びプラント異常診断システムを提供することが可能となる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の一実施例に係る実施例1のプラント異常診断システムの全体概略構成を示す機能ブロック図である。 クラスタリングの概念の説明図である。 図1に示すART処理部の主要部を示す構成図である。 図1に示すカテゴリーデータベースのデータ構造を示す図である。 図1に示すプラントデータベースのデータ構造を示す図である。 図1に示す診断結果データベースのデータ構造を示す図である。 図1に示す異常事象データベースのデータ構造を示す図である。 異常度の算出方法を示す図である。 異常度の時間変化を示す図である。 診断結果データベースのデータ構造を示す図である。 ARTによるクラスタリングの概念の説明図である。 異常度の時間変化及びカテゴリー番号の時間変化を表示する表示画面例である。 異常度の時間変化及びカテゴリー番号の時間変化を表示する表示画面例である。 異常事象の登録時における表示画面例である。 カテゴリー番号の時間変化及び診断結果としての異常事象を表示する表示画面例である。
 本発明の実施形態に係るプラント異常診断装置及びプラント異常診断システムが適用されるプラントは、海水淡水化プラント、下水処理プラント、或は上水処理プラントなどの水処理プラント、発電プラント、化学プラントなどの各種産業用プラントを含む。 
 以下、図面を用いて本発明の実施例について説明する。
 図1は、本発明の一実施例に係る実施例1のプラント異常診断システムの全体概略構成を示す機能ブロック図である。図1に示すように、プラント異常診断システム1は、プラント5の異常を診断するプラント異常診断装置2、プラント5の監視及びプロセス制御を行うプラント制御装置3、及び、入力部と出力部を備える入出力装置4から構成される。
 入出力装置4は、例えば、キーボード又はマウスなどの入力装置を有し、ユーザがプラント異常診断装置2に対しデータを入力及び/又は登録する際に用いられる。また、入出力装置4は、例えば、液晶ディスプレイ(LCD)又は有機ELディスプレイなどの表示装置、及びプリンタなどの印字出力装置を有する出力部であり、プラント異常診断装置2による診断対象のプラント5の異常の診断結果、或はプラント異常診断装置2のユーザのための対話的な処理のための画面を表示する。
 プラント制御装置3は、例えば、制御盤又はSCADA(Supervisory Control And Data Acquisition)にて実現される。プラント制御装置3としてSCADAを用いた場合、SCADAは、少なくとも、プラント5を構成する各種機器のプロセス制御を行うプログラマブルロジックコントローラ(PLC)と、プラント5を構成する各種機器及び配管などに設置される、流量計、圧力計、温度計などの各種センサからの計測データを収集し、収集された各種センサからの計測データをプラント異常診断装置2へ送信する通信機能を備える。
 プラント異常診断装置2は、データ取得部101、データ前処理部102、異常度算出部103、ART制御部104、ART処理部105、異常判定部106、入出力制御部107、プラントデータベース108、カテゴリーデータベース109、診断結果データベース110、異常事象データベース111、及びプラント制御装置3から送信される各種センサからの計測データを受信する通信I/F112を備え、これらは相互に内部バス113にてアクセス可能に接続されている。プラント異常診断装置2を構成する、データ取得部101、データ前処理部102、異常度算出部103、ART制御部104、ART処理部105、異常判定部106、及び入出力制御部107は、例えば、図示しないCPU(Central Processing Unit)などのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。
 データ取得部101は、通信I/F112を介して受信された、プラント制御装置3からの各種センサによる計測データを、内部バス113を介して取得し、例えば、A/D変換処理、平滑化処理(ノイズ除去)、或いは正規化処理などを実行する。また、データ取得部101は、上述の処理後の各種センサによる計測データを、内部バス113を介してプラントデータベース108へ転送する。これにより、プラントデータベース108は、各種センサによる計測データであるプラント5のデータを時系列に格納する。 
 データ前処理部102は、内部バス113を介してプラントデータベース108へアクセスし、プラントデータベース108に格納されたデータから、後述するARTによる診断処理の入力となるデータを取り込み、さらに、ART処理の入力となるように、データを0から1の間に規格化する。またデータ前処理部102は、内部バス113を介して異常度算出部103へ規格化後のデータを転送する。
 異常度算出部103は、データ前処理部102より内部バス113を介して転送される規格化後のデータを取り込み、診断対象であるプラント5全体での異常度、及び各信号の異常寄与度を算出する。なお、ここで各信号とは、規格化後のデータに含まれる上述の各種センサによる計測データに対応する。 
 ART制御部104は、内部バス113を介して異常度算出部103にて算出された異常度を取り込み、異常度の出力傾向に応じて、ARTによる処理の実行タイミングを制御する。
 ART処理部105は、ARTによる処理を実行する。異常判定部106は、内部バス113を介してART処理部105の出力結果であるカテゴリーの情報を取り込み、当該カテゴリーの情報に基づき、正常又は異常の判定を行う。また、異常判定部106は、内部バス113を介して正常又は異常の判定結果を診断結果データベース110へ転送する。これにより、診断結果データベース110は、異常判定部106より内部バス113を介して転送される正常又は異常の判定結果を、プラント5の診断結果として格納する。  カテゴリーデータベース109は、異常度算出部103及び異常判定部106の処理で使用するカテゴリー毎の特性データを格納している。
 プラント異常診断装置2では、上述のようにARTを、診断対象であるプラント5の診断処理に用いる。そこで先ず、ART処理部105が実行するARTによる処理、異常判定部106が実行するART処理結果の判定、及び診断結果の診断結果データベース110の出力処理について説明する。
