WO2018051486A1 - 表示装置及び表示装置基板 - Google Patents

表示装置及び表示装置基板 Download PDF

Info

Publication number
WO2018051486A1
WO2018051486A1 PCT/JP2016/077442 JP2016077442W WO2018051486A1 WO 2018051486 A1 WO2018051486 A1 WO 2018051486A1 JP 2016077442 W JP2016077442 W JP 2016077442W WO 2018051486 A1 WO2018051486 A1 WO 2018051486A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
touch sensing
display device
wiring
light
Prior art date
Application number
PCT/JP2016/077442
Other languages
English (en)
French (fr)
Inventor
港 浩一
福吉 健蔵
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2017547179A priority Critical patent/JP6365788B1/ja
Priority to PCT/JP2016/077442 priority patent/WO2018051486A1/ja
Priority to KR1020187037573A priority patent/KR102190184B1/ko
Priority to CN201680087383.8A priority patent/CN109416598B/zh
Publication of WO2018051486A1 publication Critical patent/WO2018051486A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to a display device and a display device substrate capable of reducing external noise such as static electricity or internal noise generated from a control system driving a display functional layer such as a liquid crystal layer, and more particularly to a display device having a touch sensing function
  • the present invention relates to a display device substrate used for the display device.
  • an organic electroluminescent display (hereinafter referred to as an organic EL) can contribute to thinning of such a mobile device.
  • an organic EL substrate provided with a white organic EL and a counter substrate provided with a color filter for realizing color display and disposed opposite to the organic EL substrate may be used.
  • a red light emitting LED chip, a green light emitting LED chip, and a blue light emitting LED chip are mounted on a small light emitting unit, and a plurality of light emitting units are arranged in a matrix on an array substrate.
  • a blue light emitting diode with high luminous efficiency is known as an LED, and a white LED in which a green phosphor and a red phosphor are disposed on a blue LED chip may be used.
  • the display functional layer of the display device is a liquid crystal layer, an organic EL layer (Organic Electroluminescence), an LED matrix layer by an LED chip (Light Emitting Diode), and an EMS (Electro Mechanical System) composed of an electrical element and a mechanical element.
  • MEMS Micro-Electro-Mechanical System
  • MEMS includes optical components such as an actuator, a transducer, a sensor, a micro mirror, a MEMS switch, and an optical film, and an interferometric modulator (IMOD: Interferometric Modulation).
  • the spread of display devices provided with a touch sensing function that allows an input with a pointer such as a finger is in progress.
  • a pointer such as a finger
  • this frame portion generally, a peripheral circuit formed of a polysilicon TFT or an oxide semiconductor TFT (thin film transistor, hereinafter active element) is formed.
  • the above-described narrowing of the frame, the addition of the touch sensing function, and the like increase the number of electrical noise generation sources, resulting in various problems.
  • static electricity of a hand or a human body is likely to adversely affect a display device having a touch sensing function.
  • touch sensing may malfunction.
  • static electricity stored in the human body may ride on a wiring of a control system related to display or a driver IC (Integrated Circuit) located in a frame portion, resulting in a display failure of the display device.
  • a control system related to display or a driver IC Integrated Circuit
  • Patent Document 1 discloses a configuration in which a conductive film formed of a transparent conductive material has a shield function and has a ground potential (is grounded). Furthermore, corrosion resistance is also realized by using the second conductive film in combination.
  • the resistance value of the transparent conductive material is high, a capacitance due to static electricity is likely to be formed, and a charge is likely to be applied to a wiring for driving a liquid crystal (in particular, common wiring) or a touch sensing wiring provided in a touch panel.
  • the resistance value of the transparent conductive material is high, the resistance value is insufficient for shielding high frequency noise.
  • Patent Document 2 proposes a configuration including a first touch drive electrode provided on a first substrate, and a second touch drive electrode and a touch detection electrode provided on a second substrate.
  • the second touch drive electrode 52 is disposed away from the peripheral circuit 80 which is a noise generation source.
  • the influence of external noise such as static electricity generated from a finger or a human body is not taken into consideration.
  • the withstand voltage standards for electrostatic discharge are strict.
  • Patent Document 2 such an external noise countermeasure is not considered.
  • peripheral circuits including switching elements and the like related to driving of active elements are provided in a frame portion located around the display area, and Patent Document 2 relates to a technology for narrowing the frame of the display device.
  • An active element such as a transistor formed in a peripheral circuit is often a thin film transistor provided with a channel layer formed of a polysilicon semiconductor.
  • Patent Document 3 relates to a liquid crystal display device in which a touch sensor and a display device are integrated.
  • Patent Document 3 discloses a technique for forming a touch screen on an array substrate using a bypass tunnel or the like.
  • signal lines gate lines and source lines
  • pixel electrodes connected to polysilicon transistors, but also sense regions related to touch sensing, drive-sense ground regions, bypass tunnels, etc. are arranged on the same array substrate. It is necessary to arrange on top. For this reason, in Patent Document 3, the array structure is extremely complicated, the parasitic capacitance is likely to be increased, and the load in the manufacturing process of the array substrate is large.
  • Patent Document 4 relates to an in-plane switching (IPS) liquid crystal display device, and discloses a technique in which a touch drive electrode and an electrode pair used for touch sensing are provided in the same plane.
  • a wiring for touch sensing (hereinafter, touch wiring) is disposed on an array substrate (a surface on which an active element is formed).
  • touch wiring is disposed near the TFT wiring that transmits the video signal and the gate signal to the active element, and there is a problem that the noise caused by the video signal is likely to get on the touch wiring.
  • Patent Document 5 discloses a structure including a gate line driving unit which outputs a selection signal for switching a specific gate line to a selected or non-selected state.
  • Each of the gate line drive units is formed in the display area, and can perform various displays at different drive frequencies according to, for example, control signals.
  • a still image can be partially displayed, or the drive frequency can be lowered to reduce power consumption.
  • the gate line may be in a selected state during a part of a plurality of frames, and the gate line may be between other frames. Power consumption can be reduced and image quality can be improved by switching the selection state of the gate line so as to be in a non-selected state.
  • Patent Document 5 the technology described in Patent Document 5 is excellent. However, as disclosed in FIG. 6A to FIG. 7 etc. of Patent Document 5, in addition to the active element TFT-PIX for driving the pixel (PIX), switching of TFT-D, TFT-E, TFT-F, etc. A new element needs to be added. The wiring 13N is further provided in these added switching elements.
  • Patent Document 6 discloses, as a touch sensing wiring, a copper wiring in which a copper-containing layer is sandwiched between conductive metal oxides containing indium oxide and tin oxide.
  • measures against noise (including malfunction of touch sensing) caused by a pointer such as a finger in touch sensing or noise generated from the peripheral circuit as described above are not considered.
  • JP JP 2011-95451 A Japanese Patent Application Laid-Open No. 2014-53000 Japanese Patent No. 5746736 Japanese Patent No. 4584342 International Publication 2014/142183 Pamphlet Japanese Patent No. 5807726
  • the structure of the array substrate is complicated due to the addition of the touch sensing function, the narrowing of the frame, the reduction of power consumption, and the addition of the switching element for image quality improvement. .
  • the structure of the array substrate is complicated, noise sources increase and it becomes difficult to secure an S / N ratio in touch sensing.
  • the present invention has been made in view of the above problems, and provides a display device and a display device substrate that realize high touch sensing accuracy and have a touch sensing function.
  • a display device includes a display functional layer, an array substrate for driving the display functional layer, a first surface facing the array substrate, and a second surface opposite to the first surface. And a first black layer and a first conductive layer are sequentially stacked in the observation direction from the second surface to the first surface, and It has a configuration in which a first sensing pattern including a plurality of first touch sensing wires extending parallel to one another so as to be aligned in one direction, and a second black layer and a second conductive layer are sequentially stacked in the observation direction.
  • Second sensing pattern including wiring A first light-shielding conductive pattern formed of the same material as the first touch sensing wiring, provided at the same position as the first touch sensing wiring in a cross-sectional view, and located outside the first sensing pattern; 2) A second light-shielding conductive pattern formed of the same material as the touch sensing wiring, provided at the same position as the second touch sensing wiring in a cross sectional view, and located outside the second sensing pattern, and facing the display function layer Device comprising: a display unit; and a light-shielding frame unit configured to surround the display unit and to be a part of the first sensing pattern, the first light-shielding conductive pattern, and the second light-shielding conductive pattern The capacitance change between the substrate and the first touch sensing wiring
  • the first touch sensing wiring and the second touch sensing wiring are formed on the second surface, and the first touch sensing wiring and the second touch sensing An insulating layer may be provided between the wiring and the first touch sensing wiring and the second touch sensing wiring may be electrically insulated from each other.
  • the first touch sensing wiring may be formed on the second surface, and the second touch sensing wiring may be formed on the first surface. Good.
  • the first touch sensing wiring and the second touch sensing wiring are sequentially formed on the first surface in the observation direction, and the first touch sensing An insulating layer may be provided between the wiring and the second touch sensing wiring, and the first touch sensing wiring and the second touch sensing wiring may be electrically isolated from each other.
  • the display device may have a housing that encloses the array substrate and the display device substrate, and the first light-shielding conductive pattern may be grounded to the housing.
  • the second light blocking conductive pattern may have a plurality of light blocking conductive portions divided by a slit.
  • the array substrate has a channel layer in contact with the gate insulating layer and made of an oxide semiconductor, and an active element for driving the display functional layer You may have.
  • the oxide semiconductor contains at least one metal selected from the group consisting of gallium, indium, zinc, tin, aluminum, germanium, and cerium. And a metal oxide containing at least one of antimony and bismuth.
  • the gate insulating layer may be formed of a composite oxide containing cerium oxide.
  • At least the gate wiring is a three-layer in which a copper alloy layer is held by a conductive metal oxide layer. It may have a structure.
  • the array substrate includes an upper electrode and a lower electrode sandwiching the display functional layer, the display functional layer is a light emitting diode layer, and the upper electrode and the upper electrode The light may be emitted by a drive voltage applied between the lower electrode and the lower electrode.
  • the array substrate includes an upper electrode and a lower electrode sandwiching the display functional layer, the display functional layer is an organic electroluminescent layer, and the upper electrode The light may be emitted by a drive voltage applied between the lower electrode and the lower electrode.
  • At least one of the upper electrode and the lower electrode may have a structure in which a silver alloy layer is sandwiched between conductive metal oxide layers.
  • the display functional layer is a liquid crystal layer
  • the array substrate includes a common electrode and a pixel electrode sandwiching the liquid crystal layer
  • the liquid crystal layer is the common It may drive by the electrical potential difference between an electrode and the said pixel electrode.
  • the common electrode in cross section, may be provided at a position closer to the display device substrate than the pixel electrode.
  • the display device substrate according to the second aspect of the present invention has a first surface and a second surface opposite to the first surface, any one of the first surface and the second surface.
  • the first black layer and the first conductive layer are sequentially stacked in the observation direction from the second surface to the first surface, and the first black layer is formed on the second surface in the first direction.
  • a first sensing pattern including a plurality of first touch sensing wires extending parallel to one another, and any one of the first surface and the second surface, and a second black layer in the viewing direction And the second conductive layer are sequentially stacked, and includes a plurality of second touch sensing wires extending parallel to one another so as to be aligned in a second direction orthogonal to the first direction in plan view, 2 sensing pattern, and the first touch sense
  • a first light-shielding conductive pattern formed of the same material as the G-wire, provided at the same position as the first touch-sensing wire in a cross-sectional view, and located outside the first sensing pattern;
  • a second light-shielding conductive pattern formed of the same material, provided at the same position as the second touch sensing wiring in the cross-sectional view, and located outside the second sensing pattern, a part of the first sensing pattern, And a light-shielding frame portion configured by the first light-shielding conductive pattern and the second light-
  • the transparent substrate may have a short side and a long side in plan view, and the first light-shielding conductive pattern may be provided parallel to the long side Good.
  • the second light shielding conductive pattern has a plurality of slits parallel to the first touch sensing wiring, and in plan view, the second light shielding conductive pattern and the plurality of first touch sensing wiring A superimposed portion in which the plurality of slits overlap is formed, and the superimposed portion may constitute the frame portion.
  • the first conductive layer and the second conductive layer have at least a three-layer structure in which a copper alloy layer is sandwiched by conductive metal oxide layers. Good.
  • the display device includes a plurality of pixels partitioned by the plurality of first touch sensing wires and the plurality of second touch sensing wires in plan view, and the plurality of pixels are A color filter may be provided.
  • a display device and a display device substrate having a function of realizing high-accuracy touch sensing by reducing internal noise generated from peripheral circuits or external noise from the outside of the display device.
  • FIG. 1 is a cross-sectional view partially showing a display device according to a first embodiment of the present invention. It is a figure which shows the opposing board
  • FIG. 1 It is a top view which shows partially the frame part of the opposing substrate with which the display concerning a 1st embodiment of the present invention is provided, and is obtained by the overlapping part which the slit of the 2nd light-shielding conductive pattern and the 1st touch sensing wiring overlap. It is a figure explaining the light-shielding property. It is a figure which shows partially the liquid-crystal layer with which the display apparatus which concerns on 1st Embodiment of this invention is equipped, and the frame part of a counter substrate, Comprising: It is sectional drawing in alignment with the A-A 'line of FIG. FIG.
  • FIG. 3 is a view showing a first touch sensing wiring, an insulating layer, and a second touch sensing wiring provided on the counter substrate according to the first embodiment of the present invention, and is an enlarged view showing a portion indicated by reference symbol W1 in FIG.
  • FIG. 10 is a cross-sectional view partially showing an array substrate provided in the display device according to the first embodiment of the present invention, and a cross-sectional view taken along the line C-C ′ shown in FIG. FIG.
  • FIG. 5 is a circuit diagram partially showing the display device according to the first embodiment of the present invention, and is an explanatory view showing a state of liquid crystal drive voltage in each pixel when the liquid crystal display device is driven by column inversion drive.
  • FIG. 2 is a circuit diagram partially showing a display device according to a first embodiment of the present invention, and is an explanatory view showing a state of liquid crystal drive voltage in each pixel when the liquid crystal display device is driven by dot inversion driving. It is sectional drawing which shows partially the display apparatus which concerns on 2nd Embodiment of this invention. It is sectional drawing which shows partially the liquid-crystal layer with which the display apparatus which concerns on 2nd Embodiment of this invention is provided, and the frame part of a counter substrate.
  • FIG. 7 is a cross-sectional view partially showing an array substrate according to a third embodiment of the present invention.
  • FIG. 21 is a view partially showing pixel electrodes constituting an array substrate according to a third embodiment of the present invention, and an enlarged cross-sectional view showing a portion indicated by reference sign W3 in FIG. 20. It is sectional drawing which shows partially the gate electrode which comprises the array substrate which concerns on 3rd Embodiment of this invention.
  • the wires, electrodes, and signals involved in touch sensing may be simply referred to as touch drive wires, touch detection wires, touch wires, touch electrodes, and touch signals.
  • the first touch sensing wiring and the second touch sensing wiring may be simply referred to as a touch sensing wiring.
  • a voltage applied to the touch sensing wiring in order to perform touch sensing drive is referred to as a touch drive voltage.
  • the first black layer and the second black layer may be simply referred to as a black layer, and the first conductive layer and the second conductive layer may simply be referred to as a conductive layer.
  • a voltage applied between the common electrode and the pixel electrode for driving the liquid crystal layer may be referred to as a liquid crystal driving voltage.
  • the liquid layer drive voltage may be referred to as a pixel drive voltage.
  • the upper electrode and the lower electrode hereinafter, the lower electrode are referred to as a pixel electrode or a reflective electrode to drive the light emitting layer (organic EL or LED)
  • the voltage applied between the two is referred to as a pixel drive voltage.
  • the driving of the light emitting layer may be simply referred to as pixel driving.
  • FIG. 1 is a block diagram showing a display device DSP1 according to a first embodiment of the present invention.
  • the display device DSP1 according to the present embodiment includes a display unit 110, a display unit 110, and a control unit 120 for controlling a touch sensing function.
  • the control unit 120 has a known configuration, and includes a video signal control unit 121 (first control unit), a touch sensing control unit 122 (second control unit), and a system control unit 123 (third control unit). Have.
  • the video signal control unit 121 sets the common electrodes 17 (described later) provided on the array substrate 200 to a constant potential, and also sets gate wirings 9 and 10 (described later, scanning lines) and source wirings 31 provided on the array substrate 200. Send a signal to 32 (described later, signal line).
  • a liquid crystal drive voltage potential difference
  • the video signal control unit 121 applies a liquid crystal drive voltage (potential difference) for display between the common electrode 17 and the pixel electrode 29 (described later)
  • a fringe electric field is generated on the array substrate 200 and follows the fringe electric field.
  • the liquid crystal molecules rotate, and the liquid crystal layer 300 is driven. Thus, an image is displayed on the array substrate 200.
  • a video signal having, for example, a rectangular wave is individually applied to each of the plurality of pixel electrodes 29 via the source wirings 31 and 32 (signal lines). Further, as the square wave, a positive or negative direct current square wave or an alternating current square wave may be used.
  • the video signal control unit 121 sends such a video signal to the source wiring.
  • the touch sensing control unit 122 applies a touch sensing drive voltage to the second touch sensing wiring 2 (described later), and detects a change in capacitance generated between the first touch sensing wiring 1 and the second touch sensing wiring 2 And perform touch sensing.
  • the system control unit 123 can control the video signal control unit 121 and the touch sensing control unit 122 to alternately perform liquid crystal driving and detection of change in capacitance, that is, time division.
  • the system control unit 123 may have the function of performing the above-mentioned drive by making the frequencies of the liquid crystal drive and the touch sensing drive different from each other, or make the drive voltages of the liquid crystal drive and the touch sensing drive different from each other It may have a function of driving the In the system control unit 123 having such a function, for example, the frequency of noise from the external environment picked up by the display device DSP1 is detected, and a touch sensing drive frequency different from the noise frequency is selected. This can reduce the influence of noise. Further, such a system control unit 123 can also select a touch sensing drive frequency in accordance with the scanning speed of a pointer such as a finger or a pen.
  • the display device DSP1 provided with the control unit 120 described above is a display device integrated with a touch sensing function, which has a touch sensing function and an image display function.
  • the display device DSP1 is a capacitive touch sensing technology using two wiring groups arranged via an insulating layer, that is, a plurality of first touch sensing wires 1 and a plurality of second touch sensing wires 2.
  • a pointer such as a finger contacts or approaches the opposing substrate 100 (described later)
  • a change in capacitance generated at the intersection of the first touch sensing wiring 1 and the second touch sensing wiring 2 is detected.
  • the position of the pointer is detected.
  • reference symbol K in FIG. 1 indicates a case K of the display device DSP1 according to the present embodiment.
  • the array substrate 200 and the counter substrate 100 are surrounded by the housing K, and the array substrate 200 and the counter substrate 100 are integrated.
  • FIG. 2 is a cross-sectional view partially showing a display device DSP1 according to the first embodiment of the present invention.
  • the display device DSP1 according to the present embodiment includes a display device substrate according to an embodiment to be described later. Further, the “plan view” described below means a plane viewed from the direction in which the observer observes the display surface of the display device DSP1 (the plane of the display device substrate).
  • the shape of the display unit of the display device according to the embodiment of the present invention, or the shape of the pixel opening defining the pixels, and the number of pixels constituting the display device are not limited.
  • the direction along the short side of the display unit is defined as the X direction (first direction), and the direction along the long side of the display unit is defined as the Y direction (second direction).
  • the thickness direction of the transparent substrate is defined as the Z direction, and the display device will be described.
  • the X direction and the Y direction defined as described above are switched, that is, the X direction is defined as the second direction and the Y direction is defined as the first direction, and the display device is configured. You may
  • the display device DSP 1 is held between the counter substrate 100 (display device substrate), the array substrate 200 bonded to face the counter substrate 100, and the counter substrate 100 and the array substrate 200. And the liquid crystal layer 300.
  • the display device DSP1 shown in FIG. 2 an optical film having various optical functions, a cover glass for protecting the opposite substrate 100, and the like are omitted.
  • the counter substrate 100 includes a transparent substrate 40 (first transparent substrate) having a first surface MF and a second surface MS opposite to the first surface MF.
  • the first surface MF is a surface facing the array substrate 200.
  • the second surface MS is a surface facing the observer.
  • a substrate that can be used for the transparent substrate 40 may be any substrate that is transparent in the visible range, and a glass substrate, a ceramic substrate, a quartz substrate, a sapphire substrate, a plastic substrate, or the like can be used.
  • FIG. 3 is a view showing the counter substrate 100 provided in the display device DSP1 according to the first embodiment of the present invention, and is a plan view of the display device DSP1 viewed from the viewer side P. That is, it is a plan view looking at the second surface MS of the transparent substrate 40. Above the second surface MS of the transparent substrate 40, a first sensing pattern PT1 including a plurality of first touch sensing wires 1, a second sensing pattern PT2 including a plurality of second touch sensing wires 2, and a first light blocking A conductive pattern F21 and a second light shielding conductive pattern F22 are provided.
  • An insulating layer I (touch wiring insulating layer) is provided between the plurality of first touch sensing wirings 1 and the plurality of second touch sensing wirings 2, and the first touch sensing wiring 1 and the second touch sensing wiring are provided. 2 are electrically isolated from each other by the insulating layer I.
  • the first light shielding conductive pattern F21 is formed of the same material as the first touch sensing wiring 1, is provided at the same position as the first touch sensing wiring 1 in a cross sectional view, and is located outside the first sensing pattern PT1.
  • the second light shielding conductive pattern F22 is formed of the same material as the second touch sensing wiring 2, is provided at the same position as the second touch sensing wiring 2 in a cross sectional view, and is positioned outside the second sensing pattern PT2.
  • the first light blocking conductive pattern F21 and the second light blocking conductive pattern F22 constitute a light blocking frame portion F, and the frame portion F surrounds the display portion 110 facing the liquid crystal layer (display function layer).
  • the layer configuration of the first light shielding conductive pattern F21 is the first
  • the layer configuration of the touch sensing wiring 1 is the same
  • the layer configuration of the second light shielding conductive pattern F22 is the same as the layer configuration of the second touch sensing wiring 2.
  • the first light shielding conductive pattern F21 and the first sensing pattern PT1 are simultaneously formed by patterning in the same process.
  • the second light shielding conductive pattern F22 and the second sensing pattern PT2 are simultaneously patterned and formed in the same process.
  • FIG. 4 is a view showing the counter substrate 100 provided in the display device DSP1 according to the first embodiment of the present invention, and a first sensing pattern PT1 having a plurality of first touch sensing wires 1 provided on the counter substrate 100. And a first light-shielding conductive pattern F21 located outside the first sensing pattern PT1.
  • the second light-shielding conductive pattern F22 and the second sensing pattern PT2 shown in FIG. 3 are omitted.
  • the plurality of first touch sensing wires 1 are located above the second surface MS, arranged in the X direction, and extend in the Y direction in parallel with each other.
  • a first terminal TM1 is provided at an end of the first touch sensing wiring 1 in the Y direction.
  • the plurality of first touch sensing wires 1 form a first sensing pattern PT1.
  • a first light-shielding conductive pattern F21 formed in a U-shape to surround the first sensing pattern PT1 is disposed outside the first sensing pattern PT1.
  • the long side portions F21L of the first light shielding conductive pattern F21 are located on both sides of the first sensing pattern PT1 in the X direction.
  • the long side F21L extends in the Y direction. That is, of the long side and the short side of the transparent substrate 40, the long side portion F21L of the first light shielding conductive pattern F21 is provided in parallel to the long side of the transparent substrate 40.
  • the short side F21S of the first light shielding conductive pattern F21 is located at an end (left side in FIG. 4) of the first sensing pattern PT1 in the Y direction.
  • the short side F21S extends in the X direction. Further, the first light shielding conductive pattern F21 is grounded to the housing K.
  • FIG. 5 is a view showing the counter substrate 100 provided in the display device DSP1 according to the first embodiment of the present invention, and a second sensing pattern PT2 having a plurality of second touch sensing wires 2 provided on the counter substrate 100. And a second light-shielding conductive pattern F22 located outside the second sensing pattern PT2. Each of the second light shielding conductive patterns F22 is electrically independent.
  • the first light-shielding conductive pattern F21 and the first sensing pattern PT1 shown in FIG. 3 are omitted.
  • the second touch sensing wiring 2 includes a sense wiring 2A and a lead wiring 2B.
  • the sense wires 2A are arranged in the Y direction, and extend in the X direction in parallel with each other.
  • the sense wire 2A is connected to the lead wire 2B on the outer side (frame portion F) of the display unit 110.
  • the lead wirings 2B are arranged in the X direction, and extend in the Y direction in parallel with each other.
  • a second terminal TM2 is provided at the end of the lead-out wiring 2B in the Y direction.
  • the plurality of second touch sensing wires 2 form a second sensing pattern PT2.
  • the second light-shielding conductive pattern F22 includes a plurality of first light-shielding conductive portions F22A (light-shielding conductive portions) positioned on the left side (front end in the Y direction) of the counter substrate 100 in FIG. And a plurality of second light-shielding conductive portions F22B (light-shielding conductive portions) located at the base end of the substrate). Further, the first light-shielding conductive portion F22A adjacent to each other and the second light-shielding conductive portion F22B adjacent to each other are divided by the slit S and divided. The plurality of slits S that partition the second light shielding conductive portion F22B are parallel to the first touch sensing wiring 1.
  • any of the light shielding conductive portions is divided by the cross-shaped slit CS.
  • the second light shielding conductive pattern F22 is divided into a plurality of light shielding conductive portions (a plurality of patterns) by the slit pattern, and the second light shielding conductive pattern F22 includes a plurality of large and small light shielding conductive portions.
  • the second light shielding conductive pattern F22 is divided into a plurality of patterns by the slits that partition the second light shielding conductive pattern F22.
  • an electrically pseudo capacitor is formed between the second light shielding conductive pattern F22 and the first light shielding conductive pattern F21. Can be provided.
  • this capacitor By forming this capacitor, noise with a low frequency (for example, noise generated from a driver circuit or the like) is difficult to transmit in the thickness direction of the second light shielding conductive pattern F22 and the first light shielding conductive pattern F21. It is preferable that such a capacitor be a second light-shielding conductive pattern F22 having a plurality of types of characteristics, in other words, light-shielding conductive portions having different sizes. In plan view, the shape of the light shielding conductive portion is arbitrarily set. Note that noise with high frequency escapes to the ground through the grounded first light-shielding conductive pattern F21 and hardly passes through the conductive pattern.
  • the operational effects obtained by the second light shielding conductive pattern F22 and the first light shielding conductive pattern F21 described above can not be sufficiently obtained by a transparent conductive film pattern such as ITO having a high resistance value. It is preferable to use a thin film formed of copper, silver, a copper alloy, or a silver alloy as a part of the second light shielding conductive pattern F22 or the first light shielding conductive pattern F21.
  • the second light shielding conductive pattern F22 and the first light shielding conductive pattern F21 can be simultaneously formed in the step of forming the first touch sensing wiring 1 and the second touch sensing wiring 2, so that the number of manufacturing processes is not increased. There is an advantage that the light shielding conductive pattern F22 and the first light shielding conductive pattern F21 can be formed. By using the second light shielding conductive pattern F22 and the first light shielding conductive pattern F21 according to the present embodiment, it is possible to realize a display device having a shielding effect against various noises including electrostatic noise.
  • FIG. 6 is a plan view partially showing the frame portion F of the counter substrate 100 provided in the display device DSP1 according to the first embodiment of the present invention, in which the slit S of the second light shielding conductive pattern F22 and the first touch sensing It is a figure explaining the light-shielding property obtained by the superimposition part which the wiring 1 overlaps.
  • FIG. 6A partially shows a first terminal TM1 shown in FIG. 4 and a part (reference numeral 1 ′) of the first touch sensing wiring 1 extending from the first terminal TM1 toward the display unit 110. It is a top view.
  • the first terminal TM1 is an exposed portion where the first black layer 16 described later is removed to expose the first conductive layer 15, and is a portion functioning as a pad (terminal portion).
  • FIG. 6B is a plan view partially showing the second light shielding conductive portion F22B shown in FIG.
  • the second light shielding conductive portions F22B (second light shielding conductive patterns F22) adjacent to each other are partitioned by the slits S.
  • the width WS of the slit S is the same as the width H 1 of the first touch sensing wiring 1.
  • the arrangement pitch PS in the X direction in which the plurality of slits S are arranged is the same as the arrangement pitch P1 in the X direction in which the first touch sensing wiring 1 is arranged.
  • FIG. 6C when part of the first touch sensing wiring 1 shown in FIG. 6A and the slit S shown in FIG.
  • the position of the wiring 1 matches the position of the slit S, and a plurality of overlapping portions 3 are formed.
  • the overlapping portion 3 constitutes a light shielding frame portion F.
  • the frame portion F is configured by the portion F21L and the short side portion F21S and the second light shielding conductive portion F22B (second light shielding conductive pattern F22).
  • the plurality of second light shielding conductive portions F22B are subdivided so as not to generate a large parasitic capacitance. If the width WS of the slit S is set to be shorter than the wavelength of the average frequency of the noise generated from the peripheral circuit 80 shown in FIG. 7, the influence of the noise becomes difficult.
  • the overlapping portion 3 is formed by the plurality of second light shielding conductive portions F22B constituting the second light shielding conductive pattern F22 and a portion of the plurality of first touch sensing wires 1.
  • the superimposing unit 3 can prevent the occurrence of noise leakage and the occurrence of light leakage from the backlight unit (not shown).
  • the resistance value of the first light shielding conductive pattern F21 and the second light shielding conductive pattern F22 be low. It is preferable to use a metal having high conductivity in part of the layer configuration of each of the first light shielding conductive pattern F21 or the second light shielding conductive pattern F22. Although a slit may be formed in the first light shielding conductive pattern F21, it is desirable that the first light shielding conductive pattern F21 be grounded in order to reduce the influence of noise caused by static electricity. For example, as in the present embodiment, it is desirable that the first light-shielding conductive pattern F21 be grounded to the housing K.
  • a high potential such as static electricity is applied to the display device DSP1 from the outside of the display device DSP1 or when the display device DSP1 is held by a hand or a finger, the static electricity is displayed from the finger DSP1.
  • the influence of static electricity can be reduced by grounding the first light-shielding conductive pattern F21.
  • the first light shielding conductive pattern F21 is grounded to a member constituting the display device DSP1
  • a structure in which the first light shielding conductive pattern F21 is connected to the housing K of the display device DSP1 is used.
  • the ground potential used in the display such as may be used as the ground potential.
  • FIG. 7 is a view partially showing the liquid crystal layer 300 provided in the display device DSP1 according to the first embodiment of the present invention and the frame portion F of the counter substrate 100, taken along line AA 'in FIG. FIG.
  • peripheral circuits 80 related to liquid crystal driving are formed on the array substrate 200.
  • the peripheral circuit 80 is located below the frame portion F shown in FIG.
  • a TFT for driving an active element of array substrate 200, a capacitive element, a resistive element or the like is provided on the surface of frame portion 200F of array substrate 200 (a region coincident with frame portion F in plan view) It is done.
  • the electrical noise generated from the peripheral circuit 80 is cut at the frame portion F, and the influence of the noise on the first touch sensing wiring 1 which is a touch detection electrode can be reduced.
  • the cell gap (thickness) of the liquid crystal layer 300 is controlled by the spacer 103.
  • a seal layer 104 is provided around the liquid crystal layer 300. The liquid crystal layer 300 is surrounded by the counter substrate 100, the array substrate 200, and the seal layer 104.
  • the plurality of first terminals TM1 and the plurality of second terminals TM2 illustrated in FIGS. 3 to 6 are connected to the touch sensing control unit 122.
  • the first terminal TM1 of the first touch sensing wiring 1 is electrically connected to the terminal provided on the flexible printed circuit board FPC via the anisotropic conductive film 101.
  • a conductor such as a minute metal sphere or a resin sphere covered with a metal film may be used.
  • the touch sensing control unit 122 is electrically connected to the first touch sensing wiring 1 and the second touch sensing wiring 2 through the first terminal TM1 and the second terminal TM2 through the flexible printed circuit board FPC.
  • Each of the plurality of first touch sensing wires 1 and each of the plurality of second touch sensing wires 2 are electrically independent.
  • the first touch sensing wiring 1 and the sense wiring 2A are orthogonal to each other in a plan view viewed from the observer side P.
  • An area partitioned by the plurality of first touch sensing wires 1 and the plurality of sense wires 2A is a pixel PX.
  • the plurality of pixels PX are arranged in a matrix in the display unit 110.
  • the shape of the opening in the pixel PX may be a square pattern, a rectangular pattern, a parallelogram pattern, or the like.
  • the arrangement of the openings in the pixel PX may be an arrangement with a countermeasure against moiré, or a zigzag arrangement.
  • the plurality of first terminals TM1 and the plurality of second terminals TM2 are connected to the touch sensing control unit 122.
