WO2018207605A1 - 正常異常判別装置、正常異常判別方法、及び正常異常判別システム - Google Patents
正常異常判別装置、正常異常判別方法、及び正常異常判別システム Download PDFInfo
- Publication number
- WO2018207605A1 WO2018207605A1 PCT/JP2018/016496 JP2018016496W WO2018207605A1 WO 2018207605 A1 WO2018207605 A1 WO 2018207605A1 JP 2018016496 W JP2018016496 W JP 2018016496W WO 2018207605 A1 WO2018207605 A1 WO 2018207605A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- learning category
- learning
- normal
- category
- data
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0275—Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
- G05B23/0281—Quantitative, e.g. mathematical distance; Clustering; Neural networks; Statistical analysis
Definitions
- the present invention relates to a normal / abnormality discriminating apparatus for discriminating whether a discrimination target such as a wind power plant, a water treatment plant, a thermal power plant, or a nuclear power plant is normal or abnormal.
- ART adaptive resonance theory
- a normal category range in which normal data exists is determined in advance using normal operation data, and the operation data to be discriminated obtained during operation is within the learned normal category.
- a technique for determining that there is normal, and outputting an alarm considering that it is abnormal if it is outside the normal category is known.
- Patent Document 1 As a technique for solving such a problem, a technique described in Patent Document 1 is known. According to the technique described in Patent Document 1, it is determined whether or not the data is classified into one category of the diagnostic model. If the data is not classified, it is determined whether or not the driving pattern is changed, and the driving pattern is changed. If there is no data with the same operation pattern, pseudo data is created and a diagnosis model constructed using the pseudo data is used for diagnosis.
- the present invention has been made in view of the above circumstances, and its purpose is to be able to quickly and appropriately determine whether a discrimination target is normal or abnormal even when the actual measurement data of the discrimination target is small. To provide technology.
- a normal / abnormality determination apparatus determines whether a determination target is normal or abnormal based on actual measurement data measured on the determination target. And based on the reference data used as a reference of the actual measurement data measured in the discrimination target, the actual measurement data indicates that the discrimination target is normal and that the discrimination target is abnormal Based on the first learning category specifying unit for specifying a plurality of first learning categories for classifying the data as a data, and reference data that is actual measurement data as a reference, measured in the discrimination target, One or more second learning cards for classifying whether the measured data is data indicating that the discrimination target is normal or data indicating that the discrimination target is abnormal.
- a second learning category corresponding to the actual learning data based on the arrangement relationship between the second learning category specifying unit for specifying a goal, the first learning category, and the corresponding second learning category.
- the correspondence learning category specifying unit for specifying the arrangement of the correspondence learning category that is the learning category corresponding to the correspondence nonexistent learning category that is one or more learning categories that do not exist, and the discrimination target data measured in the discrimination target A determination unit that determines whether the determination target is normal or abnormal by determining whether the two learning categories and the corresponding learning category belong.
- the present invention it is possible to quickly and appropriately determine whether a discrimination target is normal or abnormal even when the actual measurement data of the discrimination target is small.
- FIG. 1 is an overall configuration diagram of a normal / abnormality determination system according to the first embodiment.
- FIG. 2 is a diagram for explaining normality / abnormality determination processing according to the first embodiment.
- FIG. 3 is an example of a category information screen according to the second embodiment.
- FIG. 4 is an example of a category information screen according to the modification.
- FIG. 1 is an overall configuration diagram of a normal / abnormality discrimination system according to the first embodiment.
- the normal / abnormality discrimination system 1 includes a computer 10 as an example of a normal / abnormality discrimination device, an input device 21, a display device 22, and a plant 30 as an example of a discrimination target for discriminating normal / abnormality.
- the computer 10 and the plant 30 are connected via a network such as a wired LAN (Local Area Network) or a wireless LAN.
- a network such as a wired LAN (Local Area Network) or a wireless LAN.
- Examples of the plant 30 include a wind power plant, a water treatment plant, a thermal power plant, and a nuclear power plant.
- Discrimination targets are not limited to plants, but may be equipment, facilities, facilities, and large-scale systems.
- operation data actual measurement data
- multiple items status information of discrimination targets
- the input device 21 is a device that can be connected to the computer 10 such as a mouse or a keyboard, for example, and accepts an input operation by an operator (user) of the computer 10.
- the display device 22 is a display device that can be connected to the computer 10 such as a liquid crystal display, for example, and displays various types of information.
- the computer 100 includes a CPU (Central Processing Unit) 11 as an example of a processor, a memory 12, an auxiliary storage device 13, an input interface (input I / F) 14, a communication interface (communication I / F) 15, And a display interface (display I / F) 16.
- a CPU Central Processing Unit
- memory 12 a memory 12
- auxiliary storage device 13 an input interface (input I / F) 14
- communication interface communication I / F
- display I / F display interface
- the input I / F 14 receives a signal from the input device 21.
- the display I / F 16 transmits an image signal of an image to be displayed to the display device 22.
- the communication I / F 15 is an interface such as a wired LAN card or a wireless LAN card, and communicates with the plant 30 (communication device in the plant 30), other computers, and the like via a network.
- the computer 10 receives the reference data 104 used as the reference of the actual measurement data of the plant 30 from another computer via communication I / F15, for example, from the plant 30 via communication I / F15.
- the reference data 106 that is acquired in advance and for which the state of the plant 30 is grasped and that is the reference actual measurement data is received, and the actual measurement data to be subjected to normal / abnormal discrimination from the plant 30 via the communication I / F 15. (Determination target data 108) is received.
- the reference data 104 may be, for example, estimated data related to actual measurement data generated by simulation using a physical model simulating the plant 30.
- the computer that executes the simulation based on the physical model may be the computer 10 or another computer.
- the reference data 104 is obtained by simulation using a physical model, it can be executed on the assumption of various conditions on the computer. Therefore, a very large amount of reference data can be obtained in a short time.
- as the reference data 104 only normal data or only abnormal data is used.
- the reference data 104 may be, for example, past actual measurement data of the same type of discrimination target, or past measurement data of a discrimination target in a state different from the current (eg, discrimination target before maintenance). Since the same type of discrimination target has already been operated for a long time and has been subjected to various operating conditions, there is a high possibility that a sufficient amount of actual measurement data can be secured.
- the discrimination target of the same type for example, if the discrimination target is a generator, the generator may be operated based on the same principle even if the generation capacity is not the same. Any device can be used as long as it is operated on the basis of the above principle. In the present embodiment, as the reference data 104, only normal data or only abnormal data is used.
- the reference data 106 may be actual measurement data at the time of trial operation when the plant 30 is newly established or after maintenance of the plant 30 is performed. Since commissioning is typically short-lived, the amount of data collected is relatively small. Further, in a plant such as a wind power plant whose input conditions depend on the environment, there are cases where measured data regarding various operating conditions cannot be acquired. For this reason, the reference data 106 alone may not ensure a sufficient amount of data to determine whether the plant 30 is normal or abnormal.
- the CPU 11 executes various processes in accordance with programs stored in the memory 12 and / or the auxiliary storage device 13. In the present embodiment, the CPU 11 determines whether the plant 30 is normal or abnormal by executing a program, and determines the determination result (information indicating whether the plant 30 is normal or abnormal).
- a functional unit that executes normality / abnormality determination processing to be displayed on the display device 22 is configured. The normal / abnormal determination process will be described later.
- the CPU 11 executes a first learning category specifying unit, a second learning category specifying unit, a corresponding learning category specifying unit, a determination unit, a result display unit, a correspondence relationship specifying unit, a display control unit, a designation receiving unit, An input screen display unit and a corresponding graph display control unit are configured.
- the memory 12 is, for example, a RAM (RANDOM ACCESS MEMORY), and stores programs executed by the CPU 11 and necessary information.
