CN110931507B - 有源矩阵基板及其制造方法、液晶显示装置的制造方法 - Google Patents

有源矩阵基板及其制造方法、液晶显示装置的制造方法 Download PDF

Info

Publication number
CN110931507B
CN110931507B CN201910883506.4A CN201910883506A CN110931507B CN 110931507 B CN110931507 B CN 110931507B CN 201910883506 A CN201910883506 A CN 201910883506A CN 110931507 B CN110931507 B CN 110931507B
Authority
CN
China
Prior art keywords
insulating layer
electrode
layer
contact hole
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910883506.4A
Other languages
English (en)
Other versions
CN110931507A (zh
Inventor
吉野光
森永润一
菊池哲郎
原健吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of CN110931507A publication Critical patent/CN110931507A/zh
Application granted granted Critical
Publication of CN110931507B publication Critical patent/CN110931507B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • G02F1/136245Active matrix addressed cells having more than one switching element per pixel having complementary transistors

Abstract

一种有源矩阵基板的制造方法,包含如下工序:在基板上形成氧化物半导体层、栅极绝缘层及栅极电极;形成具有源极侧开口部和漏极侧开口部的绝缘层;在源极侧开口部内形成源极电极,在漏极侧开口部内形成漏极电极;形成具有第1接触孔的层间绝缘层;在层间绝缘层上和第1接触孔内形成第1透明导电膜;在第1透明导电膜的一部分上使用金属膜形成上部配线部;进行第1透明导电膜的图案化,由此形成像素电极和下部配线部;形成具有第2接触孔的电介质层;以及在电介质层上和第2接触孔内形成共用电极,在从基板的法线方向观看时,第1接触孔的底面与漏极侧开口部的底面至少部分重叠,第2接触孔的底面与源极侧开口部的底面至少部分重叠。

