WO2018051551A1 - 超純水製造装置 - Google Patents

超純水製造装置 Download PDF

Info

Publication number
WO2018051551A1
WO2018051551A1 PCT/JP2017/010616 JP2017010616W WO2018051551A1 WO 2018051551 A1 WO2018051551 A1 WO 2018051551A1 JP 2017010616 W JP2017010616 W JP 2017010616W WO 2018051551 A1 WO2018051551 A1 WO 2018051551A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat exchanger
heat
medium
ultrapure water
Prior art date
Application number
PCT/JP2017/010616
Other languages
English (en)
French (fr)
Inventor
重希 堀井
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020187034316A priority Critical patent/KR102107924B1/ko
Priority to CN201780046995.7A priority patent/CN109562959B/zh
Publication of WO2018051551A1 publication Critical patent/WO2018051551A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Definitions

  • the present invention relates to an ultrapure water production apparatus, and more particularly to an ultrapure water production apparatus that heats ultrapure water from a secondary pure water production apparatus with a heat exchanger and supplies it to a use point as warm ultrapure water.
  • the ultrapure water used as the semiconductor cleaning water is a pretreatment system 50, a primary pure water production apparatus 60, and a secondary pure water production apparatus (often referred to as a subsystem) 70. It is manufactured by treating raw water (industrial water, city water, well water, etc.) with an ultrapure water manufacturing apparatus composed of (Patent Document 1).
  • Patent Document 1 the role of each system is as follows.
  • pretreatment system 50 comprising agglomeration, pressurized flotation (precipitation), filtration (membrane filtration) apparatus, etc. (in this conventional example, agglomeration filtration apparatus), suspended substances and colloidal substances in raw water are removed.
  • agglomeration filtration apparatus in this conventional example, agglomeration filtration apparatus, suspended substances and colloidal substances in raw water are removed.
  • a heat exchanger 65 is installed in the front stage of the reverse osmosis membrane treatment device 62, and the water is heated so that the temperature of the water supplied to the reverse osmosis membrane treatment device 62 becomes a predetermined temperature or higher. Steam is supplied to the primary side of the heat exchanger 65 as a heat source fluid.
  • the reverse osmosis membrane treatment device 62 removes salts and removes ionic and colloidal TOC.
  • the ion exchange devices 63 and 63B remove salts and inorganic carbon (IC) and remove TOC components adsorbed or ion exchanged by an ion exchange resin. In the deaerator 64, inorganic carbon (IC) and dissolved oxygen are removed.
  • the primary pure water produced by the primary pure water production apparatus 60 is sent through a pipe 69 to a secondary pure water production apparatus 70 for producing warm ultrapure water.
  • the secondary pure water production apparatus 70 includes a sub tank (sometimes referred to as a pure water tank) 71, a pump 72, a low-pressure ultraviolet oxidation apparatus (UV apparatus) 74, and an ion exchange apparatus 75.
  • the low-pressure ultraviolet oxidizer 74 the TOC is decomposed to an organic acid and further to CO 2 by 185 nm ultraviolet rays emitted from a low-pressure ultraviolet lamp. Organic substances and CO 2 produced by the decomposition are removed by the ion exchange device 75 in the subsequent stage.
  • the ultrapure water from the secondary pure water production apparatus 70 is heated to about 70 to 80 ° C. by the front stage heat exchanger 85 and the rear stage heat exchanger 86 and supplied to the use point 90.
  • the warm return water from this use point 90 is circulated through the pipe 91 to the heat source side of the pre-stage side heat exchanger 85.
  • the return water that has passed through the heat source side of the pre-stage heat exchanger 85 has dropped to about 40 ° C. and is returned to the sub tank 71 via the pipe 92.
  • the rear stage heat exchanger 86 uses steam as a heat source.
  • the secondary pure water production apparatus 70 ′ includes a sub tank (sometimes referred to as a pure water tank) 71 ′, a pump 72 ′, a heat exchanger 73 ′, a low-pressure ultraviolet oxidation apparatus (UV apparatus) 74 ′, and an ion exchange.
  • a device 75 ′ and an ultrafiltration membrane (UF membrane) separation device 76 ′ are provided. Normal temperature ultrapure water is sent from the ultrafiltration membrane separator 76 'to the use point 90' via the pipe 88 '. The return water from the use point 90 'is returned to the sub tank 71' via the pipe 92 '.
  • FIG. 6 is a system diagram showing an ultrapure water production apparatus according to a reference example.
  • water temperature is illustrated in the following description, each water temperature is an example and does not limit this invention at all.
  • the primary pure water of about 25 ° C. is introduced into the subsystem 4 via the pipe 1, the sub tank 2, and the pipe 3 to produce ultra pure water of about 30 ° C.
  • the produced ultrapure water flows in the order of the pipe 5, the heat exchanger 6, the pipe 9 and the heat exchanger 10, heated to about 42 ° C. by the heat exchanger 6, and heated to about 75 ° C. by the heat exchanger 10. Then, the water is sent to the use point through the pipe 11 as warm ultrapure water.
  • a UF membrane separation device 11A is installed immediately before the use point.
  • the return temperature ultrapure water (return water) of about 75 ° C. from the use point is introduced into the heat source fluid flow path of the heat exchanger 6 through the pipe 7.
  • the return temperature ultrapure water is heat-exchanged with the ultrapure water from the subsystem 4 by the heat exchanger 6 and cooled to about 40 ° C., and then sent to the sub tank 2 through the pipe 8.
  • the first medium water (water as a heat transfer medium) heated to about 80 ° C. by the heat exchangers 13 and 15 is circulated and circulated. That is, about 47 degreeC 1st medium water which flowed out from the heat source fluid flow-path exit of the heat exchanger 10 passes the heat exchanger 13 from the piping 12, and is heated to about 49 degreeC, Then, the piping 14 and the heat exchanger 15 Then, it flows through the pipe 16 and returns to the heat source fluid flow path inlet of the heat exchanger 10.