- the auxiliary storage device 13 is, for example, a bird disk or a flash memory, and stores a program executed by the CPU 11 and data used by the CPU 11.
- FIG. 2 is a diagram for explaining normality / abnormality determination processing according to the first embodiment.
- FIG. 2 shows processing for determining whether the plant 30 is normal or abnormal using the reference data 104, the reference data 106, and the determination target data 108.
- FIGS. 2A to 2C show a process of specifying a category (first learning category) using the reference data 104
- FIGS. 2D to 2F show a category (using the reference data 106).
- 2 (g) to 2 (h) are used when determining normality / abnormality of the determination target data based on the first learning category and the second learning category.
- FIGS. 2 (i) to 2 (k) show processing for determining normality / abnormality of the plant 30 from the determination target data 108.
- the value of each input item is divided into several locations depending on the operation mode switching of the plant 30 or the like.
- the value of the reference data 104 is not always constant and exists with a certain degree of deviation, and therefore has a certain degree of distribution as shown in FIG.
- the CPU 11 classifies the reference data 104 into one or more categories.
- any of Mahalanobis Taguchi method, adaptive resonance theory, vector quantization, neural network, subspace method, deep learning, and the like may be used.
- the reference data 104 shown in FIG. 2A is one or more (three in FIG. 2B), for example, as shown in FIG. 2B.
- the CPU 11 grasps the set of first learning categories shown in FIG. 2B as a first category group as shown in FIG.
- the reference data 104 when the reference data 104 is all data in a normal state, it can be considered that all of the first learning categories are normal state categories. For this reason, when the data to be discriminated falls within the first learning category, it can be discriminated that the plant 30 (discrimination target data) is normal, and when it falls outside all the first learning categories, It can be determined that 30 is not normal (that is, abnormal).
- the first learning category can be considered as an abnormal state category. For this reason, when the data to be discriminated falls within the first learning category, it can be discriminated that the plant 30 is abnormal, and when it falls outside all the first learning categories, the plant 30 is not abnormal ( That is, it is normal).
- the first learning category for the data that can be generated is sufficiently specified, and a large number of normal states (or abnormal states) Data is required.
- the reference data 104 since past data of the same type of discrimination target or data obtained by simulation using a physical model is used as the reference data 104, there is no problem because a large amount of data can be collected.
- the first learning category is not obtained from the actual measurement data of the plant 30 in the current state, if the first learning category is used as it is for the discrimination target data measured in the plant 30, it is normal or abnormal. There is a possibility that it is not possible to accurately determine this.
- the reference data 106 is divided into several locations depending on the operation mode of the plant 30 and the like. However, the reference data 106 has a small data amount and does not cover actual measurement data in various states of the plant 30.
- the CPU 11 classifies the reference data 106 into one or more categories by the same method as the reference data 104.
- the reference data 106 shown in FIG. 2D is, for example, one or more (two in FIG. 2E) as shown in FIG. 2E. (Second learning category).
- the CPU 11 grasps the set of second learning categories shown in FIG. 2 (e) as a second category group as shown in FIG. 2 (f).
- the reference data 104 and the reference data 106 generally do not match, the first learning category and the second learning category, and the first category group and the second category group do not match.
- the discrimination target data 108 is actually measured data during operation of the plant 30, in order to determine whether the plant 30 is normal or abnormal by using the discrimination target data 108, the reference data 106 by the same plant 30 is used. It is desirable to use the second learning category specified by However, since the reference data for specifying the second learning category is, for example, data obtained by short-term operation, it is insufficient to cover the learning categories corresponding to many actual states of the plant 30. There is a possibility.
- the accuracy falls compared with the second learning category, but the range that could not be specified as the second learning category. You may have identified a learning category.
- FIG. 2 (d) it is assumed that the reference data 106 is solidified upward, and the actual measurement data located at the lower left cannot be obtained.
- FIG. 2 (e) two second learning categories are generated in the upper part, and no learning category is generated in the lower left.
- the reference data 104 when used, there is a case where the reference data 104 located at the lower left can be obtained as shown in FIG. 2A. In this case, as shown in FIG. Thus, a learning category is generated at the lower left.
- more learning categories can be specified than the reference data 106.
- the first learning category is utilized to fill in the shortage of the second learning category.
- the CPU 11 specifies the correspondence relationship between the first learning category and the second learning category, and the first learning category (corresponding absence learning category) in which there is no learning category corresponding to the second learning category.
- the arrangement (for example, position, range, etc.) is specified based on the positional relationship between the corresponding first learning category and second learning category.
- the correspondence relationship between the first learning category and the second learning category may be specified according to the input of the operator by the input device 21, and the CPU 11 determines whether the first learning category and the second learning category are the same.
- the correspondence relationship may be specified based on the positional relationship or the like.
- the upper left first learning category in FIG. 2B corresponds to the upper left second learning category in FIG. 2E
- the upper right first learning category in FIG. 2 (e) corresponds
- the difference in the positional relationship between these corresponding learning categories is mathematically processed, so that FIG. It is possible to specify an arrangement assumed to exist in FIG. 2E of the lower first learning category (corresponding nonexistence learning category) existing in b).
- FIG. 2 (g) The result of specifying the arrangement assumed to exist in FIG. 2 (e) of the lower first learning category existing in FIG. 2 (b) by the CPU 11 is as shown in FIG. 2 (g). .
- FIG. 2 (g) The result of specifying the arrangement assumed to exist in FIG. 2 (e) of the lower first learning category existing in FIG. 2 (b) by the CPU 11 is as shown in FIG. 2 (g). .
- parallel movement, enlargement (reduction), etc. may be combined. It is not limited. For example, when the position in the input item 1 of the corresponding first learning category is only offset by a certain value with respect to the position in the input item 1 of the second learning category, there is no corresponding second learning category.
- the first learning category may be arranged at a position translated (shifted) in the axial direction of the input item 1.
- the CPU 11 collects a set of the second learning category shown in FIG. 2G and the learning category (corresponding learning category) whose arrangement is specified based on the first learning category and the second learning category as shown in FIG. As shown in FIG.
- the integrated category group is used. Note that the processing until acquiring the integrated category group shown in FIG. 2H is executed before the discrimination target data 108 is received.
- the CPU 11 When the CPU 11 receives the discrimination target data 108, the CPU 11 performs the same category classification on the discrimination target data 108 to generate a discrimination target learning category including the discrimination target data 108. Next, the CPU 11 determines whether or not the discrimination target learning category is included in the learning category of the integrated category group. When the determination target learning category is included in the learning category of the integrated category group, the plant 30 learns. When the state corresponding to the category (normal when the learning category corresponds to the normal state) is determined and the determination target learning category is not included in the learning category of the integrated category group, the plant 30 learns. It is determined that the state does not correspond to the category (abnormal when the learning category corresponds to the normal state), and the determination result is displayed on the display device 22. Here, whether or not the discrimination target learning category is included in the learning category of the integrated category group is determined based on, for example, whether or not the center of the discrimination target learning category is included in the learning category of the integrated category group. It may be.
- the CPU 11 when the discrimination target data 108 shown in FIG. 2 (i) is received, the CPU 11 performs the same category classification on the discrimination target data 108 as shown in FIG. 2 (j). Is generated.
- the positional relationship between the discrimination target learning category shown in FIG. 2 (j) and the integrated category group shown in FIG. 2 (h) is as shown in FIG. 2 (k).
- the CPU 11 determines that the plant 30 is not in a state corresponding to the learning category because the determination target learning category is not included in the learning category of the integrated category group.
- normality / abnormality determination is performed using only the first category group shown in FIG. 2 (c)
- normality / abnormality determination is performed using a learning category different from the current state of the plant 30, and the determination result is invalid. Be accurate.
- normal / abnormal determination is performed using only the second category group shown in FIG. 2 (f)
- normal / abnormal determination is performed using only insufficient learning categories, resulting in inefficiency due to false or misreporting, System reliability may be lost.
