WO2018047405A1 - 損傷検知システム及び損傷検知方法 - Google Patents

損傷検知システム及び損傷検知方法 Download PDF

Info

Publication number
WO2018047405A1
WO2018047405A1 PCT/JP2017/016643 JP2017016643W WO2018047405A1 WO 2018047405 A1 WO2018047405 A1 WO 2018047405A1 JP 2017016643 W JP2017016643 W JP 2017016643W WO 2018047405 A1 WO2018047405 A1 WO 2018047405A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical paths
damage
optical
damage detection
Prior art date
Application number
PCT/JP2017/016643
Other languages
English (en)
French (fr)
Inventor
雅勝 安部
Original Assignee
株式会社Subaru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Subaru filed Critical 株式会社Subaru
Priority to JP2017523547A priority Critical patent/JP6405461B2/ja
Priority to CN201780046741.5A priority patent/CN109564085B/zh
Priority to EP17848351.7A priority patent/EP3480551B1/en
Publication of WO2018047405A1 publication Critical patent/WO2018047405A1/ja
Priority to US16/257,550 priority patent/US10451560B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • G01M11/086Details about the embedment of the optical fiber within the DUT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0016Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of aircraft wings or blades
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8472Investigation of composite materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8845Multiple wavelengths of illumination or detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides
    • G01N2201/088Using a sensor fibre

Definitions

  • Embodiments described herein relate generally to a damage detection system and a damage detection method.
  • a technique using an optical fiber is known as a non-destructive inspection method for non-destructively detecting damage occurring in a structure.
  • a structure is obtained by propagating an optical signal to an optical fiber attached to a structure to be detected for damage and capturing an intensity change of the optical signal.
  • a method for determining whether or not damage has occurred see, for example, Patent Documents 1 and 2).
  • An object of the present invention is to provide a damage detection system and a damage detection method capable of specifying the position of each damage more accurately even when damage occurs at a plurality of positions.
  • the damage detection system includes a plurality of optical paths, a light source, a photodetector, and a signal processing system.
  • the plurality of optical paths propagate light in a plurality of directions of three or more different directions, and have at least two optical paths in one direction.
  • the light source causes light to enter each end of the plurality of optical paths.
  • the photodetector detects light emitted from each other end of the plurality of optical paths.
  • the signal processing system identifies the position of damage based on the light detection signal detected by the photodetector.
  • the damage detection method is a plurality of optical paths for propagating light in a plurality of directions of three or more directions different from each other, and each of the plurality of optical paths having at least two optical paths in one direction.
  • a step of specifying is a plurality of optical paths for propagating light in a plurality of directions of three or more directions different from each other, and each of the plurality of optical paths having at least two optical paths in one direction.
  • the block diagram of the damage detection system which concerns on embodiment of this invention.
  • FIG. 1 is a configuration diagram of a damage detection system according to an embodiment of the present invention.
  • the damage detection system 1 is a system that identifies the position of damage that has occurred in a target structure.
  • the damage detection system 1 includes a plurality of optical paths 2, a light source 3, a photodetector 4, and a signal processing system 5.
  • the plurality of optical paths 2 are arranged on the surface of the structure to be detected for damage.
  • a plurality of optical paths 2 are arranged on the surface of the aircraft structure 6 so that the position of damage caused in the aircraft structure 6 such as a wing structure can be specified.
  • the plurality of optical paths 2 are arranged so that light can propagate in a plurality of directions different from each other in three or more directions, and at least two optical paths 2 exist in one direction. Therefore, the plurality of optical paths 2 are arranged in a lattice shape with three or more axes. In the example shown in FIG. 1, a plurality of parallel optical paths 2 are arranged in one direction so that light can propagate in three directions.
  • Examples of the optical element for forming the optical path 2 include an optical fiber and an optical waveguide.
  • an optical fiber is a kind of optical waveguide.