 ARTはクラスタリング手法の一つである。図2にクラスタリングの概念の説明図示す。図2の上図は、2種類の信号(信号X1、信号X2)の値を2次元空間にプロットした状態、すなわち、これら2つの信号(信号X1、信号X2)の相関関係を表している。図2の上図に示すように、横軸である信号X1及び縦軸である信号X2は、データ前処理部102より各信号(データ)が0から1の間に規格化されている。 
 クラスタリングでは、図2の上図に示すように空間上にプロットされたデータに対し、相互に近い関係にあるデータをまとめて、グループ(クラスタ)を定義する。図2の上図に示す例では、丸にて示される210a及び210bがそれぞれ1つのグループを表している。ARTでは、各グループをカテゴリーと呼び、カテゴリー210a及びカテゴリー210bにそれぞれ異なるカテゴリー番号を割り当て識別可能としている。従って、ARTの出力は、入力データに対して割り当てたカテゴリー番号となる。同じカテゴリー番号が割り当てられたデータは類似の傾向にあることを表す。また、図2の上図に示す例では、2次元の場合、すなわち、2つの信号(信号X1、信号X2)を入力とした場合を示しているが、これは説明を解り易くするためである。実際のプラント5の異常診断では、多数の信号が入力として設定され、多次元空間の中でクラスタリングの処理を行う。
 ARTによりプラント5の異常診断を行う場合、診断処理の前に、先ず、正常として定義されたプラントデータ(上述の各種センサによる計測データ)を入力としてART処理部105によるカテゴリーの判定処理を行う。この処理を学習と呼ぶ。学習処理で出力されたカテゴリー番号は正常を表す。次に、診断用のプラントデータをART処理部105の入力に設定してカテゴリーの判定処理を行い、異常判定部106にてART処理部105から出力されるカテゴリーに基づき正常/異常の判定処理を行う。図2の下図に示すように、入力データ211が、正常と定義されているカテゴリー210a及びカテゴリー210bを外れた場合、プラント5は正常時の特性とは異なる状態にあり、異常と判断できる。ARTによる処理では、既存カテゴリーに該当しないデータが入力されると、新規にカテゴリーを作成して番号を割り当てる。すなわち、ART処理部105が判定したカテゴリー番号が、学習時におけるカテゴリー番号とは異なるとき、異常判定部106はプラント5が異常状態にあると判定する。なお、プラント5が新設のプラントである場合、上述の学習処理はプラント5の試運転時に行われる。また、既設のプラント5にプラント異常診断装置2を新たに組み込む場合には、過去の運転実績データ(プラントデータ)を用いて学習すれば良い。
 次に、ART処理部105によるクラスタリング処理の詳細を説明する。図3は、図1に示すART処理部105の主要部を示す構成図である。 
 図3に示すように、ART処理部105は、少なくとも、正規化・ノイズ除去部(F0レイヤー)310、入力パターン保持部(F1レイヤー)311、カテゴリー出力部(F2レイヤー)312、カテゴリー妥当性判定部(Orienting Subsystem)313、及びメモリー314から構成されている。ART処理部105により実行されるアルゴリズム(ARTによる処理)は、以下のステップ1~ステップ6となる。
 ステップ1:正規化・ノイズ除去部(F0レイヤー)310では、入力ベクトルの大きさが1になるように正規化され、また、ノイズが除去される。
 ステップ2:入力パターン保持部(F1レイヤー)311では、漸化式(差分方程式とも称される)を用いてデータの短期的な記憶を行う。
 ステップ3:カテゴリー出力部(F2レイヤー)312では、入力された入力データとメモリー314に記憶されている重み係数との比較により、カテゴリーの候補が選択される。
 ステップ4:カテゴリー妥当性判定部(Orienting Subsystem)313では、カテゴリー出力部(F2レイヤー)312で選択したカテゴリーの妥当性を評価する。妥当と判定されれば、入力データはそのカテゴリーに分類され、ステップ6に進む。妥当と判定されなければ、そのカテゴリーはリセット(カテゴリーの候補から除外)され、再びステップ2から候補のカテゴリー番号の選択処理を行う。
 ステップ5:ステップ4で、全ての既存のカテゴリーがリセット(カテゴリーの候補から除外)、すなわち、妥当なカテゴリーが存在しないと判定されると、新規カテゴリーを作成する。このとき、新規カテゴリーに対応する重み係数も新規に定義する。新規に定義された重み係数はメモリー314に記憶される。
 ステップ6:入力データがカテゴリーに分類されると、該当するカテゴリーに対応する重み係数を更新する。重み係数の更新は以下の式(1)にて実行される。 
 WJ(new)=Kw×p+(1-Kw)×WJ(old)・・・(1)
 ここで、WJ(new)はカテゴリーJに対応する重み係数、WJ(old)は過去の重み係数、pは入力データ(または、入力データから派生したデータ)、Kwは学習率パラメータであり、入力データを新しい重み係数に反映させる度合いを決定する。
 以上がART処理部105によるクラスタリング処理の流れである。ART処理部105は、この処理により、入力データに応じたカテゴリー番号を出力する。 
 ART処理部105によるクラスタリング処理の特徴はステップ5の処理にある。ステップ5の処理により、入力データが既存のカテゴリー(クラスタ)と異なる傾向をもつ場合、既存カテゴリーはそのままで、新しいカテゴリーを新規に作成できる。このため、過去に学習したカテゴリーを保存しながら、新たなデータの傾向をもつカテゴリーを作成することが可能となる。
 上述のART処理部105によるクラスタリング処理により、入力データに対応するカテゴリー番号が出力され、異常判定部106において、ART処理部105が出力したカテゴリー番号に対して、正常/異常の判定が行われる。