- normality / abnormality determination is performed using a simple combination of the first category group shown in FIG. 2C and the second category group shown in FIG. A different first category group is used, and the discrimination result is inaccurate.
- normal / abnormality determination can be performed by the second category group, and a range lacking in the second category group can also be obtained using the corresponding learning category. 30 normal / abnormal discrimination can be performed appropriately.
- the CPU 11 performs a process of displaying a category information screen 50 (corresponding relationship input screen: see FIG. 3). Is.
- FIG. 3 is an example of a category information screen according to the second embodiment.
- the category information screen 50 includes a data viewing area 51 and a category corresponding display area 52.
- the data visual recognition area 51 the contents relating to the first learning category and the contents relating to the second learning category are displayed.
- the measured data has four input items.
- FIG. 3 shows that five CA1 to CA5 are generated as the first learning category, and three CB1 to CB3 are generated as the second learning category.
- the four bar graphs displayed corresponding to each of the first learning category and the second learning category each indicate the value of each input item at the center of the corresponding learning category. Since the value of the input item at the center of each learning category is indicated by a bar graph, the positional relationship between the learning categories can be easily grasped visually.
- the center value of the learning category may be displayed on a radar chart instead of being displayed on a bar graph.
- the category correspondence display area 52 displays a two-axis correspondence table 53 in which the first learning categories are arranged in the horizontal direction and the second learning categories are arranged in the vertical direction. In order to grasp the two types of correspondence between the first learning category and the second learning category, it is desirable to display them in a tabular form for easy understanding.
- Correspondence table 53 shows the degree of association between the first learning category CA1 to CA5 and the second learning category CB1 to CB3.
- the degree of association is, for example, a value corresponding to the distance between the centers of the first learning category and the second learning category (inter-category distance).
- the degree of association is calculated by the CPU 11 by the following calculation method.
- the first learning category (value of each item) and the coordinates of the center of the second learning category are (w21, x21, y21, z21)
- the first learning The degree of association between the category and the second learning category is calculated by the following equation (1).
- the relevance is 0 when the centers of the first learning category and the second learning category match. In addition, when the centers of the first learning category and the second learning category are greatly separated, the degree of association is a large value.
- the method of calculating the relevance is not limited to the above formula, and when the absolute values of the respective input items are greatly different, the values of the input items are normalized so as to be in the range from 0 to 1, and normalized. The calculated value may be used.
- the correspondence relationship between the first learning category and the second learning category is displayed by a thick frame icon.
- the degree of association is small and the closer to 0, the stronger the association, and the CPU 11 at the initial display time of the category information screen 50 is 1 for one second learning category based on the degree of association.
- One first learning category is identified as a corresponding learning category, and the identification result is displayed as an icon 54.
- the CPU 11 corresponds to the second learning category CB1 corresponding to the first learning category CA4 having the smallest degree of association
- the second learning category CB2 corresponds to the first learning category CA3 having the smallest degree of association.
- the second learning category CB3 is identified as corresponding to the first learning category CA1 having the smallest degree of association, and an icon 54 is displayed at each corresponding location.
- this category information screen 50 the operator can easily confirm which one of the first learning category and the second learning category corresponds.
- the CPU 11 accepts a change in the correspondence relationship between the first learning category and the second learning category by changing the position of the icon 54 in the correspondence table 53 by the operation of the input device 21 by the operator. It has become.
- the CPU 11 receives a change in the correspondence relationship between the first learning category and the second learning category, the CPU 11 executes the process shown in the first embodiment based on the received correspondence relationship.
- the icon 54 can be moved in the left-right direction on the same row of the correspondence table 53 by operating the input device 21.
- icons 54 in other rows are arranged in the same column of the correspondence table 53, the icons 54 may not be moved to the same column.
- the icon 54 even if the number of first learning categories is larger than the second learning category, there may be no first learning category corresponding to the second learning category. ”Is provided so that the icon 54 can be moved to a non-corresponding column.
- the operator can freely change and set the correspondence relationship between the first learning category and the second learning category.
- FIG. 4 is an example of a category information screen according to the modification.
- the category information screen 60 according to the modified example further includes a category correspondence illustrated area 61 with respect to the category information screen 50 according to the second embodiment.
- each first learning category is displayed on a graph having a plurality of items (two in FIG. 4) included in the actual measurement data as axes.
- a second learning category graph 63 for displaying each of the second learning categories on a graph having a plurality of items (two in FIG. 4) included in the actual measurement data as axes.
- the first learning category associated in the correspondence table 53 of the first learning category in the first learning category graph 62 and the second learning category in the second learning category graph 63 in the category correspondence illustrated region 61 The second learning category is displayed connected by a correspondence line 64 indicating the correspondence relationship, and the correspondence relationship between the first learning category and the second learning category can be easily recognized.
- the first learning category graph 62, the second learning category graph 63, and the corresponding line 64 are created and displayed by the processing of the CPU 11.
- the first learning category graph 62 and the second learning category graph 63 are graphs with two items included in the actual measurement data as axes, but three or more included in the actual measurement data. A graph with items as axes may be displayed.
- the first learning category graph 62 and the second learning category graph 63 may not be separate graphs, and the first learning category and the second learning category may be arranged in the same graph. .
- the correspondence between the first learning category and the second learning category can be easily grasped visually, and the first learning category and the second learning category It is possible to set appropriately while visually confirming the correspondence.
- the CPU 11 specifies a learning category for the discrimination target data 108 and determines whether or not the learning category is included in the learning category of the integrated category group.
- the normality / abnormality is determined, but the present invention is not limited to this. For example, by determining whether the determination target data 108 is included in the learning category of the integrated category group, the normality of the plant 30 is determined. Abnormality determination may be performed.
- part or all of the processing performed by the CPU 11 may be performed by a hardware circuit.
- the program in the above embodiment may be installed from a program source.
- the program source may be a program distribution server or a storage medium (for example, a portable storage medium).