  • the touch sensing control unit 122 is electrically connected to the first touch sensing wiring 1 and the second touch sensing wiring 2 through the first terminal TM1 and the second terminal TM2.
  • the first touch sensing wiring 1 can be used as a touch detection electrode
  • the second touch sensing wiring 2 can be used as a touch drive electrode.
  • the touch sensing control unit 122 detects a change in the capacitance C1 generated between the first touch sensing wiring 1 and the second touch sensing wiring 2 as a touch signal.
  • the role of the first touch sensing wiring 1 and the role of the second touch sensing wiring 2 may be interchanged.
  • the first touch sensing wiring 1 may be used as a touch drive electrode
  • the second touch sensing wiring 2 may be used as a touch detection electrode.
  • the interconnections not used for touch sensing may be thinned except for the interconnections used for touch sensing. That is, thinning drive may be performed.
  • the first touch sensing wiring 1 is driven to be thinned out.
  • all the first touch sensing wires 1 are divided into a plurality of groups.
  • the number of groups is less than the number of all first touch sensing wires 1. It is assumed that the number of wires forming one group is, for example, six.
  • the number of wirings is six
  • two wirings are selected (the number less than the number of all the wirings, two ⁇ six).
  • touch sensing is performed using two selected wires, and the potentials of the remaining four wires are set to floating potentials. Since the display device DSP1 has a plurality of groups, it is possible to perform touch sensing for each group in which the wiring function is defined as described above. Similarly, the thinning drive may be performed in the second touch sensing wiring 2 as well.
  • the pointer used for the touch is a finger and when it is a pen, the area and capacity of the touch or proximity pointer are different.
  • the size of the pointer can adjust the number of wires to be thinned out.
  • a pointer with a thin tip such as a pen or a needle tip, it is possible to use a matrix of high-density touch sensing wiring by reducing the number of wiring thinning.
  • a matrix of high density touch sensing wiring can be used also at the time of fingerprint authentication.
  • the number of wirings used for scanning or detection is reduced, so that the touch sensing speed can be increased.
  • the number of wires forming one group is six, but for example, one wire is formed of 10 or more wires, and two wires selected in one group are selected. Touch sensing may be performed using this. That is, the number of wirings to be thinned (the number of wirings to be a floating potential) is increased, thereby decreasing the density of selected wirings used for touch sensing (the density of selected wirings with respect to the total number of wirings).
  • the detection contributes to the reduction of power consumption and the improvement of touch detection accuracy.
  • by reducing the number of wirings to be thinned out increasing the density of selection wirings used for touch sensing, and performing scanning or detection by the selection wirings, it can be used for, for example, fingerprint authentication or input by a touch pen.
  • the thinned wiring (wiring not used for touch sensing) is in an electrically floating state, that is, the potential is in a floating state.
  • the potential of the first touch sensing wiring 1 or the second touch sensing wiring 2 can also be floated in order to obtain a close distance between the surface of the display device DSP1 (the surface facing the viewer) and the pointer such as a finger. .
  • one of the first touch sensing wiring 1 and the second touch sensing wiring 2 may be grounded and reset in order to improve the accuracy of the next detection signal (potential To 0V).
  • a voltage that alternately inverts the phase of the touch drive voltage may be employed.
  • Such means for improving the accuracy of the touch detection signal is also effective when the pointer is an active pointer (for example, a pointer in which an instruction signal for detection is generated from a pen-shaped pointer).
  • high definition touch sensing may be performed by switching the detection electrode and the drive electrode by driving the switching element.
  • the floating pattern in the above-described thinning drive can be switched so as to be electrically connected to the ground (ground to the housing).
  • the signal wiring of an active element such as a TFT (thin film transistor) may be temporarily grounded to a ground (such as a housing).
  • a touch wiring requiring a relatively long time to reset the capacitance detected by touch sensing control that is, a touch wiring having a large time constant (product of capacitance and resistance value) in touch sensing is used. is there.
  • the wirings in the odd rows and the wirings in the even rows may be alternately used for touch sensing, and driving may be performed with the time constant adjusted.
  • driving and detection may be performed by grouping a plurality of touch wirings.
  • a drive method of batch detection which is also referred to as a self detection method in group units, may be adopted without adopting line sequential drive.
  • parallel drive may be performed in group units.
  • a difference detection method may be adopted in which the difference between detection signals of touch wires adjacent or adjacent to each other is taken.
  • the touch sensing wiring located in the area near the frame portion (the area outside the display section 110, the area where image display is not performed) tends to have lower sensitivity of touch sensing than the touch sensing wiring located in the center of the display section 110. There is. Therefore, the sensitivity difference may be reduced by adjusting the width and shape of the touch sensing wiring.
  • the touch sensing control unit 122 and the video signal control unit 121 can also control touch sensing drive and liquid crystal drive (pixel drive) by time-division drive.
  • the frequency of touch drive may be adjusted according to the speed of touch input required.
  • the touch drive frequency can be higher than the liquid crystal drive frequency. It is desirable that the touch drive frequency be high because the touch timing by the pointer such as the finger is irregular and is short.
  • touch sensing drive and the pixel drive different in frequency.
  • a normally-off liquid crystal drive turn off the light emission of the backlight to display black when black is displayed (off), and perform touch sensing drive during this black display period (period in which the liquid crystal display is not affected).
  • touch sensing drive during this black display period (period in which the liquid crystal display is not affected).
  • various touch drive frequencies can be selected.
  • FIG. 8 is a view showing the first touch sensing wiring 1, the insulating layer I, and the second touch sensing wiring 2 provided on the counter substrate 100 according to the first embodiment of the present invention, and the reference symbol W1 in FIG. FIG. 8 is an enlarged cross-sectional view showing a portion indicated by the symbol.
  • the direction in which the observer P observes the display device DSP1 that is, the direction from the second surface MS of the transparent substrate 40 toward the first surface MF is referred to as an observation direction OB.
  • the plurality of first touch sensing wires 1 have a configuration in which the first black layer 16 and the first conductive layer 15 are sequentially stacked in the observation direction OB.
  • the plurality of second touch sensing wires 2 have a configuration in which the second black layer 36 and the second conductive layer 35 are sequentially stacked in the observation direction OB.
  • the second black layer 36 has the same configuration as the first black layer 16.
  • the second conductive layer 35 has the same configuration as the first conductive layer 15. That is, the first touch sensing wiring 1 and the second touch sensing wiring 2 have the same layer structure.
  • the insulating layer I is provided above the second surface MS, and is disposed between the first touch sensing wiring 1 and the second touch sensing wiring 2.
  • each of the first touch sensing wiring 1 and the second touch sensing wiring 2 includes a black layer
  • the first touch sensing wiring 1 and the second touch sensing wiring 2 orthogonal to each other in a lattice form function as a black matrix, Improve display contrast.
  • each of the 1st touch sensing wiring 1 and the 2nd touch sensing wiring 2 has a 2 layer laminated structure comprised by the black layer and the conductive layer, this invention limits this structure. do not do.
  • Each of the first touch sensing wiring 1 and the second touch sensing wiring 2 may be formed in a stacked structure having the number of layers greater than two.
  • a three-layer laminated structure in which a conductive layer is sandwiched between two black layers may be employed.
  • the first conductive layer 15 can have, for example, a three-layer structure in which a copper alloy layer, which is a metal layer 20, is sandwiched between the first conductive metal oxide layer 21 and the second conductive metal oxide layer 22.
  • the line widths of the black layer and the conductive layer that constitute each of the first touch sensing wiring 1 and the second touch sensing wiring 2 can be made substantially the same.
  • dry etching is performed using the patterned conductive layer as a mask to obtain a line width in a cross-sectional view of the black layer and the conductive layer.
  • the touch sensing interconnections can be formed such that is substantially the same.
  • the technology described in JP-A-2015-004710 can be applied.
  • the metal layer 20 constituting at least a part of the first conductive layer 15 and the second conductive layer 35 can be sandwiched between the conductive metal oxide layers 21 and 22.
  • a three-layer structure composed of the first conductive metal oxide layer 21, the metal layer 20, and the second conductive metal oxide layer 22 can be adopted.
  • Metals different from copper or alloy layers of these metals may be further inserted.
  • the first conductive metal oxide layer 21 and the second conductive metal oxide layer 22 for example, indium oxide, zinc oxide, antimony oxide, tin oxide, gallium oxide, and bismuth oxide are used.
  • Complex oxides containing two or more metal oxides selected from the group consisting of By adjusting the composition of these metal oxides, it is possible to adjust the value of the work function, and it is possible to adjust the carrier release property when the organic EL is adopted as the light emitting layer.
  • the amount of indium (In) contained in the first conductive metal oxide layer 21 and the second conductive metal oxide layer 22 needs to be more than 80 at%. That is, the conductive metal oxide layer is formed of a composite oxide containing indium oxide, zinc oxide, and tin oxide, and indium (In), zinc (Zn), and tin (Sn) In contained in the composite oxide.
  • the atomic ratio represented by / (In + Zn + Sn) is greater than 0.8, and the atomic ratio of Zn / Sn is greater than 1.
  • the amount of indium (In) is preferably greater than 80 at%. More preferably, the amount of indium (In) is greater than 90 at%.
  • the amount of indium (In) is less than 80 at%, the specific resistance of the conductive metal oxide layer to be formed is undesirably increased.
  • the amount of zinc (Zn) exceeds 20 at%, the alkali resistance of the conductive metal oxide (mixed oxide) is unfavorably lowered.
  • atomic percent of metal elements in the mixed oxide count only of metal elements not counting oxygen elements
  • Antimony oxide or bismuth oxide can be added to the conductive metal oxide layer because metallic antimony or bismuth oxide hardly forms a solid solution region with copper and suppresses the diffusion of copper in the laminated structure.
  • the amount of zinc (Zn) needs to be larger than the amount of tin (Sn) .
  • the content of tin exceeds the content of zinc, problems occur in the wet etching in the later step.
  • the metal layer which is copper or copper alloy is more easily etched than the conductive metal oxide layer, and the first conductive metal oxide layer 21 and the metal layer 20, and the second conductive metal oxide layer 22 The width of the metal layer 20 easily becomes different.
  • the first conductive metal oxide layer 21 and the second conductive metal oxide layer 22 contain tin oxide and zinc oxide
  • the first conductive metal oxide layer 21 and the second conductive metal oxide layer 22 may be used.
  • the amount of tin (Sn) contained is preferably in the range of 0.5 at% or more and 6 at% or less.
  • the specific resistance of the ternary mixed oxide film becomes too large because the addition of zinc to the conductive metal oxide layer is also accompanied.
  • the specific resistance is approximately 3 ⁇ 10 ⁇ 4 ⁇ cm or more as the specific resistance of the single layer film of the mixed oxide film. It can be contained within a small range of 5 ⁇ 10 -4 ⁇ cm or less.
  • a small amount of other elements such as titanium, zirconium, magnesium, aluminum and germanium can also be added to the above mixed oxide.
  • the specific resistance of the mixed oxide is not limited to the above range.
  • the first conductive layer 15 and the second conductive layer 35 can be formed of a conductive material such as the metal layer 20.
  • the metal layer 20 may be, for example, a copper layer, a copper alloy layer, a silver layer or a silver alloy layer, an aluminum alloy layer containing aluminum (aluminum-containing layer), gold, titanium, molybdenum, or an alloy of these. Can be adopted. Since nickel is a ferromagnetic material, although the deposition rate is lowered, it can be formed by vacuum deposition such as sputtering. Chromium has the disadvantage of environmental pollution and a large resistance value, but can be used as the material of the metal layer according to the present embodiment.
  • the 1st conductive layer 15 which constitutes each of the 1st touch sensing wiring 1 and the 2nd touch sensing wiring 2, and the 2nd conductive layer 35
  • 1.5 at% of calcium was added to silver Silver alloys can be used.
  • the first conductive layer 15 and the second conductive layer 35 it is possible to use a three-layer structure in which the silver alloy layer is sandwiched by a composite oxide layer containing indium oxide, zinc oxide and tin oxide.
  • magnesium or calcium added to copper or silver is selectively oxidized during heat treatment, for example, at the interface between the conductive metal oxide and the metal layer. It is easy to precipitate out.
  • magnesium oxide or calcium oxide tends to precipitate on the surface or cross section of the copper alloy or silver alloy by oxidation. Such selective oxidation or precipitation can suppress migration of copper and silver, and as a result, the reliability of the three-layer laminated structure can be improved.
  • the amount of the metal element added to the metal layer 20 is preferably 4 at% or less because the resistance value of the copper alloy or silver alloy is not greatly increased.
  • a vacuum film formation method such as sputtering can be used as a vacuum film formation method such as sputtering can be used.
  • the metal layer 20 When a copper alloy thin film, a silver alloy thin film, or an aluminum alloy thin film is employed as the metal layer 20, when the film thickness is 100 nm or more or 150 nm or more, visible light hardly transmits. Therefore, if the metal layer 20 according to the present embodiment has a film thickness of, for example, 100 nm to 300 nm, sufficient light shielding properties can be obtained. The film thickness of the metal layer 20 may exceed 300 nm. Note that, as described later, the material of the conductive layer can also be applied to wirings and electrodes provided on an array substrate described later.
  • the metal layer by the conductive metal oxide layer It is possible to adopt a laminated structure in which
  • the metal layer 20 is a copper layer, a copper alloy layer, a silver layer or a silver alloy
  • the above-mentioned conductive metal oxide layer is selected from indium oxide, zinc oxide, antimony oxide, gallium oxide, bismuth oxide and tin oxide It is desirable that it is a complex oxide containing two or more kinds of metal oxides.
  • a copper layer, a copper alloy layer, or a silver layer or a silver alloy has low adhesion to a transparent resin layer or a glass substrate (transparent substrate) constituting a color filter. Therefore, when a copper layer, a copper alloy layer, or a silver layer or a silver alloy copper layer is applied as it is to a display device substrate, it is difficult to realize a practical display device substrate.
  • the above-mentioned composite oxide has sufficient adhesion to color filters (colored patterns of multiple colors), black matrix BM (black layer), glass substrate (transparent substrate), etc., and copper layer
  • the adhesion to copper and copper alloy layers is also sufficient. For this reason, when a copper alloy layer or a silver alloy layer is applied to a display device substrate using a composite oxide, it is possible to realize a practical display device substrate.
  • a silver alloy in which, for example, 1.5 at% of calcium is added to silver can be used as the metal layer 20 used for the gate electrode and the gate wiring constituting the thin film transistor.
  • a three-layer structure in which the silver alloy layer is sandwiched by a composite oxide layer containing indium oxide, zinc oxide, and tin oxide can be used.
  • Copper, copper alloys, silver, silver alloys, or oxides or nitrides of these generally do not have sufficient adhesion to a transparent substrate such as glass or a black matrix. Therefore, when the conductive metal oxide layer is not provided, peeling may occur at the interface between the touch sensing wiring and the transparent substrate such as glass or at the interface between the touch sensing wiring and the black layer.
  • the first touch sensing wiring 1 and the second touch sensing wiring 2 having a thin wiring pattern no conductive metal oxide layer is formed as a base layer of a metal layer (copper or copper alloy)
  • a defect due to electrostatic breakdown may occur in the touch sensing wiring in the middle of the manufacturing process of the display device substrate, which is not practical.
  • Such electrostatic breakdown in the first touch sensing wiring 1 and the second touch sensing wiring 2 is a post-process such as laminating a color filter on a transparent substrate, a process of bonding a display device substrate and an array substrate, or a cleaning process This is a phenomenon in which static electricity is accumulated in the wiring pattern due to the like, and pattern breakage, breakage and the like occur due to electrostatic breakdown.
  • Copper and copper alloys or silver and silver alloys have high conductivity and are preferable as wiring materials.
  • a non-conductive copper oxide may be formed over time on the surface of the copper alloy, which may make electrical contact difficult.
  • Silver and silver alloys tend to form sulfides and oxides.
  • a stable ohmic contact can be realized by covering the copper alloy layer or the silver alloy layer with a composite oxide layer such as indium oxide, zinc oxide, antimony oxide, or tin oxide, and such a composite oxide In the case of using a layer, electrical mounting such as transfer in the third embodiment described later can be easily performed.
  • Examples of the layer structure composed of the first conductive metal oxide layer 21, the metal layer 20, and the second conductive metal oxide layer 22 applicable to the embodiment of the present invention include the following modifications.
  • ITO Indium Tin Oxide
  • IZTO Indium Zinc Tin Oxide, where Z is zinc oxide
  • conductive on a metal layer such as a copper alloy layer
  • stacking these metal oxides are mentioned.
  • the three-layer structure in which the metal layer is sandwiched by the conductive metal oxide layer has an advantage that continuous film formation can be performed by a vacuum film formation apparatus such as a sputtering apparatus.
  • a composite oxide containing zinc oxide or gallium oxide can be used for the conductive metal oxide layer sandwiching the silver alloy.
  • Such a laminated structure of a silver alloy layer and a conductive metal oxide layer can be patterned by etching once with an etchant of one solution by a known photolithography method.
  • a composite oxide of indium oxide, gallium oxide, and antimony oxide can be applied as a conductive metal oxide layer as a light reflective pixel electrode of the organic EL described later.
  • a composite oxide of indium oxide, gallium oxide and antimony oxide has a high work function.
  • a laminated structure of a composite oxide of indium oxide, gallium oxide and antimony oxide and a silver alloy layer as an anode of an organic EL display device is suitable for a pixel electrode.
  • the first conductive metal oxide layer 21 and the second conductive metal oxide layer 22 have a barrier property to copper and silver.
  • a barrier property to copper and silver In a structure in which a copper wiring or a silver wiring is held by a conductive metal oxide, deterioration of the active element due to migration of copper or silver can be suppressed, which is preferable as a high conductive wiring for the active element.
  • the first black layer 16 and the second black layer 36 function as a black matrix of the display device DSP1.
  • the black layer is made of, for example, a colored resin in which a black coloring material is dispersed. It is difficult to obtain sufficient blackness or low reflectance of copper oxide or copper alloy oxide. For example, when the black layer is formed of a metal oxide, it has a light reflectance in the visible range of approximately 10% to 30%, and it appears that it is difficult to obtain a flat reflectance in the visible range and is colored. The reflectance of visible light at the interface between the black layer and the substrate such as glass and the transparent resin layer according to this embodiment is suppressed to about 3% or less, and high visibility can be obtained.
  • the transparent resin includes an adhesive layer for affixing protective glass to a display device.
  • carbon As the black coloring material, carbon, carbon nanotubes, carbon nanohorns, carbon nanobrush, or a mixture of a plurality of organic pigments can be applied.
  • carbon is used as a main coloring material at a ratio of 51% by mass or more based on the total amount of the black coloring material.
  • an organic pigment such as blue or red can be added to the black colorant and used. For example, it is possible to improve the reproducibility of the black layer in the photolithography process by adjusting the concentration of carbon contained in the photosensitive black coating solution as the starting material (reducing the carbon concentration).
  • the range of the carbon concentration in this embodiment is set in the range of 4 to 50% by mass with respect to the total solid content including the resin, the curing agent and the pigment.
  • the carbon concentration may exceed 50% by mass, but when the carbon concentration exceeds 50% by mass with respect to the total solid content, the coating film suitability tends to decrease.
  • the carbon concentration is set to less than 4% by mass, sufficient black color can not be obtained, and the reflected light generated in the underlying metal layer located under the black layer is largely recognized and the visibility is reduced. is there.
  • a black layer may be formed by using a mixture of a plurality of organic pigments for black color adjustment. Considering the refractive index (about 1.5) of the substrate such as glass and transparent resin, the reflectance of the black layer is 3% or less so that the reflectance at the interface between the black layer and those substrates is 3% or less It is set. In this case, it is desirable to adjust the content and type of the black colorant, the resin used for the colorant, and the film thickness.
  • the reflectance at the interface between the substrate such as glass having a refractive index of about 1.5 and the black layer should be 3% or less in the visible light wavelength range. It is possible to realize low reflectance. In consideration of the need to prevent the reflected light from the light emitted from the backlight unit from being reflected again, or in consideration of the improvement of the visibility of the observer P, the reflectance of the black layer is It is desirable to make it 3% or less.
  • the refractive index of an acrylic resin and a liquid crystal material used for a color filter is in the range of approximately 1.5 to 1.7.
  • the black layer may be formed not only on one side in contact with the conductive layer (on the side close to the observer P) but also on a position close to the side in contact with the liquid crystal layer 300.
  • the touch sensing wiring according to the present embodiment may have a five-layer structure of “black layer / conductive metal oxide layer / silver alloy layer / conductive metal oxide layer / black layer”.
  • the silver alloy layer can be replaced by silver, copper, or a copper alloy.
  • the display function layer of the present invention is the liquid crystal layer 300, and includes liquid crystal molecules having positive dielectric anisotropy.
  • the initial alignment of the liquid crystal molecules is horizontal to the surface of the counter substrate 100 or the array substrate 200.
  • the driving voltage is applied to the liquid crystal molecules so as to cross the liquid crystal layer in plan view, so that a horizontal electric field called FFS (Fringe Field Switching) Drives the liquid crystal.
  • FFS Field Field Switching
  • the dielectric anisotropy of the liquid crystal molecules of the liquid crystal layer 300 may be positive or negative.
  • liquid crystal molecules of the liquid crystal layer 300 have negative dielectric anisotropy, for example, they are not easily affected by the charge of the pointer when the pointer such as a finger contacts or approaches the opposite substrate. For this reason, it is desirable that the liquid crystal be negative. In other words, when the liquid crystal molecules have negative dielectric constant anisotropy, the liquid crystal molecules are less likely to rise in the thickness direction of the liquid crystal layer due to the influence of the charge when the pointer approaches the opposite substrate and light leakage occurs. .
  • FIG. 9 is a plan view partially showing an array substrate 200 provided in the display device DSP1 according to the first embodiment of the present invention.
  • FIG. 10 is a cross-sectional view partially showing the array substrate 200 provided in the display device DSP1 according to the first embodiment of the present invention, and a cross-sectional view taken along the line CC ′ shown in FIG.
  • FIG. 10 shows an example of a thin film transistor (TFT) having a top gate structure.
  • TFT thin film transistor
  • the array substrate 200 includes a transparent substrate 41 (second transparent substrate), a fourth insulating layer 14 formed to cover the surface of the transparent substrate 41, and a fourth insulating layer 14.
  • Layer 13 the first gate wiring 10 and the second gate wiring 9 formed on the third insulating layer 13, the common wiring 30 formed on the third insulating layer 13, the first gate wiring 10, the second gate A second insulating layer 12 formed on the third insulating layer 13 so as to cover the wiring 9 and the common wiring 30, a pixel electrode 29 formed on the second insulating layer 12, and a pixel electrode 29
  • the first insulating layer 11 formed on the second insulating layer 12 and the first insulating layer And a common electrode 17 formed on layer 11.
  • the common wiring 30 is connected to the common electrode 17 through the through holes 29s and the contact holes 11H and 12H shown in
  • the active element 28 includes a channel layer 27, a drain electrode 26 connected to one end (first end, the left end of the channel layer 27 in FIG. 10) of the channel layer 27, and the channel layer 27.
  • a source electrode 24 connected to an end (second end, right end of the channel layer 27 in FIG. 10), and a gate electrode 25 disposed opposite to the channel layer 27 via the third insulating layer 13 are provided.
  • FIG. 10 shows a structure in which the channel layer 27, the drain electrode 26, and the source electrode 24 constituting the active element 28 are formed on the fourth insulating layer 14, the present invention is limited to such a structure. I will not.
  • the active element 28 may be formed directly on the transparent substrate 41 without providing the fourth insulating layer 14. Also.
  • a bottom gate thin film transistor may be applied.
  • a video signal is supplied to the first source wiring 31 and the second source wiring 32 with high frequency, and noise is easily generated from the first source wiring 31 and the second source wiring 32.
  • the source electrode 24 and the drain electrode 26 shown in FIG. 10 are formed of conductive layers of the same configuration in the same process.
  • the structure of the source electrode 24 and the drain electrode 26 a three-layer configuration of titanium / aluminum alloy / titanium or molybdenum / aluminum alloy / molybdenum is adopted.
  • the aluminum alloy is an aluminum-neodymium alloy.
  • the third insulating layer 13 located below the gate electrode 25 may be an insulating layer having the same width as the gate electrode 25.
  • dry etching using the gate electrode 25 as a mask is performed to remove the third insulating layer 13 around the gate electrode 25.
  • an insulating layer having the same width as the gate electrode 25 can be formed.
  • a technique for processing the insulating layer by dry etching using the gate electrode 25 as a mask is generally called self-alignment.
  • Driving of the organic EL or LED by a thin film transistor including a channel layer formed of an oxide semiconductor is preferable to driving of a thin film transistor including a channel layer formed of a polysilicon semiconductor.
  • an oxide semiconductor called IGZO is collectively formed by vacuum deposition such as sputtering. After the oxide semiconductor film is formed, heat treatment after pattern formation of a TFT or the like is performed collectively. Therefore, the variation in electrical characteristics (eg, Vth) related to the channel layer is extremely small. In order to suppress the variation of the luminance of the organic EL and the LED, it is necessary to suppress the variation of the Vth of the thin film transistor to a small range.
  • the thin film transistor used in the display device provided with the organic EL and the LED is preferably a thin film transistor provided with a channel layer formed of an oxide semiconductor.
  • a thin film transistor including a channel layer formed of an oxide semiconductor has extremely low leak current, the stability after inputting a scan signal or a video signal is high.
  • a thin film transistor having a channel layer formed of a polysilicon semiconductor has a leakage current larger by two digits or more than a transistor of an oxide semiconductor. The low leakage current is preferable because it leads to highly accurate touch sensing.
  • an oxide semiconductor called IGZO can be used as a material of the channel layer 27 for example.
  • metal oxide containing at least one selected from the group consisting of gallium, indium, zinc, tin, aluminum, germanium and cerium, at least antimony and A material containing a metal oxide containing any of bismuth can be used.
  • an oxide semiconductor containing indium oxide, gallium oxide, and zinc oxide is used.
  • the material of the channel layer 27 formed of an oxide semiconductor may be single crystal, polycrystal, microcrystalline, a mixture of microcrystalline and amorphous, or amorphous.
  • the thickness of the oxide semiconductor can be in the range of 2 nm to 50 nm.
  • the channel layer 27 may be formed of polysilicon semiconductor.
  • a structure in which two thin film transistors are stacked may be employed.
  • a thin film transistor including a channel layer formed of a polysilicon semiconductor is used as the thin film transistor located in the lower layer.
  • a thin film transistor including a channel layer formed of an oxide semiconductor is used as the thin film transistor located in the upper layer.
  • the thin film transistors are arranged in a matrix in plan view. In this structure, high mobility can be obtained by the polysilicon semiconductor, and low leakage current can be realized by the oxide semiconductor. That is, both of the merit of the polysilicon semiconductor and the merit of the oxide semiconductor can be utilized together.
  • An oxide semiconductor or a polysilicon semiconductor can be used, for example, in the configuration of a complementary transistor having ap / n junction, or can be used in the configuration of a single channel transistor having only an n-type junction.
  • a stacked structure of the oxide semiconductor for example, a stacked structure in which an n-type oxide semiconductor and an n-type oxide semiconductor having different electrical characteristics from the n-type oxide semiconductor may be stacked may be employed.
  • the stacked n-type oxide semiconductor may be composed of a plurality of layers. In the stacked n-type oxide semiconductor, the band gap of the base n-type semiconductor can be made different from the band gap of the n-type semiconductor located in the upper layer.
  • the top surface of the channel layer may have, for example, a configuration covered with different oxide semiconductors.
  • a stacked structure in which a microcrystalline (near-amorphous) oxide semiconductor is stacked over a crystalline n-type oxide semiconductor may be employed.
  • microcrystalline refers to, for example, a microcrystalline oxide semiconductor film in which an amorphous oxide semiconductor film formed by a sputtering device is heat-treated in a range of 180 ° C. to 450 ° C.
  • it refers to a microcrystalline oxide semiconductor film which is formed in a state where the substrate temperature at the time of film formation is set to about 200 ° C.
  • the microcrystalline oxide semiconductor film is an oxide semiconductor film in which crystal grains of at least 1 nm to around 3 nm or larger than 3 nm can be observed by an observation method such as TEM.
  • the melting point of indium oxide or gallium oxide as an oxide is high.
  • the melting point of antimony oxide or bismuth oxide is 1000 ° C. or less, and the melting point of the oxide is low.
  • the crystallization temperature of the composite oxide can be lowered by the effect of antimony oxide having a low melting point.
  • an oxide semiconductor which can be easily crystallized from an amorphous state to a microcrystalline state can be provided.
  • An oxide semiconductor can improve carrier mobility by enhancing its crystallinity.
  • zinc oxide, gallium oxide, or a composite oxide rich in antimony oxide can be used because solubility is required in wet etching in a later step.
  • Zn can be replaced with, for example, Sb (antimony) or Bi (bismuth).
  • Sb antimony
  • Bi bismuth
  • the composition of the composite oxide is not limited to the above composition.
  • Sn may be further added to the above complex oxide.
  • a composite oxide including a quaternary composition including In 2 O 3 , Ga 2 O 3 , Sb 2 O 3 , and SnO 2 is obtained, or In 2 O 3 , Sb 2 O 3 , and A composite oxide containing a ternary composition containing SnO 2 is obtained, and the carrier concentration can be adjusted.
  • In 2 O 3, Ga 2 O 3, Sb 2 O 3, Bi 2 O 3 and a different valence SnO 2 serves as carrier dopant.
  • sputtering deposition is performed using a target obtained by adding tin oxide to a ternary metal oxide containing indium oxide, gallium oxide, and antimony oxide.
  • a composite oxide with an improved carrier concentration can be formed into a film.
  • a complex oxide in which the carrier concentration is improved by sputtering film formation using a target obtained by adding tin oxide to a ternary metal oxide of indium oxide, gallium oxide, and bismuth oxide A film can be formed.
  • the film forming conditions of the above complex oxide oxygen gas used for introduced gas, substrate temperature, film forming rate, etc.
  • annealing conditions after film formation and composition of complex oxide Desired carrier concentration and carrier mobility can be obtained by adjusting the like.
  • increasing the composition ratio of indium oxide tends to improve the carrier mobility.
  • crystallization of the composite oxide can be promoted by an annealing step of performing heat treatment at a temperature condition of 250 ° C. to 700 ° C., and carrier mobility of the composite oxide can be improved.
  • one thin film transistor (active element) having a channel layer formed of an n-type oxide semiconductor (active element) and one thin film transistor having a channel layer formed of an n-type silicon semiconductor (active element) are provided in the same pixel.
  • a light emitting layer such as an LED or an organic EL (OLED) can also be driven to take advantage of the characteristics of each channel layer of the thin film transistor.
  • an n-type polysilicon thin film transistor is adopted as a drive transistor for applying a voltage (current) to the light emitting layer, and a switching transistor for sending a signal to this polysilicon thin film transistor
  • An n-type oxide semiconductor thin film transistor can be employed.
  • the drain electrode 26 and the source electrode 24 can adopt the same structure.
  • multiple conductive layers can be used for the drain electrode 26 and the source electrode 24.
  • an electrode structure in which aluminum, copper, or an alloy layer thereof is sandwiched by molybdenum, titanium, tantalum, tungsten, a conductive metal oxide layer, or the like can be employed.
  • the drain electrode 26 and the source electrode 24 may be formed first on the fourth insulating layer 14, and the channel layer 27 may be formed so as to be stacked on these two electrodes.
  • the structure of the transistor may be a multi-gate structure such as a double gate structure.
  • a dual gate structure in which electrodes are disposed above and below the channel layer may be employed.
  • the mobility and the electron concentration of the semiconductor layer or the channel layer may be adjusted in the thickness direction.
  • the semiconductor layer or the channel layer may have a stacked structure in which different oxide semiconductors are stacked.
  • the channel length of the transistor determined by the minimum distance between the source electrode and the drain electrode can be 10 nm to 10 ⁇ m, for example, 20 nm to 0.5 ⁇ m.
  • the third insulating layer 13 functions as a gate insulating layer.
  • an insulating layer material hafnium silicate (HfSiOx), silicon oxide, aluminum oxide, silicon nitride, silicon oxynitride, aluminum oxynitride, aluminum oxynitride, zirconium oxide, gallium oxide, zinc oxide, hafnium oxide, cerium oxide, lanthanum oxide, Alternatively, an insulating layer or the like obtained by mixing these materials is employed.
  • Cerium oxide has a high dielectric constant and a strong bond between cerium and oxygen atoms. Therefore, it is preferable to use a composite oxide containing cerium oxide as the gate insulating layer.
  • Cerium oxide has oxidizing power. Cerium oxide is capable of storing and releasing oxygen. Therefore, oxygen can be supplied from the cerium oxide to the oxide semiconductor in a structure in which the oxide semiconductor and the cerium oxide are in contact with each other, oxygen vacancies in the oxide semiconductor can be avoided, and a stable oxide semiconductor (channel layer) can be obtained. It can be realized. In the configuration in which nitride is used for the gate insulating layer, the above-described effects do not appear.
  • the material of the gate insulating layer may contain a lanthanoid metal silicate represented by cerium silicate (CeSiOx).
  • CeSiOx cerium silicate
  • it may contain lanthanum cerium composite oxide, and further, lanthanum cerium silicate.
  • the structure of the third insulating layer 13 may be a single layer film, a mixed film, or a multilayer film.
  • a mixed film or a multilayer film can be formed of a material selected from the above insulating layer materials.
  • the film thickness of the third insulating layer 13 is, for example, a film thickness which can be selected from the range of 2 nm or more and 300 nm or less.
  • the interface of the third insulating layer 13 in contact with the channel layer 27 can be formed in a state where a large amount of oxygen is contained (film formation atmosphere).
  • a gate insulating layer containing cerium oxide can be formed in an introduced gas containing oxygen.
  • the surface of the oxide semiconductor located below the gate insulating layer can be oxidized, and the degree of oxidation of the surface can be adjusted.
  • the step of forming the gate insulating layer is performed before the step of the oxide semiconductor; therefore, it is difficult to control the degree of oxidation of the surface of the oxide semiconductor.
  • oxidation of the surface of the oxide semiconductor can be promoted more than in the case of the bottom gate structure, and oxygen vacancies in the oxide semiconductor are less likely to occur.
  • the plurality of insulating layers including the first insulating layer 11, the second insulating layer 12, the third insulating layer 13, and the insulating layer (the fourth insulating layer 14) under the oxide semiconductor are made of an inorganic insulating material or an organic insulating material. It can be formed using.
  • a material of the insulating layer silicon oxide, silicon oxynitride, or aluminum oxide can be used.