 プラント異常診断装置2では、診断処理を行う前に予め正常データを用いて学習処理を実行する。学習処理で定義された正常カテゴリーの情報は、カテゴリーデータベース109に格納されている。図4に、図1に示すカテゴリーデータベース109のデータ構造を示す。図4に示すように、カテゴリーデータベース109は、「カテゴリー番号」欄、正常か異常かを示す「正常/異常」欄、カテゴリー番号毎のデータ総数を示す「データ数」欄、及びプラント5を構成する各種機器及び配管などに設置される各種センサからの計測データである信号毎の平均値を示す「入力データ平均値」欄をテーブル形式にて格納している。すなわち、カテゴリー番号毎に、正常/異常を0/1で表したフラグ、該当する入力データ数、入力データの平均値が格納されている。例えば、「カテゴリー番号」が「0」については、「正常/異常」欄には学習処理で定義された正常カテゴリーであることを表す「0」、「データ数」欄には「40」、及び「入力データ平均値」欄には「信号A」の平均値である「0.6」、「信号B」の平均値である「0.3」が格納されている。また、「カテゴリー番号」が「5」については、「正常/異常」欄には学習処理で定義された正常カテゴリーに該当せず異常であることを表す「1」、「データ数」欄には「4」、及び「入力データ平均値」欄には「信号A」の平均値である「0.4」、「信号B」の平均値である「0.8」が格納されている。
 ここでプラントデータベース108について説明する。図5は、図1に示すプラントデータベース108のデータ構造を示す図である。図5においては、プラント5の一例として発電プラントの場合を示している。図5に示すように、プラントデータベース108は、「日時」欄、「発電機出力(MW)(信号A)」欄、及び「燃料流量(kg/s)(信号B)」欄をテーブル形式にて格納している。なお、この他に、図示しないが例えば、「ガス温度」欄、「ガス流量」欄など各種センサにより計測されるデータ項目欄が複数設けられている。図5に示すように、例えば、「日時」が「2016年6月1日 00:00」では、「発電機出力(MW)(信号A)」欄には「1000」、及び「燃料流量(kg/s)(信号B)」欄には「100」が格納されている。また、「日時」が「2016年6月1日 01:30」では、「発電機出力(MW)(信号A)」欄には「950」、及び「燃料流量(kg/s)(信号B)」欄には「95」が格納されている。
 一方、診断処理時においては、上述の異常判定部106が、ART処理部105が出力したカテゴリー番号に対して、カテゴリーデータベース109に格納されたデータに基づき正常/異常を判定する。すなわち、異常判定部106は、内部バス113を介してART処理部105から取り込んだカテゴリー番号を検索キーとして用い、カテゴリーデータベース109を検索し、正常カテゴリーとして登録されているか否かによって正常/異常の判断ができる。異常判定部106は、カテゴリーデータベース109内に正常として登録されていないカテゴリー番号は異常と判断し、この情報をカテゴリーデータベース109に格納する。上述の図4に示す例では、「カテゴリー番号」が「5」が異常として判断されたケースである。このとき、「正常/異常」の欄には「1」を格納する。また、異常判定部106は、カテゴリー毎の入力データの平均値を各信号について計算し、内部バス113を介してカテゴリーデータベース109に出力する。また、診断処理時において、ART処理部105により「カテゴリー番号」が「5」と判定された場合には、異常判定部106は、カテゴリーデータベース109に格納されている「カテゴリー番号」が「5」のデータに対して、「データ数」欄の値を増やすと共に「入力データ平均値」を更新する。
 また、異常判定部106は、内部バス113を介してカテゴリーの判定結果を時系列に診断結果データベース110に格納する。図6は、図1に示す診断結果データベース110のデータ構造を示す図である。図6に示すように、診断結果データベース110は、「日時」欄、「正常/異常」欄、及び「カテゴリー番号」欄をテーブル形式にて格納している。例えば、日時」が「2016年6月1日 00:00」では、「正常/異常」欄には異常判定部106により正常と判定された結果として「0」、及び「カテゴリー番号」欄にはART処理部105が出力したカテゴリー番号である「0」が格納されている。また、「日時」が「2016年6月1日 01:30」では、「正常/異常」欄には異常判定部106により異常と判定された結果として「1」、及び「カテゴリー番号」欄にはART処理部105が出力したカテゴリー番号である「10」が格納されている。
 プラント異常診断装置2を構成する入出力制御部107(図1)は、上述の診断結果データベース110及びカテゴリーデータベース109に格納されるデータを入出力装置4へ診断結果として出力する。入出力装置4を構成する表示装置の表示形態(表示画面例)については後述する。また、入出力制御部107は、ユーザが入出力装置4を介して入力する異常事象に関するデータを取り込む。プラント異常診断システム1がプラント5に異常が発生していることを出力し、後に、その異常原因が判明した場合、これをプラント異常診断システム1に登録することができる。ユーザが入出力装置4を介して入力した異常原因のデータは、入出力制御部107及び内部バス113を介して、異常事象データベース111に格納される。
 図7は、図1に示す異常事象データベース111のデータ構造を示す図である。図7に示すように、異常事象データベース111は、「カテゴリー番号」欄、及び「異常事象」欄をテーブル形式にて格納している。すなわち、異常事象データベース111には、ユーザにより入出力装置4を介して登録された異常事象に関するテキスト形式のデータが、ART処理部105が出力したカテゴリー番号と対応付けて格納される。例えば、「カテゴリー番号」が「5」では、「異常事象」欄に「ポンプ故障」が格納されており、「カテゴリー番号」が「10」では、「異常事象」欄に「熱交換器 伝熱効率低下」が格納されている。入出力制御部107は、上述した異常判定部106が異常と判定した場合、内部バス113を介して異常事象データベース111へアクセスし、異常事象データベース111に格納されている過去に発生した異常事象と同じものがないかを検索する。検索にはカテゴリー番号を検索キーとして用いる。異常事象データベース111内に、ART処理部105が出力したカテゴリー番号と同じものが存在する場合、該当する異常事象のデータ(テキスト形式のデータ)を読み出し、入出力装置4へ出力する。この処理によって、プラント異常診断システム1は、プラント5の正常/異常を判定するのみならず、過去に発生した異常事象と同じ場合には、その情報(異常事象の内容)も含めてユーザに提供することができる。