- SYMBOLS 1 Normal / abnormal discrimination system, 10 ... Computer, 11 ... CPU, 12 ... Memory, 13 ... Auxiliary storage device, 14 ... Input I / F, 15 ... Communication I / F, 16 ... Display I / F, 21 ... Input device 22 ... Display device, 30 ... Plant
Landscapes
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Algebra (AREA)
- Mathematical Optimization (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Pure & Applied Mathematics (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
判別対象物の実測データが少ない場合であっても、判別対象物の正常又は異常の判別を迅速且つ適切に行えるようにする。計算機1において、参考データに基づいて、実測データが、正常であることを示すデータと、異常であることを示すデータとのいずれであるかを分類するための第1学習カテゴリを特定し、基準データに基づいて、実測データが、正常であることを示すデータと、異常であることを示すデータとのいずれであるかを分類するための第2学習カテゴリを特定し、第1学習カテゴリと対応する第2学習カテゴリとの位置関係に基づいて、実測データに対する、対応する第2学習カテゴリが存在しない対応不存在学習カテゴリに対応する対応学習カテゴリの配置を特定し、判別対象データについて、第2学習カテゴリ及び対応学習カテゴリとの属否により、判別対象物が正常であるか、異常であるかを判別するCPU11を備えるようにする。
Description
本発明は、風力発電プラント、水処理プラント、火力発電プラント、原子力発電プラント等の判別対象物が正常であるか、又は異常であるかを判別する正常異常判別装置等に関する。
現在、各種産業では、さまざまなプラントを稼動させて、電力や水など各種製品を生産している。これらのプラントに異常が発生して停止すると、製品を供給できなくなり、大きな損失が発生するとともに修理費用が発生する。このようなプラントの異常や故障の発生を完全にゼロとすることは現実的に難しい。このような損害を最小化するため、できるだけ早い段階でプラントの異常を検知することが望まれている。
例えば、汎用性の高い異常検知技術の一つとして、たとえばART(適応共鳴理論)を使用した技術が知られている。具体的には、例えば、正常状態の運転データを用いて予め正常なデータが存在する正常カテゴリの範囲を決定しておき、運転時に得られた判別対象の運転データが、学習した正常カテゴリ内にあれば正常と判別し、正常カテゴリ外にあれば異常とみなして警報を出力する技術が知られている。
この異常検知技術を使用するためには、事前に正常状態の運転データを準備して正常カテゴリの範囲を決定しておく必要がある。このため、正常状態の学習データを十分に得るためには長時間を要し、そのような十分な学習データを得るまでの期間は、異常検知の処理を開始できないという課題があった。
このような課題に対する技術として、特許文献1に記載の技術が知られている。特許文献1に記載の技術によると、データが診断モデルの1つのカテゴリに分類されるか否かを判別し、分類されない場合には運転パターンが変更されたか否かを判別し、運転パターンが変更された場合に、同じ運転パターンのデータがない場合には擬似データを作成し、擬似データを用いて構築した診断モデルで診断する。
例えば、特許文献1に記載の技術を用いることで、全運転パターンの正常状態を学習するための長期間の運転データは不要となる。しかしながら、診断モデルで状態変化を検知した後になってから、検知したときと同じ運転パターンのデータで診断モデルを構築する必要があるため、異常が発生したことを判別するために時間遅れが生じる。
プラントにおいては、異常が生じると大きな損害を生じる可能性があるため、このような時間遅れが発生してしまうことは好ましくない。
本発明は、上記事情に鑑みなされたものであり、その目的は、判別対象物の実測データが少ない場合であっても、判別対象物の正常又は異常の判別を迅速且つ適切に行うことのできる技術を提供することにある。
上記目的を達成するため、一観点に係る正常異常判別装置は、判別対象物において測定される実測データに基づいて判別対象物が正常であるか、又は異常であるかを判別する正常異常判別装置であって、判別対象物において測定される実測データの参考となる参考データに基づいて、実測データを、判別対象物が正常であることを示すデータと、判別対象物が異常であることを示すデータとのいずれであるかを分類するための複数の第1学習カテゴリを特定する第1学習カテゴリ特定部と、判別対象物において測定された、基準となる実測データである基準データに基づいて、実測データが、判別対象物が正常であることを示すデータと、判別対象物が異常であることを示すデータとのいずれであるかを分類するための1以上の第2学習カテゴリを特定する第2学習カテゴリ特定部と、第1学習カテゴリと、対応する前記第2学習カテゴリとの配置関係に基づいて、実測データに対する、第1学習カテゴリの内の対応する第2学習カテゴリが存在しない1以上の学習カテゴリである対応不存在学習カテゴリに対応する学習カテゴリである対応学習カテゴリの配置を特定する対応学習カテゴリ特定部と、判別対象物において測定される判別対象データについて、第2学習カテゴリ及び対応学習カテゴリとの属否を判定することにより、判別対象物が正常であるか、異常であるかを判別する判別部と、を備える。
本発明によれば、判別対象物の実測データが少ない場合であっても、判別対象物の正常又は異常の判別を迅速且つ適切に行うことができる。
いくつかの実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。
図1は、第1実施形態に係る正常異常判別システムの全体構成図である。
正常異常判別システム1は、正常異常判別装置の一例としての計算機10と、入力装置21と、表示装置22と、正常異常を判別する判別対象物の一例としてのプラント30とを備える。計算機10とプラント30とは、例えば、有線LAN(Local Area Network)や無線LANなどのネットワークを介して接続されている。
プラント30としては、例えば、風力発電プラント、水処理プラント、火力発電プラント、原子力発電プラント等がある。判別対象物としては、プラントに限られず、機器、設備、施設、大規模システムであってもよく、要は、複数の項目(判別対象物の状態情報)を含む運転データ(実測データ)を取得でき、その実測データを計算機10に対して出力できるものであればよい。
入力装置21は、例えば、マウス、キーボード等の計算機10と接続可能な装置であり、計算機10のオペレータ(ユーザ)による入力操作を受け付ける。表示装置22は、例えば、液晶ディスプレイ等の計算機10と接続可能な表示装置であり、各種情報を表示する。
計算機100は、プロセッサの一例としてのCPU(Central Processing Unit)11と、メモリ12と、補助記憶装置13と、入力インタフェース(入力I/F)14と、通信インタフェース(通信I/F)15と、表示インタフェース(表示I/F)16とを備える。
入力I/F14は、入力装置21からの信号を受信する。表示I/F16は、表示装置22に対して表示させる画像の画像信号を送信する。
通信I/F15は、例えば、有線LANカードや無線LANカードなどのインタフェースであり、ネットワークを介して、プラント30(プラント30内の通信装置)、他の計算機等と通信する。本実施形態では、計算機10は、例えば、通信I/F15を介して、他の計算機からプラント30の実測データの参考となる参考データ104を受信し、通信I/F15を介して、プラント30から予め取得され、プラント30の状態が把握されている、基準となる実測データである基準データ106を受信し、通信I/F15を介して、プラント30から正常異常の判別を行う対象となる実測データ(判別対象データ108)を受信する。
ここで、参考データ104は、例えば、プラント30を模擬した物理モデルによるシミュレーションにより生成された実測データに関する推定データであってもよい。物理モデルによるシミュレーションを実行する計算機は、計算機10でもよいし、他の計算機でもよい。物理モデルによるシミュレーションにより参考データ104を得る場合には、計算機上でさまざまな条件を仮定して実行できるため、短時間で極めて多くの参考データを得ることができる。なお、本実施形態では、参考データ104としては、正常の場合のデータのみ、或いは、異常の場合のデータのみのいずれかを使用するようにしている。
また、参考データ104は、例えば、同種の判別対象物の過去の実測データや、現在とは異なる状態の判別対象物(例えば、メンテナンス前の判別対象物)の過去における実測データとしてもよい。同種の判別対象物は、すでに長期間運転され、様々な運転条件を経てきていることが多いため、十分な量の実測データを確保できる可能性が高い。なお、同種の判別対象物として、例えば、判別対象物が発電機であれば、発電容量が同一でなくても、同一の原理に基づいて運転される発電機であればよく、要は、同一の原理に基づいて運転される機器であればよい。なお、本実施形態では、参考データ104としては、正常の場合のデータのみ、或いは、異常の場合のデータのみのいずれかを使用するようにしている。