  • Typical examples of narrowly defined optical waveguides include inorganic optical waveguides such as glass optical waveguides and polymer (polymer) optical waveguides.
  • the polymer optical waveguide is originally an optical element for a printed circuit board using an optical signal, and is also called an organic optical waveguide, a plastic optical waveguide, a polymer optical wiring, a polymer optical circuit, or the like.
  • the polymer optical waveguide has a core layer formed inside a clad layer.
  • the core layer is formed of a polymer material, while the clad layer can be formed of a resin sheet or the like.
  • Features of the polymer optical waveguide include no light loss in a direction perpendicular to the length direction, easy processing, high density, easy mounting, and the like.
  • the pitch of the optical path 2 can be made narrower than when an optical fiber is used.
  • a polymer optical waveguide is used to form the optical path 2
  • a plurality of optical paths 2 can be arranged in a lattice pattern of three or more axes at a pitch of 1 mm or less ( ⁇ m order).
  • the optical path 2 is not overlapped like an optical fiber. It becomes possible to form. For this reason, if a polymer optical waveguide is used to form the optical path 2, irregularities that occur when the optical fibers are crossed can be avoided.
  • the polymer optical waveguide is easy to construct.
  • the plurality of optical paths 2 can be easily arranged on the surface of the aircraft structure 6 simply by sticking a resin sheet on which a plurality of optical waveguides are formed as the plurality of optical paths 2 to the surface of the aircraft structure 6.
  • the thickness of the optical path 2 is uniform, but the thickness locally increases at a portion where the optical path 2 intersects. If the optical path 2 is locally thick, the light propagating linearly along the optical path 2 may leak into the intersecting optical path 2. If light leaks into the intersecting optical path 2, light intensity is lost.
  • a plurality of optical paths 2 are arranged so that three or more optical paths 2 do not intersect at one point from the viewpoint of reducing the loss of light propagating through each optical path 2.
  • a plurality of optical paths 2 are arranged so that two optical paths 2 always intersect.
  • a plurality of optical paths 2 are arranged in a lattice shape in which triangles are formed between hexagons. Such an arrangement of the optical paths 2 can reduce light leakage to the intersecting optical paths 2.
  • Each end of the plurality of optical paths 2 is connected to the light source 3. For this reason, light from the light source 3 can be incident on each end of the plurality of optical paths 2.
  • a photodetector 4 is connected to each other end of the plurality of optical paths 2. For this reason, the light emitted from each other end of the plurality of optical paths 2 can be detected by the photodetector 4.
  • the photodetector 4 can be configured using a photodetector element for converting an optical signal such as a photodiode into an electrical signal.
  • Each light path 2 can be connected to an independent light source 3 and photodetector 4. However, when the number of optical paths 2 is large, a large number of light sources 3 and photodetectors 4 are required according to the number of optical paths 2.
  • the light source 3 and the photodetector 4 can be shared between the plurality of optical paths 2 by changing the wavelengths of the light output to the plurality of optical paths 2.
  • the light source 3 can be configured to cause light having different wavelengths to enter at least two optical paths 2.
  • light having different wavelengths emitted from at least two optical paths 2 can be detected by a common photodetector 4. Thereby, even if it is a case where there are many optical paths 2, the number of the light sources 3 and the photodetectors 4 can be reduced.
  • the end portions of the plurality of optical paths 2 are bundled to connect the light source 3 and the light detector 4.
  • the configuration can be simplified.
  • the output side of the photodetector 4 connected to the end of each optical path 2 is connected to the signal processing system 5.
  • the signal processing system 5 has a function of specifying the position of damage based on the light detection signal detected by the photodetector 4.
  • the signal processing system 5 can be constructed by a circuit such as an A / D (analog-to-digital) converter or a computer loaded with a computer program. Necessary processing such as noise reduction processing and averaging processing can be performed on the light detection signal.
  • Various signal processing may be executed not only for electrical signals but also for optical signals. In that case, an optical element necessary for signal processing of an optical signal can be used to configure the signal processing system 5.