  • a hot waste water of about 56 ° C. is introduced into the heat source fluid flow path of the heat exchanger 13 through the pipe 17.
  • the warm waste water cooled to about 53 ° C. by the heat exchanger 13 flows out through the pipe 18 and is recovered as recovered water.
  • a circulation pump is provided in the pipe 12, 14 or 16.
  • the first medium water is also heated by the heat held by the hot waste water, so the ultrapure water from the heat exchanger 6 is converted into a steam type.
  • the heat source cost for obtaining warm ultrapure water at a predetermined temperature is reduced.
  • the heat recovery of the return ultrapure water is not sufficient, and further reduction of the heat source cost is desired.
  • An object of the present invention is to provide an ultrapure water production apparatus capable of reducing the heat source cost of a heat exchanger for warming ultrapure water sent to a use point into warm ultrapure water.
  • An ultrapure water production apparatus includes a primary pure water production apparatus, a secondary pure water production apparatus that processes primary pure water from the primary pure water production apparatus to produce ultrapure water, A first heat exchanger for heating the ultrapure water from the secondary pure water production apparatus using the return water from the use point as a heat source, and further heating the ultrapure water heated by the first heat exchanger And heating means for supplying the heated ultrapure water to the use point, wherein the heating means is configured to cause the ultrapure water heated by the first heat exchanger to flow into the fluid to be heated.
  • a second heat exchanger that is passed through the passage, a first circulation passage that circulates and circulates the first medium water as a heat transfer medium in the heat source fluid passage of the second heat exchanger, and the first circulation flow
  • the first medium water heating device that heats the first medium water flowing through the path by the heat of the warm waste water, and the first medium water heating device heated by the first medium water heating device 1 medium water and a third heat exchanger for heating by steam.
  • the first medium water heating device includes a heat pump including a condenser, an evaporator, a pump, and an expansion valve, and the condenser heats the first medium water.
  • a second medium water heating device is provided for heating the second medium water by heat.
  • the second medium water heating device is a fifth heat exchanger in which the warm waste water is passed through a heat source fluid flow path.
  • a sixth heat exchanger for heating the ultrapure water is installed between the first heat exchanger and the second heat exchanger, A warm drainage channel is provided for passing water through the heat exchanger fluid channel of the fifth heat exchanger after passing through the 6 heat exchanger.
  • a first flow path selection for passing the warm wastewater through the sixth heat exchanger to the fifth heat exchanger, and the warm wastewater bypassing the sixth heat exchanger A flow path switching means for switching between selection of the second flow path for passing water through the 5 heat exchanger is provided.
  • a water quality sensor for measuring the quality of the warm waste water is provided, and when the detected water quality of the water quality sensor is better than a predetermined value, the first flow path is selected, and the detected water quality is the predetermined water quality. Control means for selecting the second flow path when the value is lower than the value is provided.
  • the second medium water heating device is a fifth heat exchanger in which the third medium water is passed through the heat source fluid flow path, and the heat source fluid flow path of the fifth heat exchanger is provided.
  • a third circulation channel for circulating and circulating the third medium water is provided, and a seventh heat exchanger for heating the third medium water by the warm waste water is installed in the third circulation channel. .
  • a sixth heat exchanger for heating the ultrapure water is installed between the first heat exchanger and the second heat exchanger, and the third circulation channel is provided. Is provided so that the third medium water heated by the seventh heat exchanger passes through the heat source fluid flow path of the sixth heat exchanger and the heat source fluid flow path of the fifth heat exchanger. .
  • the ultrapure water is heated by the heat held by the use point return water in the first heat exchanger. Moreover, this ultrapure water is further heated by the 2nd heat exchanger which uses the 1st medium water heated with the heat
  • the temperature of the use point return water is usually 70 to 80 ° C., for example, about 75 ° C.
  • warm waste water is waste water used for cleaning at a use point.
  • Concentrated water from a UF membrane separator installed just before the use point may be included in the warm waste water.
  • the temperature of the hot waste water is usually 50 to 60 ° C., for example, about 56 ° C.
  • the ultrapure water production apparatus of the present invention includes a primary pure water production apparatus, a secondary pure water production apparatus, and heating means for heating the ultrapure water.
  • a pretreatment apparatus In the normal stage of the primary pure water production apparatus, a pretreatment apparatus is usually provided. In the pretreatment device, pretreatment by raw water filtration, coagulation sedimentation, microfiltration membrane or the like is performed, and suspended substances are mainly removed. By this pretreatment, the number of fine particles in water is usually 10 3 / mL or less.
  • Primary pure water production equipment includes reverse osmosis (RO) membrane separators, deaerators, regenerative ion exchangers (such as mixed bed or 4 bed 5 tower type), electrodeionizers, ultraviolet (UV) irradiation oxidizers Etc., and removes most of the electrolytes, fine particles, viable bacteria, etc. in the pretreated water.
  • the primary pure water production apparatus is composed of, for example, a heat exchanger, two or more RO membrane separation apparatuses, a mixed bed ion exchange apparatus, and a deaeration apparatus.