また、基準データ106は、プラント30を新設した際や、プラント30のメンテナンスを行った後における試運転時の実測データであってもよい。試運転は、一般的に短期間であるので、収集されるデータ量は、比較的少ない。また、風力発電プラントのように入力条件が環境に依存するプラントでは、種々の運転条件についての実測データを取得できない場合もある。このため、基準データ106のみでは、プラント30における正常異常を判別するのに十分なデータ量を確保できない場合がある。
CPU11は、メモリ12及び/又は補助記憶装置13に格納されているプログラムに従って各種処理を実行する。本実施形態では、CPU11は、プログラムを実行することにより、プラント30が正常であるか異常であるかを判別し、判別結果(プラント30が正常であるか、異常であるかを示す情報)を表示装置22に表示させる正常異常判別処理を実行する機能部を構成する。正常異常判別処理については、後述する。CPU11は、プログラムを実行することにより、第1学習カテゴリ特定部、第2学習カテゴリ特定部、対応学習カテゴリ特定部、判別部、結果表示部、対応関係特定部、表示制御部、指定受付部、入力画面表示部、及び対応グラフ表示制御部を構成する。
メモリ12は、例えば、RAM(RANDOM ACCESS MEMORY)であり、CPU11で実行されるプログラムや、必要な情報を記憶する。
補助記憶装置13は、例えば、バードディスクやフラッシュメモリなどであり、CPU11で実行されるプログラムや、CPU11に利用されるデータを記憶する。
次に、CPU11による正常異常判別処理について説明する。
図2は、第1実施形態に係る正常異常判別処理を説明する図である。図2は、参考データ104、基準データ106、及び判別対象データ108を用いて、プラント30の正常異常を判別する処理を示している。図2(a)~(c)は、参考データ104を用いてカテゴリ(第1学習カテゴリ)を特定する処理を示し、図2(d)~(f)は、基準データ106を用いてカテゴリ(第2学習カテゴリ)を特定する処理を示し、図2(g)~(h)は、第1学習カテゴリと、第2学習カテゴリとに基づいて、判別対象データの正常異常を判別する際に用いる学習カテゴリを特定する処理を示し、図2(i)~(k)は、判別対象データ108からプラント30の正常異常を判別する処理を示す。なお、図2においては、説明を簡単にするために、便宜的に参考データ104、基準データ106、及び判別対象データ108に含まれる項目(入力項目)を2つ(入力項目1、入力項目2)とし、図2(a)~(k)においては、縦軸を入力項目1とし、横軸を入力項目2とするグラフにより、データや、カテゴリを示している。
参考データ104は、図2(a)に示すように、プラント30の運転モードの切り替え等によって、各入力項目の値は、いくつかの箇所に分かれて存在する。一般的に参考データ104の値は、常に一定ではなく、或る程度の偏差をもって存在するので、図2(a)に示すように或る程度の分布をもって存在する。CPU11は、参考データ104を1以上のカテゴリに分類する。カテゴリに分類する数学的手法としては、例えば、マハラノビスタグチメソッド、適応共鳴理論、ベクトル量子化、ニューラルネットワーク、部分空間法、ディープラーニング等のいずれを用いてもよい。
CPU11が適応共鳴理論を用いて分類を行うと、図2(a)に示す参考データ104は、例えば、図2(b)に示すように、1以上(図2(b)では、3つ)のカテゴリ(第1学習カテゴリ)に分類される。CPU11は、図2(b)に示す第1学習カテゴリの集合を、図2(c)に示すように第1カテゴリ群として把握する。
例えば、参考データ104が全て正常状態のデータである場合においては、第1学習カテゴリは、いずれも正常状態のカテゴリであると考えることができる。このため、判別対象のデータが、第1学習カテゴリ内となる場合には、プラント30(判別対象データ)が正常であると判別でき、全ての第1学習カテゴリの外となる場合には、プラント30が正常でない(すなわち異常である)と判別できる。
一方、参考データ104が全て異常状態のデータである場合においては、第1学習カテゴリは、いずれも異常状態のカテゴリであると考えることができる。このため、判別対象のデータが、第1学習カテゴリ内となる場合には、プラント30が異常であると判別でき、全ての第1学習カテゴリの外となる場合には、プラント30が異常でない(すなわち正常である)と判別できる。
なお、精度よく判別できるようにするためには、発生しうる正常状態であるデータについての第1学習カテゴリを十分に特定できていることが重要であり、大量の正常状態(又は異常状態)のデータが必要となる。本実施形態では、例えば、同種の判別対象物の過去のデータや、物理モデルによるシミュレーションにより得られるデータを参考データ104としているので、大量のデータを収集することができるので問題がない。しかしながら、第1学習カテゴリは、現在の状態のプラント30の実測データから求められたものではないので、第1学習カテゴリをプラント30で測定された判別対象データにそのまま用いてしまうと、正常又は異常の判別を高精度に行えない虞がある。
基準データ106は、図2(d)に示すように、プラント30の運転モードの切り替え等によって、各入力項目の値は、いくつかの箇所に分かれて存在する。しかしながら、基準データ106は、データ量が少なく、プラント30の種々の状態における実測データを網羅しているものではない。
CPU11は、基準データ106を、参考データ104と同様な手法により、1以上のカテゴリに分類する。
CPU11が適応共鳴理論を用いて分類を行うと、図2(d)に示す基準データ106は、例えば、図2(e)に示すように、1以上(図2(e)では、2つ)のカテゴリ(第2学習カテゴリ)に分類される。CPU11は、図2(e)に示す第2学習カテゴリの集合を、図2(f)に示すように第2カテゴリ群として把握する。なお、参考データ104と、基準データ106とは、一般的に一致しないので、第1学習カテゴリと第2学習カテゴリ、および第1カテゴリ群と第2カテゴリ群とは一致しない。
ここで、判別対象データ108は、現状のプラント30の運転時の実測データであるために、判別対象データ108によりプラント30の正常異常の判別を行うためには、同一のプラント30による基準データ106によって特定した第2学習カテゴリを用いることが望ましい。しかしながら、第2学習カテゴリを特定するための基準データは、例えば、短期間の運転により得られたデータであるので、プラント30の現実の多くの状態に対応する学習カテゴリを網羅するには不十分である可能性がある。
一方、多くの条件でのデータを有している参考データ104により特定された第1学習カテゴリによると、第2学習カテゴリと比較すると精度が落ちるものの、第2学習カテゴリとして特定できなかった範囲の学習カテゴリを特定できていることがある。
たとえば、図2(d)で示すように、基準データ106が上方に固まっていて、左下に位置する実測データが得られなかったとする。この場合には、図2(e)に示すように、上方に2つの第2学習カテゴリが生成され、左下には、学習カテゴリが生成されない。これに対して、参考データ104を用いると、図2(a)に示すように、左下に位置する参考データ104を得ることができる場合があり、この場合には、図2(b)に示すように、左下に学習カテゴリが生成されることとなる。このように、データ量の多い参考データ104によると、学習カテゴリを基準データ106よりも多く特定することができる。
そこで、本実施形態では、第1学習カテゴリを活用して、第2学習カテゴリの不足部分を埋めるようにしている。
本実施形態では、CPU11は、第1学習カテゴリと、第2学習カテゴリとの対応関係を特定し、第2学習カテゴリに対応する学習カテゴリが存在しない第1学習カテゴリ(対応不存在学習カテゴリ)の配置(例えば、位置、範囲等)を、対応する第1学習カテゴリと第2学習カテゴリとの位置関係に基づいて、特定する。ここで、第1学習カテゴリと、第2学習カテゴリとの対応関係については、入力装置21によるオペレータの入力に従って特定するようにしてもよく、CPU11が第1学習カテゴリと、第2学習カテゴリとの位置関係等に基づいて、対応関係を特定するようにしてもよい。
具体的には、図2(b)の左上の第1学習カテゴリと、図2(e)の左上の第2学習カテゴリとが対応し、図2(b)の右上の第1学習カテゴリと、図2(e)の右上の第2学習カテゴリとが対応していると特定している場合には、これらの対応する学習カテゴリの位置関係の違いを数学的に処理することにより、図2(b)に存在する下側の第1学習カテゴリ(対応不存在学習カテゴリ)の図2(e)に存在していると想定される配置を特定することができる。
CPU11により、図2(b)に存在する下側の第1学習カテゴリの図2(e)に存在していると想定される配置を特定した結果は、図2(g)に示すようになる。なお、対応する第1学習カテゴリと第2学習カテゴリとの位置関係の違いに基づく数学的な処理としては、平行移動、拡大(縮小)等を組み合わせるようにしてもよいが、これらの処理方法に限定されない。例えば、第2学習カテゴリの入力項目1における位置に対し、対応する第1学習カテゴリの入力項目1における位置が一定値だけオフセットされているだけの場合には、対応する第2学習カテゴリが存在しない第1学習カテゴリを入力項目1の軸方向に平行移動(シフト)した位置に配置するようにすればよい。