 以上が、ARTによる診断処理の流れであるが、本実施例のプラント異常診断システム1では、ART処理部105が実行するARTによる上述の処理、及び、異常判定部106によるプラントの診断処理を一定の時間間隔で周期的に実行するのではなく、後述する異常度算出部103が算出した異常度が実行条件を満たした場合にのみ処理を行う。ART処理部105によるカテゴリーの判定処理は収束計算を行うため計算負荷が必要になる。このため、ART処理部105による処理は毎ステップ実行するのではなく、ART制御部104が、ART処理部105によるカテゴリーの判定処理に適した状態になったと判定した時点でART処理部105を起動する。
 先ず、異常度算出部103による異常度の算出方法について説明する。図8は、異常度の算出方法を示す図である。図8の上図では説明を解り易くするため、2つの信号(信号X1、信号X2)を入力として、2次元空間上にカテゴリーを作成した場合を表している。ここでは、学習処理によって正常を表す正常カテゴリー1及び正常カテゴリー2が作成された場合を想定している。次に、診断処理時において入力データ212が通信I/F112を介して受信された場合、異常度は最近接カテゴリーの重心からの距離として定義する。図8の上図に示す例では、正常カテゴリー2よりも正常カテゴリー1の方が、2次元空間上にマッピングされた入力データ212に近い。このため、異常度算出部103は、正常カテゴリー1の重心を基準としたときの入力データ212までの距離で、診断対象であるプラント5全体の異常度を算出する。また、2次元空間上での入力データ212と正常カテゴリーとの位置関係から、各信号(信号X1、信号X2)の異常度も算出できる。
 図8の下図は、図8の上図における最近接カテゴリーである正常カテゴリー1の重心Xと入力データ212のプロット点を抜き出し拡大したものを示している。このとき、各軸方向、すなわち、信号X1の軸方向及び信号X2の軸方向それぞれの距離差が、各信号(信号X1、信号X2)の正常状態との差を表す。従って、図8の下図においては、最近接カテゴリーである正常カテゴリー1の重心Xと入力データ212の信号X1の軸方向における距離差ΔX1、及び、最近接カテゴリーである正常カテゴリー1の重心Xと入力データ212の信号X2の軸方向における距離差ΔX2に基づき、以下の式(2)を用いて信号毎(信号X1、信号X2)の異常寄与度Rnを求める。 
Figure JPOXMLDOC01-appb-M000001
 よって、信号X1の異常寄与度RX1は、ΔX1/(ΔX1+ΔX2)として求められ、信号X2の異常寄与度RX2は、ΔX2/(ΔX1+ΔX2)として求められる。
 また、上述の診断対象であるプラント5全体の異常度をAとしたとき、信号nの異常度Snは、異常寄与度Rnを用いて以下の式(3)を用いて算出する。 
 Sn=A×Rn  ・・・(3) 
 よって、信号X1の異常度SX1は、(A×ΔX1)/(ΔX1+ΔX2)として求められ、信号X2の異常度SX2は、(A×ΔX2)/(ΔX1+ΔX2)として求められる。各信号の異常度Snを合計した値は、診断対象であるプラント5全体の異常度Aと等しい関係にある。従って、異常度算出部103によって算出した異常度は、図9に示すような表示形態にて表示できる。図9は、異常度の時間変化を示す図であり、縦軸に異常度を取り、横軸に時間を取り、各信号(信号X1、信号X2)の異常度Snを色分けして表示している。上述のとおり信号X1の異常度(SX1)と信号X2の異常度(SX2)の合計が、診断対象であるプラント5全体の異常度Aとなる。すなわち、各信号(信号X1、信号X2)の異常度Snは、診断対象であるプラント5全体の異常度Aに対する各信号(信号X1、信号X2)の内訳として評価できる。この表示形態であれば、異常度Snの値が大きくなったとき、どの信号nが正常状態からの逸脱が大きいのかを視覚的に容易に判断できる。
 以上のように、異常度算出部103は、診断処理時において通信I/F112を介して受信される入力データに対して異常度を算出し、これらの値を診断結果データベース110に格納する。図10は、診断結果データベース110のデータ構造を示す図である。図10に示すように、診断結果データベース110は、「日時」欄、診断対象であるプラント5全体の異常度Aを示す「異常度」欄、及び各信号nの異常寄与度(Rn)を示す「異常寄与度(Rn)」欄をテーブル形式にて格納している。すなわち、診断対象であるプラント5全体の異常度A及び各信号nの異常寄与度(Rn)が時系列形式にて格納される。
例えば、「日時」が「2016年6月1日 00:00」では、診断対象であるプラント5全体の異常度Aを示す「異常度」欄には「0.01」、及び「異常寄与度(Rn)」欄には「信号A」の異常寄与度Rである「0.0」、「信号B」の異常寄与度Rである「0.0」が格納されている。また、「日時」が「2016年6月1日 01:30」では、診断対象であるプラント5全体の異常度Aを示す「異常度」欄には「0.05」、及び「異常寄与度(Rn)」欄には「信号A」の異常寄与度Rである「0.1」、「信号B」の異常寄与度Rである「0.5」が格納されている。なお、本実施例では、各信号nの異常寄与度(Rn)を格納する構成としたが、これに代えて、各信号nの異常度(Sn)を格納する構成としても良い。
 次に、図1に示すART制御部104が、異常度算出部103が出力した異常度のデータに基づき、ART処理部105の実行のタイミングを制御する。 
 ART処理部105が、ARTによる処理で新規にカテゴリーを作成する場合、既存カテゴリー(正常カテゴリー)外のデータが蓄積された時点で、新規カテゴリー(異常カテゴリー)を作成すれは効率が向上する。図11に、ARTによるクラスタリングの概念の説明図を示す。特に、図11に示すように、2次元空間上でまとまった位置に多数存在するケースが良い。これを踏まえ、ART制御部104は、以下に示す条件のいずれかが満たされる場合に、ART処理部105を起動し、ARTによる処理を実行させる。 
 条件1:診断対象であるプラント5全体の異常度Aが閾値を超えた回数が一定数以上  条件2:信号nの異常度Snが閾値を超えた回数が一定数以上(信号毎にカウント)  条件3:最近接の正常カテゴリーとして選ばれた回数が一定数以上(カテゴリー毎にカウント) 
 なお、各条件における閾値は、例えば、上述の学習処理時におけるデータのゆらぎ(データが有する特性)を考慮し、診断対象であるプラント5全体の異常度A又は信号nの異常度Snの算出結果に基づき、適宜設定される。