  • Secondary pure water production equipment includes subtanks, feed water pumps, cooling heat exchangers, low-pressure ultraviolet oxidizers or sterilizers, UV irradiation equipment, non-regenerative mixed bed ion exchange equipment or electrodeionization equipment, ultrafiltration ( (UF) Membrane filtration device such as membrane separation device or microfiltration (MF) membrane separation device, but also equipped with demineralization devices such as membrane deaeration device, RO membrane separation device, and electro-deionization device In some cases.
  • UF ultrafiltration
  • MF microfiltration
  • a low-pressure ultraviolet oxidation apparatus is applied, and a mixed bed type ion exchange apparatus is provided at the subsequent stage, whereby TOC in water is oxidized and decomposed by ultraviolet rays, and oxidation decomposition products are removed by ion exchange.
  • a mixed bed type ion exchange apparatus is provided at the subsequent stage, whereby TOC in water is oxidized and decomposed by ultraviolet rays, and oxidation decomposition products are removed by ion exchange.
  • the downstream side of the sub tank is referred to as a subsystem.
  • a tertiary pure water production apparatus may be provided after the secondary pure water production apparatus, and ultrapure water from the tertiary pure water production apparatus may be heated.
  • This tertiary pure water production apparatus has the same configuration as that of the secondary pure water production apparatus, and produces higher purity ultrapure water.
  • FIG. 2 is a system diagram showing the ultrapure water production apparatus according to the first embodiment.
  • the water temperature is illustrated in the following description, each water temperature is an example and does not limit this invention at all.
  • the primary pure water of about 25 ° C. is introduced into the subsystem 4 via the pipe 1, the sub tank 2, and the pipe 3 to produce ultra pure water of about 30 ° C.
  • the produced ultrapure water flows in the order of the pipe 5, the heat exchanger 6, the pipe 9 and the heat exchanger 10, heated to about 42 ° C. by the heat exchanger 6, and heated to about 75 ° C. by the heat exchanger 10. Then, the water is sent to the use point through the pipe 11 as warm ultrapure water.
  • a UF membrane separation device 11A is installed immediately before the use point.
  • the return temperature ultrapure water (return water) of about 75 ° C. from the use point is introduced into the heat source fluid flow path of the heat exchanger 6 through the pipe 7.
  • the return temperature ultrapure water is heat-exchanged with the ultrapure water from the subsystem 4 by the heat exchanger 6 and cooled to about 40 ° C., and then sent to the sub tank 2 through the pipe 8.
  • the first medium water (water as the heat transfer medium) heated by the heat pump 20 and the steam heat exchanger 15 is circulated through the heat source fluid flow path of the heat exchanger 10. That is, after the first medium water at about 60 ° C. flowing out from the heat exchanger 10 is heated to about 70 ° C. by the condenser 23 of the heat pump 20 in the first circulation channel, it is heated to about 85 ° C. by the steam heat exchanger 15. Heat to flow into heat exchanger 10.
  • the heat pump 20 compresses the heat medium such as CFC substitute from the evaporator 21 by the pump 22 and introduces it into the condenser 23, and introduces the heat medium from the condenser 23 into the evaporator 21 through the expansion valve 24. It is configured.
  • the first medium water from the heat exchanger 10 is introduced into the condenser 23 of the first circulation channel (high temperature side channel) through the pipe 12, and the first medium water heated by the condenser 23 passes through the pipe 14. Then, the water is fed to the heat exchanger 15. A part of the first medium water from the condenser 23 is returned to the pipe 12 via the bypass pipe 19. As a result, the temperature of the first medium water introduced into the condenser 23 becomes approximately 65 ° C.
  • the bypass pipe 19 is provided with a flow rate adjustment valve (not shown).
  • a circulation flow path including a pipe 25, a heat exchanger 26, and a pipe 27 is provided in order to circulate the second medium water through the heat source fluid flow path (low temperature side flow path) of the evaporator 21, a circulation flow path including a pipe 25, a heat exchanger 26, and a pipe 27 is provided.
  • a bypass pipe 28 is provided between the pipes 25 and 27.
  • a hot waste water of about 56 ° C. is introduced into the heat source fluid flow path of the heat exchanger 26 through the pipe 29.
  • the warm waste water that has been subjected to heat exchange with the second medium water and has fallen to about 25 ° C. flows out of the pipe 30 and is recovered as recovered water.
  • the second medium water heated to about 30 ° C. by the heat exchanger 26 is introduced into the heat source fluid flow path of the evaporator 21, exchanges heat with the heat medium of the heat pump 20 and drops the temperature to about 20 ° C. Then, the water is sent to the heat exchanger 26. A part of the second medium water flows from the pipe 25 to the pipe 27 via the bypass pipe 28. As a result, the temperature of the second medium water flowing into the evaporator 21 is about 25 ° C.
  • the bypass pipe 28 is provided with a flow rate adjustment valve (not shown).
  • the input power and the circulating water flow rate of the heat pump compressor are adjusted so that the outlet temperatures of the first medium water and the second medium water are constant.
  • a plurality of heat pumps may be used, and the number control may be performed according to the heat load.
  • piping for bypassing the heat exchanger and a flow rate control valve may be provided in the high-temperature side and / or low-temperature side circulation system so as to control the heat pump inlet temperature.
  • FIG. 2 shows an ultrapure water production apparatus according to the second embodiment.
  • This ultrapure water production apparatus is the same as the ultrapure water production apparatus shown in FIG. 1 except that a heat exchanger 31 is provided in the middle of the ultrapure water pipe 9 connecting the heat exchangers 6 and 10.
  • the hot waste water of about 56 ° C. is introduced into the heat source fluid flow path of the heat exchanger 31 through the pipe 32 through the heated flow path.