Description

有源矩阵基板及其制造方法、液晶显示装置的制造方法
技术领域
本发明涉及有源矩阵基板的制造方法和使用有源矩阵基板的带触摸传感器的液晶显示装置的制造方法。
背景技术
近年来,具备触摸传感器的显示装置(以下称为“触摸面板”)已广泛应用于智能电话、平板型便携终端等。在触摸传感器中已知电阻膜式、静电电容式、光学式等各种方式的触摸传感器。在静电电容式触摸传感器中,通过电检测由物体(例如手指)的接触或者接近所致的静电电容的变化来辨别是否是触摸状态。
在静电电容方式的触摸传感器中有如下方式:自电容方式,检测在触摸传感器用的电极与物体(例如手指)之间产生的静电电容的变化;以及互电容方式,使用触摸传感器用的一对电极(发射器电极和接收器电极)产生电场,检测电极间的电场变化。
另外,触摸面板有外置型(在配置于观察者侧的偏振板的进一步观察者侧配置有触摸传感器的类型)和内置型。内置型触摸面板有外嵌型触摸面板和内嵌型触摸面板。在此,单元是指显示单元(以下称为“显示面板”。),例如,液晶显示面板包含以将液晶层隔在中间相互相对的方式配置的有源矩阵基板(TFT基板)和相对基板,不包含偏振板。“内嵌(in-cell)型”是指在显示面板内具有承担触摸面板功能的层的类型。另一方面,“外嵌(on-cell)型”是指承担触摸面板功能的层配置在显示面板与偏振板之间(例如相对基板与偏振板之间)的类型。另外,还有将承担触摸面板功能的层分别配置于显示面板内、以及显示面板与偏振板之间的“混合型”。内置型触摸面板与外置型触摸面板相比,在薄型化、轻量化等方面是有利的,具有能提高光的透射率的优点。
专利文献1和2公开了在使用边缘场开关(Fringe Field Switching;FFS)模式等横向电场模式的液晶显示面板的内置型触摸面板中,将设置于有源矩阵基板的共用电极作为触摸传感器用的电极来使用。
现有技术文献
专利文献
专利文献1:特开2016-126321号公报
专利文献2:特开2009-244958号公报
发明内容
发明要解决的问题
带触摸传感器的横向电场模式的液晶显示面板在有源矩阵基板的显示区域中,除了设置配置于各像素的薄膜晶体管(以下称为“TFT”)和像素电极以外,还设置兼作触摸传感器用的电极(以下称为“传感器电极”)的共用电极、以及触摸传感器的驱动用和/或检测用配线(以下统称为“触摸配线”)。本发明的发明人研究后发现,在这种有源矩阵基板中,由于在显示区域中除了形成将像素电极和TFT的漏极电极连接的像素接触部以外,还形成将传感器电极和触摸配线连接的触摸配线接触部,因此像素开口率有可能会降低。
本发明的实施方式是鉴于上述情况而完成的,其目的在于提供制造能抑制像素开口率的降低的有源矩阵基板的方法和制造使用有源矩阵基板的带触摸传感器的液晶显示装置的方法。
用于解决问题的方案
本说明书公开了以下的项目所记载的有源矩阵基板的制造方法和液晶显示装置的制造方法。
[项目1]
一种有源矩阵基板的制造方法,上述有源矩阵基板具有多个像素区域,具备配置于上述多个像素区域中的每一个像素区域的薄膜晶体管、触摸面板用的第1电极以及触摸面板用的第1配线,上述有源矩阵基板的制造方法包含如下工序:
(A)在具有主面的基板上,形成成为上述薄膜晶体管的活性层的氧化物半导体层、以及隔着栅极绝缘层与上述氧化物半导体层的至少一部分重叠的栅极电极;
(B)形成绝缘层,上述绝缘层覆盖上述栅极电极、上述栅极绝缘层以及上述氧化物半导体层,并且具有将上述氧化物半导体层的一部分露出的源极侧开口部和将上述氧化物半导体层的另一部分露出的漏极侧开口部,其中,在从上述基板的上述主面的法线方向观看时,上述源极侧开口部和上述漏极侧开口部位于上述氧化物半导体层中的与上述栅极电极重叠的区域的两侧;
(C)在上述绝缘层上和上述源极侧开口部内形成源极电极,在上述绝缘层上和上述漏极侧开口部内形成漏极电极,由此得到上述薄膜晶体管;
(D)形成包含有机绝缘层的层间绝缘层,其中,上述层间绝缘层覆盖上述薄膜晶体管,并且具有将上述漏极电极的一部分露出的第1接触孔;
(E)在上述层间绝缘层上和上述第1接触孔内形成第1透明导电膜;
(F)在上述第1透明导电膜的一部分上,使用金属膜形成成为上述第1配线的上层的上部配线部;
(G)进行上述第1透明导电膜的图案化,由此形成在上述第1接触孔内与上述漏极电极电连接的像素电极,并且在上述上部配线部的下方形成成为上述第1配线的下层的下部配线部;
(H)形成电介质层,上述电介质层覆盖上述像素电极和上述第1配线,并且具有将上述第1配线的一部分露出的第2接触孔;以及
(I)在上述电介质层上和上述第2接触孔内形成在上述第2接触孔内与上述第1配线电连接的共用电极,其中,上述共用电极包含分别能作为上述第1电极发挥功能的多个共用电极部分,
在从上述基板的上述主面的法线方向观看时,上述第1接触孔的底面与上述漏极侧开口部的底面至少部分重叠,上述第2接触孔的底面与上述源极侧开口部的底面至少部分重叠。
[项目2]
一种有源矩阵基板的制造方法,上述有源矩阵基板具有多个像素区域,具备配置于上述多个像素区域中的每一个像素区域的薄膜晶体管、触摸面板用的第1电极、以及触摸面板用的第1配线,上述有源矩阵基板的制造方法包含如下工序:
(A)在具有主面的基板上,形成成为上述薄膜晶体管的活性层的氧化物半导体层、以及隔着栅极绝缘层与上述氧化物半导体层的至少一部分重叠的栅极电极;
(B)形成绝缘层,上述绝缘层覆盖上述栅极电极、上述栅极绝缘层以及上述氧化物半导体层,并且具有将上述氧化物半导体层的一部分露出的源极侧开口部和将上述氧化物半导体层的另一部分露出的漏极侧开口部,其中,在从上述基板的上述主面的法线方向观看时,上述源极侧开口部和上述漏极侧开口部位于上述氧化物半导体层中的与上述栅极电极重叠的区域的两侧;
(C)在上述绝缘层上和上述源极侧开口部内形成源极电极,在上述绝缘层上和上述漏极侧开口部内形成漏极电极,由此得到上述薄膜晶体管;
(D)形成具有包含无机绝缘层和配置于上述无机绝缘层上的有机绝缘层的层叠结构的层间绝缘层,在上述有机绝缘层形成将上述无机绝缘层的一部分露出的第1开口部;
(E)在上述层间绝缘层上使用金属膜形成上述第1配线;
(F)在上述层间绝缘层上、上述第1配线上以及上述第1开口部内形成电介质层;
(G)使用第1掩模进行上述电介质层和上述无机绝缘层的图案化,其中,在上述电介质层形成将上述第1配线的一部分露出的临时开口部,并且在上述电介质层、以及上述无机绝缘层中的通过上述第1开口部露出的部分,形成将上述漏极电极的一部分露出的第2开口部,由此,形成包括上述第1开口部和上述第2开口部的第1接触孔;
(H)在上述层间绝缘层上和上述第1接触孔内,形成在上述第1接触孔内与上述漏极电极电连接的像素电极;
(I)在上述像素电极上、上述电介质层上以及上述临时开口部内形成其它电介质层;
(J)使用第2掩模将上述其它电介质层和上述电介质层图案化,由此形成将上述第1配线的一部分露出的第2接触孔,其中,上述第2接触孔以与上述临时开口部至少部分重叠的方式配置;以及
(K)在上述其它电介质层上和上述第2接触孔内,形成在上述第2接触孔内与上述第1配线电连接的共用电极,其中,上述共用电极包含分别能作为上述第1电极发挥功能的多个共用电极部分,
在从上述基板的上述主面的法线方向观看时,上述第1接触孔的底面与上述漏极侧开口部的底面至少部分重叠,上述第2接触孔的底面与上述源极侧开口部的底面至少部分重叠。
[项目3]
一种有源矩阵基板的制造方法,上述有源矩阵基板具有多个像素区域,具备配置于上述多个像素区域中的每一个像素区域的薄膜晶体管、触摸面板用的第1电极、以及触摸面板用的第1配线,上述有源矩阵基板的制造方法包含如下工序:
(A)在具有主面的基板上,形成成为上述薄膜晶体管的活性层的氧化物半导体层、以及隔着栅极绝缘层与上述氧化物半导体层的至少一部分重叠的栅极电极;
(B)形成绝缘层,上述绝缘层覆盖上述栅极电极、上述栅极绝缘层以及上述氧化物半导体层,并且具有将上述氧化物半导体层的一部分露出的源极侧开口部和将上述氧化物半导体层的另一部分露出的漏极侧开口部,其中,在从上述基板的上述主面的法线方向观看时,上述源极侧开口部和上述漏极侧开口部位于上述氧化物半导体层中的与上述栅极电极重叠的区域的两侧;
(C)在上述绝缘层上和上述源极侧开口部内形成源极电极,在上述绝缘层上和上述漏极侧开口部内形成漏极电极,由此得到上述薄膜晶体管;
(D)形成具有包含无机绝缘层和配置于上述无机绝缘层上的有机绝缘层的层叠结构的层间绝缘层,在上述有机绝缘层形成将上述无机绝缘层的一部分露出的第1开口部;
(E)在上述层间绝缘层上形成共用电极,上述共用电极包含分别能作为上述第1电极发挥功能的多个共用电极部分;
(F)在上述共用电极上和上述第1开口部内形成下部电介质层,进行上述下部电介质层的图案化,由此在上述下部电介质层形成与上述第1开口部至少部分重叠的临时开口部和将上述共用电极的一部分露出的第2接触孔;
(G)在上述下部电介质层上和上述第2接触孔内,使用金属膜形成上述第1配线;
(H)在上述第1配线和上述下部电介质层上、上述第1开口部内以及上述临时开口部内,形成上部电介质层;
(I)通过使用掩模进行上述上部电介质层和上述下部电介质层的图案化而形成与上述临时开口部至少部分重叠的第2开口部,其中,由此形成包含上述第1开口部和上述第2开口部、并且将上述漏极电极的一部分露出的第1接触孔;以及
(J)在上述上部电介质层上和上述第1接触孔内,形成在上述第1接触孔内与上述漏极电极电连接的像素电极,
在上述工序(D)与上述工序(E)之间和/或在上述工序(I)中,还包含通过使用上述掩模进行上述无机绝缘层的图案化而在上述无机绝缘层形成将上述漏极电极的上述一部分露出的第3开口部的工序,上述第3开口部与上述第1开口部及上述第2开口部一起构成上述第1接触孔,
在从上述基板的上述主面的法线方向观看时,上述第1接触孔的底面与上述漏极侧开口部的底面至少部分重叠,上述第2接触孔的底面与上述源极侧开口部的底面至少部分重叠。
[项目4]
在项目3所记载的有源矩阵基板的制造方法中,
在上述工序(D)与上述工序(E)之间,还包含通过将上述有机绝缘层用作掩模进行上述无机绝缘层的图案化而在上述无机绝缘层形成其它临时开口部的工序,
上述工序(I)还包含使用上述掩模在上述无机绝缘层以与上述其它临时开口部至少部分重叠的方式形成上述第3开口部的工序。
[项目5]
在项目3所记载的有源矩阵基板的制造方法中,
在上述工序(D)中,在上述有机绝缘层中,上述第1开口部以将上述无机绝缘层的一部分露出的方式形成,
上述工序(I)还包含使用上述掩模在上述无机绝缘层中的通过上述第1开口部露出的部分形成上述第3开口部的工序。
[项目6]
在项目1至5中的任意一项所记载的有源矩阵基板的制造方法中,
在上述工序(A)中,上述栅极电极隔着上述栅极绝缘层配置于上述氧化物半导体层的一部分上。
[项目7]
在项目6所记载的有源矩阵基板的制造方法中,
在上述工序(A)与上述工序(B)之间,还包含以上述栅极电极为掩模进行上述氧化物半导体层的低电阻化处理,使上述氧化物半导体层中的与上述栅极电极不重叠的区域的电阻率低于与上述栅极电极重叠的区域的电阻率的工序。
[项目8]
在项目6或7所记载的有源矩阵基板的制造方法中,
还包含在上述氧化物半导体层的上述基板侧形成遮光层或者其它栅极电极的工序,上述遮光层或者其它栅极电极隔着其它绝缘层与上述氧化物半导体层的上述一部分至少部分重叠。
[项目9]
在项目1至8中的任意一项所记载的有源矩阵基板的制造方法中,
上述工序(A)还包含使用与上述栅极电极相同的导电膜形成多个栅极总线的工序,
上述工序(C)还包含使用与上述源极电极相同的导电膜形成多个源极总线的工序,
上述薄膜晶体管的上述源极电极电连接到上述多个源极总线中的对应的1个源极总线,上述栅极电极电连接到上述多个栅极总线中的对应的1个栅极总线。
[项目10]
在项目9所记载的有源矩阵基板的制造方法中,
在从上述基板的上述主面的法线方向观看时,上述第1接触孔、上述第2接触孔、上述源极侧开口部以及上述漏极侧开口部均以既不与上述多个栅极总线重叠也不与上述栅极电极重叠的方式配置。
[项目11]
在项目1至10中的任意一项所记载的有源矩阵基板的制造方法中,
在从上述基板的上述主面的法线方向观看时,上述第2接触孔位于上述源极侧开口部的内侧。
[项目12]
在项目1至10中的任意一项所记载的有源矩阵基板的制造方法中,
在从上述基板的上述主面的法线方向观看时,上述源极侧开口部位于上述第2接触孔的内侧。
[项目13]
在项目9或10所记载的有源矩阵基板的制造方法中,
上述源极电极与上述对应的1个源极总线一体地形成,
在从上述基板的上述主面的法线方向观看时,上述源极侧开口部在包含上述对应的1个源极总线和上述源极电极的源极导电部的内侧,仅配置于将上述对应的1个源极总线的宽度一分为二的中央线的单侧,上述第2接触孔在上述源极导电部的内侧以与上述中央线重叠的方式配置。
[项目14]
在项目1至10中的任意一项所记载的有源矩阵基板的制造方法中,
在从上述基板的上述主面的法线方向观看时,上述第2接触孔的上述底面与上述源极侧开口部的上述底面交叉。
[项目15]
在项目1至14中的任意一项所记载的有源矩阵基板的制造方法中,
上述氧化物半导体层包含In-Ga-Zn-O系半导体。
[项目16]
一种有源矩阵基板,其是通过项目1至15中的任意一项所记载的方法制造的。
[项目17]
一种带触摸传感器的液晶显示装置的制造方法,上述带触摸传感器的液晶显示装置具备:
有源矩阵基板;
相对基板,其以与上述有源矩阵基板相对的方式配置;以及
液晶层,其设置于上述有源矩阵基板与上述相对基板之间,
上述带触摸传感器的液晶显示装置的制造方法包含准备上述有源矩阵基板的工序,
上述工序是通过项目1至15中的任意一项所记载的方法执行的。
发明效果
根据本发明的实施方式,能提供制造能抑制像素开口率的降低的有源矩阵基板的方法和制造使用有源矩阵基板的带触摸传感器的液晶显示装置的方法。
附图说明
图1A是第1实施方式的触摸面板1001的顶视图。
图1B是第1实施方式的触摸面板1001的截面图。
图2A是表示有源矩阵基板101的显示区域的一部分的俯视图。
图2B是表示有源矩阵基板101的像素区域的一部分的截面图。
图3A是表示参考例1的接触部的配置的俯视图。
图3B是表示参考例2的接触部的配置的俯视图。
图3C是表示实施例1的接触部的配置的俯视图。
图4是用于说明触摸配线接触部的第2接触孔CHt与源极接触部的源极侧开口部11s所重叠的面积的比例R的图。
图5A是例示第2接触孔CHt与源极侧开口部11s的配置关系的俯视图。
图5B是例示第2接触孔CHt与源极侧开口部11s的另一配置关系的俯视图。
图5C是例示第2接触孔CHt与源极侧开口部11s的又一配置关系的俯视图。
图5D是例示第2接触孔CHt与源极侧开口部11s的再一配置关系的俯视图。
图6A是表示有源矩阵基板101的制造方法的一例的工序截面图。
图6B是表示有源矩阵基板101的制造方法的一例的工序截面图。
图6C是表示有源矩阵基板101的制造方法的一例的工序截面图。
图6D是表示有源矩阵基板101的制造方法的一例的工序截面图。
图6E是表示有源矩阵基板101的制造方法的一例的工序截面图。
图6F是表示有源矩阵基板101的制造方法的一例的工序截面图。
图6G是表示有源矩阵基板101的制造方法的一例的工序截面图。
图6H是表示有源矩阵基板101的制造方法的一例的工序截面图。
图6I是表示有源矩阵基板101的制造方法的一例的工序截面图。
图6J是表示有源矩阵基板101的制造方法的一例的工序截面图。
图6K是表示有源矩阵基板101的制造方法的一例的工序截面图。
图7是表示有源矩阵基板101的制造方法的一例的流程图。
图8A是例示第1实施方式的另一有源矩阵基板102的截面图。
图8B是例示第1实施方式的另一有源矩阵基板103的截面图。