 診断対象であるプラント5全体の異常度A、信号nの異常度Sn、及び最近接の正常カテゴリーは、全て異常度算出部103で算出するパラメータである。ART制御部104は、内部バス113を介して異常度算出部103の出力を取り込み、これらの回数をカウントすることにより、ART処理部105の実行タイミング(起動タイミング)を決定する。ART処理部105の起動後の処理は、上述のARTによる処理にて正常/異常の判定が行われる。
 次に、プラント異常診断システム1を構成する入出力装置4の表示装置の表示画面について説明する。図12は、異常度の時間変化及びカテゴリー番号の時間変化を表示する表示画面例である。図12に示すように、入出力装置4を構成する表示装置の表示画面410は、信号nの異常度Snの時間変化を表示する第1表示領域411、及び、ART処理部105より出力されるカテゴリー番号の時間変化を表示する第2表示領域412から構成される。
 図12に示す例では、第1表示領域411に、横軸に日時を取り、縦軸に異常度を取り、信号Aの異常度S、信号Bの異常度S、信号Cの異常度S、及び信号Dの異常度Sの時間変化をそれぞれ異なる色にて表示する。信号Aの異常度S、信号Bの異常度S、信号Cの異常度S、及び信号Dの異常度Sの合計が、診断対象であるプラント5全体の異常度Aであることから、診断対象であるプラント5全体の異常度Aの時間変化及び信号n毎の異常度Snの内訳が、ユーザにとって視覚的に容易に把握するが可能となる。図12に示す例では、6月1日の2:00頃から診断対象であるプラント5全体の異常度Aが急増しているが、これは信号Bの影響が大きいことが分かる。
 また、図12に示す例では、第2表示領域412に、横軸に日時を取り、縦軸にカテゴリー番号を取り、上述のART処理部105より出力されるカテゴリー番号の時間変化が正常カテゴリーと異常カテゴリーとを識別可能に表示する。図12に示す例では、カテゴリー番号が1~4までが正常カテゴリーであり、それを超えるカテゴリー番号(カテゴリー番号が5~7)は、異常カテゴリーであることを示している。
 図13は、ART処理部105によるカテゴリー判定の処理が実行され、図12と比べてカテゴリー番号のプロットデータ数が増えた状態を示している。図13に示すように、第1表示領域411に表示される異常度の時間変化は、図12と同様である。第2表示領域412に表示されるカテゴリー番号の時間変化において、図12よりも、カテゴリー番号が7のプロットデータ数が3点増えている。このように、第1表示領域411に表示される診断対象であるプラント5全体の異常度Aの時間変化及び信号n毎の異常度Snは、一定の時間間隔で算出されて画面上に定期的に更新表示されるのに対し、第2表示領域412に表示されるカテゴリー番号の時間変化はART処理部105が実行した時点で、前回の実行時から蓄積されたデータ分を表示する。
 図14は、異常事象の登録時における表示画面例である。図14に示すように、入出力装置4を構成する表示装置の表示画面410は、ART処理部105より出力されるカテゴリー番号の時間変化を表示する第1表示領域411、入出力装置4を構成する入力装置を介してユーザによる異常事象登録の入力を受け付ける入力領域413、登録ボタン414、及びキャンセルボタン415から構成される。
 図14に示すように、第1表示領域411に表示されるカテゴリー番号の時間変化は、上述の図13に示した第2表示領域412に表示される表示内容と同様である。入力領域413は、ユーザによる異常事象の入力を可能とする領域であり、「カテゴリー番号」を選択入力する領域及びテキスト形式にて異常事象を入力する領域を有する。図14に示す例では、第1表示領域411に表示されるART処理部105より出力されるカテゴリー番号の時間変化のうち、カテゴリー番号が5~7がユーザにより入出力装置4を構成する入力装置を介して選択入力された状態を示している。また、テキスト形式にて異常事象を入力する領域に「ポンプ異常」が入力された状態を示している。この画面表示状態において、ユーザによる入力装置であるマウスなどの操作によりマウスポインタが登録ボタン414上に位置付けられ、マウスがクリックされると、登録ボタン414がアクティブとなる。これにより、入出力制御部107及び内部バス113を介して、上述の図7に示した異常事象データベース111に、「カテゴリー番号」欄が「5」、「6」、及び「7」に対応する「異常事象」欄に「ポンプ異常」が格納される。なお、「カテゴリー番号」を選択入力する領域をプルダウンメニューにてユーザが所望のカテゴリー番号を選択入力する構成としても良い。
 図15は、カテゴリー番号の時間変化及び診断結果としての異常事象を表示する表示画面例である。図15に示す例では、上述のユーザにより「異常事象登録」が行われた「6月1日」から1か月以上経過した「7月15日」における表示画面例を示している。第1表示領域411に表示されるカテゴリー番号の時間変化に示されるように、「7月15日 12:30」にカテゴリー番号が正常カテゴリーから逸脱し、ART処理部105がカテゴリー番号として「5」を出力した状態を示している。図14に示したように、以前に、カテゴリー番号が「5」に対して異常事象の情報が異常事象データベース111に登録されていることから、第2表示領域412に、「異常事象」として、時刻「12:30」に発生事象として「ポンプ異常」が生じている旨、及びそのカテゴリー番号が「5」であることが表示されている。このように、ART処理部105が出力するカテゴリー番号を用いることにより、発生異常が過去に経験したものであれば、入出力制御部107が内部バス113を介して異常事象データベース111へアクセスし、異常事象データベース111にカテゴリー番号と対応付けて格納されている異常原因などの情報を、入出力装置4を構成する表示装置の画面上に表示することで、ユーザに提供することが可能となる。また、ユーザはプラント異常診断システム1が提供する異常情報を参考にしながら、対応操作や作業内容を検討できる。
 上述の通り、本実施例のプラント異常診断システム1を構成するプラント異常診断装置2は、プラント制御装置3から受信される、診断対象のプラント5を構成する各種機器及び配管などに設置される各種センサからの複数の計測データ(信号)に基づき、プラント5全体の異常度A及び各信号nの異常度Snを算出する。その後、プラント5全体の異常度A及び/又は各信号nの異常度Snの傾向に応じてARTによる処理によりカテゴリー判定処理を実行する。