  • the hot waste water at about 56 ° C. is cooled to about 47 ° C. by heating the ultrapure water in the pipe 9 with the heat exchanger 31 and then supplied to the heat exchanger 26 through the pipe 29.
  • the amount of steam used can be reduced as compared with the case of FIG. 1.
  • the heat transfer surface of the added heat exchanger 31 may be soiled depending on the quality of the warm waste water, and the heat transfer performance may be reduced.
  • the heat exchanger 31 cannot be disassembled and washed in order to maintain the quality of the warm ultrapure water. Therefore, the flow shown in FIG. Easy to apply).
  • FIG. 3 switches between the flow path selection in which the hot waste water is directly passed through the heat exchanger 26 and the flow path selection in which the warm waste water is passed through the heat exchanger 31 in FIG. It is comprised so that it can do.
  • the hot drain pipe 33 is connected to the pipe 29 via the valve 34 and the pipe 35.
  • the pipe 33 is connected to the heat exchanger 31 through a pipe 36, a valve 37 and a pipe 38 branched from the pipe 33.
  • the valve 34 and closing the valve 37 By opening the valve 34 and closing the valve 37, the warm waste water from the pipe 33 is directly passed through the heat exchanger 26.
  • the pipe 33 is provided with a water quality sensor 39 such as a TOC meter or a specific resistance meter, and the detected value is input to a valve control device (not shown) so that the quality of the hot waste water is good (for example, the TOC is lower than a predetermined concentration).
  • a valve control device not shown
  • the quality of the hot waste water is good (for example, the TOC is lower than a predetermined concentration).
  • the valves 34 and 37 are preferably controlled.
  • washing water pipe 40 may be connected to the pipe 33 via the valve 41, and the heat exchangers 31 and 26 and the pipe may be washed with chemicals or water as necessary.
  • the ultrapure water production apparatus in FIG. 3 it is possible to efficiently heat ultrapure water and prevent (suppress) contamination of the heat exchanger.
  • FIG. 4 illustrates the heat exchanger 44, the pipe 45, the heat exchanger 31, the pipe 29, the heat exchanger 26, and the pipe 46 so that the third medium water is circulated through the heat source fluid flow path of the heat exchanger 26.
  • a circulating flow path is provided, and warm drainage of about 56 ° C. is passed through the heat source fluid flow path of the heat exchanger 44 through the pipe 47, and the outflow water of about 25 ° C. is recovered as recovered water by the pipe 48. It is a thing.
  • the third medium water heated to about 51 ° C. by flowing through the heated fluid flow path of the heat exchanger 44 is passed through the pipe 45 through the heat source fluid flow path of the heat exchanger 31 and flows through the pipe 9.
  • Heat ultrapure water The warm waste water that has passed through the heat exchanger 31 and has been cooled to about 47 ° C. is passed through the pipe 29 to the heat source fluid flow path of the heat exchanger 26, and is cooled to about 20 ° C. Return to the heated fluid flow path of the heat exchanger 44.
  • the second medium water at about 15 ° C. is heated to about 25 ° C.
  • the ultrapure water production apparatus of FIG. 4 has good heating efficiency of ultrapure water, and clean third medium water is passed through the heat exchanger 31 of the pipe 9 for ultrapure water. 31 dirt adhesion risk is suppressed.
  • FIG. 5 shows an embodiment in which the first medium water is heated by a plurality of heat pumps in FIG. 1 and the concentrated water of the UF membrane separation device 11A installed immediately before the use point is also used as a hot waste water. The form of is shown.
  • the first medium water at about 51 ° C. flowing out from the outlet of the heat source fluid flow path of the heat exchanger 10 is introduced into the relay tank 12a via the pipe 12.
  • Concentrated water from the UF membrane separation device 11A is also introduced into the relay tank 12a. This concentrated water is highly clean.
  • the first medium water in the relay tank 12a is circulated to the condenser 23 of the first heat pump 20A through the pipe 12b and heated to about 60 ° C., and then the condenser 23 of the second heat pump 20B through the pipe 12c. And then heated to about 67 ° C., then circulated to the steam heat exchanger 15 via the pipe 14 and heated to about 75 to 76 ° C., and then the heat source of the heat exchanger 10 via the pipe 16. Circulated to the fluid flow path inlet.
  • the configuration of the heat pumps 20A and 20B is the same as that of the heat pump 20.
  • the second medium water heated by the heat exchanger 26 is circulated through the evaporator 21 of each heat pump 20A, 20B.
  • the second medium water heated to about 40 ° C. by passing through the heated fluid flow path of the heat exchanger 26 is circulated to each condenser 21 through the pipe 27 and the pipes 27a and 27b branched therefrom, and the heat pumps 20A and 20B.
  • the temperature is lowered by exchanging heat with the heat medium.
  • About 30 degreeC 2nd medium water which flowed out from each condenser 21 is introduce
  • the second medium water in the merging tank 25c returns to the heated fluid flow path of the heat exchanger 26 via the pump 25d and the pipe 25e.
  • Hot drainage discharged from the use point 90 is introduced into the warm drainage tank 95.
  • the overflow water from the relay tank 12 a is also introduced into the warm drainage tank 95.
  • the primary pure water temperature is 25 ° C.
  • the ultra pure water temperature from the subsystem 4 is 30 ° C.
  • the hot ultra pure water temperature is 60 ° C.
  • the hot waste water temperature is 56 ° C.
  • the recovered water temperature is 25 ° C.
  • the simulation was performed under various flow conditions under the condition that the temperature of the first medium water temperature from the steam heat exchanger 15 was 85 ° C.
  • the heat source cost of the ultrapure water production apparatus of FIG. 6 is 100%
  • the heat source cost of the ultrapure water production apparatus of FIG. 1 is 75%
  • the heat source cost in FIG. 4 was 65%.
  • a steam heat exchanger may be provided in the pipe 11 so as to heat ultrapure water heated by the heat exchanger 10.