图8C是例示第1实施方式的另一有源矩阵基板104的截面图。
图9A是表示有源矩阵基板104的制造方法的一例的工序截面图。
图9B是表示有源矩阵基板104的制造方法的一例的工序截面图。
图9C是表示有源矩阵基板104的制造方法的一例的工序截面图。
图9D是表示有源矩阵基板104的制造方法的一例的工序截面图。
图9E是表示有源矩阵基板104的制造方法的一例的工序截面图。
图9F是表示有源矩阵基板104的制造方法的一例的工序截面图。
图10是表示有源矩阵基板104的制造方法的一例的流程图。
图11A是例示第2电介质层18的临时开口部18p’及开口部18p与第1电介质层17的开口部17p的配置关系的俯视图。
图11B是例示第2电介质层18的临时开口部18p’及开口部18p与第1电介质层17的开口部17p的配置关系的俯视图。
图12A是表示有源矩阵基板105的显示区域的一部分的俯视图。
图12B是表示有源矩阵基板105的像素区域的一部分的截面图。
图13A是表示有源矩阵基板105的制造方法的一例的工序截面图。
图13B是表示有源矩阵基板105的制造方法的一例的工序截面图。
图13C是表示有源矩阵基板105的制造方法的一例的工序截面图。
图13D是表示有源矩阵基板105的制造方法的一例的工序截面图。
图14是表示有源矩阵基板105的制造方法的一例的流程图。
图15是表示另一有源矩阵基板106的截面图。
图16A是表示有源矩阵基板105的另一制造方法的工序截面图。
图16B是表示有源矩阵基板105的另一制造方法的工序截面图。
图16C是表示有源矩阵基板105的另一制造方法的工序截面图。
图16D是表示有源矩阵基板105的另一制造方法的工序截面图。
图17是表示有源矩阵基板105的另一制造方法的流程图。
图18是表示第2实施方式的又一有源矩阵基板107的截面图。
图19是表示变形例的有源矩阵基板的俯视图。
具体实施方式
以下,更具体地说明本发明的实施方式的有源矩阵基板和带触摸传感器的显示装置(以下称为“触摸面板”)。在以下的附图中,实际上具有相同的功能的构成要素以共同的附图标记表示,有时会省略其说明。
(第1实施方式)
<触摸面板1001的整体结构>
首先,参照附图以使用横向电场模式(例如FFS模式)的液晶显示面板的内嵌型触摸面板为例说明触摸面板的整体结构的概要。在图示的例子中,触摸面板具有互电容方式的触摸传感器,但也可以具有自电容方式的触摸传感器。
图1A和图1B分别是第1实施方式的触摸面板1001的顶视图和截面图。图1B表示沿着图1A的Ib-Ib’线的截面。
触摸面板1001具有显示区域DR和位于显示区域DR的周边的周边区域FR。虽未图示,但显示区域DR包含在x方向(第1方向)上大致平行延伸设置的多个栅极总线;在y方向(第2方向)上大致平行延伸设置的多个源极总线;以及在x方向和y方向上二维排列的多个像素(未图示)。y方向是与x方向交叉的方向,也可以与x方向正交。
显示区域DR还包含二维排列的多个触摸检测单位TU。在图示的例子中,触摸检测单位TU在x方向和y方向上二维排列。各触摸检测单位TU例如可以与2个以上的像素(未图示)对应配置。
另一方面,在周边区域FR中,设置包含驱动电路的周边电路、端子部等。在周边区域FR中,也可以搭载有包含一部分或者全部驱动电路的半导体芯片120。虽未图示,但驱动电路包含栅极驱动器、源极驱动器、扫描驱动器以及检测驱动器。这些驱动电路例如设置(安装或者一体地形成)于有源矩阵基板101。
触摸面板1001具有:有源矩阵基板101;相对基板201,其以与有源矩阵基板101相对的方式配置;以及液晶层CL,其设置于有源矩阵基板101和相对基板201之间。液晶层CL通过密封材料110封入有源矩阵基板101和相对基板201之间。
触摸面板1001具有用于对液晶层CL施加电压的一对电极和触摸传感器用的一对电极。在该例中,作为用于对液晶层CL施加电压的电极,在有源矩阵基板101设置有多个像素电极PE和共用电极CE。作为触摸传感器用的电极,设置有作为触摸传感器的发送侧电极的发射器电极TX(1)~TX(M)(以下有时省略为“发射器电极TX”。)和作为触摸传感器的接收侧电极的接收器电极RX(1)~RX(N)(以下有时省略为“接收器电极RX”。)。典型地,在有源矩阵基板101和相对基板201中的配置于观察者侧的基板上配置接收器电极RX,在两者中的配置于非观察者侧的基板上配置发射器电极TX。在从触摸面板1001的法线方向观看时,发射器电极TX与接收器电极RX交叉的部分分别成为触摸检测单位TU。在此,使有源矩阵基板101的共用电极CE还作为发射器电极TX发挥功能。
有源矩阵基板101具有:基板(例如玻璃基板)1;以及共用电极CE和多个像素电极PE,其形成于基板1的液晶层CL侧。像素电极PE与共用电极CE隔着电介质层配置。在图1中,像素电极PE配置于共用电极CE的液晶层CL侧,但也可以配置于共用电极CE的基板1侧。像素电极PE按每一像素是电独立的。共用电极CE包含空开间隔CEg排列的多个共用电极部分CEa。共用电极部分CEa可以与多个像素对应配置。在该例中,在x方向上延伸的共用电极部分CEa空开间隔CEg在y方向上排列。各共用电极部分CEa兼作发射器电极TX。各共用电极部分CEa经由触摸传感器驱动用配线TXL连接到未图示的扫描驱动器。扫描驱动器例如也可以配置于半导体芯片120。
相对基板201具有基板(例如玻璃基板)21和形成于基板21的液晶层CL侧的多个接收器电极RX。在该例中,在y方向上延伸的接收器电极RX空开间隔在x方向上排列。接收器电极RX也可以与多个像素对应配置。各接收器电极RX经由触摸传感器检测用配线RXL连接到检测驱动器。检测驱动器例如也可以配置于半导体芯片120。各接收器电极RX可以在周边区域FR中经由配置于有源矩阵基板101与相对基板201之间的接触柱130电连接到有源矩阵基板101侧。
在图1所示的例子中,共用电极部分CEa(发射器电极TX)各自在x方向上延伸,接收器电极RX各自在y方向上延伸,但也可以是各共用电极部分CEa在y方向上延伸,各接收器电极RX在x方向上延伸。
在图示的例子中,触摸面板1001具备互电容方式的触摸传感器,但也可以取而代之具备自电容方式的触摸传感器。在这种情况下,共用电极CE的多个共用电极部分CEa分别配置于对应的触摸检测单位TU,作为检测自电容的电极发挥功能。各共用电极部分CEa经由触摸传感器用的配线电连接到驱动器。互电容方式和自电容方式的触摸传感器的具体的结构、驱动方法等记载于例如特开2018-5484号公报等,是公知的,因此省略详细的说明。为了参照,将特开2018-5484号公报的全部公开内容引用到本说明书中。
此外,在本说明书中,将形成于有源矩阵基板101的触摸传感器用的电极(发射器电极TX、检测自电容的电极等)简称为“传感器电极”或者“第1电极”,将电连接到传感器电极的触摸传感器用的配线称为“触摸配线”或者“第1配线”。
<有源矩阵基板101的像素区域PIX的结构>
接下来,说明有源矩阵基板101的像素区域PIX的结构。“像素区域PIX”是与触摸面板1001的各像素对应的区域,有时也简称为“像素”。
图2A是表示有源矩阵基板101的显示区域DR的一部分的放大俯视图,图2B是沿着图2A所示的IIb-IIb’线的截面图。
有源矩阵基板101的显示区域DR具有:栅极总线GL,其在x方向上延伸;源极总线SL,其在y方向上延伸;以及多个像素区域PIX,其在x方向和y方向上按矩阵状排列。像素区域PIX是与触摸面板1001的像素对应的区域。在该例中,各像素区域PIX由栅极总线GL和源极总线SL划定。
各像素区域PIX具备支撑于基板1的TFT30、像素电极PE以及共用电极CE。共用电极CE按每一像素具有至少1个狭缝或者缺口部。
TFT30例如是顶栅型TFT。在该例中,TFT30具备:氧化物半导体层7,其配置于基板1的主面1S上;栅极电极10,其隔着栅极绝缘层9配置于氧化物半导体层7的一部分上;源极电极8s和漏极电极8d。氧化物半导体层7包含在从基板1的法线方向观看时与栅极电极10重叠的沟道区域7c以及分别配置于沟道区域7c的两侧的第1区域7s和第2区域7d。第1区域7s和第2区域7d也可以是与沟道区域7c相比电阻率较小的低电阻区域。
还可以具备遮光层3,遮光层3隔着下部绝缘层5配置于氧化物半导体层7的基板1侧。遮光层3以在从基板1的主面1S的法线方向观看时与沟道区域7c至少部分重叠的方式配置,具有遮挡从背光源侧去往沟道区域7c的光的功能。此外,遮光层3也可以连接到固定电位。
在氧化物半导体层7、栅极绝缘层9以及栅极电极10之上配置有上部绝缘层11。源极电极8s配置于上部绝缘层11上和形成于上部绝缘层11的开口部(源极侧开口部)11s内,在源极侧开口部11s内与氧化物半导体层7的一部分(在该例中为第1区域7s的一部分)电连接。同样地,漏极电极8d配置于上部绝缘层11上和形成于上部绝缘层11的开口部(漏极侧开口部)11d内,在漏极侧开口部11d内与氧化物半导体层7的另一部分(在该例中为第2区域7d的一部分)电连接。源极电极8s、漏极电极8d也可以是分别与氧化物半导体层7直接接触。在本说明书中,将源极电极8s与第1区域7s的连接部称为“源极接触部”,将漏极电极8d与第2区域7d的连接部称为“漏极接触部”。
栅极电极10电连接到对应的栅极总线GL,源极电极8s电连接到对应的源极总线SL。可以是栅极电极10形成于与栅极总线GL相同的层(栅极金属层)内,源极电极8s和漏极电极8d形成于与源极总线SL相同的层(源极金属层)内。漏极电极8d与像素电极PE电连接。在本说明书中,将漏极电极8d与像素电极PE的连接部称为“像素接触部”或者“第1接触部”。在该例中,在像素接触部中,漏极电极8d与像素电极PE在设置于位于它们之间的绝缘层的开口部(以下称为“第1接触孔”)CHp内被连接。
TFT30被层间绝缘层16覆盖。层间绝缘层16可以包含有机绝缘层13。有机绝缘层13可以具有能作为平坦化膜发挥功能的厚度(例如1μm以上)。层间绝缘层16例如可以具有无机绝缘层12与配置在无机绝缘层12上的有机绝缘层13的层叠结构。
在层间绝缘层16上配置有多个像素电极PE。在像素电极PE上隔着电介质层(也称为“第1电介质层”。)17配置有共用电极CE。即,像素电极PE位于共用电极CE与层间绝缘层16之间。在本说明书中,有时将与像素电极PE由相同透明导电膜形成的层称为像素电极层,将与共用电极CE由相同透明导电膜形成的层称为共用电极层。另外,有时将这些电极层中的位于基板1侧的层称为“第1透明电极层”,将位于第1透明电极层上的层称为“第2透明电极层”。在本实施方式中,第1透明电极层是包含像素电极PE的像素电极层,第2透明电极层是包含共用电极CE的共用电极层,但也可以是第1透明电极层包含共用电极CE,第2透明电极层包含像素电极PE。形成于第2透明电极层的透明电极按每一像素具有狭缝19s或者缺口部。
像素电极PE按每一像素是分离的。像素电极PE与TFT30的漏极电极8d电连接。在该例中,像素电极PE在形成于层间绝缘层16和第1电介质层17的第1接触孔CHp内与漏极电极8d接触。
共用电极CE可以不按每一像素分离。在本实施方式中,共用电极CE分割为多个共用电极部分CEa,各共用电极部分CEa作为触摸传感器用的第1电极(以下称为“传感器电极”)发挥功能。
在显示区域DR中还配置有多个触摸传感器用的第1配线(以下称为“触摸配线”)TL。触摸配线TL只要对于各共用电极部分CEa设置有至少1个即可,也可以不是配置于全部像素区域PIX。在本说明书中,将由与触摸配线TL(在触摸配线TL具有层叠结构的情况下为其至少1层)相同的导电膜(典型地为金属膜)形成的层称为“触摸配线层”。
触摸配线TL电连接到对应的共用电极部分CEa。在本说明书中,将触摸配线TL与共用电极部分CEa的连接部称为“触摸配线接触部”或者“第2接触部”。在该例中,在触摸配线接触部,触摸配线TL与共用电极部分CEa在设置于位于它们之间的绝缘体的开口部(以下称为“第2接触孔”)CHt内被连接。在该例中,第2接触孔CHt是形成于电介质层17的开口部17t。触摸配线接触部只要对于1个共用电极部分CEa设置有至少1个即可。优选对于1个共用电极部分CEa设置2个以上的触摸配线接触部。
触摸配线TL例如可以在y方向上延伸到对应的共用电极部分CEa为止。在该例中,在从有源矩阵基板101的法线方向观看时,触摸配线TL在多个源极总线SL中的1个源极总线SL之上沿着该源极总线SL延伸。
另外,在图示的例子中,各触摸配线TL具有包含下部配线部t1和上部配线部t2的层叠结构,其中,下部配线部t1与像素电极PE由相同透明导电膜(在此在第1透明电极层内)形成,上部配线部t2与下部配线部t1的上表面接触。上部配线部t2由金属膜(在触摸配线层内)形成。在下部配线部t1与上部配线部t2之间未设有绝缘层。即,在形成包含触摸配线TL的下部配线部t1的第1透明电极层之后,不隔着绝缘层的形成工序地形成有包含触摸配线TL的上部配线部t2的触摸配线层。由此,能减少形成第2接触孔CHt的绝缘膜的数量,能减小触摸配线TL的电阻。也可以是,在从基板1的法线方向观看时,下部配线部t1的侧面与上部配线部t2的侧面是对齐的。另外,下部配线部t1和上部配线部t2也可以具有与源极总线SL大致相同的宽度。
在本实施方式中,在从基板1的法线方向观看时,像素接触部以与漏极接触部的漏极侧开口部11d至少部分重叠的方式配置。即,像素接触部的第1接触孔CHp的底面与漏极侧开口部11d的底面至少部分重叠。另外,触摸配线接触部以与源极接触部的源极侧开口部至少部分重叠的方式配置。即,触摸配线接触部的第2接触孔CHt的底面与源极侧开口部11s的底面至少部分重叠。此外,在本说明书中,接触孔或者开口部的“底面”是指成为基底的导电层的上表面中的通过接触孔或者开口部露出而成为连接面的部分。
在有源矩阵基板101的显示区域DR中,形成有漏极接触部、源极接触部、像素接触部以及触摸配线接触部的区域是来自背光源的光被遮挡或者液晶分子的取向发生紊乱的区域,因此是无助于光的透射率的区域。这种无助于光的透射率的区域通常被设置于相对基板的黑矩阵等遮光。因而,通过在从基板1的法线方向观看时,将像素接触部和漏极接触部以至少部分重叠的方式配置,并且将触摸配线接触部和源极接触部以至少部分重叠的方式配置,使无助于光的透射率的区域重叠,能抑制接触部所致的像素开口率(像素中的有助于光的透射率的区域的面积比例)的降低。
也可以使比较厚、还能作为平坦化膜发挥功能的有机绝缘层13介于源极接触部与触摸配线接触部之间。由此,即使将源极接触部和触摸配线接触部重叠配置,这些接触部也不易相互受到干扰。另外,由于通过有机绝缘层13减小了漏极侧开口部11d所致的台阶,因此即使将第2接触孔CHt重叠在漏极侧开口部11d上,也不易产生漏极侧开口部11d的台阶的影响所致的不良。因而,能提高这些接触部的可靠性。而且,通过将触摸配线TL和源极总线SL隔着比较厚的有机绝缘层13重叠配置,不仅能抑制电容的增加而且能抑制触摸配线TL所致的像素开口率的降低。
图3A和图3B是分别表示参考例1和参考例2的有源矩阵基板的接触部的配置的俯视图,图3C是表示实施例1的有源矩阵基板的接触部的配置的俯视图。为了简化,对与图2A和图2B同样的构成要素附上相同的编号。
在参考例1的有源矩阵基板中,在平坦化膜13的基板1侧形成有触摸配线TL。在参考例1中,在触摸配线接触部中,在比较厚的平坦化膜13形成第2接触孔CHt,因此触摸配线接触部的尺寸变大。另外,当在平坦化膜13形成第2接触孔CHt的工序中发生位置偏移时,触摸配线TL与源极总线之间的绝缘层(相当于无机绝缘层12)也有可能会被蚀刻。此时,源极总线与共用电极CE会漏电。若为了能抑制这种漏电而进行像素设计,则难以使触摸配线接触部与源极总线重叠。特别是,在应用于像素尺寸小的高分辨率面板的情况下,触摸配线接触部、像素接触部以及源极接触部在从基板1的法线方向观看时以在y方向上排列的方式配置。由于需要对这些接触部进行遮光,所以像素区域中的需要进行遮光的范围(遮光范围)M扩大,像素开口率会降低。
