WO2021241579A1 - 異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム - Google Patents
異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム Download PDFInfo
- Publication number
- WO2021241579A1 WO2021241579A1 PCT/JP2021/019801 JP2021019801W WO2021241579A1 WO 2021241579 A1 WO2021241579 A1 WO 2021241579A1 JP 2021019801 W JP2021019801 W JP 2021019801W WO 2021241579 A1 WO2021241579 A1 WO 2021241579A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process data
- cause
- degree
- abnormality
- modulation
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 299
- 230000002159 abnormal effect Effects 0.000 title claims abstract description 41
- 230000008569 process Effects 0.000 claims abstract description 257
- 230000005856 abnormality Effects 0.000 claims abstract description 155
- 238000012545 processing Methods 0.000 claims abstract description 85
- 238000003860 storage Methods 0.000 claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 claims abstract description 23
- 238000003745 diagnosis Methods 0.000 claims abstract description 14
- 230000001364 causal effect Effects 0.000 claims abstract description 9
- 230000000694 effects Effects 0.000 claims description 19
- 238000007781 pre-processing Methods 0.000 claims description 19
- 230000002547 anomalous effect Effects 0.000 claims description 11
- 230000001360 synchronised effect Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 45
- 238000001514 detection method Methods 0.000 description 33
- 238000010923 batch production Methods 0.000 description 26
- 238000010924 continuous production Methods 0.000 description 20
- 230000009471 action Effects 0.000 description 19
- 238000004364 calculation method Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 7
- 238000012549 training Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 238000012935 Averaging Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000005070 sampling Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002790 cross-validation Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000011058 failure modes and effects analysis Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0275—Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2223/00—Indexing scheme associated with group G05B23/00
- G05B2223/02—Indirect monitoring, e.g. monitoring production to detect faults of a system
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- the present disclosure relates to an abnormal modulation cause identification device, an abnormal modulation cause identification method, and an abnormal modulation cause identification program.
- Patent Document 1 a technique for estimating the cause of an abnormality has been proposed using the operation data received from the plant. For example, a technique has been proposed in which the weighting of the probability of occurrence of the first abnormal event that has occurred in the past is heavier than the weighting of the probability of occurrence of the second abnormal event that has not occurred, and the cause of the sign of the abnormality is estimated (. Patent Document 1).
- Patent Document 2 the contribution rate indicating the contribution ratio of the process variable indicating the state of the process to be diagnosed is estimated, and based on the contribution rate, the pre-defined registration events are selected.
- Patent Document 2 A technique for estimating an event that may be the cause of an abnormality has also been proposed.
- the deviation index from the normal state of the process is calculated, and it occurs in the process based on the deviation index pattern set consisting of the deviation index calculated for each submodel.
- a technique for estimating the cause of an abnormal state has also been proposed (Patent Document 3).
- the monitoring contribution to the monitoring abnormality is calculated for each of the plurality of operation data constituting the monitoring operation data, and the diagnosis target data group composed of the top N operation data having a large monitoring contribution is extracted and diagnosed.
- the matching index of the target data group and the diagnostic reference data group composed of the top M driving data having a large reference contribution included in the reference driving data is calculated, and the matching index is equal to or higher than the matching judgment threshold.
- a technique for predicting plant abnormalities based on the above has also been proposed (Patent Document 4).
- JP-A-2018-109851 Japanese Unexamined Patent Publication No. 2018-120343 JP-A-2019-16039 Japanese Unexamined Patent Publication No. 2019-57164
- the anomaly modulation cause identification device is a process data acquisition unit that reads process data from a storage device that stores process data that is continuously output by multiple sensors installed in the production equipment and is associated with the control number of the processing target.
- An abnormality determination unit that continuously calculates the degree of abnormality of the process data read by the process data acquisition unit for multiple sensors, and a process that outputs the cause and the effects of the cause. Whether the degree of abnormality calculated by the abnormality determination unit meets a predetermined standard for the process data output by multiple sensors and corresponding to the control number of the processing target using the causal relationship information that defines the combination with the data modulation. It is equipped with a cause diagnosis unit for determining.
- the cause diagnosis unit modulates the process data output by a plurality of sensors to which the control number of the processing target corresponds, based on the ratio of the process data in which the degree of abnormality calculated by the abnormality determination unit satisfies a predetermined standard. You may ask for the accuracy of the cause of. Of the process data output by a plurality of sensors where the influence of modulation appears, even if the amount of process data whose degree of abnormality meets a predetermined criterion is small, it is possible to detect a sign of abnormality based on some cause. Therefore, it is possible to improve the ability to identify the cause of abnormal modulation in production equipment.
- the average time-series data is calculated using the process data corresponding to the processes performed in the production equipment and the control numbers are different, and the process is based on the similarity with the calculated average time-series data. It also has a pre-processing unit that synchronizes the data, and the abnormality determination unit calculates the degree of abnormality for the synchronized process data that corresponds to the process and has a different control number, based on the degree of deviation from the predetermined standard. You may do it. For example, the process data of the same process for the processing target of different control numbers may be synchronized as described above to calculate the degree of abnormality.
- the process data is stored in the storage device in association with the step indicating the stage of processing in the process performed in the production equipment, is associated with a different control number, and the process data corresponding to the step is superimposed and displayed on the output device.
- An output control unit may be further provided. Further, by displaying the process data related to the same process in synchronization, the user can easily compare a plurality of process data.
- the contents described in the means for solving the problems can be combined as much as possible without departing from the problems and technical ideas of the present disclosure. Further, the content of the means for solving the problem can be provided as a device such as a computer or a system including a plurality of devices, a method executed by the computer, or a program executed by the computer. A recording medium for holding the program may be provided.
- FIG. 1 is a diagram showing an example of a system according to the present embodiment.
- FIG. 2 is a schematic diagram showing an example of a process performed by the equipment provided in the plant.
- FIG. 3 is a diagram for explaining an example of process data in a batch process.
- FIG. 4 is a diagram showing an example of a process line definition table set in advance.
- FIG. 5 is a diagram showing an example of a tag definition table set in advance.
- FIG. 6 is a diagram for explaining an example of process data in a continuous process.
- FIG. 7 is a diagram showing an example of traceability information.
- FIG. 8 is a diagram for explaining the correspondence between the process data in the continuous process and the serial number in the batch process.
- FIG. 9 is a diagram showing an example of information registered in advance in the knowledge base.
- FIG. 9 is a diagram showing an example of information registered in advance in the knowledge base.
- FIG. 10 is a diagram showing an example of a logic tree showing the relationship between modulation and its cause.
- FIG. 11 is a diagram for explaining a process data synchronization process.
- FIG. 12 is a diagram for explaining an example of calculating the degree of abnormality of time-series data based on the distance from the reference.
- FIG. 13 is a diagram for explaining an example of calculating the degree of abnormality by the distance from the reference in consideration of the positive and negative directions of the time series data.
- FIG. 14 is a diagram for explaining abnormality detection using an autoencoder.
- FIG. 15 is a block diagram showing an example of the configuration of the abnormal modulation cause identification device.
- FIG. 16 is a processing flow diagram showing an example of learning processing executed by the abnormal modulation cause identification device.
- FIG. 17 is a diagram showing an example of an action table.
- FIG. 18 is a processing flow diagram showing an example of abnormality detection processing executed by the abnormality modulation cause identification device.
- FIG. 19 is a diagram showing an example of a screen output to the input / output device.
- FIG. 20 is a diagram showing another example of the screen output to the input / output device.
- FIG. 1 is a diagram showing an example of a system according to the present embodiment.
- the system 100 includes an abnormal modulation cause identification device 1, a control station 2, and a plant 3.
- the system 100 is, for example, a distributed control system (DCS), and includes a plurality of control stations 2. That is, the control system of the plant 3 is divided into a plurality of sections, and each control section is distributed and controlled by the control station 2.
- the control station 2 is an existing facility in the DCS, and receives a state signal output from a sensor or the like included in the plant 3 or outputs a control signal to the plant 3. Then, based on the control signal, actuators such as valves and other equipment included in the plant 3 are controlled.
- the abnormal modulation cause identification device 1 acquires the status signal (process data) of the plant 3 via the control station 2.
- the process data includes the temperature, pressure, flow rate, etc. of the raw material and the intermediate product to be processed, and the set values that determine the operating conditions of the equipment provided in the plant 3.
- the anomaly modulation cause identification device 1 creates an anomaly detection model based on a knowledge base that stores a correspondence relationship between a assumed cause and an influence appearing as an anomaly, for example.
- a model for identifying anomalous modulation, its precursors, and its causes is created based on a method for detecting deviations from the permissible range for changes in process data created based on a knowledge base.
- the anomalous modulation cause identification device 1 can detect the occurrence or a sign of the anomalous modulation by using the model and the process data. Further, the anomalous modulation cause identification device 1 obtains, for example, a candidate for operating conditions for suppressing anomalous modulation based on a table that stores the cause of the anomalous modulation and an action for dealing with the cause and the identified cause. , May be presented to the user.
- FIG. 2 is a schematic diagram showing an example of a process performed by the equipment provided in the plant.
- the process may include a batch process 31 and a continuous process 32.
- the processing target is sequentially processed for each predetermined processing unit, and for example, processing such as receiving, holding, and discharging the raw material to each device is performed in order.
- the processing targets to be continuously introduced are continuously processed, and for example, processing such as acceptance, holding, and discharge of raw materials is performed in parallel.
- the process may include a plurality of series 33 that perform the same processing in parallel.
- the equipment that performs each treatment includes, for example, a reactor, a distillation apparatus, a heat exchanger, a compressor, a pump, a tank, etc., and these are connected via piping.
- sensors, valves, and the like are provided at predetermined positions of equipment and piping.
- the sensor may include a thermometer, a flow meter, a pressure gauge, a level meter, a densitometer, and the like.
- the sensor monitors the operating status of each device and outputs a status signal.
- the sensor included in the plant 3 is attached with a "tag" which is identification information for identifying each of the sensors. That is, the type of process data can be specified based on the tag.
- the abnormal modulation cause identification device 1 and the control station 2 manage the input / output signals to each device based on the tags.
- FIG. 3 is a diagram for explaining an example of process data in a batch process.
- the left column of FIG. 3 shows a portion of the process of batch step 31 shown in FIG. Specifically, the process includes a shredder 301, a cyclone 302, a pretreatment 303, a precooler 304, and a reactor 305. Further, these processes are classified into a pretreatment step, a precooling step, and a reaction step.
- the right column of FIG. 3 shows an example of process data acquired in each process. In the preprocessing step, time series data is acquired from the sensors whose tags are 001 and 002. In the precooling step, time series data is acquired from the sensors whose tags are 003 and 004.
- time series data is acquired from the sensors whose tags are 005, 006 and 007.
- the processing target associated with the serial number also referred to as “manufacturing number”, “batch number”, “control number”
- the serial number is identification information for identifying the processing targets to be collectively processed in the batch process.
- time-series data relating to the processing target associated with the subsequent serial number is obtained.
- the control station 2 manages a serial number and a step indicating a processing stage in a subdivided process constituting a batch process.
- the step is reset by the PLC (Programmable Logic Controller, sequencer) in the plant 3 connected to the control station 2, it is appropriate (for example, in the PLC) according to the timing of communication between the control station 2 and the plant 3.
- the serial number of the process data output from the control station 2 may be adopted (after the set time has elapsed after the step is switched). Further, the set time may be set for each production line or for each subdivided process.
- FIG. 4 is a diagram showing an example of a process line definition table that is set in advance.
- the process line definition table may be a so-called database table or a file of a predetermined format such as CSV. Further, the process line definition table is also created in advance by the user and read out by the abnormal modulation cause identification device 1.
- the process line definition table includes each attribute of series, process, manufacturing number, step, and product type. Identification information for identifying the process series is registered in the series field. In the process field, identification information indicating the subdivided process in the batch process is registered. In the serial number field, a serial number, which is identification information for identifying the processing targets to be collectively processed in the batch process, is registered. In the step field, the definition of the timing of a plurality of steps indicating the stage of processing in the process is registered. The type of processing target is registered in the field of product type.
- FIG. 5 is a diagram showing an example of a tag definition table set in advance.
- the tag definition table defines the acquisition timing of process data obtained from the sensor corresponding to each tag.
- the tag definition table may be a so-called database table or a file having a predetermined format such as CSV (Comma Separated Values). Further, the tag definition table is created in advance by the user and read out by the abnormal modulation cause identification device 1.
- the tag definition table includes each attribute of tag, series, process, and collection interval.
- a tag that is identification information of the sensor is registered in the tag field.
- Identification information for identifying the process series is registered in the series field.
- identification information indicating the subdivided process in the batch process is registered in the process field.
- identification information indicating the interval for acquiring the output value of the sensor is registered in the collection interval field.
- FIG. 6 is a diagram for explaining an example of process data in a continuous process.
- the left column of FIG. 6 shows a part of the process of the continuous process 32 shown in FIG. Specifically, the process includes a tank 311 and a pump 312.
- the right column of FIG. 6 shows an example of process data acquired in each process.
- time-series data associated with the tag and not associated with the serial number is continuously acquired from the sensor.
- time series data is acquired from each sensor whose tags are 102 and 103.
- the equipment continuously accepts the processing target and continuously performs the processing.
- FIG. 7 is a diagram showing an example of traceability information.
- the traceability information includes each attribute of sampling interval and residence time. In the field of sampling interval, an interval for sampling for process inspection by, for example, a reduction method in a continuous process is registered. In the residence time field, the time during which the processing target stays from the completion of the batch process to the arrival of the process included in the continuous process is registered.