  • a structure of the insulating layer a single layer or a plurality of layers containing the above material can be used. A configuration in which a plurality of layers formed of different insulating materials are stacked may be employed.
  • an acrylic resin, a polyimide resin, a benzocyclobutene resin, a polyamide resin, or the like may be used for part of the insulating layer.
  • Low dielectric constant materials low-k materials
  • the gate electrode 25 is disposed on the channel layer 27 via the third insulating layer 13.
  • the gate electrode 25 (gate wiring 10) can be formed in the same step so as to have the same layer configuration using the same material as the common electrode 17 and the common wiring 30.
  • the gate electrode 25 may be formed to have the same layer structure by using the same material as the drain electrode 26 and the source electrode 24 described above.
  • the surface of the metal layer 20 exposed at the end of the gate electrode 25 can also be covered with a complex oxide containing indium.
  • the entire gate electrode 25 may be covered with a nitride such as silicon nitride or molybdenum nitride so as to include the end portion (cross section) of the gate electrode 25.
  • a nitride such as silicon nitride or molybdenum nitride so as to include the end portion (cross section) of the gate electrode 25.
  • an insulating film having the same composition as the above-described gate insulating layer may be stacked with a thickness greater than 50 nm.
  • the third insulating layer 13 located immediately above the channel layer 27 of the active element 28. Can be made thinner.
  • an oxide semiconductor having different electrical properties may be further inserted.
  • the third insulating layer 13 may be formed of an insulating metal oxide layer containing cerium oxide or gallium oxide.
  • the third insulating layer 13 has a function as a gate insulating film located between the gate electrode 25 and the channel layer 27 and an appropriate film thickness considering the switching characteristics of the active element 28 is required. Be done.
  • the third insulation located immediately above the channel layer 27 while maintaining the film thickness of the third insulating layer 13 between the common wiring 30 and the source wiring 31 large.
  • a light shielding film may be formed under the channel layer 27.
  • a material of the light shielding film high melting point metals such as molybdenum, tungsten, titanium, chromium and the like can be used.
  • the gate line 10 is electrically linked with the active element 28. Specifically, the gate electrode 25 connected to the gate wiring 10 and the channel layer 27 of the active element 28 are opposed to each other via the third insulating layer 13. In response to the scanning signal supplied from the video signal control unit 121 to the gate electrode 25, switching driving is performed in the active element 28.
  • a voltage as a video signal is applied to the source lines 31 and 32 from the video signal control unit 121.
  • a positive or negative voltage video signal of ⁇ 2.5 V to ⁇ 5 V is applied to the source lines 31 and 32.
  • the voltage applied to the common electrode 17 can be, for example, in the range of ⁇ 2.5 V which changes every frame inversion.
  • the potential of the common electrode 17 may be a constant potential in the range of 0 V or less from the threshold value Vth of liquid crystal driving. In the case of applying this common electrode to constant potential drive described later, it is desirable to use an oxide semiconductor for the channel layer 27.
  • the electrical withstand voltage of the channel layer made of oxide semiconductor is high, and a transistor using the oxide semiconductor applies a high drive voltage beyond the range of ⁇ 5 V to the electrode portion to speed up the response of the liquid crystal It is possible.
  • Various liquid crystal driving methods such as frame inversion driving, column inversion (vertical line) inversion driving, horizontal line inversion driving, and dot inversion driving can be applied.
  • a metal element or a metalloid element within the range of 0.1 at% or more and 4 at% or less can be added to copper.
  • an element which can be arranged at a lattice position of copper by substituting a part of the copper atom in the crystal (grain) of the copper layer, and movement of the copper atom near the grain of copper precipitated in grain boundaries of the copper layer. It is preferable to add to the copper together with an element that suppresses.
  • an element heavier than copper atoms having a large atomic weight
  • an additive element in which the conductivity of copper does not easily decrease with an addition amount in the range of 0.1 at% to 4 at% with respect to copper.
  • an element having a deposition rate such as sputtering close to copper is preferable.
  • the technique of adding an element to copper can also be applied to the case where copper is replaced with silver or aluminum. In other words, a silver alloy or an aluminum alloy may be used instead of the copper alloy.
  • Adding an element to copper that can be placed at a lattice position of copper in place of part of copper atoms in crystals (grains) of the copper layer means, in other words, metals and metalloids that form a solid solution with copper at around normal temperature. It is to add to copper.
  • Metals that easily form a solid solution with copper include manganese, nickel, zinc, palladium, gallium, gold (Au) and the like.
  • Adding an element to copper that precipitates in the grain boundaries of the copper layer and suppresses the movement of copper atoms in the vicinity of the grains of the copper is, in other words, adding a metal or semimetal which does not form a solid solution with copper near room temperature. It is.
  • metals and metalloids do not form a solid solution with copper or do not form a solid solution with copper.
  • examples thereof include refractory metals such as titanium, zirconium, molybdenum and tungsten, and elements called semimetals such as silicon, germanium, antimony and bismuth.
  • the alloying element can be used as an additive element added to a silver alloy.
  • Copper and silver have problems with reliability in terms of migration.
  • the reliability can be supplemented by adding the above metal or metalloid to copper.
  • the effect of suppressing migration can be obtained by adding 0.1 at% or more of the above metal or metalloid to copper or silver.
  • the conductivity of copper or silver significantly deteriorates, and the merit of selecting a copper alloy or a silver alloy is obtained. Absent.
  • the common electrode 17 for driving the display functional layer in a cross sectional view of the display device can be disposed above the disposition position of the pixel electrode.
  • the wiring of the active element or the TFT can be disposed under the common electrode 17. That is, the common electrode 17 is provided closer to the counter substrate 100 than the pixel electrode 29.
  • Such a configuration is hereinafter referred to as a pixel electrode lower configuration.
  • the common electrode 17 can be grounded via a resistor, and for example, the common potential can be set to a constant potential of 0 V (volt).
  • the display functional layer is a liquid crystal layer
  • the lower configuration of the pixel electrode has a great advantage.
  • the source wiring according to the present embodiment is divided into a first source wiring 31 having a negative polarity and a second source wiring 32 having a positive polarity.
  • FIG. 11 is a circuit diagram partially showing the display device DSP1 according to the first embodiment of the present invention, and shows the state of the liquid crystal drive voltage in each pixel when the liquid crystal display is driven by column inversion drive.
  • FIG. 12 is a circuit diagram partially showing the display device DSP1 according to the first embodiment of the present invention, and shows the state of the liquid crystal drive voltage in each pixel when the liquid crystal display is driven by dot inversion drive.
  • the potential of the second source wiring 32 has positive polarity
  • the first source wiring 31 has negative polarity
  • pixel inversion driving is performed in each pixel.
  • the gate wiring selected during the inversion driving may be frame inversion in which the gate wiring is selected on the entire display screen, or the inversion driving may be performed by selecting half the number of gate wirings among all the lines.
  • inversion drive may be performed by selecting inversion lines in which the horizontal lines are sequentially selected, and intermittently selecting the horizontal lines.
  • FIG. 11 shows, for example, the polarity of each pixel when the gate wiring of the even line is selected from the plurality of gate wirings (plurality of lines) and the selected gate wiring transmits the gate signal to the active element.
  • the polarity of the second source wiring 32 is positive, and the polarity of the first source wiring 31 is negative.
  • pixels having the same polarity are arranged in the vertical direction (Y direction).
  • the gate wiring of the odd line is selected in the next frame, and the selected gate wiring transmits a gate signal to the active element, the pixels having the opposite polarity to the polarity shown in FIG.
  • Vertical line inversion driving is performed. In the case of inverting the vertical line every frame, the frequency of noise generation is lower and the influence on touch sensing is reduced.
  • the first source wiring 31 and the second source wiring 32 and the first gate wiring 10 are electrically connected to the first active element 28 a, and the first source wiring 31 and the second source wiring 32 and the second The gate line 9 is electrically connected to the second active element 28b. Since the first source wiring 31 has a negative polarity and the second source wiring 32 has a positive polarity, the pixel polarity is determined by selecting the first gate wiring 10 or the second gate wiring 9.
  • every two gate wirings 9 and 10 are selected from the plurality of gate wirings (plurality of lines), and the selected gate wirings 9 and 10 become active elements. It shows the polarity for each pixel when the gate signal is sent.
  • the polarity of the second source wiring 32 is positive
  • the polarity of the first source wiring 31 is negative.
  • pixels having positive and negative polarities are alternately arranged in both vertical and horizontal directions.
  • two different sets of gate lines are selected, and the selected gate lines 9 and 10 send gate signals to the active element, thereby causing pixels having a polarity opposite to that shown in FIG.
  • dot inversion drive is performed alternately.
  • the inversion drive in the pixels shown in FIGS. 11 and 12 can be similarly performed in the following embodiments. In the first embodiment and the second embodiment to be described later, normal frame inversion driving may be performed to invert the common voltage to positive and negative.
  • the positive voltage in this embodiment is, for example, 0 V to +5 V, and the negative voltage is 0 V to -5 V.
  • the channel layer 27 is formed of an oxide semiconductor (for example, a composite oxide semiconductor of indium, gallium, and zinc called IGZO)
  • oxide semiconductor has a high electrical withstand voltage.
  • Higher voltages can be used.
  • the present invention does not limit positive and negative voltages to the above voltages.
  • the positive voltage may be 0V to + 2.5V
  • the negative voltage may be 0V to -2.5V. That is, the upper limit of the positive voltage may be set to +2.5 V, and the lower limit of the negative voltage may be set to -2.5 V. In this case, the effect of reducing the power consumption, the effect of reducing the generation of noise, or the effect of suppressing the burn-in of the liquid crystal display can be obtained.
  • a transistor using IGZO as the channel layer 27 differs from a transistor using a silicon semiconductor and has extremely small leak current. Therefore, for example, a transfer circuit including a latch portion as described in Patent Document 4 of the prior art document is used. It can be omitted and can have a simple wiring structure. Further, in the display device DSP1 using the array substrate 200 including a transistor using an oxide semiconductor such as IGZO as a channel layer, the leak current of the transistor is small. Of the liquid crystal layer 300 can be maintained.
  • the electron mobility in the active element 28 is high, and for example, the driving voltage corresponding to the necessary video signal can be pixel in a short time of 2 msec (milliseconds) or less. It can be applied to the electrode 29.
  • one frame in double-speed driving (when the number of display frames per second is 120 frames) is approximately 8.3 msec, and for example, 6 msec can be allocated to touch sensing.
  • the common electrode 17 having the transparent electrode pattern has a constant potential, it is not necessary to time-divisionally drive the liquid crystal drive and the touch electrode drive.
  • the driving frequency of the liquid crystal and the driving frequency of the touch metal wiring can be made different.
  • an active element 28 including the first active element 28 a and the second active element 28 b
  • transmittance is maintained after applying a liquid crystal drive voltage to the pixel electrode 29.
  • a transistor using a polysilicon semiconductor that requires (or voltage holding) there is no need to refresh an image (write a video signal again) to hold the transmittance. Therefore, in the display device DSP1 employing an oxide semiconductor such as IGZO, low power consumption driving is possible.
  • an oxide semiconductor such as IGZO has a high electrical breakdown voltage
  • liquid crystals can be driven at high speed with a higher voltage, and can be used for 3D image display capable of 3D display.
  • the active element 28 using an oxide semiconductor such as IGZO for the channel layer 27 has a high memory property as described above, for example, even when the liquid crystal drive frequency is a low frequency of about 0.1 Hz to 30 Hz, flicker (display flicker There is an advantage that it is difficult to cause).
  • flicker display flicker There is an advantage that it is difficult to cause.
  • Low power consumption and high quality image display by performing both dot inversion drive with low frequency and touch drive with different frequency from dot inversion drive using the active element 28 having IGZO as a channel layer And high precision touch sensing can be obtained together.
  • the active element 28 using an oxide semiconductor for the channel layer 27 has a small leak current as described above, the drive voltage applied to the pixel electrode 29 can be held for a long time.
  • the scanning of touch sensing is performed by forming the source wirings 31, 32 and the gate wirings 9, 10, etc. of the active element 28 by copper wiring having a smaller wiring resistance than the aluminum wiring and further using IGZO which can be driven in a short time as the active element. It is possible to provide a sufficient period for performing That is, by applying an oxide semiconductor such as IGZO to an active element, the driving time of a liquid crystal or the like can be shortened, and there is sufficient time for applying to touch sensing in the video signal processing of the entire display screen. it can. This makes it possible to detect the change in the generated capacitance with high accuracy.
  • an oxide semiconductor such as IGZO as the channel layer 27
  • the influence of coupling noise in dot inversion driving and column inversion driving can be substantially eliminated.
  • the active element 28 using an oxide semiconductor can apply a voltage corresponding to a video signal to the pixel electrode 29 in a very short time (for example, 2 msec), and the pixel voltage after the video signal is applied. There is no need to generate new noise during the holding period using the memory property, and the influence on touch sensing can be reduced.
  • the oxide semiconductor an oxide semiconductor containing two or more metal oxides of indium, gallium, zinc, tin, aluminum, germanium, antimony, bismuth, and cerium can be employed.
  • FIG. 13 is a view partially showing a display device DSP2 according to a second embodiment of the present invention, and is a cross-sectional view taken along the line DD 'in FIG.
  • FIG. 14 is a view partially showing the liquid crystal layer 506 provided in the display device according to the second embodiment of the present invention and the frame portion F of the counter substrate 350, and a cross section along line AA 'in FIG. FIG. FIG.
  • FIG. 15 is a view showing a second touch sensing wiring provided on the counter substrate according to the second embodiment of the present invention, and is an enlarged sectional view showing a portion indicated by reference sign W2 in FIG.
  • FIG. 16 is a view showing an opposing substrate provided in the display device according to the second embodiment of the present invention, and is a plan view when the display device is viewed from the observer side.
  • the polarizing plate, the retardation plate, and the backlight unit are not shown.
  • the touch sensing control unit 122 sets the first touch sensing wire 1 and the second touch sensing wire 2 at the intersection of the first touch sensing wire 1 and the second touch sensing wire 2 as a touch signal. Change of the capacitance C2 during
  • the counter substrate 350 constituting the display device DSP2 of the second embodiment includes a transparent substrate 42 having a first surface MF and a second surface MS opposite to the first surface MF.
  • the plurality of first touch sensing wires 1 are provided on the second surface MS.
  • a plurality of second touch sensing wires 2 are provided on the first surface MF.
  • the plurality of second touch sensing wires 2 and the first surface MF are covered with a color filter 60.
  • the second transparent resin layer 105 is provided on the color filter 60
  • the common electrode 50 is provided on the second transparent resin layer 105.
  • the light shielding frame portion F is configured by a part of the first touch sensing wiring 1 and the second light shielding conductive pattern F22 with the same configuration as that in FIG. 6.
  • peripheral circuits 80 related to liquid crystal driving are formed in the frame portion 200F of the array substrate 200 located below the frame portion F.
  • a TFT for driving an active element of the array substrate 200, a capacitive element, a resistive element, and the like are disposed on the surface of the frame portion 200F of the array substrate 200.
  • the second light shielding conductive pattern F22 is subdivided so as not to generate a large parasitic capacitance.
  • the influence of noise from the peripheral circuit 80 on touch sensing is reduced.
  • the conductive frame portion F reduces the influence of electrostatic noise from the outside (a hand, a finger or the like) of the display device DSP2, and prevents a malfunction.
  • the liquid crystal layer 506 is driven by the liquid crystal drive of the longitudinal electric field.
  • the common electrode 50 is disposed above the pixel electrode 59.
  • the common electrode 50 is provided at a position closer to the counter substrate 350 than the pixel electrode 59. That is, the liquid crystal layer 506 is sandwiched between the common electrode 50 and the pixel electrode 59.
  • the cell gap (thickness) of the liquid crystal layer 506 is controlled by a spacer.
  • the liquid crystal layer 506 which is a display function layer can be driven by the pixel electrode lower structure shown in the first embodiment.
  • the common electrode 50 can be grounded via a high resistance to a ground potential of 0 V, and the source wiring can be fixed to a positive or negative polarity to perform liquid crystal driving with less noise.
  • the driving of the display functional layer in the lower configuration of the pixel electrode can largely suppress the influence of noise on the touch sensing driving, and can reduce the power consumption related to the liquid crystal driving.
  • the common electrode 50, which is grounded also serves as a shield layer of electrical noise and contributes to the improvement of touch sensing accuracy.
  • the active elements are formed on the array substrate 200 as in the first embodiment.
  • the channel layer of the active element is formed of an oxide semiconductor.
  • an oxide semiconductor an oxide semiconductor containing two or more metal oxides of gallium, indium, zinc, tin, aluminum, germanium, antimony, bismuth, and cerium can be used.
  • the gate insulating film can be a gate insulating film formed of a composite oxide containing cerium oxide.
  • an active element (TFT) having a top gate structure shown in FIG. 10 can be employed as a structure of the active element.
  • the display device DSP2 includes a color filter 60.
  • a pixel is formed by the first touch sensing wiring 1 and the second touch sensing wiring 2, and in each pixel, the red coloring layer R, the green coloring layer G, and the blue coloring layer B that constitute the color filter 60 are provided. It is provided. That is, the first touch sensing wiring 1 and the second touch sensing wiring 2 function as a black matrix that divides the red coloring layer R, the green coloring layer G, and the blue coloring layer B.
  • the red colored layer R, the green colored layer G, and the blue colored layer B are arranged in a stripe pattern.
  • the first touch sensing wiring 1 and the second touch sensing wiring 2 each have a structure in which a black layer and a conductive layer are stacked, as in the first embodiment.
  • the conductive layer forming the first touch sensing wiring 1 and the second touch sensing wiring 2 is a three-layer in which a conductive metal oxide layer, a copper alloy layer, and a conductive metal oxide are laminated as in the first embodiment. It has a structure.
  • the second touch sensing wiring 2 has a configuration in which the second black layer 76 and the second conductive layer 75 are sequentially stacked in the observation direction OB.
  • the second black layer 76 has the same configuration as the second black layer of the first embodiment.
  • the second conductive layer 75 has the same configuration as the second conductive layer of the first embodiment.
  • the liquid crystal layer 506 sandwiched by the pixel electrode 59 and the common electrode 50 is controlled by a liquid crystal drive voltage applied between the pixel electrode 59 and the common electrode 50.
  • the liquid crystal of the liquid crystal layer 506 is preferably liquid crystal with negative dielectric anisotropy, but liquid crystal with positive dielectric anisotropy may be used.
  • FIG. 17 is a cross-sectional view partially showing a display device DSP3 according to a third embodiment of the present invention.
  • FIG. 18 is a cross-sectional view partially showing the frame portion F of the counter substrate 550 provided in the display device DSP3 according to the third embodiment of the present invention.
  • FIG. 19 is a view showing the counter substrate 550 provided in the display device DSP3 according to the third embodiment of the present invention, and is a plan view of the display device DSP3 viewed from the observer side.
  • FIG. 20 is a cross-sectional view partially showing an array substrate 600 according to a third embodiment of the present invention.
  • FIG. 21 is a view partially showing the pixel electrode 88 constituting the array substrate 600 according to the third embodiment of the present invention, and is an enlarged cross-sectional view showing a portion indicated by reference sign W3 in FIG.
  • FIG. 22 is a cross-sectional view partially showing gate electrodes of the array substrate 600 according to the third embodiment of the present invention.
  • the counter substrate 550 constituting the display device DSP3 of the third embodiment includes a transparent substrate 44 having a first surface MF and a second surface MS opposite to the first surface MF. Touch sensing wiring is not provided on the second surface MS.
  • Touch sensing wiring is not provided on the second surface MS.
  • On the first surface MF a plurality of first touch sensing wires 1 and a plurality of second touch sensing wires 2 are sequentially formed in the observation direction OB (a direction opposite to the Z direction). That is, the second touch sensing wiring 2 is located between the first touch sensing wiring 1 and the array substrate 600.
  • the plurality of second touch sensing wires 2 and the first surface MF are covered with a second transparent resin layer 105.
  • An insulating layer I (touch wiring insulating layer) is provided between the plurality of first touch sensing wirings 1 and the plurality of second touch sensing wirings 2, and the first touch sensing wiring 1 and the second touch sensing wiring are provided. 2 are electrically isolated from each other by the insulating layer I.
  • the first transparent resin layer 108 and the second transparent resin layer 105 are bonded.
  • peripheral circuits 80 related to driving of the organic EL layer are formed in the frame portion 600F of the array substrate 600 located below the frame portion F.
  • a TFT for driving an active element of the array substrate 600 a capacitive element, a resistive element, and the like are disposed on the surface of the frame portion 600F of the array substrate 600.
  • the electrical noise generated in the peripheral circuit 80 is cut at the frame portion F, and the influence on the first touch sensing wiring 1 which is a detection electrode can be reduced.
  • the cell gap (thickness) of the display device is controlled by the conductive particles 102 which are spacers.
  • the conductive particles 102 may be metal spheres, and conductive particles coated with an inorganic oxide and a metal with a resin as a core can be applied. Alternatively, an anisotropic conductive film may be used.
  • the connection terminal 107 is provided on the surface of the frame portion 600 F of the array substrate 600, and the conductive particle 102 is sandwiched between the connection terminal 107 and the first touch sensing wiring 1.
  • the first touch sensing wiring 1 is connected to the touch sensing control unit 122 through the connection terminal 107 of the array substrate 600.
  • the first touch sensing wiring 1 and the second touch sensing wiring 2 are orthogonal to each other in plan view.
  • the first touch sensing wiring 1 can be used as a touch detection electrode
  • the second touch sensing wiring 2 can be used as a touch drive electrode.
  • the touch sensing control unit 122 sets the capacitance C3 between the first touch sensing wire 1 and the second touch sensing wire 2 at the intersection of the first touch sensing wire 1 and the second touch sensing wire 2 as a touch signal.
  • the role of the first touch sensing wiring 1 and the role of the second touch sensing wiring 2 may be interchanged.
  • the first touch sensing wiring 1 may be used as a touch drive electrode
  • the second touch sensing wiring 2 may be used as a touch detection electrode.
  • the structure of each of the first touch sensing wiring 1 and the second touch sensing wiring 2 may be the same as the cross-sectional structure shown in FIG. 8 described in the first embodiment.
  • the first touch sensing wiring 1 has a configuration in which a first black layer 16 and a first conductive layer 15 are sequentially stacked.
  • a structure of the first conductive layer 15 for example, a three-layer structure in which a copper alloy layer or a silver alloy layer which is the metal layer 20 is sandwiched between the first conductive metal oxide layer 21 and the second conductive metal oxide layer 22 It can be structured.
  • the first touch sensing wiring 1 and the second touch sensing wiring 2 orthogonal to each other in a lattice shape also serve as a black matrix that improves the display contrast.
  • the structure of the array substrate 600 constituting the display device DSP3 will be described. There is no need to use a transparent substrate as the substrate 45 of the array substrate 600.
  • a transparent substrate for example, as a substrate applicable to the array substrate 600, a glass substrate, a ceramic substrate, a quartz substrate, a sapphire substrate, silicon, silicon carbide, silicon germanium, etc. A semiconductor substrate, a plastic substrate, etc. are mentioned.
  • a planarization layer 96 formed on the layer 12 is sequentially stacked on the substrate 45.
  • a contact hole 93 is formed in the planarization layer 96 at a position corresponding to the drain electrode 56 of the active element 68.
  • banks 94 are formed on the planarization layer 96 at positions corresponding to the channel layers 58. In the region between the banks 94 adjacent to each other in the cross sectional view, that is, in the region surrounded by the bank 94 in the plan view, the upper surface of the planarizing layer 96, the inside of the contact hole 93 and the drain electrode 56 are covered.
  • the lower electrode 88 (pixel electrode) is formed on the The lower electrode 88 may not be formed on the top surface of the bank 94.
  • a hole injection layer 91 is formed to cover the lower electrode 88, the bank 94, and the planarization layer 96.
  • the lower electrode 88 has a configuration in which a silver or silver alloy layer is sandwiched between conductive metal oxide layers, as described later.
  • an organic resin such as an acrylic resin, a polyimide resin, and a novolac phenol resin can be used.
  • the bank 94 may further be laminated with an inorganic material such as silicon oxide or silicon oxynitride.
  • an acrylic resin, a polyimide resin, a benzocyclobutene resin, a polyamide resin, or the like may be used.
  • Low dielectric constant materials low-k materials
  • any of the planarization layer 96, the sealing layer 109, and the substrate 45 may have a light scattering function. Alternatively, the light scattering layer may be formed above the substrate 45.
  • reference numeral 290 denotes a light emitting region formed of the lower electrode 88, the hole injection layer 91, the light emitting layer 92, and the upper electrode 87.
  • the array substrate 600 includes a light emitting layer 92 (organic EL layer) which is a display function layer.
  • a light emitting layer 92 organic EL layer
  • the light emitting layer 92 when an electric field is applied between a pair of electrodes, holes injected from the anode (eg, upper electrode) recombine with electrons injected from the cathode (eg, lower electrode, pixel electrode) It is a display function layer which is excited by the light emission and emits light.
  • the light emitting layer 92 contains at least a material having a property of light emission (light emitting material), and preferably, a material having an electron transporting property.
  • the light emitting layer 92 is a layer formed between the anode and the cathode, and when the hole injection layer 91 is formed on the lower electrode 88 (anode), the hole injection layer 91 and the upper electrode 87 (cathode) And a light emitting layer 92 is formed therebetween. When the hole transport layer is formed on the anode, the light emitting layer 92 is formed between the hole transport layer and the cathode.
  • the roles of the upper electrode 87 and the lower electrode 88 can be interchanged.
  • the film thickness of the light emitting layer 92 is optional as long as the effects of the present invention are not significantly impaired, but the film thickness is preferably large in that defects are less likely to occur in the film. On the other hand, when the film thickness is small, the drive voltage is low, which is preferable. Therefore, the film thickness of the light emitting layer 92 is preferably 3 nm or more, more preferably 5 nm or more, and, on the other hand, usually 200 nm or less, and further preferably 100 nm or less.
  • the material of the light emitting layer 92 emits light at a desired light emission wavelength, and is not particularly limited as long as the effects of the present invention are not impaired, and known light emitting materials can be applied.
  • the light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, but a material having a good light emitting efficiency is preferable, and a phosphorescent light emitting material is preferable from the viewpoint of the internal quantum efficiency.
  • Examples of light-emitting materials which give blue light emission include naphthalene, perylene, pyrene, anthracene, coumarin, chrysene, p-bis (2-phenylethenyl) benzene and derivatives thereof.
  • a light emitting material which gives green light emission for example, quinacridone derivatives, coumarin derivatives, aluminum complexes such as Al (C 9 H 6 NO) 3 and the like can be mentioned.
  • a light emitting material which gives red light emission for example, a compound of DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran), a benzopyran derivative, a rhodamine derivative, a benzothioxanthene derivative, an aza Benzothioxanthene and the like can be mentioned.
  • the configuration of the organic EL layer constituting the light emitting layer 92, the light emitting material, and the like are not limited to the above materials.
  • the light emitting layer 92 is formed on the hole injection layer 91, and is driven by a drive voltage applied between the upper electrode 87 and the lower electrode 88.
  • the lower electrode 88 has a structure in which a reflective layer 89 and conductive metal oxide layers 97 and 98 are stacked.
  • an electron injecting layer, an electron transporting layer, a hole transporting layer, and the like may be inserted between the upper electrode 87 and the lower electrode 88.
  • a refractory metal oxide such as tungsten oxide or molybdenum oxide can be used.
  • a silver alloy, an aluminum alloy, or the like having high light reflectance can be used.
  • electroconductive metal oxides such as ITO
  • electroconductive metal oxides have bad adhesiveness with aluminum.
  • an interface such as an electrode or a contact hole is likely to cause an electrical connection failure.
  • Silver and silver alloys have good adhesion to conductive metal oxides such as ITO, and conductive metal oxides such as ITO tend to obtain ohmic contacts.
  • the lower electrode 88 has a silver or silver alloy layer (reflection layer 89) sandwiched between conductive metal oxide layers 97 and 98 in order to suppress migration of silver. It has a layered structure.
  • the conductive metal oxide layers 97 and 98 the conductive metal oxide constituting the conductive metal oxide layers 21 and 22 described in the first embodiment can be used.
  • the film thickness of the silver alloy layer can be selected, for example, from the range of 100 nm to 500 nm. If necessary, the film thickness may be formed to be thicker than 500 nm.
  • the silver alloy layer can be used for the light transmitting upper electrode or the counter electrode.
  • the silver alloy layer is formed of a pixel electrode (lower electrode) by setting the film thickness of the silver alloy layer to 100 nm to 500 nm. And a reflective liquid crystal display device can be realized.
  • a composite oxide of indium oxide, gallium oxide and antimony oxide was used as the conductive metal oxide.
  • a silver alloy which functions as a conductive layer can be applied.
  • an additive element to be added to silver one or more metals selected from the group consisting of magnesium, calcium, titanium, molybdenum, indium, tin, zinc phthalocyanine green pigment, neodymium, nickel, antimony, bismuth, copper and the like Elements can be used.
  • the silver alloy layer of the present embodiment uses a silver alloy to which 1.5 at% calcium is added to silver. Calcium is selectively oxidized by heat treatment or the like in a later step in a configuration in which a silver alloy is held by the conductive metal oxide.
  • Such an oxide can improve the reliability of the structure in which the silver alloy layer is sandwiched by the conductive metal oxide layer. Furthermore, the reliability can be further improved by covering the structure in which the silver alloy layer is sandwiched by the conductive metal oxide layer with a nitride such as silicon nitride or molybdenum nitride.
  • a nitride such as silicon nitride or molybdenum nitride.
  • the active device 68 has the same top gate structure as the first embodiment.
  • the channel layer of the third embodiment is also formed of an oxide semiconductor as in the first embodiment. Furthermore, from the viewpoint of electron mobility of the transistor, it is composed of a first layer composed of an active matrix comprising a channel layer composed of a polysilicon semiconductor, and an active matrix composed of a channel layer composed of an oxide semiconductor It is preferable to adopt a structure in which the second layer is stacked.
  • the active element (first layer) including the channel layer formed of a polysilicon semiconductor is used as a carrier (in the organic EL layer which is the light emitting layer 92).
  • an active element (second layer) including a channel layer formed of an oxide semiconductor is used as a switching element for selecting an active element including a channel layer formed of a polysilicon semiconductor.
  • a silver alloy layer or a copper alloy layer sandwiched by conductive metal oxide layers can be used as a power supply line for emitting light from the organic EL layer electrically connected to the drive element.
  • a wiring structure shown in FIG. 22 is used. It is preferable to apply a silver alloy or copper alloy having a good conductivity to a wire linked to an active element such as a power supply line.
  • the metal layer 20 which is a copper alloy is used for the gate electrode 95.
  • the metal layer 20 constituting the gate electrode 95 is sandwiched between the first conductive metal oxide layer 97 and the second conductive metal oxide layer 98.
  • the material used for the gate insulating layer which is the third insulating layer 13 is the same as that of the first embodiment.
  • the light emitting layer 92 may be an inorganic light emitting diode layer.
  • the light emitting layer 92 may have a structure in which inorganic LED chips are arranged in a matrix. In this case, minute LED chips for red light emission, green light emission and blue light emission may be mounted on the array substrate 200. As a method of mounting the LED chips on the array substrate 200, mounting may be performed by face-down.
  • the light emitting layer 92 is formed of an inorganic LED
  • a blue light emitting diode or a blue violet light emitting diode is disposed as the light emitting layer 92 on the array substrate 200 (substrate 45).
  • a green phosphor is stacked on the green pixel, and a red phosphor is stacked on the pixel emitting red light.
  • the inorganic LED can be easily formed on the array substrate 200.
  • green light emission and red light emission can be obtained from each of the green phosphor and the red phosphor by excitation with blue light generated from a blue-violet light emitting diode.
  • an ultraviolet light emitting diode may be provided as the light emitting layer 92 on the array substrate 200 (substrate 45).
  • the blue phosphor is stacked on the blue pixel
  • the green phosphor is stacked on the green pixel
  • the red phosphor is stacked on the red pixel.
  • the inorganic LED can be easily formed on the array substrate 200.
  • a green pixel, a red pixel or a blue pixel can be formed by a simple method such as a printing method. It is desirable to adjust the size of these pixels from the viewpoint of luminous efficiency and color balance of each color.
  • the display device can have various applications.
  • an electronic apparatus to which the display device according to the above-described embodiment can be applied a mobile phone, a portable game device, a portable information terminal, a personal computer, an electronic book, a video camera, a digital still camera, a head mounted display, a navigation system, sound
  • reproduction apparatuses car audios, digital audio players, etc.
  • copying machines facsimiles, printers, printer multifunction machines, vending machines, automatic teller machines (ATMs), personal identification machines, optical communication machines and the like.
  • ATMs automatic teller machines
  • first conductive layer 16 first black layer 17, 50: common electrode 20: metal layer 21, 97: first conductive metal oxide layer 22, 98: second conductive Metal oxide layer 24: Source electrode 25, 95: Gate electrode 26, 56: Drain electrode 27, 58: Channel layer 28, 68: Active element 28a: First active element 28b ⁇ Second active element 29, 59, 88 ⁇ ⁇ ⁇ Electrode (lower electrode) 29s: through hole 30: common wiring 31: first source wiring 32: second source wiring 35, 75: second conductive layer 36, 76: second black layer 40, 41, 42, 44 ...
  • Transparent substrate 45 ... Substrate 60 ... Color filter 80 ... Peripheral circuit 87 ... Upper electrode 89 ... Reflective layer 91 ... Hole injection layer 92 ... Light emitting layer 94: bank 96: planarizing layer 100, 350, 550: opposing substrate (display device substrate) 101 ... anisotropic conductive film 102 ... conductive particle 103 ... spacer 104 ... seal layer 105 ... second transparent resin layer 107 ... connection terminal 108 ... first transparent resin Layer 109 ⁇ Sealing layer 110 ⁇ Display unit 120 ⁇ Control unit 121 ⁇ Video signal control unit (first control unit) 122 ... touch sensing control unit (second control unit) 123: System control unit (third control unit) 200, 600 ...
  • first light shielding conductive portion (light shielding conductive portion)
  • F22B Second light shielding conductive portion (light shielding conductive portion)
  • F21 L long side
  • F21 S short side S
  • CS slit H1
  • WS width P1
  • PS arrangement pitch
  • C1 C2, C3 electrostatic capacitance DSP1, DSP2 , DSP3 ... display device

