WO2018047774A1 - 軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム - Google Patents

軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム Download PDF

Info

Publication number
WO2018047774A1
WO2018047774A1 PCT/JP2017/031821 JP2017031821W WO2018047774A1 WO 2018047774 A1 WO2018047774 A1 WO 2018047774A1 JP 2017031821 W JP2017031821 W JP 2017031821W WO 2018047774 A1 WO2018047774 A1 WO 2018047774A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
bearing
test
bearing part
life
Prior art date
Application number
PCT/JP2017/031821
Other languages
English (en)
French (fr)
Inventor
直哉 嘉村
工 藤田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016176953A external-priority patent/JP6695243B2/ja
Priority claimed from JP2016176954A external-priority patent/JP6762817B2/ja
Priority claimed from JP2016176955A external-priority patent/JP6762818B2/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018047774A1 publication Critical patent/WO2018047774A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/205Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials using diffraction cameras

Definitions

  • the present invention relates to a bearing part life diagnosis method, a bearing part life diagnosis apparatus, and a bearing part life diagnosis program.
  • bearings It is known that the life of rolling bearings (hereinafter referred to as bearings) depends on operating characteristics such as load and lubrication conditions, and material characteristics such as hardness, structure, and residual stress. Conventionally, the life of a bearing has been estimated using a life formula that can be calculated from operating conditions and material characteristics. This formula is used to estimate how long a bearing can be used under certain conditions, or under what conditions it should be used so that the bearing does not break during the required period of use. Is used. In general, a bearing is used under a use condition set based on a life calculation formula. Therefore, the life should not be a problem when the bearing is used under the assumed conditions. However, bearing life is often a problem in the market.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-167421 describes a method of estimating a damage form (peeling, flaking, wear, smearing) from a plasticity index obtained from a contact pressure of a bearing and a protrusion shape of surface roughness. Has been. Furthermore, a method for estimating the life of peeling damage, which is one type of surface-origin damage, from conditions such as contact pressure, plasticity index, and slip ratio is described.
  • the risk of bearing failure is often expressed as the remaining life, but the remaining life depends on how much the bearing is currently fatigued (fatigue level) and how much life is expected to be operated in the future. Determined. Therefore, in order to examine the risk of breakage, at least information on either the degree of fatigue or the estimated life is required.
  • Patent Document 1 describes a method for estimating the life of peeling damage, which is one type of surface-origin damage, from conditions such as contact pressure, plasticity index, and slip rate.
  • Patent Document 2 uses various X-ray diffraction ring analyzers that provide more information on rolling fatigue than conventional devices, and various X-ray analysis results and various rolling conditions (surface pressure used, lubrication conditions, slip conditions, A database with the number of loads), estimate the bearing usage conditions from the database, estimate the fatigue level from the estimated life and the number of loads that can be obtained from the usage conditions, and finally estimate the remaining life Is the method.
  • the repetitive stress acting on the surface that determines the life of the peeling needs to consider not only the contact pressure, plasticity index, and slip rate, but also the residual stress.
  • residual stress is not considered, and the estimation accuracy is considered to be poor.
  • Patent Document 2 statistically estimates the usage conditions (load count, load, lubrication conditions, slip, etc.) of complex rolling parts from the X-ray analysis values, and therefore, a large number of experimental data is obtained. If it is not acquired, the estimation accuracy of the use condition is lowered, and as a result, the estimation accuracy of the lifetime is deteriorated.
  • an object of the present invention is to provide a bearing part life diagnosis method, a bearing part life diagnosis apparatus, and a bearing part life diagnosis program capable of accurately estimating the life from a small amount of data.
  • the bearing part life diagnosis method of the present invention includes a step of performing a plurality of rolling fatigue tests for each of a plurality of test bearing parts until failure breakdown, and failure breakdown. Determining the combined stress of the test bearing part, which is the sum of the residual stress and the microstress of the test bearing part when it occurs, and multiple rolling fatigues for multiple test bearing parts A step of obtaining an SN curve based on the relationship between the total number of loads in the test and the composite stress, and a step of obtaining the composite stress of the diagnostic bearing component which is the sum of the residual stress and the micro stress of the diagnostic bearing component. And determining the life of the diagnostic bearing part based on the combined stress and SN curve of the diagnostic bearing part.
  • the step of obtaining the composite stress of the test bearing part includes the step of obtaining the micro stress of the test bearing part from the measurement result of the surface shape of the test bearing part.
  • the step of obtaining the combined stress of the test bearing part includes the step of obtaining the residual stress of the test bearing part from the X-ray diffraction result of the test bearing part.
  • the step of obtaining the composite stress of the diagnostic bearing part includes the step of obtaining the micro stress of the diagnostic bearing part from the measurement result of the surface shape of the diagnostic bearing part.
  • the step of obtaining the combined stress of the diagnostic bearing component includes the step of obtaining the residual stress of the diagnostic bearing component from the X-ray diffraction result of the diagnostic bearing component.
  • the SN curve is expressed by an expression including a plurality of first type constants, the number of loads N until failure and the composite stress S.
  • the formula representing the composite stress S includes a plurality of second type constants.
  • N is the total number of loads of the rolling fatigue test until failure failure
  • S is the combined stress at failure failure.
  • the mathematical formula is represented by the formula (1).
  • A, B, and Sf are constants.
  • the bearing part life diagnosis method further includes a step of notifying whether or not the diagnosis bearing part needs to be replaced or a replacement timing based on the life.
  • the step of obtaining the composite stress of the test bearing part is executed.
  • the step of determining the composite stress of the bearing part for diagnosis is executed.
  • the bearing part life diagnosis apparatus provides a bearing for testing when a failure occurs when a plurality of rolling fatigue tests are performed on each of a plurality of bearing parts until a failure occurs.
  • the composite stress of the test bearing part which is the sum of the residual stress of the part and the microstress
  • the composite stress of the diagnostic bearing part which is the sum of the residual stress and the microstress of the diagnostic bearing part
  • the S—N curve is obtained based on the relationship between the stress calculation unit and the total number of loads in a plurality of rolling fatigue tests and the combined stress of the test bearing parts for a plurality of test bearing parts.
  • the bearing part life diagnosis program of the present invention is a computer program for performing a plurality of rolling fatigue tests on each of a plurality of bearing parts for testing until failure of the parts. Determining the combined stress of the test bearing component, which is the sum of the residual stress and the microstress of the test bearing component, and the total load in multiple rolling fatigue tests on the multiple test bearing components. The step of obtaining the SN curve based on the relationship between the number of times and the combined stress of the bearing component for the test, and the combined stress of the diagnostic bearing component which is the sum of the residual stress and the micro stress of the diagnostic bearing component And a step of estimating the life of the diagnostic bearing component based on the combined stress and SN curve of the diagnostic bearing component.
  • the life since the life is estimated more theoretically based on the rolling fatigue mechanism, the life can be estimated with high accuracy from a small amount of data.
  • FIG. 6 is a diagram illustrating an estimated life L with respect to the number of loads N under condition A. It is a figure showing the function structure of the lifetime diagnosis apparatus 14 of 2nd Embodiment. It is a figure for demonstrating the calculation process of the accumulation fatigue degree D. FIG. It is a figure showing the example of the correspondence table A. It is a flowchart showing the procedure which calculates
  • FIG. 6 is a diagram showing a cumulative fatigue degree D and remaining life R with respect to the number of loads N under condition A.
  • FIG. It is a figure showing the function structure of the lifetime diagnosis apparatus 14 of 3rd Embodiment. It is a flowchart showing the procedure of the lifetime diagnosis of the bearing component for diagnosis of 3rd Embodiment.
  • FIG. 6 is a diagram showing a cumulative fatigue degree D with respect to the number of loads N under condition A.
  • FIG. 1 is a diagram showing a configuration of a life diagnosis system according to an embodiment of the present invention.
  • this life diagnosis system includes a life diagnosis device 14, an irradiation unit 11, an X-ray detector 12, and a surface shape measuring device 13.
  • the irradiation unit 11 includes an X-ray tube installed so as to be opposed to the bearing component 90 to be inspected.
  • the irradiation unit 11 irradiates the bearing component 90 to be inspected with X-rays.
  • the irradiated X-rays are irradiated along the arrow ⁇ so as to enter the bearing component 90 to be inspected at a predetermined incident angle.
  • the bearing component 90 to be inspected includes a rolling element of a rolling bearing and a part or all of a bearing ring of the rolling bearing which is a bearing component for diagnosis or test.
  • X-rays may be applied to a part of the bearing ring of the rolling bearing, for example.
  • the X-ray detector 12 detects an annular X-ray (X-ray diffraction ring) diffracted in the bearing component 90 to be inspected.
  • the X-ray detector 12 is a planar detection unit that can be opposed to the hole 12B formed in the central part through which the X-rays irradiated from the irradiation unit 11 pass and the bearing component 90 to be inspected. 12A is included.
  • an X-ray CCD Charge Coupled Device
  • X-rays incident on the bearing component 90 to be inspected along the arrow ⁇ are diffracted so as to form the conical surface ⁇ , and reach the detection unit 12A.
  • the X-ray diffraction ring is detected by a signal having an intensity corresponding to the intensity of the X-ray output from each pixel.
  • the surface shape measuring instrument 13 measures the surface shape of the bearing component 90 to be inspected.
  • a laser microscope can be used as the surface shape measuring instrument 13.
  • the surface to be measured may be, for example, a partial surface of the bearing ring of the rolling bearing and the entire surface of the rolling element.
  • the life diagnosis device 14 diagnoses the life of the bearing component 90 to be inspected based on the X-ray diffraction ring detected by the X-ray detector 12 and the surface shape detected by the surface shape measuring device 13.
  • the life diagnosis device 14 may be, for example, a small computer device (such as a personal computer).
  • FIG. 2 is a diagram illustrating a hardware configuration of the life diagnosis apparatus 14.
  • the life diagnosis apparatus 14 includes an input unit 17, a CPU (Central Processing Unit) 15, a memory 16, and a display unit 18.
  • CPU Central Processing Unit
  • the measurement result of the surface shape measuring instrument 13 and the detection result of the X-ray detector 12 are input to the input unit 17.
  • the memory 16 can store a life diagnosis program and the like.
  • the CPU 15 executes the life diagnosis program stored in the memory 16 using the data input to the input unit 17.
  • FIG. 3 is a diagram illustrating a functional configuration of the life diagnosis apparatus 14 according to the first embodiment.
  • This life diagnosis device 14 includes an input unit 17, an oil film parameter calculation unit 31, a micro stress calculation unit 32, a residual stress calculation unit 33, a composite stress calculation unit 34, an SN curve calculation unit 35, and an S -N curve storage unit 36, diagnosis unit 37, control unit 50, and display unit 18 are provided.
  • the SN curve storage unit 36 is realized by the memory 16.
  • the oil film parameter calculation unit 31, the micro stress calculation unit 32, the residual stress calculation unit 33, the synthetic stress calculation unit 34, the SN curve calculation unit 35, the diagnosis unit 37, and the control unit 50 are stored in the memory by the CPU 15. This is realized by executing the life diagnosis program stored in 16.
  • the oil film parameter calculation unit 31 calculates the oil film parameter OP.
  • FIG. 4 is a flowchart showing the procedure of oil film parameter calculation processing.
  • step S201 the oil film parameter calculation unit 31 measures the roughness (Z1) of a part of the raceway surface of the raceway.
  • step S202 the oil film parameter calculation unit 31 measures all the roughnesses (Z2) of the rolling surfaces of the rolling elements.
  • step S203 the oil film parameter calculation unit 31 calculates the thickness (d) of the oil film based on the basic usage conditions (the number of rotations of the rolling element, the operating temperature, the load, and the oil type) of the bearing component for testing. To do.
  • step S204 the oil film parameter calculation unit 31 calculates the root mean square roughness (Rq1) of the raceway surface according to the equation (A1).
  • L represents a reference length.
  • step S205 the oil film parameter calculation unit 31 calculates the root mean square roughness (Rq2) of the rolling surface according to the equation (A2).
  • Rq2 root mean square roughness
  • L represents a reference length.
  • step S206 the oil film parameter calculation unit 31 calculates the combined root mean square roughness (Rq) according to the equation (A3).
  • step S207 the oil film parameter calculation unit 31 calculates the oil film parameter (OP) according to the equation (A4).