- FIG. 8 is a diagram for explaining the correspondence between the process data in the continuous process and the serial number in the batch process.
- the process data is acquired, for example, at the intervals set in the traceability information.
- the process data in the continuous process can trace back the residence time of the processing target from the completion of the batch process to the time of measurement by the sensor, and can be associated with the serial number group in which the completion time of the batch process is included in the predetermined period.
- the accuracy of identifying the cause of abnormality can be improved by associating the serial number in batch processing with the measurement timing in continuous processes.
- FIG. 9 is a diagram showing an example of information registered in advance in the knowledge base.
- the knowledge base shall be stored in advance in the storage device of the abnormal modulation cause identification device 1.
- the table of FIG. 9 contains a column of "effects" corresponding to each of the sensors (tags) and a row indicating the "possible cause” of the modulation. That is, the direction of the value fluctuation is registered in the column corresponding to the sensor affected by the cause such as "cause 1" and "cause 2" shown in each row.
- the direction of fluctuation is indicated by “up” indicating an increase (rise) or “down” indicating a decrease (fall) of the output value of the sensor.
- the combination of cause and effect is not always one-to-one.
- the process data calculation method, extraction timing, threshold value used for abnormality determination, and the like are defined in association with each sensor.
- the calculation method line information indicating the calculation to be performed on the output value of each sensor is registered. In this embodiment, the calculation is performed by using a machine learning method such as a hoteling method, a k-nearest neighbor method, DTW Barycenter Averaging, Autoencoder, or a graphical lasso.
- the extraction timing line information indicating the timing of extracting the value used for abnormality determination among the output values of each sensor is registered. For example, in batch processing, the timing may be defined by a step indicating a processing stage in each step, a specific period, a time point, or the like.
- a threshold value which is a criterion for determining an abnormality in each abnormality determination method.
- the threshold value may include, for example, an upper limit and a lower limit.
- the knowledge base defines a combination of causal relationships between the causal event and the resulting effect of modulation of process data.
- the combination of causal relationships can be expressed in a tree format in which the modulation that appears as an effect is the root, the assumed cause is the leaf, and the events that appear in the process from the cause to the modulation are connected in a hierarchical manner along the time series. ..
- HAZOP Hazard and Operability Study
- HAZOP is, for example, a detection means at a monitoring point by instrumentation equipment constituting the plant, a control range (upper and lower thresholds and alarm setting points), a deviation from the control range (abnormality, modulation), and a control range.
- control range upper and lower thresholds and alarm setting points
- deviation from the control range abnormality, modulation
- control range lower thresholds and alarm setting points
- a deviation from the control range abnormality, modulation
- control range a control range
- logic detection means to determine which assumed cause caused deviation, influence of deviation, action to be taken when deviation occurs, action for the action , It is a method to associate these and enumerate them comprehensively.
- HAZOP HAZOP
- FTA fault Tree Analysis
- FMEA Finset Mode and Effect Analysis
- ETA Event Tree Analysis
- the knowledge base may be created based on the contents, the contents extracted from the work standard and the technical standard.
- abnormality detection is performed based on parameters that are considered to have a causal relationship in the knowledge base.
- the abnormality modulation cause identification device 1 extracts the data at a predetermined timing from the process data acquired from the plant 3, and determines the abnormality by a predetermined method. ..
- FIG. 10 is a diagram showing an example of a logic tree showing the relationship between modulation and its cause.
- the logic tree can be created based on the knowledge base shown in FIG. Further, in the logic tree of FIG. 10, the upstream side in the production process and the early events in the time series are arranged on the left side, and the downstream side in the production process and the subsequent events in the time series are arranged on the right side. , It is connected in a hierarchical manner with arrows toward the modulation that appears as an effect from the assumed cause.
- the logic tree branches and connects when there are multiple possible causes for one modulation in the knowledge base table, and displays a bundle of events that commonly appear in the process from the assumed cause to the modulation.
- the thick solid rectangle located at the upstream end of each branch corresponds to the assumed cause of the knowledge base table, and the numbers in parentheses in FIGS. 9 and 10 correspond to it.
- the thin solid rectangle corresponds to the influence of the knowledge base table and represents the phenomenon that can be observed by the process data. For each of these effects, an operation is performed according to the operation method defined in the knowledge base table.
- a model including a mathematical formula for performing the above calculation is defined, and the model can be used to detect an abnormality or a sign thereof, and to support identification of the cause.
- the above-mentioned operation may include, for example, the following method. Further, the abnormal modulation cause identification device 1 may display these calculation results.
- Hotelling method For example, assuming that multiple process data obtained from one sensor follow a predetermined probability density function, the population mean and standard deviation are estimated from the sample mean and sample standard deviation calculated using the process data. A given probability density function is, for example, a normal distribution. Then, the degree of anomaly is obtained based on the distance from the average of the population to the process data to be verified. For example, the degree of anomaly is determined based on the square of the Mahalanobis distance. The instantaneous value of the process data itself may be used, or the degree of abnormality based on the hoteling theory can be determined by using the maximum value, minimum value, integral value, standard deviation, differential coefficient (slope), etc. of the process data in a predetermined period. It may be calculated. According to the hoteling method, outliers from a predetermined standard can be detected.
- a given probability density function is, for example, a normal distribution.
- the degree of anomaly is obtained based on the distance from the average of the population to the process data to be verified. For example, the degree
- time-series process data obtained from one or more sensors is vectorized or matrixed, and the distance between the data is calculated.
- the distance may be Euclidean distance, Mahalanobis distance or Manhattan distance.
- the degree of abnormality is determined according to the distance from the data to be verified to the data closest to the kth.
- the judgment is made based on the relationship with other data. Therefore, for example, when normal values can be classified into a plurality of clusters, outliers far from any of the plurality of clusters can be detected.
- FIG. 11 is a diagram for explaining a process data synchronization process. For each value that is an element included in the time series data of batch processing with different serial numbers, the shortest distance between the values included in the different time series data is calculated as a whole, and the integrated value of the shortest distance is minimized. In addition, the time series data is slid in the time axis direction for alignment.
- a plurality of time-series data are synchronized based on the similarity of the time-series data.
- the degree of abnormality is calculated by the k-nearest neighbor method or the hoteling theory based on the integrated value of the distances between the synchronized time series data.
- anomalies can be detected based on the degree of similarity between time series data.
- FIG. 12 is a diagram for explaining an example in which the degree of abnormality is calculated based on the magnitude of the distance from the reference for the time series data.
- FIG. 13 is a diagram for explaining an example of calculating the degree of abnormality by the distance from the reference in consideration of the positive and negative directions for the same time series data.
- the vertical axis represents, for example, the degree of deviation from the average. Modulation actually occurs in the portion indicated by the broken line rectangle, but it is difficult to detect it only from the values shown in the example of FIG. On the other hand, in the example of FIG. 13, since the positive and negative directions tend to deviate in the opposite direction, it is easy to detect the modulation.
- the degree of anomaly as shown in FIG. 13 can be obtained by obtaining the degree of deviation from the reference as a positive or negative signed value without squaring the distance.
- a positive or negative sign is determined for a characteristic point such as a maximum value in time series data by, for example, the following formula, and the calculated value is multiplied by the magnitude of the distance.
- Code determination formula ( ⁇ -x) /
- the sign representing the above can be determined. Further, by using a signed value indicating the degree of deviation from the standard, the degree of abnormality as shown in FIG. 13 can be obtained, and false detection can be suppressed. Further, as a characteristic point in the time series data, in addition to the maximum value, the minimum value, the difference between the process data at a certain time point and the process data at another time point, and the like may be used.
- FIG. 14 is a diagram for explaining abnormality detection using an autoencoder.
- abnormality determination is performed based on the characteristics of the relationship of process data from a plurality of sensors.
- a neural network for example, a model that can compress (encode) and restore (decode) input data by using the process data itself of continuous processing or batch processing, which is input data, as a teacher value is created. do.
- the number of nodes in the input layer and the output layer corresponds to the number of sensors, and the number of nodes in the intermediate layer is smaller than the number of sensors.
- the information input to the input layer is compressed in the intermediate layer and restored in the output layer.
- the connection structure between the layers is not limited to full coupling.
- the learning process is performed using the process data in the normal state as training data, and a model is created in which the parameters are adjusted so that the difference between the value of the input layer and the value of the output layer becomes small.
- the process data to be verified is input, and the degree of abnormality is calculated according to the difference between the value of the input layer and the value of the output layer. That is, when abnormal process data is input, the information compressed in the intermediate layer cannot be properly restored in the output layer, and the difference between the values of the input layer and the output layer becomes large. Abnormality detection can be performed based on this. According to the autoencoder, an abnormality can be detected based on the characteristics of the relationship between output values between a plurality of sensors.
- the dependency between variables is quantified based on the covariance matrix of process data from multiple sensors in continuous processing or batch processing, and expressed as a sparse graph as a reference. In the normal state, it can be judged that the dependency between variables does not greatly deviate from the standard. Then, in the abnormality determination process, the dependency between the variables is obtained using the process data to be verified, and the degree of abnormality is calculated according to the magnitude of the difference from the above-mentioned reference. According to the graphical lasso, the correlation between process data can be quantified, and the degree of abnormality can be detected based on the collapse of the relationship.
- the threshold value used for abnormality detection in each method is as little as possible to make an erroneous judgment in the normal state using the process data actually obtained in the operation of the plant 3, and in the case of an abnormality, the occurrence of the abnormality and its sign are promptly detected. You may search for a value that can be detected and register it in the knowledge base shown in FIG.
- FIG. 15 is a block diagram showing an example of the configuration of the abnormal modulation cause identification device 1.
- the anomalous modulation cause identification device 1 is a general computer, and includes a communication interface (I / F) 11, a storage device 12, an input / output device 13, and a processor 14.
- the communication I / F 11 may be, for example, a network card or a communication module, and communicates with another computer based on a predetermined protocol.
- the storage device 12 includes a main storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory), and an auxiliary storage device (secondary) such as an HDD (Hard-Disk Drive), an SSD (Solid State Drive), and a flash memory. It may be a storage device).
- the main storage device temporarily stores a program read by the processor 14 and information transmitted to and received from another computer, and secures a work area of the processor 14.
- the auxiliary storage device stores programs executed by the processor 14, information transmitted to and received from other computers, and the like.
- the input / output device 13 is, for example, a user interface such as an input device such as a keyboard and a mouse, an output device such as a monitor, and an input / output device such as a touch panel.
- the processor 14 is an arithmetic processing unit such as a CPU (Central Processing Unit), and performs each process according to the present embodiment by executing a program. In the example of FIG. 15, a functional block is shown in the processor 14.
- the processor 14 functions as a process data acquisition unit 141, a preprocessing unit 142, a learning processing unit 143, an abnormality determination unit 144, a cause diagnosis unit 145, and an output control unit 146 by executing a predetermined program.
- the process data acquisition unit 141 acquires process data from a sensor included in the plant 3 and stores it in the storage device 12 via, for example, the communication I / F 11 and the control station 2. As mentioned above, the process data is associated with the sensor by a tag.
- the preprocessing unit 142 processes the process data when creating the abnormality detection model. For example, the preprocessing unit 142 associates the process data with the serial number. That is, based on the above-mentioned traceability information held in the storage device 12 in advance, the process data corresponding to a predetermined tag, system and serial number in batch processing, and the process data corresponding to a predetermined tag in continuous processing and at a predetermined timing. Associate with the output process data. In addition, data for a predetermined period used for abnormality determination is extracted based on the set values in a table such as a knowledge base, and feature quantities corresponding to each method are calculated. In the learning process, the pre-processing unit 142 performs data cleansing and extracts training data by excluding data in the unsteady operation period, data at the time of abnormality, and outliers such as noise. good.
- the learning processing unit 143 creates an abnormality detection model including one or more operations based on, for example, a knowledge base, and stores it in the storage device 12. At this time, the learning processing unit 143 determines the parameters learned from the characteristics of the training data. When the learning process is performed using the output values of a plurality of sensors, normalization may be performed as appropriate.
- the abnormality determination unit 144 calculates the degree of abnormality using the process data and the abnormality detection model. That is, in the learning process, the abnormality determination unit 144 calculates the degree of abnormality using the test data for performing cross-validation and the abnormality detection model. Further, in the abnormality determination process, the degree of abnormality is calculated using the process data acquired from the plant 3.
- the cause diagnosis unit 145 calculates the degree of establishment (accuracy) for each of the plurality of assumed causes using the calculated degree of abnormality.
- the degree of establishment is calculated based on the ratio and degree of the influence appearing in the process data among the influences associated with each assumed cause in the knowledge base, for example, using the degree of abnormality calculated by the abnormality determination unit. ..
- an action indicating an action to be taken for the cause may be stored in the storage device 12 in association with each of the assumed causes so that the action can be presented to the user.
- the output control unit 146 issues an alarm when an abnormality is detected, or outputs the degree of establishment for each assumed cause, for example, via the input / output device 13.
- the above-mentioned components are appropriately connected via the bus 15 according to the operation of the user.
- one device shown in FIG. 15 includes a process data acquisition unit 141, a preprocessing unit 142, a learning processing unit 143, an abnormality determination unit 144, a cause diagnosis unit 145, and an output control unit 146, but at least one.
- the functions of the units may be distributed and provided in different devices.
- FIG. 16 is a processing flow diagram showing an example of learning processing executed by the abnormal modulation cause identification device 1.