在参考例2的有源矩阵基板中,在层间绝缘层16之上形成有触摸配线TL。在参考例2中,与参考例1同样地,像素接触部以与漏极接触部重叠的方式配置,但触摸配线接触部配置于与源极接触部不同的位置。不过,由于层间绝缘层16介于触摸配线TL和源极金属层之间,因此能将触摸配线接触部配置于源极总线SL上,与参考例1相比更能改善像素开口率。然而,在从基板1的主面1S的法线方向观看时,接触部配置于3个部位,因此若想要在电极/配线之间确保足够的间隔,则有可能无法使遮光范围M足够小。
相对于此,在实施例1中,触摸配线接触部和源极接触部以相互重叠的方式配置,与参考例1、2相比,能减小遮光范围M的宽度,因此能抑制接触部所致的像素开口率的降低。
将参考例1、参考例2以及实施例1的像素开口率的一例在表1中示出。在表1中,示出了将各像素的x方向的宽度设为25μm、将y方向的宽度设为75μm时的像素开口率(%)以及与参考例1的像素开口率之比(开口率比)。
[表1]
参考例1 参考例2 实施例1
像素开口率(%) 33.01 35.55 42.32
与参考例1的像素开口率之比[-] 100.0 107.7 128.2
根据表1可知,实施例1的像素开口率比参考例1高了大致30%。相对于可见光的透射率由像素开口率决定,因此可确认,通过将接触部的配置优化而能大幅改善高分辨率的液晶显示面板的透射率。
如实施例1(图3C)和图2A所示,也可以是在从基板1的法线方向观看时,源极接触部(源极侧开口部11s)和触摸配线接触部(第2接触孔CHt)与1个源极总线SL重叠。由此,能进一步提高像素开口率。
另外,还可以是像素接触部、触摸配线接触部、漏极接触部以及源极接触部(即,第1接触孔CHp、第2接触孔CHt、漏极侧开口部11d以及源极侧开口部11s的底面)在从基板1的法线方向观看时均既不与栅极总线GL重叠也不与栅极电极10重叠。由此,不仅能减少栅极金属层与源极金属层之间的电容,还能改善像素开口率。以往,当将上述的4个接触部以与栅极总线GL不重叠的方式配置时,有时会由于接触部而致使遮光范围M大幅增加,但通过应用本实施方式的接触部的配置,能更有效地抑制像素开口率的降低。
也可以是,像素接触部和漏极接触部配置于该像素、即配置有在像素接触部连接到TFT30的像素电极PE的像素PIX(1)内,源极接触部和触摸配线接触部配置于与该像素相邻的其它像素(在此为在y方向上相邻的像素)PIX(2)内。也可以如图所示,在从基板1的法线方向观看时,像素接触部及漏极接触部与源极接触部及触摸配线接触部隔着栅极总线GL配置于两侧。由此,能进一步减小遮光范围M的宽度。
本实施方式的接触部的配置能广泛应用于使用具有源极侧开口部和漏极侧开口部的TFT作为像素TFT的有源矩阵基板。像素TFT既可以是顶栅结构TFT,也可以是蚀刻阻挡型的底栅结构TFT。特别是,能适用于使用顶栅结构TFT的有源矩阵基板。
如在图2B中例示的,优选在顶栅结构TFT中,源极电极8s和漏极电极8d在形成于绝缘体的源极侧开口部11s和漏极侧开口部11d内与氧化物半导体层7的上表面连接,并且,在从基板1的法线方向观看时,栅极电极10既不与源极电极8s重叠也不与漏极电极8d重叠。由此,能减小栅极电极10与源极电极8s及漏极电极8d之间的寄生电容。此外,在将这种结构的TFT用作像素TFT的以往的有源矩阵基板中,源极接触部和漏极接触部是与栅极总线GL(栅极电极10)空开间隔配置,而且,除了这些接触部以外还配置像素接触部和触摸配线接触部,因此由于接触部而遮光范围M特别易于变大。因而,通过在具有上述结构的TFT的有源矩阵基板中应用本实施方式的接触部的配置,能得到更显著的效果。
另一方面,在使用底栅结构TFT作为像素TFT的情况下,还将栅极电极用作遮光膜,并且,为了抑制像素开口率,希望是增大栅极总线GL的宽度而将底栅结构TFT配置于栅极总线GL上的构成。然而,在该构成中,栅极总线GL与源极总线SL的交叉部的面积变大,因此,电容会增加,源极总线SL的负荷会增大。与此相对,若使用顶栅结构TFT,则在栅极总线GL与源极总线SL的交叉部,可以既不配置遮光膜也不配置接触部,因此能使交叉部的面积不到例如1/5。因此,与使用底栅结构TFT的情况相比,能减少总线的负荷。
在触摸配线接触部和源极接触部各自的面积已定的情况下,这些接触部的重叠面积越大,越能减小应遮光的区域,因此越能更有效地提高像素开口率。在此所说的“重叠面积”是指在从基板1的法线方向观看时,触摸配线接触部的第2接触孔CHt的底面与源极接触部的源极侧开口部11s的底面重叠的区域的面积Sr。另外,“应遮光的区域”是指在从基板1的法线方向观看时,触摸配线接触部的第2接触孔CHt和源极接触部的源极侧开口部11s中的至少任意一者所存在的区域(以下称为“接触区域”)。
在此,将源极侧开口部11s和第2接触孔CHt中的底面较大的接触孔设为第1开口部H1,较小的接触孔设为第2开口部H2,将第1开口部H1和第2开口部H2的底面的面积分别设为S(H1)、S(H2)。另外,将重叠面积Sr相对于较小的第2开口部H2的面积S(H2)的比例R设为“重叠面积的比例”。如在图4中示意性示出的,重叠面积的比例R越大,越能减少接触区域的面积Sc。具体地说,在面积S(H1)、S(H2)已定的情况下,若在从基板1的主面1S的法线方向观看时,第1开口部H1的内侧配置第2开口部H2(重叠面积的比例R:100%),则接触区域的面积Sc成为最小值,等于第1开口部H1的面积S(H1)(Sc=S(H1))。当相对于第1开口部H1将第2开口部H2的位置错开而减小重叠面积Sr(即减小重叠面积的比例R)时,接触区域的面积Sc会增加。但是,接触区域的面积Sc不到第1开口部H1和第2开口部H2的底面的面积之和(Sc<S(H1)+S(H2))。
在本实施方式中,重叠面积的比例R例如可以是30%以上100%以下,优选是50%以上100%以下。若是30%以上,则能更可靠地抑制触摸配线接触部所致的像素开口率的降低。
也可以是,第2接触孔CHt和源极侧开口部11s的底面整体在从基板1的主面1S的法线方向观看时与源极电极8s(或者包含源极电极8s以及与源极电极8s形成为一体的源极总线SL的源极导电部)重叠。通过增大重叠面积Sr,能不使源极电极8s的尺寸增大地将第2接触孔CHt和源极侧开口部11s配置在源极电极8s上。
在上述中,说明了源极侧开口部11s与第2接触孔CHt重叠的面积的比例R,但漏极侧开口部11d与第1接触孔CHp重叠的面积的比例R例如也可以是30%以上100%以下,优选是50%以上100%以下。
接下来,参照附图更具体地说明触摸配线接触部与源极接触部的配置关系。
图5A~图5D是分别例示触摸配线接触部的第2接触孔CHt与源极接触部的源极侧开口部11s的配置关系的俯视图。在这些例子中,均是在从基板1的主面1S的法线方向观看时,源极侧开口部11s和第2接触孔CHt配置于包含源极电极8s以及与源极电极8s一体地形成的1个源极总线的源极导电部的内侧。
可以如图5A所示,在从基板1的法线方向观看时,第2接触孔CHt位于源极侧开口部11s的内侧。此时的第1接触区域的面积Sc等于源极侧开口部11s的底面的面积。重叠面积的比例R是100%。
当产生了源极电极8s与氧化物半导体层7的接触不良时,这会成为液晶显示面板的不良,因此针对源极接触部要求稳定性。因此,优选源极侧开口部11s的尺寸较大。另一方面,触摸配线接触部通常在1个传感器电极(共用电极部分CEa)上设置有两处以上。由于这种冗余结构,因此,即使在其中一处产生了触摸配线TL与传感器电极的接触不良,触摸传感器的驱动也往往不会产生问题。另外,在设计上,有时优选第2接触孔CHt的宽度与触摸配线TL的宽度相等或者是其以下。因而,通过如图5A所示,使第2接触孔CHt的尺寸小于源极侧开口部11s,在源极侧开口部11s的内侧配置第2接触孔CHt,不仅能确保源极接触部的稳定性,而且能进一步提高像素开口率。
或者,也可以如图5B所示,在从基板1的法线方向观看时,源极侧开口部11s位于第2接触孔CHt的内侧。此时的第1接触区域的面积Sc等于第2接触孔CHt的底面的面积。重叠面积的比例R是100%。
在使源极总线SL的一部分作为源极电极8s发挥功能的情况下,会在源极总线SL设置源极侧开口部11s。此时,当产生了源极侧开口部11s的锥形不良时,有可能源极电极8s与氧化物半导体层7之间的接触电阻上升或者源极总线SL的配线电阻增大。对此,当如图5B所示,在相比于源极总线SL中的形成源极侧开口部11s的区域的宽度(源极电极8s的x方向的宽度)ws而使源极侧开口部11s的宽度(x方向的宽度)w1足够小时,即使产生锥形不良,也能确保如箭头41所示的电流路径。源极侧开口部11s的宽度w1可以是源极电极8s的宽度ws的例如1/3以下或者1/4以下。另外,在将源极侧开口部11s的宽度w1抑制为较小的情况下,通过在从基板1的法线方向观看时,将第2接触孔CHt的整体以与源极导电部重叠的方式配置,并且在第2接触孔CHt的内侧配置源极侧开口部11s,能更有效地提高像素开口率。
在图5C所示的例子中,在从基板1的主面1S的法线方向观看时,源极侧开口部11s在源极导电部的内侧仅配置于源极总线SL的中央线43的单侧(在此为左侧)。中央线43是将源极总线的宽度(在y方向上)一分为二的线。由此,即使产生源极侧开口部11s的锥形不良,也能确保如箭头45所示的电流路径。源极侧开口部11s的宽度w1也可以相比于源极电极8s的宽度ws足够小。例如,源极侧开口部11s的宽度w1可以是源极电极8s(或者源极导电部)的宽度ws的例如1/3以下或者1/4以下。另一方面,第2接触孔CHt也可以在源极导电部的内侧以与中央线43重叠的方式配置。仅第2接触孔CHt的一个端部(在此为左侧的端部)与源极侧开口部11s重叠。重叠面积的比例R例如可以是30%以上且不到100%,优选是40%以上80%以下。
源极侧开口部11s例如可以在y方向上横穿第2接触孔CHt的一个端部(在图示的例子中为左侧的端部)而延伸。由此,不仅能确保源极侧开口部11s的面积,而且能抑制源极总线SL的电阻的增大,还能更有效地提高像素开口率。
也可以如图5D所示,在从基板1的法线方向观看时,源极侧开口部11s和第2接触孔CHt均以与源极导电部重叠的方式配置,并且以相互交叉的方式(以相互横穿的方式)配置。此时的重叠面积的比例R例如可以是50%以上90%以下。
例如,第2接触孔CHt的x方向的宽度w2可以大于源极侧开口部11s的x方向的宽度w1。也可以如图所示,源极侧开口部11s具有在y方向上长的形状,第2接触孔CHt具有在x方向上长的形状。通过减小源极侧开口部11s的宽度w1,即使产生源极侧开口部11s的锥形不良,也易于在y方向上确保电流路径。关于第2接触孔CHt,触摸配线TL(未图示)的连接对象是共用电极CE(共用电极部分CEa),其连接部分的面积往往比源极导电部的面积大,另外,触摸配线接触部是在1个共用电极部分CEa上设置两处以上的冗余结构,因此无需如源极接触部那样通过接触孔的形状或配置来确保电流路径。因而,通过增大第2接触孔CHt的x方向的宽度w2(例如使宽度w2大于触摸配线TL的宽度(未图示)),能形成更稳定的源极配线接触部。另外,根据该构成,通过使源极侧开口部11s与第2接触孔CHt的平面形状不同,而有通过针对有源矩阵基板的图像检查等易于检测出不良的优点。
<有源矩阵基板101的制造方法>
以下,参照图6A~图6K和图7说明有源矩阵基板101的制造方法。
图6A~图6K是分别表示有源矩阵基板101的制造方法的一例的工序截面图。图7是表示有源矩阵基板101的制造方法的一例的流程图。
·STEP(步骤)1-1~STEP1-3
如图6A所示,在基板1上形成遮光层3、下部绝缘层5以及氧化物半导体层7。
首先,在基板1上形成遮光层用导电膜并通过公知的光刻进行遮光层用导电膜的图案化,由此得到遮光层3(STEP1-1)。
作为基板1,例如能使用玻璃基板、硅基板、具有耐热性的塑料基板(树脂基板)等。
遮光层用导电膜没有特别限定,但能使用例如包含从铝(Al)、铬(Cr)、铜(Cu)、钽(Ta)、钛(Ti)、钼(Mo)或者钨(W)选择的元素的金属膜或者以这些元素为成分的合金膜等。另外,也可以使用包含这些之中的多个膜的层叠膜。例如,能使用具有钛膜-铝膜-钛膜的3层结构或者钼膜-铝膜-钼膜的3层结构的层叠膜。此外,遮光层用导电膜不限于3层结构,也可以具有单层或两层结构、或者4层以上的层叠结构。在此,作为遮光层用导电膜,使用以Ti膜(厚度:15~70nm)为下层、以Cu膜(厚度:200~400nm)为上层的层叠膜。
接下来,形成覆盖遮光层3的下部绝缘层5(厚度:例如200nm以上600nm以下)(STEP1-2)。
作为下部绝缘层5,能适当地使用氧化硅(SiO2)层、氮化硅(SiNx)层、氧化氮化硅(SiOxNy;x>y)层、氮化氧化硅(SiNxOy;x>y)层、氧化铝层或者氧化钽层等。下部绝缘层5也可以具有层叠结构。在此,作为下部绝缘层5,例如使用CVD法形成以氮化硅(SiNx)层(厚度:50~600nm)为下层、以氧化硅(SiO2)层(厚度:50~600nm)为上层的层叠膜。当使用氧化硅膜等氧化物膜作为下部绝缘层5(在下部绝缘层5具有层叠结构的情况下,作为其最上层)时,能通过氧化物膜减少在之后形成的氧化物半导体层的沟道区域产生的氧化缺损,因此能抑制沟道区域的低电阻化。
接着,在下部绝缘层5上,例如使用溅射法形成氧化物半导体膜(厚度:例如15nm以上200nm以下),通过公知的光刻进行氧化物半导体膜的图案化,由此形成氧化物半导体层7(STEP1-3)。氧化物半导体膜没有特别限定,例如可以是In-Ga-Zn-O系半导体膜。
·STEP1-4
接下来,如图6B所示,形成栅极绝缘层9和栅极电极10。
首先,以覆盖氧化物半导体层7的方式将绝缘膜(厚度:例如80nm以上250nm以下)和栅极用导电膜(厚度:例如50nm以上500nm以下)按此顺序形成。栅极用导电膜例如能使用溅射法形成,绝缘膜例如能使用CVD法形成。
作为绝缘膜,能使用与下部绝缘层5同样的绝缘膜(作为下部绝缘层5例示的绝缘膜)。当使用氧化硅膜等氧化物膜作为绝缘膜时,能通过氧化物膜减少在氧化物半导体层7的沟道区域产生的氧化缺损,因此能抑制沟道区域的低电阻化。
作为栅极用导电膜,例如能使用包含从铝(Al)、铬(Cr)、铜(Cu)、钽(Ta)、钛(Ti)、钼(Mo)或者钨(W)选择的元素的金属膜或者以这些元素为成分的合金膜等。另外,也可以使用包含这些之中的多个膜的层叠膜。例如,能使用具有钛膜-铝膜-钛膜的3层结构或者钼膜-铝膜-钼膜的3层结构的层叠膜。此外,栅极用导电膜不限于3层结构,也可以具有单层或两层结构、或者4层以上的层叠结构。作为栅极用导电膜,也可以使用以Ti膜(厚度:15~70nm)为下层、以Cu膜(厚度:200~400nm)为上层的层叠膜。
在此,作为绝缘膜,例如使用氧化硅(SiO2)膜。作为栅极用导电膜,例如使用以Ti膜(厚度:15~70nm)为下层、以Cu膜(厚度:200~400nm)为上层的层叠膜。
接着,使用未图示的第1抗蚀剂掩模进行栅极用导电膜的图案化,形成栅极电极10。能通过湿式蚀刻或者干式蚀刻进行栅极用导电膜的图案化。
其后,使用上述第1抗蚀剂掩模进行绝缘膜的图案化。或者,也可以在将上述第1抗蚀剂掩模除去后,以图案化后的栅极电极10为掩模进行绝缘膜的图案化。由此,得到栅极绝缘层9。能通过例如干式蚀刻进行绝缘膜的图案化。
在进行绝缘膜的图案化时,下部绝缘层5中的未被氧化物半导体层覆盖的部分的表层部有时也被蚀刻(过蚀刻)。