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明の表示装置は、表示機能層と、前記表示機能層を駆動するアレイ基板と、表示装置基板と、タッチセンシングを行う制御部を含み、前記表示装置基板には観察方向において黒色層と導電層とが順に積層された第1タッチセンシング配線と第2タッチセンシング配線と、前記第1タッチセンシング配線と同じ材料で形成されかつ断面視において同じ位置に設けられる第1遮光導電パターンと、前記第2タッチタッチセンシング配線と同じ材料で形成されかつ断面視において同じ位置に設けられる第2遮光導電パターンを有し、第1遮光導電パターン及び第2遮光導電パターンによって表示部を囲む遮光性の額縁を構成する。

Description

表示装置及び表示装置基板
 本発明は、静電気等の外部ノイズ或いは液晶層等の表示機能層を駆動する制御系等から発生する内部ノイズを軽減できる表示装置及び表示装置基板に関し、特に、タッチセンシング機能を具備する表示装置と、その表示装置に用いられる表示装置基板に関する。
 近年、液晶表示装置、或いは、発光素子がマトリクス状に配列されている表示装置(有機エレクトロルミネセンス表示装置やLEDマトリクス表示装置)の解像度が向上し、薄型化が進んでいる。また、5インチや8インチといった画面サイズを有しかつ高画質が実現可能な表示装置を備えたモバイル機器、例えば、スマートフォン、タブレットが市販されている。特に、有機エレクトロルミネセンス表示装置(以下、有機ELと称する)は、このようなモバイル機器の薄型化に貢献することができる。
 有機EL表示装置においては、白色有機ELを備えた有機EL基板と、カラー表示を実現するカラーフィルタを備えかつ有機EL基板に対向配置された対向基板とを用いることがある。更なる高画質を得るために、例えば、赤色発光LEDチップ、緑色発光LEDチップ、及び青色発光LEDチップが小さな発光ユニットに載置され、複数の発光ユニットがアレイ基板上にマトリクス状に配列されているLEDマトリクス表示装置の開発も進んでいる。LEDとして、発光効率が高い青色発光ダイオードが知られており、青色LEDチップ上に緑色蛍光体及び赤色蛍光体が配置された白色LEDが用いられることがある。
 表示装置の表示機能層は、液晶層、有機EL層(Organic Electroluminescence)、LEDチップ(Light Emitting Diode)によるLEDマトリクス層、さらには、電気要素と機械的要素とで構成されるEMS(Electro Mechanical System)、或いは、MEMS(Micro-Electro-Mechanical System)を含む。MEMSは、アクチュエータ、トランスデューサ、センサ、マイクロミラー、MEMSスイッチ、及び光学フィルム等の光学部品、並びに光干渉変調器(IMOD:Interferometric Modulation)を含む。
 このような表示装置においては、指等のポインタによる入力が可能なタッチセンシング機能を備えた表示装置の普及が進んでいる。
 加えて、モバイル機器の表示画面を大きくするために、有効表示領域(表示画面)の周囲に位置する額縁部の幅を狭くする“狭額縁技術”の開発が進展している。この額縁部においては、一般的に、ポリシコンTFTや酸化物半導体TFT(薄膜トランジスタ、以下アクティブ素子)によって形成された周辺回路が形成されている。
 しかしながら、表示装置においては、上記の狭額縁化やタッチセンシング機能の付加等により、電気的ノイズ発生源が増加し、様々な問題が生じている。例えば、手や人体の静電気は、タッチセンシング機能を備えた表示装置に悪影響を与え易い。表示装置に手や指が触れることで、タッチセンシングが誤動作を起こすことがある。加えて、人体に蓄えられた静電気は、表示に係る制御系の配線や額縁部に位置するドライバIC(Integrated Circuit)に乗り、表示装置の表示不良をもたらすことがある。
 特許文献1においては、透明導電材料で形成された導電膜がシールド機能を備え、また、グランド電位を有する(接地されている)構成が開示されている。さらに、第2導電膜を併用することで耐腐食性も実現されている。しかしながら、透明導電材料の抵抗値は高いため、静電気による容量が形成され易く、液晶を駆動する配線(特にコモン配線)や、タッチパネルに設けられたタッチセンシング配線に電荷が乗り易い。また、透明導電材料の抵抗値は高いため、その抵抗値では、高い周波数のノイズをシールドするには不十分である。
 特許文献2は、第1基板に設けられた第1タッチ駆動電極と、第2基板に設けられた第2タッチ駆動電極及びタッチ検出電極とを備えた構成を提案している。ノイズ低減技術として、特許文献2の図8に示されるように、ノイズ発生源である周辺回路80から、第2のタッチ駆動電極52が遠ざけて配置されている。しかしながら、周辺回路80から第2のタッチ駆動電極52までの距離を増加するだけではノイズ対策として十分と言えない。例えば、特許文献2においては、指や人体等から発生する静電気等の外部ノイズの影響が考慮されていない。加えて、車載向け表示装置等の高信頼性を要求される表示装置では、静電気の放電に係る耐圧規格が厳しい。特許文献2においては、このような外部ノイズ対策が考慮されていない。なお、特許文献2において、アクティブ素子の駆動に関わるスイッチング素子等を含む周辺回路は、表示領域の周囲に位置する額縁部に設けられており、特許文献2は、表示装置の狭額縁化の技術を開示している。周辺回路に形成されるトランジスタ等のアクティブ素子は、ポリシリコン半導体で形成されたチャネル層を備える薄膜トランジスタであることが多い。
 特許文献3は、タッチセンサと表示装置とが一体となった液晶表示装置に関する。特許文献3は、バイパストンネル等を用いてアレイ基板にタッチスクリーンを作りこむ技術を開示している。
 特許文献3においては、ポリシリコントランジスタに接続される信号線(ゲート線とソース線)や画素電極だけでなく、タッチセンシングに関わるセンス領域とドライブ-センス接地領域及びバイパストンネル等を同一のアレイ基板上に配設することが必要である。このため、特許文献3においては、アレイ構造が極めて複雑であり、寄生容量の増加を招き易く、かつ、アレイ基板の製造工程における負荷が大きい。
 特許文献4は、面内切り替え(IPS)液晶表示装置に関し、同一平面内にタッチ駆動電極、タッチ感知に使用される電極対を設ける技術を開示している。特許文献3及び特許文献4においては、アレイ基板(アクティブ素子が形成される面)にタッチセンシング用配線(以下、タッチ配線)が配設されている。この構成では、アクティブ素子に映像信号やゲート信号を伝達するTFT配線の近くにタッチ配線が配置され、このタッチ配線に映像信号に起因するノイズが乗り易いといった問題がある。
 特許文献5は、特定のゲート線を選択又は非選択の状態に切り替える選択信号を出力するゲート線駆動部を備える構造を開示している。ゲート線駆動部の各々は表示領域内に形成され、例えば、制御信号に応じて異なる駆動周波数で種々の表示を行うことができる。その表示領域内で、部分的に静止画を表示したり、あるいは、低消費電力化のために駆動周波数を低くしたりできる。例えば、静止画や、低い駆動周波数で画像を表示する場合、複数のフレームのうち一部のフレームの間においてはゲート線を選択状態となるように、また、他のフレームの間においてはゲート線を非選択の状態となるように、ゲート線の選択状態を切り替えることで消費電力を下げ、画質を向上できる。こうした観点で、特許文献5に記載の技術は優れている。しかしながら、特許文献5の図6Aから図7等に開示されているように、画素(PIX)を駆動するアクティブ素子TFT-PIXのほかに、TFT-D、TFT-E、TFT-F等のスイッチング素子を新たに追加する必要がある。これら追加されたスイッチング素子には、さらに配線13Nが設けられている。
 特許文献6は、タッチセンシング配線として、酸化インジウムと酸化錫を含む導電性金属酸化物で銅含有層が挟持された銅配線を開示している。しかしながら、タッチセンシングでの指等のポインタに起因するノイズ(タッチセンシングの誤動作含む)や、上述したような周辺回路から発生するノイズの対策は考慮されていない。
日本国特開2011-95451号公報 日本国特開2014-53000号公報 日本国特許第5746736号公報 日本国特許第4584342号公報 国際公開2014/142183パンフレット 日本国特許第5807726号公報
 上記したように、表示装置においては、タッチセンシング機能の付加、狭額縁化、低消費電力化や画質向上のためのスイッチング素子の追加等に起因して、アレイ基板の構造が複雑になっている。アレイ基板の構造の複雑化に伴って、ノイズ発生源が増加し、タッチセンシングにおいてS/N比を確保することが困難となってきている。
 本発明は、上記の課題に鑑みてなされたものであって、高いタッチセンシング精度を実現し、タッチセンシング機能を備えた表示装置及び表示装置基板を提供する。
 本発明の第1態様に係る表示装置は、表示機能層と、前記表示機能層を駆動するアレイ基板と、前記アレイ基板に対向する第1面と前記第1面とは反対側の第2面とを有する透明基板と、前記第2面から前記第1面に向けた観察方向において第1黒色層と第1導電層とが順に積層された構成を有しかつ前記第2面上にて第1方向に並ぶように互いに平行に延在する複数の第1タッチセンシング配線を含む第1センシングパターンと、前記観察方向において第2黒色層と第2導電層とが順に積層された構成を有しかつ前記複数の第1タッチセンシング配線と前記アレイ基板との間に位置するとともに平面視にて前記第1方向と直交する第2方向に並ぶように互いに平行に延在する複数の第2タッチセンシング配線を含む第2センシングパターンと、前記第1タッチセンシング配線と同じ材料で形成されかつ前記第1タッチセンシング配線と断面視において同じ位置に設けられかつ前記第1センシングパターンの外側に位置する第1遮光導電パターンと、前記第2タッチセンシング配線と同じ材料で形成されかつ前記第2タッチセンシング配線と断面視において同じ位置に設けられかつ前記第2センシングパターンの外側に位置する第2遮光導電パターンと、前記表示機能層に対向する表示部と、前記表示部を囲むとともに、前記第1センシングパターンの一部、前記第1遮光導電パターン、及び前記第2遮光導電パターンによって構成された遮光性の額縁部と、を備える表示装置基板と、第1タッチセンシング配線と第2タッチセンシング配線との間の静電容量の変化を検知してタッチセンシングを行う制御部と、を含む。
 本発明の第1態様に係る表示装置においては、前記第1タッチセンシング配線及び前記第2タッチセンシング配線は、前記第2面の上に形成され、前記第1タッチセンシング配線と前記第2タッチセンシング配線との間には絶縁層が設けられ、前記第1タッチセンシング配線及び前記第2タッチセンシング配線は、互いに電気的に絶縁されてもよい。
 本発明の第1態様に係る表示装置においては、前記第1タッチセンシング配線は、前記第2面の上に形成され、前記第2タッチセンシング配線は、前記第1面の上に形成されてもよい。
 本発明の第1態様に係る表示装置においては、前記第1面の上に、前記観察方向において、順に、前記第1タッチセンシング配線及び前記第2タッチセンシング配線が形成され、前記第1タッチセンシング配線と前記第2タッチセンシング配線との間には絶縁層が設けられ、前記第1タッチセンシング配線及び前記第2タッチセンシング配線は、互いに電気的に絶縁されてもよい。
 本発明の第1態様に係る表示装置においては、前記アレイ基板及び前記表示装置基板を囲う筐体を有し、前記第1遮光導電パターンは、前記筐体に接地されてもよい。
 本発明の第1態様に係る表示装置においては、前記第2遮光導電パターンは、スリットによって分割された複数の遮光導電部を有してもよい。
 本発明の第1態様に係る表示装置においては、前記アレイ基板は、ゲート絶縁層と接触しかつ酸化物半導体で構成されたチャネル層を有し、前記表示機能層を駆動するアクティブ素子と、を備えてもよい。
 本発明の第1態様に係る表示装置においては、前記酸化物半導体は、ガリウム、インジウム、亜鉛、錫、アルミニウム、ゲルマニウム、及びセリウムから構成される群より選択される1種以上を含有する金属酸化物と、少なくとも、アンチモン、ビスマスのうちいずれかを含有する金属酸化物と、を含んでもよい。
 本発明の第1態様に係る表示装置においては、前記ゲート絶縁層は、酸化セリウムを含む複合酸化物で形成されてもよい。
 本発明の第1態様に係る表示装置においては、前記アクティブ素子に電気的に連携された複数の配線のうち、少なくともゲート配線は、銅合金層が導電性金属酸化物層によって挟持された3層構造を有してもよい。
 本発明の第1態様に係る表示装置においては、前記アレイ基板は、前記表示機能層を挟持する上部電極及び下部電極を備え、前記表示機能層は、発光ダイオード層であり、前記上部電極と前記下部電極との間に印加される駆動電圧によって発光してもよい。
 本発明の第1態様に係る表示装置においては、前記アレイ基板は、前記表示機能層を挟持する上部電極及び下部電極を備え、前記表示機能層は、有機エレクトロルミネセンス層であり、前記上部電極と前記下部電極との間に印加される駆動電圧によって発光してもよい。
 本発明の第1態様に係る表示装置においては、前記上部電極及び前記下部電極の少なくとも一方は、銀合金層が導電性金属酸化物層で挟持された構造を有してもよい。
 本発明の第1態様に係る表示装置においては、前記表示機能層は、液晶層であり、前記アレイ基板は、前記液晶層を挟持するコモン電極及び画素電極を備え、前記液晶層は、前記コモン電極と前記画素電極との間の電位差によって駆動してもよい。
 本発明の第1態様に係る表示装置においては、断面視において、前記コモン電極は、前記画素電極よりも、前記表示装置基板に近い位置に設けられてもよい。
 本発明の第2態様に係る表示装置基板は、第1面と、前記第1面とは反対側の第2面とを有する、透明基板と、前記第1面及び前記第2面のいずれか一方に形成され、前記第2面から前記第1面に向けた観察方向において第1黒色層と第1導電層とが順に積層された構成を有するとともに前記第2面上にて第1方向に並ぶように互いに平行に延在する複数の第1タッチセンシング配線を含む、第1センシングパターンと、前記第1面及び前記第2面のいずれか一方に形成され、前記観察方向において第2黒色層と第2導電層とが順に積層された構成を有するとともに平面視にて前記第1方向と直交する第2方向に並ぶように互いに平行に延在する複数の第2タッチセンシング配線を含む、第2センシングパターンと、前記第1タッチセンシング配線と同じ材料で形成され、前記第1タッチセンシング配線と断面視において同じ位置に設けられ、前記第1センシングパターンの外側に位置する、第1遮光導電パターンと、前記第2タッチセンシング配線と同じ材料で形成され、前記第2タッチセンシング配線と断面視において同じ位置に設けられ、前記第2センシングパターンの外側に位置する、第2遮光導電パターンと、前記第1センシングパターンの一部、前記第1遮光導電パターン、及び前記第2遮光導電パターンによって構成された遮光性の額縁部と、を備える。
 本発明の第2態様に係る表示装置においては、前記透明基板は、平面視において、短辺と長辺とを有し、前記第1遮光導電パターンは、前記長辺と平行に設けられてもよい。
 本発明の第2態様に係る表示装置においては、前記第2遮光導電パターンは、前記第1タッチセンシング配線と平行な複数のスリットを有し、平面視において、前記複数の第1タッチセンシング配線と前記複数のスリットが重なる重畳部が形成されており、前記重畳部は、前記額縁部を構成してもよい。
 本発明の第2態様に係る表示装置においては、前記第1導電層及び前記第2導電層は、少なくとも、銅合金層が導電性金属酸化物層によって挟持された3層構造を有してもよい。
 本発明の第2態様に係る表示装置においては、平面視において前記複数の第1タッチセンシング配線と前記複数の第2タッチセンシング配線とによって区画される複数の画素を備え、前記複数の画素は、カラーフィルタを備えてもよい。
 本発明の態様によれば、周辺回路から発生する内部ノイズあるいは表示装置の外部からの外部ノイズを低減し、高精度のタッチセンシングを実現する機能を備えた表示装置及び表示装置基板を提供することができる。
本発明の第1実施形態に係る表示装置を構成する制御部(映像信号制御部、システム制御部、及びタッチセンシング制御部)及び表示部を示すブロック図である。 本発明の第1実施形態に係る表示装置を部分的に示す断面図である。 本発明の第1実施形態に係る表示装置が備える対向基板を示す図であって、観察者側から表示装置を見た平面図である。 本発明の第1実施形態に係る表示装置が備える対向基板を示す図であって、対向基板に設けられた複数の第1タッチセンシング配線を有する第1センシングパターンと、第1センシングパターンの外側に位置する第1遮光導電パターンとを示す平面図である。 本発明の第1実施形態に係る表示装置が備える対向基板を示す図であって、対向基板に設けられた複数の第2タッチセンシング配線を有する第2センシングパターンと、第2センシングパターンの外側に位置する第2遮光導電パターンとを示す平面図である。 本発明の第1実施形態に係る表示装置が備える対向基板の額縁部を部分的に示す平面図であって、第2遮光導電パターンのスリットと第1タッチセンシング配線とが重なる重畳部によって得られた遮光性を説明する図である。 本発明の第1実施形態に係る表示装置が備える液晶層と、対向基板の額縁部とを部分的に示す図であって、図3のA-A’線に沿う断面図である。 本発明の第1実施形態に係る対向基板に設けられた第1タッチセンシング配線、絶縁層、及び第2タッチセンシング配線を示す図であって、図2における符号W1で示された部分を示す拡大断面図である。 本発明の第1実施形態に係る表示装置が備えるアレイ基板を部分的に示す平面図である。 本発明の第1実施形態に係る表示装置が備えるアレイ基板を部分的に示す断面図であり、図9に示すC-C’線に沿う断面図である。 本発明の第1実施形態に係る表示装置を部分的に示す回路図であり、カラム反転駆動により液晶表示装置を駆動させた場合に、各画素における液晶駆動電圧の状況を示す説明図である。 本発明の第1実施形態に係る表示装置を部分的に示す回路図であり、ドット反転駆動により液晶表示装置を駆動させた場合に、各画素における液晶駆動電圧の状況を示す説明図である。 本発明の第2実施形態に係る表示装置を部分的に示す断面図である。 本発明の第2実施形態に係る表示装置が備える液晶層と、対向基板の額縁部とを部分的に示す断面図である。 本発明の第2実施形態に係る対向基板に設けられた第2タッチセンシング配線を示す図であって、図14における符号W2で示された部分を示す拡大断面図である。 本発明の第2実施形態に係る表示装置が備える対向基板を示す図であって、観察者側から表示装置を見た平面図である。 本発明の第3実施形態に係る表示装置を部分的に示す断面図である。 本発明の第3実施形態に係る表示装置が備える対向基板の額縁部を部分的に示す断面図である。 本発明の第3実施形態に係る表示装置が備える対向基板を示す図であって、観察者側から表示装置を見た平面図である。 本発明の第3実施形態に係るアレイ基板を部分的に示す断面図である。 本発明の第3実施形態に係るアレイ基板を構成する画素電極を部分的に示す図であって、図20における符号W3で示された部分を示す拡大断面図である。 本発明の第3実施形態に係るアレイ基板を構成するゲート電極を部分的に示す断面図である。
 以下、図面を参照しながら本発明の実施形態について説明する。
 以下の説明において、同一又は実質的に同一の機能及び構成要素には、同一の符号を付し、その説明を省略又は簡略化し、或いは、必要な場合のみ説明を行う。各図においては、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法及び比率を実際のものとは適宜に異ならせてある。また、必要に応じて、図示が難しい要素、例えば、半導体のチャネル層を形成する複数層の構成、また、導電層を形成する複数層の構成等の図示や一部の図示が省略されている。
 以下に述べる各実施形態においては、特徴的な部分について説明し、例えば、通常の表示装置に用いられている構成要素と本実施形態に係る表示装置との差異がない部分については説明を省略する。
 以下の記載において、タッチセンシングに関わる配線、電極、及び信号を、単に、タッチ駆動配線、タッチ検出配線、タッチ配線、タッチ電極、及びタッチ信号と称することがある。また、第1タッチセンシング配線及び第2タッチセンシング配線を単にタッチセンシング配線と称することがある。タッチセンシング駆動を行うためにタッチセンシング配線に印加される電圧をタッチ駆動電圧と呼ぶ。
 第1黒色層及び第2黒色層を単に黒色層と称することがあり、また、第1導電層及び第2導電層を単に導電層と称することがある。
 表示機能層として液晶層を用いる実施形態では、バックライトユニット、偏光板等の光学機能膜、配向膜等の図示が省略されている。また、液晶層の駆動のためにコモン電極と画素電極との間に印加される電圧を液晶駆動電圧と称することがある。液層駆動電圧は、画素駆動電圧と呼称することがある。
 表示機能層として発光層(有機ELやLED)を用いる実施形態では、発光層(有機ELやLED)を駆動するために上部電極と下部電極(以下、下部電極を画素電極あるいは反射電極と称することがある)間に印加される電圧を画素駆動電圧と称する。発光層の駆動を単に画素駆動と言うことがある。
(第1実施形態)
(表示装置DSP1の機能構成)
 以下、本発明の第1実施形態に係る表示装置DSP1を、図1から図12を参照しながら説明する。
 図1は、本発明の第1実施形態に係る表示装置DSP1を示すブロック図である。図1に示すように、本実施形態に係る表示装置DSP1は、表示部110と、表示部110及びタッチセンシング機能を制御するための制御部120とを備えている。
 制御部120は、公知の構成を有し、映像信号制御部121(第一制御部)と、タッチセンシング制御部122(第二制御部)と、システム制御部123(第三制御部)とを備えている。
 映像信号制御部121は、アレイ基板200に設けられたコモン電極17(後述)を定電位とするとともに、アレイ基板200に設けられたゲート配線9、10(後述、走査線)及びソース配線31、32(後述、信号線)に信号を送る。映像信号制御部121がコモン電極17と画素電極29(後述)との間に表示用の液晶駆動電圧(電位差)を印加することで、アレイ基板200上でフリンジ電界が発生し、フリンジ電界に沿って液晶分子が回転し、液晶層300が駆動される。これにより、アレイ基板200上に画像が表示される。複数の画素電極29の各々には、ソース配線31、32(信号線)を介して、例えば、矩形波を有する映像信号が個別に印加される。また、矩形波としては、正又は負の直流矩形波或いは交流矩形波でもよい。映像信号制御部121は、このような映像信号をソース配線に送る。
 タッチセンシング制御部122は、第2タッチセンシング配線2(後述)にタッチセンシング駆動電圧を印加し、第1タッチセンシング配線1と第2タッチセンシング配線2との間に生じる静電容量の変化を検出し、タッチセンシングを行う。
 システム制御部123は、映像信号制御部121及びタッチセンシング制御部122を制御し、液晶駆動と静電容量の変化の検出とを交互に、即ち、時分割で行うことが可能である。
 また、システム制御部123は、液晶駆動及びタッチセンシング駆動の周波数を互いに異ならせて上述の駆動を行う機能を有してもよいし、液晶駆動及びタッチセンシング駆動の駆動電圧を互いに異ならせて上述の駆動を行う機能を有してもよい。このような機能を有するシステム制御部123においては、例えば、表示装置DSP1が拾ってしまう外部環境からのノイズの周波数を検知し、ノイズ周波数とは異なるタッチセンシング駆動周波数を選択する。これによって、ノイズの影響を軽減することができる。また、このようなシステム制御部123においては、指やペン等のポインタの走査速度に合わせたタッチセンシング駆動周波数を選定することもできる。
 上記の制御部120を備えた表示装置DSP1は、タッチセンシング機能と画像表示機能とを兼ね備えたタッチセンシング機能一体型の表示装置である。表示装置DSP1は、絶縁層を介して配置された2つの配線グループ、即ち、複数の第1タッチセンシング配線1と複数の第2タッチセンシング配線2とを用いた静電容量方式のタッチセンシング技術を利用している。例えば、指等のポインタが対向基板100(後述)に接触或いは近接した際に、第1タッチセンシング配線1と第2タッチセンシング配線2との交点に生じる静電容量の変化を検知し、指等のポインタの位置が検知される。また、図1における符号Kは、本実施形態に係る表示装置DSP1の筐体Kを示している。筐体Kによってアレイ基板200及び対向基板100が囲まれており、アレイ基板200及び対向基板100が一体化されている。
(表示装置DSP1の構造)
 図2は、本発明の第1実施形態に係る表示装置DSP1を部分的に示す断面図である。
 本実施形態に係る表示装置DSP1は、後述する実施形態に係る表示装置基板を具備する。また、以下に記載する「平面視」とは、観察者が表示装置DSP1の表示面(表示装置基板の平面)を観察する方向から見た平面を意味する。本発明の実施形態に係る表示装置の表示部の形状、又は画素を規定する画素開口部の形状、表示装置を構成する画素数は限定されない。
 以下に詳述する実施形態では、表示部の短辺に沿う方向をX方向(第1方向)と規定し、表示部の長辺に沿う方向をY方向(第2方向)と規定し、更に、透明基板の厚さ方向をZ方向と規定し、表示装置を説明する。
 なお、以下の実施形態において、上記のように規定されたX方向とY方向を切り換えて、即ち、X方向を第2方向と定義しかつY方向を第1方向と定義し、表示装置を構成してもよい。
 図2に示すように、表示装置DSP1は、対向基板100(表示装置基板)と、対向基板100に向かい合うように貼り合わされたアレイ基板200と、対向基板100とアレイ基板200との間に挟持された液晶層300とを備える。なお、図2に示す表示装置DSP1においては、各種光学機能を有する光学フィルム、対向基板100を保護するカバーガラス等は、省略されている。
(対向基板100の構造)
 図2に示すように、対向基板100は、第1面MFと、第1面MFとは反対側の第2面MSとを有する透明基板40(第1透明基板)を備える。第1面MFは、アレイ基板200に対向する面である。第2面MSは、観察者に対向する面である。
 透明基板40に用いることの可能な基板は、可視域において透明な基板であればよく、ガラス基板、セラミック基板、石英基板、サファイア基板、プラスチック基板等を用いることができる。
(センシングパターン及び遮光導電パターン)
 図3は、本発明の第1実施形態に係る表示装置DSP1が備える対向基板100を示す図であって、観察者側Pから表示装置DSP1を見た平面図である。即ち、透明基板40の第2面MSを見た平面図である。
 透明基板40の第2面MSの上方には、複数の第1タッチセンシング配線1を含む第1センシングパターンPT1と、複数の第2タッチセンシング配線2を含む第2センシングパターンPT2と、第1遮光導電パターンF21と、第2遮光導電パターンF22とが設けられている。
 複数の第1タッチセンシング配線1と複数の第2タッチセンシング配線2との間には、絶縁層I(タッチ配線絶縁層)が設けられており、第1タッチセンシング配線1と第2タッチセンシング配線2とは、絶縁層Iによって互いに電気的に絶縁されている。
 第1遮光導電パターンF21は、第1タッチセンシング配線1と同じ材料で形成され、第1タッチセンシング配線1と断面視において同じ位置に設けられ、第1センシングパターンPT1の外側に位置している。
 第2遮光導電パターンF22は、第2タッチセンシング配線2と同じ材料で形成され、第2タッチセンシング配線2と断面視において同じ位置に設けられ、第2センシングパターンPT2の外側に位置している。
 第1遮光導電パターンF21及び第2遮光導電パターンF22は、遮光性の額縁部Fを構成しており、額縁部Fは、液晶層(表示機能層)に対向する表示部110を囲んでいる。
 後述するように、第1タッチセンシング配線1及び第2タッチセンシング配線2は、黒色層及び導電層が積層された構成を有しているため、第1遮光導電パターンF21の層構成は、第1タッチセンシング配線1の層構成と同じであり、第2遮光導電パターンF22の層構成は、第2タッチセンシング配線2の層構成と同じである。
 具体的に、第1遮光導電パターンF21及び第1センシングパターンPT1は、同一の工程において同時にパターニング形成されている。第2遮光導電パターンF22及び第2センシングパターンPT2は、同一の工程において同時にパターニング、形成されている。
 図4は、本発明の第1実施形態に係る表示装置DSP1が備える対向基板100を示す図であって、対向基板100に設けられた複数の第1タッチセンシング配線1を有する第1センシングパターンPT1と、第1センシングパターンPT1の外側に位置する第1遮光導電パターンF21とを示す平面図である。
 図4においては、図3に示す第2遮光導電パターンF22及び第2センシングパターンPT2が省略されている。
 図2及び図4に示すように、複数の第1タッチセンシング配線1は、第2面MSの上方に位置し、X方向に並んでおり、互いに平行にY方向に延在している。Y方向における第1タッチセンシング配線1の端部には、第1端子TM1が設けられている。複数の第1タッチセンシング配線1は、第1センシングパターンPT1を形成している。
 第1センシングパターンPT1の外側には、第1センシングパターンPT1を囲うようにU字状に形成された第1遮光導電パターンF21が配設されている。具体的に、X方向における第1センシングパターンPT1の両側には、第1遮光導電パターンF21の長辺部F21Lが位置している。長辺部F21Lは、Y方向に延在している。即ち、透明基板40の長辺及び短辺のうち、第1遮光導電パターンF21の長辺部F21Lは、透明基板40の長辺に平行に設けられている。Y方向における第1センシングパターンPT1の端部(図4における左側)には、第1遮光導電パターンF21の短辺部F21Sが位置している。短辺部F21Sは、X方向に延在している。また、第1遮光導電パターンF21は、筐体Kに接地されている。
 図5は、本発明の第1実施形態に係る表示装置DSP1が備える対向基板100を示す図であって、対向基板100に設けられた複数の第2タッチセンシング配線2を有する第2センシングパターンPT2と、第2センシングパターンPT2の外側に位置する第2遮光導電パターンF22とを示す平面図である。第2遮光導電パターンF22のそれぞれは、電気的に独立している。
 図5においては、図3に示す第1遮光導電パターンF21及び第1センシングパターンPT1が省略されている。