- the processor 14 of the abnormal modulation cause identification device 1 executes the process as shown in FIG. 16 by executing a predetermined program.
- the learning process is executed at an arbitrary timing using the process data obtained by the past operation of the plant 3.
- the learning process mainly includes a pre-process (FIG. 16: S1), a model construction process (S2), and a verification process (S3). That is, a part of the process data may be used as training data, and the other may be used as test data to perform cross-validation. It is assumed that the above-mentioned table or the like is created by the user and stored in the storage device 12 in advance.
- the pre-processing, learning processing, and verification processing are described in one processing flow shown in FIG. 16, but at least a part of the pre-processing, verification processing, and the like are distributed to different devices and executed. May be good.
- the process data acquisition unit 141 of the abnormal modulation cause identification device 1 acquires the process data (FIG. 16: S11). In this step, from the process data as shown in FIGS. 3 and 6, the data used for the abnormality detection model is extracted. It is assumed that the process data is stored in the storage device 12 in a file of a predetermined format such as OPC data, a so-called database table, CSV, or the like. Further, the process data includes attributes such as date and time and tags, and particularly in the process data of batch processing, attributes such as serial numbers and steps may be further included.
- the preprocessing unit 142 of the abnormal modulation cause identification device 1 associates the process data of continuous processing with the serial number (FIG. 16: S12).
- the process data acquired in the continuous process is associated with the serial number group of the process data acquired in the batch process, and the process data used in the calculation of the degree of abnormality is associated. .. That is, in the knowledge base shown in FIG. 9 and the logic tree shown in FIG. 11, when a certain cause affects both the process data of batch processing and the process data of continuous processing, it is based on the data linked in this step. The degree of abnormality and the degree of establishment are calculated.
- the preprocessing unit 142 extracts and processes the data used in the abnormality determination model (FIG. 16: S13). In this step, the preprocessing unit 142 extracts data for a predetermined period used for abnormality determination based on the set values of a table such as a knowledge base, and calculates a feature amount according to each method.
- the preprocessing unit 142 extracts the process data at a predetermined timing and period, and the instantaneous value which is the process data itself, the maximum value, the minimum value, and the integral of the process data. A value, a difference, an integral value of the reaction rate, a differential coefficient at a predetermined time point, and the like are calculated and stored in the storage device 12.
- the time-series process data is vectorized or matrixed.
- synchronous processing is performed on a plurality of process data, and average time-series data is obtained.
- synchronization processing is performed for a plurality of process data.
- the preprocessing unit 142 may perform predetermined data cleansing on the process data.
- the data cleansing process is a process for eliminating outliers, and various methods can be adopted.
- the moving average value may be calculated using the latest data.
- the difference between the moving average value and the measured value is taken, and the standard deviation ⁇ representing the variation in the difference is obtained.
- a value that does not fall within a predetermined confidence interval such as an interval from the average value of the probability distribution -3 ⁇ to the average of the probability distribution + 3 ⁇ (also referred to as a 3 ⁇ interval) may be excluded.
- the difference between the measured values before and after may be excluded from the value that does not fall within the 3 ⁇ interval.
- the learning processing unit 143 of the abnormality modulation cause identification device 1 performs the abnormality detection model construction processing (FIG. 16: S2).
- an anomaly detection model including an abnormality degree calculation is created based on the knowledge base shown in FIG. Specifically, for one or more "impacts" associated with each of the "assumed causes” in FIG. 9, the degree of abnormality by the method registered in the "calculation method” is calculated, and the table is expressed by the combination of the degree of abnormality. Create an anomaly detection model. Further, the learning processing unit 143 adjusts the parameters of the model by using the training data depending on the method of abnormality detection.
- the weighting coefficient between layers is adjusted so that the information of the input process data can be restored after being compressed.
- the dependency between variables is quantified based on the covariance matrix of process data from multiple sensors. Then, the learning processing unit 143 stores the created abnormality detection model in the storage device 12.
- the abnormality determination unit 144 of the abnormality modulation cause identification device 1 calculates the degree of abnormality using the created abnormality detection model and the test data (FIG. 16: S31). In this step, the abnormality determination unit 144 calculates the abnormality degree according to the method of calculating the abnormality degree. For example, when calculating the degree of anomaly by the hoteling method, the sample mean and sample standard deviation of the population are estimated using the process data, and the degree of anomaly is obtained based on the distance from the average of the population to the process data to be verified. ..
- the distance between the data is calculated, and the degree of abnormality is calculated according to the distance from the data to be verified to the data closest to the k-th.
- the degree of anomaly is obtained by the k-nearest neighbor method or the hoteling theory based on the integrated value of the distances between the time-series data synchronized in the preprocessing.
- the process data to be verified is input to the autoencoder, and the degree of abnormality is obtained according to the difference between the value of the input layer and the value of the output layer.
- the degree of anomaly by the graphical lasso the dependency between variables is obtained using the process data to be verified, and the degree of abnormality according to the magnitude of the difference from the reference dependency is obtained.
- the cause diagnosis unit 145 of the abnormal modulation cause identification device 1 obtains the degree of establishment of the assumed cause using the calculated degree of abnormality (FIG. 16: S32).
- the degree of establishment is calculated based on the ratio of the modulation associated with the influence.
- the cause (2) in FIG. 9 is associated with three effects: an increase in the water content of the tag 002, an increase in the temperature 1 of the tag 004, and a decrease in the temperature 2 of the tag 005.
- the degree of abnormality calculated for each of the effects in S31 of FIG. 16 the ratio of the three effects whose degree of abnormality exceeds the threshold value may be defined as the degree of establishment.
- the degree of establishment can be 66.7%. Further, in the calculation of the degree of establishment, further weighting may be performed according to the type of influence (tag) or based on the magnitude of the degree of abnormality. For example, as the degree of establishment, the sum may be obtained after multiplying each influence by a weight.
- the output control unit 146 outputs the degree of abnormality calculated in S31 and the degree of establishment calculated in S32 in order for the user to evaluate the created model (FIG. 16: S33).
- cross-validation is performed using test data different from the training data used for building the model among the process data collected in the past operation of the plant 3.
- it is verified whether the alarm and the action to deal with it are output by appropriately detecting the abnormality using the process data at the time when the abnormality occurred in the past.
- the learning processing unit 143 determines whether or not the abnormality can be detected with sufficient accuracy (FIG. 16: S4).
- the threshold value registered in the knowledge base (in other words, the normal range of process data) is corrected so that the abnormality can be detected appropriately, and after S31. Repeat the process.
- S4 the operation using the abnormality detection model and the threshold value created in S2 is performed. It should be noted that at least a part of the judgment of S4 may be made by the user.
- FIG. 17 is a diagram showing an example of an action table.
- the table of FIG. 17 includes the cause, action 1, and action 2 attributes.
- the cause field the cause corresponding to the assumed cause of the knowledge base is registered.
- information indicating the action to be taken by the operator of the plant 3 in order to eliminate the corresponding cause is registered.
- FIG. 18 is a processing flow diagram showing an example of anomaly detection processing executed by the anomaly modulation cause identification device 1.
- the processor 14 of the anomalous modulation cause identification device 1 executes a process as shown in FIG. 18 by executing a predetermined program.
- the anomaly detection process is executed in near real time using the process data obtained by the operation of the plant 3.
- the abnormality detection process mainly includes a pre-process (FIG. 18: S10), a model read process (S20), and an abnormality determination process (S30).
- FIG. 18 the same reference numerals are given to the steps corresponding to the learning process shown in FIG. 16, and the differences from the learning process will be mainly described below.
- the process will be described as processing by the same device as the device that performs the learning process, but the device that performs the abnormality detection process may be different from the device that performs the learning process. Further, it is assumed that the table of the abnormality detection model, the threshold value, the knowledge base, etc. created in the learning process is stored in the storage device 12 in advance.
- the process data acquisition unit 141 of the abnormal modulation cause identification device 1 acquires the process data (FIG. 18: S11). It is assumed that the process data is stored in the storage device 12 in a file of a predetermined format such as OPC data, a so-called database table, CSV, or the like. This step is almost the same as S11 in FIG. 16, but the data regarding the process in operation in the plant 3 is acquired. Further, the preprocessing unit 142 of the abnormal modulation cause identification device 1 associates the process data of continuous processing with the serial number (FIG. 18: S12). This step is the same as S12 in FIG. Then, the preprocessing unit 142 extracts and processes the data used in the abnormality determination model (FIG. 18: S13). This step is almost the same as S13 in FIG. 16, but it is not necessary to perform data cleansing.
- a predetermined format such as OPC data, a so-called database table, CSV, or the like. This step is almost the same as S11 in FIG. 16, but the data regarding the
- the abnormality determination unit 144 of the abnormality modulation cause identification device 1 reads out the abnormality detection model created in the learning process from the storage device 12 (FIG. 18: S20). Further, the abnormality determination unit 144 calculates the degree of abnormality using the created abnormality detection model and the process data obtained by the operation of the plant 3 (FIG. 18: S31). This step is the same as S31 in FIG. Further, the cause diagnosis unit 145 of the abnormality modulation cause identification device 1 obtains the establishment degree of the assumed cause using the calculated abnormality degree (FIG. 18: S32). This step is the same as S32 in FIG.
- the output control unit 146 outputs the degree of abnormality calculated in S31 and the degree of establishment calculated in S32, and issues an alarm when any of the degree of abnormality exceeds a predetermined threshold value (FIG. FIG. 18: S303).
- a predetermined threshold value FIG. FIG. 18: S303.
- the process data indicating the operating state of the plant 3, the degree of abnormality, and the degree of establishment of the assumed cause are presented to the user via the input / output device 13.
- FIG. 19 is a diagram showing an example of a screen output to the input / output device 13.
- FIG. 19 is an example of the main control chart, and shows the transition of individual process data as a line graph.
- the area 131 displayed on the input / output device 13 displays a plurality of combinations of the identification information of the process data acquired from the plant 3 and the latest value.
- the control chart of the area 132 shows the transition of the value for a specific process data as a line graph.
- the vertical axis represents the value of the process data, and the horizontal axis represents the time axis.
- the solid line represents the true value and the broken line represents the estimated value.
- the true value is the process data itself for which the degree of abnormality is calculated, and the estimated value may be an estimated value by regression analysis of the process data for which the degree of abnormality is calculated.
- the thin broken line represents the upper limit and the lower limit of the normal range (in other words, the threshold value for abnormality detection).
- the numerical value of the process data at the time indicated by the pointer is displayed. You may.
- the cause of the modulation of the process data displayed in the region 132 or the tag that can identify it is displayed on the horizontal axis, and the vertical axis represents the degree of establishment of the cause as a bar graph.
- the degree of establishment is calculated by the cause diagnosis unit 145 based on the degree of abnormality calculated by the abnormality determination unit 144 for the event that is assumed to be the assumed cause of the modulation of the process data.
- the user can recognize the candidate of the cause of the modulation and its accuracy based on the magnitude of the degree of establishment, and can easily identify the cause of the modulation.
- the factor effect diagram shall be displayed by the output control unit 146 after the abnormality determination unit 144 calculates the degree of abnormality at the designated time or the current time when the "diagnosis" button in the area 134 is pressed. Then, when the user operates an input / output device 13 such as a pointing device and selects one of the bar graphs in the factor effect diagram, the cause of the modulation corresponding to the bar graph is highlighted in the logic tree.
- FIG. 20 is a diagram showing another example of the screen output to the input / output device 13 by the output control unit 146.
- FIG. 20 is an example of a tree diagram, and a logic tree as shown in FIG. 10 is displayed.
- the effect corresponding to the process data of tag 004 is highlighted on the logic tree. Highlighting is performed by changing the display mode, for example, changing the color or changing the line type.
- the corresponding rectangles are hatched.
- the thick lined rectangle connected to the upstream side of the logic tree represents the expected cause of the effect.
- Each cause may be displayed as shown in the balloon in FIG. 20, or the influence on the process data other than the cause may be displayed.
- the degree of establishment of each cause calculated in S32 of FIG. 18 may be further displayed, or the action may be further displayed. Further, the cause may be displayed when the user moves the pointer on each rectangle.
- the process trend of each tag listed in the factor effect diagram may be displayed, and in particular, the process trend of the tag that can identify the cause of the modulation is displayed. You may.
- the process trend uses the process data stored in the storage device 12 to calculate a value for each period such as, for example, every predetermined time, every predetermined number of days, every predetermined number of months, or every season, and plots it on a graph. It was done.
- the output control unit 146 may output a log of the degree of abnormality at a timing when the degree of abnormality calculated by each calculation method exceeds a predetermined threshold value, for example.
- a log of the expected cause and the degree of establishment may be output.
- the above-described embodiment has been described by taking a chemical plant as an example, it can be applied to a manufacturing process in a general production facility.
- the lot number may be used as a processing unit, and the processing according to the batch process in the embodiment may be applied.
- At least a part of the function of the abnormal modulation cause identification device 1 may be distributed to a plurality of devices to be realized, or the same function may be provided by a plurality of devices in parallel. Further, at least a part of the functions of the abnormal modulation cause identification device 1 may be provided on the so-called cloud.
- the present disclosure also includes a method for executing the above-mentioned processing, a computer program, and a computer-readable recording medium on which the program is recorded.
- the recording medium on which the program is recorded can perform the above-mentioned processing by causing the computer to execute the program.
- the computer-readable recording medium means a recording medium that can be read from a computer by accumulating information such as data and programs by electrical, magnetic, optical, mechanical, or chemical action.