在本工序中,使用同一掩模进行绝缘膜和栅极用导电膜的图案化,因此栅极绝缘层9的侧面与栅极电极10的侧面在厚度方向上对齐。即,在从基板1的主面1S的法线方向观看时,栅极绝缘层9的周缘与栅极电极10的周缘对齐。
此外,也可以进行绝缘膜的形成和图案化来形成栅极绝缘层9,接着,进行栅极用导电膜的形成和图案化来形成栅极电极10。
·STEP1-5
接着,以栅极电极10为掩模进行氧化物半导体层7的低电阻化处理。作为低电阻化处理,例如可以进行等离子体处理。由此,在从基板1的主面1S的法线方向观看时,氧化物半导体层7中的与栅极电极10和栅极绝缘层9不重叠的第1区域7s和第2区域7d成为电阻率比与栅极电极10和栅极绝缘层9重叠的沟道区域7c低的低电阻区域。第1区域7s和第2区域7d也可以是导电体区域(例如片电阻:200Ω/□以下)。
在低电阻化处理(等离子体处理)中,也可以将氧化物半导体层7中的未被栅极电极10覆盖的部分暴露于包含还原性等离子体或者掺杂元素的等离子体(例如氩等离子体)。由此,在氧化物半导体层7中的露出的部分7s、7d的表面附近,电阻降低,成为低电阻区域。氧化物半导体层7中的被栅极电极10遮掩的部分7c作为半导体区域而残留。此外,低电阻化处理的方法和条件等记载于例如特开2008-40343号公报中。为了参照,将特开2008-40343号公报的全部公开内容引用到本说明书中。
·STEP1-6
接下来,如图6C所示,形成覆盖栅极电极10和氧化物半导体层7的上部绝缘层11。作为上部绝缘层11,能使氧化硅膜、氮化硅膜、氧化氮化硅膜、氮化氧化硅膜等无机绝缘层以单层或者层叠的方式形成。无机绝缘层的厚度可以是100nm以上500nm以下。当使用氮化硅膜等使氧化物半导体还原的绝缘膜形成上部绝缘层11时,能较低地维持氧化物半导体层7中的与上部绝缘层11接触的区域(在此为第1区域7s和第2区域7d)的电阻率,因此是优选的。在此,作为上部绝缘层11,例如用CVD法形成SiNx层(厚度:300nm)。
其后,例如通过干式蚀刻在上部绝缘层11形成达到氧化物半导体层7的第1区域7s和第2区域7d的源极侧开口部11s和漏极侧开口部11d。
·STEP1-7
接下来,如图6D所示,在上部绝缘层11上形成包含源极电极8s、漏极电极8d以及源极总线SL的源极金属层。在此,在上部绝缘层11上和开口部11s、11d内形成源极用导电膜(厚度:例如50nm以上500nm以下),通过公知的光刻进行源极用导电膜的图案化,由此得到源极金属层。能通过干式蚀刻或者湿式蚀刻进行图案化。这样得到TFT30。
作为源极用导电膜,例如能使用从铝(Al)、铬(Cr)、铜(Cu)、钽(Ta)、钛(Ti)、钼(Mo)或者钨(W)选择的元素、或者以这些元素为成分的合金等。例如,可以具有钛膜-铝膜-钛膜的3层结构、钼膜-铝膜-钼膜等3层结构等。此外,源极用导电膜不限于3层结构,也可以具有单层或两层结构、或者4层以上的层叠结构。在此,使用以Ti膜(厚度:15~70nm)为下层、以Cu膜(厚度:200~400nm)为上层的层叠膜。
·STEP1-8
接着,如图6E所示,以覆盖TFT30和源极总线SL的方式形成层间绝缘层16。层间绝缘层16包含能作为平坦化膜发挥功能的有机绝缘层13。作为层间绝缘层16,也可以将无机绝缘层(厚度:例如100nm以上400nm以下)12和有机绝缘层(厚度:例如1~3μm,优选2~3μm)13按此顺序形成。无机绝缘层12的材料可以与作为上部绝缘层11的材料例示出的材料相同。在此,作为无机绝缘层12,用CVD法形成SiNx层(厚度:例如200nm)。有机绝缘层13例如可以是包含感光性树脂材料的有机绝缘膜。
其后,如图6F所示,进行有机绝缘层13的图案化,形成开口部13p。接下来,可以如图6G所示,将形成有开口部13p的有机绝缘层13用作掩模,在无机绝缘层12形成开口部12p。由此,能得到包括开口部12p、13p的第1接触孔CHp。
或者,也可以在进行有机绝缘层13的图案化之后,另外设置蚀刻掩模,使用蚀刻掩模进行无机绝缘层12的图案化,形成将漏极电极8d露出的开口部12p。
·STEP1-9
接着,如图6H所示,在层间绝缘层16上和第1接触孔CHp内形成用于形成像素电极PE的第1透明导电膜(厚度:20~300nm)15’。在此,例如通过溅射法形成铟-锌氧化物膜作为第1透明导电膜15’。作为第1透明电极膜的材料,能使用铟-锡氧化物(ITO)、铟-锌氧化物、ZnO等金属氧化物。
·STEP1-10
接下来,如图6I所示,在第1透明导电膜15’上使用金属膜形成触摸配线TL的上部配线部t2。
具体地说,首先,在第1透明导电膜15’上形成用于形成触摸配线的金属膜(厚度:50~500nm)。作为金属膜,能使用与栅极用导电膜或者源极用导电膜同样的导电膜。在此,例如通过溅射法形成以Cu膜或Al为主体的单层或者层叠结构膜。其后,进行金属膜的图案化,得到触摸配线TL的上部配线部t2。
·STEP1-11
接着,如图6J所示,例如通过湿式蚀刻进行第1透明导电膜15’的图案化,由此得到包含像素电极PE和触摸配线TL的下部配线部t1的第1透明电极层。
像素电极PE按每一像素是分离的。各像素电极PE在第1接触孔CHp内电连接到TFT30的漏极电极8d。另外,像素电极PE与下部配线部t1分开配置,是电分离的。在图案化中,也可以使上部配线部t2作为掩模发挥功能。由此,下部配线部t1的侧面与上部配线部t2的侧面对齐。
·STEP1-12
接下来,如图6K所示,在第1透明电极层和触摸配线TL上形成电介质层(厚度:50~500nm)17。电介质层17的材料可以与作为无机绝缘层12的材料例示出的材料相同。在此,作为电介质层17,例如用CVD法形成SiN膜。
其后,进行电介质层17的蚀刻,形成将触摸配线TL的上部配线部t2的一部分露出的开口部17t(第2接触孔CHt)。
·STEP1-13
接下来,虽未图示,但在电介质层17上和第2接触孔CHt内形成第2透明导电膜(厚度:20~300nm)。其后,进行第2透明导电膜的图案化,在电介质层17上形成包含共用电极CE的第2透明电极层。在共用电极CE中,按每一像素设置至少1个开口部(或者缺口部)。另外,共用电极CE被分离为多个共用电极部分CEa,各共用电极部分CEa在第2接触孔CHt内与触摸配线TL电连接。
第2透明导电膜的材料可以与作为第1透明导电膜的材料例示出的材料相同。第2透明导电膜可以是单层,也可以是层叠膜。在此,例如,通过溅射法形成铟-锌氧化物膜。这样,制造图2A和图2B所示的有源矩阵基板101。
在上述方法中,绝缘层不介于第1透明电极层与触摸配线层之间,因此能减少应形成接触孔的绝缘层的数量。上述的各接触部等通常是考虑到对准偏差(例如1μm)、形成于各绝缘层的开口部的尺寸的差别(例如±1μm)等而设计的。通过减少绝缘层的数量,能减小接触部(第1接触孔CHp、第2接触孔CHt)的尺寸,因此能更有效地抑制接触部所致的像素开口率的降低。
<变形例>
图8A~图8C是分别例示本实施方式的其它有源矩阵基板102、103、104的截面图。
在图8A所示的有源矩阵基板102中,触摸配线TL仅包括由金属膜形成的层。这种构成可以通过在进行第1透明导电膜15’的图案化而形成像素电极PE之后形成用于形成触摸配线TL的金属膜并进行图案化而得到。或者,也可以在层间绝缘层16上形成触摸配线TL之后通过第1透明导电膜15’的形成和图案化而形成像素电极PE。另外,在图8A所示的例子中,也可以在包含像素电极PE的第1透明电极层与包含触摸配线TL的触摸配线层之间形成有其它电介质层。
在图8B所示的有源矩阵基板103中,触摸配线层隔着第2电介质层18配置于共用电极CE之上。触摸配线TL在设置于第2电介质层18的开口部18t(第2接触孔CHt)内连接到共用电极CE。
在图8C所示的有源矩阵基板104中,触摸配线层配置于包含像素电极PE的第1透明电极层的基板1侧。在此,在层间绝缘层16上按顺序形成有触摸配线层、第2电介质层18、包含像素电极PE的第1透明电极层、第1电介质层17和包含共用电极CE的第2透明电极层。第2接触孔CHt包括形成于电介质层17的开口部17t和形成于第2电介质层18的开口部18t。第1接触孔CHp包括分别形成于无机绝缘层12、有机绝缘层13、第2电介质层18的开口部12p、13p、18p。
<有源矩阵基板104的制造方法>
以图8C所示的有源矩阵基板104为例说明本实施方式的另一制造方法。图9A~图9F分别是用于说明有源矩阵基板104的制造方法的一例的工序截面图。图10是表示有源矩阵基板104的制造方法的一例的流程图。在以下的说明中,关于各层的形成方法、材料、厚度等,在与有源矩阵基板101同样的情况下,适当地省略说明。
·在STEP2-1~2-7中,用与STEP1-1~1-7同样的方法形成TFT30。
·STEP2-8
接着,以覆盖TFT30和源极总线SL的方式形成层间绝缘层16。在此,作为层间绝缘层16,将无机绝缘层12和有机绝缘层13按此顺序形成。其后,如图9A所示,进行有机绝缘层13的图案化,形成将无机绝缘层12的一部分露出的开口部13p。
·STEP2-9
接下来,如图9B所示,在层间绝缘层16上形成用于形成触摸配线的金属膜,并进行金属膜的图案化,由此得到触摸配线TL。
·STEP2-10
接下来,如图9C所示,在层间绝缘层16和触摸配线TL上形成电介质层18(厚度:50~500nm)。第2电介质层18的材料可以与作为无机绝缘层12的材料例示出的材料相同。
·STEP2-11
接着,如图9D所示,使用相同抗蚀剂掩模(也称为第1掩模。)进行第2电介质层18和无机绝缘层12的图案化(湿式蚀刻或者干式蚀刻)。由此,在第2电介质层18,形成将触摸配线TL的一部分露出的临时开口部18t’以及与开口部13p至少部分重叠的开口部18p,并且将在无机绝缘层12中的开口部13p露出的部分的一部分或者全部除去,形成将漏极电极8d的一部分露出的开口部12p。开口部12p的侧面的至少一部分与开口部18p对齐。根据开口部18p与开口部13p的位置关系,开口部12p的侧面的另一部分也与开口部13p对齐。由此,能得到包括开口部18p、12p、13p的第1接触孔CHp。
·STEP2-12
接着,如图9E所示,形成包含像素电极PE的第1透明电极层。
首先,在第2电介质层18上、第2电介质层18的临时开口部18t’内以及第1接触孔CHp内形成第1透明导电膜。接着,例如通过湿式蚀刻进行第1透明导电膜的图案化,由此得到包含像素电极PE的第1透明电极层。第1透明导电膜中的位于第2电介质层18的临时开口部18t’内的部分被除去。
·STEP2-13
接下来,如图9F所示,在第1透明电极层上、第2电介质层18上以及临时开口部18t’内形成第1电介质层17。
·STEP2-14
接下来,如图9F所示,使用抗蚀剂掩模(也称为第2掩模。)进行第1电介质层17的图案化,以与临时开口部18t’至少部分重叠的方式形成开口部17t。在图案化中,可以使用干式蚀刻,也可以使用湿式蚀刻。此时,也可以使用上述抗蚀剂掩模同时将第2电介质层18也图案化。由此,形成比临时开口部18t’大的开口部18t。这样,得到包括开口部17t和开口部18t、将触摸配线TL的一部分露出的第2接触孔CHt。
此外,在STEP2-12中,也可以在第2电介质层18不设置临时开口部18t’。在该情况下,也可以在本工序中使用同一掩模同时进行第1电介质层17和第2电介质层18的图案化。
·STEP2-15
接下来,在第1电介质层17上和第2接触孔CHt内形成第2透明导电膜。其后,进行第2透明导电膜的图案化,在第1电介质层17上形成包含共用电极CE的第2透明电极层。共用电极CE被分离为多个共用电极部分CEa,各共用电极部分CEa在第2接触孔CHt内与触摸配线TL电连接。这样制造有源矩阵基板104(图8C)。
在上述方法中,在STEP2-11中,同时(即使用同一掩模)进行无机绝缘层12和第2电介质层18的图案化。另外,在STEP2-14中,同时进行第2电介质层18和第1电介质层17的图案化。由此,能减少在制造工序中使用的光掩模的个数,因此能减少制造成本。
另外,通过用同一掩模蚀刻2个以上的绝缘层,能减少对准偏差、形成于各绝缘层的开口部的尺寸的差别等。其结果是,能减小接触部(第1接触孔CHp、第2接触孔CHt)的尺寸,因此能更有效地抑制像素开口率的降低。
第2电介质层18由于与无机绝缘层12和第1电介质层17中的每一个同时(以2阶段)被蚀刻,因此在第1接触孔CHp中能具有与无机绝缘层12的侧面至少部分对齐的侧面并且在第2接触孔CHt中能具有与第1电介质层17的侧面至少部分对齐的侧面。当这样通过以2个阶段进行第2电介质层18的蚀刻而形成开口部18t时,能更有效地抑制第2接触孔CHt的形成不良,能形成可靠性高的触摸配线接触部。
如在图11A中例示的,也可以是在从基板1的法线方向观看时,在通过第1次蚀刻在第2电介质层18形成临时开口部18t’之后,通过第2次蚀刻在第1电介质层17形成与临时开口部18t’交叉的开口部17t,并且将第2电介质层18中的与开口部17t重叠的部分除去,而形成开口部18t。
或者,也可以如在图11B中例示的,在STEP2-11的蚀刻工序中,在第2电介质层18形成尺寸比较大的开口部18t之后,形成第1电介质层17,以从基板1的法线方向观看时位于开口部18t的内侧的方式在第1电介质层17形成开口部17t。由此,通过第2电介质层18和第1电介质层17形成具有阶梯状的侧面的第2接触孔CHt,因此能改善在第2接触孔CHt上形成的触摸配线TL的覆盖范围。
(第2实施方式)
第2实施方式的有源矩阵基板与上述的实施方式的不同之处在于,在像素电极的基板侧配置有共用电极。
图12A是表示有源矩阵基板105的显示区域DR的一部分的放大俯视图,图12B是沿着图12A所示的XIIb-XIIb’线的截面图。在这些图中,针对与图2A和图2B同样的构成要素附上相同的附图标记,省略说明。另外,以下主要说明与图2A和图2B的不同点,针对同样的构成省略说明。
在有源矩阵基板105中,在层间绝缘层16上按顺序形成有包含共用电极CE的第1透明电极层、下部电介质层17A、包含触摸配线TL的触摸配线层、上部电介质层17B、以及包含像素电极PE的第2透明电极层。
像素电极PE按每一像素具有狭缝或者缺口部。共用电极CE分割为多个共用电极部分CEa,各共用电极部分CEa作为触摸传感器用的电极(传感器电极)发挥功能。另外,共用电极CE在漏极接触部上具有开口部15p。像素电极PE与共用电极CE隔着包含下部电介质层17A和上部电介质层17B的第1电介质层17重叠。
在触摸配线接触部,触摸配线TL在形成于下部电介质层17A的开口部17At(第2接触孔CHt)内电连接到共用电极CE的对应的1个共用电极部分CEa。触摸配线TL与共用电极CE也可以是直接接触。在该例中,触摸配线TL由金属膜形成,不包含透明导电膜。
在像素接触部,像素电极PE在包括下部电介质层17A、上部电介质层17B、有机绝缘层13以及无机绝缘层12的开口部17Ap、17Bp、13p、12p的第1接触孔CHp内电连接到对应的1个TFT30的漏极电极8d。像素电极PE与漏极电极8d也可以是直接接触。共用电极CE未形成于像素接触部。即,第1接触孔CHp配置于共用电极CE的开口部15p内。
在第1接触孔CHp中,开口部12p的侧面与开口部13p的侧面也可以是对齐的。另外,开口部17Ap的侧面与开口部17Bp的侧面也可以是对齐的。此外,根据制造工序,有时也可以开口部12p的侧面的一部分与开口部13p的侧面是对齐的,另一部分与上部电介质层17B的侧面是对齐的。
TFT30、源极接触部以及漏极接触部的构成可以与有源矩阵基板101是同样的。
在本实施方式中,也是在从基板1的法线方向观看时,将触摸配线接触部的第2接触孔CHt与源极接触部的源极侧开口部11s以至少部分重叠的方式配置。另外,将像素接触部的第1接触孔CHp与漏极接触部的漏极侧开口部11d以至少部分重叠的方式配置。由此,能抑制接触部所致的像素开口率的降低。