 図2及び図5に示すように、複数の第2タッチセンシング配線2は、複数の第1タッチセンシング配線1とアレイ基板200との間に位置しており、本実施形態では第2面MSの上方に位置している。第2タッチセンシング配線2は、センス配線2Aと、引き出し配線2Bとを有している。センス配線2Aは、Y方向に並んでおり、互いに平行にX方向に延在している。センス配線2Aは、表示部110の外側(額縁部F)において、引き出し配線2Bと接続されている。引き出し配線2Bは、X方向に並んでおり、互いに平行にY方向に延在している。Y方向における引き出し配線2Bの端部には、第2端子TM2が設けられている。複数の第2タッチセンシング配線2は、第2センシングパターンPT2を形成している。
 第2遮光導電パターンF22は、図5において対向基板100の左側(Y方向における基板先端)に位置する複数の第1遮光導電部F22A(遮光導電部)と、対向基板100の右側(Y方向における基板基端)に位置する複数の第2遮光導電部F22B(遮光導電部)とを有する。また、互いに隣り合う第1遮光導電部F22A及び互いに隣り合う第2遮光導電部F22Bは、スリットSによって分割され、区画されている。第2遮光導電部F22Bを区画する複数のスリットSは、第1タッチセンシング配線1と平行である。また、複数の第1遮光導電部F22Aにおいては、いずれかの遮光導電部は、十字型のスリットCSで分割されている。言い換えると、第2遮光導電パターンF22は、スリットパターンによって複数の遮光導電部(複数のパターン)に分割されており、第2遮光導電パターンF22は、大小複数の遮光導電部を有している。
 このように第2遮光導電パターンF22は、第2遮光導電パターンF22を区画するスリットにより複数のパターンに分割されていることが好ましい。このように分割された遮光導電パターンの種類や遮光導電パターンの大きさは、複数種類であってもよい。
 平面視において、第1遮光導電パターンF21と重なるように第2遮光導電パターンF22を形成することで、第2遮光導電パターンF22と第1遮光導電パターンF21との間に電気的に疑似的なコンデンサを設けることができる。このコンデンサを形成することによって、周波数の低いノイズ(例えば、ドライバ回路等から発生するノイズ)は、第2遮光導電パターンF22と第1遮光導電パターンF21の厚み方向に透過しにくくなる。このようなコンデンサは、複数種類の特性を有する、換言すれば、大きさが異なる遮光導電部を備える第2遮光導電パターンF22であることが好ましい。平面視において、遮光導電部の形状は、任意に設定される。なお、周波数が高いノイズは、接地された第1遮光導電パターンF21を介してグランドに逃げ、導電パターンを通過しにくい。
 上述した第2遮光導電パターンF22と第1遮光導電パターンF21とによって得られる作用効果は、高い抵抗値を有するITO等の透明導電膜パターンによって十分に得られない。第2遮光導電パターンF22や第1遮光導電パターンF21の一部として、銅、銀、銅合金、銀合金で形成された薄膜を用いることが好ましい。第2遮光導電パターンF22及び第1遮光導電パターンF21は、第1タッチセンシング配線1と第2タッチセンシング配線2とを形成する工程で同時に形成することができるため、製造工程を増やさずに、第2遮光導電パターンF22及び第1遮光導電パターンF21を形成することができるというメリットがある。本実施形態に係る第2遮光導電パターンF22と第1遮光導電パターンF21を用いることで、静電気ノイズを含む種々のノイズに対してシールド効果を有する表示装置を実現することができる。
 図6は、本発明の第1実施形態に係る表示装置DSP1が備える対向基板100の額縁部Fを部分的に示す平面図であって、第2遮光導電パターンF22のスリットSと第1タッチセンシング配線1とが重なる重畳部によって得られた遮光性を説明する図である。
 図6(a)は、図4に示す第1端子TM1と、第1端子TM1から表示部110に向けて延在する第1タッチセンシング配線1の一部(符号1’)を部分的に示す平面図である。第1端子TM1は、後述する第1黒色層16が除去されて第1導電層15が露出した露出部であり、Pad(端子部)として機能する部位である。
 図6(b)は、図5に示す第2遮光導電部F22Bを部分的に示す平面図である。互いに隣り合う第2遮光導電部F22B(第2遮光導電パターンF22)は、スリットSによって区画されている。図6(a)及び図6(b)において、スリットSの幅WSは、第1タッチセンシング配線1の幅H1と同じである。複数のスリットSが配置されるX方向の配置ピッチPSは、第1タッチセンシング配線1が配置されるX方向の配置ピッチP1と同じである。
 このため、図6(c)に示すように、図6(a)に示す第1タッチセンシング配線1の一部と、図6(b)に示すスリットSとを重ね合わせると、第1タッチセンシング配線1の位置とスリットSの位置とが一致し、複数の重畳部3が形成される。この重畳部3は、遮光性の額縁部Fを構成する。
 また、対向基板100の全体構造においては、図3、図4、及び図6に示すように、第1タッチセンシング配線1の一部(重畳部3)と、第1遮光導電パターンF21(長辺部F21L及び短辺部F21S)と、第2遮光導電部F22B(第2遮光導電パターンF22)とによって額縁部Fが構成されている。
 ここで、複数の第2遮光導電部F22Bは、大きな寄生容量を発生しないように、細分割化されている。スリットSの幅WSは、図7に示す周辺回路80から発生するノイズの平均周波数の波長より短くなるよう設定されていれば、ノイズの影響を受けにくくなる。
 上述したように、第2遮光導電パターンF22を構成する複数の第2遮光導電部F22Bと複数の第1タッチセンシング配線1の一部によって重畳部3が形成されている。重畳部3は、ノイズの漏れの発生、及び、バックライトユニット(不図示)からの光漏れの発生を防止することができる。
 第1遮光導電パターンF21や第2遮光導電パターンF22の抵抗値は低いことが望ましい。第1遮光導電パターンF21又は第2遮光導電パターンF22の各々の層構成の一部において、導電率の高い金属を用いることが好ましい。なお、第1遮光導電パターンF21にスリットを形成してもよいが、静電気に起因するノイズの影響を減らすため第1遮光導電パターンF21は接地されていることが望ましい。例えば、本実施形態のように、筐体Kに第1遮光導電パターンF21が接地されていることが望ましい。
 表示装置DSP1の使用においては、表示装置DSP1の外部から静電気等の高い電位が表示装置DSP1に加わったり、あるいは、手や指等で表示装置DSP1を持つ場合には指等から静電気が表示装置DSP1に加わったりすることがある。このような場合であっても、第1遮光導電パターンF21が接地されていることで静電気の影響を軽減できる。表示装置DSP1を構成する部材に第1遮光導電パターンF21を接地する構造としては、多くの場合、表示装置DSP1の筐体Kに第1遮光導電パターンF21を接続する構造が用いられるが、液晶駆動等の表示の際に用いられるグランド電位を接地電位として用いてもよい。
 図7は、本発明の第1実施形態に係る表示装置DSP1が備える液晶層300と、対向基板100の額縁部Fとを部分的に示す図であって、図3のA-A’線に沿う断面図である。
 図7に示すように、アレイ基板200には、液晶駆動に関わる周辺回路80が形成されている。周辺回路80は、図6に示す額縁部Fの下に位置する。周辺回路80は、例えば、アレイ基板200のアクティブ素子を駆動するTFT、容量素子、抵抗素子等が、アレイ基板200の額縁部分200F(平面視において、額縁部Fと一致する領域)の表面に設けられている。周辺回路80から発生する電気的ノイズは額縁部Fでカットされ、タッチ検出電極である第1タッチセンシング配線1に対するノイズの影響を少なくできる。液晶層300のセルギャップ(厚み)は、スペーサ103で制御される。液晶層300の周囲には、シール層104が設けられている。液晶層300は、対向基板100、アレイ基板200、及びシール層104によって囲まれている。
 図3~図6に示す複数の第1端子TM1及び複数の第2端子TM2は、タッチセンシング制御部122に接続されている。例えば、図7に示すように、第1タッチセンシング配線1の第1端子TM1は、異方性導電膜101を介して、フレキシブルプリント回路基板FPCに設けられた端子に電気的に接続されている。なお、異方性導電膜101に代えて、微小な金属球、或いは金属膜で覆った樹脂球等の導体が用いられてもよい。タッチセンシング制御部122は、フレキシブルプリント回路基板FPCを通じて、第1端子TM1及び第2端子TM2を通じて、第1タッチセンシング配線1と第2タッチセンシング配線2と電気的に接続されている。
 複数の第1タッチセンシング配線1の各々と、複数の第2タッチセンシング配線2の各々は、電気的に独立している。第1タッチセンシング配線1とセンス配線2Aは、観察者側Pから見た平面視において直交している。複数の第1タッチセンシング配線1と複数のセンス配線2Aとによって区画されている領域は、画素PXである。複数の画素PXは、表示部110においてマトリクス状に配置されている。画素PXにおける開口部の形状は、正方形パターン、長方形パターン、平行四辺形パターン等であってもよい。更に、画素PXにおける開口部の配列が、モアレ対策を施した配列、ジグザク状の配列であってもよい。
 複数の第1端子TM1及び複数の第2端子TM2は、タッチセンシング制御部122に接続されている。これにより、タッチセンシング制御部122は、第1端子TM1及び第2端子TM2を通じて、第1タッチセンシング配線1と第2タッチセンシング配線2と電気的に接続されている。
 例えば、第1タッチセンシング配線1をタッチ検出電極として用い、第2タッチセンシング配線2をタッチ駆動電極として用いることができる。タッチセンシング制御部122は、タッチ信号として、第1タッチセンシング配線1と第2タッチセンシング配線2との間に生じる静電容量C1の変化を検出する。
 また、第1タッチセンシング配線1の役割と第2タッチセンシング配線2の役割とを入れ替えてもよい。具体的に、第1タッチセンシング配線1をタッチ駆動電極として用い、第2タッチセンシング配線2をタッチ検出電極として用いてもよい。
 なお、第1タッチセンシング配線1と第2タッチセンシング配線2の全てをタッチセンシングに用いなくてもよい。複数の第1タッチセンシング配線1及び複数の第2タッチセンシング配線2のうち、タッチセンシングに用いる配線を除き、タッチセンシングに用いない配線を間引いてもよい。即ち、間引き駆動を行ってもよい。
 次に、第1タッチセンシング配線1を間引き駆動させる場合について説明する。まず、全ての第1タッチセンシング配線1を複数のグループに区分する。グループの数は、全ての第1タッチセンシング配線1の数より少ない。一つのグループを構成する配線数が、例えば、6本であるとする。ここで、全ての配線(配線数は6本)のうち、例えば、2本の配線を選択する(全ての配線の本数よりも少ない本数、2本<6本)。一つのグループにおいては、選択された2本の配線を用いてタッチセンシングが行われ、残りの4本の配線における電位がフローティング電位に設定される。表示装置DSP1は、複数のグループを有することから、上記のように配線の機能が定義されているグループ毎にタッチセンシングを行うことができる。同様に、第2タッチセンシング配線2においても、間引き駆動を行ってもよい。
 タッチに用いられるポインタが、指である場合とペンである場合とは、接触あるいは近接するポインタの面積や容量が異なる。こうしたポインタの大ききによって、間引く配線の本数を調整できる。ペンや針先など先端が細いポインタでは、配線の間引き本数を減らして高密度のタッチセンシング配線のマトリクスを用いることができる。指紋認証時も高密度のタッチセンシング配線のマトリクスを用いることができる。
 このようにグループ毎にタッチセンシング駆動を行うことで、走査或いは検出に用いられる配線数が減るため、タッチセンシング速度を上げることができる。更に、上記の例では、一つのグループを構成する配線数が6本であったが、例えば、10以上の配線数で一つのグループを形成し、一つのグループにおいて選択された2本の配線を用いてタッチセンシングを行ってもよい。即ち、間引かれる配線の数(フローティング電位となる配線の数)を増やし、これによってタッチセンシングに用いられる選択配線の密度(全配線数に対する選択配線の密度)を低下させ、選択配線によって走査或いは検出を行うことで、消費電力の削減やタッチ検出精度の向上に寄与する。逆に、間引かれる配線の数を減らし、タッチセンシングに用いられる選択配線の密度を高くし、選択配線によって走査或いは検出を行うことで、例えば、指紋認証やタッチペンによる入力に活用できる。
 間引かれた配線(タッチセンシングに用いない配線)は、例えば、電気的に浮いた状態、即ち、電位がフローティング状態となる。表示装置DSP1の表面(観察者に面する面)と指等のポインタとの近接距離を得るために、第1タッチセンシング配線1あるいは第2タッチセンシング配線2の電位をフローティング状態にすることもできる。指等のポインタの位置を検出した後、次の検出信号の精度を向上させるため、第1タッチセンシング配線1及び第2タッチセンシング配線2のいずれか一方を接地させ、リセットしてもよい(電位を0Vにする)。また、検出信号の精度を向上させるため、タッチ駆動電圧の位相を交互に反転するような電圧が採用されてもよい。このようなタッチ検出信号の精度を向上させる手段は、ポインタがアクティブポインタ(例えば、ペン形状のポインタから検出の指示信号が発生するポインタ)である場合にも有効である。
 上述した間引き駆動におけるフローティングパターンに関し、第1タッチセンシング配線1及び第2タッチセンシング配線2においては、スイッチング素子の駆動により検出電極と駆動電極とを切り替えて、高精細なタッチセンシングを行ってもよい。
 また、上述した間引き駆動におけるフローティングパターンは、グランド(筐体に接地)と電気的に接続するように切り替えることもできる。タッチセンシングのS/N比を改善させるため、タッチセンシングの信号が検出された際に、TFT(薄膜トランジスタ)等アクティブ素子の信号配線を、一時、グランド(筐体等)に接地してもよい。
 また、タッチセンシング制御で検出される静電容量をリセットするために必要な時間が比較的長いタッチ配線、即ち、タッチセンシングにおける時定数(容量と抵抗値の積)が大きいタッチ配線を用いる場合がある。この場合、例えば、タッチ配線の配列において、奇数行の配線と偶数行の配線とを交互にタッチセンシングに利用し、時定数の大きさを調整した駆動を行ってもよい。
 また、複数本数のタッチ配線をグルーピングして駆動や検出を行ってもよい。複数本数のタッチ配線のグルーピングの駆動においては、線順次駆動を採用せず、グループ単位でセルフ検出方式とも称される、一括検出の駆動方法を採用してもよい。また、グループ単位で、並列駆動を行ってもよい。また、寄生容量等のノイズをキャンセルするために、互いに近接又は隣接するタッチ配線の検出信号の差をとる差分検出方式を採用してもよい。額縁部に近い領域(表示部110の外側の領域、画像表示を行わない領域)に位置するタッチセンシング配線は、表示部110の中央に位置するタッチセンシング配線よりも、タッチセンシングの感度が低い傾向がある。このため、タッチセンシング配線の幅や形状を調整して感度差を少なくしてもよい。
 タッチセンシング制御部122及び映像信号制御部121においては、タッチセンシング駆動と液晶駆動(画素駆動)とを時分割駆動によって制御することもできる。要求されるタッチ入力の速さに合わせてタッチ駆動の周波数を調整してもよい。タッチ駆動周波数は、液晶駆動周波数より高い周波数とすることができる。指等のポインタによるタッチタイミングは不定期であり、かつ、短時間であることから、タッチ駆動周波数は高いことが望ましい。
 タッチセンシング駆動と画素駆動の各々の周波数を異ならせる手段はいくつか知られている。例えば、ノーマリオフの液晶駆動において、黒表示(オフ)のときにバックライトの発光をオフにして黒表示を行い、この黒表示の期間(液晶表示に影響のない期間)にタッチセンシング駆動を行うことができる。この場合、タッチ駆動の周波数を、種々、選択できる。
(タッチセンシング配線の積層構造)
 図8は、本発明の第1実施形態に係る対向基板100に設けられた第1タッチセンシング配線1、絶縁層I、及び第2タッチセンシング配線2を示す図であって、図2における符号W1で示された部分を示す拡大断面図である。
 本実施形態では、観察者Pが表示装置DSP1を観察する方向、即ち、透明基板40の第2面MSから第1面MFに向けた方向を、観察方向OBと称している。
 複数の第1タッチセンシング配線1は、観察方向OBにおいて第1黒色層16と第1導電層15とが順に積層された構成を有している。複数の第2タッチセンシング配線2は、観察方向OBにおいて第2黒色層36と第2導電層35とが順に積層された構成を有している。第2黒色層36は、第1黒色層16と同じ構成を有する。第2導電層35は、第1導電層15と同じ構成を有する。即ち、第1タッチセンシング配線1及び第2タッチセンシング配線2は同じ層構造を有する。
 絶縁層Iは、第2面MSの上方に設けられており、第1タッチセンシング配線1と第2タッチセンシング配線2との間に配置されている。
 第1タッチセンシング配線1及び第2タッチセンシング配線2の各々は、黒色層を備えることから、格子状に直交する第1タッチセンシング配線1と第2タッチセンシング配線2は、ブラックマトリクスとして機能し、表示コントラストを向上させる。
 図7においては、第1タッチセンシング配線1及び第2タッチセンシング配線2の各々が黒色層と導電層とで構成された2層積層構造を有しているが、本発明は、この構造を限定しない。第1タッチセンシング配線1及び第2タッチセンシング配線2の各々が2層よりも多い層数を有する積層構造で形成されてもよい。また、2つの黒色層によって導電層が挟持された3層積層構造が採用されてもよい。
 第1導電層15は、例えば、金属層20である銅合金層が第1導電性金属酸化物層21及び第2導電性金属酸化物層22によって挟持された3層構造を有することができる。
 断面視において、第1タッチセンシング配線1と第2タッチセンシング配線2の各々を構成する黒色層及び導電層の線幅を略同じにすることができる。具体的に、公知のフォトリソグラフィの手法を用いて、導電層を形成した後、パターニングされた導電層をマスクとして用いたドライエッチングを行うことで、黒色層と導電層との断面視における線幅が略同じとなるように、タッチセンシング配線を形成することができる。例えば、特開2015-004710号公報に記載の技術を適用できる。
(導電性金属酸化物層)
 第1導電層15及び第2導電層35の少なくとも一部を構成する金属層20を、導電性金属酸化物層21、22で挟持することができる。換言すれば、第1導電層15や第2導電層35の構造として、第1導電性金属酸化物層21、金属層20、及び第2導電性金属酸化物層22で構成された3層構造を採用することができる。第1導電性金属酸化物層21と金属層20との界面、又は、第2導電性金属酸化物層22と金属層20との界面に、ニッケル、亜鉛、インジウム、チタン、モリブデン、タングステン等、銅と異なる金属やこれら金属の合金層を更に挿入してもよい。
 具体的に、第1導電性金属酸化物層21及び第2導電性金属酸化物層22の材料としては、例えば、酸化インジウム、酸化亜鉛、酸化アンチモン、酸化錫、酸化ガリウム、及び酸化ビスマスから構成される群より選択される2種以上の金属酸化物を含む複合酸化物を採用することができる。これら金属酸化物の組成を調整することで、仕事関数の値を調整することができ、発光層として有機ELを採用した場合のキャリア放出性を調整することができる。
 第1導電性金属酸化物層21及び第2導電性金属酸化物層22に含まれるインジウム(In)の量は、80at%より多く含有させる必要がある。
 即ち、導電性金属酸化物層は、酸化インジウム、酸化亜鉛、及び酸化錫を含む複合酸化物で形成され、複合酸化物に含まれるインジウム(In)と亜鉛(Zn)と錫(Sn)のIn/(In+Zn+Sn)で示される原子比は、0.8より大きく、かつ、Zn/Snの原子比が1より大きい。
 インジウム(In)の量は、80at%より多いことが好ましい。インジウム(In)の量は、90at%より多いことが更に好ましい。インジウム(In)の量が80at%より少ない場合、形成される導電性金属酸化物層の比抵抗が大きくなり、好ましくない。亜鉛(Zn)の量が20at%を超えると、導電性金属酸化物(混合酸化物)の耐アルカリ性が低下するので好ましくない。上記の第1導電性金属酸化物層21及び第2導電性金属酸化物層22においては、いずれも、混合酸化物中の金属元素でのアトミックパーセント(酸素元素をカウントしない金属元素のみのカウント)である。酸化アンチモンや酸化ビスマスは、金属アンチモンや酸化ビスマスが銅との固溶域を形成しにくく、積層構造での銅の拡散を抑制するため、上記導電性金属酸化物層に加えることができる。
 第1導電性金属酸化物層21及び第2導電性金属酸化物層22が、酸化錫と酸化亜鉛を含む場合、亜鉛(Zn)の量は、錫(Sn)の量より多くする必要がある。錫の含有量が亜鉛含有量を超えてくると、後工程でのウエットエッチングで支障が出てくる。換言すれば、銅或いは銅合金である金属層が導電性金属酸化物層よりもエッチングされ易くなり、第1導電性金属酸化物層21と金属層20、第2導電性金属酸化物層22と金属層20、との幅に差を生じ易くなる。
 第1導電性金属酸化物層21及び第2導電性金属酸化物層22が、酸化錫と酸化亜鉛を含む場合、第1導電性金属酸化物層21及び第2導電性金属酸化物層22に含まれる錫(Sn)の量は、0.5at%以上6at%以下の範囲内が好ましい。インジウム元素に対する比較で、0.5at%以上6at%以下の錫を導電性金属酸化物層に添加することで、上記インジウム、亜鉛、及び錫との3元系混合酸化物膜(導電性の複合酸化物層)の比抵抗を小さくすることができる。錫の量が6at%を超えると、導電性金属酸化物層に対する亜鉛の添加も伴うため、3元系混合酸化物膜(導電性の複合酸化物層)の比抵抗が大きくなりすぎる。上記の範囲(0.5at%以上6at%以下)内で亜鉛及び錫の量を調整することで、比抵抗をおおよそ、混合酸化物膜の単層膜の比抵抗として3×10-4Ωcm以上5×10-4Ωcm以下の小さな範囲内に収めることができる。上記混合酸化物中には、チタン、ジルコニウム、マグネシウム、アルミニウム、ゲルマニウム等の他の元素を少量、添加することもできる。ただし、本実施形態において、混合酸化物の比抵抗は、上記の範囲に限定されない。
(導電層)
 第1導電層15及び第2導電層35は、金属層20等の導電材料で形成できる。金属層20としては、例えば、銅層や銅合金層、銀層や銀合金層、或いは、アルミニウムを含有するアルミニウム合金層(アルミニウム含有層)、更には、金、チタン、モリブデン、或いはこれらの合金を採用することができる。ニッケルは強磁性体であるため、成膜レートが落ちるものの、スパッタリング等の真空成膜で形成することができる。クロムは、環境汚染の問題や抵抗値が大きいというデメリットを有するが、本実施形態に係る金属層の材料として用いることができる。透明基板40や透明樹脂層に対する導電層の密着性を得るために、銅や銀、あるいはアルミニウムに、マグネシウム、カルシウム、チタン、モリブデン、インジウム、錫、亜鉛、ネオジウム、ニッケル、アルミニウム、アンチモンから構成される群より選択される1以上の金属元素が添加された合金を採用することが好ましい。
 第1タッチセンシング配線1及び第2タッチセンシング配線2の各々を構成する第1導電層15及び第2導電層35に用いられる金属層としては、銀に対してカルシウムが1.5at%添加された銀合金を用いることができる。第1導電層15及び第2導電層35のいずれにおいても、酸化インジウムと酸化亜鉛と酸化錫を含む複合酸化物層によって上記銀合金層が挟持された3層構造を用いることができる。
 導電性金属酸化物層で挟持された3層の積層構造において、例えば、銅や銀に添加されたマグネシムやカルシウムは熱処理時に選択的に酸化され、導電性金属酸化物と金属層との界面に析出し易い。あるいは、酸化により銅合金や銀合金の表面や断面に酸化マグネシウムや酸化カルシウムが析出し易い。こうした選択的な酸化や析出は、銅や銀のマイグレーションを抑制し、結果として、上記3層積層構造の信頼性を向上できる。金属元素を金属層20に添加する量は、4at%以下であれば、銅合金や銀合金の抵抗値を大きく上げることがないので好ましい。銅合金や銀合金、及び導電性金属酸化物の成膜方法としては、例えば、スパッタリング等の真空成膜法を用いることができる。
 金属層20として、銅合金薄膜、銀合金薄膜、或いはアルミニウム合金の薄膜を採用する場合、膜厚を100nm以上或いは150nm以上とすると、可視光をほとんど透過しなくなる。したがって、本実施形態に係る金属層20は、例えば、100nm~300nmの膜厚を有していれば、十分な遮光性を得ることができる。金属層20の膜厚は、300nmを超えてもよい。なお、後述するように、上記導電層の材料は、後述するアレイ基板に設けられる配線や電極にも適用することができる。また、本実施形態においては、アクティブ素子と電気的に連携する配線の構造として、例えば、ゲート電極、ゲート配線、コモン電極、コモン配線(後述)の構造として、導電性金属酸化物層によって金属層が挟持された積層構造を採用することができる。
 金属層20が銅層や銅合金層、あるいは銀層や銀合金である場合、上述した導電性金属酸化物層は、酸化インジウム、酸化亜鉛、酸化アンチモン、酸化ガリウム、酸化ビスマス及び酸化錫から選択される2種以上の金属酸化物を含む複合酸化物であることが望ましい。銅層や銅合金層、あるいは銀層や銀合金は、カラーフィルタを構成する透明樹脂層やガラス基板(透明基板)に対する密着性が低い。このため、銅層や銅合金層、あるいは銀層や銀合金銅層をこのまま表示装置基板に適用した場合、実用的な表示装置基板を実現することは難しい。しかしながら、上述した複合酸化物は、カラーフィルタ(複数色の着色パターン)やブラックマトリクスBM(黒色層)、及びガラス基板(透明基板)等に対する密着性を十分に有しており、かつ、銅層や銅合金層に対する密着性も十分である。このため、複合酸化物を用いて銅合金層或いは銀合金層を表示装置基板に適用した場合、実用的な表示装置基板を実現することが可能となる。
 また、薄膜トランジスタを構成するゲート電極とゲート配線に用いられる金属層20としては、銀に対してカルシウムが例えば1.5at%添加された銀合金を用いることができる。酸化インジウムと酸化亜鉛と酸化錫を含む複合酸化物層によって上記銀合金層が挟持された3層構造を用いることができる。
 銅、銅合金、銀、銀合金、或いはこれらの酸化物、窒化物は、ガラス等の透明基板やブラックマトリクス等に対する十分な密着性を一般的に有していない。そのため、導電性金属酸化物層を設けない場合、タッチセンシング配線とガラス等の透明基板との界面、或いは、タッチセンシング配線と黒色層の界面で剥がれが生じる可能性がある。細い配線パターンを有する第1タッチセンシング配線1及び第2タッチセンシング配線2として銅或いは銅合金を用いる場合、金属層(銅或いは銅合金)の下地層として導電性金属酸化物層が形成されていない表示装置基板(対向基板)においては、剥がれによる不良以外にも、表示装置基板の製造工程の途中でタッチセンシング配線に静電破壊による不良が生じる場合があり、実用的ではない。このような第1タッチセンシング配線1及び第2タッチセンシング配線2における静電破壊は、カラーフィルタを透明基板上に積層するといった後工程、表示装置基板とアレイ基板とを貼り合わせる工程、又は洗浄工程等によって配線パターンに静電気が蓄積され、静電破壊によりパターン欠け、断線等を生じる現象である。
 銅や銅合金あるいは銀や銀合金は導電率が高く、配線材料として好ましい。しかしながら、銅合金の表面には、導電性を有しない銅酸化物が経時的に形成され、電気的なコンタクトが困難となることがある。銀や銀合金は、硫化物や酸化物を形成し易い。その一方、酸化インジウム、酸化亜鉛、酸化アンチモン、酸化錫等の複合酸化物層で銅合金層や銀合金層を覆うことで、安定したオーミックコンタクトを実現することができ、このような複合酸化物層を用いる場合では後述する第3実施形態での、トランスファ等の電気的実装を容易に行うことができる。
 本発明の実施形態に適用可能な第1導電性金属酸化物層21、金属層20、及び第2導電性金属酸化物層22で構成される層構造としては、以下のような変形例が挙げられる。例えば、中心基材として酸化インジウムを含有するITO(Indium Tin Oxide)やIZTO(Indium Zinc Tin Oxide、Zは酸化亜鉛)において酸素が不足した状態で、例えば、銅合金層など金属層の上に導電性金属酸化物層を成膜することによって得られる層構造、或いは、酸化モリブデン、酸化タングステン、酸化ニッケルと酸化銅の混合酸化物、酸化チタン、等をアルミニウム合金や銅合金など金属層の上にこれら金属酸化物を積層することによって得られる層構造等が挙げられる。導電性金属酸化物層で金属層を挟持する3層構造は、スパッタ装置等の真空成膜装置で、連続成膜できるというメリットがある。
 例えば、銀合金層と導電性金属酸化物層とを一括エッチングする観点から、銀合金を挟持する導電性金属酸化物層には、酸化亜鉛や酸化ガリウムを含む複合酸化物を用いることができる。このような銀合金層と導電性金属酸化物層との積層構造は、周知のフォトリソグラフィの手法にて、1液のエッチャントにて1回のエッチングでパターン形成できる。例えば、後述する有機ELの光反射性の画素電極として、酸化インジウムと酸化ガリウムと酸化アンチモンの複合酸化物を導電性金属酸化物層として適用できる。酸化インジウムと酸化ガリウムと酸化アンチモンの複合酸化物は仕事関数が高い。有機EL表示装置の陽極として、酸化インジウムと酸化ガリウムと酸化アンチモンの複合酸化物と銀合金層との積層構造は、画素電極に好適である。
 第1導電性金属酸化物層21及び第2導電性金属酸化物層22は、銅や銀に対するバリア性を持つ。導電性金属酸化物によって銅配線や銀配線が挟持された構造においては、銅や銀のマイグレーション等によるアクティブ素子の劣化を抑制することができ、アクティブ素子向けの高導電性配線として好ましい。
(黒色層)
 第1黒色層16及び第2黒色層36は、表示装置DSP1のブラックマトリクスとして機能する。黒色層は、例えば、黒色の色材を分散させた着色樹脂で構成されている。銅の酸化物や銅合金の酸化物は、十分な黒色や低い反射率を得にくい。例えば、黒色層を金属酸化物で形成する場合、おおよそ10%から30%の可視域の光反射率であり、かつ、可視域においてフラットな反射率を得にくく着色して見える。本実施形態に係る黒色層とガラス等の基板や、透明樹脂層との間の界面における可視光の反射率は略3%以下に抑えられ、高い視認性が得られる。前記透明樹脂は、表示装置への保護ガラス貼り付けのための接着層を含む。