Abstract

超純水を加熱して温超純水とするための熱交換器の熱源コストを低減することができる超純水製造装置を提供する。サブシステム4からの二次純水を熱交換器6及び熱交換器10で加熱してユースポイントへ送る。熱交換器6の熱源はユースポイントからの戻り温超純水である。熱交換器10の熱源流体は、ヒートポンプ20及び蒸気式熱交換器15で加熱された温水である。ヒートポンプ20の熱源はユースポイントからの温排水及びUF膜分離装置11Aの濃縮水である。

Description

超純水製造装置
 本発明は超純水製造装置に係り、特に二次純水製造装置からの超純水を熱交換器で加熱して温超純水としてユースポイントへ供給する超純水製造装置に関する。
 半導体洗浄用水として用いられている超純水は、図7に示すように前処理システム50、一次純水製造装置60、二次純水製造装置(サブシステムと称されることも多い。)70から構成される超純水製造装置で原水(工業用水、市水、井水等)を処理することにより製造される(特許文献1)。図7において各システムの役割は次の通りである。
 凝集、加圧浮上(沈殿)、濾過(膜濾過)装置など(この従来例では凝集濾過装置)よりなる前処理システム50では、原水中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。
 前処理された水のタンク61、熱交換器65、逆浸透膜処理装置(RO装置)62、イオン交換装置(混床式又は4床5塔式など)63、タンク63A、イオン交換装置63B、及び脱気装置64を備える一次純水製造装置60では、原水中のイオンや有機成分の除去を行う。なお、水は温度が高い程、粘性が低下し、RO膜の透過性が向上する。このため、図7の通り、逆浸透膜処理装置62の前段に熱交換器65が設置され、逆浸透膜処理装置62への供給水の温度が所定温度以上となるように水を加熱する。熱交換器65の1次側には、熱源流体として蒸気が供給される。逆浸透膜処理装置62では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。イオン交換装置63,63Bでは、塩類、無機系炭素(IC)を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。脱気装置64では無機系炭素(IC)、溶存酸素の除去を行う。
 一次純水製造装置60で製造された一次純水は、配管69を介して温超純水製造用の二次純水製造装置70へ送水される。この二次純水製造装置70は、サブタンク(純水タンクと称されることもある。)71、ポンプ72、低圧紫外線酸化装置(UV装置)74、イオン交換装置75を備えている。低圧紫外線酸化装置74では、低圧紫外線ランプより出される185nmの紫外線によりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換装置75で除去される。
 二次純水製造装置70からの超純水を前段側熱交換器85と後段側熱交換器86とで70~80℃程度に加熱し、ユースポイント90に供給する。このユースポイント90からの温戻り水を配管91を介して前段側熱交換器85の熱源側に流通させる。前段側熱交換器85の熱源側を通過した戻り水は40℃程度に降温しており、配管92を介してサブタンク71に戻される。後段側熱交換器86は蒸気を熱源とするものである。
 一次純水製造装置60からの一次純水の一部は、常温超純水製造用の二次純水製造装置70’へ送水される。この二次純水製造装置70’は、サブタンク(純水タンクと称されることもある。)71’、ポンプ72’、熱交換器73’低圧紫外線酸化装置(UV装置)74’、イオン交換装置75’及び限外濾過膜(UF膜)分離装置76’を備えている。限外濾過膜分離装置76’から配管88’を介して常温超純水がユースポイント90’に送られる。このユースポイント90’からの戻り水は、配管92’を介してサブタンク71’に戻される。
 図6は参考例に係る超純水製造装置を示す系統図である。なお、以下の説明では水温を例示しているが、各水温は一例であり、本発明を何ら限定するものではない。
 約25℃の一次純水は、配管1、サブタンク2、配管3を介してサブシステム4に導入され、約30℃の超純水が製造される。製造された超純水は、配管5、熱交換器6、配管9及び熱交換器10の順に流れ、熱交換器6によって約42℃に加熱され、熱交換器10によって約75℃に加熱され、温超純水として配管11によりユースポイントへ送水される。配管11には、ユースポイントの直前にUF膜分離装置11Aが設置されている。
 熱交換器6の熱源流体流路へは、配管7を介してユースポイントからの約75℃の戻り温超純水(戻り水)が導入される。この戻り温超純水は、熱交換器6でサブシステム4からの超純水と熱交換して約40℃に降温した後、配管8によって、サブタンク2に送られる。
 熱交換器10の熱源流体流路には、熱交換器13,15によって約80℃に加熱された第1媒体水(伝熱媒体としての水)が循環流通される。即ち、熱交換器10の熱源流体流路出口から流出した約47℃の第1媒体水は、配管12から熱交換器13を通り約49℃に加熱された後、配管14、熱交換器15、配管16を流れて熱交換器10の熱源流体流路入口に戻る。
 熱交換器13の熱源流体流路には、配管17を介して約56℃の温排水が導入される。熱交換器13で約53℃に降温した温排水は、配管18を介して流出し、回収水として回収される。
 熱交換器15の熱源流体流路には、ボイラ等からの蒸気(水蒸気)が流通される。
 図示は省略するが、配管12,14又は16に循環用のポンプが設けられている。
 この図6の超純水製造装置にあっては、熱交換器13において、温排水が保有する熱によっても第1媒体水が加熱されるので、熱交換器6からの超純水を蒸気式熱交換器のみで加熱する場合に比べて、所定温度の温超純水を得るための熱源コストが安価となる。しかしながら、戻り超純水の熱の回収が十分ではなく、熱源コストの更なる低下が望まれる。
特開2013-202581
 本発明は、ユースポイントに送水される超純水を加温して温超純水とするための熱交換器の熱源コストを低減することができる超純水製造装置を提供することを目的とする。
 本発明の一態様の超純水製造装置は、一次純水製造装置と、該一次純水製造装置からの一次純水を処理して超純水を製造する二次純水製造装置と、該二次純水製造装置からの超純水を加熱するための、ユースポイントからの戻り水を熱源とする第1熱交換器と、該第1熱交換器で加熱された超純水をさらに加熱する加熱手段とを有し、加熱された超純水をユースポイントに供給する超純水製造装置において、前記加熱手段は、前記第1熱交換器で加熱された超純水が被加熱流体流路に通水される第2熱交換器と、該第2熱交換器の熱源流体流路に伝熱媒体としての第1媒体水を循環流通させる第1循環流路と、該第1循環流路を流れる第1媒体水を、温排水の熱によって加熱する第1媒体水加熱装置と、該第1媒体水加熱装置で加熱された第1媒体水を蒸気によって加熱する第3熱交換器とを備える。
 本発明の一態様では、前記第1媒体水加熱装置は、凝縮器、蒸発器、ポンプ及び膨張弁を備えたヒートポンプを有しており、該凝縮器は、該第1媒体水を加熱するように前記第1循環流路に設置されており、該蒸発器は、第2媒体水が循環される第2循環流路に設置されており、該第2循環流路には、前記温排水の熱によって第2媒体水を加熱するための第2媒体水加熱装置が設けられている。