而且,使还能作为平坦化膜而发挥功能的有机绝缘层13介于触摸配线接触部与源极接触部(或者源极电极8s)之间,由此,这些接触部不易相互受到干扰。
在本实施方式中,也能如参照图5A~图5D前述的那样配置漏极接触部的漏极侧开口部11d和触摸配线接触部的第2接触孔CHt。
<有源矩阵基板105的制造方法>
以下,参照图13A~图13D和图14说明有源矩阵基板105的制造方法。图13A~图13D分别是表示有源矩阵基板105的制造方法的一例的工序截面图。图14是表示有源矩阵基板105的制造方法的一例的流程图。在以下的说明中,关于各层的形成方法、材料、厚度等,在与上述的实施方式(有源矩阵基板101等)同样的情况下,适当地省略说明。
·在STEP3-1~3-7中,用与STEP1-1~1-7同样的方法形成TFT30。
·STEP3-8
接着,以覆盖TFT30和源极总线SL的方式形成层间绝缘层16。在此,作为层间绝缘层16,将无机绝缘层12和有机绝缘层13按此顺序形成。其后,进行有机绝缘层13的图案化,形成将无机绝缘层12的一部分露出的开口部13p。接下来,将形成有开口部13p的有机绝缘层13用作掩模而在无机绝缘层12形成开口部12p。
·STEP3-9
接着,如图13A所示,在层间绝缘层16上和开口部13p及开口部12p内形成第1透明导电膜,并进行图案化,由此形成包含共用电极CE的第1透明电极层。第1透明导电膜中的位于开口部13p和开口部12p内的部分被除去。
·STEP3-10
接下来,如图13B所示,以覆盖共用电极CE的方式形成下部电介质层17A(厚度:50~500nm)。下部电介质层17A的材料可以与作为无机绝缘层12的材料例示出的材料相同。其后,进行下部电介质层17A的图案化,形成将共用电极CE(共用电极部分CEa)的一部分露出的开口部17At(第2接触孔CHt)和将漏极电极8d的一部分露出的临时开口部17Ap’。临时开口部17Ap’以与开口部13p至少部分重叠的方式配置。
·STEP3-11
接下来,如图13C所示,在下部电介质层17A上和第2接触孔CHt内形成用于形成触摸配线的金属膜,并进行金属膜的图案化,由此得到触摸配线TL。触摸配线TL在第2接触孔CHt内与共用电极CE(共用电极部分CEa)电连接。
·STEP3-12
接着,如图13D所示,在触摸配线TL和下部电介质层17A上形成上部电介质层17B(厚度:50~500nm)。上部电介质层17B的材料可以与下部电介质层17A相同。其后,使用抗蚀剂掩模进行上部电介质层17B的图案化,形成将漏极电极8d的一部分露出的开口部17Bp。此时,使用上述抗蚀剂掩模,下部电介质层17A中的与开口部17Bp重叠的部分也同时被蚀刻,在下部电介质层17A形成开口部17Ap。此外,在无机绝缘层12发生了蚀刻不良等的情况下,通过该蚀刻工序,无机绝缘层12中的与开口部17Ap重叠的部分也能被除去。蚀刻方法既可以是干式蚀刻也可以是湿式蚀刻。这样得到包括开口部12p、13p、17Ap以及17Bp的第1接触孔CHp。也可以是,在第1接触孔CHp中,开口部12p的侧面与开口部13p的侧面是对齐的,开口部17Ap的侧面与开口部17Bp的侧面是对齐的。
开口部17Bp与下部电介质层17A的临时开口部17Ap’的配置关系没有特别限定。例如可以是,临时开口部17Ap’在从基板1的法线方向观看时位于开口部17Bp的内侧,在本蚀刻工序中形成与开口部17Bp对齐的开口部17Ap。或者可以是,在从基板1的法线方向观看时,以与临时开口部17Ap’交叉的方式形成开口部17Bp。或者还可以是,以位于临时开口部17Ap’的内侧的方式形成开口部17Bp。在这种情况下,临时开口部17Ap’原样成为开口部17Ap。
·STEP3-13
接着,在上部电介质层17B上和第1接触孔CHp内形成第2透明导电膜。其后,例如通过湿式蚀刻进行第2透明导电膜的图案化,由此得到包含像素电极PE的第2透明电极层。这样得到图12A和图12B所示的有源矩阵基板105。
在上述方法中,在进行上部电介质层17B的图案化时,下部电介质层17A和无机绝缘层12也能同时被蚀刻。因此,即使在下部电介质层17A的临时开口部17Ap’和/或无机绝缘层12的开口部12p发生了形成不良、对位偏差等的情况下,也能使用用于上部电介质层17B的图案化的抗蚀剂掩模再次蚀刻下部电介质层17A和/或无机绝缘层12。其结果是,在第1接触孔CHp内,能更可靠地确保漏极电极8d与像素电极PE的接触面积,能形成可靠性高的像素接触部。
此外,在STEP3-12中,在从基板1的主面1S的法线方向观看时,可以是开口部13p位于开口部17Bp的内侧,也可以是开口部17Bp位于开口部13p的内侧(参照图15)。或者还可以是,在从基板1的主面1S的法线方向观看时,开口部17Bp与开口部13p以交叉的方式配置。
<有源矩阵基板105的另一制造方法>
接下来,参照图16A~图16D和图17说明有源矩阵基板105的制造方法的另一例。图16A~图16D是分别表示有源矩阵基板105的另一制造方法的工序截面图。图17是表示有源矩阵基板105的另一制造方法的流程图。
·在STEP4-1~4-7中,用与STEP1-1~1-7同样的方法形成TFT30。
·STEP4-8
接着,以覆盖TFT30和源极总线SL的方式形成层间绝缘层16。在此,作为层间绝缘层16,将无机绝缘层12和有机绝缘层13按此顺序形成。其后,进行有机绝缘层13的图案化,形成将无机绝缘层12的一部分露出的开口部13p。
·STEP4-9
接着,如图16A所示,在层间绝缘层16上和开口部13p内形成第1透明导电膜,并进行第1透明导电膜的图案化,由此得到包含共用电极CE的第1透明电极层。第1透明导电膜中的位于开口部13p内的部分被除去。
·STEP4-10
接下来,如图16B所示,在层间绝缘层16上和共用电极CE上形成下部电介质层17A,并进行下部电介质层17A的图案化。由此,在下部电介质层17A形成将触摸配线TL的一部分露出的开口部17At(第2接触孔CHt),并且形成以与开口部13p至少部分重叠的方式配置的临时开口部17Ap’。
·STEP4-11
接下来,如图16C所示,在下部电介质层17A上、第2接触孔CHt内以及开口部13p内形成用于形成触摸配线的金属膜,并进行金属膜的图案化,由此得到触摸配线TL。
·STEP4-12
接下来,如图16D所示,在触摸配线TL上和下部电介质层17A上形成上部电介质层17B。其后,使用相同抗蚀剂掩模对上部电介质层17B和无机绝缘层12进行图案化。由此,在上部电介质层17B形成将漏极电极8d的一部分露出的开口部17Bp,并且无机绝缘层12的露出部分(通过开口部13p露出的部分)中的与开口部17Bp重叠的部分被除去而形成开口部12p。即,开口部12p形成于在从基板1的法线方向观看时与开口部13p和开口部17Bp这两者重叠的部分。此外,在发生了开口部17Ap的形成不良的情况下,下部电介质层17A中的与开口部17Bp重叠的部分也能在本工序中被蚀刻。这样得到包括开口部12p、13p、17Ap以及17Bp的第1接触孔CHp。在从基板1的主面1S的法线方向观看时开口部13p与开口部17Bp以交叉的方式配置的情况下,也可以是,在第1接触孔CHp中,开口部12p的侧面的一部分与开口部13p的侧面对齐,另一部分与开口部17Bp对齐。
·STEP4-13
接着,在上部电介质层17B上和第1接触孔CHp内形成第2透明导电膜,并进行第2透明导电膜的图案化,由此得到包含像素电极PE的第2透明电极层。这样得到有源矩阵基板105(图12A、12B)。
在上述方法中,由于同时蚀刻上部电介质层17B和无机绝缘层12,因此不需要进行无机绝缘层12与上部电介质层17B的对位。另外,在进行上部电介质层17B的图案化时,下部电介质层17A也能同时被蚀刻,因此,即使在发生了下部电介质层17A的形成不良、对位偏差等的情况下,也能使用用于进行上部电介质层17B的图案化的抗蚀剂掩模再次蚀刻下部电介质层17A。其结果是,在第1接触孔CHp内,能更可靠地确保漏极电极8d与像素电极PE的接触面积,因此形成可靠性高的像素接触部。
虽未图示,但也可以将包含触摸配线TL的触摸配线层设置于包含共用电极CE的第1透明电极层的基板1侧。例如,可以在层间绝缘层16上,将触摸配线层、第2电介质层18、包含共用电极CE的第1透明电极层、第1电介质层17和包含像素电极PE的第2透明电极层按此顺序形成。
<变形例>
图18是例示变形例的有源矩阵基板107的像素接触部的截面图。
在变形例中,在第1接触孔CHp内,在漏极电极8d与像素电极PE之间配置有岛状金属层20。漏极电极8d与像素电极PE隔着岛状金属层20被电连接。岛状金属层20例如与触摸配线TL是使用相同金属膜(在触摸配线层内)形成的。例如,在参照图13A~图13D和图14前述的方法中,可以在下部电介质层17A形成开口部17Ap的工序(STEP3-10)之后,形成触摸配线TL用的金属膜,并将金属膜图案化,由此形成触摸配线TL和岛状金属层20(STEP3-11)。岛状金属层20可以是以在包括开口部17Ap、开口部13p以及开口部12p的接触孔内与漏极电极8d直接接触的方式配置。其后,也可以形成上部电介质层17B,在上部电介质层17B设置将岛状金属层20的一部分或者全部露出的开口部17Bp。共用电极CE以在开口部17Bp内与岛状金属层20接触的方式配置。根据该构成,能改善像素电极PE的覆盖性能,能得到可靠性更高的像素接触部。
本发明的实施方式的有源矩阵基板的结构不限于参照图1~图18说明的结构。
在上述的例子中,TFT30以沟道区域的沟道长度方向成为y方向的方式配置(TFT纵置结构),但像素TFT也可以是以沟道长度方向成为x方向的方式配置(TFT横置结构)。
图19是表示将本实施方式的接触部的配置关系应用于TFT横置结构的有源矩阵基板的例子的俯视图。
作为像素TFT的TFT31以沟道长度方向成为x方向的方式配置。在该例中也是,在从基板1的法线方向观看时,触摸配线接触部的第2接触孔CHt与源极接触部的源极侧开口部11s以至少部分重叠的方式配置,像素接触部的第1接触孔CHp与漏极接触部的漏极侧开口部11d以至少部分重叠的方式配置。由此,能抑制这些接触部所致的像素开口率的降低。
在TFT横置结构中,能将第2接触孔CHt和第1接触孔CHp在x方向上排列配置,因此能进一步减小遮光区域的宽度(遮光范围)M。但是,当像素尺寸(特别是各像素的x方向的宽度)变小时,这种配置会变得困难。与此相对,TFT纵置结构能适合应用于像素尺寸小(例如30μm以下)的有源矩阵基板。通过将本实施方式的接触部的配置应用于TFT纵置结构,能实现高清晰并且像素开口率高的有源矩阵基板。
此外,在图19中,示出了在像素电极PE的基板1侧配置有共用电极CE的例子,但也可以是在共用电极CE的基板1侧配置像素电极PE。
而且,触摸配线层、包含共用电极CE的透明电极层以及包含像素电极PE的透明电极层均是只要形成于层间绝缘层16之上即可,其顺序不限于图2~图18中例示的顺序。在任何情况下,都是在共用电极CE与触摸配线TL之间的绝缘体形成第2接触孔CHt,在像素电极PE与漏极电极8d之间的绝缘体(包含层间绝缘层16)形成第1接触孔CHp。
像素TFT的结构也没有特别限定。在上述的第1和第2实施方式中,作为像素TFT的TFT30、31均是顶栅结构TFT,但也可以是在氧化物半导体层7的基板1侧还具备其它栅极电极(称为下部栅极电极)的双栅结构TFT。例如,可以对图2B所示的遮光层3输入栅极信号,使其作为下部栅极电极发挥功能。在这种情况下,栅极总线GL既可以是与栅极电极10由相同导电膜形成,也可以是与下部栅极电极由相同导电膜形成。
或者,像素TFT也可以是栅极电极配置于氧化物半导体层的基板侧的底栅结构TFT。作为底栅结构TFT,例如可以使用在源极/漏极电极与氧化物半导体层之间具有沟道保护层(蚀刻阻挡层)的蚀刻阻挡型TFT。在蚀刻阻挡层设置将氧化物半导体层露出的源极侧开口部和漏极侧开口部。也可以是,在从基板1的法线方向观看时,将蚀刻阻挡层的源极侧开口部和触摸配线接触部以相互重叠的方式配置,将漏极侧开口部和像素接触部以相互重叠的方式配置。
(关于氧化物半导体)
氧化物半导体层7所包含的氧化物半导体既可以是非晶质氧化物半导体,也可以是具有结晶质部分的结晶质氧化物半导体。作为结晶质氧化物半导体,可举出多结晶氧化物半导体、微结晶氧化物半导体、c轴与层面大致垂直取向的结晶质氧化物半导体等。
氧化物半导体层7可以具有两层以上的层叠结构。在氧化物半导体层7具有层叠结构的情况下,氧化物半导体层7可以包含非晶质氧化物半导体层和结晶质氧化物半导体层。或者,也可以包含结晶结构不同的多个结晶质氧化物半导体层。另外,也可以包含多个非晶质氧化物半导体层。在氧化物半导体层7具有包含上层和下层的两层结构的情况下,优选上层所包含的氧化物半导体的能隙大于下层所包含的氧化物半导体的能隙。不过,在这些层的能隙之差比较小的情况下,下层的氧化物半导体的能隙也可以大于上层的氧化物半导体的能隙。
非晶质氧化物半导体和上述的各结晶质氧化物半导体的材料、结构、成膜方法、具有层叠结构的氧化物半导体层的构成等记载于例如特开2014-007399号公报中。为了参照,将特开2014-007399号公报的全部公开内容引用到本说明书中。
氧化物半导体层7例如可以包含In、Ga以及Zn中的至少1种金属元素。在本实施方式中,氧化物半导体层7例如包含In-Ga-Zn-O系半导体(例如氧化铟镓锌)。在此,In-Ga-Zn-O系半导体是In(铟)、Ga(镓)、Zn(锌)的三元系氧化物,并且In、Ga以及Zn的比例(组成比)没有特别限定,例如包含In:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2等。这种氧化物半导体层7能由包含In-Ga-Zn-O系半导体的氧化物半导体膜形成。
In-Ga-Zn-O系半导体既可以是非晶质,也可以是结晶质。作为结晶质In-Ga-Zn-O系半导体,优选c轴与层面大致垂直取向的结晶质In-Ga-Zn-O系半导体。
此外,结晶质In-Ga-Zn-O系半导体的结晶结构例如公开于上述的特开2014-007399号公报、特开2012-134475号公报、特开2014-209727号公报等。为了参照,将特开2012-134475号公报和特开2014-209727号公报的全部公开内容引用到本说明书中。具有In-Ga-Zn-O系半导体层的TFT具有高迁移率(与a-SiTFT相比超过20倍)和低漏电流(与a-SiTFT相比不到百分之一),因此能适合用作驱动TFT(例如,在包含多个像素的显示区域的周边设置于与显示区域相同的基板上的驱动电路所包含的TFT)和像素TFT(设置于像素的TFT)。
氧化物半导体层7也可以包含其它氧化物半导体来代替In-Ga-Zn-O系半导体。例如可以包含In-Sn-Zn-O系半导体(例如In2O3-SnO2-ZnO;InSnZnO)。In-Sn-Zn-O系半导体是In(铟)、Sn(锡)以及Zn(锌)的三元系氧化物。或者,氧化物半导体层7也可以包含In-Al-Zn-O系半导体、In-Al-Sn-Zn-O系半导体、Zn-O系半导体、In-Zn-O系半导体、Zn-Ti-O系半导体、Cd-Ge-O系半导体、Cd-Pb-O系半导体、CdO(氧化镉)、Mg-Zn-O系半导体、In-Ga-Sn-O系半导体、In-Ga-O系半导体、Zr-In-Zn-O系半导体、Hf-In-Zn-O系半导体、Al-Ga-Zn-O系半导体、Ga-Zn-O系半导体、In-Ga-Zn-Sn-O系半导体等。
本发明的实施方式能广泛应用于具有氧化物半导体TFT的各种半导体装置,特别是,能适合应用于高清晰的带触摸传感器的液晶显示装置。