  • any method based on a change in the intensity signal of light detected by the photodetector 4 can be employed. For example, when an object such as a bird, a eagle, or a stone collides with the surface of the aircraft structure 6 to be detected for damage, and the surface of the aircraft structure 6 is damaged, the light propagating in the optical path 2 that overlaps the damage Is blocked. Alternatively, the light propagating through the optical path 2 that overlaps the damage is partially blocked, and the light intensity decreases. That is, light propagating through the optical path 2 that overlaps the area where damage exists is lost.
  • the signal processing system 5 detects a change in the intensity of light propagating through each optical path 2, the occurrence of damage can be detected.
  • the light intensity change can be detected by, for example, a threshold process for a ratio or difference between the light intensity transmitted from the light source 3 and the light intensity detected by the photodetector 4. More specifically, when the intensity of light detected by the photodetector 4 decreases beyond the threshold with respect to the intensity of light emitted from the light source 3, it is determined that light has been lost due to damage. be able to.
  • threshold processing may be performed on a ratio or difference between representative values such as an integral value and a maximum value. Good.
  • the threshold required for the threshold processing can be determined by simulation or experiment.
  • the intensity of light propagating through each optical path 2 is observed by the photodetector 4, it can be determined that there is damage on the optical path 2 where the intensity of the propagating light has decreased. Therefore, if the intensity of the light propagating through the two optical paths 2 intersecting each other decreases, it can be determined that damage has occurred in a region straddling the two optical paths 2 intersecting. That is, the position of damage can be identified by detecting a decrease in the intensity of light emitted from the optical path 2 that propagates light in two different directions.
  • FIG. 2 is a diagram for explaining a problem in the damage detection system in which the optical paths are arranged in a square lattice shape.
  • a damage detection system can be configured by arranging a plurality of parallel optical paths orthogonally in a rectangular lattice and connecting a light source and a photodetector to each optical path.
  • a plurality of parallel optical paths orthogonally in a rectangular lattice and connecting a light source and a photodetector to each optical path.
  • FIG. 2A when light propagating through a plurality of optical paths that are not adjacent in the same direction is lost due to damage, there are a plurality of intersections of the optical paths where the light has been lost. . For this reason, the position of damage cannot be specified. Specifically, if there is a light loss as illustrated in FIG. 2A, whether the two regions shown in FIG. 2B have been damaged, or FIG. It is impossible to identify whether the two areas shown in FIG.
  • At least one axis is added to the rectangular lattice-shaped optical path so that light propagating in three or more directions can be lost when damage occurs. .
  • the signal processing system 5 when each intensity of the light emitted from each of the three optical paths 2 for propagating light in at least three different directions is reduced, a region including each part of the three optical paths 2 is damaged. It can be specified as the occurrence position of Thereby, even if it is a case where several damages arise in the aircraft structure 6, the position of each damage can be specified. That is, when there are a plurality of combinations of the three optical paths 2 in which the respective light intensities are reduced, it is possible to identify a plurality of damage positions corresponding to the plurality of combinations.
  • FIG. 3 is a diagram showing an example in which a plurality of damage positions are specified by the damage detection system 1 shown in FIG.
  • the damaged area when the damaged area is large, one damage spans a plurality of parallel optical paths 2 that propagate light in the same direction. Even in such a case, it is possible to specify a region where a plurality of crossing positions of the optical path 2 where light loss has occurred adjacent to each other as a damage generation region. Further, the size of damage can be detected by specifying adjacent crossing positions among a plurality of crossing positions of the optical path 2 where light loss has occurred. In addition, if the relationship between the degree of light loss, for example, the amount of decrease in light intensity and the energy of the impact that caused damage, is determined, by detecting the degree of light loss, It is possible to determine the energy of impact that has caused damage.