 本発明の一態様では、前記第2媒体水加熱装置は、前記温排水が熱源流体流路に通水される第5熱交換器である。
 本発明の一態様では、前記第1熱交換器と第2熱交換器との間に、前記超純水を加熱するための第6熱交換器が設置されており、前記温排水を、第6熱交換器に通水させてから第5熱交換器の熱源流体流路に通水させるための温排水流路が設けられている。
 本発明の一態様では、前記温排水を前記第6熱交換器を経て第5熱交換器に通水させる第1の流路選択と、温排水を前記第6熱交換器を迂回して第5熱交換器に通水させる第2の流路選択とを切り替えるための流路切替手段が設けられている。
 本発明の一態様では、前記温排水の水質を測定する水質センサを設け、該水質センサの検出水質が所定値よりも良好な場合には前記第1の流路選択とし、検出水質が該所定値よりも不良である場合には前記第2の流路選択とする制御手段を備える。
 本発明の一態様では、前記第2媒体水加熱装置は、第3媒体水が熱源流体流路に通水される第5熱交換器であり、該第5熱交換器の熱源流体流路に第3媒体水を循環流通させるための第3循環流路が設けられており、該第3循環流路に、前記温排水によって第3媒体水を加熱する第7熱交換器が設置されている。
 本発明の一態様では、前記第1熱交換器と第2熱交換器との間に、前記超純水を加熱するための第6熱交換器が設置されており、前記第3循環流路は、前記第7熱交換器で加熱された第3媒体水を該第6熱交換器の熱源流体流路を経て第5熱交換器の熱源流体流路に通水させるように設けられている。
 本発明の超純水製造装置では、第1熱交換器において、ユースポイント戻り水が保有する熱によって超純水を加熱する。また、温排水の熱と蒸気によって加熱された第1媒体水を熱源流体とする第2熱交換器によって、この超純水をさらに加熱する。この結果、ユースポイントに送水する超純水を所定温度にまで加温して温超純水とする熱源コストを低減することができる。
 なお、ユースポイント戻り水の水温は、通常70~80℃例えば約75℃である。
 本発明において、温排水とは、ユースポイントで洗浄に使用された排水である。ユースポイント直前に設置されたUF膜分離装置の濃縮水も温排水に含めてもよい。温排水の温度は、通常50~60℃例えば約56℃である。
実施の形態に係る超純水製造装置の系統図である。 実施の形態に係る超純水製造装置の系統図である。 実施の形態に係る超純水製造装置の系統図である。 実施の形態に係る超純水製造装置の系統図である。 実施の形態に係る超純水製造装置の系統図である。 参考例に係る超純水製造装置の系統図である。 従来例に係る超純水製造装置の系統図である。
 本発明の超純水製造装置は、一次純水製造装置及び二次純水製造装置並びに超純水を加熱する加熱手段を備える。
 この一次純水製造装置の前段には、通常の場合、前処理装置が設けられる。前処理装置では、原水の濾過、凝集沈殿、精密濾過膜などによる前処理が施され、主に懸濁物質が除去される。この前処理によって通常、水中の微粒子数は10個/mL以下となる。
 一次純水製造装置は、逆浸透(RO)膜分離装置、脱気装置、再生型イオン交換装置(混床式又は4床5塔式など)、電気脱イオン装置、紫外線(UV)照射酸化装置等の酸化装置などを備え、前処理水中の大半の電解質、微粒子、生菌等の除去を行うものである。一次純水製造装置は、例えば、熱交換器、2基以上のRO膜分離装置、混床式イオン交換装置、及び脱気装置で構成される。
 二次純水製造装置は、サブタンク、給水ポンプ、冷却用熱交換器、低圧紫外線酸化装置又は殺菌装置といった紫外線照射装置、非再生型混床式イオン交換装置あるいは電気脱イオン装置、限外濾過(UF)膜分離装置又は精密濾過(MF)膜分離装置等の膜濾過装置で構成されるが、更に膜脱気装置、RO膜分離装置、電気脱イオン装置等の脱塩装置が設けられている場合もある。二次純水製造装置では、低圧紫外線酸化装置を適用し、その後段に混床式イオン交換装置を設け、これによって水中のTOCを紫外線により酸化分解し、酸化分解生成物をイオン交換によって除去する。本明細書では、以下、二次純水製造装置のうち、サブタンクよりも後段側をサブシステムと称する。
 なお、二次純水製造装置の後段に三次純水製造装置を設け、この三次純水製造装置からの超純水を加熱するようにしてもよい。この三次純水製造装置は、二次純水製造装置と同様の構成を備えるものであり、更に高純度の超純水を製造するものである。
 以下、図面を参照して本発明の実施の形態について説明する。図2は第1の実施の形態に係る超純水製造装置を示す系統図である。なお、以下の説明では水温を例示しているが、各水温は一例であり、本発明を何ら限定するものではない。
 約25℃の一次純水は、配管1、サブタンク2、配管3を介してサブシステム4に導入され、約30℃の超純水が製造される。製造された超純水は、配管5、熱交換器6、配管9及び熱交換器10の順に流れ、熱交換器6によって約42℃に加熱され、熱交換器10によって約75℃に加熱され、温超純水として配管11によりユースポイントへ送水される。配管11には、ユースポイントの直前にUF膜分離装置11Aが設置されている。
 熱交換器6の熱源流体流路へは、配管7を介してユースポイントからの約75℃の戻り温超純水(戻り水)が導入される。この戻り温超純水は、熱交換器6でサブシステム4からの超純水と熱交換して約40℃に降温した後、配管8によって、サブタンク2に送られる。
 熱交換器10の熱源流体流路には、ヒートポンプ20及び蒸気式熱交換器15によって加熱された第1媒体水(伝熱媒体としての水)が循環流通される。即ち、熱交換器10から流出した約60℃の第1媒体水を第1循環流路のヒートポンプ20の凝縮器23で約70℃に加熱した後、蒸気式熱交換器15で約85℃に加熱して熱交換器10に流入させる。
 熱交換器15の熱源流体流路には、ボイラ等からの蒸気(水蒸気)が流通される。
 ヒートポンプ20は、蒸発器21からの代替フロン等の熱媒体をポンプ22で圧縮して凝縮器23に導入し、凝縮器23からの熱媒体を膨張弁24を介して蒸発器21に導入するように構成されている。
 第1循環流路(高温側流路)の凝縮器23に熱交換器10からの第1媒体水が配管12を介して導入され、凝縮器23で加熱された第1媒体水が配管14を介して熱交換器15に送水される。なお、凝縮器23からの第1媒体水の一部は、バイパス配管19を介して配管12に返送される。これにより、凝縮器23に導入される第1媒体水の水温は約65℃となる。バイパス配管19には、流量調節弁(図示略)が設けられている。
 図示は省略するが、配管12,14又は16に循環用のポンプが設けられている。後述の図2~5の超純水製造装置も同様である。
 蒸発器21の熱源流体流路(低温側流路)に第2媒体水を循環通水するために、配管25、熱交換器26及び配管27よりなる循環流路が設けられている。なお、配管25,27間にバイパス配管28が設けられている。
 熱交換器26の熱源流体流路には、配管29を介して約56℃の温排水が導入される。第2媒体水と熱交換して約25℃に降温した温排水は、配管30から流出し、回収水として回収される。