Claims (17)

1.一种有源矩阵基板的制造方法,上述有源矩阵基板具有多个像素区域,具备配置于上述多个像素区域中的每一个像素区域的薄膜晶体管、触摸面板用的第1电极以及触摸面板用的第1配线,上述有源矩阵基板的制造方法的特征在于,包含如下工序:
(A)在具有主面的基板上,形成成为上述薄膜晶体管的活性层的氧化物半导体层、以及隔着栅极绝缘层与上述氧化物半导体层的至少一部分重叠的栅极电极;
(B)形成绝缘层,上述绝缘层覆盖上述栅极电极、上述栅极绝缘层以及上述氧化物半导体层,并且具有将上述氧化物半导体层的一部分露出的源极侧开口部和将上述氧化物半导体层的另一部分露出的漏极侧开口部,其中,在从上述基板的上述主面的法线方向观看时,上述源极侧开口部和上述漏极侧开口部位于上述氧化物半导体层中的与上述栅极电极重叠的区域的两侧;
(C)在上述绝缘层上和上述源极侧开口部内形成源极电极,在上述绝缘层上和上述漏极侧开口部内形成漏极电极,由此得到上述薄膜晶体管;
(D)形成包含有机绝缘层的层间绝缘层,其中,上述层间绝缘层覆盖上述薄膜晶体管,并且具有将上述漏极电极的一部分露出的第1接触孔;
(E)在上述层间绝缘层上和上述第1接触孔内形成第1透明导电膜;
(F)在上述第1透明导电膜的一部分上,使用金属膜形成成为上述第1配线的上层的上部配线部;
(G)进行上述第1透明导电膜的图案化,由此形成在上述第1接触孔内与上述漏极电极电连接的像素电极,并且在上述上部配线部的下方形成成为上述第1配线的下层的下部配线部;
(H)形成电介质层,上述电介质层覆盖上述像素电极和上述第1配线,并且具有将上述第1配线的一部分露出的第2接触孔;以及
(I)在上述电介质层上和上述第2接触孔内形成在上述第2接触孔内与上述第1配线电连接的共用电极,其中,上述共用电极包含分别能作为上述第1电极发挥功能的多个共用电极部分,
在从上述基板的上述主面的法线方向观看时,上述第1接触孔的底面与上述漏极侧开口部的底面至少部分重叠,上述第2接触孔的底面与上述源极侧开口部的底面至少部分重叠。
2.一种有源矩阵基板的制造方法,上述有源矩阵基板具有多个像素区域,具备配置于上述多个像素区域中的每一个像素区域的薄膜晶体管、触摸面板用的第1电极、以及触摸面板用的第1配线,上述有源矩阵基板的制造方法的特征在于,包含如下工序:
(A)在具有主面的基板上,形成成为上述薄膜晶体管的活性层的氧化物半导体层、以及隔着栅极绝缘层与上述氧化物半导体层的至少一部分重叠的栅极电极;
(B)形成绝缘层,上述绝缘层覆盖上述栅极电极、上述栅极绝缘层以及上述氧化物半导体层,并且具有将上述氧化物半导体层的一部分露出的源极侧开口部和将上述氧化物半导体层的另一部分露出的漏极侧开口部,其中,在从上述基板的上述主面的法线方向观看时,上述源极侧开口部和上述漏极侧开口部位于上述氧化物半导体层中的与上述栅极电极重叠的区域的两侧;
(C)在上述绝缘层上和上述源极侧开口部内形成源极电极,在上述绝缘层上和上述漏极侧开口部内形成漏极电极,由此得到上述薄膜晶体管;
(D)形成具有包含无机绝缘层和配置于上述无机绝缘层上的有机绝缘层的层叠结构的层间绝缘层,在上述有机绝缘层形成将上述无机绝缘层的一部分露出的第1开口部;
(E)在上述层间绝缘层上使用金属膜形成上述第1配线;
(F)在上述层间绝缘层上、上述第1配线上以及上述第1开口部内形成电介质层;
(G)使用第1掩模进行上述电介质层和上述无机绝缘层的图案化,其中,在上述电介质层形成将上述第1配线的一部分露出的临时开口部,并且在上述电介质层、以及上述无机绝缘层中的通过上述第1开口部露出的部分,形成将上述漏极电极的一部分露出的第2开口部,由此,形成包括上述第1开口部和上述第2开口部的第1接触孔;
(H)在上述层间绝缘层上和上述第1接触孔内,形成在上述第1接触孔内与上述漏极电极电连接的像素电极;
(I)在上述像素电极上、上述电介质层上以及上述临时开口部内形成其它电介质层;
(J)使用第2掩模将上述其它电介质层和上述电介质层图案化,由此形成将上述第1配线的一部分露出的第2接触孔,其中,上述第2接触孔以与上述临时开口部至少部分重叠的方式配置;以及
(K)在上述其它电介质层上和上述第2接触孔内,形成在上述第2接触孔内与上述第1配线电连接的共用电极,其中,上述共用电极包含分别能作为上述第1电极发挥功能的多个共用电极部分,
在从上述基板的上述主面的法线方向观看时,上述第1接触孔的底面与上述漏极侧开口部的底面至少部分重叠,上述第2接触孔的底面与上述源极侧开口部的底面至少部分重叠。
3.一种有源矩阵基板的制造方法,上述有源矩阵基板具有多个像素区域,具备配置于上述多个像素区域中的每一个像素区域的薄膜晶体管、触摸面板用的第1电极、以及触摸面板用的第1配线,上述有源矩阵基板的制造方法的特征在于,包含如下工序:
(A)在具有主面的基板上,形成成为上述薄膜晶体管的活性层的氧化物半导体层、以及隔着栅极绝缘层与上述氧化物半导体层的至少一部分重叠的栅极电极;
(B)形成绝缘层,上述绝缘层覆盖上述栅极电极、上述栅极绝缘层以及上述氧化物半导体层,并且具有将上述氧化物半导体层的一部分露出的源极侧开口部和将上述氧化物半导体层的另一部分露出的漏极侧开口部,其中,在从上述基板的上述主面的法线方向观看时,上述源极侧开口部和上述漏极侧开口部位于上述氧化物半导体层中的与上述栅极电极重叠的区域的两侧;
(C)在上述绝缘层上和上述源极侧开口部内形成源极电极,在上述绝缘层上和上述漏极侧开口部内形成漏极电极,由此得到上述薄膜晶体管;
(D)形成具有包含无机绝缘层和配置于上述无机绝缘层上的有机绝缘层的层叠结构的层间绝缘层,在上述有机绝缘层形成将上述无机绝缘层的一部分露出的第1开口部;
(E)在上述层间绝缘层上形成共用电极,上述共用电极包含分别能作为上述第1电极发挥功能的多个共用电极部分;
(F)在上述共用电极上和上述第1开口部内形成下部电介质层,进行上述下部电介质层的图案化,由此在上述下部电介质层形成与上述第1开口部至少部分重叠的临时开口部和将上述共用电极的一部分露出的第2接触孔;
(G)在上述下部电介质层上和上述第2接触孔内,使用金属膜形成上述第1配线;
(H)在上述第1配线和上述下部电介质层上、上述第1开口部内以及上述临时开口部内,形成上部电介质层;
(I)通过使用掩模进行上述上部电介质层和上述下部电介质层的图案化而形成与上述临时开口部至少部分重叠的第2开口部,其中,由此形成包含上述第1开口部和上述第2开口部、并且将上述漏极电极的一部分露出的第1接触孔;以及
(J)在上述上部电介质层上和上述第1接触孔内,形成在上述第1接触孔内与上述漏极电极电连接的像素电极,
在上述工序(D)与上述工序(E)之间和/或在上述工序(I)中,还包含通过使用上述掩模进行上述无机绝缘层的图案化而在上述无机绝缘层形成将上述漏极电极的上述一部分露出的第3开口部的工序,上述第3开口部与上述第1开口部及上述第2开口部一起构成上述第1接触孔,
在从上述基板的上述主面的法线方向观看时,上述第1接触孔的底面与上述漏极侧开口部的底面至少部分重叠,上述第2接触孔的底面与上述源极侧开口部的底面至少部分重叠。
4.根据权利要求3所述的有源矩阵基板的制造方法,
在上述工序(D)与上述工序(E)之间,还包含通过将上述有机绝缘层用作掩模进行上述无机绝缘层的图案化而在上述无机绝缘层形成其它临时开口部的工序,
上述工序(I)还包含使用上述掩模在上述无机绝缘层以与上述其它临时开口部至少部分重叠的方式形成上述第3开口部的工序。
5.根据权利要求3所述的有源矩阵基板的制造方法,
在上述工序(D)中,在上述有机绝缘层中,上述第1开口部以将上述无机绝缘层的一部分露出的方式形成,
上述工序(I)还包含使用上述掩模在上述无机绝缘层中的通过上述第1开口部露出的部分形成上述第3开口部的工序。
6.根据权利要求1至5中的任意一项所述的有源矩阵基板的制造方法,
在上述工序(A)中,上述栅极电极隔着上述栅极绝缘层配置于上述氧化物半导体层的一部分上。
7.根据权利要求6所述的有源矩阵基板的制造方法,
在上述工序(A)与上述工序(B)之间,还包含以上述栅极电极为掩模进行上述氧化物半导体层的低电阻化处理,使上述氧化物半导体层中的与上述栅极电极不重叠的区域的电阻率低于与上述栅极电极重叠的区域的电阻率的工序。
8.根据权利要求6所述的有源矩阵基板的制造方法,
还包含在上述氧化物半导体层的上述基板侧形成遮光层或者其它栅极电极的工序,上述遮光层或者其它栅极电极隔着其它绝缘层与上述氧化物半导体层的上述一部分至少部分重叠。
9.根据权利要求1至5中的任意一项所述的有源矩阵基板的制造方法,
上述工序(A)还包含使用与上述栅极电极相同的导电膜形成多个栅极总线的工序,
上述工序(C)还包含使用与上述源极电极相同的导电膜形成多个源极总线的工序,
上述薄膜晶体管的上述源极电极电连接到上述多个源极总线中的对应的1个源极总线,上述栅极电极电连接到上述多个栅极总线中的对应的1个栅极总线。
10.根据权利要求9所述的有源矩阵基板的制造方法,
在从上述基板的上述主面的法线方向观看时,上述第1接触孔、上述第2接触孔、上述源极侧开口部以及上述漏极侧开口部均以既不与上述多个栅极总线重叠也不与上述栅极电极重叠的方式配置。
11.根据权利要求1至5中的任意一项所述的有源矩阵基板的制造方法,
在从上述基板的上述主面的法线方向观看时,上述第2接触孔位于上述源极侧开口部的内侧。
12.根据权利要求1至5中的任意一项所述的有源矩阵基板的制造方法,
在从上述基板的上述主面的法线方向观看时,上述源极侧开口部位于上述第2接触孔的内侧。
13.根据权利要求9所述的有源矩阵基板的制造方法,
上述源极电极与上述对应的1个源极总线一体地形成,
在从上述基板的上述主面的法线方向观看时,上述源极侧开口部在包含上述对应的1个源极总线和上述源极电极的源极导电部的内侧,仅配置于将上述对应的1个源极总线的宽度一分为二的中央线的单侧,上述第2接触孔在上述源极导电部的内侧以与上述中央线重叠的方式配置。
14.根据权利要求1至5中的任意一项所述的有源矩阵基板的制造方法,
在从上述基板的上述主面的法线方向观看时,上述第2接触孔的上述底面与上述源极侧开口部的上述底面交叉。
15.根据权利要求1至5中的任意一项所述的有源矩阵基板的制造方法,
上述氧化物半导体层包含In-Ga-Zn-O系半导体。
16.一种有源矩阵基板,其特征在于,是通过权利要求1至15中的任意一项所述的方法制造的。
17.一种带触摸传感器的液晶显示装置的制造方法,上述带触摸传感器的液晶显示装置具备:
有源矩阵基板;
相对基板,其以与上述有源矩阵基板相对的方式配置;以及
液晶层,其设置于上述有源矩阵基板与上述相对基板之间,
上述带触摸传感器的液晶显示装置的制造方法的特征在于,
包含准备上述有源矩阵基板的工序,
上述工序是通过权利要求1至15中的任意一项所述的方法执行的。
CN201910883506.4A 2018-09-19 2019-09-18 有源矩阵基板及其制造方法、液晶显示装置的制造方法 Active CN110931507B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862733267P 2018-09-19 2018-09-19
US62/733,267 2018-09-19