 以上の通り、本実施例によれば、ARTを用いたプラントの異常診断において、プラント全体での異常を早期に判定し得るプラント異常診断装置及びプラント異常診断システムを提供することが可能となる。 
 また、本実施例によれば、ARTによるカテゴリー判定処理を一定時間間隔で行うのではなく、異常度の傾向に応じて、或は異常度の高いデータが蓄積された時点で、判定処理の実行を制御することにより、判定処理に要する計算負荷を軽減できると共に、トータルの処理時間を短縮でき、プラント全体での異常を早期に判定できる。 
 また、診断対象のプラント全体の異常度に加え、信号毎の異常度も含めて表示装置の画面上に表示することにより、いずれの信号が正常カテゴリーから逸脱しているかを視覚的に容易に把握できる。 
 また、ART処理によって判定するカテゴリーと異常事象に関する情報を対応付けて異常事象データベースに格納することにより、過去に発生した異常と同様の異常に対しては、上述の診断対象のプラント全体の異常度、信号後の異常度に加えて、異常事象などの情報も含めてユーザへ提供することにより、異常対応の検討に役立てることができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
1・・・プラント異常診断システム,2・・・プラント異常診断装置,3・・・プラント制御装置,4・・・入出力装置,5・・・プラント,101・・・データ取得部,102・・・データ前処理部,103・・・異常度算出部,104・・・ART制御部,105・・・ART処理部,106・・・異常判定部,107・・・入出力制御部,108・・・プラントデータベース,109・・・カテゴリーデータベース,110・・・診断結果データベース,111・・・異常事象データベース,112・・・通信I/F,113・・・内部バス,210a,210b・・・カテゴリー,211,212・・・入力データ,310・・・正規化・ノイズ除去部(F0レイヤー),311・・・入力パターン保持部(F1レイヤー),312・・・カテゴリー出力部(F2レイヤー),313・・・カテゴリー妥当性判定部(Orienting Subsystem),314・・・メモリー,410・・・表示画面,411・・・第1表示領域,412・・・第2表示領域,413・・・入力領域,414・・・登録ボタン,415・・・キャンセルボタン

Claims (12)

  1.  診断対象のプラントに設置される各種センサからの複数の計測データに対し、適応共鳴理論により正常時のデータで判別したカテゴリーに属するデータと前記複数の計測データとの空間上の距離の差分に基づき、前記診断対象のプラント全体の異常度を求める異常度算出部を備えることを特徴とするプラント異常診断装置。
  2.  請求項1に記載のプラント異常診断装置において、
     前記異常度算出部は、前記正常時のデータで判別したカテゴリーに属するデータと、前記複数の計測データ毎の軸方向における距離の差分に基づき、前記複数の計測データ毎の異常度を算出することを特徴とするプラント異常診断装置。
  3.  請求項2に記載のプラント異常診断装置において、
     適応共鳴理論によりカテゴリー判別処理を実行するART処理部と、
     前記ART処理部の起動タイミングを制御するART制御部を備え、
     前記ART制御部は、前記異常度算出部により求められた前記診断対象のプラント全体の異常度が、所定の閾値を超える回数が一定数以上の場合、前記ART処理部を起動することを特徴とするプラント異常診断装置。
  4.  請求項2に記載のプラント異常診断装置において、
     適応共鳴理論によりカテゴリー判別処理を実行するART処理部と、
     前記ART処理部の起動タイミングを制御するART制御部を備え、
     前記ART制御部は、前記異常度算出部により求められた前記複数の計測データ毎の異常度が、所定の閾値を超える回数が一定数以上の場合、前記ART処理部を起動することを特徴とするプラント異常診断装置。
  5.  請求項2に記載のプラント異常診断装置において、
     適応共鳴理論によりカテゴリー判別処理を実行するART処理部と、
     前記ART処理部の起動タイミングを制御するART制御部を備え、
     前記ART制御部は、空間上で前記複数の計測データとの距離が最も近い正常カテゴリーとして選ばれた回数が一定数以上の場合、前記ART処理部を起動することを特徴とするプラント異常診断装置。
  6.  診断対象のプラントの異常を診断するプラント異常診断装置と、
     前記診断対象のプラントのプロセス制御及び前記診断対象のプラントに設置される各種センサからの複数の計測データを前記プラント異常診断装置に送信するプラント制御装置と、
     入力部及び表示部を有する入出力装置と、を備え、
     前記プラント異常診断装置は、前記プラント制御装置より送信される各種センサからの複数の計測データに対し、適応共鳴理論により正常時のデータで判別したカテゴリーに属するデータと前記複数の計測データとの空間上の距離の差分に基づき、前記診断対象のプラント全体の異常度を求める異常度算出部を有することを特徴とするプラント異常診断システム。
  7.  請求項6に記載のプラント異常診断システムにおいて、
     前記異常度算出部は、前記正常時のデータで判別したカテゴリーに属するデータと、前記複数の計測データ毎の軸方向における距離の差分に基づき、前記複数の計測データ毎の異常度を算出することを特徴とするプラント異常診断システム。
  8.  請求項7に記載のプラント異常診断システムにおいて、
     前記プラント異常診断装置は、
     適応共鳴理論によりカテゴリー判別処理を実行するART処理部と、
     前記ART処理部の起動タイミングを制御するART制御部を備え、
     前記ART制御部は、前記異常度算出部により求められた前記診断対象のプラント全体の異常度が、所定の閾値を超える回数が一定数以上の場合、前記ART処理部を起動することを特徴とするプラント異常診断システム。
  9.  請求項7に記載のプラント異常診断システムにおいて、