  • the oil film parameter OP When the oil film parameter OP is 3 or less, there is a possibility that the bearing surface of the bearing (ring) will be in direct contact with the surface protrusions of the rolling surface of the rolling element, and stress concentration due to micro unevenness of the surface roughness (hereinafter referred to as micro It is known that stress) occurs.
  • the surface-origin type damage is caused by this micro-stress, and whether or not the bearing component (the raceway surface) in use causes the surface-origin type separation depends on the state of the surface shape. Therefore, in the present embodiment, when the oil film parameter OP is 3 or less, the micro stress calculation unit 32 calculates the triaxial micro stress just below the micro contact portion based on the root mean square slope Rdq.
  • the root mean square slope Rdq is expressed by the following formula when the mean square roughness (Rq1) of the raceway surface ⁇ the mean square roughness (Rq2) of the rolling surface.
  • L represents a reference length.
  • the root mean square slope Rdq is expressed by the following formula when the root mean square roughness (Rq1) ⁇ the mean square roughness (Rq2) of the rolling surface.
  • L represents a reference length.
  • the roughness produced by grinding has directionality. On the grinding surface, there are long and thin protrusions along the grinding direction as shown in FIG. If the cross-sectional shape of the object is uniform and has a sufficient length, it can be regarded as being in a plane strain state except for both ends thereof, so that the contact portion of the microprojection can assume a plane strain stress state. Therefore, the micro stress calculator 32 can calculate the internal stress under the micro contact portion on the surface according to the equations (B2) to (B12). In equations (B6) and (B7), ⁇ xy (mc) and ⁇ zx (mc) are 0 because a plane strain stress state is assumed at the micro contact portion.
  • E1 is the Young's modulus of the raceway surface
  • E2 is the Young's modulus of the rolling surface
  • ⁇ 1 is the Poisson's ratio of the raceway surface
  • ⁇ 2 is the Poisson's ratio of the rolling surface.
  • b is a constant.
  • the micro-stress calculation unit 32 calculates the equivalent stress represented by the formula (B13) as the micro-stress S (mc) using the above-described six component stresses.
  • the micro stress S (mc) just below the micro contact portion can be calculated.
  • the micro stress S (mc) just below the micro contact portion can be calculated.
  • a high stress is generated on the surface, repeated plastic deformation is generated on the raceway surface.
  • a high residual stress is gradually generated, so that a residual stress is applied to the raceway surface in addition to the micro stress.
  • the residual stress calculation unit 33 calculates the residual stress based on the annular diffraction X-ray detected by the X-ray detector 12.
  • the strain ⁇ with respect to the center angle ⁇ of the Debye ring is obtained from the radius of the Debye ring using the following formula (C1).
  • ⁇ 0 is a Bragg angle in an unstrained state
  • R ⁇ is a Debye ring radius at the diffraction ring center angle ⁇
  • CL is a distance from the X-ray irradiation position to the X-ray detector 12.
  • n1 to n3 are direction cosines of ⁇ and are expressed by the following equations (C3) to (C5).
  • ⁇ 0 is an X-ray incident angle
  • ⁇ 0 is an angle formed by projection of incident X-rays with the X axis.
  • equations (C8) and (C9) indicate that a1 and a2 are linear with respect to cos ⁇ and sin ⁇ , respectively, and the slopes are expressed by the following equations (C12) and (C13).
  • X is represented by the following formula (C17).
  • Equation (C17) Since each stress component and direction cosine in equation (C17) are known, the value of ⁇ z is obtained. Note that the expression (C16) includes a term of ⁇ , and ⁇ z is obtained for each Debye ring center angle, so ⁇ z is an average value thereof. As described above, six components of stress are obtained by three times of X-ray irradiation.
  • the residual stress calculation unit 33 calculates the equivalent stress represented by the equation (C18) as the residual stress S (rs) using these six component stresses.
  • the composite stress calculation unit 34 calculates the following formula (D1) As described above, the combined stress S is calculated by adding the micro stress S (mc) and the residual stress S (rs).
  • the SN curve calculating unit 35 performs the test bearing component i when a plurality of rolling fatigue tests are performed on the plurality of test bearing components i until failure failure occurs.
  • the SN curve is obtained based on the load number Nij and the composite stress Sij in the j-th rolling fatigue test.
  • i is from 1 to MAX_i (the number of bearing parts for testing)
  • j is from 1 to X (the number of rolling fatigue tests until failure occurs).
  • the SN curve is an expression representing the relationship between the combined stress S and the number of times of load N applied until the failure of the test bearing part or the diagnostic bearing part.
  • the number of loads represents the number of times the rolling element contacts a part of the raceway, that is, the number of rotations of the rolling element.
  • the load number N given until the test bearing part or the diagnostic bearing part breaks down indicates the life of the test bearing part or the diagnostic bearing part.
  • N13 loads were applied with the equivalent stress S13.
  • a point P15 (N11 + N12, S13) is plotted with the S-axis value of P14 (N11 + N12, S12) as S13.
  • a point P16 (N11 + N12 + N13, S13) moved N13 times in the N-axis direction from P15 (N11 + N12, S13) is plotted.
  • the first sample is obtained from the combined stress S14 when failure occurs and the total number of loads until failure occurs (N11 + N12 + N13 + N14). Also good.
  • N21 times of load is applied to the test bearing component 2 with the equivalent stress S21 in the first rolling fatigue test.
  • a point P22 (N21, S21) moved N21 times in the N-axis direction from the initial position P21 (0, S21) is plotted.
  • N22 times of load is applied with the equivalent stress S22.
  • a point P23 (N21, S22) is plotted with the S-axis value of P22 (N21, S21) as S22.
  • a point P24 (N21 + N22, S22) moved N22 times in the N-axis direction from P23 (N21, S22) is plotted.
  • N23 times of load was applied with the equivalent stress S23.
  • a point P25 (N21 + N22, S23) is plotted with the S-axis value of P24 (N21 + N22, S22) as S23.
  • a point P26 (N21 + N22 + N23, S23) moved N23 times in the N-axis direction from P25 (N21 + N22, S23) is plotted.
  • the second sample is obtained from the combined stress S24 when failure occurs and the total number of loads (N21 + N22 + N23 + N24) until failure occurs. Also good.
  • a plurality of samples can be obtained by performing a rolling fatigue test on a plurality of bearing parts for testing until failure failure occurs.
  • the SN curve is expressed by the following formula (D2).
  • the unknown number a in the formula (B1), the unknown number b in the formula (B12), and the three unknowns A, B, and Sf in the formula (D2) can be obtained.
  • the three unknowns A, B, and Sf in the formula (D2) are called first type constants.
  • the unknown number a in the formula (B1) and the unknown number b in the formula (B12) are referred to as second type constants.
  • a, b, and Sf may be determined in advance.
  • the unknowns A and B in Expression (D2) can also be obtained.
  • the SN curve storage unit 36 stores the calculated SN curve formula.
  • the diagnosis unit 37 uses the SN curve formula stored in the SN curve storage unit 36 and corresponds to the composite stress SX calculated for the bearing of the diagnostic bearing component as shown in FIG.
  • the lifetime LX is specified.
  • the service life LX is the total number of loads until the diagnostic bearing component breaks down and is not the remaining life, which is the number of loads until the failure breaks in the future.
  • FIG. 9 is a flowchart showing a procedure for obtaining the SN curve in the rolling fatigue test.
  • step S101 the control unit 50 sets the control variable i to 1.
  • step S102 the control unit 50 sets the control variable j to 1.
  • step S103 the control unit 50 operates the bearing part i for testing.
  • step S104 when a predetermined time has elapsed since the test bearing part i was operated, the process proceeds to step S105.
  • step S105 the control unit 50 stops the bearing component i for testing.
  • step S106 the oil film parameter calculation unit 31 sets the oil film parameter OP of the oil film between the raceway surface of the bearing ring, which is the test bearing component i, and the rolling surface of the rolling element in contact with the test bearing component i. calculate.
  • step S107 when the oil film parameter OP is 3 or less, the process proceeds to step S108, and when the oil film parameter OP exceeds 3, the process returns to step S103.
  • step S108 the micro-stress calculation unit 32 calculates the micro-stress S (mc) acting on the raceway surface of the raceway which is the bearing component i for test.
  • step S110 the residual stress calculation unit 33 calculates the residual stress S (rs) acting on the raceway surface of the raceway which is the bearing component i for testing.
  • step S111 the composite stress calculation unit 34 calculates the composite stress S by adding the micro stress S (mc) and the residual stress S (rs).
  • step S112 the control unit 50 acquires the number of rotations of the rolling element when the test bearing part i is operated under the current control variables i and j as the load count Nij.
  • step S113 when failure breakdown occurs in the test bearing part i, the process proceeds to step S115, and when failure breakdown does not occur in the test bearing part i, the process proceeds to step S114.
  • step S114 the control variable j is incremented, and then the process returns to step S103.
  • step S115 the control unit 50 sets the combined stress S calculated when the test bearing part i is failed and destroyed as the combined stress Si in the control variable i, and the load number Ni in the Ni1 + Ni2 +. To do.
  • the control unit 50 sets (Si, Ni) as the i-th sample.
  • step S116 when i is the predetermined value MAX_i, the process proceeds to step S118, and when i is not the predetermined value MAX_i, the process proceeds to step S117.
  • step S117 the control variable i is incremented, and then the process returns to step S102.
  • FIG. 10 is a flowchart showing the procedure of the life diagnosis of the bearing component for diagnosis of the first embodiment.
  • step S301 the control unit 50 stops the bearing component for diagnosis.
  • step S302 the oil film parameter calculation unit 31 calculates the oil film parameter OP of the oil film between the raceway surface of the bearing ring, which is a diagnostic bearing component, and the rolling surface of the rolling element that contacts the diagnostic bearing component. .
  • step S303 when the oil film parameter OP is 3 or less, the process proceeds to step S305, and when the oil film parameter OP exceeds 3, the process returns to step S304.
  • step S305 the micro-stress calculator 32 calculates the micro-stress S (mc) acting on the raceway surface of the raceway which is a bearing component for diagnosis.
  • step S306 the residual stress calculation unit 33 calculates the residual stress S (rs) acting on the raceway surface of the raceway which is a bearing component for diagnosis.
  • step S307 the composite stress calculation unit 34 adds the micro stress S (mc) and the residual stress S (rs) to calculate the composite stress SX.
  • step S308 the diagnosis unit 37 uses the SN curve formula stored in the SN curve storage unit 36 to calculate the combined stress SX calculated for the raceway surface of the bearing ring that is a bearing component for diagnosis.
  • the corresponding lifetime LX is specified.
  • step S309 the diagnosis unit 37 displays the life LX on the display unit 18.
  • step S310 when the life LX is equal to or less than the threshold value TH1, the process proceeds to step S311.
  • the process proceeds to step S304.
  • step S304 the diagnosis unit 37 displays a message on the display unit 18 that the diagnosis bearing parts need not be replaced.
  • step S311 the diagnosis unit 37 displays a message on the display unit 18 that the diagnosis bearing part needs to be replaced.
  • FIG. 11 is a diagram illustrating a change in root mean square slope Rdq with respect to the number of loads N.
  • the root mean square slope Rdq decreases as the number of loads N increases.
  • FIG. 12 is a diagram showing a change in the residual stress S (rs) with respect to the number N of loads. It is known that the residual stress (rs) decreases with increasing peeling (stress release due to the occurrence of peeling). In the test of condition A, the stress was released due to the occurrence of peeling at the load number of 3 ⁇ 10 5 times, and in the test of condition B, the stress was released at the load number of 1.5 ⁇ 10 5 times. That is, in these tests, the peeling life is 3 ⁇ 10 5 times and 1.5 ⁇ 10 5 times, respectively.
  • an SN curve was calculated from the results of two rolling fatigue tests of condition A and condition B.
  • the life L with respect to the load number N was calculated based on the calculated SN curve.
  • FIG. 13 is a diagram showing the estimated life L with respect to the load number N in the condition A. Under the condition A, the root mean square slope Rdq and the residual stress S (rs) change every load number N. Therefore, it can be seen that the estimated life L changes with the load number N.
  • the SN curve is obtained from the number of loads and the combined stress in the rolling test, and the life of the bearing component to be diagnosed is obtained using the SN curve. Can be estimated.
  • FIG. 14 is a diagram illustrating a functional configuration of the life diagnosis apparatus 14 according to the second embodiment.
  • This life diagnosis device 14 includes an input unit 17, an oil film parameter calculation unit 31, a micro stress calculation unit 32, a residual stress calculation unit 33, a composite stress calculation unit 34, an SN curve calculation unit 35, and an S -N curve storage unit 36, X-ray analysis data calculation unit 45, correspondence table creation unit 41, correspondence table storage unit 43, cumulative fatigue level calculation unit 42, diagnosis unit 37, control unit 50, display Part 18.
  • the SN curve storage unit 36 and the correspondence table creation unit 41 are realized by the memory 16.
  • Oil film parameter calculation unit 31, micro stress calculation unit 32, residual stress calculation unit 33, synthetic stress calculation unit 34, SN curve calculation unit 35, X-ray analysis data calculation unit 45, correspondence table creation unit 41, the cumulative fatigue level calculation unit 42, the diagnosis unit 37, and the control unit 50 are realized by the CPU 15 executing the life diagnosis program stored in the memory 16.
  • X-ray analysis data Pij obtained from the diffracted X-rays is calculated.
  • the X-ray analysis data Pij can be data representing the relationship between the central angle of the annular diffraction X-ray and the intensity.