- recording media those that can be removed from the computer include flexible disks, magneto-optical disks, optical disks, magnetic tapes, memory cards, and the like.
- HDD High Density Digital
- SSD Solid State Drive
- ROM Read Only Memory
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
生産設備における異常変調の原因の特定性能を向上させる。異常変調原因特定装置は、生産設備が備える複数のセンサによって継続的に出力され、処理対象の管理番号と紐づけられたプロセスデータを記憶する記憶装置から、プロセスデータを読み出すプロセスデータ取得部と、プロセスデータ取得部が読み出したプロセスデータの変調の程度を表す異常度を、複数のセンサについて継続的に算出する異常判定部と、原因と、当該原因から生じる影響として現れる複数のセンサが出力するプロセスデータの変調との組合せを定義する因果関係情報を用いて、複数のセンサが出力する、処理対象の管理番号が対応するプロセスデータについて、異常判定部が算出した異常度が所定の基準を満たすか判断する原因診断部とを備える。
Description
本開示は、異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラムに関する。
従来、プラントから受信する運転データを用いて、異常の原因を推定するための技術が提案されていた。例えば、過去に発生した第一異常事象の発生確率の重み付けを、未発生の第二異常事象の発生確率の重み付けよりも重くして、異常の予兆の原因を推定する技術が提案されている(特許文献1)。また、診断対象プロセスの異常が検出された場合に、診断対象プロセスの状態を示すプロセス変数の寄与の割合を示す寄与率を推定し、寄与率に基づいて、予め定義された登録事象の中から異常の要因である可能性のある事象を推定する技術も提案されている(特許文献2)。
また、プロセスの状態を予測する複数のサブモデルを用いて、プロセスの正常状態からの逸脱指標を算出し、サブモデルごとに算出した逸脱指標からなる逸脱指標パターンセットに基づいて、プロセスで発生した異常状態の原因を推定する技術も提案されている(特許文献3)。また、監視運転データを構成する複数の運転データの各々について監視異常度に対する監視寄与度を算出し、監視寄与度の大きい上位N個の運転データにより構成される診断対象データ群を抽出し、診断対象データ群と、参照運転データに含まれる参照寄与度の大きい上位M個の運転データにより構成される診断参照データ群との合致指標を算出し、合致指標が合致判定閾値以上となる参照運転データに基づいてプラントの異常を予測する技術も提案されている(特許文献4)。
一般的に、生産設備においては、異常変調を予防し、安全性、安定性、生産物の品質、コスト等への影響を抑制することが望ましい。本技術は、生産設備における異常変調の原因の特定性能を向上させることを目的とする。
異常変調原因特定装置は、生産設備が備える複数のセンサによって継続的に出力され、処理対象の管理番号と紐づけられたプロセスデータを記憶する記憶装置から、プロセスデータを読み出すプロセスデータ取得部と、プロセスデータ取得部が読み出したプロセスデータの変調の程度を表す異常度を、複数のセンサについて継続的に算出する異常判定部と、原因と、当該原因から生じる影響として現れる複数のセンサが出力するプロセスデータの変調との組合せを定義する因果関係情報を用いて、複数のセンサが出力する、処理対象の管理番号が対応するプロセスデータについて、異常判定部が算出した異常度が所定の基準を満たすか判断する原因診断部とを備える。
生産設備において例えば処理対象が複数の工程を経て処理される場合、プロセスデータの測定時刻からは、複数のセンサが同一の処理対象を測定したプロセスデータを紐づけることができない。上述のように管理番号を基準としてプロセスデータを対応付けることで、複数のセンサが同一の処理対象を測定したプロセスデータに基づく異常度の算出が容易に且つ正確になる。したがって、生産設備における異常変調の原因の特定性能を向上させることができる。
また、原因診断部は、複数のセンサが出力する、処理対象の管理番号が対応するプロセスデータのうち、異常判定部が算出した異常度が所定の基準を満たすプロセスデータの割合に基づいて、変調の原因の確度を求めるようにしてもよい。変調の影響が現れる複数のセンサが出力するプロセスデータのうち、異常度が所定の基準を満たすプロセスデータが少なくても、何らかの原因に基づく異常の兆候を検知できる。したがって、生産設備における異常変調の原因の特定性能を向上させることができる。
また、生産設備において実施される工程が対応し、管理番号が異なるプロセスデータを用いて、平均的な時系列データを算出し、算出された平均的な時系列データとの類似度に基づいてプロセスデータを同期させる前処理部をさらに備え、異常判定部は、同期させられた、工程が対応し管理番号が異なるプロセスデータについて、所定の基準からの乖離の程度に基づいて異常度を算出するようにしてもよい。異なる管理番号の処理対象に対する同一の工程のプロセスデータについては、例えば上述のように同期させ、異常度を算出してもよい。
プロセスデータは、生産設備において実施される工程における処理の段階を示すステップと対応付けて記憶装置に記憶され、異なる管理番号に対応付けられ、ステップが対応するプロセスデータを重ねて出力装置に表示させる出力制御部をさらに備えるようにしてもよい。また、同一の工程に係るプロセスデータを同期させて表示させることで、ユーザは複数のプロセスデータを容易に比較できるようになる。
なお、課題を解決するための手段に記載の内容は、本開示の課題や技術的思想を逸脱しない範囲で可能な限り組み合わせることができる。また、課題を解決するための手段の内容は、コンピュータ等の装置若しくは複数の装置を含むシステム、コンピュータが実行する方法、又はコンピュータに実行させるプログラムとして提供することができる。なお、プログラムを保持する記録媒体を提供するようにしてもよい。
開示の技術によれば、生産設備における異常変調の原因の特定精度を向上させることができる。
以下、図面を参照しつつ異常変調原因特定装置の実施形態について説明する。
<実施形態>
図1は、本実施形態に係るシステムの一例を表す図である。システム100は、異常変調原因特定装置1と、制御ステーション2と、プラント3とを含む。システム100は、例えば分散型制御システム(DCS:Distributed Control System)であり、複数の制御ステーション2を含む。すなわち、プラント3の制御系は複数の区画に分割され、各制御区画が制御ステーション2によって分散制御される。制御ステーション2は、DCSにおける既存の設備であり、プラント3が備えるセンサ等から出力される状態信号を受信したり、プラント3に対して制御信号を出力する。そして、制御信号に基づいて、プラント3が備えるバルブ等のアクチュエータやその他の機器が制御される。
図1は、本実施形態に係るシステムの一例を表す図である。システム100は、異常変調原因特定装置1と、制御ステーション2と、プラント3とを含む。システム100は、例えば分散型制御システム(DCS:Distributed Control System)であり、複数の制御ステーション2を含む。すなわち、プラント3の制御系は複数の区画に分割され、各制御区画が制御ステーション2によって分散制御される。制御ステーション2は、DCSにおける既存の設備であり、プラント3が備えるセンサ等から出力される状態信号を受信したり、プラント3に対して制御信号を出力する。そして、制御信号に基づいて、プラント3が備えるバルブ等のアクチュエータやその他の機器が制御される。
異常変調原因特定装置1は、制御ステーション2を介してプラント3の状態信号(プロセスデータ)を取得する。プロセスデータは、原料や中間的な生産物である処理対象の温度、圧力、流量等や、プラント3が備える機器の運転条件を定める設定値等を含む。また、異常変調原因特定装置1は、想定される原因と、例えば異常として現れる影響との対応関係を記憶する知識ベースに基づく異常検知モデルを作成する。例えば、知識ベースに基づいて作成された、プロセスデータの変化について許容範囲からの逸脱を検知する手法に基づいて異常変調やその予兆、その原因を特定するためのモデルが作成される。そして、異常変調原因特定装置1は、モデルとプロセスデータとを用いて、異常変調の発生又はその予兆を検知することができる。また、異常変調原因特定装置1は、異常変調の原因及びそれに対処するためのアクションを記憶するテーブルと、特定された原因とに基づいて、例えば異常変調を抑制するための運転条件の候補を求め、ユーザに提示してもよい。
図2は、プラントが備える機器によって行われるプロセスの一例を示す模式的な図である。本実施形態では、プロセスは、バッチ工程31と連続工程32とを含み得る。バッチ工程31においては、所定の処理単位ごとに処理対象が逐次処理され、例えば各機器への原料の受入れ、保持、排出といった処理が順に行われる。連続工程32においては、継続して導入される処理対象が連続的に処理され、例えば、原料の受入れ、保持、排出といった処理が並行して行われる。また、プロセスは、並列に同一の処理を行う複数の系列33を含み得る。
各処理を行う機器は、例えば反応器、蒸留装置、熱交換器、圧縮機、ポンプ、タンク等を含み、これらが配管を介して接続されている。また、機器や配管の所定の位置には、センサやバルブ等が設けられる。センサは、温度計、流量計、圧力計、レベル計、濃度計等を含み得る。また、センサは、各機器の運転状態を監視し、状態信号を出力する。また、プラント3が備えるセンサは、センサの各々を特定するための識別情報である「タグ」が付されているものとする。すなわち、タグに基づいてプロセスデータの種類を特定することができる。そして、異常変調原因特定装置1及び制御ステーション2は、各機器への入出力信号を、タグに基づいて管理する。
<バッチ工程>
図3は、バッチ工程におけるプロセスデータの一例を説明するための図である。図3の左側の列は、図2に示したバッチ工程31のプロセスの一部を示す。具体的には、プロセスは、シュレッダー301と、サイクロン302と、前処理303と、予冷機304と、反応機305とを含む。また、これらのプロセスは、前処理工程、予冷工程、反応工程に分類されている。図3の右側の列は、各プロセスにおいて取得されるプロセスデータの一例を示す。前処理工程においては、タグが001及び002であるセンサから時系列のデータが取得される。予冷工程においては、タグが003及び004であるセンサから時系列のデータが取得される。反応工程においては、タグが005、006及び007であるセンサから時系列のデータが取得される。また、バッチ工程においては、製造番号(「製番」、「バッチナンバー」、「管理番号」とも呼ぶ)と対応付けられた処理対象を、断続的に処理する。すなわち、製造番号は、バッチ工程においてまとめて処理される処理対象を識別するための識別情報である。図3に示すように、時間の経過と共に、後続の製造番号と対応付けられた処理対象に関する時系列のデータが得られる。本実施形態では、制御ステーション2が、製造番号や、バッチ工程を構成する細分化された工程における処理の段階を示すステップを管理するものとする。なお、ステップを、制御ステーション2と接続されたプラント3内のPLC(Programmable Logic Controller,シーケンサ)によってリセットする場合には、制御ステーション2とプラント3との通信のタイミングに応じて適宜(例えばPLCにおいてステップが切り替わった後、設定時間経過後に)制御ステーション2から出力されるプロセスデータの製造番号を採用するようにしてもよい。また、設定時間は、製造ラインごと、細分化された工程ごとに設定できるようにしてもよい。
図3は、バッチ工程におけるプロセスデータの一例を説明するための図である。図3の左側の列は、図2に示したバッチ工程31のプロセスの一部を示す。具体的には、プロセスは、シュレッダー301と、サイクロン302と、前処理303と、予冷機304と、反応機305とを含む。また、これらのプロセスは、前処理工程、予冷工程、反応工程に分類されている。図3の右側の列は、各プロセスにおいて取得されるプロセスデータの一例を示す。前処理工程においては、タグが001及び002であるセンサから時系列のデータが取得される。予冷工程においては、タグが003及び004であるセンサから時系列のデータが取得される。反応工程においては、タグが005、006及び007であるセンサから時系列のデータが取得される。また、バッチ工程においては、製造番号(「製番」、「バッチナンバー」、「管理番号」とも呼ぶ)と対応付けられた処理対象を、断続的に処理する。すなわち、製造番号は、バッチ工程においてまとめて処理される処理対象を識別するための識別情報である。図3に示すように、時間の経過と共に、後続の製造番号と対応付けられた処理対象に関する時系列のデータが得られる。本実施形態では、制御ステーション2が、製造番号や、バッチ工程を構成する細分化された工程における処理の段階を示すステップを管理するものとする。なお、ステップを、制御ステーション2と接続されたプラント3内のPLC(Programmable Logic Controller,シーケンサ)によってリセットする場合には、制御ステーション2とプラント3との通信のタイミングに応じて適宜(例えばPLCにおいてステップが切り替わった後、設定時間経過後に)制御ステーション2から出力されるプロセスデータの製造番号を採用するようにしてもよい。また、設定時間は、製造ラインごと、細分化された工程ごとに設定できるようにしてもよい。
図4は、予め設定しておく工程ライン定義テーブルの一例を示す図である。工程ライン定義テーブルは、系列及び工程ごとに、製造番号、各工程における処理の段階を示すステップの定義、各工程において処理される処理対象の品種が登録される。工程ライン定義テーブルは、いわゆるデータベースのテーブルであってもよいし、CSVのような所定の形式のファイルであってもよい。また、工程ライン定義テーブルも、予めユーザによって作成され、異常変調原因特定装置1によって読み出される。
工程ライン定義テーブルは、系列、工程、製番、ステップ、品種の各属性を含む。系列のフィールドには、プロセスの系列を特定するための識別情報が登録される。工程のフィールドには、バッチ工程における細分化された工程を示す識別情報が登録される。製番のフィールドには、バッチ工程においてまとめて処理される処理対象を識別するための識別情報である製造番号が登録される。ステップのフィールドには、当該工程における処理の段階を示す複数のステップのタイミングの定義が登録される。品種のフィールドには、処理対象の種別が登録される。
図5は、予め設定しておくタグ定義テーブルの一例を示す図である。タグ定義テーブルは、各タグに対応するセンサから得られるプロセスデータの取得タイミングを定義する。
なお、タグ定義テーブルは、いわゆるデータベースのテーブルであってもよいし、CSV(Comma Separated Values)のような所定の形式のファイルであってもよい。また、タグ定義テーブルは、予めユーザによって作成され、異常変調原因特定装置1によって読み出される。
なお、タグ定義テーブルは、いわゆるデータベースのテーブルであってもよいし、CSV(Comma Separated Values)のような所定の形式のファイルであってもよい。また、タグ定義テーブルは、予めユーザによって作成され、異常変調原因特定装置1によって読み出される。