     前記プラント異常診断装置は、
     適応共鳴理論によりカテゴリー判別処理を実行するART処理部と、
     前記ART処理部の起動タイミングを制御するART制御部を備え、
     前記ART制御部は、前記異常度算出部により求められた前記複数の計測データ毎の異常度が、所定の閾値を超える回数が一定数以上の場合、前記ART処理部を起動することを特徴とするプラント異常診断システム。
  10.  請求項7に記載のプラント異常診断システムにおいて、
     前記プラント異常診断装置は、
     適応共鳴理論によりカテゴリー判別処理を実行するART処理部と、
     前記ART処理部の起動タイミングを制御するART制御部を備え、
     前記ART制御部は、空間上で前記複数の計測データとの距離が最も近い正常カテゴリーとして選ばれた回数が一定数以上の場合、前記ART処理部を起動することを特徴とするプラント異常診断システム。
  11.  請求項8乃至請求項10のうち、いずれか1項に記載のプラント異常診断システムにおいて、
     前記表示部は、前記異常度算出部により算出された前記複数の計測データ毎の異常度の時間変化を表示する第1表示領域と、前記ART処理部によるカテゴリー判別処理にて得られるカテゴリー番号の時間変化を表示する第2表示領域と、を備えることを特徴とするプラント異常診断システム。
  12.  請求項8乃至請求項10のうち、いずれか1項に記載のプラント異常診断システムにおいて、
     前記表示部は、前記ART処理部によるカテゴリー判別処理にて得られるカテゴリー番号の時間変化を表示する第1表示領域と、前記入力部を介して異常事象登録の入力を受け付ける入力領域と、を備えることを特徴とするプラント異常診断システム。
PCT/JP2017/015419 2016-09-15 2017-04-17 プラント異常診断装置及びプラント異常診断システム WO2018051568A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17850475.9A EP3514642B1 (en) 2016-09-15 2017-04-17 Plant abnormality diagnosis device and plant abnormality diagnosis system
MYPI2019000066A MY190087A (en) 2016-09-15 2017-04-17 Plant abnormality diagnosis device and plant abnormality diagnosis system
JP2018539511A JP6674033B2 (ja) 2016-09-15 2017-04-17 プラント異常診断装置及びプラント異常診断システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-180551 2016-09-15
JP2016180551 2016-09-15

Publications (1)

Publication Number Publication Date
WO2018051568A1 true WO2018051568A1 (ja) 2018-03-22

Family

ID=61619147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015419 WO2018051568A1 (ja) 2016-09-15 2017-04-17 プラント異常診断装置及びプラント異常診断システム

Country Status (4)

Country Link
EP (1) EP3514642B1 (ja)
JP (1) JP6674033B2 (ja)
MY (1) MY190087A (ja)
WO (1) WO2018051568A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183781A1 (ja) * 2019-03-13 2020-09-17 株式会社日立製作所 異常診断装置
JP2020149181A (ja) * 2019-03-12 2020-09-17 株式会社日立製作所 データ分類装置
JP2020165704A (ja) * 2019-03-28 2020-10-08 株式会社日立製作所 発酵状態監視装置、発酵装置及び発酵装置の制御方法
JP2020181232A (ja) * 2019-04-23 2020-11-05 株式会社日立製作所 プラント状態監視システムおよびプラント状態監視方法
JP7506960B2 (ja) 2021-06-02 2024-06-27 株式会社Tmeic データ管理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089649A1 (ja) * 2010-01-22 2011-07-28 株式会社日立製作所 診断装置及び診断方法
JP2015021901A (ja) * 2013-07-22 2015-02-02 株式会社神戸製鋼所 回転機械の診断装置
WO2015182317A1 (ja) * 2014-05-29 2015-12-03 株式会社 日立メディコ X線管故障予兆検知装置、x線管故障予兆検知方法およびx線撮像装置
JP2016038688A (ja) * 2014-08-07 2016-03-22 株式会社日立製作所 データ表示システム
JP2016081482A (ja) 2014-10-22 2016-05-16 株式会社日立製作所 プラント監視支援システム及びプラント監視支援方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089649A1 (ja) * 2010-01-22 2011-07-28 株式会社日立製作所 診断装置及び診断方法
JP2015021901A (ja) * 2013-07-22 2015-02-02 株式会社神戸製鋼所 回転機械の診断装置
WO2015182317A1 (ja) * 2014-05-29 2015-12-03 株式会社 日立メディコ X線管故障予兆検知装置、x線管故障予兆検知方法およびx線撮像装置
JP2016038688A (ja) * 2014-08-07 2016-03-22 株式会社日立製作所 データ表示システム
JP2016081482A (ja) 2014-10-22 2016-05-16 株式会社日立製作所 プラント監視支援システム及びプラント監視支援方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113287104A (zh) * 2019-03-12 2021-08-20 株式会社日立制作所 数据分类装置
JP2020149181A (ja) * 2019-03-12 2020-09-17 株式会社日立製作所 データ分類装置
WO2020183766A1 (ja) * 2019-03-12 2020-09-17 株式会社日立製作所 データ分類装置
JP7239354B2 (ja) 2019-03-12 2023-03-14 株式会社日立製作所 データ分類装置
CN112912807A (zh) * 2019-03-13 2021-06-04 株式会社日立制作所 异常诊断装置
WO2020183781A1 (ja) * 2019-03-13 2020-09-17 株式会社日立製作所 異常診断装置
JP7233258B2 (ja) 2019-03-13 2023-03-06 株式会社日立製作所 異常診断装置
JP2020149259A (ja) * 2019-03-13 2020-09-17 株式会社日立製作所 異常診断装置
JP2020165704A (ja) * 2019-03-28 2020-10-08 株式会社日立製作所 発酵状態監視装置、発酵装置及び発酵装置の制御方法
JP7206146B2 (ja) 2019-03-28 2023-01-17 株式会社日立製作所 発酵状態監視装置、発酵装置及び発酵装置の制御方法
JP2020181232A (ja) * 2019-04-23 2020-11-05 株式会社日立製作所 プラント状態監視システムおよびプラント状態監視方法
JP7202248B2 (ja) 2019-04-23 2023-01-11 株式会社日立製作所 プラント状態監視システムおよびプラント状態監視方法
JP7506960B2 (ja) 2021-06-02 2024-06-27 株式会社Tmeic データ管理装置

Also Published As

Publication number Publication date
EP3514642A4 (en) 2020-04-22
JPWO2018051568A1 (ja) 2019-03-22
EP3514642A1 (en) 2019-07-24
MY190087A (en) 2022-03-25
JP6674033B2 (ja) 2020-04-01
EP3514642B1 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
WO2018051568A1 (ja) プラント異常診断装置及びプラント異常診断システム
JP6116466B2 (ja) プラントの診断装置及び診断方法
US9122273B2 (en) Failure cause diagnosis system and method
CN108681633A (zh) 一种基于状态参数的凝结水泵故障预警方法
US10884404B2 (en) Method of predicting plant data and apparatus using the same
CN112036089A (zh) 一种基于dpc-mnd和多元状态估计的磨煤机故障预警方法
JP6200833B2 (ja) プラントと制御装置の診断装置
WO2016208315A1 (ja) プラント診断装置及びプラント診断方法
JP6778132B2 (ja) 設備機器の異常診断システム
JP7469991B2 (ja) 診断装置及びパラメータ調整方法
US11200790B2 (en) Method for pre-detecting abnormality sign of nuclear power plant device including processor for determining device importance and warning validity, and system therefor
JP2019057164A (ja) プラント異常監視システム
WO2009129042A1 (en) Automated system for checking proposed human adjustments to operational or planning parameters at a plant
CN110506245A (zh) 诊断装置以及诊断方法
JP2010276339A (ja) センサ診断方法およびセンサ診断装置
Omitaomu et al. Online support vector regression approach for the monitoring of motor shaft misalignment and feedwater flow rate
JP6685124B2 (ja) 診断装置及び診断方法
CN114708712B (zh) 一种化工过程反应器故障检测的信息融合方法
WO2020183781A1 (ja) 異常診断装置
WO2011061793A1 (ja) プロセス信号の抽出システムおよび方法
JP2021076597A (ja) 過渡速度動作中の振動傾向を決定することによるロータ異常の検出
WO2011148431A1 (ja) プラント診断装置及びこれを用いた診断方法
WO2018207605A1 (ja) 正常異常判別装置、正常異常判別方法、及び正常異常判別システム
JP2540727B2 (ja) プラントパラメ―タ異常量検索方法及びその装置
CN117663353A (zh) 核电通风空调系统的故障检测与诊断方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018539511

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017850475

Country of ref document: EP

Effective date: 20190415