 熱交換器26で約30℃に加熱された第2媒体水が蒸発器21の熱源流体流路に導入され、ヒートポンプ20の熱媒体と熱交換して約20℃に降温した後、配管25を介して熱交換器26へ送水される。一部の第2媒体水は、バイパス配管28を介して配管25から配管27へ流れる。これにより、蒸発器21に流入する第2媒体水の水温は約25℃となる。バイパス配管28には流量調節弁(図示略)が設けられている。
 ヒートポンプ20の運転方法としては、例えば、第1媒体水および第2媒体水の出口温度がそれぞれ一定温度になるように、ヒートポンプ圧縮機の入力電力および循環水流量を調整する。ヒートポンプを複数系列とし、熱負荷に応じて台数制御を行ってもよい。また、図示のように、高温側および(または)低温側の循環系に熱交換器をバイパスする配管と流量制御バルブを設け、ヒートポンプ入口温度を制御するような運転を行ってもよい。
 図2は、第2の実施の形態に係る超純水製造装置を示している。この超純水製造装置は、図1の超純水製造装置において、熱交換器6,10を結ぶ超純水配管9の途中に熱交換器31を設け、超純水を熱交換器31の被加熱流路に流し、熱交換器31の熱源流体流路に約56℃の温排水を配管32を介して導入するようにしたものである。
 約56℃の温排水は、熱交換器31で配管9の超純水を加熱することにより約47℃に降温した後、配管29によって熱交換器26に供給される。
 図2のその他の構成は図1と同様である。
 図2の超純水製造装置によれば、図1の場合よりも蒸気使用量を削減することができる。ただし、温排水の水質によっては、追加した熱交換器31の伝熱面が汚れ、伝熱性能が低下することが考えられる。温超純水の製造プロセスでは、温超純水の品質維持のため熱交換器31の分解洗浄は不可であるため、図2のフローは、温排水に汚れが無い(または熱交換器の洗浄・汚れ除去が容易である)場合に適用できる。熱交換器31としては、不純物のリークまたは溶出を完全に防止するため、全溶接または片側溶接タイプのチタン製プレート熱交換器を用いることが望ましい。
 図3は、図2において、温排水を直接に熱交換器26に通水させる流路選択と、温排水を熱交換器31を介して熱交換器26に通水させる流路選択とを切り替えることができるように構成したものである。
 即ち、温排水用配管33は、バルブ34、配管35を介して配管29に接続されている。また、配管33は、該配管33から分岐した配管36、バルブ37及び配管38を介して熱交換器31に接続されている。バルブ34を開、バルブ37を閉とすることにより、配管33からの温排水は熱交換器26に直接に通水される。
 バルブ34を閉、バルブ37を開とすることにより、配管33からの温排水は、熱交換器31に通水された後、熱交換器26に通水される。
 なお、配管33にTOC計や比抵抗計などの水質センサ39を設け、この検出値をバルブ制御装置(図示略)に入力し、温排水の水質が良好である(例えばTOCが所定濃度よりも低い)ときには、温排水を熱交換器31,26の順に通水し、水質が良好ではない(例えばTOC濃度が所定値よりも高い)ときには、温排水を熱交換器26に直接に通水するようにバルブ34,37を制御することが好ましい。
 また、配管33に洗浄水用配管40をバルブ41を介して接続し、必要に応じ熱交換器31,26や配管を薬品や水で洗浄するようにしてもよい。
 図3のその他の構成は図2と同様である。
 図3の超純水製造装置によれば、超純水の効率的な加熱と、熱交換器の汚れ防止(抑制)とを図ることができる。
 図4は、熱交換器26の熱源流体流路に第3媒体水を循環通水するように、熱交換器44、配管45、熱交換器31、配管29、熱交換器26、配管46よりなる循環流路を設け、熱交換器44の熱源流体流路に配管47を介して約56℃の温排水を通水し、その約25℃の流出水を配管48によって回収水として回収するようにしたものである。
 熱交換器44の被加熱流体流路を流れることにより約51℃に加熱された第3媒体水は、配管45を介して熱交換器31の熱源流体流路に通水され、配管9を流れる超純水を加熱する。熱交換器31を通過して約47℃に降温した温排水は、配管29を介して熱交換器26の熱源流体流路に通水され、約20℃に降温し、次いで配管46を介して熱交換器44の被加熱流体流路に戻る。熱交換器26では約15℃の第2媒体水を約25℃に加熱する。
 この図4の超純水製造装置は、超純水の加熱効率が良く、また超純水用配管9の熱交換器31に清浄な第3媒体水が通水されるので、該熱交換器31の汚れ付着リスクが抑制される。
 図5は、図1において、複数台のヒートポンプによって第1媒体水を加熱するよう構成すると共に、ユースポイント直前に設置されたUF膜分離装置11Aの濃縮水も温排水として利用するよう構成した実施の形態を示している。
 この実施の形態では、熱交換器10の熱源流体流路出口から流出した約51℃の第1媒体水は、配管12を介して中継タンク12aに導入される。中継タンク12aには、UF膜分離装置11Aからの濃縮水も導入される。この濃縮水は、清浄度が高い。中継タンク12a内の第1媒体水は、配管12bを介して第1ヒートポンプ20Aの凝縮器23に流通されて約60℃に加熱された後、配管12cを介して第2ヒートポンプ20Bの凝縮器23に流通されて約67℃に加熱され、次いで、配管14を介して蒸気式熱交換器15に流通されて約75~76℃に加熱された後、配管16を介して熱交換器10の熱源流体流路入口に循環される。
 ヒートポンプ20A,20Bの構成は、ヒートポンプ20と同一である。各ヒートポンプ20A,20Bの蒸発器21には、熱交換器26で加熱された第2媒体水が流通される。熱交換器26の被加熱流体流路を通ることにより約40℃に加熱された第2媒体水は、配管27及びそれから分岐した配管27a,27bによって各凝縮器21に流通され、ヒートポンプ20A,20Bの熱媒体と熱交換して降温する。各凝縮器21から流出した約30℃の第2媒体水は、配管25a,25bを介して合流タンク25cに導入される。合流タンク25c内の第2媒体水は、ポンプ25d及び配管25eを介して熱交換器26の被加熱流体流路に戻る。
 熱交換器26の熱源流体流路には、温排水タンク95からの約56℃の温排水が配管29を介して導入される。熱交換器26で熱交換して約32℃に降温した排水は、配管30を介して回収水として回収される。
 温排水タンク95へは、ユースポイント90から排出される温排水が導入される。また、この実施の形態では、前記中継タンク12aからのオーバーフロー水も温排水タンク95へ導入される。
 図5のその他の構成は図1と同様であり、同一符号は同一部分を示している。
 なお、図1~6の各超純水製造装置において、一次純水温度25℃、サブシステム4からの超純水温度30℃、温超純水温度60℃、温排水温度56℃、回収水温度25℃、蒸気式熱交換器15からの第1媒体水温度85℃の温度条件とし、種々の流量条件でシミュレーションを行った。その結果、図6の超純水製造装置の熱源コストを100%とした場合、図1の超純水製造装置の熱源コストは75%、図2の超純水製造装置の熱源コストは63%、図4の熱源コストは65%であった。
 上記実施の形態は本発明の一例であり、本発明は図示以外の形態とされてもよい。例えば、熱交換器10で加熱された超純水を加熱するように配管11に蒸気式熱交換器が設けられてもよい。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2016年9月14日付で出願された日本特許出願2016-179640に基づいており、その全体が引用により援用される。