 黒色の色材としては、カーボン、カーボンナノチューブ、カーボンナノホーン、カーボンナノブラシ、或いは、複数の有機顔料の混合物が適用可能である。例えば、黒色の色材全体の量に対して51質量%以上の割合で、即ち、主な色材としてカーボンを用いる。反射色を調整するため、青もしくは赤等の有機顔料を黒色の色材に添加して用いることができる。例えば、出発材料である感光性黒色塗布液に含まれるカーボンの濃度を調整する(カーボン濃度を下げる)ことにより、フォトリソグラフィ工程での黒色層の再現性を向上させることができる。
 表示装置DSP1の製造装置である大型露光装置を用いた場合であっても、例えば、1~9μmの幅(細線)を有するパターンを有する黒色層を形成することができる(パターニング)。なお、本実施形態におけるカーボン濃度の範囲は、樹脂や硬化剤と顔料とを含めた全体の固形分に対して、4以上50以下の質量%の範囲内に設定している。ここで、カーボン量として、カーボン濃度が50質量%を超えてもよいが、全体の固形分に対してカーボン濃度が50質量%を超えると塗膜適性が低下する傾向がある。また、カーボン濃度を4質量%未満に設定した場合、十分な黒色を得ることができず、黒色層下に位置する下地の金属層で生じる反射光が大きく視認され、視認性を低下させることがある。
 後工程であるフォトリソグラフィにおいて露光処理を行う場合、露光対象の基板と、マスクとの位置合わせ(アライメント)が行われる。この時、アライメントを優先し、例えば、透過測定による黒色層の光学濃度を2以下とすることができる。カーボン以外に、黒色の色調整として複数の有機顔料の混合物を用いて黒色層を形成してもよい。ガラスや透明樹脂等の基材の屈折率(約1.5)を考慮し、黒色層とそれら基材との間の界面における反射率が3%以下となるように、黒色層の反射率が設定される。この場合、黒色色材の含有量、種類、色材に用いられる樹脂、膜厚を調整することが望ましい。これらの条件を最適化することで、屈折率がおよそ1.5であるガラス等の基材と黒色層との間の界面における反射率を、可視光の波長領域内で3%以下にすることができ、低反射率を実現することができる。バックライトユニットから出射された光に起因する反射光が再び反射することを防止する必要性を配慮して、或いは、観察者Pの視認性の向上を配慮して、黒色層の反射率は、3%以下とすることが望ましい。
 なお、通常、カラーフィルタに用いられるアクリル樹脂、また、液晶材料の屈折率は、おおよそ1.5以上1.7以下の範囲である。
 黒色層は、導電層に接触する片側(観察者Pに近い面)に配設するだけでなく、液晶層300に接する面に近い位置に形成してもよい。
 換言すれば、本実施形態に係るタッチセンシング配線は、「黒色層/導電性金属酸化物層/銀合金層/導電性金属酸化物層/黒色層」の5層構造を有してもよい。ここで、銀合金層は、銀、銅、銅合金に置き換えることができる。
 アレイ基板が備えるアクティブ素子が、可視光域に感度を持っている場合、導電層の裏面からの反射光がアクティブ素子に入射し、アクティブ素子の誤動作を招くことがある。黒色層を表示機能層に近い反対側(導電層の裏面)、共に配設することで反射光の入射によるアクティブ素子の誤動作を防ぐことができる。
(液晶層300)
 第1実施形態において、本発明の表示機能層は液晶層300であり、正の誘電率異方性を有する液晶分子を含む。液晶分子の初期配向は、対向基板100或いはアレイ基板200の基板面に対して水平である。液晶層300を用いた第1実施形態に係る液晶駆動においては、平面視、液晶層を横断するように駆動電圧が液晶分子に印加されるため、FFS(Fringe Field Switching)と呼称される横電界によって液晶が駆動する。液晶層300の液晶分子の誘電率異方性は正であっても負であってもよい。液晶層300の液晶分子が負の誘電率異方性である場合、例えば、指等のポインタが対向基板に接触或いは近接した際のポインタの電荷の影響を受けにくい。このため、負の液晶であることが望ましい。換言すれば、液晶分子が負の誘電率異方性である場合、ポインタが対向基板に近接する際の電荷の影響により、液晶層の厚み方向に液晶分子が立ち上がって光漏れが生じることが少ない。
(アレイ基板200の構造)
 次に、表示装置DSP1を構成するアレイ基板200の構造について説明する。図9は、本発明の第1実施形態に係る表示装置DSP1が備えるアレイ基板200を部分的に示す平面図である。図10は、本発明の第1実施形態に係る表示装置DSP1が備えるアレイ基板200を部分的に示す断面図であり、図9に示すC-C’線に沿う断面図である。図10は、トップゲート構造を有する薄膜トランジスタ(TFT)の一例を示している。なお、図10においては、図9のC-C’線に沿う断面では図示されない、画素電極29、コンタクトホールCH、画素電極29の上方に位置するコモン電極17が破線で示されている。なお、コンタクトホールCHは、図9に示すように第2絶縁層12上に形成された画素電極29とドレイン電極26とを導通させている。
 図2、図9、及び図10に示すように、アレイ基板200は、透明基板41(第2透明基板)と、透明基板41の表面を覆うように形成された第4絶縁層14と、第4絶縁層14上に形成された第1ソース配線31及び第2ソース配線32と、第1ソース配線31及び第2ソース配線32を覆うように第4絶縁層14上に形成された第3絶縁層13と、第3絶縁層13上に形成された第1ゲート配線10及び第2ゲート配線9、第3絶縁層13上に形成されたコモン配線30と、第1ゲート配線10、第2ゲート配線9、及びコモン配線30を覆うように第3絶縁層13上に形成された第2絶縁層12と、第2絶縁層12上に形成された画素電極29と、画素電極29を覆うように第2絶縁層12上に形成された第1絶縁層11と、第1絶縁層11上に形成されたコモン電極17を備えている。コモン配線30は、図9に示すスルーホール29s、コンタクトホール11H、12Hを通じて、コモン電極17と接続されている。
(アクティブ素子28)
 図10に示すように、アクティブ素子28は、チャネル層27と、チャネル層27の一端(第一端、図10におけるチャネル層27の左端)に接続されたドレイン電極26と、チャネル層27の他端(第二端、図10におけるチャネル層27の右端)に接続されたソース電極24と、第3絶縁層13を介してチャネル層27に対向配置されたゲート電極25とを備える。図10は、アクティブ素子28を構成するチャネル層27、ドレイン電極26、及びソース電極24が第4絶縁層14上に形成されている構造を示しているが、本発明はこのような構造に限定されない。第4絶縁層14を設けずに、透明基板41上にアクティブ素子28を直接形成してもよい。また。ボトムゲート構造の薄膜トランジスタを適用してもよい。
 第1ソース配線31及び第2ソース配線32には高い頻度で映像信号が供給され、第1ソース配線31及び第2ソース配線32からノイズが発生し易い。トップゲート構造においては、ノイズ発生源でもある第1ソース配線31及び第2ソース配線32を、前述したタッチセンシング配線から遠ざけることができるメリットがある。
 図10に示すソース電極24とドレイン電極26は、同じ工程において、同じ構成の導電層で形成される。第1実施形態では、ソース電極24とドレイン電極26の構造として、チタン/アルミニウム合金/チタンやモリブデン/アルミニウム合金/モリブデンなどの3層構成を採用している。ここで、アルミニウム合金は、アルミニウム-ネオジウムの合金である。
 ゲート電極25の下部に位置する第3絶縁層13は、ゲート電極25と同じ幅を有する絶縁層であってもよい。この場合、例えば、ゲート電極25をマスクとして用いたドライエッチングを行い、ゲート電極25の周囲の第3絶縁層13を除去する。これによって、ゲート電極25と同じ幅を有する絶縁層を形成することができる。ゲート電極25をマスクとして用いて絶縁層をドライエッチングにて加工する技術は、一般に自己整合と呼称される。
 酸化物半導体で形成されたチャネル層を備える薄膜トランジスタによる有機ELやLEDの駆動は、ポリシリコン半導体で形成されたチャネル層を備える薄膜トランジスタによる駆動より好ましい。
 例えば、IGZOと称される酸化物半導体は、スパッタリングなどの真空成膜で一括して形成される。酸化物半導体が成膜された後においては、TFT等のパターン形成後の熱処理も一括して行われる。このため、チャネル層に関わる電気的特性(例えば、Vth)のばらつきが極めて少ない。有機ELやLEDの駆動はその輝度のばらつきを抑えるため、前記薄膜トランジスタのVthのばらつきを小さい範囲に抑える必要がある。
 一方、ポリシリコン半導体で形成されたチャネル層を備える薄膜トランジスタにおいては、薄膜トランジスタの前駆体であるアモルファスシリコンを、トランジスタの個々にレーザーアニールを施すことが必要で、個々のレーザーアニールが薄膜トランジスタのVthのばらつきを招いてしまう。この観点で、有機ELやLEDを備えた表示装置に用いられる薄膜トランジスタは、酸化物半導体で形成されたチャネル層を備える薄膜トランジスタであることが好ましい。
 また、酸化物半導体で形成されたチャネル層を備える薄膜トランジスタはリーク電流が極めて少ないために、走査信号や映像信号の入力の後の安定性が高い。ポリシリコン半導体で形成されたチャネル層を備える薄膜トランジスタは、酸化物半導体のトランジスタと比較して2桁以上リーク電流が大きい。このリーク電流が少ないことは、高精度のタッチセンシングにつながり、好ましい。
 チャネル層27の材料としては、例えば、IGZOと称される酸化物半導体を用いることができる。チャネル層27を構成する酸化物半導体の材料としては、ガリウム、インジウム、亜鉛、錫、アルミニウム、ゲルマニウム、及びセリウムから構成される群より選ばれる1種以上を含有する金属酸化物と、少なくともアンチモン及びビスマスのうちいずれかを含有する金属酸化物とを含む材料を用いることができる。
 本実施形態では、酸化インジウム、酸化ガリウム、及び酸化亜鉛を含む酸化物半導体を用いている。酸化物半導体で形成されるチャネル層27の材料は、単結晶、多結晶、微結晶、微結晶とアモルファスとの混合体、或いは、アモルファスのいずれでもよい。酸化物半導体の膜厚としては、2nm~50nmの範囲内の膜厚とすることができる。チャネル層27は、ポリシリコン半導体で形成してもよい。
 更に、2つの薄膜トランジスタが積層された構造が採用されてもよい。この場合、下層に位置する薄膜トランジスタとして、ポリシリコン半導体で形成されたチャネル層を備える薄膜トランジスタを用いる。上層に位置する薄膜トランジスタとして、酸化物半導体で形成されたチャネル層を備える薄膜トランジスタを用いる。このような2つの薄膜トランジスタが積層された構造においては、平面視、マトリクス状に薄膜トランジスタが配置される。この構造においては、ポリシリコン半導体によって高い移動度が得られ、酸化物半導体によって低リーク電流を実現できる。即ち、ポリシリコン半導体のメリットと酸化物半導体のメリットの両方を共に活かすことができる。
 酸化物半導体もしくはポリシリコン半導体を、例えば、p/n接合をもつ相補型のトランジスタの構成に用いることができ、あるいは、n型接合のみを有する単チャネル型トランジスタの構成にて用いることができる。酸化物半導体の積層構造として、例えば、n型酸化物半導体と、このn型の酸化物半導体と電気的特性が異なるn型酸化物半導体とが積層された積層構造が採用されてもよい。積層されるn型酸化物半導体は、複数層で構成されてもよい。積層されるn型酸化物半導体においては、下地のn型半導体のバンドギャップを、上層に位置するn型半導体のバンドギャップとは異ならせることができる。
 チャネル層の上面が、例えば、異なる酸化物半導体で覆われた構成を採用してもよい。
 あるいは、例えば、結晶性のn型酸化物半導体上に、微結晶の(非晶質に近い)酸化物半導体が積層された積層構造を採用してもよい。ここで微結晶とは、例えば、スパッタリング装置にて成膜された非晶質の酸化物半導体を、180℃以上450℃以下の範囲で熱処理した微結晶状の酸化物半導体膜を言う。あるいは、成膜時の基板温度を200℃前後に設定した状態で成膜された微結晶状の酸化物半導体膜を言う。微結晶状の酸化物半導体膜は、TEM等の観察方法により、少なくとも1nmから3nm前後、或いは、3nmより大きい結晶粒を観察することができる酸化物半導体膜である。
 酸化物半導体は、非晶質から結晶質に変化させることで、キャリア移動度の改善や信頼性の向上を実現することができる。酸化インジウムや酸化ガリウムの酸化物としての融点は高い。酸化アンチモンや酸化ビスマスの融点はいずれも1000℃以下で、酸化物の融点が低い。例えば、酸化インジウムと酸化ガリウムと酸化アンチモンの3元系複合酸化物を採用した場合、融点の低い酸化アンチモンの効果で、この複合酸化物の結晶化温度を低くすることができる。換言すれば、非晶質状態から、微結晶状態などに結晶化させ易い酸化物半導体を提供できる。酸化物半導体は、その結晶性を高めることで、キャリア移動度を向上させ得る。
 酸化物半導体としては、後工程のウエットエッチングにおいて易溶性が求められることから、酸化亜鉛、酸化ガリウムあるいは酸化アンチモンリッチな複合酸化物を用いることができる。例えば、スパッタリングに用いるターゲットの金属元素の原子比としては、In:Ga:Zn=1:2:2、In:Ga:Zn=1:3:3、In:Ga:Zn=2:1:1、或いはIn:Ga:Zn=1:1:1を例示することができる。ここでZnは、例えば、Sb(アンチモン)やBi(ビスマス)に置き換えることができる。
 例えば、In:Sb=1:1の原子比で、酸化インジウム及び酸化アンチモンの2元系複合酸化物としてもよい。例えば、In:Bi=1:1の原子比で、酸化インジウム及び酸化ビスマスの2元系複合酸化物としてもよい。
 また、上記原子比においては、Inの含有量を更に増やしてもよい。
 なお、複合酸化物の組成は、上記組成に限定されない。
 例えば、上記の複合酸化物にさらにSnを添加してもよい。この場合、In、Ga、Sb、及びSnOを含む4元系の組成を含む複合酸化物が得られ、あるいは、In、Sb、及びSnOを含む3元系の組成を含む複合酸化物が得られ、キャリア濃度を調整することが可能となる。In、Ga、Sb、Biと価数の異なるSnOは、キャリアドーパントの役割を果たす。
 例えば、酸化インジウム、酸化ガリウム、及び酸化アンチモンを含む3元系金属酸化物に酸化錫を加えて得られたターゲットを用いてスパッタリング成膜を行う。これにより、キャリア濃度が向上した複合酸化物を成膜することができる。同様に、例えば、酸化インジウム、酸化ガリウム、酸化ビスマスの3元系金属酸化物に酸化錫を加えて得られたターゲットを用いてスパッタリング成膜を行うことで、キャリア濃度が向上した複合酸化物を成膜することができる。
 ただし、キャリア濃度が高くなりすぎると、複合酸化物で形成されたチャネル層を有するトランジスタの閾値Vthがマイナスとなり易い(ノーマリーオンとなり易い)。このため、キャリア濃度が1×1018cm-3未満となるよう酸化錫添加量を調整することが望ましい。また、キャリア濃度やキャリア移動度については、上記複合酸化物の成膜条件(導入ガスに用いられる酸素ガス、基板温度、成膜レート等)、成膜後のアニール条件、及び複合酸化物の組成等を調整することで、所望のキャリア濃度やキャリア移動度を得ることができる。例えば、酸化インジウムの組成比を高くすることは、キャリア移動度を向上し易い。例えば、250℃から700℃の温度条件で熱処理を行うアニーリング工程によって、上記複合酸化物の結晶化を進め、複合酸化物のキャリア移動度を向上させることができる。
 更に、同一画素にn型酸化物半導体で形成されたチャネル層を有する薄膜トランジスタ(アクティブ素子)と、n型シリコン半導体で形成されたチャネル層を有する薄膜トランジスタ(アクティブ素子)を1つずつ配設し、薄膜トランジスタの各々のチャネル層の特性を活かすように、LEDや有機EL(OLED)といった発光層を駆動することもできる。表示機能層として液晶層や有機EL(OLED)を用いる場合、発光層に電圧(電流)を印加する駆動トランジスタとしてn型のポリシリコン薄膜トランジスタを採用し、このポリシリンコン薄膜トランジスタに信号を送るスイッチングトランジスタとしてn型酸化物半導体の薄膜トランジスタを採用することができる。
 ドレイン電極26及びソース電極24(ソース配線31、32)は、同じ構造を採用することができる。例えば、多層の導電層をドレイン電極26及びソース電極24に用いることができる。例えば、アルミニウム、銅、或いはこれらの合金層を、モリブデン、チタン、タンタル、タングステン、導電性金属酸化物層等で挟持する電極構造を採用することができる。第4絶縁層14上に、先にドレイン電極26及びソース電極24を形成し、これら2つの電極に積層するようにチャネル層27を形成してもよい。トランジスタの構造は、ダブルゲート構造等のマルチゲート構造であってよい。あるいは、アレイ基板内におけるトランジスタの構造として、チャネル層の上下に電極が配置されたデュアルゲート構造であってもよい。
 半導体層あるいはチャネル層は、その厚み方向に移動度や電子濃度を調整してもよい。半導体層あるいはチャネル層は、異なる酸化物半導体が積層された積層構造であってもよい。ソース電極とドレイン電極の最小の間隔によって決定されるトランジスタのチャネル長は、10nm以上10μm以下、例えば、20nmから0.5μmとすることができる。
 第3絶縁層13は、ゲート絶縁層として機能する。このような絶縁層材料としては、ハフニウムシリケート(HfSiOx)、酸化シリコン、酸化アルミニウム、窒化シリコン、酸化窒化シリコン、酸化窒化アルミニウム、酸化ジルコニウム、酸化ガリウム、酸化亜鉛、酸化ハフニウム、酸化セリウム、酸化ランタン、あるいはこれら材料を混合して得られた絶縁層等が採用される。酸化セリウムは、誘電率が高く、かつ、セリウムと酸素原子の結びつきが強固である。このため、ゲート絶縁層を、酸化セリウムを含む複合酸化物とすることは好ましい。複合酸化物を構成する酸化物の1つとして酸化セリウムを採用した場合にも、非晶質状態であっても高い誘電率を保持し易い。酸化セリウムは、酸化力を備えている。酸化セリウムは酸素の貯蔵と放出を行うことが可能である。このため、酸化物半導体と酸化セリウムとが接触する構造で、酸化セリウムから酸化物半導体へ酸素を供給し、酸化物半導体の酸素欠損を避けることができ、安定した酸化物半導体(チャネル層)を実現することができる。窒化物をゲート絶縁層に用いる構成では、上記のような作用が発現しない。また、ゲート絶縁層の材料は、セリウムシリケート(CeSiOx)に代表されるランタノイド金属シリケートを含んでもよい。あるいは、ランタンセリウム複合酸化物、さらにはランタンセリウムシリケートを含んでもよい。
 第3絶縁層13の構造としては、単層膜、混合膜、或いは多層膜であってもよい。混合膜や多層膜の場合、上記絶縁層材料から選択された材料によって混合膜や多層膜を形成することができる。第3絶縁層13の膜厚は、例えば、2nm以上300nm以下の範囲内から選択可能な膜厚である。チャネル層27を酸化物半導体で形成する場合、酸素が多く含まれる状態(成膜雰囲気)で、チャネル層27と接触する第3絶縁層13の界面を形成することができる。
 薄膜トランジスタの製造工程において、トップゲート構造を有する薄膜トランジスタでは、酸化物半導体を形成した後、酸素を含む導入ガスの中で、酸化セリウムを含むゲート絶縁層を形成することができる。このとき、ゲート絶縁層の下に位置する酸化物半導体の表面を酸化させることができ、かつ、その表面の酸化度合いを調整することができる。ボトムゲート構造を有する薄膜トランジスタでは、ゲート絶縁層の形成工程が酸化物半導体の工程より先に行われるため、酸化物半導体の表面の酸化度合いを調整することが難しい。トップゲート構造を有する薄膜トランジスタにおいては、酸化物半導体の表面の酸化をボトムゲート構造の場合よりも促進させることができ、酸化物半導体の酸素欠損が生じにくい。
 第1絶縁層11、第2絶縁層12、第3絶縁層13、及び酸化物半導体の下地の絶縁層(第4絶縁層14)を含む複数の絶縁層は、無機絶縁材料または有機絶縁材料を用いて形成することができる。絶縁層の材料としては、酸化シリコン、酸化窒化シリコン、酸化アルミニウムを用いることができ、絶縁層の構造としては、上記材料を含む単層や複数層を用いることができる。異なる絶縁材料で形成された複数の層が積層された構成であってもよい。絶縁層の上面を平坦化する効果を得るため、アクリル樹脂、ポリイミド樹脂、ベンゾシクロブテン樹脂、ポリアミド樹脂等を一部の絶縁層に用いてもよい。低誘電率材料(low-k材料)を用いることもできる。
 チャネル層27の上には、第3絶縁層13を介して、ゲート電極25が配設される。ゲート電極25(ゲート配線10)は、コモン電極17やコモン配線30と同じ材料を用いて、同じ層構成を有するように、同じ工程で形成することができる。また、ゲート電極25は、上述したドレイン電極26及びソース電極24と同じ材料を用いて、同じ層構造を有するように形成してもよい。ゲート電極25の構造としては、銅層或いは銅合金層が導電性金属酸化物で挟持された構成、もしくは銀或いは銀合金が導電性金属酸化物で挟持された構成を採用することができる。
 ゲート電極25の端部に露出する金属層20の表面を、インジウムを含む複合酸化物で覆うこともできる。あるいは、窒化珪素や窒化モリブデン等の窒化物でゲート電極25の端部(断面)を含むようゲート電極25全体を覆ってもよい。あるいは、上述したゲート絶縁層と同じ組成を有する絶縁膜を50nmより厚い膜厚で積層してもよい。
 ゲート電極25の形成方法として、ゲート電極25の形成に先立って、アクティブ素子28のチャネル層27の直上に位置する第3絶縁層13のみにドライエッチング等を施し、第3絶縁層13の厚さを薄くすることもできる。
 第3絶縁層13と接触するゲート電極25の界面に、電気的性質の異なる酸化物半導体を更に挿入してもよい。あるいは、第3絶縁層13を酸化セリウムや酸化ガリウムを含む絶縁性の金属酸化物層で形成してもよい。
 具体的に、ソース配線31に供給される映像信号に起因するノイズがコモン配線30に乗ることを抑制するために、第3絶縁層13を厚くする必要がある。その一方、第3絶縁層13は、ゲート電極25とチャネル層27との間に位置するゲート絶縁膜としての機能を有しており、アクティブ素子28のスイッチング特性を考慮した適切な膜厚が要求される。このように相反する2つの機能を実現するために、コモン配線30とソース配線31との間における第3絶縁層13の膜厚を大きく維持したまま、チャネル層27の直上に位置する第3絶縁層13の厚さを薄くすることで、ソース配線に供給される映像信号に起因するノイズがコモン配線30に乗ることを抑制することができるとともに、アクティブ素子28において所望のスイッチング特性を実現することができる。
 また、チャネル層27の下部には、遮光膜を形成してもよい。遮光膜の材料としては、モリブデン、タングステン、チタン、クロム等の高融点金属を用いることができる。
 ゲート配線10は、アクティブ素子28と電気的に連携されている。具体的に、ゲート配線10に接続されているゲート電極25とアクティブ素子28のチャネル層27とは、第3絶縁層13を介して対向している。映像信号制御部121からゲート電極25に供給される走査信号に応じてアクティブ素子28においてスイッチング駆動が行われる。
 ソース配線31、32には、映像信号制御部121から映像信号としての電圧が付与される。ソース配線31、32には、例えば、±2.5Vから±5Vの正あるいは負の電圧の映像信号が付与される。コモン電極17に印加される電圧としては、例えば、フレーム反転毎に変化する±2.5Vの範囲とすることができる。また、コモン電極17の電位を、液晶駆動の閾値Vth以下から0Vの範囲の定電位としてもよい。このコモン電極を後述する定電位駆動に適用する場合、チャネル層27に酸化物半導体を用いることが望ましい。酸化物半導体で構成されたチャネル層の電気的な耐電圧は高く、酸化物半導体を用いたトランジスタにより、±5Vのレンジを越えた高い駆動電圧を電極部に印加し、液晶の応答を高速化することが可能である。液晶駆動には、フレーム反転駆動、カラム反転(垂直ライン)反転駆動、水平ライン反転駆動、ドット反転駆動など種々の駆動方法を適用することができる。
 ゲート電極25の構成の一部に銅合金を採用する場合、銅に対し0.1at%以上4at%以下の範囲内の金属元素或いは半金属元素を添加することができる。このように元素を銅に添加することによって、銅のマイグレーションを抑制することができるという効果が得られる。特に、銅層の結晶(グレイン)内で銅原子の一部と置換することによって銅の格子位置に配置できる元素と、銅層の結晶粒界に析出して銅のグレイン近傍の銅原子の動きを抑制する元素とを共に銅に添加することが好ましい。或いは、銅原子の動きを抑制するためには銅原子より重い(原子量の大きな)元素を銅に添加することが好ましい。加えて、銅に対し0.1at%から4at%の範囲内の添加量で、銅の導電率が低下しにくい添加元素を選択することが好ましい。更に、スパッタリング等の真空成膜を考慮すると、スパッタリング等の成膜レートが銅に近い元素が好ましい。上述したように元素を銅に添加する技術は、仮に、銅を銀やアルミニウムに置き換えた場合にも適用することができる。換言すれば、銅合金に代えて、銀合金やアルミニウム合金を用いてもよい。
 銅層の結晶(グレイン)内で銅原子の一部と置き換わって銅の格子位置に配置できる元素を銅に添加することは、言い換えると、常温付近で銅と固溶体を形成する金属や半金属を銅に添加することである。銅と固溶体を形成し易い金属は、マンガン、ニッケル、亜鉛、パラジウム、ガリウム、金(Au)等が挙げられる。銅層の結晶粒界に析出して銅のグレイン近傍の銅原子の動きを抑制する元素を銅に添加することは、言い換えると、常温付近で銅と固溶体を形成しない金属や半金属を添加することである。銅と固溶体を形成しない或いは銅と固溶体を形成しにくい金属や半金属には種々の材料が挙げられる。例えば、チタン、ジルコニウム、モリブデン、タングステン等の高融点金属、シリコン、ゲルマニウム、アンチモン、ビスマス等の半金属と称される元素等を挙げることができる。上記合金元素は、銀合金に添加される添加元素として用いることができる。
 銅や銀は、マイグレーションの観点で信頼性面に問題がある。上記の金属や半金属を銅に添加することで信頼性面を補うことができる。銅や銀に対し、上記金属や半金属を0.1at%以上添加することでマイグレーションを抑制する効果が得られる。しかしながら、銅あるいは銀に対し、4at%を超える含有量で上記金属や半金属を添加する場合では、銅や銀の導電率の悪化が著しくなり、銅合金或いは銀合金を選定するメリットが得られない。
 第1実施形態及び後述する他の実施形態においても、表示装置の断面視、表示機能層を駆動するコモン電極17を、画素電極の配設位置より上に配設することができる。換言すれば、それら表示装置の断面視においてコモン電極17の下部にアクティブ素子やTFTの配線を配置することができる。即ち、コモン電極17は、画素電極29よりも、対向基板100に近い位置に設けられている。このような構成を、以下、画素電極下部構成と呼ぶ。
 画素電極下部構成では、抵抗を介してコモン電極17を接地することができ、例えば、コモン電位を0V(ボルト)の定電位にできる。以下に説明するように、表示機能層が液晶層である場合、画素電極下部構成には大きなメリットがある。
(画素電極下部構成での液晶層の駆動)
 画素電極下部構成では、コモン電位が実質、変動しないので、映像信号が与えられるソース配線の電位を変動させる。表示機能層が液晶層である場合、ソース配線にかかる電圧を正と負の極性に切り替えることになる。なお、本実施形態に関わるソース配線は、極性が負である第1ソース配線31と、極性が正である第2ソース配線32とに区別される。
 図11及び図12を参照し、ゲート配線9、10及びソース配線31、32による反転駆動、具体的に、カラム反転駆動、また、ドット反転駆動による液晶駆動方法を説明する。図11は、本発明の第1実施形態に係る表示装置DSP1を部分的に示す回路図であり、カラム反転駆動により液晶表示装置を駆動させた場合に、各画素における液晶駆動電圧の状況を示す説明図である。図12は、本発明の第1実施形態に係る表示装置DSP1を部分的に示す回路図であり、ドット反転駆動により液晶表示装置を駆動させた場合に、各画素における液晶駆動電圧の状況を示す説明図である。
 本実施形態では、上記のように、第2ソース配線32の電位が正の極性を有し、第1ソース配線31が負の極性を有しており、各画素において画素反転駆動が行われる。反転駆動の際に選択されるゲート配線は、表示画面の全体でゲート配線を選択するフレーム反転でもよく、全ラインのうちの半分の本数のゲート配線を選択して反転駆動を行ってもよいし、さらに、水平ラインを順次に選択する反転駆動や水平ラインを間欠的に選択して反転駆動を行ってもよい。
 図11は、例えば、複数のゲート配線(複数ライン)のうち、偶数ラインのゲート配線を選択し、選択されたゲート配線がアクティブ素子にゲート信号を送った場合の画素毎の極性を示している。ここで、第2ソース配線32の極性は正であり、第1ソース配線31の極性は負である。この場合、垂直方向(Y方向)に同じ極性を有する画素が並ぶ。例えば、次のフレームで奇数ラインのゲート配線を選択し、選択されたゲート配線がアクティブ素子にゲート信号を送った場合、図11に示す極性とは反対の極性を有する画素が、同じく、縦方向に並び、垂直ライン反転駆動が行われる。フレーム毎に垂直ラインを反転する場合では、ノイズの発生頻度がより低くなり、タッチセンシングへの影響が少なくなる。
 図11では、第1ソース配線31及び第2ソース配線32と第1ゲート配線10は第1アクティブ素子28aに電気的に接続されており、第1ソース配線31及び第2ソース配線32と第2ゲート配線9は第2アクティブ素子28bに電気的に接続されている。第1ソース配線31は負の極性であり、第2ソース配線32は正の極性となっているため、第1ゲート配線10或いは第2ゲート配線9を選択することで、画素の極性が定まる。
 図12は、例えば、複数のゲート配線(複数ライン)のうち、2本おきに、かつ、2本一組のゲート配線9、10を選択し、選択されたゲート配線9、10がアクティブ素子にゲート信号を送った場合の画素毎の極性を示している。ここで、第2ソース配線32の極性は正であり、第1ソース配線31の極性は負である。この場合、垂直方向及び水平方向のいずれの方向においても、正と負の極性を有する画素が交互に並ぶ。次のフレームで、異なる2本一組のゲート配線を選択し、選択されたゲート配線9、10がアクティブ素子にゲート信号を送ることで、図12に示す極性とは反対の極性を有する画素が、同じく、交互に並び、ドット反転駆動が行われる。図11及び図12に示す画素おける反転駆動は、以下の実施形態でも同様に行うことができる。なお、第1実施形態及び後述する第2実施形態において、コモン電圧を正負に反転させる通常のフレーム反転駆動を実施してもよい。