  • the degree of light loss for example, the amount of decrease in light intensity and the energy of the impact that caused damage
  • a plurality of optical paths 2 may be arranged so that light propagates in four different directions. For this reason, not only the example shown in FIG.1 and FIG.3, you may make it arrange
  • a plurality of optical paths 2 are arranged so that light is propagated in the n direction, where n is an integer of 3 or more, it is possible to detect damage occurring at the maximum n ⁇ 1 locations.
  • the arrangement of the optical path 2 can be determined according to the number of assumed damages. That is, a plurality of optical paths 2 for propagating light in a necessary direction can be arranged so that a necessary number of damage positions can be specified. Moreover, you may make it arrange
  • a plurality of optical paths 2 having three or more optical axes are attached to a desired structure such as an aircraft structure 6 as a damage detection sensor in a grid pattern.
  • a desired structure such as an aircraft structure 6 as a damage detection sensor in a grid pattern.
  • the optical path 2 can be formed at an extremely narrow interval of about 40 ⁇ m. In the aircraft structure 6, it is sufficient if damage can be detected on the order of millimeters. For this reason, damage can be detected with sufficient position resolution. In addition, if an optical waveguide sheet is used, light leakage in a direction perpendicular to the light propagation direction can be avoided even if the optical paths 2 intersect. Further, the damage detection system 1 can be easily made into a structure by simply attaching an optical waveguide sheet to the outer surface of the structure without being embedded in a structure made of a composite material or the like like an optical fiber. It is possible to implement.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

実施形態に係る損傷検知システムは、複数の光路と、光源と、光検出器と、信号処理系とを備える。複数の光路は、互いに異なる3方向以上の複数の方向に光を伝播させるものであって、1つの方向につき少なくとも2つの光路を有する。光源は、前記複数の光路の各一端にそれぞれ光を入射させる。光検出器は、前記複数の光路の各他端から出射する光を検出する。信号処理系は、前記光検出器において検出された光の検出信号に基づいて損傷の位置を特定する。