タグ定義テーブルは、タグ、系列、工程、収集間隔の各属性を含む。タグのフィールドには、センサの識別情報であるタグが登録される。系列のフィールドには、プロセスの系列を特定するための識別情報が登録される。工程のフィールドには、バッチ工程における細分化された工程を示す識別情報が登録される。収集間隔のフィールドには、センサの出力値を取得する間隔を示す情報が登録される。
<連続工程>
図6は、連続工程におけるプロセスデータの一例を説明するための図である。図6の左側の列は、図2に示した連続工程32のプロセスの一部を示す。具体的には、プロセスは、タンク311と、ポンプ312とを含む。図6の右側の列は、各プロセスにおいて取得されるプロセスデータの一例を示す。連続工程32においては、タグと対応付けられ、製造番号とは対応付けられていない時系列のデータが、センサから継続して取得される。連続工程においては、タグが102及び103である各センサから時系列のデータが取得される。連続工程においては、機器が連続的に処理対象を受け入れ、継続して処理を行う。
図6は、連続工程におけるプロセスデータの一例を説明するための図である。図6の左側の列は、図2に示した連続工程32のプロセスの一部を示す。具体的には、プロセスは、タンク311と、ポンプ312とを含む。図6の右側の列は、各プロセスにおいて取得されるプロセスデータの一例を示す。連続工程32においては、タグと対応付けられ、製造番号とは対応付けられていない時系列のデータが、センサから継続して取得される。連続工程においては、タグが102及び103である各センサから時系列のデータが取得される。連続工程においては、機器が連続的に処理対象を受け入れ、継続して処理を行う。
バッチ工程の後に連続工程を行う場合、バッチ工程における処理対象と連続工程における処理対象とを紐づけるために、本実施形態では予めユーザによって設定されるトレーサビリティ情報を用いる。図7は、トレーサビリティ情報の一例を示す図である。トレーサビリティ情報は、サンプリング間隔及び滞留時間の各属性を含む。サンプリング間隔のフィールドには、連続工程において例えば縮分法による工程検査のためのサンプリングを行う間隔が登録される。滞留時間のフィールドには、バッチ工程の完了から、連続工程に含まれるプロセスに到達するまでに処理対象が滞留する時間が登録される。
図8は、連続工程におけるプロセスデータとバッチ工程における製造番号との対応付けを説明するための図である。プロセスデータの取得は、例えばトレーサビリティ情報に設定された間隔で行われる。また、バッチ工程の後に連続工程を行う場合、所定の期間に完了したバッチ工程による生成物が、連続工程の処理対象としてタンク等に導入される。したがって、連続工程におけるプロセスデータは、バッチ工程の完了からセンサによる測定時までの処理対象の滞留時間を遡り、バッチ工程の完了時刻が所定の期間に含まれる製造番号群と対応付けることができる。このような紐づけにより、バッチ工程と連続工程とが続けて実施される場合において、バッチ工程におけるプロセスデータを利用する異常原因の特定精度を向上させることができる。
以上のように、バッチ処理における製造番号と連続工程における測定タイミングとの対応付けにより、異常原因の特定精度を向上させることができる。
図9は、知識ベースに予め登録される情報の一例を示す図である。知識ベースは、異常変調原因特定装置1の記憶装置に予め記憶されるものとする。図9のテーブルは、センサ(タグ)の各々に対応する「影響」の列と、変調の「想定原因」を示す行とを含む。すなわち、各行に示す「原因1」、「原因2」等の原因によって影響を受けるセンサに対応する列に、値の変動の方向が登録されている。知識ベースにおいては、変動の方向を、センサの出力値の増加(上昇)を表す「上」又は減少(降下)を表す「下」で表示している。
なお、図9に示すように、原因と影響の組み合わせは1対1とは限らない。また、各センサに対応付けて、プロセスデータの演算方法、抽出タイミング、異常判定に用いる閾値等が定められている。演算方法の行には、各センサの出力値に対して行う演算を示す情報が登録される。なお、本実施形態においては、例えば、ホテリング法、k近傍法、DTW Barycenter Averaging、Autoencoder、グラフィカルラッソ等の機械学習手法を用いて演算を行うものとする。抽出タイミングの行には、各センサの出力値のうち異常判定に用いる値を抽出するタイミングを示す情報が登録される。タイミングは、例えばバッチ処理においては、各工程における処理の段階を示すステップや特定の期間、時点等で定義してもよい。また、連続処理においては、図7に示したようなサンプリング間隔等によって定義してもよい。閾値の行には、各異常判定手法において異常と判定する基準である閾値が登録される。閾値は、例えば上限及び下限の2つを含むものであってもよい。以上のように、知識ベースは、原因となる事象と、それに起因して生じるプロセスデータの変調である影響との因果関係の組合せを定義する。また、因果関係の組合せは、影響として現れる変調を根とし、その想定原因を葉とし、原因から変調に至る過程で現れる事象を時系列に沿った階層状に接続したツリー形式で表すことができる。
なお、図9に示すように、原因と影響の組み合わせは1対1とは限らない。また、各センサに対応付けて、プロセスデータの演算方法、抽出タイミング、異常判定に用いる閾値等が定められている。演算方法の行には、各センサの出力値に対して行う演算を示す情報が登録される。なお、本実施形態においては、例えば、ホテリング法、k近傍法、DTW Barycenter Averaging、Autoencoder、グラフィカルラッソ等の機械学習手法を用いて演算を行うものとする。抽出タイミングの行には、各センサの出力値のうち異常判定に用いる値を抽出するタイミングを示す情報が登録される。タイミングは、例えばバッチ処理においては、各工程における処理の段階を示すステップや特定の期間、時点等で定義してもよい。また、連続処理においては、図7に示したようなサンプリング間隔等によって定義してもよい。閾値の行には、各異常判定手法において異常と判定する基準である閾値が登録される。閾値は、例えば上限及び下限の2つを含むものであってもよい。以上のように、知識ベースは、原因となる事象と、それに起因して生じるプロセスデータの変調である影響との因果関係の組合せを定義する。また、因果関係の組合せは、影響として現れる変調を根とし、その想定原因を葉とし、原因から変調に至る過程で現れる事象を時系列に沿った階層状に接続したツリー形式で表すことができる。
知識ベースは、例えばHAZOP(Hazard and Operability Study)に基づいてユーザが予め作成するものとする。HAZOPは、例えば、プラントを構成する計装機器による監視ポイントでの検知手段、管理範囲(上下限の閾値でありアラームの設定点)、管理範囲からのずれ(異常、変調)、管理範囲からのずれが発生する想定原因の列挙、いずれの想定原因によりずれが発生したかを判断するロジック(検知手段)、ずれが発生したことによる影響、ずれが発生した場合にとる処置、その処置に対するアクションに関し、これらを関連付けて網羅的に列挙するための手法である。なお、HAZOPに限らず、FTA(Fault Tree Analysis)、FMEA(Failure Mode and Effect Analysis)、ETA(Event Tree Analysis)又はこれらを応用した手法や、これらに類する手法、オペレータへのヒアリング結果から抽出された内容、作業標準書や技術標準書から抽出された内容に基づいて知識ベースを作成するようにしてもよい。本実施形態では、知識ベースにおいて因果関係を有するとされているパラメータに基づいて異常検知を行う。
以上のようなテーブルに設定される情報に基づいて、異常変調原因特定装置1は、プラント3から取得したプロセスデータのうち所定のタイミングのデータを抽出し、予め定められた手法によって異常判定を行う。図10は、変調とその原因との関係を表すロジックツリーの一例を示す図である。ロジックツリーは、図9に示した知識ベースに基づいて作成することができる。また、図10のロジックツリーは、生産工程における上流側であって時系列上の早期の事象を左側に配置し、生産工程における下流側であって時系列上の後続の事象を右側に配置し、想定原因から影響として現れる変調に向かって矢印で階層状に接続したものである。また、ロジックツリーは、知識ベーステーブルにおける1つの変調に対して複数の想定原因が存在する場合は分岐させて接続し、想定原因から変調までの過程において共通して現れる事象を束ねて表示している。各分岐の上流側の端部に位置する太い実線の矩形は、知識ベーステーブルの想定原因に相当し、図9及び図10の括弧内の数字が対応している。また、細い実線の矩形は、知識ベーステーブルの影響に相当し、プロセスデータによって観察できる事象を表している。このような影響の各々について、知識ベーステーブルで定められた演算方法に応じた演算が行われる。また、各想定原因について、上記演算を行うための数式を含むモデルが定義され、モデルを用いて異常又はその予兆を検知したり、その原因特定を支援できるようになる。
<演算方法>
上述の演算は、例えば次のような手法を含むものであってもよい。また、異常変調原因特定装置1は、これらの演算結果を表示するようにしてもよい。
上述の演算は、例えば次のような手法を含むものであってもよい。また、異常変調原因特定装置1は、これらの演算結果を表示するようにしてもよい。
・ホテリング法(T2法)
例えば1つのセンサから得られる複数のプロセスデータが所定の確率密度関数に従うと仮定し、プロセスデータを用いて算出される標本平均及び標本標準偏差から、母集団の平均及び標準偏差を推定する。所定の確率密度関数は、例えば正規分布である。そして、母集団の平均から検証対象のプロセスデータまでの距離に基づいて異常度を求める。例えばマハラノビス距離の2乗に基づいて異常度が決定される。なお、プロセスデータそのものの瞬時値を用いてもよいし、所定期間におけるプロセスデータの最大値、最小値、積分値、標準偏差、又は微分係数(傾き)等を用いてホテリング理論に基づく異常度を算出するようにしてもよい。ホテリング法によれば、所定の基準からの外れ値を検知することができる。
例えば1つのセンサから得られる複数のプロセスデータが所定の確率密度関数に従うと仮定し、プロセスデータを用いて算出される標本平均及び標本標準偏差から、母集団の平均及び標準偏差を推定する。所定の確率密度関数は、例えば正規分布である。そして、母集団の平均から検証対象のプロセスデータまでの距離に基づいて異常度を求める。例えばマハラノビス距離の2乗に基づいて異常度が決定される。なお、プロセスデータそのものの瞬時値を用いてもよいし、所定期間におけるプロセスデータの最大値、最小値、積分値、標準偏差、又は微分係数(傾き)等を用いてホテリング理論に基づく異常度を算出するようにしてもよい。ホテリング法によれば、所定の基準からの外れ値を検知することができる。
・k近傍法
例えば1以上のセンサから得られる時系列のプロセスデータをベクトル化又は行列化し、データ同士の距離を算出する。距離は、ユークリッド距離でもよいし、マハラノビス距離やマンハッタン距離であってもよい。そして、検証対象のデータからk番目に近いデータとの距離に応じて異常度を判定する。k近傍法においては他のデータとの関係に基づいて判断する。したがって、例えば正常値が複数のクラスターに分類できるような場合においては、複数のクラスターのいずれからも遠い外れ値を検知することができる。
例えば1以上のセンサから得られる時系列のプロセスデータをベクトル化又は行列化し、データ同士の距離を算出する。距離は、ユークリッド距離でもよいし、マハラノビス距離やマンハッタン距離であってもよい。そして、検証対象のデータからk番目に近いデータとの距離に応じて異常度を判定する。k近傍法においては他のデータとの関係に基づいて判断する。したがって、例えば正常値が複数のクラスターに分類できるような場合においては、複数のクラスターのいずれからも遠い外れ値を検知することができる。
・DTW(Dynamic Time Wrapping) Barycenter Averaging
異なるバッチ処理におけるプロセスデータのような複数の時系列データに基づいて、平均的な時系列データを算出することができる。例えば、バッチ処理における対応する区間の、異なる製造番号のプロセスデータについて、それぞれ上記平均的な時系列データとの距離を算出することができる。図11は、プロセスデータの同期処理を説明するための図である。製造番号が異なるバッチ処理の時系列データに含まれる要素である個々の値について、異なる時系列データに含まれる値同士の最短距離を総当たり的に求め、最短距離の積算値が最も小さくなるように、時間軸方向に時系列データをスライドさせて位置合わせを行う。すなわち、時系列データの類似度に基づいて、複数の時系列データを同期させる。このようにすれば、プラント3において実施される工程におけるステップが時系列上で対応するように、複数のプロセスデータを重ねて表示できるようになる。そして、同期させた時系列データ同士の距離の積算値に基づき、k近傍法やホテリング理論により異常度を演算する。DTW Barycenter Averagingによれば、時系列データ間の類否の程度に基づいて異常を検知することができる。
異なるバッチ処理におけるプロセスデータのような複数の時系列データに基づいて、平均的な時系列データを算出することができる。例えば、バッチ処理における対応する区間の、異なる製造番号のプロセスデータについて、それぞれ上記平均的な時系列データとの距離を算出することができる。図11は、プロセスデータの同期処理を説明するための図である。製造番号が異なるバッチ処理の時系列データに含まれる要素である個々の値について、異なる時系列データに含まれる値同士の最短距離を総当たり的に求め、最短距離の積算値が最も小さくなるように、時間軸方向に時系列データをスライドさせて位置合わせを行う。すなわち、時系列データの類似度に基づいて、複数の時系列データを同期させる。このようにすれば、プラント3において実施される工程におけるステップが時系列上で対応するように、複数のプロセスデータを重ねて表示できるようになる。そして、同期させた時系列データ同士の距離の積算値に基づき、k近傍法やホテリング理論により異常度を演算する。DTW Barycenter Averagingによれば、時系列データ間の類否の程度に基づいて異常を検知することができる。
平均のような基準からの乖離について、正負の符号を付した異常度を算出するようにしてもよい。図12は、時系列データについて基準からの距離の大きさによって異常度を算出する例を説明するための図である。図13は、同じ時系列データについて正負の方向を考慮した、基準からの距離によって異常度を算出する例を説明するための図である。それぞれ、縦軸は例えば平均からの乖離の程度を表すものとする。破線の矩形で示す部分においては実際のところ変調が発生しているが、図12の例に示す値のみからでは検知が困難である。一方、図13の例においては正負の方向が逆に乖離する傾向が表れているため、変調の検知が容易になっている。
例えば上述のホテリング法においては、距離を2乗せずに、基準からの乖離の程度を正又は負の符号付きの値として求めることで、図13のような異常度が求められる。DTW Barycenter Averaging等においては、時系列データにおける極大値等の特徴的な点について例えば次の式により正又は負の符号を決定すると共に、算出された値を距離の大きさに乗じる。
符号決定式=(μ-x)/|μ-x|