CPU11は、図2(g)に示す第2学習カテゴリと、第1学習カテゴリと第2学習カテゴリとに基づいて配置を特定した学習カテゴリ(対応学習カテゴリ)との集合を、図2(h)に示すように、統合カテゴリ群として把握する。判別対象データを用いてプラント30の正常異常を判別する際には、この統合カテゴリ群が利用されることとなる。なお、図2(h)に示す統合カテゴリ群を取得するまでの処理は、判別対象データ108が受信される前までに実行される。
CPU11は、判別対象データ108を受信すると、判別対象データ108に対して、上記同様のカテゴリ分類を実施して、判別対象データ108を含む判別対象学習カテゴリを生成する。次いで、CPU11は、判別対象学習カテゴリが、統合カテゴリ群の学習カテゴリに含まれるか否かを判定し、判別対象学習カテゴリが、統合カテゴリ群の学習カテゴリに含まれる場合には、プラント30が学習カテゴリに対応する状態(学習カテゴリが正常状態に対応する場合には、正常)であると判別し、判別対象学習カテゴリが、統合カテゴリ群の学習カテゴリに含まれない場合には、プラント30が学習カテゴリに対応しない状態(学習カテゴリが正常状態に対応する場合には、異常)であると判別し、判別結果を表示装置22に表示する。ここで、判別対象学習カテゴリが、統合カテゴリ群の学習カテゴリに含まれるか否かについては、例えば、判別対象学習カテゴリの中心が、統合カテゴリ群の学習カテゴリに含まれるか否かにより判断するようにしてもよい。
例えば、図2(i)に示す判別対象データ108を受信すると、CPU11は、判別対象データ108に対して、上記同様のカテゴリ分類を実施し、図2(j)に示すような判別対象学習カテゴリを生成する。ここで、図2(j)に示す判別対象学習カテゴリと、図2(h)に示す統合カテゴリ群との位置関係は、図2(k)に示すようになる。この場合には、CPU11は、判別対象学習カテゴリが、統合カテゴリ群の学習カテゴリに含まれていないので、プラント30は、学習カテゴリに対応する状態ではないと判別する。
例えば、図2(c)に示す第1カテゴリ群のみを用いて正常異常判別を行うと、プラント30の現状の状態と異なる学習カテゴリを用いて、正常異常判別を行うこととなり、判別結果が不正確となる。また、図2(f)に示す第2カテゴリ群のみを用いて正常異常判別を行うと、不十分な学習カテゴリのみで正常異常判別を行うこととなり、誤報や失報を行って非効率となり、システムの信頼性が失われる虞がある。また、図2(c)に示す第1カテゴリ群と、図2(f)に示す第2カテゴリ群とを単純に合算したものを用いて正常異常判別を行うと、プラント30の現状の状態と異なる第1カテゴリ群を用いることとなり、判別結果が不正確となる。
これに対して、上記した統合カテゴリ群を用いることにより、第2カテゴリ群により正常異常判別を行うことができると共に、第2カテゴリ群に不足していた範囲についても、対応学習カテゴリを用いてプラント30の正常異常判別を適切に行うことができる。
次に、第2実施形態に係る正常異常判別システムについて説明する。なお、第1実施形態に係る正常異常判別システムの図面を適宜使用し、第1実施形態に係る正常異常判別システムと同様な部分については、同様な符号を用いて説明する。
第2実施形態に係る正常異常判別システムは、第1実施形態に係る正常異常判別システムにおいて、CPU11がカテゴリ情報画面50(対応関係入力画面:図3参照)を表示させる処理等を行うようにしたものである。
図3は、第2実施形態に係るカテゴリ情報画面の一例である。
カテゴリ情報画面50は、データ視認領域51と、カテゴリ対応表示領域52とを含む。データ視認領域51には、第1学習カテゴリに関する内容と、第2学習カテゴリに関する内容とが表示されている。なお、本実施形態では、実測データは、入力項目が4項目あるものとしている。
図3において、第1学習カテゴリとしては、CA1からCA5の5個が生成され、第2学習カテゴリとしては、CB1からCB3の3個が生成されていることを示している。
第1学習カテゴリと、第2学習カテゴリとのそれぞれに対応して表示されている4本の棒グラフは、それぞれが、対応する学習カテゴリの中心における各入力項目の値を示している。各学習カテゴリの中心における入力項目の値を棒グラフで示しているので、学習カテゴリ同士の位置関係を視覚的に容易に把握することができる。なお、学習カテゴリの中心の値を、棒グラフでの表示に変えて、レーダーチャートでの表示にしてもよい。
カテゴリ対応表示領域52には、横方向に各第1学習カテゴリを配置し、縦方向に各第2学習カテゴリを配置した2軸の対応表53が表示される。第1学習カテゴリと第2学習カテゴリとの二種類の対応関係を把握するためには表形式で表示することが分かり易く望ましい。
対応表53は、第1学習カテゴリのCA1~CA5と、第2学習カテゴリのCB1~CB3との間の関連度を示している。本実施形態では、関連度としては、例えば、第1学習カテゴリと、第2学習カテゴリとの中心間の距離(カテゴリ間距離)に対応する値としている。
関連度は、以下の計算方法により、CPU11によって算出されている。
第1学習カテゴリの中心の座標(各項目の値)を(w11,x11,y11,z11)とし、第2学習カテゴリの中心の座標を(w21,x21,y21,z21)とすると、第1学習カテゴリと、第2学習カテゴリとの関連度は、以下の式(1)で算出される。
関連度=(w11-w21)2+(x11-x21)2+
(y11-y21)2+(z11-z21)2 ・・・(1)
(y11-y21)2+(z11-z21)2 ・・・(1)
関連度は、第1学習カテゴリと第2学習カテゴリとの中心が一致する場合には、0となる。また、第1学習カテゴリと第2学習カテゴリとの中心が大きく離れている場合には、関連度は、大きな値となる。なお、関連度の計算方法は、上記式に限定されず、それぞれの入力項目の絶対値が大きく異なる場合には、0から1までの範囲となるように入力項目の値を正規化し、正規化した値を用いて計算するようにしてもよい。
対応表53においては、第1学習カテゴリと第2学習カテゴリとの対応関係を太枠のアイコン54により表示されている。本実施形態では、関連度が小さく、0に近いほど関連が強いとしており、CPU11は、カテゴリ情報画面50の初期表示時点においては、関連度を基準に、1つの第2学習カテゴリに対して1つの第1学習カテゴリを対応する学習カテゴリと特定し、その特定結果を、アイコン54で表示するようにしている。図3の例では、CPU11は、第2学習カテゴリCB1は、最も関連度の小さい第1学習カテゴリCA4と対応し、第2学習カテゴリCB2は、最も関連度の小さい第1学習カテゴリCA3と対応し、第2学習カテゴリCB3は、最も関連度の小さい第1学習カテゴリCA1に対応すると特定し、その対応する箇所のそれぞれにアイコン54を表示している。
このカテゴリ情報画面50によると、オペレータは、第1学習カテゴリと、第2学習カテゴリとのいずれが対応しているとされているかを容易に確認することができる。
本実施形態において、CPU11は、オペレータによる入力装置21の操作により、対応表53におけるアイコン54の位置を変更することにより、第1学習カテゴリと第2学習カテゴリとの対応関係の変更を受け付けるようになっている。CPU11は、第1学習カテゴリと第2学習カテゴリとの対応関係の変更を受け付けた場合には、受け付けた対応関係に基づいて、第1実施形態で示した処理を実行する。
アイコン54は、入力装置21を操作することにより、対応表53の同一行を左右方向に移動可能となっている。なお、対応表53の同一列に他の行のアイコン54が配置されている場合には、アイコン54を同一列に移動できないようにしてもよい。本実施形態では、第1学習カテゴリの数が第2学習カテゴリよりも多くても、第2学習カテゴリに対応する第1学習カテゴリが存在しない場合もあるので、対応表53の右端に「対応なし」の列を設けるようにしており、アイコン54を対応なしの列に移動できるようにしている。
このカテゴリ情報画面50によると、オペレータは、第1学習カテゴリと、第2学習カテゴリとの対応関係を自在に変更して設定することができる。
次に、第2実施形態に係る正常異常判別システムの変形例について説明する。なお、第2実施形態に係る正常異常判別システムと同様な部分については、同様な符号を用いて説明する。
図4は、変形例に係るカテゴリ情報画面の一例である。
変形例に係るカテゴリ情報画面60は、第2実施形態に係るカテゴリ情報画面50に対して、カテゴリ対応図示領域61をさらに含んでいる。
カテゴリ対応図示領域61には、各第1学習カテゴリを、実測データに含まれる複数の項目のいずれか複数(図4では、2つ)を軸とするグラフ上に表示させる第1学習カテゴリグラフ62と、各第2学習カテゴリを、実測データに含まれる複数の項目のいずれか複数(図4では、2つ)の項目を軸とするグラフ上に表示させる第2学習カテゴリグラフ63とが表示される。