  • Expression (D3) is an expression representing a linear cumulative damage law (hereinafter, a minor law).
  • Equation (D3) is obtained when the life at the combined stresses F1, F2,..., Fk,..., Fn is L1, L2,. , F2,..., Fk,..., Fn, when N1, N2,..., Nk,. This is an empirical formula that reaches the end of life when the value reaches 1.
  • FIG. 15 is a diagram for explaining the calculation process of the cumulative fatigue degree D.
  • the cumulative fatigue level calculation unit 42 sequentially calculates the cumulative fatigue level D1j for each fatigue test j for the test bearing component 1 using the SN curve of FIG.
  • the life under the rolling condition where the composite stress S11 acts is L11.
  • the degree of fatigue when a load of N11 times is applied with the composite stress S11 is represented by N11 / L11.
  • the cumulative fatigue level D11 is N11 / L11.
  • the life in the rolling condition where the composite stress S12 acts is L12 according to the SN curve.
  • the fatigue level is expressed as N12 / L12.
  • the cumulative fatigue level D12 is N11 / L11 + N12 / L12.
  • the life in the rolling condition where the composite stress S13 acts is L13 according to the SN curve.
  • the fatigue level is expressed as N13 / L13.
  • the cumulative fatigue level D13 is N11 / L11 + N12 / L12 + N13 / L13.
  • the life in the rolling condition where the composite stress S14 acts is L14 according to the SN curve.
  • the fatigue level is expressed as N14 / L14.
  • the cumulative fatigue level D14 is N11 / L11 + N12 / L12 + N13 / L13 + N14 / L14.
  • the cumulative fatigue level calculation unit 42 sequentially determines the cumulative fatigue level D2j for each fatigue test j for the test bearing component 2 using the SN curve of FIG.
  • the life under the rolling condition in which the composite stress S21 acts is L21.
  • the fatigue level is represented by N21 / L21.
  • the cumulative fatigue level D21 is N21 / L21.
  • the life under the rolling condition in which the synthetic stress S22 acts is L22 according to the SN curve “.
  • the fatigue strength is N22 /
  • the cumulative fatigue level D22 is N21 / L21 + N22 / L22.
  • the life in the rolling condition where the composite stress S23 acts is L23 according to the SN curve.
  • the fatigue level is represented by N23 / L23.
  • the cumulative fatigue level D23 is N21 / L21 + N22 / L22 + N23 / L23.
  • the life in the rolling condition where the composite stress S24 acts is L24 according to the SN curve.
  • the fatigue level is expressed as N24 / L24.
  • the cumulative fatigue level D24 is N21 / L21 + N22 / L22 + N23 / L23 + N24 / L24.
  • the correspondence table creation unit 41 creates a correspondence table A that defines the correspondence between the X-ray analysis data Pij and the cumulative fatigue level Dij as shown in FIG.
  • the correspondence table storage unit 43 stores the created correspondence table A.
  • the diagnosis unit 37 uses the correspondence table A to identify the cumulative fatigue level DX corresponding to the X-ray analysis data PX detected for the bearings of the bearing components for diagnosis. When the X-ray analysis data PX is not in the correspondence table A, the diagnosis unit 37 performs linear interpolation using the cumulative fatigue level corresponding to the X-ray analysis data close to PX in the correspondence table, thereby performing the cumulative fatigue degree DX. Is identified.
  • the portion excluding the last term (Nn / Ln) on the left side is the cumulative fatigue level up to the present, and Nn of the last term (Nn / Ln) on the left side is “the number of loads that can be applied in the future” Is the remaining life.
  • the remaining life Nn is obtained by the cumulative fatigue level, which is a portion excluding the last term of the formula (D3), and the life Ln determined by subsequent use conditions.
  • the diagnosis unit 37 calculates the remaining life RX by the equation (D5).
  • FIG. 17 is a flowchart showing a procedure for obtaining the SN curve and cumulative fatigue level in a fatigue test.
  • step S401 the control unit 50 sets the control variable i to 1.
  • step S402 the control unit 50 sets the control variable j to 1.
  • step S403 the control unit 50 operates the bearing component i for testing.
  • step S404 when a predetermined time has elapsed since the test bearing part i was operated, the process proceeds to step S405.
  • step S405 the control unit 50 stops the test bearing part i.
  • step S406 the oil film parameter calculation unit 31 sets the oil film parameter OP of the oil film between the raceway surface of the bearing ring, which is the bearing component i for testing, and the rolling surface of the rolling element in contact with the bearing component i for testing. calculate.
  • step S407 when the oil film parameter OP is 3 or less, the process proceeds to step S408, and when the oil film parameter OP exceeds 3, the process returns to step S403.
  • step S408 the micro stress calculation unit 32 calculates the micro stress S (mc) acting on the raceway surface of the raceway which is the bearing component i for test.
  • step S409 the X-ray analysis data calculation unit 45 calculates X-ray analysis data Pij from the diffracted X-ray ring detected by irradiating the raceway surface of the raceway which is the bearing part i for testing.
  • the X-ray analysis data Pij is, for example, data representing the relationship between the center angle and the intensity of the annular diffraction X-ray.
  • step S410 the residual stress calculation unit 33 calculates the residual stress S (rs) acting on the raceway surface of the raceway which is the bearing component i for testing.
  • step S411 the composite stress calculation unit 34 calculates the composite stress S by adding the micro stress S (mc) and the residual stress S (rs).
  • step S412 the control unit 50 acquires the number of rotations of the rolling element when the test bearing part i operates under the current control variables i and j as the load count Nij.
  • step S413 when failure breakdown occurs in the test bearing part i, the process proceeds to step S415, and when failure breakdown does not occur in the test bearing part i, the process proceeds to step S414.
  • step S414 the control variable j is incremented, and then the process returns to step S403.
  • step S415 the control unit 50 sets the combined stress S calculated when the test bearing part i is failed and broken as the combined stress Si in the control variable i, and the load number Ni in the Ni1 + Ni2 +. To do.
  • the control unit 50 sets (Si, Ni) as the i-th sample.
  • step S416 when i is the predetermined value MAX_i, the process proceeds to step S418, and when i is not the predetermined value MAX_i, the process proceeds to step S417.
  • step S417 the control variable i is incremented, and then the process returns to step S402.
  • step S420 a correspondence table A that defines the correspondence between the correspondence table of the X-ray analysis data Pij and the cumulative fatigue level Dij is created.
  • FIG. 18 is a flowchart showing the procedure for diagnosing the life of a bearing component for diagnosis according to the second embodiment.
  • step S501 the control unit 50 stops the bearing component for diagnosis.
  • step S502 the oil film parameter calculation unit 31 calculates the oil film parameter OP of the oil film between the raceway surface of the bearing ring, which is a diagnostic bearing component, and the rolling surface of the rolling element in contact with the diagnostic bearing component. .
  • step S503 when the oil film parameter OP is 3 or less, the process proceeds to step S505, and when the oil film parameter OP exceeds 3, the process returns to step S504.
  • step S505 the micro stress calculation unit 32 calculates the micro stress S (mc) that acts on the raceway surface of the race which is a bearing component for diagnosis.
  • the X-ray analysis data calculation unit 45 calculates the X-ray analysis data PX from the diffraction X-ray ring detected by irradiating the raceway surface of the raceway which is a bearing part for diagnosis.
  • the X-ray analysis data PX is, for example, data representing the relationship between the center angle and the intensity of the annular diffraction X-ray (for example, a value representing the variation in diffraction intensity with respect to the center angle of the annular diffraction X-ray).
  • the value S representing the variation of the diffraction intensity with respect to the central angle of the annular diffraction X-ray is an average of the deviation of the diffraction intensity at the central angle of the annular diffraction X-ray and each diffraction intensity. Is done.
  • I ⁇ represents the diffraction intensity at the central angle ⁇ of the diffraction ring
  • Iave the average value of the diffraction intensity over the entire circumference of the diffraction ring
  • step S507 the residual stress calculation unit 33 calculates the residual stress S (rs) that acts on the raceway surface of the raceway ring that is a bearing component for diagnosis.
  • step S508 the composite stress calculation unit 34 adds the micro stress S (mc) and the residual stress S (rs) to calculate the composite stress SX.
  • step S509 the diagnosis unit 37 uses the SN curve formula stored in the SN curve storage unit 36 to calculate the combined stress SX calculated for the raceway surface of the bearing ring, which is a bearing component for diagnosis.
  • the corresponding lifetime LX is specified.
  • step S510 the diagnosis unit 37 uses the correspondence table A to identify the cumulative fatigue level DX corresponding to the X-ray analysis data PX detected for the bearing component for diagnosis.
  • step S511 the diagnosis unit 37 calculates the remaining life RX using the equation (D7).
  • step S512 the diagnosis unit 37 displays the remaining life RX on the display unit 18.
  • step S513 when the remaining life RX is equal to or less than the threshold value TH3, the process proceeds to step S514.
  • step S504 the diagnosis unit 37 displays a message on the display unit 18 that the diagnosis bearing parts need not be replaced.
  • step S514 the diagnosis unit 37 displays a message on the display unit 18 that the diagnosis bearing parts need to be replaced.
  • an SN curve is obtained from the number of loads in the rolling test and the combined stress, and the cumulative fatigue level and the X-ray are obtained using the SN curve.
  • the analysis data correspondence table A is created. Using the X-ray analysis data of the bearing to be diagnosed and the correspondence table A, the cumulative fatigue level of the bearing to be diagnosed can be calculated, and the life can be calculated from the SN curve and the combined stress. The remaining life can be calculated from the life and the cumulative fatigue level.
  • FIG. 19 is a diagram showing the cumulative fatigue degree D and the remaining life R with respect to the load number N in the condition A.
  • FIG. 20 is a diagram illustrating a functional configuration of the life diagnosis apparatus 14 of the third embodiment.
  • FIG. 21 is a flowchart showing the procedure for diagnosing the life of a bearing component for diagnosis according to the third embodiment.
  • step S601 the control unit 50 stops the bearing component for diagnosis.
  • step S602 the oil film parameter calculation unit 31 calculates the oil film parameter OP of the oil film between the raceway surface of the bearing ring, which is a diagnostic bearing component, and the rolling surface of the rolling element that contacts the diagnostic bearing component. .
  • step S603 when the oil film parameter OP is 3 or less, the process proceeds to step S605, and when the oil film parameter OP exceeds 3, the process returns to step S604.
  • the X-ray analysis data calculation unit 45 calculates X-ray analysis data PX from a diffracted X-ray ring detected by irradiating the raceway surface of the raceway which is a bearing part for diagnosis.
  • the X-ray analysis data PX is, for example, data representing the relationship between the center angle and the intensity of the annular diffraction X-ray (for example, a value representing the variation in diffraction intensity with respect to the center angle of the annular diffraction X-ray).
  • the value S representing the variation in diffraction intensity with respect to the central angle of the annular diffraction X-ray is the average of the deviation of the diffraction intensity at the central angle of the annular diffraction X-ray and each diffraction intensity. expressed.
  • step S606 the diagnosis unit 37 uses the correspondence table A to specify the cumulative fatigue level DX corresponding to the X-ray analysis data PX detected for the diagnostic bearing component.
  • step S ⁇ b> 607 the diagnosis unit 37 displays the fatigue level DX on the display unit 18.
  • step S608 when the fatigue level DX is equal to or greater than the threshold value TH2, the process proceeds to step S609. If the fatigue level DX is less than the threshold value TH2, the process proceeds to step S604.
  • step S604 the diagnosis unit 37 displays a message on the display unit 18 that it is not necessary to replace the bearing parts for diagnosis.
  • step S609 the diagnosis unit 37 displays a message on the display unit 18 that the diagnosis bearing parts need to be replaced.
  • FIG. 22 is a diagram showing the cumulative fatigue degree D with respect to the number of loads N under the condition A.
  • an SN curve is obtained from the number of loads in the rolling test and the combined stress, and the cumulative fatigue level and the X-ray are obtained using the SN curve.
  • the analysis data correspondence table A is created. Accordingly, the cumulative fatigue level of the bearing to be diagnosed can be estimated using the X-ray analysis data of the bearing to be diagnosed and the correspondence table A.
  • the diagnosis unit 37 may display the replacement time of the diagnostic bearing parts on the display unit 18 instead of a message indicating whether or not the replacement of the diagnostic bearing parts is necessary. For example, the diagnosis unit 37 can determine the replacement time based on the lifetime and the number of loads up to now.
  • X-ray analysis data is not limited to data representing the relationship between the central angle and the intensity of annular diffraction X-rays.
  • residual stress of six components acting on bearing parts ⁇ x (rs), ⁇ y (rs), ⁇ z (rs), ⁇ xy (rs), ⁇ yz (rs), ⁇ xz (rs) ⁇ residual austenite of bearing parts, Alternatively, it may be a half width of a peak obtained corresponding to the central angle of the annular diffraction X-ray.
  • the X-ray analysis data may be an average value of diffraction intensities, a difference between minimum and maximum values of diffraction intensities, or an integrated width of diffraction intensities (a product of half-value width and diffraction intensity at a certain position). Good.
  • the X-ray analysis data are the half width of the peak obtained corresponding to the relationship between the central angle and the intensity of the annular diffracted X-ray, the six component residual stress, the retained austenite, and the central angle of the annular diffracted X-ray.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