 本実施形態における正の電圧は、例えば、0Vから+5Vとし、負の電圧は0Vから-5Vとした。なお、チャネル層27が酸化物半導体(例えば、IGZOと呼称されるインジウム、ガリウム、亜鉛の複合酸化物半導体)で形成されている場合、このような酸化物半導体においては電気的な耐圧が高いため、上記より高い電圧を用いることができる。
 なお、本発明は、正の電圧及び負の電圧を上記の電圧に限定しない。例えば、正の電圧を0Vから+2.5Vとし、負の電圧を0Vから-2.5Vとしてもよい。即ち、正の電圧の上限を+2.5Vに設定し、負の電圧の下限を-2.5Vに設定してもよい。この場合、消費電力を低減する効果、ノイズの発生を低減する効果、或いは液晶表示の焼きつきを抑制する効果が得られる。
 例えば、チャネル層27としてメモリ性の良好なIGZOを用いたトランジスタ(アクティブ素子)を採用すると、コモン電極17を一定の電圧(定電位)とするときの、定電圧駆動に必要な補助容量(ストーレッジキャパシタ)を省くことも可能である。チャネル層27としてIGZOを用いたトランジスタは、シリコン半導体を用いたトランジスタと異なり、リーク電流が極めて小さいので、例えば、先行技術文献の特許文献4に記載されているようなラッチ部を含む転送回路を省くことができ、単純な配線構造とすることができる。また、IGZO等の酸化物半導体をチャネル層として用いたトランジスタを具備するアレイ基板200を用いた表示装置DSP1においては、トランジスタのリーク電流が小さいため、画素電極29に液晶駆動電圧を印加した後に電圧を保持することができ、液晶層300の透過率を維持することができる。
 IGZO等の酸化物半導体をチャネル層27に用いた場合、アクティブ素子28での電子移動度が高く、例えば、2msec(ミリ秒)以下の短時間で、必要な映像信号に対応する駆動電圧を画素電極29に印加することができる。例えば、倍速駆動(1秒間の表示コマ数が120フレームである場合)の1フレームは約8.3msecであり、例えば、6msecをタッチセンシングに割り当てることができる。
 透明電極パターンを有するコモン電極17が、定電位であるときには、液晶駆動とタッチ電極駆動とを時分割駆動しなくてもよい。液晶の駆動周波数とタッチ金属配線の駆動周波数とは、異ならせることができる。例えば、IGZO等の酸化物半導体をチャネル層27に用いたアクティブ素子28(第1アクティブ素子28a、第2アクティブ素子28bを含む)においては、画素電極29に液晶駆動電圧を印加した後に透過率保持(或いは電圧保持)が必要なポリシリコン半導体を用いたトランジスタとは異なり、透過率を保持するために映像をリフレッシュ(再度の映像信号の書き込み)する必要がない。従って、IGZO等の酸化物半導体を採用した表示装置DSP1においては、低消費電力駆動が可能となる。
 IGZO等の酸化物半導体は、電気的な耐圧が高いので、高めの電圧で液晶を高速駆動することができ、3D表示が可能な3次元映像表示に用いることが可能となる。IGZO等の酸化物半導体をチャネル層27に用いるアクティブ素子28は、上述のようにメモリ性が高いため、例えば、液晶駆動周波数を0.1Hz以上30Hz以下程度の低周波数としてもフリッカー(表示のちらつき)を生じにくいメリットがある。IGZOをチャネル層とするアクティブ素子28を用いて、低周波数によるドット反転駆動と、かつ、ドット反転駆動とは異なる周波数によるタッチ駆動とを共に行うことで、低消費電力で、高画質の映像表示と高精度のタッチセンシングをともに得ることができる。
 また、酸化物半導体をチャネル層27に用いるアクティブ素子28は、前述のようにリーク電流が少ないため、画素電極29に印加した駆動電圧を長い時間保持することができる。アクティブ素子28のソース配線31、32やゲート配線9、10等をアルミニウム配線より配線抵抗の小さい銅配線で形成し、さらに、アクティブ素子として短時間で駆動できるIGZOを用いることで、タッチセンシングの走査を行うための期間を十分設けることが可能となる。即ち、IGZO等の酸化物半導体をアクティブ素子に適用することで液晶等の駆動時間を短くすることができ、表示画面全体の映像信号処理の中で、タッチセンシングに適用する時間に十分な余裕ができる。このことにより、発生する静電容量の変化を高精度で検出することができる。
 さらに、チャネル層27としてIGZO等の酸化物半導体を採用することで、ドット反転駆動やカラム反転駆動でのカップリングノイズの影響を略解消することができる。これは、酸化物半導体を用いたアクティブ素子28では、映像信号に対応する電圧を極めて短い時間(例えば、2msec)で画素電極29に印加することができ、また、その映像信号印加後の画素電圧を保持するメモリ性が高く、そのメモリ性を活用した保持期間に新たなノイズ発生はなく、タッチセンシングへの影響を軽減できる。
 酸化物半導体としては、インジウム、ガリウム、亜鉛、錫、アルミニウム、ゲルマニウム、アンチモン、ビスマス、セリウムのうちの2種以上の金属酸化物を含む酸化物半導体を採用することができる。
(第2実施形態)
 以下、図面を参照しながら本発明の第2実施形態について説明する。
 第2実施形態においては、第1実施形態と同一部材には同一符号を付して、その説明は省略または簡略化する。
 図13は、本発明の第2実施形態に係る表示装置DSP2を部分的に示す図であり、図16におけるD-D’線に沿う断面図である。
 図14は、本発明の第2実施形態に係る表示装置が備える液晶層506と、対向基板350の額縁部Fとを部分的に示す図であり、図16におけるA-A’線に沿う断面図である。
 図15は、本発明の第2実施形態に係る対向基板に設けられた第2タッチセンシング配線を示す図であって、図14における符号W2で示された部分を示す拡大断面図である。
 図16は、本発明の第2実施形態に係る表示装置が備える対向基板を示す図であって、観察者側から表示装置を見た平面図である。
 図13~図16においては、偏光板、位相差板、バックライトユニットの図示を省略している。
 図14に示すように、第1タッチセンシング配線1への導通は、例えば、フレキシブルプリント回路基板FPCで行う例として破線で示した。第1タッチセンシング配線1とフレキシブルプリント回路基板FPCとの接続は、例えば、異方性導電膜101を用いる。
 第2実施形態に係る表示装置DSP2が備える表示機能層は、垂直配向の液晶層506であり、VA(Vertical Alignment)と呼称される縦電界によって液晶駆動が行われる。
 また、本実施形態では、タッチセンシング制御部122は、タッチ信号として、第1タッチセンシング配線1と第2タッチセンシング配線2との交点における、第1タッチセンシング配線1と第2タッチセンシング配線2との間の静電容量C2の変化を検出する。
 第2実施形態の表示装置DSP2を構成する対向基板350は、第1面MFと、第1面MFとは反対側の第2面MSとを有する透明基板42を備える。第2面MSには、複数の第1タッチセンシング配線1が設けられている。第1面MFには、複数の第2タッチセンシング配線2が設けられている。複数の第2タッチセンシング配線2及び第1面MFは、カラーフィルタ60で覆われている。更に、カラーフィルタ60上には、第2透明樹脂層105が設けられ、第2透明樹脂層105上には、コモン電極50が設けられている。
 具体的に、図14においては、図6と同様の構成により、第1タッチセンシング配線1の一部と第2遮光導電パターンF22とで、遮光性の額縁部Fが構成されている。図14に示すように、額縁部Fの下部に位置するアレイ基板200の額縁部分200Fには、液晶駆動に関わる周辺回路80が形成されている。周辺回路80は、例えば、アレイ基板200のアクティブ素子を駆動するTFT、容量素子、抵抗素子等が、アレイ基板200の額縁部分200Fの表面に配設されている。図示を省略したが、第2遮光導電パターンF22は、大きな寄生容量を発生しないように、細分割化されている。第1タッチセンシング配線1の一部と第2遮光導電パターンF22の重なりによって形成された重畳部3を含む額縁部Fにて、タッチセンシングへの周辺回路80からのノイズの影響を少なくしている。導電性の額縁部Fは、表示装置DSP2の外部(手や指等)からの静電気ノイズの影響を少なくし、誤動作を防止している。
 第2実施形態は、上述したように縦電界の液晶駆動によって液晶層506を駆動する。図13及び図14に示すように、コモン電極50は、画素電極59の上方に配置されている。コモン電極50は、画素電極59よりも、対向基板350に近い位置に設けられている。即ち、コモン電極50及び画素電極59によって液晶層506が挟持されている。液晶層506のセルギャップ(厚み)は、スペーサで制御される。
本実施形態では、第1実施形態で示した画素電極下部構成によって、表示機能層である液晶層506を駆動することができる。
 具体的に、コモン電極50を、高抵抗を介して接地し、0Vのグランド電位とし、ソース配線を正あるいは負の極性に固定し、ノイズの少ない液晶駆動を行うことができる。この画素電極下部構成での表示機能層の駆動は、タッチセンシング駆動に対するノイズの影響を大きく抑制し、かつ、液晶駆動に関わる消費電力を減らすことができる。さらに、接地されたコモン電極50は、電気的ノイズのシールド層の役目も果たし、タッチセンシング精度の向上に寄与する。
 第1実施形態と同様に、アクティブ素子はアレイ基板200に形成されている。アクティブ素子のチャネル層は、酸化物半導体で形成されている。酸化物半導体は、ガリウム、インジウム、亜鉛、錫、アルミニウム、ゲルマニウム、アンチモン、ビスマス、セリウムのうち2種以上の金属酸化物を含む酸化物半導体を適用できる。ゲート絶縁膜は、酸化セリウムを含む複合酸化物で形成されたゲート絶縁膜とすることができる。例えば、アクティブ素子の構造として、図10に示すトップゲート構造のアクティブ素子(TFT)を採用することができる。
 図16に示すように、表示装置DSP2は、カラーフィルタ60を備えている。第1タッチセンシング配線1と第2タッチセンシング配線2とによって画素が形成されており、各画素には、カラーフィルタ60を構成する、赤着色層R、緑着色層G、及び青着色層Bが設けられている。即ち、第1タッチセンシング配線1及び第2タッチセンシング配線2は、赤着色層R、緑着色層G、及び青着色層Bを区画するブラックマトリクスとして機能する。第2実施形態において、赤着色層R、緑着色層G、及び青着色層Bは、ストライプ状のパターンで配置されている。
 第1タッチセンシング配線1と第2タッチセンシング配線2は、第1実施形態と同じく、それぞれ黒色層と導電層とが積層された構造を有する。第1タッチセンシング配線1及び第2タッチセンシング配線2を形成する導電層は、第1実施形態と同じく、導電性金属酸化物層と銅合金層と導電性金属酸化物とが積層された3層構造を有する。
 特に、図15に示すように、第2タッチセンシング配線2は、観察方向OBにおいて第2黒色層76と第2導電層75とが順に積層された構成を有している。第2黒色層76は、第1実施形態の第2黒色層と同じ構成を有する。第2導電層75は、第1実施形態の第2導電層と同じ構成を有する。
 図13において、画素電極59とコモン電極50とによって挟持されている液晶層506は、画素電極59とコモン電極50との間に印加される液晶駆動電圧によって制御される。液晶層506の液晶は、誘電率異方性が負の液晶であることが好ましいが、誘電率異方性が正の液晶を用いてもよい。
(第3実施形態)
 以下、図面を参照しながら本発明の第3実施形態について説明する。
 第3実施形態においては、第1実施形態及び第2実施形態と同一部材には同一符号を付して、その説明は省略または簡略化する。
 図17は、本発明の第3実施形態に係る表示装置DSP3を部分的に示す断面図である。
 図18は、本発明の第3実施形態に係る表示装置DSP3が備える対向基板550の額縁部Fを部分的に示す断面図である。
 図19は、本発明の第3実施形態に係る表示装置DSP3が備える対向基板550を示す図であって、観察者側から表示装置DSP3を見た平面図である。
 図20は、本発明の第3実施形態に係るアレイ基板600を部分的に示す断面図である。
 図21は、本発明の第3実施形態に係るアレイ基板600を構成する画素電極88を部分的に示す図であって、図20における符号W3で示された部分を示す拡大断面図である。
 図22は、本発明の第3実施形態に係るアレイ基板600を構成するゲート電極を部分的に示す断面図である。
 第3実施形態の表示装置DSP3を構成する対向基板550は、第1面MFと、第1面MFとは反対側の第2面MSとを有する透明基板44を備える。第2面MSには、タッチセンシング配線は設けられていない。第1面MFには、観察方向OB(Z方向とは反対方向)において、順に、複数の第1タッチセンシング配線1と、複数の第2タッチセンシング配線2とが形成されている。即ち、第2タッチセンシング配線2は、第1タッチセンシング配線1とアレイ基板600との間に位置している。複数の第2タッチセンシング配線2及び第1面MFは、第2透明樹脂層105で覆われている。
 複数の第1タッチセンシング配線1と複数の第2タッチセンシング配線2との間には、絶縁層I(タッチ配線絶縁層)が設けられており、第1タッチセンシング配線1と第2タッチセンシング配線2とは、絶縁層Iによって互いに電気的に絶縁されている。
 図17に示す構造では、第1透明樹脂層108と第2透明樹脂層105とが貼り合わされている。
 図18に示すように、額縁部Fの下部に位置するアレイ基板600の額縁部分600Fには、有機EL層の駆動(有機EL層の発光)に関わる周辺回路80が形成されている。周辺回路80は、例えば、アレイ基板600のアクティブ素子を駆動するTFT、容量素子、抵抗素子等が、アレイ基板600の額縁部分600Fの表面に配設されている。周辺回路80で生じる電気的ノイズは、額縁部Fでカットされ、検出電極である第1タッチセンシング配線1への影響を少なくできる。当表示装置のセルギャップ(厚み)は、スペーサである導電性粒子102で制御される。導電性粒子102は、金属球でも良く、樹脂を核として無機酸化物及び金属を被覆した導電性粒子が適用できる。あるいは、異方性導電膜を用いてもよい。アレイ基板600の額縁部分600Fの表面には、接続端子107が設けられており、導電性粒子102は、接続端子107と第1タッチセンシング配線1との間に挟まれている。これにより、第1タッチセンシング配線1は、アレイ基板600の接続端子107を通じて、タッチセンシング制御部122に接続されている。
 第1タッチセンシング配線1と第2タッチセンシング配線2は、平面視、直交している。例えば、第1タッチセンシング配線1をタッチ検出電極として用い、第2タッチセンシング配線2をタッチ駆動電極として用いることができる。タッチセンシング制御部122は、タッチ信号として、第1タッチセンシング配線1と第2タッチセンシング配線2との交点における、第1タッチセンシング配線1と第2タッチセンシング配線2との間の静電容量C3の変化を検出する。
 また、第1タッチセンシング配線1の役割と第2タッチセンシング配線2の役割とを入れ替えてもよい。具体的に、第1タッチセンシング配線1をタッチ駆動電極として用い、第2タッチセンシング配線2をタッチ検出電極として用いてもよい。
 第1タッチセンシング配線1及び第2タッチセンシング配線2の各々の構造としては、第1実施形態で説明した図8に示す断面構造と同じ構造を採用することができる。第1タッチセンシング配線1は、第1黒色層16と第1導電層15とが順に積層された構成を有している。第1導電層15の構造としては、例えば、金属層20である銅合金層或いは銀合金層が第1導電性金属酸化物層21及び第2導電性金属酸化物層22で挟持された3層構造とすることができる。格子状に直交する第1タッチセンシング配線1と第2タッチセンシング配線2は、表示コントラストを向上させるブラックマトリクスの役割も兼用する。
(アレイ基板600の構造)
 次に、表示装置DSP3を構成するアレイ基板600の構造について説明する。
 アレイ基板600の基板45としては、透明基板を用いる必要はなく、例えば、アレイ基板600に適用可能な基板として、ガラス基板、セラミック基板、石英基板、サファイア基板、シリコン、炭化シリコンやシリコンゲルマニウムなどの半導体基板、あるいはプラスチック基板等が挙げられる。
 アレイ基板600においては、第4絶縁層14、第4絶縁層14上に形成されたアクティブ素子68、第4絶縁層14及びアクティブ素子68を覆うように形成された第3絶縁層13、アクティブ素子68のチャネル層58に対向するように第3絶縁層13上に形成されたゲート電極95、第3絶縁層13及びゲート電極95を覆うように形成された第2絶縁層12、及び第2絶縁層12上に形成された平坦化層96が、基板45上に、順に積層されている。
 平坦化層96には、アクティブ素子68のドレイン電極56に対応する位置にコンタクトホール93が形成されている。また、平坦化層96上には、チャネル層58に対応する位置にバンク94が形成されている。断面視において互いに隣り合うバンク94の間の領域においては、即ち、平面視においてバンク94に囲まれた領域においては、平坦化層96の上面、コンタクトホール93の内部、及びドレイン電極56を覆うように下部電極88(画素電極)が形成されている。なお、下部電極88は、バンク94の上面には形成されていなくてもよい。
 更に、下部電極88、バンク94、及び平坦化層96を覆うようにホール注入層91が形成されている。ホール注入層91上には、順に、発光層92、上部電極87、及び封止層109が積層されている。
 下部電極88は、後述するように、銀あるいは銀合金層が導電性金属酸化物層によって挟持された構成を有する。
 バンク94の材料としては、アクリル樹脂、ポリイミド樹脂、ノボラックフェノール樹脂等の有機樹脂を用いることができる。バンク94には、更に、酸化シリコン、酸窒化シリコン等の無機材料を積層してもよい。
 平坦化層96の材料としては、アクリル樹脂、ポリイミド樹脂、ベンゾシクロブテン樹脂、ポリアミド樹脂等を用いてもよい。低誘電率材料(low-k材料)を用いることもできる。
 なお、視認性向上のため、平坦化層96や封止層109、あるいは、基板45のいずれかが、光散乱の機能を有してもよい。あるいは、基板45の上方に光散乱層を形成してもよい。
 なお、図17において、符号290は、下部電極88、ホール注入層91、発光層92、及び上部電極87で構成された発光領域を示している。
(発光層92)
 図20に示すように、アレイ基板600は、表示機能層である発光層92(有機EL層)を含む。発光層92は、一対の電極間に電界が与えられた時に、陽極(例えば、上部電極)から注入されるホールと、陰極(例えば、下部電極、画素電極)から注入される電子が再結合することにより励起され、発光する表示機能層である。
 発光層92は、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、電子輸送性を有する材料とを含有する。発光層92は、陽極と陰極の間に形成される層であり、下部電極88(陽極)の上にホール注入層91が形成されている場合は、ホール注入層91と上部電極87(陰極)との間に発光層92が形成される。また、陽極の上にホール輸送層が形成されている場合は、ホール輸送層と陰極との間に発光層92が形成される。上部電極87と下部電極88の役割は入れ替えることができる。
 発光層92の膜厚は、本発明の効果を著しく損なわない限り任意であるが、膜に欠陥が生じ難い点では、膜厚は大きいことが好ましい。一方、膜厚が小さい場合、駆動電圧が低くなるため好ましい。このため、発光層92の膜厚は、3nm以上であることが好ましく、5nm以上であることが更に好ましく、また、一方、通常200nm以下であることが好ましく、100nm以下であることが更に好ましい。
 発光層92の材料は、所望の発光波長で発光し、本発明の効果を損なわない限り特に制限はなく、公知の発光材料を適用可能である。発光材料は、蛍光発光材料でも、燐光発光材料でもよいが、発光効率が良好である材料が好ましく、内部量子効率の観点から燐光発光材料が好ましい。
 青色発光を与える発光材料としては、例えば、ナフタレン、ペリレン、ピレン、アントラセン、クマリン、クリセン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。緑色発光を与える発光材料としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(CNO)等のアルミニウム錯体等が挙げられる。
 赤色発光を与える発光材料としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
 上記の発光層92を構成する有機EL層の構成や発光材料等は、上記材料に限られない。
 図20に示すように、発光層92は、ホール注入層91上に形成されており、上部電極87と下部電極88との間に印加される駆動電圧で駆動される。
 下部電極88は、反射層89と導電性金属酸化物層97、98とが積層された構造を有する。なお、上部電極87と下部電極88の間に、発光層92のほかに電子注入層、電子輸送層、ホール輸送層などを挿入してもよい。
 ホール注入層91には、酸化タングステンや酸化モリブデン等の高融点金属酸化物を用いることができる。反射層89には、光の反射率が高い銀合金、アルミニウム合金等が適用できる。なお、ITO等の導電性金属酸化物は、アルミニウムとの密着性が良くない。電極やコンタクトホール等の界面が、例えば、ITOとアルミニウム合金の場合は電気的接続不良を生じ易い。銀や銀合金は、ITO等の導電性金属酸化物との密着性が良好で、かつ、ITO等の導電性金属酸化物はオーミックコンタクトを得やすい。
 図21に示すように、本実施形態では、銀のマイグレーションを抑制するため、下部電極88は、銀あるいは銀合金層(反射層89)が導電性金属酸化物層97、98で挟持された3層構造を有する。導電性金属酸化物層97、98の材料としては、第1実施形態で説明した導電性金属酸化物層21、22を構成する導電性金属酸化物を用いることができる。
 銀合金層を光反射性の画素電極(下部電極)に適用する場合、銀合金層の膜厚は、例えば、100nmから500nmの範囲から選択できる。必要に応じて、膜厚は500nmより厚く形成してもよい。また、銀合金層の膜厚を、例えば、9nmから15nmとすれば、光透過性の上部電極あるいは対向電極に銀合金層を用いることができる。
 また、表示機能層に関し、発光層92(有機EL層)に代えて液晶層を用いる場合、銀合金層の膜厚を100nmから500nm膜厚にすることで、銀合金層を画素電極(下部電極)に用いることができ、反射型の液晶表示装置を実現することができる。
 本実施形態では、導電性金属酸化物として、酸化インジウム、酸化ガリウム、酸化アンチモンの複合酸化物を用いた。銀合金層の材料としては、導電層として機能する銀合金を適用できる。銀へ添加される添加元素としては、マグネシウム、カルシウム、チタン、モリブデン、インジウム、錫、亜鉛フタロ緑色顔料、ネオジウム、ニッケル、アンチモン、ビスマス、銅等から構成される群より選択される1以上の金属元素を用いることができる。本実施形態の銀合金層は、銀に対し1.5at%カルシウムが添加された銀合金を用いた。カルシウムは、上記導電性金属酸化物によって銀合金が挟持された構成において、後工程における熱処理等で選択的に酸化される。このような酸化物の形成によって、導電性金属酸化物層によって銀合金層が挟持された構造の信頼性を向上させることができる。更に、窒化珪素や窒化モリブデン等の窒化物によって、導電性金属酸化物層によって銀合金層が挟持された構造を覆うことで、更に信頼性を向上させることができる。
 第3実施形態において、アクティブ素子68は、第1実施形態と同じトップゲート構造を有している。第3実施形態のチャネル層も、第1実施形態と同じく、酸化物半導体で形成されている。更に、トランジスタの電子移動度の観点から、ポリシリコン半導体で形成されたチャネル層を備えるアクティブマトリクスで構成される第1レイヤと、酸化物半導体で形成されたチャネル層を備えるアクティブマトリクスで構成される第2レイヤとが積層された構造を採用することが好ましい。このように第1レイヤと第2レイヤとが積層された構造では、例えば、ポリシリコン半導体で形成されたチャネル層を備えるアクティブ素子(第1レイヤ)は発光層92である有機EL層にキャリア(電子あるいはホール)を注入するための駆動素子に用いられる。また、酸化物半導体で形成されたチャネル層を備えるアクティブ素子(第2レイヤ)は、ポリシリコン半導体で形成されたチャネル層を備えるアクティブ素子を選択するスイッチング素子として用いられる。この駆動素子に電気的に連携される有機EL層を発光させるための電源線には、導電性金属酸化物層で挟持された銀合金層あるいは銅合金層を用いることができる。このような構造は、例えば、図22に示す配線構造が用いられる。電源線等のアクティブ素子に連携される配線に、導電率の良好な銀合金や銅合金を適用することが好ましい。
 第3実施形態においては、銅合金である金属層20をゲート電極95に用いている。図22に示すように、ゲート電極95を構成する金属層20は、第1導電性金属酸化物層97と第2導電性金属酸化物層98とで挟持されている。第3絶縁層13であるゲート絶縁層に用いる材料は、第1実施形態と同様である。
(第3実施形態の変形例)
 なお、上記実施形態では、発光層92として有機エレクトロルミネセンス層(有機EL)を採用した構造を説明した。発光層92は、無機の発光ダイオード層であってもよい。また、発光層92は、無機のLEDチップがマトリクス状に配列された構造を有してもよい。この場合、赤色発光、緑色発光、青色発光の各々微小なLEDチップをアレイ基板200上にマウントしてもよい。LEDチップをアレイ基板200に実装する方法としては、フェースダウンによる実装を行ってもよい。
 発光層92が無機LEDで構成されている場合、発光層92として青色発光ダイオードあるいは青紫色発光ダイオードをアレイ基板200(基板45)に配設する。窒化物半導体層と上部電極とを形成した後、緑色画素に緑色蛍光体を積層し、赤色発光の画素に赤色蛍光体を積層する。これにより、アレイ基板200に無機LEDを簡便に形成することができる。このような蛍光体を用いる場合、青紫色発光ダイオードから生じる青色光による励起によって、緑色蛍光体及び赤色蛍光体の各々から緑色発光及び赤色発光を得ることができる。
 あるいは、発光層92として紫外発光ダイオードをアレイ基板200(基板45)に配設してもよい。この場合、窒化物半導体層と上部電極とを形成した後、青色画素に青色蛍光体を積層し、緑色画素に緑色蛍光体を積層し、赤色画素に赤色蛍光体を積層する。これにより、アレイ基板200に無機LEDを簡便に形成することができる。このような蛍光体を用いる場合、例えば、印刷法等の簡便な手法で、緑色画素、赤色画素、あるいは青色画素を形成することができる。これらの画素は、各々の色の発光効率や色バランスの観点から、画素の大きさを調整することは望ましい。
 例えば、上述の実施形態に係る表示装置は、種々の応用が可能である。上述の実施形態に係る表示装置が適用可能な電子機器としては、携帯電話、携帯型ゲーム機器、携帯情報端末、パーソナルコンピュータ、電子書籍、ビデオカメラ、デジタルスチルカメラ、ヘッドマウントディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤ等)、複写機、ファクシミリ、プリンター、プリンター複合機、自動販売機、現金自動預け入れ払い機(ATM)、個人認証機器、光通信機器等が挙げられる。上記の各実施形態は、自由に組み合わせて用いることができる。
 本発明の好ましい実施形態を説明し、上記で説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、請求の範囲によって制限されている。
1・・・第1タッチセンシング配線
2・・・第2タッチセンシング配線
2A・・・センス配線
2B・・・引き出し配線
3・・・重畳部
9・・・第2ゲート配線
10・・・第1ゲート配線
11・・・第1絶縁層
11H、12H、93、CH・・・コンタクトホール
12・・・第2絶縁層
13・・・第3絶縁層
14・・・第4絶縁層
15・・・第1導電層
16・・・第1黒色層
17、50・・・コモン電極
20・・・金属層
21、97・・・第1導電性金属酸化物層
22、98・・・第2導電性金属酸化物層
24・・・ソース電極
25、95・・・ゲート電極
26、56・・・ドレイン電極
27、58・・・チャネル層
28、68・・・アクティブ素子
28a・・・第1アクティブ素子
28b・・・第2アクティブ素子
29、59、88・・・画素電極(下部電極)
29s・・・スルーホール
30・・・コモン配線
31・・・第1ソース配線
32・・・第2ソース配線
35、75・・・第2導電層
36、76・・・第2黒色層
40、41、42、44・・・透明基板
45・・・基板
60・・・カラーフィルタ
80・・・周辺回路
87・・・上部電極
89・・・反射層
91・・・ホール注入層
92・・・発光層
94・・・バンク
96・・・平坦化層
100、350、550・・・対向基板(表示装置基板)
101・・・異方性導電膜
102・・・導電性粒子
103・・・スペーサ
104・・・シール層
105・・・第2透明樹脂層
107・・・接続端子
108・・・第1透明樹脂層
109・・・封止層
110・・・表示部
120・・・制御部
121・・・映像信号制御部(第一制御部)
122・・・タッチセンシング制御部(第二制御部)
123・・・システム制御部(第三制御部)
200、600・・・アレイ基板
200F、600F・・・額縁部分
290・・・発光領域
300、506・・・液晶層
B・・・青着色層
F・・・額縁部
G・・・緑着色層
I・・・絶縁層
K・・・筐体
P・・・観察者
R・・・赤着色層
MF・・・第1面
MS・・・第2面
OB・・・観察方向
PX・・・画素
F21・・・第1遮光導電パターン
F22・・・第2遮光導電パターン
FPC・・・フレキシブルプリント回路基板
PT1・・・第1センシングパターン
PT2・・・第2センシングパターン
TM1・・・第1端子
TM2・・・第2端子
F22A・・・第1遮光導電部(遮光導電部)
F22B・・・第2遮光導電部(遮光導電部)
F21L・・・長辺部
F21S・・・短辺部
S、CS・・・スリット
H1、WS・・・幅
P1、PS・・・配置ピッチ
C1、C2、C3・・・静電容量
DSP1、DSP2、DSP3・・・表示装置