なお、μは、訓練データの平均値(基準値)、xは検証対象のプロセスデータである。このように、符号決定式によれば、時系列データの所定の時点における基準値と、対応する時点における検証対象のプロセスデータとの大小関係に応じて、上記の時点における基準との乖離の方向を表す符号を決定することができる。また、基準からの乖離の程度を示す、符号付きの値を用いることで、図13のような異常度を求めることができ、誤検知を抑えることができる。また、時系列データにおける特徴的な点として、極大値のほか、極小値や、ある時点のプロセスデータと別の時点のプロセスデータとの差等を用いてもよい。
符号決定式=(μ-x)/|μ-x|
なお、μは、訓練データの平均値(基準値)、xは検証対象のプロセスデータである。このように、符号決定式によれば、時系列データの所定の時点における基準値と、対応する時点における検証対象のプロセスデータとの大小関係に応じて、上記の時点における基準との乖離の方向を表す符号を決定することができる。また、基準からの乖離の程度を示す、符号付きの値を用いることで、図13のような異常度を求めることができ、誤検知を抑えることができる。また、時系列データにおける特徴的な点として、極大値のほか、極小値や、ある時点のプロセスデータと別の時点のプロセスデータとの差等を用いてもよい。
・オートエンコーダ(自己符号化器)
図14は、オートエンコーダを用いた異常検知を説明するための図である。本手法では、複数のセンサからのプロセスデータの関係の特徴に基づいて異常判定を行う。具体的には、ニューラルネットワークを用いて、例えば入力データである連続処理やバッチ処理のプロセスデータそのものを教師値とし、入力データの圧縮(エンコード)及び復元(デコード)を行うことができるモデルを作成する。ニューラルネットワークは、例えば、入力層及び出力層のノード数がセンサの数に対応し、中間層のノード数はセンサの数よりも少ない。入力層に入力された情報は、中間層において圧縮され、出力層において復元される。なお、中間層は複数存在してもよく、層間の接続構造は全結合には限定されない。そして、正常時のプロセスデータを訓練データとして学習処理を行い、入力層の値と出力層の値との差が小さくなるようにパラメータを調整したモデルが作成される。また、異常判定処理においては、検証対象のプロセスデータを入力し、入力層の値と出力層の値との差に応じた異常度を演算する。すなわち、異常のあるプロセスデータが入力された場合、中間層において圧縮された情報を出力層において適切に復元することができず、入力層と出力層の値の差が大きくなるため、この差に基づいて異常検知を行うことができる。オートエンコーダによれば、複数のセンサ間の出力値の関係の特徴に基づいて異常を検知することができる。
図14は、オートエンコーダを用いた異常検知を説明するための図である。本手法では、複数のセンサからのプロセスデータの関係の特徴に基づいて異常判定を行う。具体的には、ニューラルネットワークを用いて、例えば入力データである連続処理やバッチ処理のプロセスデータそのものを教師値とし、入力データの圧縮(エンコード)及び復元(デコード)を行うことができるモデルを作成する。ニューラルネットワークは、例えば、入力層及び出力層のノード数がセンサの数に対応し、中間層のノード数はセンサの数よりも少ない。入力層に入力された情報は、中間層において圧縮され、出力層において復元される。なお、中間層は複数存在してもよく、層間の接続構造は全結合には限定されない。そして、正常時のプロセスデータを訓練データとして学習処理を行い、入力層の値と出力層の値との差が小さくなるようにパラメータを調整したモデルが作成される。また、異常判定処理においては、検証対象のプロセスデータを入力し、入力層の値と出力層の値との差に応じた異常度を演算する。すなわち、異常のあるプロセスデータが入力された場合、中間層において圧縮された情報を出力層において適切に復元することができず、入力層と出力層の値の差が大きくなるため、この差に基づいて異常検知を行うことができる。オートエンコーダによれば、複数のセンサ間の出力値の関係の特徴に基づいて異常を検知することができる。
・グラフィカルラッソ
例えば連続処理やバッチ処理における複数のセンサからのプロセスデータの共分散行列に基づいて変数間の依存関係を数値化し、基準となる疎なグラフとして表す。正常時においては、変数間の依存関係は、基準から大きく崩れないものと判断できる。そして、異常判定処理においては、検証対象のプロセスデータを用いて、変数間の依存関係を求め、上述した基準との差異の大きさに応じた異常度を演算する。グラフィカルラッソによれば、プロセスデータ間の相関関係を数値化することができ、関係の崩れに基づいて異常度を検知することができる。
例えば連続処理やバッチ処理における複数のセンサからのプロセスデータの共分散行列に基づいて変数間の依存関係を数値化し、基準となる疎なグラフとして表す。正常時においては、変数間の依存関係は、基準から大きく崩れないものと判断できる。そして、異常判定処理においては、検証対象のプロセスデータを用いて、変数間の依存関係を求め、上述した基準との差異の大きさに応じた異常度を演算する。グラフィカルラッソによれば、プロセスデータ間の相関関係を数値化することができ、関係の崩れに基づいて異常度を検知することができる。
その他、一般的な異常検知手法やこれらを応用した手法をさらに用いるようにしてもよい。また、それぞれの手法において異常検知に用いる閾値は、プラント3の運転において実際に得られたプロセスデータを用いて、正常時には誤判定をすることができるだけ少なく、異常時には異常の発生やその予兆を速やかに検知できるような値を探索し、図9に示した知識ベースに登録しておくようにしてもよい。
<装置構成>
図15は、異常変調原因特定装置1の構成の一例を示すブロック図である。異常変調原因特定装置1は、一般的なコンピュータであり、通信インターフェース(I/F)11と、記憶装置12と、入出力装置13と、プロセッサ14とを備えている。通信I/F11は、例えばネットワークカードや通信モジュールであってもよく、所定のプロトコルに基づき、他のコンピュータと通信を行う。記憶装置12は、RAM(Random Access Memory)やROM(Read Only Memory)等の主記憶装置、及びHDD(Hard-Disk Drive)やSSD(Solid State Drive)、フラッシュメモリ等の補助記憶装置(二次記憶装置)であってもよい。主記憶装置は、プロセッサ14が読み出すプログラムや他のコンピュータとの間で送受信する情報を一時的に記憶したり、プロセッサ14の作業領域を確保したりする。補助記憶装置は、プロセッサ14が実行するプログラムや他のコンピュータとの間で送受信する情報等を記憶する。入出力装置13は、例えば、キーボード、マウス等の入力装置、モニタ等の出力装置、タッチパネルのような入出力装置等のユーザインターフェースである。プロセッサ14は、CPU(Central Processing Unit)等の演算処理装置であり、プログラムを実行することにより本実施形態に係る各処理を行う。図15の例では、プロセッサ14内に機能ブロックを示している。すなわち、プロセッサ14は、所定のプログラムを実行することにより、プロセスデータ取得部141、前処理部142、学習処理部143、異常判定部144、原因診断部145及び出力制御部146として機能する。
図15は、異常変調原因特定装置1の構成の一例を示すブロック図である。異常変調原因特定装置1は、一般的なコンピュータであり、通信インターフェース(I/F)11と、記憶装置12と、入出力装置13と、プロセッサ14とを備えている。通信I/F11は、例えばネットワークカードや通信モジュールであってもよく、所定のプロトコルに基づき、他のコンピュータと通信を行う。記憶装置12は、RAM(Random Access Memory)やROM(Read Only Memory)等の主記憶装置、及びHDD(Hard-Disk Drive)やSSD(Solid State Drive)、フラッシュメモリ等の補助記憶装置(二次記憶装置)であってもよい。主記憶装置は、プロセッサ14が読み出すプログラムや他のコンピュータとの間で送受信する情報を一時的に記憶したり、プロセッサ14の作業領域を確保したりする。補助記憶装置は、プロセッサ14が実行するプログラムや他のコンピュータとの間で送受信する情報等を記憶する。入出力装置13は、例えば、キーボード、マウス等の入力装置、モニタ等の出力装置、タッチパネルのような入出力装置等のユーザインターフェースである。プロセッサ14は、CPU(Central Processing Unit)等の演算処理装置であり、プログラムを実行することにより本実施形態に係る各処理を行う。図15の例では、プロセッサ14内に機能ブロックを示している。すなわち、プロセッサ14は、所定のプログラムを実行することにより、プロセスデータ取得部141、前処理部142、学習処理部143、異常判定部144、原因診断部145及び出力制御部146として機能する。
プロセスデータ取得部141は、例えば通信I/F11及び制御ステーション2を介して、プラント3が備えるセンサからプロセスデータを取得し、記憶装置12に記憶させる。上述したように、プロセスデータは、タグによってセンサと対応付けられている。
前処理部142は、異常検知モデルの作成に際し、プロセスデータを加工する。例えば前処理部142は、プロセスデータと製造番号とを紐付けする。すなわち、予め記憶装置12に保持されている上述したトレーサビリティ情報に基づいて、バッチ処理における所定のタグ、系統及び製造番号に該当するプロセスデータと、連続処理における所定のタグに該当し所定のタイミングで出力されたプロセスデータとを紐づける。また、知識ベース等のテーブルの設定値に基づき異常判定に用いる所定期間のデータを抽出し、各手法に応じた特徴量を演算する。なお、学習処理においては、前処理部142はデータクレンジングを行い、非定常の運転期間におけるデータや、異常発生時のデータ、ノイズ等の外れ値を除外して訓練データを抽出するようにしてもよい。
学習処理部143は、例えば知識ベースに基づいて1以上の演算を含む異常検知モデルを作成し、記憶装置12に記憶させる。このとき、学習処理部143は、訓練データの特徴を学習したパラメータを決定する。なお、複数のセンサの出力値を用いて学習処理を行う場合は、適宜正規化を行うようにしてもよい。
異常判定部144は、プロセスデータと異常検知モデルとを用いて異常度を算出する。
すなわち、異常判定部144は、学習処理においては、交差検証を行うためのテストデータと異常検知モデルとを用いて異常度を算出する。また、異常判定処理においては、プラント3から取得されるプロセスデータを用いて異常度を算出する。
すなわち、異常判定部144は、学習処理においては、交差検証を行うためのテストデータと異常検知モデルとを用いて異常度を算出する。また、異常判定処理においては、プラント3から取得されるプロセスデータを用いて異常度を算出する。
原因診断部145は、算出された異常度を用いて、複数の想定原因の各々について成立度(確度)を算出する。成立度は、例えば、異常判定部が算出した異常度を用いて、知識ベースにおいて各想定原因に関連付けられている影響のうち、プロセスデータに現れている影響の割合やその程度に基づいて算出する。また、想定原因の各々に対応付けて、原因に対してとるべき対処を表すアクションを記憶装置12に記憶させておき、ユーザへアクションを提示できるようにしてもよい。
出力制御部146は、例えば入出力装置13を介して、異常を検知した場合にアラームを発報したり、想定原因ごとの成立度を出力したりする。出力制御部146は、ユーザの操作に応じて適宜以上のような構成要素が、バス15を介して接続されている。なお、便宜上、図15に示す1つの装置がプロセスデータ取得部141、前処理部142、学習処理部143、異常判定部144、原因診断部145及び出力制御部146を備えているが、少なくとも一部の機能を異なる装置に分散させて設けるようにしてもよい。
<学習処理>
図16は、異常変調原因特定装置1が実行する学習処理の一例を示す処理フロー図である。異常変調原因特定装置1のプロセッサ14は、所定のプログラムを実行することにより、図16に示すような処理を実行する。学習処理は、プラント3の過去の運転によって得られたプロセスデータを用いて任意のタイミングで実行される。また、学習処理は、主として前処理(図16:S1)、モデル構築処理(S2)、及び検証処理(S3)を含む。すなわち、プロセスデータの一部を訓練データとし、その他をテストデータとし、交差検証を行うようにしてもよい。なお、上述のテーブル等がユーザによって作成され、予め記憶装置12に記憶されているものとする。便宜上、図16に示す1つの処理フローに前処理、学習処理、及び検証処理を記載しているが、例えば前処理や検証処理等、少なくとも一部を異なる装置に分散させて実行するようにしてもよい。
図16は、異常変調原因特定装置1が実行する学習処理の一例を示す処理フロー図である。異常変調原因特定装置1のプロセッサ14は、所定のプログラムを実行することにより、図16に示すような処理を実行する。学習処理は、プラント3の過去の運転によって得られたプロセスデータを用いて任意のタイミングで実行される。また、学習処理は、主として前処理(図16:S1)、モデル構築処理(S2)、及び検証処理(S3)を含む。すなわち、プロセスデータの一部を訓練データとし、その他をテストデータとし、交差検証を行うようにしてもよい。なお、上述のテーブル等がユーザによって作成され、予め記憶装置12に記憶されているものとする。便宜上、図16に示す1つの処理フローに前処理、学習処理、及び検証処理を記載しているが、例えば前処理や検証処理等、少なくとも一部を異なる装置に分散させて実行するようにしてもよい。
異常変調原因特定装置1のプロセスデータ取得部141は、プロセスデータを取得する(図16:S11)。本ステップでは、図3や図6に示したようなプロセスデータのうち、異常検知モデルに用いられるデータが抽出される。プロセスデータは、OPCデータ、いわゆるデータベースのテーブル、CSV等のような所定の形式のファイルで記憶装置12に記憶されているものとする。また、プロセスデータは、日時、タグ等の属性を含み、特にバッチ処理のプロセスデータにおいては製番、ステップ等の属性をさらに含むようにしてもよい。
また、異常変調原因特定装置1の前処理部142は、連続処理のプロセスデータについて、製造番号との紐づけを行う(図16:S12)。本ステップでは、図8に示したように、連続工程において取得されるプロセスデータと、バッチ処理において取得されるプロセスデータの製造番号群とを対応付け、異常度の算出において使用するプロセスデータを対応付ける。すなわち、図9に示した知識ベースや図11に示したロジックツリーにおいて、ある原因がバッチ処理のプロセスデータにも連続処理のプロセスデータにも影響する場合、本ステップで紐づけられたデータに基づいて異常度や成立度の算出を行う。
そして、前処理部142は、異常判定モデルにおいて使用するデータの抽出及び加工を行う(図16:S13)。本ステップでは、前処理部142は、知識ベース等のテーブルの設定値に基づき異常判定に用いる所定期間のデータを抽出し、各手法に応じた特徴量を演算する。
例えば、ホテリング法による異常度を算出する場合は、前処理部142は、所定のタイミングや期間のプロセスデータを抽出し、プロセスデータそのものである瞬時値や、プロセスデータの最大値、最小値、積分値、若しくは差分、反応速度の積分値、所定の時点の微分係数等を算出し、記憶装置12に格納する。また、k近接法による異常度を算出する場合は、時系列のプロセスデータをベクトル化又は行列化する。また、DTW Barycenter Averagingによる異常度を算出する場合は、複数のプロセスデータについて同期処理を行い、平均的な時系列データを求める。また、オートエンコーダやグラフィカルラッソによる異常度を算出する場合は、複数のプロセスデータについて同期処理を行う。