合成応力算出部(34)は、複数個の試験用の軸受部品の各々について、故障破壊するまで複数回の転動疲労試験を行なったときの故障破壊が発生したときの試験用の軸受部品の残留応力とミクロ応力との和である試験用の軸受部品の合成応力を求め、診断用の軸受部品の残留応力とミクロ応力との和である診断用の軸受部品の合成応力を求める。S-N曲線算出部(35)は、複数個の試験用の軸受部品についての、複数回の転動疲労試験における総負荷回数と試験用の軸受部品の合成応力との関係に基づいてS-N曲線を求める。診断部(37)は、診断用の軸受部品の合成応力とS-N曲線に基づいて、診断用の軸受部品の寿命を求める。

Description

軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム
 本発明は、軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラムに関する。
 転がり軸受(以下、軸受)の寿命は、荷重や潤滑条件等の運転条件、硬度・組織・残留応力等の材料特性に依存することが知られている。従来より、軸受の寿命は、運転条件や材料特性から計算できる寿命計算式を使って推定されている。この計算式は、軸受をある条件で使用する際にどのくらいの期間使用できるか、あるいは、要求される使用期間で軸受が破損しないためにどのような条件で軸受を使用すればよいかを見積もるために使用されている。一般に、軸受は、その寿命計算式に基づいて設定した使用条件で使用される。したがって、想定した条件で軸受が使用されている場合は、寿命が問題になることはないはずである。しかしながら、市場では軸受の寿命がしばしば問題となる。これは、実際の軸受では使用環境等の外乱によって想定外の短寿命が発生することがあるためと考えられる。そのため、転がり軸受では、実際の軸受の疲労度を何らかの分析結果に基づいて推定し、疲労度から軸受の破損のリスクを管理しようとする試みがある。
 特許文献1(特開2014-167421号公報)では、軸受の接触圧力と表面粗さの突起形状から求められる塑性指数から損傷形態(ピーリング、フレーキング、摩耗、スミアリング)を推定する方法が記載されている。さらに、接触圧力、塑性指数、すべり率等の条件から表面起点型損傷の1種であるピーリング損傷の寿命を推定する方法が記載されている。
 特許文献2(特開2014-13188号公報)の方法では、軸受部品の転動部にX線を照射したときに発生する環状の回折X線から求められる各種X線分析値(応力、残留オーステナイト量、環状の回折X線の中心角に対する回折強度、中心角に対する半価幅)と転動部品の各種使用条件(負荷回数、荷重、潤滑条件等)をデータベース化し、そのデータベースに基づいて軸受の使用条件を推定し、その使用条件から軸受の寿命を推定する方法が示されている。
 軸受の破損のリスクは余寿命として表現されることが多いが、余寿命は現時点で軸受がどのくらい疲労しているか(疲労度)と、今後どの程度の推定寿命になる条件で運転されるかによって決まる。したがって、破損のリスクについて検討するためには、少なくとも疲労度か推定寿命のいずれかの情報が必要になる。
 特許文献1では、接触圧力、塑性指数、すべり率等の条件から表面起点型損傷の1種であるピーリング損傷の寿命を推定する方法が記載されている。
 特許文献2は、従来装置よりも転動疲労に関する情報が豊富に得られるX線回折環分析装置を用いて、各種X線分析結果と各種転動条件(使用面圧、潤滑条件、すべり条件、負荷回数)とのデータベースを構築し、そのデータベースから軸受の使用条件を推定し、その使用条件から求めることができる推定寿命と負荷回数から疲労度を推定し、最終的に余寿命を推定するという方法である。
特開2014-167421号公報 特開2014-13188号公報
 ピーリングの寿命を決める表面に作用する繰返し応力は、接触圧力、塑性指数、すべり率だけでなく、残留応力も考慮する必要がある。しかしながら、特許文献1に記載の方法では残留応力が考慮されておらず、その推定精度は悪いと考えられる。
 特許文献2に記載の方法は、複雑な転動部品の使用条件(負荷回数、荷重、潤滑条件、すべり等)をX線分析値から統計的に推定するため、膨大な数の実験によるデータを取得しなければ、使用条件の推定精度が低くなり、結果として寿命の推定精度が悪くなる。
 それゆえに、本発明の目的は、少ないデータから寿命を高精度に推定することができる軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラムを提供することである。
 上記課題を解決するために、本発明の軸受部品の寿命診断方法は、複数個の試験用の軸受部品の各々について、故障破壊するまで複数回の転動疲労試験を行なうステップと、故障破壊が発生したときの試験用の軸受部品の残留応力とミクロ応力との和である試験用の軸受部品の合成応力を求めるステップと、複数個の試験用の軸受部品についての、複数回の転動疲労試験における総負荷回数と合成応力との関係に基づいてS-N曲線を求めるステップと、診断用の軸受部品の残留応力とミクロ応力との和である診断用の軸受部品の合成応力を求めるステップと、診断用の軸受部品の合成応力とS-N曲線に基づいて、診断用の軸受部品の寿命を求めるステップとを備える。
 好ましくは、試験用の軸受部品の合成応力を求めるステップは、試験用の軸受部品の表面形状の測定結果から試験用の軸受部品のミクロ応力を求めるステップを含む。
 好ましくは、試験用の軸受部品の合成応力を求めるステップは、試験用の軸受部品のX線回折結果から試験用の軸受部品の残留応力を求めるステップを含む。
 好ましくは、診断用の軸受部品の合成応力を求めるステップは、診断用の軸受部品の表面形状の測定結果から診断用の軸受部品のミクロ応力を求めるステップを含む。
 好ましくは、診断用の軸受部品の合成応力を求めるステップは、診断用の軸受部品のX線回折結果から診断用の軸受部品の残留応力を求めるステップを含む。
 好ましくは、S-N曲線は、複数個の第1種定数と、故障破壊までの負荷回数Nと、合成応力Sを含む式で表される。合成応力Sを表す式は、複数個の第2種定数を含む。S-N線曲線を求めるステップは、各試験用の軸受部品について、故障破壊するまでの複数回の転動疲労試験の負荷回数の合計をNとし、故障破壊したときの合成応力をSとした1つのサンプルを得るステップと、複数個の試験用の軸受部品についてのサンプルを用いて、複数個の第1種定数および複数個の第2種定数を推定するステップとを含む。
 好ましくは、数式は、式(1)で表される。A、B、Sfは定数である。
Figure JPOXMLDOC01-appb-M000002
 好ましくは、軸受部品の寿命診断方法は、寿命に基づいて、診断用の軸受部品が交換を要するか否か、または交換時期を通知するステップをさらに備える。
 好ましくは、試験用の軸受部品の表面に存在する油膜の厚さと表面の形状の測定結果から得られる油膜パラメータが所定値以下のときに、試験用の軸受部品の合成応力を求めるステップが実行される。
 好ましくは、診断用の軸受部品の表面に存在する油膜の厚さと表面の形状の測定結果から得られる油膜パラメータが所定値以下のときに、診断用の軸受部品の合成応力を求めるステップが実行される。
 本発明の軸受部品の寿命診断装置は、複数個の試験用の軸受部品の各々について、故障破壊するまで複数回の転動疲労試験を行なったときに故障破壊が発生したときの試験用の軸受部品の残留応力とミクロ応力との和である試験用の軸受部品の合成応力を求め、診断用の軸受部品の残留応力とミクロ応力との和である診断用の軸受部品の合成応力を求める合成応力算出部と、複数個の試験用の軸受部品についての、複数回の転動疲労試験における総負荷回数と試験用の軸受部品の合成応力との関係に基づいてS-N曲線を求めるS-N曲線算出部と、診断用の軸受部品の合成応力とS-N曲線に基づいて、診断用の軸受部品の寿命を求める診断部とを備える。
 本発明の軸受部品の寿命診断プログラムは、コンピュータに、複数個の試験用の軸受部品の各々について、故障破壊するまで複数回の転動疲労試験を行なったときに、故障破壊が発生したときの試験用の軸受部品の残留応力とミクロ応力との和である試験用の軸受部品の合成応力を求めるステップと、複数個の試験用の軸受部品についての、複数回の転動疲労試験における総負荷回数と試験用の軸受部品の合成応力との関係に基づいてS-N曲線を求めるステップと、診断用の軸受部品の残留応力とミクロ応力との和である診断用の軸受部品の合成応力を求めるステップと、診断用の軸受部品の合成応力とS-N曲線に基づいて、診断用の軸受部品の寿命を推定するステップとを実行させる。
 本発明によれば、転動疲労のメカニズムに基づいたより理論的に寿命を推定するので、少ないデータから寿命を高精度に推定することができる。
本発明の実施形態の寿命診断システムの構成を表わす図である。 寿命診断装置14のハードウエア構成を表わす図である。 第1の実施形態の寿命診断装置14の機能構成を表わす図である。 油膜パラメータの算出処理の手順を表わすフローチャートである。 研削面の表面粗さを表わす図である。 3軸の残留応力を計算する方法を説明するための図である。 S-N曲線が作成される手順を説明するための図である。 S-N曲線を用いた寿命の算出方法を表わす図である。 転動疲労試験においてS-N曲線を求める手順を表わすフローチャートである。 第1の実施形態の診断用の軸受部品の寿命診断の手順を表わすフローチャートである。 負荷回数Nに対する二乗平均平方根傾斜Rdqの変化を表わす図である。 負荷回数Nに対する残留応力S(rs)の変化を表わす図である。 条件Aにおける負荷回数Nに対する推定寿命Lを表わす図である。 第2の実施形態の寿命診断装置14の機能構成を表わす図である。 累積疲労度Dの算出処理を説明するための図である。 対応テーブルAの例を表わす図である。 疲労試験において累積疲労度を求める手順を表わすフローチャートである。 第2の実施形態の診断用の軸受部品の寿命診断の手順を表わすフローチャートである。 条件Aにおける負荷回数Nに対する累積疲労度Dおよび余寿命Rを表わす図である。 第3の実施形態の寿命診断装置14の機能構成を表わす図である。 第3の実施形態の診断用の軸受部品の寿命診断の手順を表わすフローチャートである。 条件Aにおける負荷回数Nに対する累積疲労度Dを表わす図である。
 以下、本発明の実施の形態について、図面を用いて説明する。
 図1は、本発明の実施形態の寿命診断システムの構成を表わす図である。
 図1を参照して、この寿命診断システムは、寿命診断装置14と、照射部11と、X線検出器12と、表面形状測定器13とを備える。
 照射部11は、被検査軸受部品90に対向させることが可能なように設置されたX線管球を含んでいる。照射部11は、被検査軸受部品90に対してX線を照射する。照射されたX線は、被検査軸受部品90に対して所定の入射角で入射するように、矢印αに沿って照射される。被検査軸受部品90は、転がり軸受の転動体と、診断用または試験用の軸受部品である転がり軸受の軌道輪の一部または全部とを含む。X線は、たとえば、転がり軸受の軌道輪の一部に照射されることとしてもよい。
 X線検出器12は、被検査軸受部品90において回折した環状のX線(X線回折環)を検出する。具体的には、X線検出器12は、照射部11から照射したX線を通過させる中心部に形成された孔12Bと、被検査軸受部品90に対向させることが可能な平面状の検出部12Aを含む。検出部12Aとして、たとえばX線CCD(Charge Coupled Device)を用いることができる。矢印αに沿って被検査軸受部品90に入射したX線が、円錐面βを構成するように回折し、検出部12Aに到達する。そして、検出部12Aにおいては、それぞれの画素が出力するX線の強度に相当する強度の信号によりX線回折環が検出される。
 表面形状測定器13は、被検査軸受部品90の表面形状を測定する。表面形状測定器13として、たとえばレーザ顕微鏡を用いることができる。測定する表面は、たとえば、転がり軸受の軌道輪の一部の表面、および転動体の全表面としてもよい。
 寿命診断装置14は、X線検出器12において検出されたX線回折環、および表面形状測定器13で検出された表面形状に基づいて被検査軸受部品90の寿命を診断する。寿命診断装置14は、たとえば、小型のコンピュータ装置(パーソナルコンピュータ等)としてもよい。
 図2は、寿命診断装置14のハードウエア構成を表わす図である。
 この寿命診断装置14は、入力部17と、CPU(Central Processing Unit)15と、メモリ16と、表示部18とを備える。
 入力部17には、表面形状測定器13の測定結果、およびX線検出器12の検出結果が入力される。
 メモリ16は、寿命診断プログラムなどを記憶することができる。
 CPU15は、入力部17に入力されたデータを用いて、メモリ16に記憶された寿命診断プログラムを実行する。
 表示部18は、CPU15による寿命診断結果を表示する。
 [第1の実施形態]
 図3は、第1の実施形態の寿命診断装置14の機能構成を表わす図である。
 この寿命診断装置14は、入力部17と、油膜パラメータ算出部31と、ミクロ応力算出部32と、残留応力算出部33と、合成応力算出部34と、S-N曲線算出部35と、S-N曲線記憶部36と、診断部37と、制御部50と、表示部18とを備える。
 S-N曲線記憶部36は、メモリ16によって実現される。油膜パラメータ算出部31と、ミクロ応力算出部32と、残留応力算出部33と、合成応力算出部34と、S-N曲線算出部35と、診断部37と、制御部50は、CPU15がメモリ16に記憶された寿命診断プログラムを実行することによって実現される。
 油膜パラメータ算出部31は、油膜パラメータOPを算出する。
 図4は、油膜パラメータの算出処理の手順を表わすフローチャートである。
 ステップS201において、油膜パラメータ算出部31は、軌道輪の軌道面の一部の粗さ(Z1)を測定する。油膜パラメータ算出部31は、レーザ顕微鏡などの表面形状測定器13から得られた検査結果に基づいて、粗さZ1(n)を測定する。n=1~Nである。
 ステップS202において、油膜パラメータ算出部31は、転動体の転動面の全ての粗さ(Z2)を測定する。油膜パラメータ算出部31は、レーザ顕微鏡などの表面形状測定器13から得られた検査結果に基づいて、粗さZ2(n)を測定する。n=1~Nである。
 ステップS203において、油膜パラメータ算出部31は、試験用の軸受部品の基本的な使用条件(転動体の回転数、使用温度、荷重、油種)に基づいて、油膜の厚さ(d)を算出する。
 ステップS204において、油膜パラメータ算出部31は、式(A1)に従って、軌道面の二乗平均粗さ(Rq1)を算出する。ここで、Lは、基準長さを表す。
Figure JPOXMLDOC01-appb-M000003
 ステップS205において、油膜パラメータ算出部31は、式(A2)に従って、転動面の二乗平均粗さ(Rq2)を算出する。ここで、Lは、基準長さを表す。
Figure JPOXMLDOC01-appb-M000004
 ステップS206において、油膜パラメータ算出部31は、式(A3)に従って、合成二乗平均粗さ(Rq)を算出する。
Figure JPOXMLDOC01-appb-M000005
 ステップS207において、油膜パラメータ算出部31は、式(A4)に従って、油膜パラメータ(OP)を算出する。
Figure JPOXMLDOC01-appb-M000006
 油膜パラメータOPが3以下になると、軸受(軌道輪)の軌道面と転動体の転動面の表面突起が直接接触する可能性があり、表面粗さのミクロな凹凸による応力集中(以下、ミクロ応力)が発生することが知られている。表面起点型の損傷はこのミクロ応力に起因しており、使用中の軸受部品(軌道面)が表面起点型はく離を起こすかどうかは、表面形状の状態によって決まる。よって、本実施の形態では、油膜パラメータOPが3以下の場合に、ミクロ応力算出部32が、二乗平均平方根傾斜Rdqに基づいて、ミクロな接触部直下の3軸のミクロ応力を算出する。
 二乗平均平方根傾斜Rdqは、軌道面の二乗平均粗さ(Rq1)≧転動面の二乗平均粗さ(Rq2)のときには、以下の式で表される。ここで、Lは、基準長さを表す。
Figure JPOXMLDOC01-appb-M000007
 二乗平均平方根傾斜Rdqは、軌道面の二乗平均粗さ(Rq1)<転動面の二乗平均粗さ(Rq2)のときには、以下の式で表される。ここで、Lは、基準長さを表す。
Figure JPOXMLDOC01-appb-M000008
 二乗平均平方根傾斜Rdqがミクロな最大接触応力Pmaxに比例するという以下の式(B1)の関係を用いる。
Figure JPOXMLDOC01-appb-M000009
 研削で作られる粗さには方向性がある。研削面には研削方向に沿って図5のように長細い突起が存在している。物体の断面形状が一様であり、十分な長さがあればその両端部を除けば平面ひずみ状態であるとみなせるので、微小突起の接触部は、平面ひずみ応力状態を仮定できる。そこで、ミクロ応力算出部32は、式(B2)~(B12)に従って、表面のミクロな接触部下の内部応力を算出することができる。式(B6)、(B7)において、τxy(mc)とτzx(mc)が0となるのは、ミクロな接触部において平面ひずみ応力状態を仮定しているためである。ここで、E1は軌道面のヤング率、E2は転動面のヤング率、ν1は軌道面のポアソン比、ν2は転動面のポアソン比を表わす。式(B12)のbは定数である。なお、摩擦係数μは境界潤滑条件でのおよその値、たとえば0.1などの適当な値を代入すればよい。R1、R2は接触する2物体(転動体、軌道輪)の半径であり、R1=0.02mm、R2=∞(円柱と平面の接触)とした。
Figure JPOXMLDOC01-appb-M000010
 ミクロ応力算出部32は、上述の6成分の応力を用いて、式(B13)で示される相当応力をミクロ応力S(mc)として算出する。
Figure JPOXMLDOC01-appb-M000011
 以上より、二乗平均平方根傾斜Rdqを測定すれば、ミクロな接触部直下のミクロ応力S(mc)を算出することができるが、表面に高い応力が発生する場合、軌道面には繰返しの塑性変形によって高い残留応力が徐々に生成するため、軌道面には、ミクロ応力に加えて、残留応力が加わる。
 残留応力算出部33は、X線検出器12によって検出された環状の回折X線に基づいて、残留応力を算出する。
 本実施の形態では、3方向入射による佐々木-広瀬法を使って3軸の残留応力を計算する方法について説明する。図6に示すようにデバイリングの中心角αに対する歪みεαはデバイリングの半径から以下の式(C1)を使って得られる。ここで、θ0は、無ひずみ状態でのブラッグ角、Rαは回折環中心角αにおけるデバイリングの半径、CLはX線の照射位置からX線検出器12までの距離を表わす。
Figure JPOXMLDOC01-appb-M000012
 式(C1)に示す座標系において、εαと応力の関係は次式(C2)で表される。ここで、EはX線的ヤング率、νはX線的ポアソン比を表わす。
Figure JPOXMLDOC01-appb-M000013
 また、n1~n3はεαの方向余弦であり、次式(C3)~(C5)で表される。ここで、ηはブラッグ角θの補角(η=π/2-θ)、Ψ0はX線入射角、φ0は入射X線の投影がX軸となす角を表わす。
Figure JPOXMLDOC01-appb-M000014
 次に、式(C2)から各応力成分を得るために、デバイリングの中心角π+α、π-α、-αにおけるひずみをそれぞれεπ+α、επ-α、ε-αと表し、式(C6)、(C7)で表されるパラメータを定義する。
Figure JPOXMLDOC01-appb-M000015
 式(C2)~(C7)から、φ0=0におけるa1とa2は、以下の式(C8)、(C9)で表される。
Figure JPOXMLDOC01-appb-M000016
 式(C8)と(C9)において、Ψ0=0のとき、すなわちX線を試料面に垂直な方向から入射(垂直入射)するとき、せん断応力τxz、τyzについて次式(C10)、(C11)の関係が得られる。
Figure JPOXMLDOC01-appb-M000017
 また、式(C8)と(C9)はa1とa2がそれぞれcosα、sinαに対して線形であることを示しており、その傾きは次式(C12)、(C13)で表される。
Figure JPOXMLDOC01-appb-M000018
 式(C12)と(C13)において、τxz、τyzはすでに式(C10)と(C11)で得られているため、Ψ0≠0のときσx-σz、τxyは次式(C14)、(C15)で得られる。
Figure JPOXMLDOC01-appb-M000019
 σy-σzはφ0=π/2 rad(=90°)における式(C14)の関係を用いれば計算できる。σzは次式(C16)から求める。ここで、Xは次式(C17)で表される。
Figure JPOXMLDOC01-appb-M000020
 式(C17)における各応力成分と方向余弦は既知であるので、σzの値が求められる。なお、式(C16)にはεαの項が含まれており、デバイリングの中心角ごとにσzが得られるので、σzはその平均値とする。以上のように、3回のX線照射で応力の6成分が得られる。
Figure JPOXMLDOC01-appb-M000021
 残留応力算出部33は、これらの6成分の応力を用いて、式(C18)で示される相当応力を残留応力S(rs)として算出する。
 凹凸によるミクロ応力S(mc)と残留応力(rs)の両方が、軌道輪の表面起点型はく離による寿命に影響を与えることを考慮して、合成応力算出部34は、以下の式(D1)のように、ミクロ応力S(mc)と、残留応力S(rs)とを加算して、合成応力Sを算出する。
Figure JPOXMLDOC01-appb-M000022
 S-N曲線算出部35は、複数個の試験用の軸受部品iに対して、故障破壊が発生するまでに、複数回の転動疲労試験が行われたときに、試験用の軸受部品iについて、j回目の転動疲労試験の負荷回数Nijと合成応力Sijとに基づいて、S-N曲線を求める。ここで、iは1からMAX_i(試験用の軸受部品の個数)までである、jは1からX(故障破壊が発生するまでの転動疲労試験の回数)である。
 S-N曲線は、試験用の軸受部品または診断用の軸受部品が故障破壊するまでに与えられる負荷回数Nと、合成応力Sとの関係を表わす式である。ここで、負荷回数は転動体が、軌道輪の一部に接触する回数、すなわち転動体の回転数を表わす。試験用の軸受部品または診断用の軸受部品が故障破壊するまでに与えられる負荷回数Nは、その試験用の軸受部品または診断用の軸受部品の寿命を表わす。
 図7を参照して、S-N曲線が作成される手順について説明する。
 まず、試験用の軸受部品1に対して、第1回目の転動疲労試験において、相当応力S11でN11回の負荷が加えられたとする。初期位置P11(0,S11)からN軸方向にN11回移動した点P12(N11,S11)をプロットする。
 第2回目の転動疲労試験において、相当応力S12でN12回の負荷が加えられたとする。ここで、S12<S11である、なぜなら、転がり接触では、負荷回数の増加に伴って、軌道面の表面粗さが低下し、突起接触部の応力集中が軽減されるからである。P12(N11,S11)のS軸の値をS12とした点P13(N11,S12)をプロットする。P13(N11,S12)からN軸方向にN12回移動した点P14(N11+N12,S12)をプロットする。
 第3回目の転動疲労試験において、相当応力S13でN13回の負荷が加えられたとする。P14(N11+N12,S12)のS軸の値をS13とした点P15(N11+N12,S13)をプロットする。P15(N11+N12,S13)からN軸方向にN13回移動した点P16(N11+N12+N13,S13)をプロットする。
 第4回目の転動疲労試験において、相当応力S14でN14回の負荷が加えられたときに故障破壊が発生したとする。P16(N11+N12+N13,S13)のS軸の値をS14とした点P17(N11+N12+N13,S14)をプロットする。P17(N11+N12+N13,S14)からN軸方向にN14回移動した点P18(N11+N12+N13+N14,S14)をプロットする。このようにして得られた点P18を試験用の軸受部品1の合成応力と寿命の関係を表わす第1サンプルとする。
 なお、上述のように、複数個の点をプロットするのではなく、故障破壊が発生したときの合成応力S14、故障破壊が発生するまでの総負荷回数(N11+N12+N13+N14)によって第1サンプルを求めるものとしてもよい。
 次に、試験用の軸受部品2に対して、第1回目の転動疲労試験において、相当応力S21でN21回の負荷が加えられたとする。初期位置P21(0,S21)からN軸方向にN21回移動した点P22(N21,S21)をプロットする。
 第2回目の転動疲労試験において、相当応力S22でN22回の負荷が加えられたとする。P22(N21,S21)のS軸の値をS22とした点P23(N21,S22)をプロットする。P23(N21,S22)からN軸方向にN22回移動した点P24(N21+N22,S22)をプロットする。
 第3回目の転動疲労試験において、相当応力S23でN23回の負荷が加えられたとする。P24(N21+N22,S22)のS軸の値をS23とした点P25(N21+N22,S23)をプロットする。P25(N21+N22,S23)からN軸方向にN23回移動した点P26(N21+N22+N23,S23)をプロットする。
 第4回目の転動疲労試験において、相当応力S24でN24回の負荷が加えられたときに故障破壊が発生したとする。P26(N21+N22+N23,S23)のS軸の値をS24とした点P27(N21+N22+N23,S24)をプロットする。P27(N21+N22+N23,S24)からN軸方向にN24回移動した点P28(N21+N22+N23+N24,S24)をプロットする。このようにして得られた点P28を試験用の軸受部品2の合成応力と寿命の関係を表わす第2サンプルとする。
 なお、上述のように、複数個の点をプロットするのではなく、故障破壊が発生したときの合成応力S24、故障破壊が発生するまでの総負荷回数(N21+N22+N23+N24)によって第2サンプルを求めるものとしてもよい。
 以上のようにして、複数個の試験用の軸受部品に対して故障破壊するまで転動疲労試験を行うことによって、複数個のサンプルが得られる。
 S-N曲線は、以下の式(D2)で表される。
Figure JPOXMLDOC01-appb-M000023
 5個以上のサンプルを用いることによって、式(B1)中の未知数a、式(B12)中の未知数b、式(D2)の3個の未知数A、B、Sfを求めることができる。より正確なS-N曲線を作成するためには、できるだけ多くのサンプルを用いるのが望ましい。式(D2)の3個の未知数A、B、Sfを第1種定数と呼ぶ。式(B1)中の未知数a、式(B12)中の未知数bを第2種定数と呼ぶ。
 なお、5個の未知数のうち、a、b、Sfについては、予め定めることができる場合がある。そのような場合には、第1サンプルP18と、第2サンプルP28とを用いて、式(D2)の未知数A、Bを求めることもできる。
 S-N曲線記憶部36は、算出されたS-N曲線の式を記憶する。
 診断部37は、S-N曲線記憶部36に記憶されたS-N曲線の式を用いて、図8に示すように、診断用の軸受部品の軸受について算出された合成応力SXに対応する寿命LXを特定する。寿命LXは、診断用の軸受部品が故障破壊するまでの総負荷回数であり、今後故障破壊するまでの負荷回数である残存寿命ではない。
 図9は、転動疲労試験においてS-N曲線を求める手順を表わすフローチャートである。
 ステップS101において、制御部50は、制御変数iを1に設定する。
 ステップS102において、制御部50は、制御変数jを1に設定する。
 ステップS103において、制御部50は、試験用の軸受部品iを稼働する。
 ステップS104において、試験用の軸受部品iが稼働されてから所定時間が経過したときには、処理がステップS105に進む。
 ステップS105において、制御部50は、試験用の軸受部品iを停止する。
 ステップS106において、油膜パラメータ算出部31は、試験用の軸受部品iである軌道輪の軌道面と、試験用の軸受部品iと接触する転動体の転動面の間の油膜の油膜パラメータOPを算出する。
 ステップS107において、油膜パラメータOPが3以下の場合に、処理がステップS108に進み、油膜パラメータOPが3を超える場合に、処理がステップS103に戻る。
 ステップS108において、ミクロ応力算出部32は、試験用の軸受部品iである軌道輪の軌道面に作用するミクロ応力S(mc)を算出する。
 ステップS110において、残留応力算出部33は、試験用の軸受部品iである軌道輪の軌道面に作用する残留応力S(rs)を算出する。
 ステップS111において、合成応力算出部34は、ミクロ応力S(mc)と残留応力S(rs)とを加算して、合成応力Sを算出する。
 ステップS112において、制御部50は、現在の制御変数i、jの下で試験用の軸受部品iが動作したときの転動体の回転数を負荷回数をNijとして取得する。
 ステップS113において、試験用の軸受部品iに故障破壊が発生したときには、処理がステップS115に進み、試験用の軸受部品iに故障破壊が発生していないときには、処理がステップS114に進む。
 ステップS114において、制御変数jがインクリメントされ、その後、処理がステップS103に戻る。
 ステップS115において、制御部50は、試験用の軸受部品iが故障破壊したときに算出された合成応力Sを制御変数iにおける合成応力Siとし、Ni1+Ni2+・・・+Nij制御変数iにおける負荷回数Niとする。制御部50は、(Si,Ni)を第iサンプルとする。
 ステップS116において、iが所定値MAX_iのときには、処理がステップS118に進み、iが所定値MAX_iでないときには、処理がステップS117に進む。
 ステップS117において、制御変数iがインクリメントされ、その後、処理がステップS102に戻る。
 ステップS118において、S-N曲線算出部35は、第iサンプル(Si,Ni)を用いて、S-N曲線を算出する。ただし、i=1~MAX_iである。
 図10は、第1の実施形態の診断用の軸受部品の寿命診断の手順を表わすフローチャートである。
 ステップS301において、制御部50は、診断用の軸受部品を停止する。
 ステップS302において、油膜パラメータ算出部31は、診断用の軸受部品である軌道輪の軌道面と、診断用の軸受部品と接触する転動体の転動面の間の油膜の油膜パラメータOPを算出する。
 ステップS303において、油膜パラメータOPが3以下の場合に、処理がステップS305に進み、油膜パラメータOPが3を超える場合に、処理がステップS304に戻る。
 ステップS305において、ミクロ応力算出部32は、診断用の軸受部品である軌道輪の軌道面に作用するミクロ応力S(mc)を算出する。
 ステップS306において、残留応力算出部33は、診断用の軸受部品である軌道輪の軌道面に作用する残留応力S(rs)を算出する。
 ステップS307において、合成応力算出部34は、ミクロ応力S(mc)と残留応力S(rs)とを加算して、合成応力SXを算出する。
 ステップS308において、診断部37は、S-N曲線記憶部36に記憶されたS-N曲線の式を用いて、診断用の軸受部品である軌道輪の軌道面について算出された合成応力SXに対応する寿命LXを特定する。
 ステップS309において、診断部37は、寿命LXを表示部18に表示する。
 ステップS310において、寿命LXが閾値TH1以下の場合に、処理がステップS311に進む。寿命LXが閾値TH2を超える場合に、処理がステップS304に進む。
 ステップS304において、診断部37は、診断用の軸受部品の交換が不要である旨のメッセージを表示部18に表示する。
 ステップS311において、診断部37は、診断用の軸受部品の交換が必要である旨のメッセージを表示部18に表示する。
 次に、本実施の形態の寿命診断方法に基づく実験結果の概要を説明する。
 条件Aと条件Bの2つの条件で図9に示すフローチャートに従って、試験片を用いて転動疲労試験を行った。条件Aと条件Bでは、転動疲労試験前の試験片の二乗平均平方根傾斜Rdqが相違する。
 図11は、負荷回数Nに対する二乗平均平方根傾斜Rdqの変化を表わす図である。
 条件Aおよび条件Bの両方で、負荷回数Nの増加に伴って、二乗平均平方根傾斜Rdqが減少している。
 図12は、負荷回数Nに対する残留応力S(rs)の変化を表わす図である。
 残留応力(rs)はピーリングの増加にともなって減少する(はく離の発生による応力解放)ことが知られている。条件Aの試験では、負荷回数3×105回でピーリング発生による応力解放が起こり、条件Bの試験では、負荷回数1.5×105回で応力解放が発生した。すなわち、これらの試験ではピーリング寿命がそれぞれ3×105回、1.5×105回となる。
 次に、条件Aと条件Bの2つの転動疲労試験の結果から、S-N曲線を算出した。
 次に、条件Aについて、算出したS-N曲線に基づいて、負荷回数Nに対する寿命Lを計算した。
 図13は、条件Aにおける負荷回数Nに対する推定寿命Lを表わす図である。
 条件Aでは、負荷回数Nごとに二乗平均平方根傾斜Rdqと残留応力S(rs)が変化するため、負荷回数Nによって推定寿命Lが変化していることが分かる。
 以上のように、本実施形態の寿命診断装置によれば、転動試験における負荷回数と合成応力とからS-N曲線を求め、そのS-N曲線を用いて、診断対象の軸受部品の寿命を推定することができる。
 [第2の実施形態]
 図14は、第2の実施形態の寿命診断装置14の機能構成を表わす図である。
 この寿命診断装置14は、入力部17と、油膜パラメータ算出部31と、ミクロ応力算出部32と、残留応力算出部33と、合成応力算出部34と、S-N曲線算出部35と、S-N曲線記憶部36と、X線分析データ算出部45と、対応テーブル作成部41と、対応テーブル記憶部43と、累積疲労度算出部42と、診断部37と、制御部50と、表示部18とを備える。
 S-N曲線記憶部36と対応テーブル作成部41とは、メモリ16によって実現される。油膜パラメータ算出部31と、ミクロ応力算出部32と、残留応力算出部33と、合成応力算出部34と、S-N曲線算出部35と、X線分析データ算出部45と、対応テーブル作成部41と、累積疲労度算出部42と、診断部37と、制御部50は、CPU15がメモリ16に記憶された寿命診断プログラムを実行することによって実現される。
 以下では、第1の実施形態と相違する点について説明する。
 X線分析データ算出部45は、試験用の軸受部品i(i=1~試験用の軸受部品の個数)について、疲労試験j(j=1~故障破壊が発生するまでの回数)ごとの環状の回折X線から得られるX線分析データPijを算出する。たとえば、X線分析データPijは、環状の回折X線の中心角と強度との関係を表すデータとすることができる。
 軸受の余寿命は、現時点で軸受がどのくらい疲労しているか(累積疲労度)と、その後の使用条件によって決まる。式(D3)は、線形累積損傷則(以下、マイナー則)を表わす式である。
Figure JPOXMLDOC01-appb-M000024
 式(D3)は、合成応力F1,F2,・・・、Fk,・・・,Fnでの寿命がL1,L2,・・・,Lk,・・・,Lnとしたときに、合成応力F1,F2,・・・、Fk,・・・,FnでN1,N2,・・・、Nk,・・・,Nn回の負荷を順次受けた際に、それぞれの寿命に対する負荷の比の線形和が1に達した時に寿命を迎えるとする経験式である。
 現時点までに合成応力F1,F2,・・・、FkでN1,N2,・・・,Nk回の負荷を順次受けたとすると、累積疲労度Dは、式(D4)で表される。
Figure JPOXMLDOC01-appb-M000025
 この累積疲労度Dが1に近いほど、余寿命が少ないことなる。
 累積疲労度算出部42は、試験用の軸受部品i(i=1~試験用の軸受部品の個数)について、疲労試験j(j=1~故障破壊が発生するまでの回数)ごとの累積疲労度Dijを算出する。
 図15は、累積疲労度Dの算出処理を説明するための図である。
 累積疲労度算出部42は、図15のS-N曲線を用いて、試験用の軸受部品1について、疲労試験jごとの累積疲労度D1jを順次求める。
 合成応力S11が作用する転がり条件の場合の寿命は、S-N曲線によればL11である。合成応力S11でN11回の負荷が加えられたときの疲労度は、N11/L11で表される。このとき、累積疲労度D11は、N11/L11である。
 次に、合成応力S12が作用する転がり条件の場合の寿命は、S-N曲線によればL12である。合成応力S12でN12回の負荷が加えられたときに、疲労度は、N12/L12で表される。このとき、累積疲労度D12は、N11/L11+N12/L12である。
 次に、合成応力S13が作用する転がり条件の場合の寿命は、S-N曲線によればL13である。合成応力S13でN13回の負荷が加えられたときに、疲労度は、N13/L13で表される。このとき、累積疲労度D13は、N11/L11+N12/L12+N13/L13である。
 次に、合成応力S14が作用する転がり条件の場合の寿命は、S-N曲線によればL14である。合成応力S14でN14回の負荷が加えられたときに、疲労度は、N14/L14で表される。このとき、累積疲労度D14は、N11/L11+N12/L12+N13/L13+N14/L14である。
 同様に、累積疲労度算出部42は、図15のS-N曲線を用いて、試験用の軸受部品2について、疲労試験jごとの累積疲労度D2jを順次求める。
 合成応力S21が作用する転がり条件の場合の寿命は、S-N曲線によればL21である。合成応力S21でN21回の負荷が加えられたときに、疲労度は、N21/L21で表される。このとき、累積疲労度D21は、N21/L21である。
 次に、合成応力S22が作用する転がり条件の場合の寿命は、S-N曲線「によればL22である。合成応力S22でN22回の負荷が加えられたときに、疲労度は、N22/L22で表される。このとき、累積疲労度D22は、N21/L21+N22/L22である。
 次に、合成応力S23が作用する転がり条件の場合の寿命は、S-N曲線によればL23である。合成応力S23でN23回の負荷が加えられたときに、疲労度は、N23/L23で表される。このとき、累積疲労度D23は、N21/L21+N22/L22+N23/L23である。
 次に、合成応力S24が作用する転がり条件の場合の寿命は、S-N曲線によればL24である。合成応力S24でN24回の負荷が加えられたときに、疲労度は、N24/L24で表される。このとき、累積疲労度D24は、N21/L21+N22/L22+N23/L23+N24/L24である。
 対応テーブル作成部41は、図16に示すようなX線分析データPijと、累積疲労度Dijの対応を定めた対応テーブルAを作成する。
 対応テーブル記憶部43は、作成された対応テーブルAを記憶する。
 診断部37は、対応テーブルAを用いて、診断用の軸受部品の軸受について検出されたX線分析データPXに対応する累積疲労度DXを特定する。診断部37は、X線分析データPXが、対応テーブルA中にない場合には、対応テーブル中のPXに近いX線分析データに対応する累積疲労度を用いて線形補間によって、累積疲労度DXを特定する。
 式(D3)において、左辺の最後の項(Nn/Ln)を除く部分が現在までの累積疲労度であり、左辺の最後の項(Nn/Ln)のNnが「今後与えることができる負荷回数」を表わす余寿命になる。余寿命Nnは、式(D3)の最後の項を除いた部分である累積疲労度と、その後の使用条件によって決まる寿命Lnによって求まる。
 上述のように、現在までの累積疲労度DX、および今後与えられる合成応力SXにおける寿命LXが得られているので、診断部37は、式(D5)によって、余寿命RXを算出する。
 RX=LX(1-DX)・・・(D5)
 図17は、疲労試験においてS-N曲線および累積疲労度を求める手順を表わすフローチャートである。
 ステップS401において、制御部50は、制御変数iを1に設定する。
 ステップS402において、制御部50は、制御変数jを1に設定する。
 ステップS403において、制御部50は、試験用の軸受部品iを稼働する。
 ステップS404において、試験用の軸受部品iが稼働されてから所定時間が経過したときには、処理がステップS405に進む。
 ステップS405において、制御部50は、試験用の軸受部品iを停止する。
 ステップS406において、油膜パラメータ算出部31は、試験用の軸受部品iである軌道輪の軌道面と、試験用の軸受部品iと接触する転動体の転動面の間の油膜の油膜パラメータOPを算出する。
 ステップS407において、油膜パラメータOPが3以下の場合に、処理がステップS408に進み、油膜パラメータOPが3を超える場合に、処理がステップS403に戻る。
 ステップS408において、ミクロ応力算出部32は、試験用の軸受部品iである軌道輪の軌道面に作用するミクロ応力S(mc)を算出する。
 ステップS409において、X線分析データ算出部45は、試験用の軸受部品iである軌道輪の軌道面に照射されることにより検出される回折X線環からX線分析データPijを算出する。X線分析データPijは、たとえば、環状の回折X線の中心角と強度との関係を表わすデータである。
 ステップS410において、残留応力算出部33は、試験用の軸受部品iである軌道輪の軌道面に作用する残留応力S(rs)を算出する。
 ステップS411において、合成応力算出部34は、ミクロ応力S(mc)と残留応力S(rs)とを加算して、合成応力Sを算出する。
 ステップS412において、制御部50は、現在の制御変数i、jの下で試験用の軸受部品iが動作したときの転動体の回転数を負荷回数をNijとして取得する。
 ステップS413において、試験用の軸受部品iに故障破壊が発生したときには、処理がステップS415に進み、試験用の軸受部品iに故障破壊が発生していないときには、処理がステップS414に進む。
 ステップS414において、制御変数jがインクリメントされ、その後、処理がステップS403に戻る。
 ステップS415において、制御部50は、試験用の軸受部品iが故障破壊したときに算出された合成応力Sを制御変数iにおける合成応力Siとし、Ni1+Ni2+・・・+Nij制御変数iにおける負荷回数Niとする。制御部50は、(Si,Ni)を第iサンプルとする。
 ステップS416において、iが所定値MAX_iのときには、処理がステップS418に進み、iが所定値MAX_iでないときには、処理がステップS417に進む。
 ステップS417において、制御変数iがインクリメントされ、その後、処理がステップS402に戻る。
 ステップS418において、S-N曲線算出部35は、第iサンプル(Si,Ni)を用いて、S-N曲線を算出する。ただし、i=1~MAX_iである。
 ステップS419において、累積疲労度算出部42は、S-N曲線を用いて、累積疲労度Dijを算出する。ただし、i=1~MAX_i、j=1~破壊故障が発生するまでの回数である。
 ステップS420において、X線分析データPijと、累積疲労度Dijの対応テーブルの対応を定めた対応テーブルAを作成する。i=1~MAX_i、j=1~破壊故障が発生するまでの回数である。
 図18は、第2の実施形態の診断用の軸受部品の寿命診断の手順を表わすフローチャートである。
 ステップS501において、制御部50は、診断用の軸受部品を停止する。
 ステップS502において、油膜パラメータ算出部31は、診断用の軸受部品である軌道輪の軌道面と、診断用の軸受部品と接触する転動体の転動面の間の油膜の油膜パラメータOPを算出する。
 ステップS503において、油膜パラメータOPが3以下の場合に、処理がステップS505に進み、油膜パラメータOPが3を超える場合に、処理がステップS504に戻る。
 ステップS505において、ミクロ応力算出部32は、診断用の軸受部品である軌道輪の軌道面に作用するミクロ応力S(mc)を算出する。
 ステップS506において、X線分析データ算出部45は、診断用の軸受部品である軌道輪の軌道面に照射されることにより検出される回折X線環からX線分析データPXを算出する。X線分析データPXは、たとえば、環状の回折X線の中心角と強度との関係を表わすデータ(たとえば、環状の回折X線の中心角に対する回折強度のばらつきを表わす値)である。ここで、環状の回折X線の中心角に対する回折強度のばらつきを表わす値Sとは、環状の回折X線の中心角における回折強度と各回折強度の偏差の平均であり、以下の式で表される。
Figure JPOXMLDOC01-appb-M000026
 ここで、Iαは、回折環の中心角αにおける回折強度、Iave:回折強度の回折環全周における平均値、n:回折環の分割数を表わす。n=500とすれば、α=0.72degずつ回折強度を取得して解析するものとする。
 ステップS507において、残留応力算出部33は、診断用の軸受部品である軌道輪の軌道面に作用する残留応力S(rs)を算出する。
 ステップS508において、合成応力算出部34は、ミクロ応力S(mc)と残留応力S(rs)とを加算して、合成応力SXを算出する。
 ステップS509において、診断部37は、S-N曲線記憶部36に記憶されたS-N曲線の式を用いて、診断用の軸受部品である軌道輪の軌道面について算出された合成応力SXに対応する寿命LXを特定する。
 ステップS510において、診断部37は、対応テーブルAを用いて、診断用の軸受部品について検出されたX線分析データPXに対応する累積疲労度DXを特定する。
 ステップS511において、診断部37は、余寿命RXを式(D7)によって算出する。
 RX=LX(1-DX)・・・(D7)
 ステップS512において、診断部37は、余寿命RXを表示部18に表示する。
 ステップS513において、余寿命RXが閾値TH3以下の場合に、処理がステップS514に進む。余寿命RXが閾値TH3を超える場合に、処理がステップS504に進む。
 ステップS504において、診断部37は、診断用の軸受部品の交換が不要である旨のメッセージを表示部18に表示する。
 ステップS514において、診断部37は、診断用の軸受部品の交換が必要である旨のメッセージを表示部18に表示する。
 以上のように、本実施の形態の寿命診断装置によれば、転動試験における負荷回数と合成応力とからS-N曲線を求め、そのS-N曲線を用いて、累積疲労度とX線分析データの対応テーブルAを作成する。診断対象の軸受のX線分析データと対応テーブルAを用いて、診断対象の軸受の累積疲労度を算出し、さらにS-N曲線と合成応力によって寿命を算出することができる。そして、寿命と累積疲労度とによって余寿命を算出することができる。
 次に、本実施の形態の寿命診断方法に基づく実験結果の概要を説明する。
 第1の実施形態と同様に、条件Aと条件Bの2つの疲労試験の結果から、S-N曲線を算出し、条件Aについて、S-N曲線から、負荷回数Nに対する寿命Lを算出した。
 次に、条件Aについて、S-N曲線に基づいて、負荷回数Nに対する累積疲労度Dを算出した。
 次に、条件Aについて、負荷回数Nに対する寿命Lおよび累積疲労度Dから、余寿命R(=L(1-D))を算出した。
 図19は、条件Aにおける負荷回数Nに対する累積疲労度Dおよび余寿命Rを表わす図である。
 また、累積疲労度Dと,環状の回折X線の中心角に対する回折強度のばらつきを表わす値Iの間には、以下の関係が成り立つことがわかった。e、f、gは定数である。
 D=(I-e)/f)1/g ・・・(E1)
 複数のサンプルデータを用いることによって、定数e、f、gを特定することによって、X線回折環の測定結果から累積疲労度Dを求めることができる。
 [第3の実施形態]
 図20は、第3の実施形態の寿命診断装置14の機能構成を表わす図である。
 第2の実施形態と相違する点について説明する。
 図21は、第3の実施形態の診断用の軸受部品の寿命診断の手順を表わすフローチャートである。
 ステップS601において、制御部50は、診断用の軸受部品を停止する。
 ステップS602において、油膜パラメータ算出部31は、診断用の軸受部品である軌道輪の軌道面と、診断用の軸受部品と接触する転動体の転動面の間の油膜の油膜パラメータOPを算出する。
 ステップS603において、油膜パラメータOPが3以下の場合に、処理がステップS605に進み、油膜パラメータOPが3を超える場合に、処理がステップS604に戻る。
 ステップS605において、X線分析データ算出部45は、診断用の軸受部品である軌道輪の軌道面に照射されることにより検出される回折X線環からX線分析データPXを算出する。X線分析データPXは、たとえば、環状の回折X線の中心角と強度との関係を表わすデータ(たとえば、環状の回折X線の中心角に対する回折強度のばらつきを表わす値)である。ここで、環状の回折X線の中心角に対する回折強度のばらつきを表わす値Sとは、環状の回折X線の中心角における回折強度と各回折強度の偏差の平均であり、式(D6)で表される。
 ステップS606において、診断部37は、対応テーブルAを用いて、診断用の軸受部品について検出されたX線分析データPXに対応する累積疲労度DXを特定する。
 ステップS607において、診断部37は、疲労度DXを表示部18に表示する。
 ステップS608において、疲労度DXが閾値TH2以上の場合に、処理がステップS609に進む。疲労度DXが閾値TH2未満の場合に、処理がステップS604に進む。
 ステップS604において、診断部37は、診断用の軸受部品の交換が不要である旨のメッセージを表示部18に表示する。
 ステップS609において、診断部37は、診断用の軸受部品の交換が必要である旨のメッセージを表示部18に表示する。
 次に、本実施の形態の寿命診断方法に基づく実験結果の概要を説明する。
 第1の実施形態と同様に、条件Aと条件Bの2つの疲労試験の結果から、S-N曲線を算出し、条件Aについて、S-N曲線から、負荷回数Nに対する寿命Lを算出した。
 次に、条件Aについて、S-N曲線に基づいて、負荷回数Nに対する累積疲労度Dを算出した。
 図22は、条件Aにおける負荷回数Nに対する累積疲労度Dを表わす図である。
 以上のように、本実施の形態の寿命診断装置によれば、転動試験における負荷回数と合成応力とからS-N曲線を求め、そのS-N曲線を用いて、累積疲労度とX線分析データの対応テーブルAを作成する。これによって、診断対象の軸受のX線分析データと対応テーブルAを用いて、診断対象の軸受の累積疲労度を推定することができる。
 (変形例)
(1)残留応力
 X線回折環を用いた残留応力の測定方法として、佐々木-広瀬法に代えて、例えば「H.Dolle and V.Hauk、”The Influence of Stress States, Stress Gradients and Elastic Anisotropy on the Evaluation of (Residual) Stresses by X-rays”, J.Appl.Crysr、12 (1979) 489-501」に記載されている方法を用いてもよい。
 また、回折環を測定できないX線応力測定装置(例えば一次元PSPC、シンチレーションカウンタ等でX線を検出する装置)を用いる場合でも、試料を回転させて複数方向から回折X線の測定を行うことによって、3軸の残留応力を測定することができる。
(2)交換時期の通知
 診断部37は、診断用の軸受部品の交換が必要か否かのメッセージに替えて、診断用の軸受部品の交換時期を表示部18に表示するものとしてもよい。たとえば、診断部37は、寿命と現在までの負荷回数とに基づいて交換時期を判定することできる。
(3)X線分析データ
 X線分析データは、環状の回折X線の中心角と強度との関係を表わすデータに限定するものではない。たとえば、軸受部品に作用する6成分の残留応力{σx(rs)、σy(rs)、σz(rs)、τxy(rs)、τyz(rs)、τxz(rs)}、軸受部品の残留オーステナイト、または環状の回折X線の中心角に対応して得られるピークの半価幅であってもよい。また、X線分析データは、回折強度の平均値、回折強度の最小値と最大値の差、または回折強度の積分幅(ある位置での半価幅と回折強度の積)などであってもよい。また、X線分析データは、環状の回折X線の中心角と強度との関係、6成分の残留応力、残留オーステナイト、環状の回折X線の中心角に対応して得られるピークの半価幅、回折強度の平均値、回折強度の最小値と最大値の差、または回折強度の積分幅(ある位置での半価幅と回折強度の積)のうちの2つ以上の組合せで表現された値であってもよい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 11 照射部、12 X線検出器、13 表面形状測定器、14 寿命診断装置、15 CPU、16 メモリ、17 入力部、18 表示部、31 油膜パラメータ算出部、32 ミクロ応力算出部、33 残留応力算出部、34 合成応力算出部、35 S-N曲線算出部、36 S-N曲線記憶部、37 診断部、41 対応テーブル作成部、42 累積疲労度算出部、43 対応テーブル記憶部、45 X線分析データ算出部。

Claims (12)

  1.  軸受部品の寿命診断方法であって、
     複数個の試験用の軸受部品の各々について、故障破壊するまで複数回の転動疲労試験を行なうステップと、
     前記故障破壊が発生したときの前記試験用の軸受部品の残留応力とミクロ応力との和である前記試験用の軸受部品の合成応力を求めるステップと、
     前記複数個の試験用の軸受部品についての、前記複数回の転動疲労試験における総負荷回数と前記合成応力との関係に基づいてS-N曲線を求めるステップと、
     診断用の軸受部品の残留応力とミクロ応力との和である前記診断用の軸受部品の合成応力を求めるステップと、
     前記診断用の軸受部品の合成応力と前記S-N曲線に基づいて、前記診断用の軸受部品の寿命を求めるステップとを備えた、軸受部品の寿命診断方法。
  2.  前記試験用の軸受部品の合成応力を求めるステップは、
     前記試験用の軸受部品の表面形状の測定結果から前記試験用の軸受部品のミクロ応力を求めるステップを含む、請求項1記載の軸受部品の寿命診断方法。
  3.  前記試験用の軸受部品の合成応力を求めるステップは、
     前記試験用の軸受部品のX線回折結果から前記試験用の軸受部品の残留応力を求めるステップを含む、請求項1記載の軸受部品の寿命診断方法。
  4.  前記診断用の軸受部品の合成応力を求めるステップは、
     前記診断用の軸受部品の表面形状の測定結果から前記診断用の軸受部品のミクロ応力を求めるステップを含む、請求項1記載の軸受部品の寿命診断方法。
  5.  前記診断用の軸受部品の合成応力を求めるステップは、
     前記診断用の軸受部品のX線回折結果から前記診断用の軸受部品の残留応力を求めるステップを含む、請求項1記載の軸受部品の寿命診断方法。
  6.  前記S-N曲線は、複数個の第1種定数と、故障破壊までの負荷回数Nと、前記合成応力Sを含む式で表され、かつ前記合成応力Sを表す式は、複数個の第2種定数を含み、
     前記S-N線曲線を求めるステップは、
     各試験用の軸受部品について、前記故障破壊するまでの前記複数回の転動疲労試験の負荷回数の合計をNとし、前記故障破壊したときの合成応力をSとした1つのサンプルを得るステップと、
     前記複数個の試験用の軸受部品についての前記サンプルを用いて、前記複数個の第1種定数および前記複数個の第2種定数の値を推定するステップとを含む、請求項1記載の軸受部品の寿命診断方法。
  7.  前記数式は、式(1)で表され、A、B、Sfは定数である、
    Figure JPOXMLDOC01-appb-M000001
     請求項6記載の軸受部品の寿命診断方法。
  8.  前記寿命に基づいて、前記診断用の軸受部品が交換を要するか否か、または交換時期を通知するステップをさらに備える、請求項1記載の軸受部品の寿命診断方法。
  9.  前記試験用の軸受部品の表面に存在する油膜の厚さと前記表面の形状の測定結果から得られる油膜パラメータが所定値以下のときに、前記試験用の軸受部品の合成応力を求めるステップが実行される、請求項1記載の軸受部品の寿命診断方法。
  10.  前記診断用の軸受部品の表面に存在する油膜の厚さと前記表面の形状の測定結果から得られる油膜パラメータが所定値以下のときに、前記診断用の軸受部品の合成応力を求めるステップが実行される、請求項1記載の軸受部品の寿命診断方法。
  11.  軸受部品の寿命診断装置であって、
     複数個の試験用の軸受部品の各々について、故障破壊するまで複数回の転動疲労試験を行なったときに前記故障破壊が発生したときの前記試験用の軸受部品の残留応力とミクロ応力との和である前記試験用の軸受部品の合成応力を求め、診断用の軸受部品の残留応力とミクロ応力との和である前記診断用の軸受部品の合成応力を求める合成応力算出部と、
     前記複数個の試験用の軸受部品についての、前記複数回の転動疲労試験における総負荷回数と前記試験用の軸受部品の前記合成応力との関係に基づいてS-N曲線を求めるS-N曲線算出部と、
     前記診断用の軸受部品の合成応力と前記S-N曲線に基づいて、前記診断用の軸受部品の寿命を求める診断部とを備えた、軸受部品の寿命診断装置。
  12.  軸受部品の寿命診断プログラムであって、
     コンピュータに、
     複数個の試験用の軸受部品の各々について、故障破壊するまで複数回の転動疲労試験を行なったときに、前記故障破壊が発生したときの前記試験用の軸受部品の残留応力とミクロ応力との和である前記試験用の軸受部品の合成応力を求めるステップと、
     前記複数個の試験用の軸受部品についての、前記複数回の転動疲労試験における総負荷回数と前記試験用の軸受部品の合成応力との関係に基づいてS-N曲線を求めるステップと、
     診断用の軸受部品の残留応力とミクロ応力との和である前記診断用の軸受部品の合成応力を求めるステップと、
     前記診断用の軸受部品の合成応力と前記S-N曲線に基づいて、前記診断用の軸受部品の寿命を推定するステップとを実行させる、軸受部品の寿命診断プログラム。
PCT/JP2017/031821 2016-09-09 2017-09-04 軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム WO2018047774A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016176953A JP6695243B2 (ja) 2016-09-09 2016-09-09 軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム
JP2016176954A JP6762817B2 (ja) 2016-09-09 2016-09-09 軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム
JP2016176955A JP6762818B2 (ja) 2016-09-09 2016-09-09 軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム
JP2016-176955 2016-09-09
JP2016-176953 2016-09-09
JP2016-176954 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047774A1 true WO2018047774A1 (ja) 2018-03-15

Family

ID=61561882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031821 WO2018047774A1 (ja) 2016-09-09 2017-09-04 軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム

Country Status (1)

Country Link
WO (1) WO2018047774A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI734107B (zh) * 2019-04-30 2021-07-21 住華科技股份有限公司 一種光學檢測裝置及其光學檢測方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304710A (ja) * 1999-04-16 2000-11-02 Koyo Seiko Co Ltd 転がり疲れによる疲労度の測定方法
JP2002214224A (ja) * 2001-01-22 2002-07-31 Idemitsu Kosan Co Ltd 潤滑油の軸受疲労寿命評価装置及び軸受疲労寿命評価方法
JP2004245635A (ja) * 2003-02-12 2004-09-02 Ntn Corp 軸受の寿命予測方法
US20060207306A1 (en) * 2003-05-05 2006-09-21 Ab Skf Method for treating the surface of a machine element
JP2011027550A (ja) * 2009-07-24 2011-02-10 Kanazawa Univ X線応力測定方法
JP2014013188A (ja) * 2012-07-04 2014-01-23 Ntn Corp 軸受部品の検査方法および軸受部品の検査装置
JP2015017661A (ja) * 2013-07-11 2015-01-29 日本精工株式会社 転がり軸受

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304710A (ja) * 1999-04-16 2000-11-02 Koyo Seiko Co Ltd 転がり疲れによる疲労度の測定方法
JP2002214224A (ja) * 2001-01-22 2002-07-31 Idemitsu Kosan Co Ltd 潤滑油の軸受疲労寿命評価装置及び軸受疲労寿命評価方法
JP2004245635A (ja) * 2003-02-12 2004-09-02 Ntn Corp 軸受の寿命予測方法
US20060207306A1 (en) * 2003-05-05 2006-09-21 Ab Skf Method for treating the surface of a machine element
JP2011027550A (ja) * 2009-07-24 2011-02-10 Kanazawa Univ X線応力測定方法
JP2014013188A (ja) * 2012-07-04 2014-01-23 Ntn Corp 軸受部品の検査方法および軸受部品の検査装置
JP2015017661A (ja) * 2013-07-11 2015-01-29 日本精工株式会社 転がり軸受

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI734107B (zh) * 2019-04-30 2021-07-21 住華科技股份有限公司 一種光學檢測裝置及其光學檢測方法

Similar Documents

Publication Publication Date Title
JP6762817B2 (ja) 軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム
JP6695243B2 (ja) 軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム
Cox Notes on some aspects of regression analysis
JP5958999B2 (ja) 軸受部品の検査方法および軸受部品の検査装置
Gillich et al. Method to enhance the frequency readability for detecting incipient structural damage
JP6762818B2 (ja) 軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム
JP5710997B2 (ja) 疲労限度特定システムおよび疲労限度特定方法
US20200173896A1 (en) System and method for determining characteristics of a crack
Vasco‐Olmo et al. Crack tip plastic zone evolution during an overload cycle and the contribution of plasticity‐induced shielding to crack growth rate changes
Kim et al. Effects of fiber gripping methods on the single fiber tensile test: I. Non-parametric statistical analysis
WO2018047774A1 (ja) 軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム
JP2009092652A (ja) 金属材料の余寿命評価方法及び変形量評価方法
JP7360977B2 (ja) 軸受部品の寿命診断方法、軸受部品の寿命診断装置、および軸受部品の寿命診断プログラム
Bisping et al. Fatigue life assessment for large components based on rainflow counted local strains using the damage domain
JP7064383B2 (ja) 転動部品の性能評価方法
RU2536783C1 (ru) Способ определения ресурса металла трубопроводов
Shirono et al. A study on the utilization of the Youden plot to evaluate proficiency test results
CN114627121B (zh) 一种结构构件应力检测方法、装置、设备及介质
Kornuta et al. Automated error identification during nondestructive testing of pipelines for strength
Louka¹ et al. Gauge R&R for an optical micrometer industrial type machine
US11959850B2 (en) Evaluation system and method for evaluating vulcanized rubber material deterioration by ozone
JP5583489B2 (ja) 金属材料の損傷評価方法および装置
Huang Peng et al. Reliability estimation for aluminum alloy welded joint with automatic image measurement of surface crack growth
Richter‐Trummer et al. Methodology for in situ stress intensity factor determination on cracked structures by digital image correlation
JP7372155B2 (ja) 転動部品の疲労度推定方法、転動部品の疲労度推定装置、転動部品の疲労度推定プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848714

Country of ref document: EP

Kind code of ref document: A1