カテゴリ対応図示領域61における第1学習カテゴリグラフ62中の第1学習カテゴリと、第2学習カテゴリグラフ63中の第2学習カテゴリとの内の対応表53において対応付けられている第1学習カテゴリと、第2学習カテゴリとは、対応関係を示す対応線64によって結ばれて表示されており、第1学習カテゴリと、第2学習カテゴリとの対応関係を容易に認識できるようになっている。第1学習カテゴリグラフ62と、第2学習カテゴリグラフ63と、対応線64とは、CPU11の処理によって作成されて、表示されている。なお、図4の例では、第1学習カテゴリグラフ62と、第2学習カテゴリグラフ63とは、実測データに含まれる2つの項目を軸とするグラフとしているが、実測データに含まれる3以上の項目を軸とするグラフを表示するようにしてもよい。また、第1学習カテゴリグラフ62と、第2学習カテゴリグラフ63とを別のグラフとせずに、同一のグラフ中に、第1学習カテゴリと、第2学習カテゴリとを配置するようにしてもよい。
この変形例に係る正常異常判別システムによると、第1学習カテゴリと、第2学習カテゴリとの対応関係を視覚的に容易に把握することができ、第1学習カテゴリと、第2学習カテゴリとの対応関係を視覚的に確認しながら適切に設定することができる。
なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
例えば、上記第1実施形態では、CPU11は、判別対象データ108についての学習カテゴリを特定し、その学習カテゴリが、統合カテゴリ群の学習カテゴリに含まれるか否かを判定することにより、プラント30の正常異常の判別を行うようにしていたが、本発明はこれに限られず、例えば、判別対象データ108が、統合カテゴリ群の学習カテゴリに含まれるか否かを判定することにより、プラント30の正常異常の判別を行うようにしてもよい。
また、上記実施形態において、CPU11が行っていた処理の一部又は全部を、ハードウェア回路で行うようにしてもよい。また、上記実施形態におけるプログラムは、プログラムソースからインストールされてよい。プログラムソースは、プログラム配布サーバ又は記憶メディア(例えば可搬型の記憶メディア)であってもよい。
1…正常異常判別システム、10…計算機、11…CPU、12…メモリ、13…補助記憶装置、14…入力I/F、15…通信I/F、16…表示I/F、21…入力装置、22…表示装置、30…プラント
Claims (14)
- 判別対象物において測定される実測データに基づいて前記判別対象物が正常であるか、又は異常であるかを判別する正常異常判別装置であって、
前記判別対象物において測定される実測データの参考となる参考データに基づいて、前記実測データを、前記判別対象物が正常であることを示すデータと、前記判別対象物が異常であることを示すデータとのいずれであるかを分類するための複数の第1学習カテゴリを特定する第1学習カテゴリ特定部と、
前記判別対象物において測定された、基準となる実測データである基準データに基づいて、前記実測データが、前記判別対象物が正常であることを示すデータと、前記判別対象物が異常であることを示すデータとのいずれであるかを分類するための1以上の第2学習カテゴリを特定する第2学習カテゴリ特定部と、
前記第1学習カテゴリと対応する前記第2学習カテゴリとの配置関係に基づいて、前記実測データに対する、前記第1学習カテゴリの内の対応する前記第2学習カテゴリが存在しない1以上の学習カテゴリである対応不存在学習カテゴリに対応する学習カテゴリである対応学習カテゴリの配置を特定する対応学習カテゴリ特定部と、
前記判別対象物において測定される判別対象データについて、前記第2学習カテゴリ及び前記対応学習カテゴリとの属否を判定することにより、前記判別対象物が正常であるか、異常であるかを判別する判別部と、
を備える正常異常判別装置。 - 前記参考データは、前記判別対象物を模擬した物理モデルから出力される模擬データである
請求項1に記載の正常異常判別装置。 - 前記参考データは、前記判別対象物と同種の物で測定された実測データである
請求項1に記載の正常異常判別装置。 - 前記基準データは、前記判別対象物の比較的短期間の動作時に測定された実測データである
請求項1から請求項3のいずれか一項に記載の正常異常判別装置。 - 前記判別部による判別結果を表示装置に表示させる結果表示部をさらに備える
請求項1から請求項4のいずれか一項に記載の正常異常判別装置。 - 前記第1学習カテゴリと前記第2学習カテゴリとの対応関係を特定する対応関係特定部をさらに備える
請求項1から請求項5のいずれか一項に記載の正常異常判別装置。 - 前記対応関係特定部は、前記実測データに含まれる複数の項目を軸とする座標系における距離に基づいて、前記第1学習カテゴリと前記第2学習カテゴリとの対応関係を特定する
請求項6に記載の正常異常判別装置。 - 前記対応関係特定部により特定された前記第1学習カテゴリと、前記第2学習カテゴリとの対応関係を表示させる表示制御部と、をさらに備える
請求項6又は請求項7に記載の正常異常判別装置。 - 前記第1学習カテゴリと、前記第2学習カテゴリとの対応関係の指定を受け付ける指定受付部をさらに備える
請求項1から請求項8のいずれか一項に記載の正常異常判別装置。 - 前記第1学習カテゴリと、前記第2学習カテゴリとの対応関係の指定を受け付けるための対応関係入力画面を表示させる入力画面表示部をさらに備える
請求項9に記載の正常異常判別装置。 - 前記対応関係入力画面には、所定の第1方向に前記第1学習カテゴリを示す表示が配置され、前記第1方向と垂直な第2方向に前記第2学習カテゴリを示す表示が配置され、前記第2学習カテゴリを示す表示のそれぞれに対応する位置に入力デバイスの操作により前記第1方向に移動可能なアイコンが配置されており、
前記指定受付部は、前記アイコンの位置が前記入力デバイスの操作により確定された場合に、前記対応関係入力画面における前記アイコンの位置に対応する前記第1学習カテゴリと前記第2学習カテゴリとを対応する学習カテゴリとして受け付ける
請求項10に記載の正常異常判別装置。 - 前記第1学習カテゴリと、前記第2学習カテゴリとのそれぞれを、前記実測データに含まれる複数の項目を軸とするグラフ上に表示させると共に、前記第1学習カテゴリと、前記第2学習カテゴリとの対応関係を認識可能に表示させる対応グラフ表示制御部をさらに備える
請求項1から請求項11のいずれか一項に記載の正常異常判別装置。 - 判別対象物において測定される実測データに基づいて前記判別対象物が正常であるか、又は異常であるかを判別する正常異常判別装置による正常異常判別方法であって、
前記判別対象物において測定される実測データの参考となる参考データに基づいて、前記実測データを、前記判別対象物が正常であることを示すデータと、前記判別対象物が異常であることを示すデータとのいずれであるかを分類するための複数の第1学習カテゴリを特定し、
前記判別対象物において測定された、基準となる実測データである基準データに基づいて、前記実測データを、前記判別対象物が正常であることを示すデータと、前記判別対象物が異常であることを示すデータとのいずれであるかを分類するための1以上の第2学習カテゴリを特定し、
前記第1学習カテゴリと対応する前記第2学習カテゴリとの位置関係に基づいて、前記実測データに対する、前記第1学習カテゴリの内の対応する前記第2学習カテゴリが存在しない1以上の学習カテゴリである対応不存在学習カテゴリに対応する学習カテゴリである対応学習カテゴリの配置を特定し、
前記判別対象物において測定される判別対象の実測データである判別対象データについて、前記第2学習カテゴリ及び前記対応学習カテゴリとの属否を判定することにより、前記判別対象物が正常であるか、異常であるかを判別する
正常異常判別方法。 - 正常異常の判別対象となる判別対象物と、前記判別対象物において測定される実測データに基づいて前記判別対象物が正常であるか、又は異常であるかを判別する正常異常判別装置とを備える正常異常判別システムと、であって、
前記正常異常判別装置は、
前記判別対象物において測定される実測データの参考となる参考データに基づいて、前記実測データを、前記判別対象物が正常であることを示すデータと、前記判別対象物が異常であることを示すデータとのいずれであるかを分類するための複数の第1学習カテゴリを特定する第1学習カテゴリ特定部と、
前記判別対象物において測定され、基準となる実測データである基準データに基づいて、前記実測データが、前記判別対象物が正常であることを示すデータと、前記判別対象物が異常であることを示すデータとのいずれであるかを分類するための1以上の第2学習カテゴリを特定する第2学習カテゴリ特定部と、
前記第1学習カテゴリと対応する前記第2学習カテゴリとの位置関係に基づいて、前記実測データに対する、前記第1学習カテゴリの内の対応する前記第2学習カテゴリが存在しない1以上の学習カテゴリである対応不存在学習カテゴリに対応する学習カテゴリである対応学習カテゴリの配置を特定する対応学習カテゴリ特定部と、
前記判別対象物において測定される判別対象データについて、前記第2学習カテゴリ及び前記対応学習カテゴリとの属否を判別することにより、前記判別対象物が正常であるか、異常であるかを判別する判別部と、を備える
正常異常判別システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18798507.2A EP3623892A4 (en) | 2017-05-10 | 2018-04-23 | ANOMALY EVALUATION SYSTEM, ANOMALY EVALUATION PROCESS AND ANOMALY EVALUATION PROGRAM |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-093586 | 2017-05-10 | ||
JP2017093586A JP6785715B2 (ja) | 2017-05-10 | 2017-05-10 | 正常異常判別装置、正常異常判別方法、及び正常異常判別システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018207605A1 true WO2018207605A1 (ja) | 2018-11-15 |
Family
ID=64105151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/016496 WO2018207605A1 (ja) | 2017-05-10 | 2018-04-23 | 正常異常判別装置、正常異常判別方法、及び正常異常判別システム |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3623892A4 (ja) |
JP (1) | JP6785715B2 (ja) |
WO (1) | WO2018207605A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7288794B2 (ja) * | 2019-02-14 | 2023-06-08 | 三菱重工業株式会社 | 稼働状態評価方法、及び、稼働状態評価装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004234302A (ja) * | 2003-01-30 | 2004-08-19 | Toshiba Corp | プロセス管理装置 |
JP2009053938A (ja) * | 2007-08-27 | 2009-03-12 | Toshiba Corp | 複数モデルに基づく設備診断システム及びその設備診断方法 |
US20140046881A1 (en) * | 2012-08-07 | 2014-02-13 | Prüftechnik Ag | Method for monitoring of rotating machines |
JP2015103218A (ja) | 2013-11-28 | 2015-06-04 | 株式会社日立製作所 | プラントの診断装置及び診断方法 |
JP2017021502A (ja) * | 2015-07-09 | 2017-01-26 | 株式会社日立ハイテクノロジーズ | 稼働データ分類装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7096153B2 (en) * | 2003-12-31 | 2006-08-22 | Honeywell International Inc. | Principal component analysis based fault classification |
WO2012078475A2 (en) * | 2010-12-07 | 2012-06-14 | Gautam Dasgupta | Emergency response management apparatuses, methods and systems |
JP5530020B1 (ja) * | 2013-11-01 | 2014-06-25 | 株式会社日立パワーソリューションズ | 異常診断システム及び異常診断方法 |
-
2017
- 2017-05-10 JP JP2017093586A patent/JP6785715B2/ja not_active Expired - Fee Related
-
2018
- 2018-04-23 EP EP18798507.2A patent/EP3623892A4/en not_active Withdrawn
- 2018-04-23 WO PCT/JP2018/016496 patent/WO2018207605A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004234302A (ja) * | 2003-01-30 | 2004-08-19 | Toshiba Corp | プロセス管理装置 |
JP2009053938A (ja) * | 2007-08-27 | 2009-03-12 | Toshiba Corp | 複数モデルに基づく設備診断システム及びその設備診断方法 |
US20140046881A1 (en) * | 2012-08-07 | 2014-02-13 | Prüftechnik Ag | Method for monitoring of rotating machines |
JP2015103218A (ja) | 2013-11-28 | 2015-06-04 | 株式会社日立製作所 | プラントの診断装置及び診断方法 |
JP2017021502A (ja) * | 2015-07-09 | 2017-01-26 | 株式会社日立ハイテクノロジーズ | 稼働データ分類装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3623892A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3623892A4 (en) | 2021-01-27 |
JP2018190262A (ja) | 2018-11-29 |
EP3623892A1 (en) | 2020-03-18 |
JP6785715B2 (ja) | 2020-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3574380B1 (en) | Integrated digital twin for an industrial facility | |
EP3441836B1 (en) | Algorithm and method for detecting faults of a machine based on machine-learning technique | |
EP2905665B1 (en) | Information processing apparatus, diagnosis method, and program | |
JP4046309B2 (ja) | プラント監視装置 | |
JP6200833B2 (ja) | プラントと制御装置の診断装置 | |
US10796796B2 (en) | Fault diagnosis apparatus, fault diagnosis method, and fault diagnosis program | |
US20210116331A1 (en) | Anomaly analysis method, program, and system | |
JP6903142B2 (ja) | 異常検出装置、異常検出方法及びプログラム | |
JP2017033471A (ja) | 異常予兆診断システム及び異常予兆診断方法 | |
WO2021241576A1 (ja) | 異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム | |
JP6778132B2 (ja) | 設備機器の異常診断システム | |
JP2017033470A (ja) | 異常予兆診断システム及び異常予兆診断方法 | |
CN106575282A (zh) | 用于先进过程控制的云计算系统和方法 | |
CN113574358A (zh) | 异常检测装置及异常检测方法 | |
JP6674033B2 (ja) | プラント異常診断装置及びプラント異常診断システム | |
JP5746480B2 (ja) | 解析結果表示装置および解析結果表示方法 | |
JP2017130100A (ja) | 情報処理装置、情報処理方法、及び、プログラム | |
WO2021241580A1 (ja) | 異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム | |
CN115640860B (zh) | 一种工业云服务的机电设备远程维护方法及系统 | |
WO2018207605A1 (ja) | 正常異常判別装置、正常異常判別方法、及び正常異常判別システム | |
KR20130112968A (ko) | 패턴인식 기술을 이용한 제어설비 고장진단 시스템 및 고장진단 방법 | |
JP2010276339A (ja) | センサ診断方法およびセンサ診断装置 | |
WO2021241578A1 (ja) | 異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム | |
JP2019113970A (ja) | プロセスの状態診断方法及び状態診断装置 | |
KR20180015091A (ko) | 공정 설비 상태 모니터링 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18798507 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018798507 Country of ref document: EP Effective date: 20191210 |