Description

損傷検知システム及び損傷検知方法
 本発明の実施形態は、損傷検知システム及び損傷検知方法に関する。
 従来、構造体に生じた損傷を非破壊で検知する非破壊検査法として光ファイバを利用した手法が知られている。また、光ファイバを利用した損傷検知法の具体例の1つとして、損傷の検知対象となる構造体に取付けられた光ファイバに光信号を伝播させ、光信号の強度変化を捉えることによって構造体に損傷が生じたか否かを判定する手法が知られている(例えば特許文献1及び2参照)。
特開2005-321223号公報 特開2005-208000号公報
 本発明は、複数の位置に損傷が発生した場合であってもより正確に各損傷の位置を特定することが可能な損傷検知システム及び損傷検知方法を提供することを目的とする。
 本発明の実施形態に係る損傷検知システムは、複数の光路と、光源と、光検出器と、信号処理系とを備える。複数の光路は、互いに異なる3方向以上の複数の方向に光を伝播させるものであって、1つの方向につき少なくとも2つの光路を有する。光源は、前記複数の光路の各一端にそれぞれ光を入射させる。光検出器は、前記複数の光路の各他端から出射する光を検出する。信号処理系は、前記光検出器において検出された光の検出信号に基づいて損傷の位置を特定する。
 また、本発明の実施形態に係る損傷検知方法は、互いに異なる3方向以上の複数の方向に光を伝播させる複数の光路であって、1つの方向につき少なくとも2つの光路を有する複数の光路の各一端にそれぞれ光を入射させるステップと、前記複数の光路の各他端から出射する光を光検出器で検出するステップと、前記光検出器において検出された光の検出信号に基づいて損傷の位置を特定するステップとを有するものである。
本発明の実施形態に係る損傷検知システムの構成図。 光路を四角形の格子状に配置した損傷検知システムにおける問題点を説明する図。 図1に示す損傷検知システムにより複数の損傷の位置を特定する例を示す図。
実施形態
 本発明の実施形態に係る損傷検知システム及び損傷検知方法について添付図面を参照して説明する。
(構成及び機能)
 図1は本発明の実施形態に係る損傷検知システムの構成図である。
 損傷検知システム1は、対象となる構造体に生じた損傷の位置を特定するシステムである。そのために、損傷検知システム1は、複数の光路2、光源3、光検出器4及び信号処理系5を有する。
 複数の光路2は、損傷の検知対象となる構造体の表面に配置される。図1に示す例では、翼構造体等の航空機構造体6に生じた損傷の位置を特定することができるように、航空機構造体6の表面に複数の光路2が配置されている。
 特に、複数の光路2は、互いに異なる3方向以上の複数の方向に光を伝播させることが可能であり、かつ1つの方向につき少なくとも2つの光路2が存在するように配置される。従って、複数の光路2は、3軸以上の格子状に配置されることになる。図1に示す例では、3方向に光を伝播させることができるように、1方向につき複数の平行な光路2が配置されている。
 光路2を形成するための光学素子としては、光ファイバや光導波路が挙げられる。尚、広義には、光ファイバは光導波路の一種である。狭義の光導波路の典型例としては、ガラス光導波路等の無機光導波路及びポリマー(高分子)光導波路が挙げられる。ポリマー光導波路は、本来、光信号によるプリント基板用の光学素子であり、有機光導波路、プラスチック光導波路、ポリマー光配線又はポリマー光回路等とも呼ばれる。
 ポリマー光導波路は、クラッド層の内部にコア層を形成したものであり、コア層は高分子材料で形成する一方、クラッド層は樹脂シート等で形成することができる。ポリマー光導波路の特長としては、長さ方向に垂直な方向における光の損失が無い点、加工が容易である点、高密度化が可能である点及び実装が容易である点等が挙げられる。
 このため、光路2を形成するためにポリマー光導波路を用いると、光ファイバを用いる場合に比べて光路2のピッチを狭くすることができる。具体的には、光路2を形成するためにポリマー光導波路を用いると、1mm以下(μmオーダ)のピッチで3軸以上の格子状に複数の光路2を配置することが可能となる。また、複数の方向に光を伝播できるようにするためには、光路2を交差させることが必要となるが、ポリマー光導波路を用いれば、光ファイバのように光導波路を重ねずに光路2を形成することが可能となる。このため光路2を形成するためにポリマー光導波路を用いれば、光ファイバを交差させる場合に生じる凹凸を回避することができる。
 また、上述したように、ポリマー光導波路は、施工が容易である。例えば、複数の光路2として複数の光導波路を形成した樹脂のシートを航空機構造体6の表面に貼り付けるだけで、簡易に複数の光路2を航空機構造体6の表面に配置することができる。