Claims (20)

  1.  表示装置であって、
     表示機能層と、
     前記表示機能層を駆動するアレイ基板と、
     前記アレイ基板に対向する第1面と前記第1面とは反対側の第2面とを有する透明基板と、前記第2面から前記第1面に向けた観察方向において第1黒色層と第1導電層とが順に積層された構成を有しかつ前記第2面上にて第1方向に並ぶように互いに平行に延在する複数の第1タッチセンシング配線を含む第1センシングパターンと、前記観察方向において第2黒色層と第2導電層とが順に積層された構成を有しかつ前記複数の第1タッチセンシング配線と前記アレイ基板との間に位置するとともに平面視にて前記第1方向と直交する第2方向に並ぶように互いに平行に延在する複数の第2タッチセンシング配線を含む第2センシングパターンと、前記第1タッチセンシング配線と同じ材料で形成されかつ前記第1タッチセンシング配線と断面視において同じ位置に設けられかつ前記第1センシングパターンの外側に位置する第1遮光導電パターンと、前記第2タッチセンシング配線と同じ材料で形成されかつ前記第2タッチセンシング配線と断面視において同じ位置に設けられかつ前記第2センシングパターンの外側に位置する第2遮光導電パターンと、前記表示機能層に対向する表示部と、前記表示部を囲むとともに、前記第1センシングパターンの一部、前記第1遮光導電パターン、及び前記第2遮光導電パターンによって構成された遮光性の額縁部と、を備える表示装置基板と、
     第1タッチセンシング配線と第2タッチセンシング配線との間の静電容量の変化を検知してタッチセンシングを行う制御部と、
     を含む表示装置。
  2.  前記第1タッチセンシング配線及び前記第2タッチセンシング配線は、前記第2面の上に形成され、
     前記第1タッチセンシング配線と前記第2タッチセンシング配線との間には絶縁層が設けられ、
     前記第1タッチセンシング配線及び前記第2タッチセンシング配線は、互いに電気的に絶縁されている請求項1に記載の表示装置。
  3.  前記第1タッチセンシング配線は、前記第2面の上に形成され、
     前記第2タッチセンシング配線は、前記第1面の上に形成されている請求項1に記載の表示装置。
  4.  前記第1面の上に、前記観察方向において、順に、前記第1タッチセンシング配線及び前記第2タッチセンシング配線が形成され、
     前記第1タッチセンシング配線と前記第2タッチセンシング配線との間には絶縁層が設けられ、
     前記第1タッチセンシング配線及び前記第2タッチセンシング配線は、互いに電気的に絶縁されている請求項1に記載の表示装置。
  5.  前記アレイ基板及び前記表示装置基板を囲う筐体を有し、
     前記第1遮光導電パターンは、前記筐体に接地されている請求項1に記載の表示装置。
  6.  前記第2遮光導電パターンは、スリットによって分割された複数の遮光導電部を有する請求項1に記載の表示装置。
  7.  前記アレイ基板は、
     ゲート絶縁層と接触しかつ酸化物半導体で構成されたチャネル層を有し、前記表示機能層を駆動するアクティブ素子と、を備える
     請求項1に記載の表示装置。
  8.  前記酸化物半導体は、
     ガリウム、インジウム、亜鉛、錫、アルミニウム、ゲルマニウム、及びセリウムから構成される群より選択される1種以上を含有する金属酸化物と、
     少なくとも、アンチモン、ビスマスのうちいずれかを含有する金属酸化物と、
     を含む請求項7に記載の表示装置。
  9.  前記ゲート絶縁層は、酸化セリウムを含む複合酸化物で形成されている請求項7に記載の表示装置。
  10.  前記アクティブ素子に電気的に連携された複数の配線のうち、少なくともゲート配線は、銅合金層が導電性金属酸化物層によって挟持された3層構造を有する請求項7に記載の表示装置。
  11.  前記アレイ基板は、前記表示機能層を挟持する上部電極及び下部電極を備え、
     前記表示機能層は、発光ダイオード層であり、前記上部電極と前記下部電極との間に印加される駆動電圧によって発光する請求項1に記載の表示装置。
  12.  前記アレイ基板は、前記表示機能層を挟持する上部電極及び下部電極を備え、
     前記表示機能層は、有機エレクトロルミネセンス層であり、前記上部電極と前記下部電極との間に印加される駆動電圧によって発光する請求項1に記載の表示装置。
  13.  前記上部電極及び前記下部電極の少なくとも一方は、銀合金層が導電性金属酸化物層で挟持された構造を有する請求項11又は請求項12に記載の表示装置。
  14.  前記表示機能層は、液晶層であり、
     前記アレイ基板は、前記液晶層を挟持するコモン電極及び画素電極を備え、
     前記液晶層は、前記コモン電極と前記画素電極との間の電位差によって駆動する請求項1に記載の表示装置。
  15.  断面視において、前記コモン電極は、前記画素電極よりも、前記表示装置基板に近い位置に設けられている請求項14に記載の表示装置。
  16.  第1面と、前記第1面とは反対側の第2面とを有する、透明基板と、
     前記第1面及び前記第2面のいずれか一方に形成され、前記第2面から前記第1面に向けた観察方向において第1黒色層と第1導電層とが順に積層された構成を有するとともに前記第2面上にて第1方向に並ぶように互いに平行に延在する複数の第1タッチセンシング配線を含む、第1センシングパターンと、
     前記第1面及び前記第2面のいずれか一方に形成され、前記観察方向において第2黒色層と第2導電層とが順に積層された構成を有するとともに平面視にて前記第1方向と直交する第2方向に並ぶように互いに平行に延在する複数の第2タッチセンシング配線を含む、第2センシングパターンと、
     前記第1タッチセンシング配線と同じ材料で形成され、前記第1タッチセンシング配線と断面視において同じ位置に設けられ、前記第1センシングパターンの外側に位置する、第1遮光導電パターンと、
     前記第2タッチセンシング配線と同じ材料で形成され、前記第2タッチセンシング配線と断面視において同じ位置に設けられ、前記第2センシングパターンの外側に位置する、第2遮光導電パターンと、
     前記第1センシングパターンの一部、前記第1遮光導電パターン、及び前記第2遮光導電パターンによって構成された遮光性の額縁部と、
     を備える表示装置基板。
  17.  前記透明基板は、平面視において、短辺と長辺とを有し、
     前記第1遮光導電パターンは、前記長辺と平行に設けられている請求項16に記載の表示装置基板。
  18.  前記第2遮光導電パターンは、前記第1タッチセンシング配線と平行な複数のスリットを有し、
     平面視において、前記複数の第1タッチセンシング配線と前記複数のスリットが重なる重畳部が形成されており、前記重畳部は、前記額縁部を構成している請求項16に記載の表示装置基板。
  19.  前記第1導電層及び前記第2導電層は、少なくとも、銅合金層が導電性金属酸化物層によって挟持された3層構造を有する請求項16に記載の表示装置基板。
  20.  平面視において前記複数の第1タッチセンシング配線と前記複数の第2タッチセンシング配線とによって区画される複数の画素を備え、
     前記複数の画素は、カラーフィルタを備える請求項16に記載の表示装置基板。
PCT/JP2016/077442 2016-09-16 2016-09-16 表示装置及び表示装置基板 WO2018051486A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017547179A JP6365788B1 (ja) 2016-09-16 2016-09-16 表示装置及び表示装置基板
PCT/JP2016/077442 WO2018051486A1 (ja) 2016-09-16 2016-09-16 表示装置及び表示装置基板
KR1020187037573A KR102190184B1 (ko) 2016-09-16 2016-09-16 표시 장치 및 표시 장치 기판
CN201680087383.8A CN109416598B (zh) 2016-09-16 2016-09-16 显示装置及显示装置基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077442 WO2018051486A1 (ja) 2016-09-16 2016-09-16 表示装置及び表示装置基板

Publications (1)

Publication Number Publication Date
WO2018051486A1 true WO2018051486A1 (ja) 2018-03-22

Family

ID=61619443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077442 WO2018051486A1 (ja) 2016-09-16 2016-09-16 表示装置及び表示装置基板

Country Status (4)

Country Link
JP (1) JP6365788B1 (ja)
KR (1) KR102190184B1 (ja)
CN (1) CN109416598B (ja)
WO (1) WO2018051486A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003364A1 (ja) * 2018-06-26 2020-01-02 凸版印刷株式会社 ブラックマトリクス基板及び表示装置
CN110931507A (zh) * 2018-09-19 2020-03-27 夏普株式会社 有源矩阵基板及其制造方法、液晶显示装置的制造方法
CN111124174A (zh) * 2019-11-25 2020-05-08 南昌欧菲显示科技有限公司 触摸屏及电子装置
TWI751349B (zh) * 2018-06-27 2022-01-01 日商凸版印刷股份有限公司 黑色矩陣基板及顯示裝置
CN114816106A (zh) * 2021-01-19 2022-07-29 株式会社日本显示器 显示装置
CN116679475A (zh) * 2023-06-27 2023-09-01 京东方科技集团股份有限公司 盖板及其制备方法、显示模组和显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111857446B (zh) 2020-07-13 2021-09-24 Tcl华星光电技术有限公司 掩膜板、显示面板及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114928A (ja) * 2005-12-09 2006-04-27 Idemitsu Kosan Co Ltd n型無機半導体、n型無機半導体薄膜及びその製造方法
JP2006128108A (ja) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd 有機発光素子
WO2011111748A1 (ja) * 2010-03-11 2011-09-15 アルプス電気株式会社 透光型入力装置
JP2012198740A (ja) * 2011-03-22 2012-10-18 Panasonic Corp タッチパネルおよびタッチパネルを備えた表示装置
JP2015187701A (ja) * 2013-12-02 2015-10-29 株式会社半導体エネルギー研究所 表示装置およびその作製方法
JP5807726B1 (ja) * 2014-07-10 2015-11-10 凸版印刷株式会社 黒色電極基板、黒色電極基板の製造方法、及び表示装置
JP2016051093A (ja) * 2014-09-01 2016-04-11 三菱電機株式会社 液晶表示パネル、及びその製造方法
JP2016051145A (ja) * 2014-09-02 2016-04-11 株式会社ジャパンディスプレイ 液晶表示装置及び電子機器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587726B2 (ja) 1975-01-08 1983-02-12 東レ株式会社 帯電防止性の優れたポリエステル混繊糸およびその製造方法
JPS54119558A (en) 1978-03-10 1979-09-17 Teraoka Giken Kk Parison control apparatus
JP2005064003A (ja) * 2003-08-08 2005-03-10 Mitsui Chemicals Inc 透明電磁波シールドおよびディスプレイ用フィルタ
JP2006196760A (ja) * 2005-01-14 2006-07-27 Mitsubishi Chemicals Corp 電磁波シールドフィルム及びそれを用いたディスプレイパネル
CN108563366B (zh) 2006-06-09 2022-01-25 苹果公司 触摸屏液晶显示器
JP2011095451A (ja) 2009-10-29 2011-05-12 Sony Corp 横電界方式の液晶表示装置
CN102947781B (zh) * 2010-06-22 2016-03-09 日本写真印刷株式会社 具有防锈性的窄边框触摸输入薄片及其制造方法
CA2831167C (fr) * 2011-03-25 2020-06-02 Ntx Research Sa Infrastructure non hierarchique de gestion de bi-cles de securite de personnes physiques ou d'elements (igcp/pki)
JP5968275B2 (ja) 2012-08-07 2016-08-10 株式会社ジャパンディスプレイ タッチセンサ付き表示装置、及び電子機器
TWM454587U (zh) * 2012-09-14 2013-06-01 Inv Element Inc 具使用金屬線連接觸控感應層電極之內嵌式觸控顯示面板系統
JP2016510939A (ja) * 2013-03-11 2016-04-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated リチウムイオン電池の吹付けコーティングプロセスのための電極表面粗さ制御
US9685131B2 (en) 2013-03-15 2017-06-20 Sharp Kabushiki Kaisha Active-matrix substrate, method of manufacturing active-matrix substrate, and display panel
TWI519852B (zh) * 2013-04-01 2016-02-01 友達光電股份有限公司 觸控顯示裝置
US9223424B2 (en) * 2013-04-08 2015-12-29 Apple Inc. Electronic device signal routing structures with conductive adhesive
CN103309535A (zh) * 2013-06-06 2013-09-18 敦泰科技有限公司 电容式触摸屏

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128108A (ja) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd 有機発光素子
JP2006114928A (ja) * 2005-12-09 2006-04-27 Idemitsu Kosan Co Ltd n型無機半導体、n型無機半導体薄膜及びその製造方法
WO2011111748A1 (ja) * 2010-03-11 2011-09-15 アルプス電気株式会社 透光型入力装置
JP2012198740A (ja) * 2011-03-22 2012-10-18 Panasonic Corp タッチパネルおよびタッチパネルを備えた表示装置
JP2015187701A (ja) * 2013-12-02 2015-10-29 株式会社半導体エネルギー研究所 表示装置およびその作製方法
JP5807726B1 (ja) * 2014-07-10 2015-11-10 凸版印刷株式会社 黒色電極基板、黒色電極基板の製造方法、及び表示装置
JP2016051093A (ja) * 2014-09-01 2016-04-11 三菱電機株式会社 液晶表示パネル、及びその製造方法
JP2016051145A (ja) * 2014-09-02 2016-04-11 株式会社ジャパンディスプレイ 液晶表示装置及び電子機器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003364A1 (ja) * 2018-06-26 2020-01-02 凸版印刷株式会社 ブラックマトリクス基板及び表示装置
CN112189181A (zh) * 2018-06-26 2021-01-05 凸版印刷株式会社 黑色矩阵基板及显示装置
CN112189181B (zh) * 2018-06-26 2023-10-20 凸版印刷株式会社 黑色矩阵基板及显示装置
TWI751349B (zh) * 2018-06-27 2022-01-01 日商凸版印刷股份有限公司 黑色矩陣基板及顯示裝置
CN110931507A (zh) * 2018-09-19 2020-03-27 夏普株式会社 有源矩阵基板及其制造方法、液晶显示装置的制造方法
CN110931507B (zh) * 2018-09-19 2023-06-06 夏普株式会社 有源矩阵基板及其制造方法、液晶显示装置的制造方法
CN111124174A (zh) * 2019-11-25 2020-05-08 南昌欧菲显示科技有限公司 触摸屏及电子装置
CN114816106A (zh) * 2021-01-19 2022-07-29 株式会社日本显示器 显示装置
CN116679475A (zh) * 2023-06-27 2023-09-01 京东方科技集团股份有限公司 盖板及其制备方法、显示模组和显示装置

Also Published As

Publication number Publication date
KR102190184B1 (ko) 2020-12-11
JP6365788B1 (ja) 2018-08-01
JPWO2018051486A1 (ja) 2018-09-13
KR20190009386A (ko) 2019-01-28
CN109416598A (zh) 2019-03-01
CN109416598B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
JP6365788B1 (ja) 表示装置及び表示装置基板
KR102055740B1 (ko) 액정 표시 장치
JP7465907B2 (ja) 表示装置及び発光装置
WO2019215530A1 (ja) 表示装置、及び表示装置の作製方法
KR102051879B1 (ko) 표시 장치
JP6477910B2 (ja) 表示装置及び表示装置基板
JP2020080416A (ja) 半導体装置
TWI685781B (zh) 顯示裝置及顯示裝置基板
KR102121262B1 (ko) 표시 장치 및 표시 장치 기판
TWI715631B (zh) 顯示裝置及顯示裝置基板
TWI630534B (zh) Display device and display device substrate
TWI686653B (zh) 顯示裝置
TWI646518B (zh) Display device and display device substrate
TWI576744B (zh) Liquid crystal display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017547179

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037573

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916267

Country of ref document: EP

Kind code of ref document: A1