Claims (8)

  1.  一次純水製造装置と、
     該一次純水製造装置からの一次純水を処理して超純水を製造する二次純水製造装置と、
     該二次純水製造装置からの超純水を加熱するための、ユースポイントからの戻り水を熱源とする第1熱交換器と、
     該第1熱交換器で加熱された超純水をさらに加熱する加熱手段とを有し、加熱された超純水をユースポイントに供給する超純水製造装置において、
     前記加熱手段は、
     前記第1熱交換器で加熱された超純水が被加熱流体流路に通水される第2熱交換器と、
     該第2熱交換器の熱源流体流路に伝熱媒体としての第1媒体水を循環流通させる第1循環流路と、
     該第1循環流路を流れる第1媒体水を、温排水の熱によって加熱する第1媒体水加熱装置と、
     該第1媒体水加熱装置で加熱された第1媒体水を蒸気によって加熱する第3熱交換器とを備えたことを特徴とする超純水製造装置。
  2.  請求項1において、前記第1媒体水加熱装置は、凝縮器、蒸発器、ポンプ及び膨張弁を備えたヒートポンプを有しており、
     該凝縮器は、該第1媒体水を加熱するように前記第1循環流路に設置されており、
     該蒸発器は、第2媒体水が循環される第2循環流路に設置されており、
     該第2循環流路には、前記温排水の熱によって第2媒体水を加熱するための第2媒体水加熱装置が設けられていることを特徴とする超純水製造装置。
  3.  請求項2において、前記第2媒体水加熱装置は、前記温排水が熱源流体流路に通水される第5熱交換器であることを特徴とする超純水製造装置。
  4.  請求項3において、前記第1熱交換器と第2熱交換器との間に、前記超純水を加熱するための第6熱交換器が設置されており、
     前記温排水を、第6熱交換器の熱源流体流路に通水させてから第5熱交換器の熱源流体流路に通水させるための温排水流路が設けられていることを特徴とする超純水製造装置。
  5.  請求項4において、前記温排水を前記第6熱交換器を経て第5熱交換器に通水させる第1の流路選択と、温排水を前記第6熱交換器を迂回して第5熱交換器に通水させる第2の流路選択とを切り替えるための流路切替手段が設けられていることを特徴とする超純水製造装置。
  6.  請求項5において、前記温排水の水質を測定する水質センサを設け、該水質センサの検出水質が所定値よりも良好な場合には前記第1の流路選択とし、検出水質が該所定値よりも不良である場合には前記第2の流路選択とする制御手段を備えたことを特徴とする超純水製造装置。
  7.  請求項2において、前記第2媒体水加熱装置は、第3媒体水が熱源流体流路に通水される第5熱交換器であり、
     該第5熱交換器の熱源流体流路に第3媒体水を循環流通させるための第3循環流路が設けられており、
     該第3循環流路に、前記温排水によって第3媒体水を加熱する第7熱交換器が設置されていることを特徴とする超純水製造装置。
  8.  請求項7において、前記第1熱交換器と第2熱交換器との間に、前記超純水を加熱するための第6熱交換器が設置されており、
     前記第3循環流路は、前記第7熱交換器で加熱された第3媒体水を該第6熱交換器の熱源流体流路を経て第5熱交換器の熱源流体流路に通水させるように設けられていることを特徴とする超純水製造装置。
PCT/JP2017/010616 2016-09-14 2017-03-16 超純水製造装置 WO2018051551A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187034316A KR102107924B1 (ko) 2016-09-14 2017-03-16 초순수 제조 장치
CN201780046995.7A CN109562959B (zh) 2016-09-14 2017-03-16 超纯水制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-179640 2016-09-14
JP2016179640A JP6149992B1 (ja) 2016-09-14 2016-09-14 超純水製造装置

Publications (1)

Publication Number Publication Date
WO2018051551A1 true WO2018051551A1 (ja) 2018-03-22

Family

ID=59081992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010616 WO2018051551A1 (ja) 2016-09-14 2017-03-16 超純水製造装置

Country Status (5)

Country Link
JP (1) JP6149992B1 (ja)
KR (1) KR102107924B1 (ja)
CN (1) CN109562959B (ja)
TW (1) TWI691687B (ja)
WO (1) WO2018051551A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6948012B2 (ja) * 2018-03-06 2021-10-13 栗田工業株式会社 超純水の加熱方法
JP7033691B1 (ja) * 2021-10-29 2022-03-10 野村マイクロ・サイエンス株式会社 温超純水製造システムの立ち上げ方法、立ち上げプログラム、及び温超純水製造システム
JP7359198B2 (ja) 2021-12-03 2023-10-11 栗田工業株式会社 温超純水製造装置
JPWO2023149085A1 (ja) * 2022-02-03 2023-08-10
WO2023149086A1 (ja) * 2022-02-03 2023-08-10 Jfeスチール株式会社 熱回収装置、熱回収方法及び鋼板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (ja) * 1986-06-24 1988-01-09 Takuma Co Ltd 逆浸透膜装置システム
JPH06257987A (ja) * 1993-03-01 1994-09-16 Kurita Water Ind Ltd 不純物溶出の少ない熱交換器
JP2002016036A (ja) * 2000-06-27 2002-01-18 Shin Etsu Handotai Co Ltd 排水排熱利用方法
JP2006159003A (ja) * 2004-12-02 2006-06-22 Mayekawa Mfg Co Ltd 超純水の加熱冷却方法及び装置
JP2013202581A (ja) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd 超純水製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703034B2 (ja) * 1989-02-21 1998-01-26 神鋼パンテック株式会社 加熱脱気装置を用いた超純水装置
JPH10272492A (ja) * 1997-03-31 1998-10-13 Mitsubishi Electric Corp 高温超純水製造装置およびこれを備えた薬液調製装置
JP2013202610A (ja) * 2012-03-30 2013-10-07 Kurita Water Ind Ltd 超純水製造装置
US10138149B2 (en) * 2013-07-24 2018-11-27 Kurita Water Industries Ltd. Ultrapure water production system, ultrapure water production feed system, and method for cleaning thereof
CN204356181U (zh) * 2014-12-30 2015-05-27 龙钜超洁净科技(苏州)有限公司 纯水系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634808A (ja) * 1986-06-24 1988-01-09 Takuma Co Ltd 逆浸透膜装置システム
JPH06257987A (ja) * 1993-03-01 1994-09-16 Kurita Water Ind Ltd 不純物溶出の少ない熱交換器
JP2002016036A (ja) * 2000-06-27 2002-01-18 Shin Etsu Handotai Co Ltd 排水排熱利用方法
JP2006159003A (ja) * 2004-12-02 2006-06-22 Mayekawa Mfg Co Ltd 超純水の加熱冷却方法及び装置
JP2013202581A (ja) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd 超純水製造装置

Also Published As

Publication number Publication date
TW201825842A (zh) 2018-07-16
KR20190051897A (ko) 2019-05-15
CN109562959B (zh) 2020-05-19
TWI691687B (zh) 2020-04-21
JP2018043190A (ja) 2018-03-22
JP6149992B1 (ja) 2017-06-21
CN109562959A (zh) 2019-04-02
KR102107924B1 (ko) 2020-05-07

Similar Documents

Publication Publication Date Title
JP6350719B2 (ja) 超純水製造装置
WO2018051551A1 (ja) 超純水製造装置
JP6149993B1 (ja) 超純水製造装置
JP2013202581A (ja) 超純水製造装置
JP5953726B2 (ja) 超純水製造方法及び装置
WO2019171632A1 (ja) 超純水の加熱方法
JP5923030B2 (ja) 医療用精製水の製造装置とその運転方法
JP4475925B2 (ja) 脱塩処理装置および脱塩処理方法
JP6350718B2 (ja) 超純水製造装置
JP2013204956A (ja) 純水冷却装置の運転方法
JP2013202610A (ja) 超純水製造装置
JP7171386B2 (ja) 超純水製造装置の立ち上げ方法及び超純水製造装置
JP6879228B2 (ja) 水処理装置および水処理方法
JP7359198B2 (ja) 温超純水製造装置
JP6590016B2 (ja) 逆浸透処理方法及び装置
JP6447663B2 (ja) ボイラ水処理装置および処理方法
TW202330086A (zh) 水處理系統及水處理方法
JP2023038919A (ja) 水処理装置および水処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187034316

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850459

Country of ref document: EP

Kind code of ref document: A1