Publications (2)

Publication Number Publication Date
CN110931507A CN110931507A (zh) 2020-03-27
CN110931507B true CN110931507B (zh) 2023-06-06

Family

ID=69772919

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910883506.4A Active CN110931507B (zh) 2018-09-19 2019-09-18 有源矩阵基板及其制造方法、液晶显示装置的制造方法

Country Status (3)

Country Link
US (1) US10989948B2 (zh)
JP (1) JP6804603B2 (zh)
CN (1) CN110931507B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11216128B2 (en) * 2019-02-26 2022-01-04 Beijing Boe Display Technology Co., Ltd. Touch-sensing display substrate, touch-sensing display apparatus, method of operating touch sensing display apparatus, and method of fabricating touch-sensing display substrate
CN115830996A (zh) * 2019-11-12 2023-03-21 群创光电股份有限公司 显示装置
CN115279723A (zh) 2020-03-17 2022-11-01 日东电工株式会社 甲酸盐的制造方法及甲酸盐制造系统
KR20210149284A (ko) * 2020-06-01 2021-12-09 삼성디스플레이 주식회사 표시 장치 및 전자 기기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088488A1 (ja) * 2014-12-05 2016-06-09 凸版印刷株式会社 表示装置基板、表示装置基板の製造方法、及び、これを用いた表示装置
JP2017107203A (ja) * 2015-12-07 2017-06-15 エルジー ディスプレイ カンパニー リミテッド タッチスクリーンパネル一体型表示装置及びその製造方法
WO2018051486A1 (ja) * 2016-09-16 2018-03-22 凸版印刷株式会社 表示装置及び表示装置基板
WO2018134957A1 (ja) * 2017-01-20 2018-07-26 凸版印刷株式会社 表示装置及び表示装置基板
WO2018163944A1 (ja) * 2017-03-08 2018-09-13 シャープ株式会社 半導体装置、半導体装置の製造方法、及び、液晶表示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4404881B2 (ja) 2006-08-09 2010-01-27 日本電気株式会社 薄膜トランジスタアレイ、その製造方法及び液晶表示装置
JP4816668B2 (ja) 2008-03-28 2011-11-16 ソニー株式会社 タッチセンサ付き表示装置
CN105336791B (zh) 2010-12-03 2018-10-26 株式会社半导体能源研究所 氧化物半导体膜以及半导体装置
KR101295536B1 (ko) * 2012-03-26 2013-08-12 엘지디스플레이 주식회사 터치 스크린 일체형 표시장치 및 그 제조 방법
CN104380473B (zh) 2012-05-31 2017-10-13 株式会社半导体能源研究所 半导体装置
KR102024779B1 (ko) * 2012-12-13 2019-09-24 엘지디스플레이 주식회사 터치센서 일체형 표시장치
WO2014157019A1 (en) 2013-03-25 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9235285B2 (en) * 2013-05-13 2016-01-12 Himax Technologies Limited Pixel matrix, touch display device and drving method thereof
JP6165584B2 (ja) 2013-10-08 2017-07-19 株式会社ジャパンディスプレイ 表示装置
KR101728793B1 (ko) 2014-12-31 2017-04-21 엘지디스플레이 주식회사 인셀 터치 액정 디스플레이 장치와 이의 제조방법
CN104657024A (zh) * 2015-03-13 2015-05-27 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
KR102263876B1 (ko) * 2015-05-29 2021-06-14 엘지디스플레이 주식회사 인셀 터치 액정 디스플레이 장치와 그 제조방법
WO2017030080A1 (ja) * 2015-08-19 2017-02-23 シャープ株式会社 タッチパネル付き表示装置及びタッチパネル付き表示装置の製造方法
CN108780256B (zh) * 2016-03-15 2022-10-18 株式会社半导体能源研究所 显示装置、模块及电子设备
JP6655720B2 (ja) * 2016-06-09 2020-02-26 シャープ株式会社 アクティブマトリクス基板と、それを備えたタッチパネル付き表示装置及び液晶表示装置
JP6813967B2 (ja) 2016-06-30 2021-01-13 株式会社ジャパンディスプレイ 入力機能付き表示装置
KR101918965B1 (ko) * 2017-09-22 2018-11-15 엘지디스플레이 주식회사 터치 스크린 일체형 표시장치
JP6868069B2 (ja) * 2018-09-19 2021-05-12 シャープ株式会社 アクティブマトリクス基板およびアクティブマトリクス基板を用いたタッチセンサ付き液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016088488A1 (ja) * 2014-12-05 2016-06-09 凸版印刷株式会社 表示装置基板、表示装置基板の製造方法、及び、これを用いた表示装置
JP2017107203A (ja) * 2015-12-07 2017-06-15 エルジー ディスプレイ カンパニー リミテッド タッチスクリーンパネル一体型表示装置及びその製造方法
WO2018051486A1 (ja) * 2016-09-16 2018-03-22 凸版印刷株式会社 表示装置及び表示装置基板
WO2018134957A1 (ja) * 2017-01-20 2018-07-26 凸版印刷株式会社 表示装置及び表示装置基板
WO2018163944A1 (ja) * 2017-03-08 2018-09-13 シャープ株式会社 半導体装置、半導体装置の製造方法、及び、液晶表示装置

Also Published As

Publication number Publication date
JP2020046665A (ja) 2020-03-26
US20200089037A1 (en) 2020-03-19
US10989948B2 (en) 2021-04-27
CN110931507A (zh) 2020-03-27
JP6804603B2 (ja) 2020-12-23

Similar Documents

Publication Publication Date Title
CN110931506B (zh) 有源矩阵基板和使用它的带触摸传感器的液晶显示装置
CN110931507B (zh) 有源矩阵基板及其制造方法、液晶显示装置的制造方法
TWI600165B (zh) 半導體裝置及其製造方法
US9214533B2 (en) Semiconductor device having transparent electrodes
US9608008B2 (en) Active matrix substrate and method for producing same
CN112071860B (zh) 有源矩阵基板以及其制造方法
US11637132B2 (en) Active matrix substrate and method for manufacturing same
US11145679B2 (en) Method for manufacturing active matrix board
CN109698205B (zh) 有源矩阵基板及其制造方法
US20150221773A1 (en) Semiconductor device and method for producing same
CN111755507B (zh) 有源矩阵基板及其制造方法
US9373648B2 (en) Semiconductor device and method of manufacture thereof
CN113078167A (zh) 有源矩阵基板及其制造方法
US11079636B2 (en) Active matrix substrate, liquid crystal display device with touch sensor using active matrix substrate, and method for manufacturing active matrix substrate
CN112051690B (zh) 有源矩阵基板及带触摸传感器的液晶显示装置
US9496287B2 (en) Semiconductor device and production method therefor
US11927860B2 (en) Active matrix substrate, method for manufacturing active matrix substrate, and liquid crystal display device with touch sensor using active matrix substrate
US20220285405A1 (en) Active matrix substrate and manufacturing method thereof
US20230352493A1 (en) Active matrix substrate and liquid crystal display device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant