WO2018047529A1 - 機器温調装置 - Google Patents

機器温調装置 Download PDF

Info

Publication number
WO2018047529A1
WO2018047529A1 PCT/JP2017/028053 JP2017028053W WO2018047529A1 WO 2018047529 A1 WO2018047529 A1 WO 2018047529A1 JP 2017028053 W JP2017028053 W JP 2017028053W WO 2018047529 A1 WO2018047529 A1 WO 2018047529A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
bubble
heat
battery
temperature
Prior art date
Application number
PCT/JP2017/028053
Other languages
English (en)
French (fr)
Inventor
竹内 雅之
康光 大見
山中 隆
加藤 吉毅
義則 毅
功嗣 三浦
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112017004529.0T priority Critical patent/DE112017004529T5/de
Priority to JP2018538292A priority patent/JP6579275B2/ja
Priority to CN201780053922.0A priority patent/CN109690221B/zh
Publication of WO2018047529A1 publication Critical patent/WO2018047529A1/ja
Priority to US16/282,477 priority patent/US11029098B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • H01M10/652Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations characterised by gradients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a device temperature control device that adjusts the temperature of a target device.
  • a battery temperature adjusting device described in Patent Document 1 has been conventionally known as this type of device temperature adjusting device.
  • the battery temperature adjusting device described in Patent Document 1 is a thermosiphon cooling device.
  • the battery temperature adjusting device includes a heat medium cooling unit as a thermosiphon condenser and a temperature adjusting unit as a battery cooler.
  • the heat medium cooling unit and the temperature adjusting unit are annularly connected by a pipe, and in the battery temperature adjusting device, the heat medium (that is, the working fluid) circulates between the heat medium cooling unit and the temperature adjusting unit. It is configured as follows.
  • the temperature adjusting unit is disposed so as to be in contact with the side surfaces of the plurality of battery cells constituting the battery, and adjusts the temperature of the battery by the phase change between the liquid phase and the gas phase of the heat medium.
  • thermosiphon system is adopted in the battery temperature adjusting device of Patent Document 1, if the temperature difference between the battery temperature and the temperature of the heat medium cooling unit is increased to some extent, a thermocycle that circulates the heat medium. The siphon is activated, thereby starting to cool the battery.
  • thermosiphon is actively activated without waiting for such a temperature difference to widen.
  • the thermosiphon is actively activated without waiting for such a temperature difference to widen.
  • the thermosiphon when the liquid level in the temperature control unit is biased due to the inclination of the vehicle on which the battery temperature control device is mounted, it is preferable to activate the thermosiphon actively. This is because heat transfer is more easily performed in a portion where the liquid phase portion is larger in the gas-liquid heat medium in the temperature adjusting unit, and temperature variation occurs in each battery cell when the liquid level deviation continues.
  • thermosiphon does not start when the battery temperature rises slowly. Even in such a case, it is preferable to activate the thermosiphon actively. As a result of detailed studies by the inventors, the above has been found.
  • the present disclosure aims to provide a device temperature control device capable of appropriately starting cooling of a target device by a thermosiphon.
  • an apparatus temperature control device includes: A device temperature control device for adjusting a temperature of a target device by circulating a working fluid and changing a phase between a liquid phase and a gas phase of the working fluid, A heat absorption part that evaporates the working fluid by absorbing heat from the target device to the working fluid; A heat dissipating part that is disposed above the heat absorbing part and that condenses the working fluid by dissipating heat from the working fluid; An outward path portion in which an outward flow path for flowing the working fluid from the heat radiation part to the heat absorption part is formed; A return path portion in which a return path flow passage for flowing the working fluid from the heat absorption portion to the heat dissipation portion is formed; A bubble generating section for generating bubbles in the liquid-phase working fluid accumulated in the heat absorbing section; A control device, When the circulating flow rate of the working fluid circulating through the fluid circulation circuit composed of the heat radiating section, the forward path section,
  • the device temperature control device includes a bubble generation unit that generates bubbles in the liquid-phase working fluid accumulated in the heat absorption unit. And the control apparatus of an apparatus temperature control apparatus makes the bubble generation part generate
  • the device temperature control device is A device temperature control device for adjusting a temperature of a target device by circulating a working fluid and changing a phase between a liquid phase and a gas phase of the working fluid, A heat absorption part that evaporates the working fluid by absorbing heat from the target device to the working fluid; A heat dissipating part that is disposed above the heat absorbing part and that condenses the working fluid by dissipating heat from the working fluid; An outward path portion in which an outward flow path for flowing the working fluid from the heat radiation part to the heat absorption part is formed; A return path portion in which a return path flow passage for flowing the working fluid from the heat absorption portion to the heat dissipation portion is formed; A bubble generating section for generating bubbles in the liquid-phase working fluid accumulated in the heat absorbing section; A control device, The control device causes the bubble generation unit to generate bubbles when the upstream portion of the working fluid in the heat absorbing portion is in a liquid phase and the downstream portion of the working fluid.
  • thermosiphon Even in this case, it is possible to appropriately start cooling of the target device by the fluid circulation circuit configured as a thermosiphon.
  • FIG. 5 is a schematic diagram illustrating a schematic configuration of an apparatus temperature control device according to a third embodiment and a state in which the bubble generating device generates bubbles in a state where the vehicle is tilted with respect to the vehicle horizontal state. It is a figure equivalent to FIG. 5 of a form.
  • FIG. 9 is a schematic diagram illustrating a schematic configuration of a device temperature control device according to a fourth embodiment and a state in which the bubble generating device generates bubbles in a state where the vehicle is tilted with respect to the vehicle horizontal state. It is a figure equivalent to FIG. 5 of a form.
  • the apparatus temperature control apparatus 10 of this embodiment shown in FIG. 1 is mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle. And in this embodiment, the apparatus temperature control apparatus 10 functions as a cooling device which cools the secondary battery 12 (henceforth a "battery 12" only) mounted in the electric vehicle. That is, the target device to be cooled by the device temperature control device 10 is the battery 12.
  • a power storage device in other words, a battery pack
  • the secondary battery 12 As a main component is converted to an inverter or the like.
  • the battery 12 generates heat when the vehicle is used, such as when the vehicle is running.
  • deterioration of the battery cell 121 constituting the battery 12 is promoted, and therefore it is necessary to limit the output and input of the battery cell 121 so that self-heating is reduced. . Therefore, in order to ensure the output and input of the battery cell 121, a cooling device for maintaining the battery 12 at a predetermined temperature or less is required.
  • the battery temperature rises not only when the vehicle is running but also during parking in summer.
  • the power storage device is often disposed under the floor of a vehicle or under a trunk room, and although the amount of heat per unit time given to the battery 12 is small, the battery temperature gradually rises when left for a long time. If the battery 12 is left in a high temperature state, the life of the battery 12 is greatly reduced. Therefore, it is desired to maintain the battery temperature at a low temperature, for example, by cooling the battery 12 while the vehicle is left.
  • the battery 12 is configured as an assembled battery including a plurality of battery cells 121.
  • the deterioration of the battery cell 121 is biased, and the performance of the power storage device decreases. End up. This is because the input / output characteristics of the power storage device are determined in accordance with the characteristics of the battery cell 121 that is most deteriorated. For this reason, in order for the power storage device to exhibit desired performance over a long period of time, temperature equalization that reduces temperature variations among the plurality of battery cells 121 is important.
  • blower blowing air cooling using a refrigeration cycle, water cooling, or a direct refrigerant cooling method has been generally used. Because it only blows air, the cooling capacity of the blower is low. Moreover, since the battery 12 is cooled by the sensible heat of the air by the blower blower, the temperature difference between the upstream and downstream of the air flow increases, and the temperature variation between the battery cells 121 cannot be sufficiently suppressed. Further, although the cooling capacity is high in the refrigeration cycle method, since the heat exchanging portion with the battery cell 121 is sensible heat cooling by either air cooling or water cooling, similarly, the temperature variation between the battery cells 121 cannot be sufficiently suppressed. Furthermore, driving the compressor or cooling fan of the refrigeration cycle while parked is not preferable because it causes an increase in power consumption and noise.
  • the device temperature control apparatus 10 of the present embodiment employs a thermosiphon system that cools the battery 12 by natural circulation of refrigerant without using a compressor.
  • the device temperature control device 10 includes a battery cooler 14, a condenser 16, an outward piping 18 as an outward path, a return piping 20 as an inward path, and a bubble generation unit.
  • a bubble generator 22 and a controller 24 see FIG. 2.
  • the condenser 16, the forward piping 18, the battery cooler 14, and the return piping 20 are connected in an annular shape to constitute a fluid circulation circuit 26 in which a refrigerant as a working fluid of the device temperature control device 10 circulates.
  • the fluid circulation circuit 26 is a heat pipe that performs heat transfer by evaporation and condensation of the refrigerant.
  • the fluid circulation circuit 26 is configured to be a loop thermosiphon (in other words, a thermosiphon circuit) in which a flow path through which a gaseous refrigerant flows and a flow path through which a liquid refrigerant flows are separated.
  • a loop thermosiphon in other words, a thermosiphon circuit
  • FIG. 1 shows the direction of the vehicle carrying the apparatus temperature control apparatus 10.
  • the fluid circulation circuit 26 is filled with refrigerant.
  • the fluid circulation circuit 26 is filled with the refrigerant.
  • the refrigerant circulates in the fluid circulation circuit 26, and the device temperature adjustment device 10 adjusts the temperature of the battery 12 by the phase change between the liquid phase and the gas phase of the refrigerant. Specifically, the battery 12 is cooled by the phase change of the refrigerant.
  • the refrigerant filled in the fluid circulation circuit 26 is, for example, a fluorocarbon refrigerant such as HFO-1234yf or HFC-134a.
  • the battery cooler 14 of the device temperature control device 10 is a heat absorption unit that absorbs heat from the battery 12 to the refrigerant. In other words, the battery cooler 14 cools the battery 12 by transferring heat from the battery 12 to the refrigerant.
  • the battery cooler 14 is made of a metal having high thermal conductivity, for example.
  • a cooler chamber 14 a in which a liquid-phase refrigerant is accumulated is formed inside the battery cooler 14.
  • the battery cooler 14 causes the refrigerant in the cooler chamber 14a to absorb heat from the battery 12, thereby evaporating the refrigerant.
  • the battery 12 cooled by the battery cooler 14 includes a plurality of battery cells 121 electrically connected in series.
  • the plurality of battery cells 121 are stacked in the battery stacking direction DRb, and the battery stacking direction DRb is a direction along the horizontal plane Fh in a vehicle horizontal state in which the vehicle is horizontally disposed.
  • the horizontal plane Fh is a virtual plane extending in the horizontal direction.
  • the battery cooler 14 has, for example, a rectangular parallelepiped box shape and is formed to extend in the battery stacking direction DRb. Further, the battery cooler 14 has an upper surface portion 141 on which an upper surface 141a of the battery cooler 14 is formed. That is, an upper inner wall surface 141b that forms the upper side of the cooler chamber 14a is formed on the side of the upper surface portion 141 opposite to the upper surface 141a side.
  • the cooler chamber 14a is a liquid-phase refrigerant in the vehicle horizontal state. It is said that the amount is satisfied. Therefore, the liquid level of the liquid-phase refrigerant is formed in the forward piping 18 and the return piping 20, and is positioned above the upper inner wall surface 141 b of the battery cooler 14.
  • the liquid level position SF1 of the liquid phase refrigerant in the forward pipe 18 is indicated by a broken line SF1
  • the liquid level position SF2 of the liquid phase refrigerant in the return pipe 20 is indicated by a broken line SF2.
  • the plurality of battery cells 121 are arranged side by side on the upper surface 141 a of the battery cooler 14. Each of the plurality of battery cells 121 is connected to the upper surface portion 141 so as to be able to conduct heat with the upper surface portion 141 of the battery cooler 14. Thereby, the upper surface 141a of the battery cooler 14 functions as a battery cooling surface that cools the battery 12, and the upper surface portion 141 of the battery cooler 14 functions as a cooling surface forming portion that forms the battery cooling surface.
  • the battery cooler 14 has an inlet 14b and an outlet 14c.
  • the inflow port 14b communicates the forward flow passage 18a formed in the forward piping 18 to the inside of the battery cooler 14 (that is, the cooler chamber 14a). Therefore, when the refrigerant circulates through the fluid circulation circuit 26, the refrigerant in the forward flow passage 18a flows into the cooler chamber 14a via the inlet 14b of the battery cooler 14.
  • the forward flow passage 18 a is a refrigerant flow path for flowing the refrigerant from the condenser 16 to the battery cooler 14.
  • the inlet 14b of the battery cooler 14 is provided, for example, at one end of the battery cooler 14 in the battery stacking direction DRb.
  • the outlet 14 c of the battery cooler 14 communicates the return flow passage 20 a formed inside the return pipe 20 into the battery cooler 14. Therefore, when the refrigerant circulates in the fluid circulation circuit 26, the refrigerant in the cooler chamber 14a flows out to the return flow passage 20a through the outlet 14c of the battery cooler 14.
  • the return flow path 20 a is a refrigerant flow path for flowing the refrigerant from the battery cooler 14 to the condenser 16.
  • the outlet 14c of the battery cooler 14 is provided at the other end of the battery cooler 14 in the battery stacking direction DRb.
  • the battery cooler 14 has a structure (not shown) that allows the gas-phase refrigerant in the cooler chamber 14a to flow out of the outlet 14c exclusively from the inlet 14b and the outlet 14c.
  • the condenser 16 of the device temperature control device 10 is a heat radiating section that radiates heat from the refrigerant in the condenser 16 to the heat receiving fluid. More specifically, a refrigerant in a gas phase flows into the condenser 16 from the return pipe 20, and the condenser 16 condenses the refrigerant by releasing heat from the refrigerant.
  • the heat receiving fluid that exchanges heat with the refrigerant in the condenser 16 is, for example, air or water.
  • the condenser 16 is disposed above the battery cooler 14.
  • the forward piping 18 is connected to the lower portion of the condenser 16, and the backward piping 20 is connected to the upper portion of the condenser 16.
  • the forward piping 18 is connected to the condenser 16 below the return piping 20. Therefore, the refrigerant condensed in the condenser 16, that is, the liquid-phase refrigerant in the condenser 16, flows from the condenser 16 to the forward flow passage 18a by gravity.
  • the bubble generating device 22 generates bubbles 14e (see FIG. 5) in the liquid-phase refrigerant accumulated in the cooler chamber 14a according to the control of the control device 24.
  • the bubbles 14e are bubbles of a gas phase refrigerant (in other words, a gas refrigerant).
  • the bubble generating device 22 is a heating source that generates heat, for example, an electric heater, and on / off of heat generation of the bubble generating device 22 is switched by the control device 24. Accordingly, the bubble generator 22 generates bubbles 14e in the liquid phase refrigerant by heating and boiling the liquid phase refrigerant.
  • the apparatus temperature control apparatus 10 is represented in the state in which heat_generation
  • the bubble generating device 22 is provided outside the battery cooler 14 and is joined to, for example, a lower wall of the battery cooler 14.
  • the bubble generator 22 is attached to the wall of the battery cooler 14 so as to conduct heat, and heats the refrigerant in the cooler chamber 14a through the wall.
  • the bubble generating device 22 is disposed in the battery cooler 14 at a position closer to the inlet 14b than to the outlet 14c.
  • the control device 24 shown in FIG. 2 is an electronic control device composed of a well-known microcomputer comprising a CPU, ROM, RAM, etc. and its peripheral circuits.
  • the control device 24 executes various control processes according to a computer program stored in advance in a ROM or the like.
  • control device 24 executes a computer program stored in a non-transitional tangible storage medium such as a ROM. Then, by executing the computer program, a method corresponding to the computer program is executed.
  • detection signals from various sensors 28 a, 28 b, 28 c provided in the secondary battery 12 or the device temperature control device 10 are sequentially input to the control device 24.
  • the device temperature control apparatus 10 includes a flow rate sensor 28a that is disposed in the forward flow passage 18a or the return flow passage 20a and detects the flow rate of the refrigerant.
  • a detection signal indicating the circulation flow rate of the refrigerant circulating in the fluid circulation circuit 26 is input to the control device 24 from the flow rate sensor 28a.
  • each of the plurality of battery cells 121 is provided with a battery cell temperature sensor 28b.
  • a detection signal indicating the temperature of each battery cell 121 (that is, the battery cell temperature) is input to the control device 24 from each of the battery cell temperature sensors 28b.
  • a detection signal indicating the inclination angle of the vehicle is input to the control device 24 from the inclination sensor 28c of the vehicle.
  • control device 24 outputs various control signals to each control device, and controls each control device.
  • control device 24 performs control to turn on and off the bubble generating device 22 that is one of the control devices.
  • the apparatus temperature control apparatus 10 of FIG. 1 configured as described above, when the battery 12 generates heat and the battery temperature rises, for example, when the vehicle is running, heat is transmitted to the upper surface portion 141 of the battery cooler 14 through the lower surface of the battery cell 121.
  • the liquid refrigerant in the battery cooler 14 is boiled by the heat.
  • Each battery cell 121 is cooled by the latent heat of vaporization caused by the boiling of the liquid phase refrigerant.
  • the refrigerant boiling in the battery cooler 14 is gasified and moves upward. That is, the gasified refrigerant (that is, gas phase refrigerant) moves to the condenser 16 through the return flow passage 20a.
  • the gas-phase refrigerant that has flowed into the condenser 16 is cooled and liquefied by the condenser 16, and then flows into the battery cooler 14 again through the forward piping 18.
  • these operations are performed by natural circulation of the refrigerant sealed in the fluid circulation circuit 26 without requiring a drive device such as a compressor.
  • each battery cell 121 is equalized, that is, each battery is charged by filling the battery cooler 14 with a liquid phase refrigerant as shown in FIG.
  • the temperature of the cell 121 can be equalized. This is an effect due to evaporation of only the liquid-phase refrigerant in the vicinity of the battery cell 121 having a high temperature in the battery 12.
  • the liquid-phase refrigerant is placed on the upper inner wall surface over the entire range where all the battery cells 121 are mounted on the upper surface portion 141 of the battery cooler 14. It must be in contact with 141b.
  • the battery 12 is mounted on the vehicle, for example, when the vehicle is tilted due to parking on a hill or the like, the refrigerant does not circulate and the liquid refrigerant accumulates in the cooler chamber 14a as shown in FIG. If left as it is, it is assumed that the liquid level 14d of the refrigerant in the battery cooler 14 is biased.
  • each battery cell temperature has a certain temperature difference with respect to the temperature of the outside air that is the heat receiving fluid (that is, the air outside the passenger compartment). Need to be high. That is, as shown in FIG. 3, when the liquid level 14d remains biased in the cooler chamber 14a and the refrigerant in the cooler chamber 14a waits until it naturally starts boiling, the battery cell 121 causes temperature variations between the battery cells 121. 12 performance degradation or degradation will be caused.
  • a method of increasing the amount of refrigerant filled so that the liquid-phase refrigerant contacts the entire upper inner wall surface 141b in the cooler chamber 14a even when the vehicle is tilted can be considered, but this is not realistic. This is because there is another situation such as an increase in the weight of the device temperature control device 10 or an increase in the internal pressure of the fluid circulation circuit 26 at a high temperature and the pressure resistance of the heat exchangers 14 and 16 and the pipes 18 and 20 must be increased. is there.
  • FIG. 4 is a flowchart showing a control process executed by the control device 24 of the present embodiment.
  • the control device 24 periodically and repeatedly executes the control process of FIG.
  • the control device 24 executes the control process of FIG. 4 regardless of whether the ignition switch of the vehicle is on or off.
  • the control device 24 first determines in step S101 whether or not the battery cooler 14 is inclined by a predetermined angle AG1 or more with respect to a predetermined reference posture. It is a predetermined precondition for turning on the bubble generating device 22 that the battery cooler 14 is inclined by a predetermined angle AG1 or more with respect to the reference posture. That is, the case where the precondition is satisfied is a case where the battery cooler 14 is inclined by a predetermined angle AG1 or more with respect to the reference posture.
  • the predetermined angle AG1 is experimentally determined in advance so that it can be determined that the battery cooler 14 is in a posture (in other words, an orientation) in which the coolant level 14d is formed in the cooler chamber 14a in a biased manner. It has been.
  • the control device 24 determines that the battery cooler 14 is inclined at a predetermined angle AG1 or more with respect to the reference posture. That is, a liquid level 14d is formed in the battery cooler 14, and the refrigerant is in the liquid phase at the upstream side of the battery cooler 14 and the refrigerant is in the gas phase at the downstream side. At a certain time, the control device 24 determines that the battery cooler 14 is inclined by a predetermined angle AG1 or more with respect to the reference posture.
  • the reference posture of the battery cooler 14 is the posture of the battery cooler 14 shown in FIG. That is, the battery cooler 14 is installed so as to incline integrally with the vehicle, and the reference posture of the battery cooler 14 is the posture of the battery cooler 14 when the vehicle is in a vehicle horizontal state. Therefore, in the standard posture of the battery cooler 14, as shown in FIG. 1, if the liquid-phase refrigerant accumulated in the cooler chamber 14a does not include bubbles 14e (see FIG. 5), the cooler chamber 14a is a liquid-phase refrigerant. It is filled.
  • the control device 24 acquires the inclination angle of the vehicle with respect to the horizontal plane Fh from the inclination sensor 28c of the vehicle in order to perform the determination in step S101. Since the battery cooler 14 is tilted integrally with the vehicle, the control device 24 regards the tilt angle of the vehicle as the tilt angle with respect to the reference posture of the battery cooler 14. Therefore, when the vehicle inclination angle is equal to or greater than the predetermined angle AG1, the control device 24 determines that the battery cooler 14 is inclined at the predetermined angle AG1 or more with respect to a predetermined reference posture.
  • step S101 in FIG. 4 If it is determined in step S101 in FIG. 4 that the battery cooler 14 is inclined at the predetermined angle AG1 or more with respect to the reference posture, the process proceeds to step S102. On the other hand, when it is determined that the inclination angle of the battery cooler 14 with respect to the reference posture is less than the predetermined angle AG1, the process proceeds to step S104.
  • step S101 the direction of the inclination of the battery cooler 14 is not positive or negative. That is, even if the inclination of the battery cooler 14 is such that one side of the battery stacking direction DRb is positioned above the other side, the inclination is also the same so that one side is positioned below the other side. Determined.
  • step S102 the control device 24 determines whether or not the circulation flow rate of the refrigerant circulating in the fluid circulation circuit 26 exceeds a predetermined flow rate Q1.
  • the control device 24 determines whether or not a thermosiphon phenomenon has occurred in the device temperature control device 10.
  • the thermosiphon phenomenon is a phenomenon in which heat transfer from the battery 12 to the heat receiving fluid (for example, outside air) of the condenser 16 is performed by circulating the refrigerant with evaporation and condensation of the refrigerant.
  • the predetermined flow rate Q1 is experimentally determined in advance so that it can be determined that the thermosiphon phenomenon has occurred, and is set to a positive value close to zero or zero, for example.
  • the circulation flow rate of the refrigerant determined in step S102 is a mass flow rate.
  • the control apparatus 24 acquires the circulating flow volume of a refrigerant
  • step S102 if it is determined that the thermosiphon phenomenon has occurred, that is, if it is determined that the circulating flow rate of the refrigerant exceeds the predetermined flow rate Q1, the process proceeds to step S104. On the other hand, if it is determined that the thermosiphon phenomenon has stopped, that is, if it is determined that the circulating flow rate of the refrigerant is equal to or less than the predetermined flow rate Q1, the process proceeds to step S103.
  • step S103 the control device 24 causes the bubble generating device 22 to generate the bubbles 14e as shown in FIG. If the bubble generating device 22 has already generated the bubble 14e, the control device 24 continues to generate the bubble 14e.
  • the control device 24 turns on the bubble generating device 22 and causes the bubble generating device 22 to heat the liquid-phase refrigerant accumulated in the cooler chamber 14a. By this heating, the liquid phase refrigerant boils as shown in FIG. 5, and bubbles 14e, which are gas phase refrigerants, are generated in the liquid phase refrigerant.
  • the heating temperature of the bubble generating device 22 is experimentally set in advance to a temperature that is low enough to boil the liquid refrigerant, for example.
  • thermosyphon phenomenon when the thermosyphon phenomenon is stopped, if the bubbles 14e are generated in the liquid-phase refrigerant in the cooler chamber 14a, the refrigerant circulates in the fluid circulation circuit 26 as indicated by an arrow ARc. The thermosiphon phenomenon is started.
  • the control device 24 stops the generation of the bubble 14e by the bubble generation device 22. That is, the control device 24 turns off the bubble generating device 22 and stops heating by the bubble generating device 22. If the bubble generating device 22 has already been turned off, the control device 24 keeps the bubble generating device 22 off. After step S103 or S104, the process returns to step S101.
  • the bubble generator 22 is turned on and off according to the determination results of steps S101 and S102.
  • the thermosiphon phenomenon starts with the generation of the bubble 14e.
  • the determination result in step S102 is switched, and the bubble generating device 22 is switched from on to off in step S104.
  • the control device 24 stops the generation of the bubbles 14e by the bubble generation device 22 when the circulation flow rate of the refrigerant exceeds the predetermined flow rate Q1 after the bubble generation device 22 starts generating the bubbles 14e.
  • the control device 24 of the present embodiment causes the bubble generating device 22 to turn on the bubble generating device 22 when the above preconditions for turning on the bubble generating device 22 are satisfied and the circulating flow rate of the refrigerant is equal to or less than the predetermined flow rate Q1. It can be said that the bubbles 14e are temporarily generated.
  • thermosiphon system is employed in the device temperature control apparatus 10 described above, the temperature of the battery 12 and the outside air temperature (that is, the temperature of the heat receiving fluid in the condenser 16) are not increased. In a state where the difference is small, there is no refrigerant circulation as shown in FIG. In that case, the liquid-phase refrigerant is accumulated in the battery cooler 14 disposed below in the fluid circulation circuit 26.
  • the temperature of the plurality of battery cells 121 included in the battery 12 varies, the liquid in contact with the portion connected to the high-temperature battery cell 121 in the upper surface portion 141 of the battery cooler 14.
  • the phase refrigerant is partially cooled by boiling and gasifying. Thereby, temperature equalization of the plurality of battery cells 121 is achieved.
  • the device temperature control device 10 when the device temperature control device 10 is tilted together with the vehicle as shown in FIG. 3 in a scene where the battery 12 does not generate heat such as when the vehicle is parked and the difference between the temperature of the battery 12 and the outside air temperature is small, The liquid level 14d of the refrigerant is unevenly generated. Then, a location where the liquid refrigerant is not in contact is generated in the upper surface portion 141 of the battery cooler 14. That is, some of the battery cells 121 are less likely to exchange heat with the liquid refrigerant. If the refrigerant is left without being circulated in this state, the battery cooler 14 cannot sufficiently cool the battery cell 121 connected to the non-contact portion of the liquid phase refrigerant in the upper surface portion 141. Therefore, temperature equalization of the plurality of battery cells 121 becomes insufficient.
  • the device temperature adjustment device 10 includes a bubble generation device 22 that generates bubbles 14 e in the liquid-phase refrigerant accumulated in the battery cooler 14.
  • the control device 24 of the device temperature control device 10 satisfies a predetermined precondition, and the circulating flow rate of the refrigerant circulating in the fluid circulation circuit 26 is equal to or less than the predetermined flow rate Q1.
  • the bubble generator 22 is caused to generate the bubbles 14e. Accordingly, the cooling of the battery 12 by the fluid circulation circuit 26 configured as a loop thermosyphon can be appropriately started.
  • the case where the above preconditions are satisfied is a case where the battery cooler 14 is inclined at a predetermined angle AG1 or more with respect to a predetermined reference posture.
  • the bubble generator 22 is a heating source. Accordingly, when the battery cooler 14 is inclined at a predetermined angle AG1 or more with respect to the reference posture and the circulating flow rate of the refrigerant circulating in the fluid circulation circuit 26 is equal to or lower than the predetermined flow rate Q1, the bubble generating device 22 The liquid refrigerant accumulated in the vessel 14 is temporarily heated to boil.
  • the bubble 14e which is a gas phase refrigerant pushes up the liquid level 14d of the refrigerant in the battery cooler 14, and the liquid phase extends over the entire upper surface portion 141 of the battery cooler 14 even when the battery cooler 14 is tilted.
  • a refrigerant can be contacted.
  • the control device 24 causes the bubble generating device 22 to generate bubbles when the above preconditions are satisfied and the circulation flow rate of the refrigerant is equal to or less than the predetermined flow rate Q1. 14e is temporarily generated. Therefore, it is possible to promote the boiling of the refrigerant in the battery cooler 14 and spread the liquid-phase refrigerant over the entire upper surface portion 141 of the battery cooler 14.
  • the generation of the bubbles 14e by the bubble generator 22 can be used as a trigger for starting the circulation of the refrigerant in the fluid circulation circuit 26.
  • the bubble generating device 22 as an activation device for starting the thermosiphon phenomenon.
  • the thermosiphon phenomenon is caused by causing the bubble generating device 22 to function as the activation device. Can be started.
  • the control device 24 causes the bubble generation device 22 to start generating the bubbles 14 e
  • the control device 24 causes the bubbles 14e to be generated temporarily. Therefore, it is possible to avoid the generation of the bubbles 14e by the bubble generator 22 from being continued unnecessarily after the thermosyphon phenomenon starts.
  • the bubble generating device 22 is located closer to the inlet 14 b than to the outlet 14 c of the battery cooler 14 in the battery cooler 14. Is arranged.
  • the condensate from the condenser 16 may slightly return to the battery cooler 14 in the vicinity of the inlet 14b.
  • the battery 12 is cooled as the condensate evaporates.
  • the gas-phase refrigerant is biased to the outlet 14c side or the inlet 14b side in the battery cooler 14 due to, for example, the vehicle tilting, the outlet 14c side rather than the inlet 14b side.
  • the advantage of starting the thermosyphon phenomenon is greater when the gas-phase refrigerant is biased.
  • the case where the gas-phase refrigerant is biased toward the outlet 14c is, in other words, the case where the liquid-phase refrigerant is biased toward the inlet 14b.
  • the bubble generating device 22 it is possible to arrange the bubble generating device 22 at a position where the bubble generating action is likely to be exerted on the liquid-phase refrigerant under a situation where the merit of starting the thermosiphon phenomenon is great, that is, a position close to the inlet 14b. is there. In short, it is possible to arrange the bubble generating device 22 at a location where the liquid-phase refrigerant is reliably accumulated under a situation where the merit of starting the thermosyphon phenomenon is great.
  • the bubble generating device 22 generates bubbles 14e by heating the liquid-phase refrigerant. Therefore, it is possible to use a heating source such as an electric heater as the bubble generating device 22 and use the heating source for cooling the battery 12 using the boiling of the refrigerant.
  • a heating source such as an electric heater as the bubble generating device 22 and use the heating source for cooling the battery 12 using the boiling of the refrigerant.
  • a heating member for heating the heat medium is provided in the temperature adjusting unit, but this heating member is merely a battery heater for warming the battery.
  • the bubble generating device 22 that is a heating source of the present embodiment is not intended to warm the battery, but is used as a device that promotes cooling of the battery 12.
  • the bubble generating device 22 of the present embodiment is different from the heating member described in Patent Document 1.
  • the plurality of battery cells 121 are arranged side by side on the upper surface 141a of the battery cooler 14, respectively. That is, each battery cell 121 of the battery 12 is placed on the upper surface portion 141 of the battery cooler 14.
  • the temperature control unit is disposed on the side surface of each battery cell. However, between the temperature control unit and the contact surface of the battery cell, there is a transmission between them. A certain amount of pressing load (for example, binding force) is required to promote heat.
  • each battery cell 121 is placed on the battery cooler 14 as described above.
  • the battery cooler is not disposed on the side surface of the battery cell 121 but on the lower surface. 14 is arranged. Therefore, it is possible to ensure a contact load between the battery cell 121 and the battery cooler 14 by the weight of the battery cell 121. Therefore, the lower surface cooling method in which the battery cooler 14 is disposed on the lower side of the battery 12 as in this embodiment cools the battery 12 more than the arrangement method of the temperature control unit described in Patent Document 1. Is advantageous.
  • step S101 of FIG. 4 it is determined that the battery cooler 14 is inclined by a predetermined angle AG1 or more with respect to the reference posture. That is, the control device 24 causes the bubble generator 22 to generate bubbles 14e when the upstream portion of the refrigerant in the battery cooler 14 is in the liquid phase and the downstream portion of the refrigerant in the battery cooler 14 is in the gas phase.
  • the cooling of the battery 12 by the fluid circulation circuit 26 can be appropriately started as described above.
  • control process executed by the control device 24 is different from that of the first embodiment.
  • present embodiment is the same as the first embodiment.
  • step S201 in FIG. 6 is different from the control process of the first embodiment. That is, in the control processing of this embodiment, step S201 in FIG. 6 is provided instead of step S101 in FIG. Steps S102, S103, and S104 other than step S201 in FIG. 6 are the same as the control processing of the first embodiment. Also, the control process of FIG. 6 is periodically and repeatedly executed similarly to the control process of FIG.
  • the control device 24 determines whether or not the temperature of the battery 12 (that is, the battery temperature) is equal to or higher than a predetermined temperature threshold value TP1 in step S201.
  • the battery temperature being equal to or higher than a predetermined temperature threshold TP1 is a predetermined precondition for turning on the bubble generating device 22. That is, the case where the precondition is satisfied is a case where the battery temperature becomes equal to or higher than a predetermined temperature threshold value TP1.
  • the temperature threshold value TP1 is experimentally determined in advance so that it can be determined that the battery 12 needs to be cooled if the battery temperature becomes equal to or higher than the temperature threshold value TP1.
  • the battery temperature compared with the temperature threshold value TP1 in step S201 is, for example, the maximum value among the temperatures of the battery cells 121.
  • the temperature of each battery cell 121 is detected by a battery cell temperature sensor 28b (see FIG. 2) provided in each of the plurality of battery cells 121.
  • step S201 in FIG. 6 If it is determined in step S201 in FIG. 6 that the battery temperature has become equal to or higher than the temperature threshold value TP1, the process proceeds to step S102. On the other hand, if it is determined that the battery temperature is lower than the temperature threshold value TP1, the process proceeds to step S104.
  • the control device 24 of the device temperature control apparatus 10 satisfies the predetermined preconditions, and the circulation flow rate of the refrigerant circulating in the fluid circulation circuit 26 is equal to or less than the predetermined flow rate Q1.
  • the bubble generator 22 is caused to generate the bubbles 14e.
  • the case where the precondition is satisfied is a case where the battery temperature is equal to or higher than a predetermined temperature threshold value TP1.
  • the thermosiphon phenomenon in which the refrigerant circulates does not occur, and the battery cooler 14 Liquid phase refrigerant remains in the tank. Since the battery 12 is often placed, for example, under the floor of a passenger compartment or under a trunk room, the battery temperature gradually rises in a scene where the vehicle is left for a long time under hot weather such as parking in summer. Is required.
  • thermosiphon phenomenon does not start naturally unless there is a certain temperature difference between the battery temperature and the outside air temperature. Therefore, when the battery temperature rises slowly, it is considered that the thermosiphon phenomenon may not start naturally even if the battery temperature is higher than the outside air temperature.
  • the battery temperature is equal to or higher than the predetermined temperature threshold value TP1
  • the circulating flow rate of the refrigerant circulating in the fluid circulation circuit 26 is equal to or lower than the predetermined flow rate Q1.
  • the bubble generator 22 is caused to generate bubbles 14e.
  • the generation of the bubbles 14e is triggered to promote boiling of the refrigerant in the battery cooler 14, and the refrigerant can be circulated by starting the thermosyphon phenomenon.
  • the bubble generating device 22 is determined when it is determined in step S102 in FIG. 6 that the refrigerant circulation flow rate exceeds the predetermined flow rate Q1, that is, when it is determined that the refrigerant has circulated. The generation of the bubbles 14e due to is stopped. Accordingly, in this embodiment as well, as in the first embodiment, it is possible to avoid the generation of the bubbles 14e by the bubble generator 22 from being continued unnecessarily after the thermosiphon phenomenon starts.
  • step S201 in FIG. 6 in place of step S101 in FIG. 4, the determination in steps S201 and S102 in FIG.
  • the heating source as the bubble generator 22 is turned on.
  • the arrangement of the bubble generating device 22 and the shape of the forward piping 18 are different from those in the first embodiment.
  • the present embodiment is the same as the first embodiment.
  • the outward piping 18 is partially U-shaped, and has a bubble generation arrangement portion 181 and a lower arrangement portion 182.
  • the bubble generation arrangement part 181 and the lower arrangement part 182 are included in a U-shaped part.
  • positioning part 182 is arrange
  • the bubble generation arrangement unit 181 is provided with a bubble generation device 22. That is, the bubble generating device 22 is a pipe portion in which the liquid refrigerant is accumulated in the forward pipe 18 and is provided between the inlet 14 b of the battery cooler 14 and the lower arrangement portion 182 of the forward pipe 18.
  • the bubble generation device 22 is coupled to the bubble generation arrangement unit 181 so as to surround the outside of the bubble generation arrangement unit 181. Thereby, the bubble generation device 22 can heat the refrigerant in the bubble generation arrangement unit 181 from the outside of the bubble generation arrangement unit 181.
  • the lower arrangement part 182 is arranged below the bubble generation arrangement part 181.
  • the lower placement portion 182 is placed below the bubble generation placement portion 181.
  • the lower arrangement part 182 is arranged below the bubble generation arrangement part 181 regardless of the inclination of the battery cooler 14 within a predetermined range that may be caused by the usage situation of the vehicle.
  • the bubble generation device 181 of the outward pipe 18 is provided with the bubble generation device 22, and the lower arrangement unit 182 is arranged below the bubble generation arrangement unit 181. .
  • positioning part 182 is arrange
  • the bubbles generated by the bubble generation device 22 in the bubble generation arrangement part 181 are prevented from flowing to the condenser 16 side in the forward flow passage 18a. can do. That is, it is possible to prevent the bubbles from flowing back through the forward flow passage 18a.
  • this embodiment is a modification based on 1st Embodiment, it is also possible to combine this embodiment with the above-mentioned 2nd Embodiment.
  • the arrangement of the bubble generating device 22 and the outward piping 18 are different from those in the first embodiment.
  • the present embodiment is the same as the first embodiment.
  • the forward piping 18 has a bubble generation arrangement portion 181 and a check valve 183.
  • the check valve 183 allows the refrigerant flow from the condenser 16 to the battery cooler 14 in the forward flow passage 18 a while blocking the refrigerant flow from the battery cooler 14 to the condenser 16. In short, the check valve 183 prevents the reverse flow of the refrigerant flow in the forward flow passage 18a.
  • the check valve 183 is arranged closer to the condenser 16 than the bubble generation arrangement unit 181 in the refrigerant flow in the forward flow passage 18a.
  • the check valve 183 is disposed above the position SF1 of the liquid level formed in the forward path 18, the refrigerant in the forward path 18 is in a gas-liquid two-phase. It is placed at the site.
  • the bubble generation arrangement unit 181 is provided with a bubble generation device 22. That is, the bubble generating device 22 is provided between the inflow port 14 b of the battery cooler 14 and the check valve 183 in the piping portion in which the liquid-phase refrigerant is accumulated in the outward piping 18.
  • the bubble generating device 22 is coupled to the bubble generating and arranging unit 181 so as to surround the outside of the bubble generating and arranging unit 181 as in the third embodiment.
  • the bubble generation device 181 of the outward pipe 18 is provided with the bubble generator 22, and the check valve 183 is connected from the condenser 16 to the battery cooler 14 in the outward flow passage 18 a. While the refrigerant flow is allowed, the reverse flow of the refrigerant flow is prevented. Then, the check valve 183 is arranged closer to the condenser 16 than the bubble generation arrangement unit 181 in the refrigerant flow in the forward flow passage 18a. Therefore, it is possible to arrange the bubble generating device 22 at a place other than the battery cooler 14 and generate the bubbles 14 e in the liquid phase refrigerant accumulated in the battery cooler 14.
  • the check valve 183 can prevent the bubbles generated by the bubble generation device 22 in the bubble generation arrangement unit 181 from flowing through the forward flow passage 18a toward the condenser 16.
  • this embodiment is a modification based on 1st Embodiment, it is also possible to combine this embodiment with the above-mentioned 2nd Embodiment.
  • the bubble generating device 22 of this embodiment is not a heating source but an ultrasonic vibrator.
  • the present embodiment is different from the first embodiment described above. In other respects, the present embodiment is the same as the first embodiment.
  • the bubble generator 22 that is an ultrasonic vibrator is joined to the lower wall of the battery cooler 14 in the same manner as in the first embodiment.
  • the generated ultrasonic vibration is transmitted to the refrigerant in the cooler chamber 14a through the lower wall.
  • the bubble generating device 22 generates microbubble-shaped bubbles 14e in the liquid phase refrigerant by applying ultrasonic vibration to the liquid phase refrigerant as shown in FIG.
  • the bubble generator 22 of this embodiment can acquire the effect similar to the bubble generator 22 of 1st Embodiment, without heating the refrigerant
  • the effects similar to those of the bubble generating device 22 of the first embodiment include, for example, the effect of pushing up the liquid level 14 d of the refrigerant in the battery cooler 14 and the effect of promoting the boiling of the refrigerant in the battery cooler 14. is there.
  • this embodiment is a modification based on the first embodiment, it is possible to combine this embodiment with any of the second to fourth embodiments described above.
  • the target device that the device temperature control device 10 cools is the secondary battery 12, but the target device is not limited.
  • the target device may be an electronic device other than the secondary battery 12 such as a motor, an inverter, or a charger, or may be a simple heating element.
  • the target device is not limited to a vehicle-mounted device, and may be a device such as a base station that requires stationary cooling.
  • the battery temperature compared with the temperature threshold value TP1 in step S201 of FIG. 6 is, for example, the maximum value of the temperatures of the battery cells 121. This is an example. It is.
  • the temperature threshold value TP ⁇ b> 1 may be appropriately determined according to how to determine the battery temperature.
  • the battery temperature may be calculated as an average value of the temperatures of the battery cells 121.
  • the bubble generation device 22 is provided so as to surround the outside of the bubble generation arrangement unit 181, but this is an example.
  • the bubble generating device 22 may be disposed in the bubble generating / disposing portion 181 that constitutes a part of the outward piping 18.
  • the outward piping 18 is provided as an outward portion of the device temperature control device 10, but the outward portion does not need to be configured by a piping member.
  • a piping member For example, when a hole formed in the block-like object is provided as the forward flow path 18a, a portion of the block-like object that forms the forward flow path 18a corresponds to the forward path part. The same applies to the return pipe 20.
  • one condenser 16 is provided, but a plurality of condensers 16 may be provided.
  • heat exchange in which heat is exchanged between the plurality of condensers 16 for example between the air and the refrigerant in the fluid circulation circuit 26 as in the above-described embodiments.
  • Any, or all, of the vessel, the refrigerant-refrigerant heat exchanger, and the chiller may be included.
  • the refrigerant-refrigerant heat exchanger is a heat exchanger that forms part of the refrigeration cycle and cools the refrigerant in the fluid circulation circuit 26 by evaporating a heat exchange medium circulating in the refrigeration cycle.
  • the chiller is a cooling device that cools the refrigerant in the fluid circulation circuit 26 with a liquid medium such as cooling water.
  • the refrigerant filled in the fluid circulation circuit 26 is, for example, a chlorofluorocarbon refrigerant.
  • the refrigerant in the fluid circulation circuit 26 is not limited to the chlorofluorocarbon refrigerant.
  • other refrigerants such as propane or CO 2 and other media that change phase may be used.
  • the determination in step S102 of FIG. 4 is made based on the circulating flow rate of the refrigerant detected by the flow sensor 28a, but the other sensors are not used without using the flow sensor 28a. This may be done based on the detected value. For example, it is assumed that the determination in step S102 of FIG. 4 is made based on the detection value of the one side temperature sensor 28f and the detection value of the other side temperature sensor 28g shown in FIG.
  • the one side temperature sensor 28f and the other side temperature sensor 28g are arranged in the upper part of the cooler chamber 14a.
  • the one side temperature sensor 28f is provided at one end of the cooler chamber 14a in the battery stacking direction DRb
  • the other side temperature sensor 28g is provided on the other side of the cooler chamber 14a in the battery stacking direction DRb. It is provided at the end. Therefore, when each of the temperature sensors 28f and 28g has no bubble 14e, the battery cooler 14 is inclined at a predetermined angle AG1 or more with respect to the reference posture with either one of the battery stacking direction DRb and the other side as the upper side. One of the temperature sensors 28f and 28g is exposed on the liquid surface 14d.
  • the battery cooler 14 when the battery cooler 14 is inclined at a predetermined angle AG1 or more with respect to the reference posture with one side or the other side of the battery stacking direction DRb as the upper side, the battery cooler 14 is not generated unless the thermosiphon phenomenon occurs. The temperature variation inside becomes large. On the contrary, if the thermosiphon phenomenon occurs, the temperature variation in the battery cooler 14 is reduced and the temperature is equalized.
  • step S102 of FIG. 4 when the difference between the detected temperatures of the two temperature sensors 28f and 28g is less than a predetermined temperature difference determination value, it can be determined that the thermosiphon phenomenon has occurred. That is, it can be determined that the circulation flow rate of the refrigerant circulating in the fluid circulation circuit 26 exceeds the predetermined flow rate Q1.
  • the difference between the detected temperatures of the two temperature sensors 28f and 28g is equal to or greater than the temperature difference determination value, it can be determined that the thermosiphon phenomenon has not occurred. That is, it can be determined that the circulating flow rate of the refrigerant is equal to or less than the predetermined flow rate Q1.
  • the detected temperature of the one-side temperature sensor 28f in FIG. 10 may be replaced with the detected temperature detected by the battery cell temperature sensor 28b of the battery cell 121 arranged on the most one side in the battery stacking direction DRb of the batteries 12. Good.
  • the detected temperature of the other side temperature sensor 28g in FIG. 10 is replaced with the detected temperature detected by the battery cell temperature sensor 28b of the battery cell 121 arranged on the other side of the battery 12 in the battery stacking direction DRb. Good.
  • the determination in step S102 in FIG. 6 is made based on the circulating flow rate of the refrigerant detected by the flow sensor 28a, but the other sensors are not used without using the flow sensor 28a. This may be done based on the detected value. For example, it is assumed that the determination in step S102 of FIG. 6 is made based on the detection value of the outlet refrigerant temperature sensor that detects the refrigerant temperature of the outlet 14c of the battery cooler 14.
  • the cooling of the battery 12 is promoted when the thermosiphon phenomenon is started from the state where the thermosiphon phenomenon does not occur. Therefore, the refrigerant temperature at the outlet 14c decreases. Therefore, in the configuration in which the above-described outlet refrigerant temperature sensor is used, when the decrease width of the detected temperature of the outlet refrigerant temperature sensor with respect to before the bubble generating device 22 is turned on is equal to or greater than a predetermined temperature decrease width determination value. In addition, it can be determined that the thermosiphon phenomenon has started.
  • the detected temperature of the outlet refrigerant temperature sensor may be replaced with the detected temperature detected by the battery cell temperature sensor 28b of the battery cell 121 closest to the outlet 14c of the battery cooler 14 in the battery 12.
  • the direction of the inclination of the battery cooler 14 is not positive or negative in the determination in step S101 of FIG. 4, but this is an example.
  • the inclination of the battery cooler 14 that is equal to or larger than the predetermined angle AG1 with respect to the reference posture is such that the other side of the battery stacking direction DRb is positioned above the one side of the battery cooler 14 as shown in FIG. It can be considered that the inclination is limited.
  • control device 24 stops the generation of the bubble 14e by the bubble generation device 22 when a predetermined time has elapsed from the start of the generation of the bubble 14e after the bubble generation device 22 starts generating the bubble 14e.
  • the bubble generating device 22 may temporarily generate the bubble 14e. Even in this way, it is possible to avoid the generation of the bubble 14e by the bubble generation device 22 from being continued unnecessarily after the start of the thermosiphon phenomenon, as in the first embodiment described above. This also applies to the second embodiment.
  • the device temperature adjustment device 10 adjusts the temperature of the battery 12 by cooling the battery 12, but the device temperature adjustment device 10 includes the battery 12 in addition to such a cooling function.
  • a heating function for heating may be provided.
  • the bubble generating device 22 is provided on the lower wall of the battery cooler 14, but is provided in another place such as the side wall of the battery cooler 14. There is no problem.
  • the bubble generating device 22 is provided outside the battery cooler 14, but this is an example.
  • the bubble generator 22 may be provided in the battery cooler 14. If it does in this way, compared with the case where the bubble generator 22 is provided in the outer side of the battery cooler 14, it will be easy to generate the bubble 14e with respect to the liquid phase refrigerant
  • a generator 22 can be arranged.
  • the bubble generating device 22 is arranged at the bottom of the cooler chamber 14a.
  • the device temperature adjustment device includes a bubble generation unit that generates bubbles in the liquid-phase working fluid accumulated in the heat absorption unit. Yes. And the control apparatus of an apparatus temperature control apparatus makes the bubble generation part generate
  • control device generates bubbles in the bubble generation unit when a predetermined precondition is satisfied and the circulating flow rate of the working fluid is equal to or less than a predetermined flow rate. Make it.
  • the control device temporarily generates bubbles in the bubble generation unit when the above preconditions are satisfied and the circulating flow rate of the working fluid is equal to or less than a predetermined flow rate. Make it. Therefore, the generation of bubbles by the bubble generation unit can be used as a trigger for starting the circulation of the working fluid in the fluid circulation circuit. In short, it is possible to use the bubble generating unit as an activation device for starting the circulation of the working fluid. And it is possible to avoid that the generation
  • the control device stops the generation of bubbles by the bubble generation unit when the circulating flow rate of the working fluid exceeds a predetermined flow rate after the bubble generation unit starts generating bubbles.
  • This causes the bubble generation unit to temporarily generate bubbles. Accordingly, it is possible to avoid the generation of bubbles by the bubble generation unit from being continued unnecessarily after the start of circulation of the working fluid.
  • the control device stops the generation of bubbles by the bubble generation unit when a predetermined time has elapsed from the start of generation of bubbles after the bubble generation unit has started generation of bubbles. This causes the bubble generation unit to temporarily generate bubbles. Therefore, even if it does in this way, it is possible to avoid generating the bubble by the bubble generation part unnecessarily continuing after the circulation of the working fluid starts.
  • the case where the precondition is satisfied is a case where the endothermic portion is inclined by a predetermined angle or more with respect to a predetermined reference posture. Therefore, even when the endothermic part is tilted, it is possible for the bubbles to push up the liquid surface in the endothermic part due to the generation of bubbles in the endothermic part, and to spread the working fluid in the liquid phase throughout the endothermic part. . As a result, it is possible to sufficiently equalize the temperature of the entire target device.
  • the case where the above precondition is satisfied is a case where the temperature of the target device is equal to or higher than a predetermined temperature threshold. Therefore, according to the necessity of cooling the target device, it is possible to promote the boiling of the working fluid in the heat absorbing unit by using the generation of bubbles by the bubble generating unit.
  • the bubble generating part is arranged at a position closer to the inlet than to the outlet in the heat absorbing part.
  • the condensate from the heat radiating part may slightly return to the heat absorbing part near the inlet of the heat absorbing part.
  • the target equipment is cooled as the liquid evaporates. Therefore, for example, when it is assumed that the gas-phase working fluid is biased to the outlet side or the inlet side in the heat-absorbing portion due to the inclination of the heat-absorbing portion, for example, the gas-phase working fluid is biased to the inlet side
  • the advantage of starting the circulation of the working fluid is greater when the gaseous working fluid is biased toward the outlet side.
  • the case where the gas-phase working fluid is biased toward the outlet side is, in other words, the case where the liquid-phase working fluid is biased toward the inlet side. From this, it is possible to place the bubble generating part at a position where the bubble generating action is likely to be exerted on the liquid-phase working fluid, that is, at a position close to the inflow port, in a situation where the merit of starting the working fluid circulation is large. It is.
  • the bubble generating part is provided in the heat absorbing part. Therefore, it is possible to arrange the bubble generating part so that bubbles are easily generated with respect to the liquid-phase working fluid in the heat absorbing part as compared with the case where the bubble generating part is provided outside the heat absorbing part.
  • the forward path section includes a bubble generation arrangement section provided with a bubble generation section, and a lower arrangement section arranged below the bubble generation arrangement section.
  • positioning part is arrange
  • the forward path portion allows the working fluid flow from the bubble generating arrangement portion provided with the bubble generating portion and the heat radiating portion to the heat absorbing portion, while preventing the back flow of the working fluid flow.
  • a check valve is arranged on the heat radiating portion side of the bubble generating arrangement portion in the working fluid flow of the forward flow passage. Therefore, it is possible to generate bubbles in the liquid-phase working fluid accumulated in the heat absorbing portion by arranging the bubble generating portion at a place other than the heat absorbing portion. And it can prevent that the bubble which the bubble generation part generated in the bubble generation arrangement
  • the bubble generating unit generates bubbles by heating the liquid-phase working fluid. Therefore, for example, a heater that heats the liquid-phase working fluid can be used for cooling the target device using the boiling of the working fluid.
  • the bubble generating unit generates bubbles by applying ultrasonic vibration to the liquid-phase working fluid. Therefore, it is possible to appropriately start the cooling of the target device without heating the working fluid in the heat absorbing portion.
  • the device temperature control device includes a bubble generation unit that generates bubbles in the liquid-phase working fluid accumulated in the heat absorption unit. Then, the control device of the device temperature control device is configured such that when the upstream part of the working fluid in the heat absorbing part is in a liquid phase and the downstream part of the working fluid in the heat absorbing part is in a gas phase, a bubble is generated in the bubble generating part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Secondary Cells (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

機器温調装置には作動流体が循環する。その機器温調装置は、対象機器(12)から作動流体に吸熱させることによりその作動流体を蒸発させる吸熱部(14)と、その吸熱部よりも上方に配置され、作動流体から放熱させることによりその作動流体を凝縮させる放熱部(16)とを備える。また、機器温調装置は、放熱部から吸熱部へ作動流体を流す往路流通路(18a)が形成された往路部(18)と、吸熱部から放熱部へ作動流体を流す復路流通路(20a)が形成された復路部(20)とを備える。また、機器温調装置は、吸熱部内に溜まった液相の作動流体の中に気泡(14e)を発生させる気泡発生部(22)と、制御装置(24)とを備える。その制御装置は、放熱部と往路部と吸熱部と復路部とから構成された流体循環回路(26)を循環する作動流体の循環流量が所定流量(Q1)以下である場合には、気泡発生部に気泡の発生を行わせる。

Description

機器温調装置 関連出願への相互参照
 本出願は、2016年9月9日に出願された日本特許出願番号2016-176784号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、対象機器の温度を調整する機器温調装置に関するものである。
 この種の機器温調装置として、例えば特許文献1に記載された電池温度調節装置が従来から知られている。この特許文献1に記載された電池温度調節装置は、サーモサイフォン方式の冷却装置である。この電池温度調節装置は、サーモサイフォン凝縮器としての熱媒体冷却部と、電池冷却器としての温度調節部とを備えている。そして、熱媒体冷却部と温度調節部とが配管により環状に接続されており、電池温度調節装置は、熱媒体冷却部と温度調節部との間で熱媒体(すなわち、作動流体)が循環するように構成されている。
 また、温度調節部は、電池を構成する複数の電池セルの側面に接するように配置されており、熱媒体の液相と気相との相変化により電池の温度を調節する。
特開2015-41418号公報
 ところで、特許文献1の電池温度調節装置ではサーモサイフォン方式が採用されているので、電池温度と熱媒体冷却部の温度との間の温度差が或る程度拡大すれば、熱媒体を循環させるサーモサイフォンが起動し、それにより電池の冷却が開始される。
 しかし、そのような温度差の拡大を待たずに積極的にサーモサイフォンを起動したい場合がある。例えば、電池温度調節装置を搭載する車両の傾きに起因して温度調節部内の液面が偏って生じた場合には、サーモサイフォンを積極的に起動するのが好ましい。なぜなら、温度調節部内で気液の熱媒体のうち液相部分が多い部位ほど熱の授受が行われやすく、液面の偏りが継続すると各電池セルに温度ばらつきが生じてしまうからである。
 また、別の例として、電池温度の上昇が緩やかな状態では、サーモサイフォンが起動しないことが考えられる。このような場合にも、サーモサイフォンを積極的に起動するのが好ましい。発明者らの詳細な検討の結果、以上のようなことが見出された。
 本開示は上記点に鑑みて、サーモサイフォンによる対象機器の冷却を適宜起動することが可能な機器温調装置を提供することを目的とする。
 上記目的を達成するため、本開示の1つの観点によれば、機器温調装置は、
 作動流体が循環し、その作動流体の液相と気相との相変化によって対象機器の温度を調整する機器温調装置であって、
 対象機器から作動流体に吸熱させることによりその作動流体を蒸発させる吸熱部と、
 その吸熱部よりも上方に配置され、作動流体から放熱させることによりその作動流体を凝縮させる放熱部と、
 その放熱部から吸熱部へ作動流体を流す往路流通路が形成された往路部と、
 吸熱部から放熱部へ作動流体を流す復路流通路が形成された復路部と、
 吸熱部内に溜まった液相の作動流体の中に気泡を発生させる気泡発生部と、
 制御装置とを備え、
 その制御装置は、放熱部と往路部と吸熱部と復路部とから構成された流体循環回路を循環する作動流体の循環流量が所定流量以下である場合には、気泡発生部に気泡の発生を行わせる。
 上述のように、機器温調装置は、吸熱部内に溜まった液相の作動流体の中に気泡を発生させる気泡発生部を備えている。そして、機器温調装置の制御装置は、流体循環回路を循環する作動流体の循環流量が所定流量以下である場合には、その気泡発生部に気泡の発生を行わせる。従って、サーモサイフォンとして構成された流体循環回路による対象機器の冷却を適宜起動することが可能である。
 また、本開示の別の観点によれば、機器温調装置は、
 作動流体が循環し、その作動流体の液相と気相との相変化によって対象機器の温度を調整する機器温調装置であって、
 対象機器から作動流体に吸熱させることによりその作動流体を蒸発させる吸熱部と、
 その吸熱部よりも上方に配置され、作動流体から放熱させることによりその作動流体を凝縮させる放熱部と、
 その放熱部から吸熱部へ作動流体を流す往路流通路が形成された往路部と、
 吸熱部から放熱部へ作動流体を流す復路流通路が形成された復路部と、
 吸熱部内に溜まった液相の作動流体の中に気泡を発生させる気泡発生部と、
 制御装置とを備え、
 その制御装置は、吸熱部のうち作動流体の上流側の部位が液相で、吸熱部のうち作動流体の下流側の部位が気相のときに、気泡発生部に気泡の発生を行わせる。
 このようにしても、サーモサイフォンとして構成された流体循環回路による対象機器の冷却を適宜起動することが可能である。
第1実施形態において機器温調装置の概略構成を示した模式図であって、車両が車両水平状態にあり且つ冷媒の循環が止まっている場合を示した図である。 第1実施形態において、機器温調装置が有する制御装置の電気的な接続を示したブロック図である。 図1の機器温調装置の概略構成を示した模式図であって、車両が車両水平状態に対して傾き且つ冷媒の循環が止まっている場合を示した図である。 第1実施形態の機器温調装置が有する制御装置の制御処理を示したフローチャートである。 車両が車両水平状態に対し傾いた状態で、第1実施形態の機器温調装置が有する気泡発生装置が気泡を発生させている様子を示した模式図である。 第2実施形態の機器温調装置が有する制御装置の制御処理を示したフローチャートであって、第1実施形態の図4に相当する図である。 第2実施形態の機器温調装置が有する気泡発生装置が気泡を発生させている様子を示した模式図であって、第1実施形態の図5に相当する図である。 第3実施形態の機器温調装置の概略構成を示すと共に、車両が車両水平状態に対し傾いた状態で気泡発生装置が気泡を発生させている様子を示した模式図であって、第1実施形態の図5に相当する図である。 第4実施形態の機器温調装置の概略構成を示すと共に、車両が車両水平状態に対し傾いた状態で気泡発生装置が気泡を発生させている様子を示した模式図であって、第1実施形態の図5に相当する図である。 第1実施形態の変形例において機器温調装置の概略構成を示すと共に、電池冷却器内に設けられた一方側温度センサおよび他方側温度センサの配置を示した図であって、第1実施形態の図1に相当する図である。 第1実施形態において気泡発生装置の配置を電池冷却器内に変更した変形例の概略構成を示した模式図であって、第1実施形態の図1に相当する図である。
 以下、図面を参照しながら、本開示の実施形態を説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 (第1実施形態)
 図1に示す本実施形態の機器温調装置10は、電気自動車やハイブリッド車などの電動車両に搭載される。そして、本実施形態では、機器温調装置10は、その電動車両に搭載される二次電池12(以下、単に「電池12」とも呼ぶ)を冷却する冷却装置として機能する。すなわち、機器温調装置10が冷却する対象機器はその電池12である。
 機器温調装置10を搭載する電動車両(以下、単に「車両」とも呼ぶ)では、二次電池12を主要構成部品として含む蓄電装置(言い換えれば、電池パック)に蓄えた電気エネルギーがインバータなどを介してモータに供給され、それによって車両は走行する。電池12は車両走行中など車両使用時に自己発熱する。そして、電池12が過度に高温になると、その電池12を構成する電池セル121の劣化が促進されることから、自己発熱が少なくなるように電池セル121の出力および入力に制限を設ける必要がある。そのため、電池セル121の出力および入力を確保するためには、電池12を所定の温度以下に維持するための冷却装置が必要となる。
 また、車両走行中だけでなく夏季の駐車放置中などにも電池温度は上昇する。また、蓄電装置は車両の床下やトランクルーム下などに配置されることが多く、電池12に与えられる単位時間当たりの熱量は小さいものの、長時間の放置により電池温度は徐々に上昇する。電池12を高温状態で放置すると電池12の寿命が大幅に低下するので、車両の放置中も電池12を冷却するなど電池温度を低温に維持することが望まれている。
 更に、電池12は、複数の電池セル121を含む組電池として構成されているが、各電池セル121の温度にばらつきがあると電池セル121の劣化に偏りが生じ、蓄電装置の性能が低下してしまう。これは、最も劣化した電池セル121の特性に合わせて蓄電装置の入出力特性が決まることによる。そのため、長期間にわたって蓄電装置に所望の性能を発揮させるためには、複数の電池セル121相互間の温度ばらつきを低減させる均温化が重要となる。
 また、電池12を冷却する他の冷却装置として、これまでブロワによる送風や、冷凍サイクルを用いた空冷、水冷、あるいは冷媒直接冷却方式が一般的となっているが、ブロワは車室内の空気を送風するだけなので、ブロワの冷却能力は低い。また、ブロワによる送風では空気の顕熱で電池12を冷却するので、空気流れの上流と下流との間で温度差が大きくなり、電池セル121間の温度ばらつきを十分に抑制できない。また、冷凍サイクル方式では冷却能力は高いが、電池セル121との熱交換部は空冷または水冷の何れでも顕熱冷却であるので、同じく、電池セル121間の温度ばらつきを十分に抑制できない。更には、駐車放置中に冷凍サイクルのコンプレッサや冷却ファンを駆動させることは、電力消費の増大や騒音などの原因となるので好ましくない。
 これらの背景から、本実施形態の機器温調装置10では、コンプレッサを用いず冷媒の自然循環で電池12を冷却するサーモサイフォン方式が採用されている。
 具体的に、機器温調装置10は、図1に示すように、電池冷却器14と、凝縮器16と、往路部としての往路配管18と、復路部としての復路配管20と、気泡発生部としての気泡発生装置22と、制御装置24(図2参照)とを備えている。そして、その凝縮器16と往路配管18と電池冷却器14と復路配管20は環状に連結され、機器温調装置10の作動流体としての冷媒が循環する流体循環回路26を構成する。
 すなわち、その流体循環回路26は、冷媒の蒸発および凝縮により熱移動を行うヒートパイプである。そして、流体循環回路26は、ガス状の冷媒が流れる流路と液状の冷媒が流れる流路とが分離されたループ型のサーモサイフォン(言い換えれば、サーモサイフォン回路)となるように構成されている。なお、図1では、電池冷却器14と、電池冷却器14への各配管18、20の接続部分とが断面図示されており、このことは、後述の図3、5、7~10でも同様である。また、図1の矢印DR1は、機器温調装置10を搭載する車両の向きを示す。すなわち、その矢印DR1は車両上下方向DR1を示している。
 流体循環回路26内には冷媒が封入充填されている。そして、流体循環回路26内はその冷媒で満たされている。その冷媒は流体循環回路26を循環し、機器温調装置10は、その冷媒の液相と気相との相変化によって電池12の温度を調整する。詳細には、その冷媒の相変化によって電池12を冷却する。
 流体循環回路26内に充填されている冷媒は、例えば、HFO-1234yfまたはHFC-134aなどのフロン系冷媒である。
 図1に示すように、機器温調装置10の電池冷却器14は、電池12から冷媒に吸熱させる吸熱部である。言い換えれば、電池冷却器14は、電池12から冷媒へ熱移動させることにより電池12を冷却する。電池冷却器14は、例えば熱伝導性の高い金属製である。
 詳細には、電池冷却器14の内部には、液相冷媒が溜まる冷却器室14aが形成されている。そして、電池冷却器14は、その冷却器室14a内の冷媒に電池12から吸熱させることにより、その冷媒を蒸発させる。
 また、電池冷却器14が冷却する電池12は、直列に電気接続された複数の電池セル121を含んでいる。その複数の電池セル121は電池積層方向DRbに積層されており、その電池積層方向DRbは、車両が水平に配置された車両水平状態では、水平面Fhに沿った方向になる。その水平面Fhは、水平向きに拡がる仮想の平面である。
 電池冷却器14は例えば直方体形状の箱状を成し、電池積層方向DRbへ延びるように形成されている。また、電池冷却器14は、その電池冷却器14の上面141aが形成された上面部141を有している。すなわち、その上面部141の上面141a側とは反対側には、冷却器室14aの上側を形成する上側内壁面141bが形成されている。
 流体循環回路26内への冷媒の充填量は、冷却器室14aに溜まった液相冷媒が気泡14e(図5参照)を含まないときに、車両水平状態で冷却器室14aが液相冷媒で満たされる量とされている。そのため、液相冷媒の液面は、往路配管18内と復路配管20内とに形成され、電池冷却器14の上側内壁面141bよりも上方に位置する。図1では、往路配管18内の液相冷媒の液面位置SF1は破線SF1で示され、復路配管20内の液相冷媒の液面位置SF2は破線SF2で示されている。
 複数の電池セル121はそれぞれ電池冷却器14の上面141aの上に並べて配置されている。そして、複数の電池セル121はそれぞれ、電池冷却器14の上面部141との間で熱伝導可能なようにその上面部141に接続されている。これにより、電池冷却器14の上面141aは、電池12を冷却する電池冷却面として機能し、電池冷却器14の上面部141は、その電池冷却面を形成する冷却面形成部として機能する。
 電池冷却器14には流入口14bと流出口14cとが形成されている。その流入口14bは、往路配管18の内部に形成された往路流通路18aを電池冷却器14内(すなわち、冷却器室14a)へ連通させている。従って、流体循環回路26を冷媒が循環すると、往路流通路18aの冷媒は電池冷却器14の流入口14bを介して冷却器室14aに流入する。その往路流通路18aは、凝縮器16から電池冷却器14へ冷媒を流す冷媒流路である。電池冷却器14の流入口14bは例えば、電池積層方向DRbにおける電池冷却器14の一方側の端部に設けられている。
 また、電池冷却器14の流出口14cは、復路配管20の内部に形成された復路流通路20aを電池冷却器14内へ連通させている。従って、流体循環回路26を冷媒が循環すると、冷却器室14aの冷媒は電池冷却器14の流出口14cを介して復路流通路20aへ流出する。その復路流通路20aは、電池冷却器14から凝縮器16へ冷媒を流す冷媒流路である。電池冷却器14の流出口14cは例えば、電池積層方向DRbにおける電池冷却器14の他方側の端部に設けられている。なお、電池冷却器14は、冷却器室14aの気相冷媒を流入口14bと流出口14cとのうち専ら流出口14cから流出させる不図示の構造を備えている。
 機器温調装置10の凝縮器16は、凝縮器16内の冷媒から受熱流体へ放熱させる放熱部である。詳細に言えば、凝縮器16には復路配管20から気相の冷媒が流入し、凝縮器16は、冷媒から放熱させることによりその冷媒を凝縮させる。凝縮器16内の冷媒と熱交換させられる受熱流体は、例えば空気または水などである。
 また、凝縮器16は電池冷却器14よりも上方に配置されている。そして、凝縮器16のうち下方寄りの部位に往路配管18が接続され、凝縮器16のうち上方寄りの部位に復路配管20が接続されている。要するに、往路配管18は、復路配管20よりも下方にて凝縮器16に接続されている。そのため、凝縮器16で凝縮した冷媒すなわち凝縮器16内の液相冷媒は、重力によって、凝縮器16内から往路流通路18aへと流れる。
 気泡発生装置22は、制御装置24の制御に従って、冷却器室14aに溜まった液相冷媒の中に気泡14e(図5参照)を発生させる。その気泡14eとは、気相冷媒(言い換えれば、ガス冷媒)の泡である。具体的には、気泡発生装置22は、熱を発する加熱源たとえば電気ヒータであり、気泡発生装置22の発熱のオンオフは制御装置24によって切り替えられる。従って、気泡発生装置22は、液相冷媒を加熱し沸騰させることで液相冷媒の中に気泡14eを発生させる。なお、図1では、機器温調装置10は、気泡発生装置22の発熱がオフにされた状態で表されている。
 また、気泡発生装置22は電池冷却器14の外側に設けられ、例えば電池冷却器14の下部の壁に接合されている。そして、気泡発生装置22は、その電池冷却器14の壁に熱伝導可能なように取り付けられ、その壁を介して冷却器室14aの冷媒を加熱する。更に、気泡発生装置22は、電池冷却器14のうち、流出口14cに対するよりも流入口14bに対して近い位置に配置されている。
 図2に示す制御装置24は、CPU、ROM、RAM等からなる周知のマイクロコンピュータとその周辺回路とから構成された電子制御装置である。制御装置24は、ROM等に予め記憶されたコンピュータプログラムに従って種々の制御処理を実行する。
 すなわち、制御装置24は、ROM等の非遷移的実体的記憶媒体に格納されたコンピュータプログラムを実行する。そして、そのコンピュータプログラムが実行されることで、コンピュータプログラムに対応する方法が実行される。
 また、図2に示すように、制御装置24には、二次電池12または機器温調装置10に設けられた各種センサ28a、28b、28cからの検出信号が逐次入力される。例えば、機器温調装置10は、往路流通路18aまたは復路流通路20aに配置され冷媒の流量を検出する流量センサ28aを備えている。そして、制御装置24には、流体循環回路26を循環する冷媒の循環流量を表す検出信号がその流量センサ28aから入力される。
 また、複数の電池セル121の各々には電池セル温度センサ28bがそれぞれ設けられている。各電池セル121の温度(すなわち、電池セル温度)を表す検出信号が、その電池セル温度センサ28bのそれぞれから制御装置24に入力される。また、車両が有する傾斜センサ28cから、車両の傾斜角度を表す検出信号が制御装置24に入力される。
 また、制御装置24は、種々の制御信号を各制御機器に対して出力し、各制御機器を制御する。例えば、制御装置24は、制御機器の1つである気泡発生装置22をオンオフさせる制御を行う。
 以上のように構成された図1の機器温調装置10では、例えば車両走行中など電池12が発熱し電池温度が高くなると、電池セル121の下面を通じて電池冷却器14の上面部141へ熱が伝わり、その熱によって電池冷却器14内の液相冷媒が沸騰する。その液相冷媒の沸騰による蒸発潜熱で各電池セル121は冷却される。また、電池冷却器14内で沸騰した冷媒はガス化して上方へ移動する。すなわち、そのガス化した冷媒(すなわち、気相冷媒)は、復路流通路20aを通って凝縮器16へ移動する。そうすると、その凝縮器16へ流入した気相冷媒は凝縮器16で冷却されて液化し、往路配管18を通って再び電池冷却器14に流入する。機器温調装置10では、これらの作動がコンプレッサ等の駆動装置を必要とせずに、流体循環回路26に封入された冷媒の自然循環により行われる。
 ところで、車両の駐車放置中など電池が発熱していないシーンでは、例えば図1のように電池冷却器14に液相冷媒を満たしておくことにより、各電池セル121の温度の均等化すなわち各電池セル121の均温化が可能となる。これは、電池12のうち温度の高い電池セル121近傍の液相冷媒のみが蒸発することによる作用である。この自動的に為される各電池セル121の均温化のためには、電池冷却器14の上面部141のうち全ての電池セル121が載っている全範囲にわたって、液相冷媒が上側内壁面141bに接触して存在している必要がある。
 但し、電池12は車両に搭載されているので、例えば坂道駐車等で車両が傾いた場合には、図3に示すように、冷媒が循環せずに液相冷媒が冷却器室14aに溜まったまま放置されるとすれば、電池冷却器14内の冷媒の液面14dに偏りが生じることが想定される。
 そして、冷却器室14aで液面14dが図3のように偏って生じた場合には、電池冷却器14の上面部141の中に、液相冷媒に接触しない液非接触箇所が生じる。そうなると、その液非接触箇所の上に載る電池セル121と冷却器室14aの冷媒との熱交換がされ難くなり、その液非接触箇所上の電池セル121とそれ以外の電池セル121との間で、電池セル温度の差が拡大してしまう。このとき、冷却器室14aで冷媒の沸騰が一旦始まれば、冷媒が流体循環回路26を循環し、各電池セル121の均温化および冷却が可能になる。
 しかし、冷却器室14aの冷媒が自然に沸騰を開始するためには、各電池セル温度が、受熱流体である外気(すなわち、車室外の空気)の温度に対して或る程度の温度差をもって高くなる必要がある。すなわち、図3のように冷却器室14aで液面14dが偏ったままで、冷却器室14aの冷媒が自然に沸騰を開始するまで待った場合には、電池セル121相互間の温度ばらつきにより、電池12の性能低下または劣化を招いてしまうことになる。
 また、車両が傾いても冷却器室14aで液相冷媒が上側内壁面141bの全体にわたって接触するように、冷媒の封入量を増やす方法も考えられるが、それは現実的ではない。なぜなら、機器温調装置10の重量増加や、高温時に流体循環回路26の内圧が上昇し熱交換器14、16や配管18、20の耐圧を上げなければいけない等の別の事態が生じるからである。
 そこで、本実施形態の制御装置24は、図4に示す制御処理を実行する。図4は、本実施形態の制御装置24が実行する制御処理を示したフローチャートである。制御装置24は、図4の制御処理を周期的に繰り返し実行する。例えば車両のイグニッションスイッチのオンオフに拘わらず、制御装置24は図4の制御処理を実行する。
 図4に示すように、制御装置24は、まず、ステップS101にて、電池冷却器14が予め定められた基準姿勢に対して所定角度AG1以上傾いたか否かを判定する。この電池冷却器14が基準姿勢に対して所定角度AG1以上傾くことは、気泡発生装置22をオンにするための予め定められた前提条件である。すなわち、その前提条件が満たされた場合とは、電池冷却器14が基準姿勢に対して所定角度AG1以上傾いた場合である。その所定角度AG1は、冷却器室14aに冷媒の液面14dが偏って形成される姿勢(言い換えれば、向き)に電池冷却器14がなっていることを判定できるように、予め実験的に定められている。
 例えば、冷却器室14a内において冷媒の液面14dが図3のように形成された場合に、制御装置24は、電池冷却器14が上記基準姿勢に対して所定角度AG1以上傾いたと判定する。すなわち、電池冷却器14内に液面14dが形成され、電池冷却器14のうちその液面14dを境に上流側の部位では冷媒が液相であり且つ下流側の部位では冷媒が気相であるときに、制御装置24は、電池冷却器14が基準姿勢に対して所定角度AG1以上傾いたと判定する。
 ここで、電池冷却器14の基準姿勢とは、図1に示された電池冷却器14の姿勢である。すなわち、電池冷却器14は車両と一体的に傾くように設置されており、電池冷却器14の基準姿勢とは、車両が車両水平状態にあるときの電池冷却器14の姿勢である。従って、電池冷却器14の基準姿勢では、図1に示すように、冷却器室14aに溜まった液相冷媒が気泡14e(図5参照)を含まなければ、冷却器室14aは液相冷媒で満たされる。
 制御装置24は、ステップS101の判定を行うために、車両が有する傾斜センサ28cから、水平面Fhに対する車両の傾斜角度を取得する。そして、電池冷却器14は車両と一体的に傾くので、制御装置24は、その車両の傾斜角度を電池冷却器14の基準姿勢に対する傾斜角度とみなす。従って、制御装置24は、車両の傾斜角度が所定角度AG1以上である場合には、電池冷却器14が予め定められた基準姿勢に対して所定角度AG1以上傾いたと判定する。
 図4のステップS101において、電池冷却器14が基準姿勢に対して所定角度AG1以上傾いたと判定された場合には、ステップS102へ進む。その一方で、電池冷却器14の基準姿勢に対する傾斜角度が所定角度AG1未満であると判定された場合には、ステップS104へ進む。
 なお、ステップS101で判定において電池冷却器14の傾斜の向きに正負はない。すなわち、電池冷却器14のうち電池積層方向DRbの一方側を他方側よりも上方に位置させる傾きであっても、その一方側を他方側よりも下方に位置させる傾きであってもそれぞれ同様に判定される。
 ステップS102では、制御装置24は、流体循環回路26を循環する冷媒の循環流量が所定流量Q1を超えているか否かを判定する。要するに、制御装置24は、機器温調装置10でサーモサイフォン現象が生じているか否かを判定する。そのサーモサイフォン現象とは、冷媒の蒸発および凝縮を伴って冷媒が循環することにより電池12から凝縮器16の受熱流体(例えば、外気)への熱移動が行われる現象である。従って、所定流量Q1は、サーモサイフォン現象が生じていることを判定できるように予め実験的に定められており、例えば零に近い正の値または零に設定されている。なお、このステップS102で判定される冷媒の循環流量は質量流量である。また、制御装置24は、例えば、図2の流量センサ28aから冷媒の循環流量を取得する。
 ステップS102において、サーモサイフォン現象が生じていると判定された場合、すなわち、冷媒の循環流量が所定流量Q1を超えていると判定された場合には、ステップS104へ進む。その一方で、サーモサイフォン現象が止まっていると判定された場合、すなわち、冷媒の循環流量が所定流量Q1以下であると判定された場合には、ステップS103へ進む。
 ステップS103では、制御装置24は、図5に示すように気泡発生装置22に気泡14eの発生を行わせる。また、気泡発生装置22が既に気泡14eの発生を行っている場合には、制御装置24は、その気泡14eの発生を継続させる。
 具体的には、気泡発生装置22は加熱源であるので、制御装置24は気泡発生装置22をオンにして、冷却器室14aに溜まった液相冷媒を気泡発生装置22に加熱させる。この加熱により、図5に示すように液相冷媒は沸騰し、気相冷媒である気泡14eが液相冷媒の中に発生する。なお、気泡発生装置22の加熱温度は、例えば液相冷媒を沸騰させるに足る温度であって出来るだけ低い温度に予め実験的に設定されている。
 このようにサーモサイフォン現象が止まっている場合に冷却器室14aの液相冷媒中に気泡14eが発生させられると、それを切っ掛けにして流体循環回路26に冷媒が矢印ARcのように循環し、サーモサイフォン現象が開始される。
 図4のステップS104では、制御装置24は、気泡発生装置22による気泡14eの発生を停止する。すなわち、制御装置24は気泡発生装置22をオフにして、気泡発生装置22による加熱を止める。気泡発生装置22が既にオフにされている場合には、制御装置24は、気泡発生装置22をオフのままにする。ステップS103またはS104の次は、ステップS101へ戻る。
 このように、ステップS101およびS102の判定結果に応じて気泡発生装置22のオンオフが切り替わる。例えば、ステップS103で気泡発生装置22がオフからオンに切り替えられると、気泡14eの発生を切っ掛けとしてサーモサイフォン現象が始まる。そして、サーモサイフォン現象が始まると、ステップS102の判定結果が切り替わり、ステップS104で気泡発生装置22がオンからオフに切り替えられる。すなわち、制御装置24は、気泡発生装置22に気泡14eの発生を開始させた後に、冷媒の循環流量が所定流量Q1を超えた場合には、気泡発生装置22による気泡14eの発生を停止する。
 また、気泡14eの発生によりサーモサイフォン現象が始まると気泡発生装置22はオンからオフに切り替えられるので、図4の制御処理では気泡発生装置22のオンは一時的なものである。従って、本実施形態の制御装置24は、気泡発生装置22をオンにするための上記前提条件が満たされ、且つ、冷媒の循環流量が所定流量Q1以下である場合には、気泡発生装置22に気泡14eの発生を一時的に行わせると言える。
 なお、上述した図4の各ステップでの処理は、それぞれの機能を実現する機能部を構成している。このことは、後述する図6のフローチャートでも同様である。
 上述した機器温調装置10ではサーモサイフォン方式が採用されているので、電池12が高温にはなっておらずその電池12の温度と外気温度(すなわち、凝縮器16の受熱流体の温度)との差が小さい状態では、図1のように冷媒の循環は無い。その場合、流体循環回路26の中で下方に配置された電池冷却器14内に液相冷媒が溜まっている。ここで、電池12が有する複数の電池セル121の温度に仮にばらつきが生じたとすれば、電池冷却器14の上面部141のうち高温の電池セル121に接続されている部位に接触している液相冷媒が沸騰してガス化することで部分的に冷却される。これにより複数の電池セル121の均温化が成される。
 一方、車両の駐車放置中など電池12の発熱が無く、電池12の温度と外気温度との差が小さいシーンにおいて図3のように車両と共に機器温調装置10が傾くと、電池冷却器14内に冷媒の液面14dが偏って発生する。そうなると、電池冷却器14の上面部141の中に液相冷媒が接触していない箇所が生じる。すなわち、複数の電池セル121の中に液相冷媒と熱交換されにくいものが生じる。このように状態で冷媒が循環しないまま放置されたとすれば、電池冷却器14は、その上面部141のうち液相冷媒の非接触箇所に接続された電池セル121を十分に冷却することができないので、複数の電池セル121の均温化が不十分になる。
 そこで、本実施形態によれば図5に示すように、機器温調装置10は、電池冷却器14内に溜まった液相冷媒の中に気泡14eを発生させる気泡発生装置22を備えている。そして、図4に示すように、機器温調装置10の制御装置24は、予め定められた前提条件が満たされ、且つ、流体循環回路26を循環する冷媒の循環流量が所定流量Q1以下である場合には、気泡発生装置22に気泡14eの発生を行わせる。従って、ループ型のサーモサイフォンとして構成された流体循環回路26による電池12の冷却を適宜起動することが可能である。
 具体的に言えば、上記前提条件が満たされた場合とは、電池冷却器14が予め定められた基準姿勢に対して所定角度AG1以上傾いた場合である。そして、気泡発生装置22は加熱源である。従って、電池冷却器14がその基準姿勢に対して所定角度AG1以上傾き、且つ、流体循環回路26を循環する冷媒の循環流量が所定流量Q1以下である場合に、気泡発生装置22は、電池冷却器14内に溜まった液相冷媒を一時的に加熱し沸騰させる。これにより、気相冷媒である気泡14eが電池冷却器14内の冷媒の液面14dを押し上げ、電池冷却器14が傾いた状態であっても電池冷却器14の上面部141の全体にわたって液相冷媒を接触させることができる。その結果、複数の電池セル121の均温化を十分に行うことが可能となる。そして、車両が車両水平状態に対し傾いた状態でも各電池セル121の均温化および冷却が可能であるので、電池セル温度のばらつきを抑え電池12の劣化を抑制することができる。
 また、本実施形態によれば図4に示すように、制御装置24は、上記前提条件が満たされ、且つ、冷媒の循環流量が所定流量Q1以下である場合には、気泡発生装置22に気泡14eの発生を一時的に行わせる。従って、電池冷却器14内で冷媒の沸騰を促進し、液相冷媒を電池冷却器14の上面部141全体にわたって行き渡らせることが可能である。
 そして、その気泡発生装置22による気泡14eの発生を、流体循環回路26で冷媒の循環を開始させる切っ掛けとして利用することが可能である。要するに、サーモサイフォン現象を開始させる起動装置として気泡発生装置22を利用することが可能である。そして、気泡発生装置22による気泡14eの発生が、サーモサイフォン現象の開始後に不必要に継続することを回避することが可能である。このように、電池温度と外気温度との温度差がサーモサイフォン現象を開始させるほどには拡大していない場合であっても、気泡発生装置22を上記起動装置として機能させることにより、サーモサイフォン現象を開始させることが可能である。
 また、本実施形態によれば図4に示すように、制御装置24は、気泡発生装置22に気泡14eの発生を開始させた後に、冷媒の循環流量が所定流量Q1を超えた場合には、気泡発生装置22による気泡14eの発生を停止する。すなわち、このようにすることによって、制御装置24は、気泡14eの発生を一時的に行わせる。従って、気泡発生装置22による気泡14eの発生が、サーモサイフォン現象の開始後に不必要に継続することを回避することが可能である。
 また、本実施形態によれば図1および図3に示すように、気泡発生装置22は、電池冷却器14のうち、電池冷却器14の流出口14cに対するよりも流入口14bに対して近い位置に配置されている。ここで、冷媒の循環流量が所定流量Q1以下であるときでも、流入口14b付近では凝縮器16からの凝縮液が電池冷却器14へ僅かに戻ってくることがあり、その場合、その戻った凝縮液が蒸発することにより電池12を冷却する。
 従って、車両が例えば傾くなどして電池冷却器14内で気相冷媒が流出口14c側または流入口14b側に偏って存在することを想定した場合、流入口14b側よりも流出口14c側に気相冷媒が偏った場合の方が、サーモサイフォン現象を開始させるメリットが大きい。そして、流出口14c側に気相冷媒が偏った場合とは、言い換えれば、流入口14b側に液相冷媒が偏った場合である。このことから、サーモサイフォン現象を開始させるメリットが大きい状況下で気泡発生作用を液相冷媒へ及ぼし易い位置、すなわち、流入口14bに対して近い位置に気泡発生装置22を配置することが可能である。要するに、上記サーモサイフォン現象を開始させるメリットが大きい状況下で確実に液相冷媒が溜まっている箇所に気泡発生装置22を配置することが可能である。
 また、本実施形態によれば図5に示すように、気泡発生装置22は、液相冷媒を加熱することで気泡14eを発生させる。従って、電気ヒータ等の加熱源を気泡発生装置22として用い、その加熱源を、冷媒の沸騰を利用した電池12の冷却に利用することが可能である。
 なお、特許文献1の電池温度調節装置では、熱媒体を加熱する加熱部材が温度調節部内に設けられているが、この加熱部材は、あくまでも電池を暖めるための電池用ヒータに過ぎない。これに対し、本実施形態の加熱源である気泡発生装置22は、電池を暖めることを目的とはせず、電池12の冷却を促進する装置として用いられている。この点において、本実施形態の気泡発生装置22は、特許文献1に記載の加熱部材とは異なる。
 また、本実施形態によれば、複数の電池セル121はそれぞれ電池冷却器14の上面141aの上に並べて配置されている。すなわち、電池12の各電池セル121は、電池冷却器14の上面部141の上に載っている。ここで、例えば特許文献1の電池温度調節装置では温度調節部が各電池セルの側面に配置されているが、その温度調節部と電池セルの接触面との間には、両者の間の伝熱を促進するためにある程度の押付け荷重(例えば、拘束力)が必要となる。
 これに対し、本実施形態の機器温調装置10では、上記のように各電池セル121は電池冷却器14の上に載っており、言い換えれば、電池セル121の側面ではなく下面に電池冷却器14が配置されている。そのため、電池セル121の自重で電池セル121と電池冷却器14との間に接触荷重を確保することが可能である。従って、本実施形態のように電池12の下側に電池冷却器14を配置する下面冷却方式の方が、特許文献1に記載された温度調節部の配置方式よりも、電池12を冷却する上で有利である。
 また、本実施形態によれば、例えば図3のように電池冷却器14のうち液面14dを境に上流側の部位では冷媒が液相であり且つ下流側の部位では冷媒が気相であるときに、図4のステップS101にて、電池冷却器14が基準姿勢に対して所定角度AG1以上傾いたと判定される。すなわち、制御装置24は、電池冷却器14のうち冷媒の上流側の部位が液相で、電池冷却器14のうち冷媒の下流側の部位が気相のときに、気泡発生装置22に気泡14eの発生を行わせる。これにより、上述のように流体循環回路26による電池12の冷却を適宜起動することが可能である。
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。このことは後述の第3実施形態以降でも同様である。
 図6に示すように、本実施形態では、制御装置24が実行する制御処理が前述の第1実施形態と異なっている。それ以外については、本実施形態は第1実施形態と同様である。
 具体的には図6のステップS201が第1実施形態の制御処理とは異なっている。すなわち、本実施形態の制御処理では、図4のステップS101に替えて図6のステップS201が設けられている。なお、図6のステップS201以外のステップS102、S103、S104は第1実施形態の制御処理と同じである。また、図6の制御処理も、図4の制御処理と同様に周期的に繰り返し実行される。
 図6に示すように、制御装置24は、ステップS201にて、電池12の温度(すなわち、電池温度)が所定の温度閾値TP1以上になったか否かを判定する。この電池温度が所定の温度閾値TP1以上になることは、気泡発生装置22をオンにするための予め定められた前提条件である。すなわち、その前提条件が満たされた場合とは、電池温度が所定の温度閾値TP1以上になった場合である。
 その温度閾値TP1は、電池温度が温度閾値TP1以上になれば電池12の冷却が必要になっていると判定できるように、予め実験的に定められている。なお、このステップS201で温度閾値TP1と比較される電池温度は、例えば、各電池セル121の温度のうちの最大値とされている。また、その各電池セル121の温度は、複数の電池セル121の各々に設けられた電池セル温度センサ28b(図2参照)によって検出される。
 図6のステップS201において、電池温度が温度閾値TP1以上になったと判定された場合には、ステップS102へ進む。その一方で、電池温度が温度閾値TP1未満であると判定された場合には、ステップS104へ進む。
 本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
 また、本実施形態によれば、機器温調装置10の制御装置24は、予め定められた前提条件が満たされ、且つ、流体循環回路26を循環する冷媒の循環流量が所定流量Q1以下である場合には、気泡発生装置22に気泡14eの発生を行わせる。そして、その前提条件が満たされた場合とは、電池温度が所定の温度閾値TP1以上になった場合である。
 ここで、電池温度と凝縮器16の受熱流体である外気の温度との温度差が或る限度よりも小さい状態において何もしなければ、冷媒が循環するサーモサイフォン現象は生じず、電池冷却器14内に液相の冷媒が溜まったままになる。電池12は例えば車室の床下やトランクルーム下などに配置されることが多いので、夏季の駐車など炎天下で長時間にわたって車両が放置されるシーンでは、電池温度が徐々に上昇するため電池12の冷却が必要になる。
 但し、サーモサイフォン現象は電池温度と外気温度との間に或る程度の温度差がないと自然には開始しない。そのため、電池温度の上昇が緩やかである場合には、電池温度が外気温度より高くなっていてもサーモサイフォン現象が自然には開始しないことがあると考えられる。
 これに対し、本実施形態の制御装置24は、上述のように、電池温度が所定の温度閾値TP1以上になり、且つ、流体循環回路26を循環する冷媒の循環流量が所定流量Q1以下である場合には、図7に示すように気泡発生装置22に気泡14eの発生を行わせる。これにより、その気泡14eの発生を切っ掛けとして電池冷却器14内で冷媒の沸騰が促進され、サーモサイフォン現象の開始により冷媒を循環させることが可能である。
 そして、流体循環回路26で冷媒の循環(すなわち、サーモサイフォン現象)が一旦始まれば、電池温度と外気温度との間の温度差がある限りその冷媒の循環が続く。そのため、本実施形態の制御処理でも、冷媒の循環流量が所定流量Q1を超えていると図6のステップS102で判定された時点、すなわち、冷媒が循環したと判定された時点で気泡発生装置22による気泡14eの発生が停止される。従って、本実施形態でも第1実施形態と同様に、気泡発生装置22による気泡14eの発生が、サーモサイフォン現象の開始後に不必要に継続することを回避することが可能である。
 なお、本実施形態では、図4のステップS101に替えて図6のステップS201が設けられていることから判るように、車両の傾きの有無に関係なく、図6のステップS201、S102の判定に従って、気泡発生装置22としての加熱源はオンにされる。
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
 図8に示すように、本実施形態では、気泡発生装置22の配置と往路配管18の形状とが前述の第1実施形態と異なっている。それ以外については、本実施形態は第1実施形態と同様である。
 具体的には図8に示すように、往路配管18は部分的にU字形状を成しており、気泡発生配置部181と下方配置部182とを有している。その気泡発生配置部181と下方配置部182は、U字形状の部分に含まれている。そして、下方配置部182は、往路流通路18aの冷媒流れにおいて気泡発生配置部181よりも凝縮器16側に配置されている。
 また、気泡発生配置部181には気泡発生装置22が設けられている。すなわち、気泡発生装置22は、往路配管18のうち液相冷媒が溜まる配管部分で、電池冷却器14の流入口14bと往路配管18の下方配置部182との間に設けられている。
 本実施形態では、気泡発生装置22は気泡発生配置部181の外側を取り巻くようにその気泡発生配置部181に結合されている。これにより、気泡発生装置22は、気泡発生配置部181内の冷媒を気泡発生配置部181の外側から加熱することができる。
 また、下方配置部182は、気泡発生配置部181よりも下方に配置されている。例えば、車両が車両水平状態にあるときに、下方配置部182は、気泡発生配置部181よりも下方に配置される。更に、車両の使用状況からあり得る所定範囲内で電池冷却器14が何れに傾いても、下方配置部182は、気泡発生配置部181よりも下方に配置される。
 本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
 また、本実施形態によれば、往路配管18の気泡発生配置部181には気泡発生装置22が設けられており、下方配置部182は、その気泡発生配置部181よりも下方に配置されている。そして、下方配置部182は、往路流通路18aの冷媒流れにおいて気泡発生配置部181よりも凝縮器16側に配置されている。従って、気泡発生装置22を電池冷却器14以外の箇所に配置して、電池冷却器14内に溜まった液相冷媒の中に気泡14eを発生させることが可能である。要するに、気泡発生装置22の搭載位置の自由度を拡げることが可能である。そして、気泡発生配置部181と下方配置部182との上下位置関係から、気泡発生装置22が気泡発生配置部181内で発生させた気泡が往路流通路18aを凝縮器16側へ流れることを防止することができる。すなわち、その気泡が往路流通路18aを逆流することを防止することができる。
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2実施形態と組み合わせることも可能である。
 (第4実施形態)
 次に、第4実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
 図9に示すように、本実施形態では、気泡発生装置22の配置と往路配管18とが前述の第1実施形態と異なっている。それ以外については、本実施形態は第1実施形態と同様である。
 具体的には図9に示すように、往路配管18は、気泡発生配置部181と逆止弁183とを有している。そして、その逆止弁183は、往路流通路18aにおいて凝縮器16から電池冷却器14への冷媒流れを許容する一方で、電池冷却器14から凝縮器16への冷媒流れを阻止する。要するに、逆止弁183は、往路流通路18aにおける冷媒流れの逆流を阻止する。
 また、逆止弁183は、往路流通路18aの冷媒流れにおいて気泡発生配置部181よりも凝縮器16側に配置されている。詳細には、その逆止弁183は、往路配管18内に形成される液面の位置SF1よりも上に配置されているので、往路配管18内のうち冷媒が気液二相となっている部位に配置されている。
 また、気泡発生配置部181には気泡発生装置22が設けられている。すなわち、気泡発生装置22は、往路配管18のうち液相冷媒が溜まる配管部分で、電池冷却器14の流入口14bと逆止弁183との間に設けられている。
 本実施形態でも前述の第3実施形態と同様に、気泡発生装置22は気泡発生配置部181の外側を取り巻くようにその気泡発生配置部181に結合されている。
 本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。
 また、本実施形態によれば、往路配管18の気泡発生配置部181には気泡発生装置22が設けられており、逆止弁183は、往路流通路18aにおいて凝縮器16から電池冷却器14への冷媒流れを許容する一方で、その冷媒流れの逆流を阻止する。そして、その逆止弁183は、往路流通路18aの冷媒流れにおいて気泡発生配置部181よりも凝縮器16側に配置されている。従って、気泡発生装置22を電池冷却器14以外の箇所に配置して、電池冷却器14内に溜まった液相冷媒の中に気泡14eを発生させることが可能である。更に言えば、気泡発生装置22の搭載位置の自由度を前述の第3実施形態よりも拡げることが可能である。そして、気泡発生装置22が気泡発生配置部181内で発生させた気泡が往路流通路18aを凝縮器16側へ流れることを逆止弁183によって防止することができる。
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2実施形態と組み合わせることも可能である。
 (第5実施形態)
 次に、第5実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。
 本実施形態の気泡発生装置22は加熱源ではなく、超音波振動器である。この点において本実施形態は前述の第1実施形態と異なっている。それ以外については、本実施形態は第1実施形態と同様である。
 本実施形態では図1に示すように、超音波振動器である気泡発生装置22は、第1実施形態と同様に電池冷却器14の下部の壁に接合されているので、気泡発生装置22が発する超音波振動はその下部の壁を介して冷却器室14aの冷媒へ伝わるようになっている。
 そして、その気泡発生装置22は、液相冷媒に超音波振動を加えることで、図5に示すように液相冷媒にマイクロバブル状の気泡14eを発生させる。これにより、本実施形態の気泡発生装置22は、電池冷却器14内の冷媒を加熱することなく、第1実施形態の気泡発生装置22と同様の効果を得ることが可能である。その第1実施形態の気泡発生装置22と同様の効果とは、例えば電池冷却器14内の冷媒の液面14dを押し上げる効果、および、電池冷却器14内で冷媒の沸騰を促進する効果などである。
 なお、本実施形態は第1実施形態に基づいた変形例であるが、本実施形態を前述の第2~4実施形態のうちの何れかと組み合わせることも可能である。
 (他の実施形態)
 (1)上述の各実施形態では図1に示すように、機器温調装置10が冷却する対象機器は二次電池12であるが、その対象機器に限定はない。例えば、その対象機器は、モータ、インバータ、充電器など二次電池12以外の電子機器であってもよいし、単なる発熱体であってもよい。また、その対象機器は車載機器に限らず、基地局など定置で冷却が必要な機器であってもよい。
 (2)上述の第2実施形態において、図6のステップS201で温度閾値TP1と比較される電池温度は、例えば、各電池セル121の温度のうちの最大値とされているが、これは一例である。その電池温度の決め方に応じて温度閾値TP1が適宜定められていればよく、例えば、その電池温度は、各電池セル121の温度の平均値として算出されてもよい。
 (3)上述の第3、4実施形態において、気泡発生装置22は気泡発生配置部181の外側を取り巻くように設けられているが、これは一例である。例えば、気泡発生装置22は、往路配管18の一部を構成する気泡発生配置部181の中に配置されていても差し支えない。
 (4)上述の各実施形態において、往路配管18は、機器温調装置10の往路部として設けられているが、その往路部は配管部材で構成されている必要はない。例えば、ブロック状物内に形成された孔が往路流通路18aとして設けられている場合には、そのブロック状物のうち往路流通路18aを形成する部位が往路部に相当する。このことは、復路配管20に関しても同様である。
 (5)上述の各実施形態では図1に示すように、凝縮器16は1つ設けられているが、凝縮器16は複数設けられていても差し支えない。そのように複数の凝縮器16が設けられている場合には、その複数の凝縮器16に、例えば、上述の各実施形態のように空気と流体循環回路26の冷媒とを熱交換させる熱交換器と、冷媒-冷媒熱交換器と、チラーとの何れかまたは全部が含まれていてもよい。その冷媒-冷媒熱交換器とは、冷凍サイクルの一部を構成し、その冷凍サイクルを循環する熱交換媒体を蒸発させることにより流体循環回路26の冷媒を冷却する熱交換器である。また、上記チラーとは、冷却水等の液媒体で流体循環回路26の冷媒を冷却する冷却装置である。
 (6)上述の各実施形態において、流体循環回路26内に充填されている冷媒は、例えばフロン系冷媒であるが、その流体循環回路26内の冷媒はフロン系冷媒に限らない。例えば、その流体循環回路26内に充填されている冷媒として、プロパンまたはCOなどの他の冷媒や、相変化する他の媒体が用いられても差し支えない。
 (7)上述の第1実施形態において、図4のステップS102の判定は、流量センサ28aに検出される冷媒の循環流量に基づいて為されるが、その流量センサ28aを用いず他のセンサの検出値に基づいて為されもよい。例えば、図4のステップS102の判定が、図10に示す一方側温度センサ28fの検出値と他方側温度センサ28gの検出値とに基づいて為される場合が想定される。
 図10では、一方側温度センサ28fおよび他方側温度センサ28gは、冷却器室14aのうちの上部に配置されている。そして、一方側温度センサ28fは、冷却器室14aのうち電池積層方向DRbの一方側の端部に設けられ、他方側温度センサ28gは、冷却器室14aのうち電池積層方向DRbの他方側の端部に設けられている。そのため、各温度センサ28f、28gは、気泡14eが無いときに電池冷却器14が電池積層方向DRbの一方側と他方側との何れかを上側として基準姿勢に対して所定角度AG1以上傾いた場合には、温度センサ28f、28gの一方が液面14d上に露出するようになっている。
 ここで、電池冷却器14が電池積層方向DRbの一方側と他方側との何れかを上側として基準姿勢に対して所定角度AG1以上傾いた場合、サーモサイフォン現象が生じていなければ電池冷却器14内の温度ばらつきが大きくなる。逆に、サーモサイフォン現象が生じていれば電池冷却器14内の温度ばらつきが縮小し均温化が図られる。
 従って、図4のステップS102では、両温度センサ28f、28gの検出温度の差が所定の温度差判定値未満である場合には、サーモサイフォン現象が生じていると判定することができる。すなわち、流体循環回路26を循環する冷媒の循環流量が所定流量Q1を超えていると判定することができる。
 逆に、両温度センサ28f、28gの検出温度の差が上記温度差判定値以上である場合には、サーモサイフォン現象が生じていないと判定することができる。すなわち、冷媒の循環流量が所定流量Q1以下であると判定することができる。なお、図10の一方側温度センサ28fの検出温度は、電池12のうち電池積層方向DRbで最も一方側に配置された電池セル121の電池セル温度センサ28bが検出する検出温度に置き換えられてもよい。そして、図10の他方側温度センサ28gの検出温度は、電池12のうち電池積層方向DRbで最も他方側に配置された電池セル121の電池セル温度センサ28bが検出する検出温度に置き換えられてもよい。
 (8)上述の第2施形態において、図6のステップS102の判定は、流量センサ28aに検出される冷媒の循環流量に基づいて為されるが、その流量センサ28aを用いず他のセンサの検出値に基づいて為されもよい。例えば、図6のステップS102の判定が、電池冷却器14の流出口14cの冷媒温度を検出する流出口冷媒温度センサの検出値に基づいて為される場合が想定される。
 例えば、電池温度が所定の温度閾値TP1以上になり電池12が高温になっている場合に、サーモサイフォン現象が発生していない状態からサーモサイフォン現象が開始されると、電池12の冷却が促進されるので、流出口14cの冷媒温度が低下する。従って、上記の流出口冷媒温度センサが用いられる構成では、気泡発生装置22がオンにされる前に対する流出口冷媒温度センサの検出温度の低下幅が所定の温度低下幅判定値以上になった場合に、サーモサイフォン現象が開始されたと判定することができる。なお、流出口冷媒温度センサの検出温度は、電池12のうち電池冷却器14の流出口14cに最も近い電池セル121の電池セル温度センサ28bが検出する検出温度に置き換えられてもよい。
 (9)上述の第1実施形態において、図4のステップS101で判定において電池冷却器14の傾斜の向きに正負はないが、これは一例である。そのステップS101の判定において、基準姿勢に対する所定角度AG1以上の電池冷却器14の傾きが、図5のように電池冷却器14のうち電池積層方向DRbの他方側を一方側よりも上方に位置させる傾きに限定されることも考え得る。
 (10)上述の第1実施形態では図4に示すように、気泡発生装置22が気泡14eの発生を開始させた後に、冷媒の循環流量が所定流量Q1を超えた場合には、気泡発生装置22による気泡14eの発生が停止されるが、これは一例である。例えば、気泡発生装置22が気泡14eの発生を開始させた場合、その開始時から所定時間経過後に、気泡発生装置22による気泡14eの発生がタイマーによって停止されることも考え得る。
 すなわち、制御装置24は、気泡発生装置22に気泡14eの発生を開始させた後に気泡14eの発生開始時から所定時間が経過した場合には気泡発生装置22による気泡14eの発生を停止し、これにより気泡発生装置22に気泡14eの発生を一時的に行わせてもよいということである。このようにしても上述の第1実施形態と同様に、気泡発生装置22による気泡14eの発生が、サーモサイフォン現象の開始後に不必要に継続することを回避することが可能である。なお、このことは、第2実施形態でも同様である。
 (11)上述の各実施形態では、機器温調装置10は電池12を冷却することで電池12の温度調整を行うが、機器温調装置10は、そのような冷却機能に加え、電池12を加熱する加熱機能を備えていても差し支えない。
 (12)上述の各実施形態では図1に示すように、気泡発生装置22は電池冷却器14の下部の壁に設けられているが、電池冷却器14の側壁など他の場所に設けられても差し支えない。
 (13)上述の各実施形態では図1に示すように、気泡発生装置22は電池冷却器14の外側に設けられているが、これは一例である。例えば図11に示すように、気泡発生装置22は電池冷却器14内に設けられていても差し支えない。このようにしたとすれば、気泡発生装置22が電池冷却器14の外側に設けられている場合と比較して、電池冷却器14内の液相冷媒に対し気泡14eを発生させやすいように気泡発生装置22を配置することが可能である。なお、図11の例では、気泡発生装置22は冷却器室14aのうちの底部に配置されている。
 (14)上述の各実施形態において、図2および図6のフローチャートに示す各ステップの処理はコンピュータプログラムによって実現されるものであるが、ハードロジックで構成されるものであっても差し支えない。
 なお、本開示は、上述の実施形態に限定されることなく、様々な変形例や均等範囲内の変形をも包含する。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。
 また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。
 また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、機器温調装置は、吸熱部内に溜まった液相の作動流体の中に気泡を発生させる気泡発生部を備えている。そして、機器温調装置の制御装置は、流体循環回路を循環する作動流体の循環流量が所定流量以下である場合には、その気泡発生部に気泡の発生を行わせる。
 また、第2の観点によれば、制御装置は、予め定められた前提条件が満たされ、且つ、作動流体の循環流量が所定流量以下である場合には、気泡発生部に気泡の発生を行わせる。
 また、第3の観点によれば、制御装置は、上記前提条件が満たされ、且つ、作動流体の循環流量が所定流量以下である場合には、気泡発生部に気泡の発生を一時的に行わせる。従って、その気泡発生部による気泡の発生を、流体循環回路で作動流体の循環を開始させる切っ掛けとして利用することが可能である。要するに、作動流体の循環を開始させる起動装置として気泡発生部を利用することが可能である。そして、気泡発生部による気泡の発生が、作動流体の循環開始後に不必要に継続することを回避することが可能である。
 また、第4の観点によれば、制御装置は、気泡発生部に気泡の発生を開始させた後に作動流体の循環流量が所定流量を超えた場合には気泡発生部による気泡の発生を停止し、これにより気泡発生部に気泡の発生を一時的に行わせる。従って、気泡発生部による気泡の発生が、作動流体の循環開始後に不必要に継続することを回避することが可能である。
 また、第5の観点によれば、制御装置は、気泡発生部に気泡の発生を開始させた後に気泡の発生開始時から所定時間が経過した場合には気泡発生部による気泡の発生を停止し、これにより気泡発生部に気泡の発生を一時的に行わせる。従って、このようにしても、気泡発生部による気泡の発生が、作動流体の循環開始後に不必要に継続することを回避することが可能である。
 また、第6の観点によれば、上記前提条件が満たされた場合とは、吸熱部が予め定められた基準姿勢に対して所定角度以上傾いた場合である。従って、吸熱部が傾いた状態であっても、吸熱部内での気泡の発生によりその気泡が吸熱部内の液面を押し上げ、吸熱部内の全体にわたって液相の作動流体を行き渡らせることが可能である。その結果、対象機器全体の均温化を十分に行うことが可能となる。
 また、第7の観点によれば、上記前提条件が満たされた場合とは、対象機器の温度が所定の温度閾値以上になった場合である。従って、対象機器を冷却する必要性に応じ、気泡発生部による気泡の発生を切っ掛けとして吸熱部内での作動流体の沸騰を促進することが可能である。
 また、第8の観点によれば、気泡発生部は、吸熱部のうち、流出口に対するよりも流入口に対して近い位置に配置される。ここで、作動流体の循環流量が所定流量以下であるときでも、吸熱部の流入口付近では放熱部からの凝縮液が吸熱部へ僅かに戻ってくることがあり、その場合、その戻った凝縮液が蒸発することにより対象機器を冷却する。従って、吸熱部が例えば傾くなどして吸熱部内で気相の作動流体が流出口側または流入口側に偏って存在することを想定した場合、流入口側に気相の作動流体が偏った場合よりも流出口側に気相の作動流体が偏った場合の方が、作動流体の循環を開始させるメリットが大きい。そして、流出口側に気相の作動流体が偏った場合とは、言い換えれば、流入口側に液相の作動流体が偏った場合である。このことから、作動流体の循環を開始させるメリットが大きい状況下で気泡発生作用を液相の作動流体へ及ぼし易い位置、すなわち、流入口に対して近い位置に気泡発生部を配置することが可能である。
 また、第9の観点によれば、気泡発生部は吸熱部内に設けられている。従って、気泡発生部が吸熱部の外側に設けられている場合と比較して、吸熱部内の液相の作動流体に対し気泡を発生させやすいように気泡発生部を配置することが可能である。
 また、第10の観点によれば、往路部は、気泡発生部が設けられた気泡発生配置部と、その気泡発生配置部よりも下方に配置される下方配置部とを有する。そして、その下方配置部は、往路流通路の作動流体流れにおいて気泡発生配置部よりも放熱部側に配置されている。従って、気泡発生部を吸熱部以外の箇所に配置して、吸熱部内に溜まった液相の作動流体の中に気泡を発生させることが可能である。そして、気泡発生部が気泡発生配置部内で発生させた気泡が往路流通路を放熱部側へ流れること、すなわち、気泡が往路流通路を逆流することを防止することができる。
 また、第11の観点によれば、往路部は、気泡発生部が設けられた気泡発生配置部と、放熱部から吸熱部への作動流体流れを許容する一方でその作動流体流れの逆流を阻止する逆止弁とを有する。そして、その逆止弁は、往路流通路の作動流体流れにおいて気泡発生配置部よりも放熱部側に配置されている。従って、気泡発生部を吸熱部以外の箇所に配置して、吸熱部内に溜まった液相の作動流体の中に気泡を発生させることが可能である。そして、気泡発生部が気泡発生配置部内で発生させた気泡が往路流通路を放熱部側へ流れることを防止することができる。
 また、第12の観点によれば、気泡発生部は、液相の作動流体を加熱することで気泡を発生させる。従って、例えば液相の作動流体を加熱するヒータを、作動流体の沸騰を利用した対象機器の冷却に利用することが可能である。
 また、第13の観点によれば、気泡発生部は、液相の作動流体に超音波振動を加えることで気泡を発生させる。従って、吸熱部内の作動流体を加熱することなく、対象機器の冷却を適宜起動することが可能である。
 また、第14の観点によれば、機器温調装置は、吸熱部内に溜まった液相の作動流体の中に気泡を発生させる気泡発生部を備えている。そして、機器温調装置の制御装置は、吸熱部のうち作動流体の上流側の部位が液相で、吸熱部のうち作動流体の下流側の部位が気相のときに、気泡発生部に気泡の発生を行わせる。

Claims (14)

  1.  作動流体が循環し、該作動流体の液相と気相との相変化によって対象機器(12)の温度を調整する機器温調装置であって、
     前記対象機器から前記作動流体に吸熱させることにより該作動流体を蒸発させる吸熱部(14)と、
     該吸熱部よりも上方に配置され、前記作動流体から放熱させることにより該作動流体を凝縮させる放熱部(16)と、
     該放熱部から前記吸熱部へ前記作動流体を流す往路流通路(18a)が形成された往路部(18)と、
     前記吸熱部から前記放熱部へ前記作動流体を流す復路流通路(20a)が形成された復路部(20)と、
     前記吸熱部内に溜まった液相の前記作動流体の中に気泡(14e)を発生させる気泡発生部(22)と、
     制御装置(24)とを備え、
     該制御装置は、前記放熱部と前記往路部と前記吸熱部と前記復路部とから構成された流体循環回路(26)を循環する前記作動流体の循環流量が所定流量(Q1)以下である場合には、前記気泡発生部に前記気泡の発生を行わせる機器温調装置。
  2.  前記制御装置は、予め定められた前提条件が満たされ、且つ、前記作動流体の循環流量が前記所定流量以下である場合には、前記気泡発生部に前記気泡の発生を行わせる請求項1に記載の機器温調装置。
  3.  前記制御装置は、前記前提条件が満たされ、且つ、前記作動流体の循環流量が前記所定流量以下である場合には、前記気泡発生部に前記気泡の発生を一時的に行わせる請求項2に記載の機器温調装置。
  4.  前記制御装置は、前記気泡発生部に前記気泡の発生を開始させた後に前記作動流体の循環流量が前記所定流量を超えた場合には前記気泡発生部による前記気泡の発生を停止し、これにより前記気泡発生部に前記気泡の発生を一時的に行わせる請求項3に記載の機器温調装置。
  5.  前記制御装置は、前記気泡発生部に前記気泡の発生を開始させた後に該気泡の発生開始時から所定時間が経過した場合には前記気泡発生部による前記気泡の発生を停止し、これにより前記気泡発生部に前記気泡の発生を一時的に行わせる請求項3に記載の機器温調装置。
  6.  前記前提条件が満たされた場合とは、前記吸熱部が予め定められた基準姿勢に対して所定角度(AG1)以上傾いた場合である請求項2ないし5のいずれか1つに記載の機器温調装置。
  7.  前記前提条件が満たされた場合とは、前記対象機器の温度が所定の温度閾値(TP1)以上になった場合である請求項2ないし5のいずれか1つに記載の機器温調装置。
  8.  前記吸熱部には、前記往路流通路を前記吸熱部内へ連通させる流入口(14b)と、前記復路流通路を前記吸熱部内へ連通させる流出口(14c)とが形成されており、
     前記気泡発生部は、前記吸熱部のうち、前記流出口に対するよりも前記流入口に対して近い位置に配置される請求項1ないし7のいずれか1つに記載の機器温調装置。
  9.  前記気泡発生部は前記吸熱部内に設けられている請求項8に記載の機器温調装置。
  10.  前記往路部は、前記気泡発生部が設けられた気泡発生配置部(181)と、該気泡発生配置部よりも下方に配置される下方配置部(182)とを有し、
     該下方配置部は、前記往路流通路の作動流体流れにおいて前記気泡発生配置部よりも前記放熱部側に配置されている請求項1ないし7のいずれか1つに記載の機器温調装置。
  11.  前記往路部は、前記気泡発生部が設けられた気泡発生配置部(181)と、前記放熱部から前記吸熱部への作動流体流れを許容する一方で該作動流体流れの逆流を阻止する逆止弁(183)とを有し、
     該逆止弁は、前記往路流通路の作動流体流れにおいて前記気泡発生配置部よりも前記放熱部側に配置されている請求項1ないし7のいずれか1つに記載の機器温調装置。
  12.  前記気泡発生部は、液相の前記作動流体を加熱することで前記気泡を発生させる請求項1ないし11のいずれか1つに記載の機器温調装置。
  13.  前記気泡発生部は、液相の前記作動流体に超音波振動を加えることで前記気泡を発生させる請求項1ないし11のいずれか1つに記載の機器温調装置。
  14.  作動流体が循環し、該作動流体の液相と気相との相変化によって対象機器(12)の温度を調整する機器温調装置であって、
     前記対象機器から前記作動流体に吸熱させることにより該作動流体を蒸発させる吸熱部(14)と、
     該吸熱部よりも上方に配置され、前記作動流体から放熱させることにより該作動流体を凝縮させる放熱部(16)と、
     該放熱部から前記吸熱部へ前記作動流体を流す往路流通路(18a)が形成された往路部(18)と、
     前記吸熱部から前記放熱部へ前記作動流体を流す復路流通路(20a)が形成された復路部(20)と、
     前記吸熱部内に溜まった液相の前記作動流体の中に気泡(14e)を発生させる気泡発生部(22)と、
     制御装置(24)とを備え、
     該制御装置は、前記吸熱部のうち前記作動流体の上流側の部位が液相で、前記吸熱部のうち前記作動流体の下流側の部位が気相のときに、前記気泡発生部に前記気泡の発生を行わせる機器温調装置。
PCT/JP2017/028053 2016-09-09 2017-08-02 機器温調装置 WO2018047529A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017004529.0T DE112017004529T5 (de) 2016-09-09 2017-08-02 Vorrichtungstemperaturregulator
JP2018538292A JP6579275B2 (ja) 2016-09-09 2017-08-02 機器温調装置
CN201780053922.0A CN109690221B (zh) 2016-09-09 2017-08-02 设备温度调节装置
US16/282,477 US11029098B2 (en) 2016-09-09 2019-02-22 Device temperature regulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016176784 2016-09-09
JP2016-176784 2016-09-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/282,477 Continuation US11029098B2 (en) 2016-09-09 2019-02-22 Device temperature regulator

Publications (1)

Publication Number Publication Date
WO2018047529A1 true WO2018047529A1 (ja) 2018-03-15

Family

ID=61561906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028053 WO2018047529A1 (ja) 2016-09-09 2017-08-02 機器温調装置

Country Status (5)

Country Link
US (1) US11029098B2 (ja)
JP (1) JP6579275B2 (ja)
CN (1) CN109690221B (ja)
DE (1) DE112017004529T5 (ja)
WO (1) WO2018047529A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093230A1 (ja) * 2017-11-07 2019-05-16 株式会社デンソー 機器温調装置
WO2020129491A1 (ja) * 2018-12-17 2020-06-25 株式会社デンソー 電池昇温装置
WO2020137822A1 (ja) * 2018-12-26 2020-07-02 Necプラットフォームズ株式会社 冷却装置および冷却装置の製造方法
WO2020138077A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 熱輸送システム及び輸送機
KR20200143120A (ko) * 2019-06-14 2020-12-23 송연수 초음파 진동자를 포함한 전기차용 배터리 냉각 시스템
US10906141B2 (en) 2016-09-09 2021-02-02 Denso Corporation Method for manufacturing device temperature control device and method for filling working fluid
US10950909B2 (en) 2016-09-09 2021-03-16 Denso Corporation Device temperature regulator
JP2021133898A (ja) * 2020-02-28 2021-09-13 トヨタ自動車株式会社 沸騰冷却装置および温度制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185822A1 (ja) * 2017-04-04 2018-10-11 三菱電機株式会社 半導体冷却装置、電力制御システムおよび走行体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142842U (ja) * 1978-03-29 1979-10-03
JPH01252898A (ja) * 1987-10-12 1989-10-09 Fujikura Ltd 給湯装置
WO1999030091A1 (en) * 1997-11-21 1999-06-17 Telefonaktiebolaget Lm Ericsson (Publ) Cooling capacity control
US20050279491A1 (en) * 2004-06-18 2005-12-22 Thome John R Bubble generator
JP2008527285A (ja) * 2005-01-03 2008-07-24 ノイズ リミット エーピーエス 気泡ポンプを有する多方位冷却システム
JP2012215375A (ja) * 2011-03-30 2012-11-08 Wakasawan Energ Kenkyu Center 熱輸送方向を切替可能なヒートパイプ、及び逆止弁により熱輸送方向の自動切替が可能なヒートパイプ
JP2015041418A (ja) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 電池温度調節装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300624A (en) * 1979-12-17 1981-11-17 Hughes Aircraft Company Osmotic pumped heat pipe valve
JP2657809B2 (ja) * 1987-12-22 1997-09-30 謙治 岡安 熱伝達装置
JP2859927B2 (ja) * 1990-05-16 1999-02-24 株式会社東芝 冷却装置および温度制御装置
US5816313A (en) * 1994-02-25 1998-10-06 Lockheed Martin Corporation Pump, and earth-testable spacecraft capillary heat transport loop using augmentation pump and check valves
DE102011050200A1 (de) * 2011-05-06 2012-11-08 Dbk David + Baader Gmbh Wärmespeicher
WO2013001735A1 (ja) 2011-06-29 2013-01-03 パナソニック株式会社 冷却装置とこれを搭載した電子機器、および電気自動車
FR2979982B1 (fr) * 2011-09-14 2016-09-09 Euro Heat Pipes Dispositif de transport de chaleur a pompage capillaire
JP6386954B2 (ja) 2015-03-19 2018-09-05 株式会社神戸製鋼所 表面形状測定装置及び表面形状測定方法
CN204694131U (zh) * 2015-05-05 2015-10-07 北京海淀中京工程设计软件技术有限公司 一种复合相变换热器
CN105910479B (zh) * 2016-04-18 2018-02-06 北京空间机电研究所 一种控温型环路热管的蒸发器组件
DE112017004552T5 (de) 2016-09-09 2019-06-13 Denso Corporation Vorrichtungstemperaturregler
JP2019196842A (ja) 2016-09-09 2019-11-14 株式会社デンソー 機器温調装置
WO2018047532A1 (ja) 2016-09-09 2018-03-15 株式会社デンソー 機器温調装置
JP2019196841A (ja) 2016-09-09 2019-11-14 株式会社デンソー 機器温調システム
JP6604441B2 (ja) 2016-09-09 2019-11-13 株式会社デンソー 機器温調装置の製造方法および作動流体の充填方法
JP6669266B2 (ja) 2016-09-09 2020-03-18 株式会社デンソー 機器温調装置
JP2019196840A (ja) 2016-09-09 2019-11-14 株式会社デンソー 機器温調装置
JP6593544B2 (ja) 2016-09-09 2019-10-23 株式会社デンソー 機器温調装置
JP6610800B2 (ja) 2016-09-09 2019-11-27 株式会社デンソー 機器温調装置
JP2019196839A (ja) 2016-09-09 2019-11-14 株式会社デンソー 機器温調装置
WO2018047531A1 (ja) 2016-09-09 2018-03-15 株式会社デンソー 機器温調装置
JP6662462B2 (ja) 2016-09-09 2020-03-11 株式会社デンソー 機器温調装置
US10605541B1 (en) * 2016-09-20 2020-03-31 Advanced Cooling Technologies, Inc. Heat pipe—thermal storage medium based cool storage system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142842U (ja) * 1978-03-29 1979-10-03
JPH01252898A (ja) * 1987-10-12 1989-10-09 Fujikura Ltd 給湯装置
WO1999030091A1 (en) * 1997-11-21 1999-06-17 Telefonaktiebolaget Lm Ericsson (Publ) Cooling capacity control
US20050279491A1 (en) * 2004-06-18 2005-12-22 Thome John R Bubble generator
JP2008527285A (ja) * 2005-01-03 2008-07-24 ノイズ リミット エーピーエス 気泡ポンプを有する多方位冷却システム
JP2012215375A (ja) * 2011-03-30 2012-11-08 Wakasawan Energ Kenkyu Center 熱輸送方向を切替可能なヒートパイプ、及び逆止弁により熱輸送方向の自動切替が可能なヒートパイプ
JP2015041418A (ja) * 2013-08-20 2015-03-02 トヨタ自動車株式会社 電池温度調節装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906141B2 (en) 2016-09-09 2021-02-02 Denso Corporation Method for manufacturing device temperature control device and method for filling working fluid
US10950909B2 (en) 2016-09-09 2021-03-16 Denso Corporation Device temperature regulator
WO2019093230A1 (ja) * 2017-11-07 2019-05-16 株式会社デンソー 機器温調装置
WO2020129491A1 (ja) * 2018-12-17 2020-06-25 株式会社デンソー 電池昇温装置
WO2020137822A1 (ja) * 2018-12-26 2020-07-02 Necプラットフォームズ株式会社 冷却装置および冷却装置の製造方法
JP2020106156A (ja) * 2018-12-26 2020-07-09 Necプラットフォームズ株式会社 冷却装置および冷却装置の製造方法
US11740035B2 (en) 2018-12-26 2023-08-29 Nec Platforms, Ltd. Cooling device and manufacturing method for cooling devices
EP3904811A4 (en) * 2018-12-27 2022-09-14 Kawasaki Jukogyo Kabushiki Kaisha HEAT TRANSPORT SYSTEM AND CONVEYING DEVICE
WO2020138077A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 熱輸送システム及び輸送機
JP2020106205A (ja) * 2018-12-27 2020-07-09 川崎重工業株式会社 熱輸送システム及び輸送機
JP7205970B2 (ja) 2018-12-27 2023-01-17 川崎重工業株式会社 熱輸送システム及び輸送機
KR20200143120A (ko) * 2019-06-14 2020-12-23 송연수 초음파 진동자를 포함한 전기차용 배터리 냉각 시스템
KR102274365B1 (ko) * 2019-06-14 2021-07-06 송연수 초음파 진동자를 포함한 전기차용 배터리 냉각 시스템
JP2021133898A (ja) * 2020-02-28 2021-09-13 トヨタ自動車株式会社 沸騰冷却装置および温度制御方法
JP7207350B2 (ja) 2020-02-28 2023-01-18 トヨタ自動車株式会社 沸騰冷却装置および温度制御方法

Also Published As

Publication number Publication date
CN109690221B (zh) 2020-12-29
US11029098B2 (en) 2021-06-08
CN109690221A (zh) 2019-04-26
US20190186843A1 (en) 2019-06-20
DE112017004529T5 (de) 2019-05-29
JP6579275B2 (ja) 2019-09-25
JPWO2018047529A1 (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6579275B2 (ja) 機器温調装置
JP6604442B2 (ja) 機器温調装置
JP5942943B2 (ja) 電池温度調節装置
JP6992411B2 (ja) 機器冷却装置
WO2018168276A1 (ja) 機器温調装置
JP6693480B2 (ja) 端子冷却装置
JP6579276B2 (ja) 機器温調装置
JP6669266B2 (ja) 機器温調装置
JP2019040731A (ja) 電池温調装置および外部熱源供給装置
WO2018047534A1 (ja) 機器温調装置
WO2018055926A1 (ja) 機器温調装置
JP2019196839A (ja) 機器温調装置
JP2014203736A (ja) 電池温度調整装置
US20190214695A1 (en) Device temperature controller
JP6662462B2 (ja) 機器温調装置
WO2020004219A1 (ja) 機器温調装置
WO2020203152A1 (ja) 車両用サーモサイフォン式冷却装置
JP7159771B2 (ja) 機器温調装置
WO2019123881A1 (ja) 機器温調装置
WO2019092978A1 (ja) サーモサイフォン式の温度調整装置
JP6089670B2 (ja) 給湯システム
JP6919505B2 (ja) サーモサイフォン式温調装置
WO2018070182A1 (ja) 機器温調装置
JP7102977B2 (ja) サーモサイフォン式暖房装置
WO2019107058A1 (ja) サーモサイフォン式暖房装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018538292

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848474

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17848474

Country of ref document: EP

Kind code of ref document: A1