なお、前処理部142は、プロセスデータについて所定のデータクレンジングを実施してもよい。データクレンジング処理は、外れ値を排除する処理であり、様々な手法を採用することができる。例えば、直近のデータを用いて移動平均値を算出してもよい。また、移動平均値と実測値との差をとり、差分のばらつきを表す標準偏差σを求める。そして、例えば確率分布の平均値-3σから確率分布の平均+3σまでの区間(3σ区間とも呼ぶ)のような所定の信頼区間に入らない値を除外してもよい。同様に、前後の実測値の差について、3σ区間に入らない値を除外してもよい。
その後、異常変調原因特定装置1の学習処理部143は、異常検知モデル構築処理を行う(図16:S2)。本ステップでは、図9に示した知識ベースに基づいて、異常度の演算を含む異常検知モデルを作成する。具体的には、図9の「想定原因」の各々に対応付けられた1以上の「影響」について、それぞれ「演算方法」に登録された手法による異常度を算出し、異常度の組み合わせで表される異常検知モデルを作成する。また、学習処理部143は、異常検知の手法によっては訓練データを用いてモデルのパラメータを調整する。例えば、オートエンコーダによる異常度を算出する場合は、入力されたプロセスデータの情報を圧縮した後に復元できるように、層間の重み係数を調整する。グラフィカルラッソによる異常度を算出する場合は、複数のセンサからのプロセスデータの共分散行列に基づいて変数間の依存関係を数値化する。そして、学習処理部143は作成した異常検知モデルを記憶装置12に記憶させる。
異常変調原因特定装置1の異常判定部144は、作成された異常検知モデルと、テストデータとを用いて、異常度の算出を行う(図16:S31)。本ステップでは、異常判定部144は、異常度算出の手法に応じて異常度を算出する。例えば、ホテリング法による異常度を算出する場合、プロセスデータを用いて母集団の標本平均及び標本標準偏差を推定し、母集団の平均から検証対象のプロセスデータまでの距離に基づいて異常度を求める。k近傍法による異常度を算出する場合は、データ同士の距離を算出し、検証対象のデータからk番目に近いデータとの距離に応じた異常度を算出する。DTW Barycenter Averagingによる異常度を算出する場合は、前処理において同期させた時系列データ同士の距離の積算値に基づき、k近傍法やホテリング理論により異常度を求める。オートエンコーダによる異常度を算出する場合は、検証対象のプロセスデータをオートエンコーダに入力し、入力層の値と出力層の値との差に応じた異常度を求める。グラフィカルラッソによる異常度を算出する場合は、検証対象のプロセスデータを用いて、変数間の依存関係を求め、基準となる依存関係との差異の大きさに応じた異常度を求める。
異常変調原因特定装置1の原因診断部145は、算出された異常度を用いて想定原因の成立度を求める(図16:S32)。本ステップでは、知識ベースの想定原因の各々について、影響として対応付けられた変調が表れた割合に基づいて、成立度を算出する。例えば、図9の原因(2)には、タグ002の水分の上昇、タグ004の温度1の上昇、及びタグ005の温度2の下降という3つの影響が対応付けられている。図16のS31において影響の各々について算出された異常度を用いて、3つの影響のうち異常度が閾値を超えたものの割合を成立度としてもよい。仮に3つの影響のうち2つについて異常度が閾値を超えた場合、例えば成立度は66.7%とすることができる。また、成立度の算出において、影響(タグ)の種類に応じて、又は異常度の大きさに基づいて、さらに重み付けを行ってもよい。例えば、成立度として、各影響について重みを乗じた上で総和を求めるようにしてもよい。
また、出力制御部146は、作成されたモデルをユーザが評価するために、S31で算出された異常度及びS32で算出された成立度を出力する(図16:S33)。本ステップでは、プラント3の過去の運転において収集されたプロセスデータのうち、モデルの構築に用いた訓練データとは異なるテストデータを用いて交差検証を行う。また、本ステップにおいては過去に異常が発生した時点のプロセスデータも用いて適切に異常を検知してアラームやこれに対処するためのアクションが出力されるか検証する。また、学習処理部143は、十分な精度で異常を検知できるか判断する(図16:S4)。精度が十分でないと判断された場合(S4:NO)、適切に異常を検知できるように、知識ベースに登録されている閾値(換言すれば、プロセスデータの正常範囲)を修正し、S31以降の処理を繰り返す。S4において十分な精度で異常を検知できると判断された場合(S4:YES)、S2において作成された異常検知モデルや閾値を用いた運用を行う。なお、S4の判断の少なくとも一部は、ユーザによってなされるようにしてもよい。
なお、アクションについては、例えば想定原因に対応付けて、これに対処するためにプラント3のオペレータが行うべきアクションが予め記憶装置12に記憶されているものとする。図17は、アクションテーブルの一例を示す図である。図17のテーブルは、原因、アクション1、及びアクション2の各属性を含む。原因のフィールドには、知識ベースの想定原因に対応する原因が登録されている。アクション1及びアクション2のフィールドには、対応する原因を解消するためにプラント3のオペレータが行うべき処置を表す情報が登録されている。
<異常検知処理>
図18は、異常変調原因特定装置1が実行する異常検知処理の一例を示す処理フロー図である。異常変調原因特定装置1のプロセッサ14は、所定のプログラムを実行することにより、図18に示すような処理を実行する。異常検知処理は、プラント3の運転によって得られたプロセスデータを用いて、ほぼリアルタイムに実行される。異常検知処理は、主として前処理(図18:S10)、モデル読出処理(S20)、及び異常判定処理(S30)を含む。図18には、図16に示した学習処理と対応する工程に同一の符号を付し、以下では学習処理との相違点を中心に説明する。便宜上、学習処理を行う装置と同一の装置による処理として説明するが、異常検知処理を行う装置は、学習処理を行う装置とは異なるものであってもよい。また、学習処理において作成された異常検知モデルや閾値、知識ベース等のテーブルが、予め記憶装置12に記憶されているものとする。
図18は、異常変調原因特定装置1が実行する異常検知処理の一例を示す処理フロー図である。異常変調原因特定装置1のプロセッサ14は、所定のプログラムを実行することにより、図18に示すような処理を実行する。異常検知処理は、プラント3の運転によって得られたプロセスデータを用いて、ほぼリアルタイムに実行される。異常検知処理は、主として前処理(図18:S10)、モデル読出処理(S20)、及び異常判定処理(S30)を含む。図18には、図16に示した学習処理と対応する工程に同一の符号を付し、以下では学習処理との相違点を中心に説明する。便宜上、学習処理を行う装置と同一の装置による処理として説明するが、異常検知処理を行う装置は、学習処理を行う装置とは異なるものであってもよい。また、学習処理において作成された異常検知モデルや閾値、知識ベース等のテーブルが、予め記憶装置12に記憶されているものとする。
異常変調原因特定装置1のプロセスデータ取得部141は、プロセスデータを取得する(図18:S11)。プロセスデータは、OPCデータ、いわゆるデータベースのテーブル、CSV等のような所定の形式のファイルで記憶装置12に記憶されているものとする。本ステップは図16のS11とほぼ同様であるが、プラント3において運転中のプロセスに関するデータが取得される。また、異常変調原因特定装置1の前処理部142は、連続処理のプロセスデータについて、製造番号との紐づけを行う(図18:S12)。本ステップは、図16のS12と同様である。そして、前処理部142は、異常判定モデルにおいて使用するデータの抽出及び加工を行う(図18:S13)。本ステップは、図16のS13とほぼ同様であるが、データクレンジングを行う必要はない。
その後、異常変調原因特定装置1の異常判定部144は、学習処理において作成された異常検知モデルを記憶装置12から読み出す(図18:S20)。また、異常判定部144は、作成された異常検知モデルと、プラント3の運転によって得られたプロセスデータとを用いて、異常度の算出を行う(図18:S31)。本ステップは、図16のS31と同様である。また、異常変調原因特定装置1の原因診断部145は、算出された異常度を用いて想定原因の成立度を求める(図18:S32)。本ステップは、図16のS32と同様である。
また、出力制御部146は、S31で算出された異常度及びS32で算出された成立度を出力すると共に、いずれかの異常度が予め定められた閾値を超える場合、アラームを発報する(図18:S303)。本ステップでは、プラント3の運転の状態を示すプロセスデータや異常度、想定原因の成立度が、入出力装置13を介してユーザに提示される。
図19は、入出力装置13に出力される画面の一例を示す図である。図19は、メインの管理図の一例であり、個別のプロセスデータの推移を折れ線グラフで表している。入出力装置13に表示された領域131は、プラント3から取得されるプロセスデータの識別情報と最新の値との組み合わせを複数表示している。領域132の管理図は、特定のプロセスデータについて値の推移を折れ線グラフで表している。なお、縦軸はプロセスデータの値を表し、横軸は時間軸を表す。また、図19の例では実線が真値を表し、破線が推算値を表すものとする。なお、真値は、異常度を算出する対象のプロセスデータそのものであり、推算値は、異常度の算出対象のプロセスデータの回帰分析による推算値であってもよい。細い破線は、正常範囲の上限及び下限(換言すれば異常検知のための閾値)を表すものとする。なお、図19に吹出しで示すように、ユーザがポインティングデバイス等の入出力装置13を操作し、グラフ上にポインタを移動させた場合、ポインタが指示する時点のプロセスデータの数値を表示するようにしてもよい。領域133の要因効果図は、横軸に領域132に表示されたプロセスデータの変調の原因、またはそれを特定できるタグを表示し、縦軸はその原因の成立度を棒グラフで表す。成立度が大きいほど、プロセスデータの変調の原因として可能性が高いことを示している。また、成立度は、原因診断部145が、プロセスデータの変調の想定原因とされる事象について、異常判定部144で算出される異常度に基づいて算出する。ユーザは、成立度の大きさに基づいて、変調の原因の候補とその確度を認識することができ、容易に変調原因を特定できる。また、要因効果図は、領域134の「診断」ボタンが押下された場合に、異常判定部144が指定時刻又は現在時刻における異常度を算出し、出力制御部146によって表示されるものとする。
そして、ユーザがポインティングデバイス等の入出力装置13を操作し、要因効果図の棒グラフのいずれかを選択した場合、棒グラフに対応する変調の原因がロジックツリーにおいて強調表示される。
そして、ユーザがポインティングデバイス等の入出力装置13を操作し、要因効果図の棒グラフのいずれかを選択した場合、棒グラフに対応する変調の原因がロジックツリーにおいて強調表示される。
図20は、出力制御部146によって入出力装置13に出力される画面の他の例を示す図である。図20はツリー図の一例であり、図10に示したようなロジックツリーが表示されている。例えば図19においてタグ004の棒グラフが選択された場合、タグ004のプロセスデータに対応する影響がロジックツリー上において強調表示される。強調表示は、例えば色の変更や線種の変更など、表示態様の変更によってなされる。図20においては、対応する矩形にハッチングを施している。また、ロジックツリーの上流側に接続された太線の矩形は、影響の想定原因を表している。図20において吹出しで示すように各原因を表示するようにしてもよいし、原因以外のプロセスデータへの影響を表示するようにしてもよい。なお、図18のS32において算出された各原因の成立度をさらに表示したり、アクションをさらに表示したりしてもよい。また、原因は、各矩形上にユーザがポインタを移動させた場合に表示するようにしてもよい。
なお、図19、図20に示す「トレンド」ボタンを押下した場合、要因効果図に挙げられた各タグのプロセストレンドを表示してもよく、特に変調の原因を特定できるタグのプロセストレンドを表示してもよい。プロセストレンドは、記憶装置12に記憶されたプロセスデータを用いて、例えば、所定時間ごと、所定日数ごと、所定月数ごと、又は季節ごとのような期間毎の値を算出し、グラフ上にプロットしたものである。
また、出力制御部146は、例えば各演算方法により算出される異常度が所定の閾値を超えたタイミングで、異常度のログを出力するようにしてもよい。また、想定原因や成立度のログを出力するようにしてもよい。各ログは、日時、製造番号、演算方法や異常検知モデル等を紐づけて出力することにより、異常変調の解析を容易にすることができる。
<変形例>
各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本発明の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。また、本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本発明の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。また、本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
また、上述した実施形態では化学プラントを例に説明したが、一般的な生産設備における製造プロセスに適用することができる。例えば、実施形態におけるバッチ工程の製造番号に代えてロット番号を処理単位として、実施形態におけるバッチ工程に準じた処理を適用してもよい。
異常変調原因特定装置1の機能の少なくとも一部は、複数の装置に分散して実現するようにしてもよいし、同一の機能を複数の装置が並列に提供するようにしてもよい。また、異常変調原因特定装置1の機能の少なくとも一部は、いわゆるクラウド上に設けるようにしてもよい。
また、本開示は、上述した処理を実行する方法やコンピュータプログラム、当該プログラムを記録した、コンピュータ読み取り可能な記録媒体を含む。当該プログラムが記録された記録媒体は、プログラムをコンピュータに実行させることにより、上述の処理が可能となる。
ここで、コンピュータ読み取り可能な記録媒体とは、データやプログラム等の情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータから読み取ることができる記録媒体をいう。このような記録媒体のうちコンピュータから取り外し可能なものとしては、フレキシブルディスク、光磁気ディスク、光ディスク、磁気テープ、メモリカード等がある。また、コンピュータに固定された記録媒体としては、HDDやSSD(Solid State Drive)、ROM等がある。
1: 異常変調原因特定装置
11: 通信I/F
12: 記憶装置
13: 入出力装置
14: プロセッサ
141: プロセスデータ取得部
142: 前処理部
143: 学習処理部
144: 異常判定部
145: 原因診断部
146: 出力制御部
2: 制御ステーション
3: プラント
11: 通信I/F
12: 記憶装置
13: 入出力装置
14: プロセッサ
141: プロセスデータ取得部
142: 前処理部
143: 学習処理部
144: 異常判定部
145: 原因診断部
146: 出力制御部
2: 制御ステーション
3: プラント
Claims (6)
- 生産設備が備える複数のセンサによって継続的に出力され、処理対象の管理番号と紐づけられたプロセスデータを記憶する記憶装置から、前記プロセスデータを読み出すプロセスデータ取得部と、
前記プロセスデータ取得部が読み出したプロセスデータの変調の程度を表す異常度を、前記複数のセンサについて継続的に算出する異常判定部と、
原因と、当該原因から生じる影響として現れる前記複数のセンサが出力するプロセスデータの変調との組合せを定義する因果関係情報を用いて、前記複数のセンサが出力する、前記処理対象の管理番号が対応するプロセスデータについて、前記異常判定部が算出した異常度が所定の基準を満たすか判断する原因診断部と、
を備える異常変調原因特定装置。 - 前記原因診断部は、前記複数のセンサが出力する、前記処理対象の管理番号が対応するプロセスデータのうち、前記異常判定部が算出した異常度が所定の基準を満たすプロセスデータの割合に基づいて、変調の原因の確度を求める
請求項1に記載の異常変調原因特定装置。 - 前記生産設備において実施される工程が対応し、前記管理番号が異なるプロセスデータを用いて、平均的な時系列データを算出し、算出された平均的な時系列データとの類似度に基づいて前記プロセスデータを同期させる前処理部をさらに備え、
前記異常判定部は、同期させられた、前記工程が対応し前記管理番号が異なるプロセスデータについて、所定の基準からの乖離の程度に基づいて前記異常度を算出する
請求項1又は2に記載の異常変調原因特定装置。 - 前記プロセスデータは、前記生産設備において実施される工程における処理の段階を示すステップと対応付けて記憶装置に記憶され、
異なる前記管理番号に対応付けられ、前記ステップが対応する前記プロセスデータを重ねて出力装置に表示させる出力制御部をさらに備える
請求項1から3のいずれか一項に記載の異常変調原因特定装置。 - 生産設備が備える複数のセンサによって継続的に出力され、処理対象の管理番号と紐づけられたプロセスデータを記憶する記憶装置から、前記プロセスデータを読み出し、
読み出された前記プロセスデータの変調の程度を表す異常度を、前記複数のセンサについて継続的に算出し、
原因と、当該原因から生じる影響として現れる前記複数のセンサが出力するプロセスデータの変調との組合せを定義する因果関係情報を用いて、前記複数のセンサが出力する、前記処理対象の管理番号が対応するプロセスデータについて、算出された前記異常度が所定の基準を満たすか判断する
処理をコンピュータが実行する異常変調原因特定方法。 - 生産設備が備える複数のセンサによって継続的に出力され、処理対象の管理番号と紐づけられたプロセスデータを記憶する記憶装置から、前記プロセスデータを読み出し、
読み出された前記プロセスデータの変調の程度を表す異常度を、前記複数のセンサについて継続的に算出し、
原因と、当該原因から生じる影響として現れる前記複数のセンサが出力するプロセスデータの変調との組合せを定義する因果関係情報を用いて、前記複数のセンサが出力する、前記処理対象の管理番号が対応するプロセスデータについて、算出された前記異常度が所定の基準を満たすか判断する
処理をコンピュータに実行させる異常変調原因特定プログラム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21813235.5A EP4160340A4 (en) | 2020-05-29 | 2021-05-25 | DEVICE FOR IDENTIFYING ABNORMAL MODULATION CAUSES, METHOD FOR IDENTIFYING ABNORMAL MODULATION CAUSES AND PROGRAM FOR IDENTIFYING ABNORMAL MODULATION CAUSES |
JP2022526582A JPWO2021241579A1 (ja) | 2020-05-29 | 2021-05-25 | |
CN202180039064.0A CN115698879A (zh) | 2020-05-29 | 2021-05-25 | 异常调制原因确定装置、异常调制原因确定方法以及异常调制原因确定程序 |
US17/928,091 US20230213927A1 (en) | 2020-05-29 | 2021-05-25 | Abnormal irregularity cause identifying device, abnormal irregularity cause identifying method, and abnormal irregularity cause identifying program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020095039 | 2020-05-29 | ||
JP2020-095039 | 2020-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021241579A1 true WO2021241579A1 (ja) | 2021-12-02 |
Family
ID=78744089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/019801 WO2021241579A1 (ja) | 2020-05-29 | 2021-05-25 | 異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230213927A1 (ja) |
EP (1) | EP4160340A4 (ja) |
JP (1) | JPWO2021241579A1 (ja) |
CN (1) | CN115698879A (ja) |
WO (1) | WO2021241579A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06309584A (ja) * | 1993-04-27 | 1994-11-04 | Toshiba Corp | プラント運転支援装置 |
JP2009187175A (ja) * | 2008-02-05 | 2009-08-20 | Fuji Electric Systems Co Ltd | バッチプロセスデータの解析装置およびそれを用いた異常検出/品質推定装置 |
JP2018109851A (ja) | 2016-12-28 | 2018-07-12 | 三菱日立パワーシステムズ株式会社 | 診断装置、診断方法及びプログラム |
JP2018120343A (ja) | 2017-01-24 | 2018-08-02 | 株式会社東芝 | プロセス診断装置、プロセス診断方法及びプロセス診断システム |
JP2018195130A (ja) * | 2017-05-18 | 2018-12-06 | パナソニックIpマネジメント株式会社 | 異常原因推定装置、異常原因推定方法、および異常原因推定プログラム |
JP2019016039A (ja) | 2017-07-04 | 2019-01-31 | Jfeスチール株式会社 | プロセスの異常状態診断方法および異常状態診断装置 |
JP2019057164A (ja) | 2017-09-21 | 2019-04-11 | 三菱日立パワーシステムズ株式会社 | プラント異常監視システム |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7937168B2 (en) * | 2007-12-31 | 2011-05-03 | United Microelectronics Corp. | Automated abnormal machine tracking and notifying system and method |
-
2021
- 2021-05-25 US US17/928,091 patent/US20230213927A1/en active Pending
- 2021-05-25 CN CN202180039064.0A patent/CN115698879A/zh active Pending
- 2021-05-25 JP JP2022526582A patent/JPWO2021241579A1/ja active Pending
- 2021-05-25 EP EP21813235.5A patent/EP4160340A4/en active Pending
- 2021-05-25 WO PCT/JP2021/019801 patent/WO2021241579A1/ja unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06309584A (ja) * | 1993-04-27 | 1994-11-04 | Toshiba Corp | プラント運転支援装置 |
JP2009187175A (ja) * | 2008-02-05 | 2009-08-20 | Fuji Electric Systems Co Ltd | バッチプロセスデータの解析装置およびそれを用いた異常検出/品質推定装置 |
JP2018109851A (ja) | 2016-12-28 | 2018-07-12 | 三菱日立パワーシステムズ株式会社 | 診断装置、診断方法及びプログラム |
JP2018120343A (ja) | 2017-01-24 | 2018-08-02 | 株式会社東芝 | プロセス診断装置、プロセス診断方法及びプロセス診断システム |
JP2018195130A (ja) * | 2017-05-18 | 2018-12-06 | パナソニックIpマネジメント株式会社 | 異常原因推定装置、異常原因推定方法、および異常原因推定プログラム |
JP2019016039A (ja) | 2017-07-04 | 2019-01-31 | Jfeスチール株式会社 | プロセスの異常状態診断方法および異常状態診断装置 |
JP2019057164A (ja) | 2017-09-21 | 2019-04-11 | 三菱日立パワーシステムズ株式会社 | プラント異常監視システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP4160340A4 |
Also Published As
Publication number | Publication date |
---|---|
US20230213927A1 (en) | 2023-07-06 |
EP4160340A1 (en) | 2023-04-05 |
JPWO2021241579A1 (ja) | 2021-12-02 |
EP4160340A4 (en) | 2024-07-10 |
CN115698879A (zh) | 2023-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021241576A1 (ja) | 異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム | |
WO2021241580A1 (ja) | 異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム | |
EP2905665B1 (en) | Information processing apparatus, diagnosis method, and program | |
Ma et al. | Hierarchical monitoring and root-cause diagnosis framework for key performance indicator-related multiple faults in process industries | |
US20170103148A1 (en) | System-analyzing device, analysis-model generation method, system analysis method, and system-analyzing program | |
WO2021241578A1 (ja) | 異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム | |
JP2000259223A (ja) | プラント監視装置 | |
JPH08234832A (ja) | プラント監視診断装置および方法 | |
US20190026632A1 (en) | Information processing device, information processing method, and recording medium | |
US10976731B2 (en) | Abnormality diagnostic system | |
Li et al. | Canonical variate residuals-based contribution map for slowly evolving faults | |
EP4206838A1 (en) | Forecasting and anomaly detection method for low density polyethylene autoclave reactor | |
WO2021241577A1 (ja) | 異常変調原因表示装置、異常変調原因表示方法及び異常変調原因表示プログラム | |
US20230057943A1 (en) | Prediction apparatus, prediction method, and program | |
Fei et al. | Online process monitoring for complex systems with dynamic weighted principal component analysis | |
WO2023127748A1 (ja) | 異常検知装置、異常検知方法及び異常検知プログラム | |
WO2021241579A1 (ja) | 異常変調原因特定装置、異常変調原因特定方法及び異常変調原因特定プログラム | |
US20230056329A1 (en) | Control apparatus, control method, and program | |
Wang et al. | An intelligent process fault diagnosis system integrating Andrews plot, PCA and neural networks | |
EP4102421A1 (en) | Prediction apparatus, prediction method, and program | |
Fan et al. | Stationary Feature Extract and Process Monitoring Based on Autoencoder | |
JP2024070469A (ja) | 製造を支援するシステム及び製造を支援する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21813235 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022526582 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021813235 Country of ref document: EP Effective date: 20230102 |