 ポリマー光導波路や光ファイバ等の光学素子を用いて光路2を形成する場合、光路2の太さは均一であるが、光路2が交差する部分では太さが局所的に太くなる。光路2が局所的に太くなると、光路2を直線的に伝播する光が、交差する光路2に漏れる恐れがある。交差する光路2に光が漏れ出れば、光強度の損失となる。
 そこで、3本以上の光路2が1箇所で交差しないように複数の光路2を配置することが各光路2を伝播する光の損失を低減する観点から望ましい。図1に示す例では、常に2本の光路2が交差するように複数の光路2が配置されている。このため、図1に示す例では、六角形の間に三角形が形成される格子状に複数の光路2が配置されている。このような光路2の配置によって、交差する光路2への光の漏れを低減することができる。
 複数の光路2の各一端は、光源3と接続される。このため、複数の光路2の各一端には、それぞれ光源3から光を入射させることができる。一方、複数の光路2の各他端には、光検出器4が接続される。このため、複数の光路2の各他端から出射する光を光検出器4で検出することができる。光検出器4は、フォトダイオード等の光信号を電気信号に変換するための光検出素子を用いて構成することができる。
 各光路2には、それぞれ独立した光源3及び光検出器4を接続することができる。但し、光路2の数が多い場合には、光路2の数に合わせて多数の光源3及び光検出器4が必要となる。
 そこで、複数の光路2に出力される光の波長を変えることによって、複数の光路2間において光源3及び光検出器4を共通にすることもできる。具体的には、光源3を、波長が異なる光を少なくとも2つの光路2に入射させるように構成することができる。一方、少なくとも2つの光路2から出射する波長が異なる光を共通の光検出器4で検出するようにすることができる。これにより、光路2の数が多い場合であっても、光源3及び光検出器4の数を低減させることができる。
 複数の光路2間において光源3及び光検出器4を共通にする場合には、複数の光路2の各端部を束ねて光源3及び光検出器4を接続することにより、損傷検知システム1の構成を簡易にすることができる。各光路2の端部に接続される光検出器4の出力側は、信号処理系5と接続される。
 信号処理系5は、光検出器4において検出された光の検出信号に基づいて損傷の位置を特定する機能を有する。光検出器4において光の検出信号が光信号から電気信号に変換される場合には、電気信号に基づいて損傷の位置が特定されることになる。従って、信号処理系5は、A/D(analog-to-digital)変換器やコンピュータプログラムを読み込ませたコンピュータ等の回路によって構築することができる。光の検出信号に対しては、ノイズ低減処理やアベレージング処理等の必要な処理を行うことができる。また、各種信号処理は、電気信号に限らず光信号に対して実行するようにしてもよい。その場合には、信号処理系5を構成するために、光信号の信号処理に必要な光学素子を用いることができる。
 信号処理系5における損傷の検出方法としては光検出器4において検出された光の強度信号の変化に基づく任意の方法を採用することができる。例えば、損傷の検知対象となる航空機構造体6の表面に鳥、雹又は石等の物体が衝突し、航空機構造体6の表面に損傷が生じると、損傷とオーバーラップする光路2を伝播する光が遮られる。或いは、損傷とオーバーラップする光路2を伝播する光が部分的に遮られ、光の強度が低下する。つまり、損傷が存在する領域とオーバーラップする光路2を伝播する光が損失する。
 このため、信号処理系5において、各光路2を伝播する光の強度変化を検出すれば、損傷の発生を検出することができる。光の強度変化は、例えば、光源3から発信される光の強度と、光検出器4において検出された光の強度との間における比又は差に対する閾値処理によって検出することができる。より具体的には、光源3から発信される光の強度に対して、光検出器4において検出された光の強度が閾値を超えて減少した場合には、損傷によって光が損失したと判定することができる。
 尚、光の観測時間を十分に確保することによって光の強度波形を検出する場合であれば、積分値や最大値等の代表値間の比又は差に対して閾値処理を行うようにしてもよい。閾値処理に必要となる閾値は、シミュレーションや実験によって決定することができる。
 光検出器4で各光路2を伝播する光の強度を観測すれば、伝播する光の強度が低下した光路2上に損傷が存在すると判定することができる。従って、互いに交差する2つの光路2を伝播する光の強度が低下すれば、交差する2つの光路2に跨る領域に損傷が発生したと判定することができる。つまり、互いに異なる2方向に光を伝播させる光路2から出射される光の各強度の減少を検知すれば、損傷の位置を特定することができる。
 しかしながら、複数の損傷が航空機構造体6の表面に生じた場合には、互いに異なる2方向に光を伝播させる光路2から出射される光の各強度の減少を検知するのみでは、正確に損傷の位置を特定することが困難となる。
 図2は光路を四角形の格子状に配置した損傷検知システムにおける問題点を説明する図である。
 図2(A)に示すように、複数の平行な光路を四角形の格子状に直交配置し、光源及び光検出器を各光路に接続することによって損傷検知システムを構成することができる。しかしながら、例えば、図2(A)に示すように、同一方向において隣接していない複数の光路を伝播する光が損傷によって損失した場合には、光が損失した光路の交差位置が複数箇所となる。このため、損傷の位置を特定することができない。具体的には、図2(A)に例示されるような光の損失があった場合であれば、図2(B)に示す2つの領域に損傷が生じたのか、或いは、図2(C)に示す2つの領域に損傷が生じたのかを識別することができない。
 そこで、図1に例示されるように、四角形の格子状の光路に対して少なくとも1軸追加し、損傷が生じた場合に3方向以上の方向に伝搬する光が損失するようにすることができる。そうすると、信号処理系5では、少なくとも互いに異なる3方向にそれぞれ光を伝播させる3つの光路2からそれぞれ出射される光の各強度が減少した場合に3つの光路2の各一部を含む領域を損傷の発生位置として特定することが可能となる。これにより、航空機構造体6に複数の損傷が生じた場合であっても、各損傷の位置を特定することができる。すなわち、光の各強度が減少した3つの光路2の複数の組合わせが複数箇所存在する場合には、複数の組合わせに対応する複数の損傷の位置を特定することができる。
 図3は、図1に示す損傷検知システム1により複数の損傷の位置を特定する例を示す図である。
 図3に例示されるように、航空機構造体6の2箇所に損傷が生じた場合には、一点鎖線で示す光路2を伝播する光が損失することになる。すなわち、各損傷の発生位置から3軸方向に向かって伝播する光が損失する。このため、伝播する光が損失した3つの光路2の交差位置を含む領域を、損傷領域として特定することができる。
 損傷領域が小さい場合には、図3に例示されるように3つの光路2を伝播する光が損失することになる。従って、図3に例示されるように常に2本の光路2が交差するように光路2が配置されている場合であれば、光の損失が生じた光路2の3つの交差位置が隣接して存在する領域を、損傷の発生領域として特定することができる。
 一方、損傷領域が大きい場合には、1つの損傷が同一方向に光を伝播させる平行な複数の光路2に跨ることになる。その場合においても、光の損失が生じた光路2の複数の交差位置が隣接して存在する領域を、損傷の発生領域として特定することができる。また、光の損失が生じた光路2の複数の交差位置のうち、隣接する交差位置を特定することによって、損傷のサイズを検出することができる。加えて、光の損失の程度、例えば、光の強度の低下量と、損傷の発生の原因となった衝撃のエネルギとの関係を求めておけば、光の損失の程度を検出することによって、損傷の発生の原因となった衝撃のエネルギを求めることが可能となる。
 尚、3箇所に生じた損傷を検出できるようにするためには、異なる4方向に光が伝播するように複数の光路2を配置すればよい。このため、図1及び図3に示す例に限らず、八角形が形成されるように複数の光路2を配置するようにしてもよい。一般化すると、3以上の整数をnとしてn方向に光が伝播するように複数の光路2を配置すれば、最大n-1箇所に生じた損傷を検出することが可能となる。
 従って、想定される損傷の数に応じて光路2の配置を決定することができる。すなわち、必要な数の損傷の位置を特定できるように、必要な方向に光を伝播する複数の光路2を配置することができる。また、平面上に限らず空間的に光路2を配置するようにしてもよい。すなわち、3軸以上の方向に光を伝播する複数の光路2を2次元的に配置するのみならず、3次元的に配置するようにしてもよい。もちろん、曲面上に複数の光路2を配置することもできる。
 以上のような損傷検知システム1及び損傷検知方法は、3軸以上の光軸を有する複数の光路2を航空機構造体6等の所望の構造体に損傷検知センサとして格子状に取付け、光路2を伝播する光の損失を検出することによって複数の位置に損傷が生じた場合であっても各損傷の位置を検知できるようにしたものである。
(効果)
 このため、損傷検知システム1及び損傷検知方法によれば、金属や複合材の内部における亀裂、被弾、鳥や雹の衝突等によって航空機構造体6等の構造体に複数の損傷が発生した場合であっても、損傷位置の特定が可能である。特に、構造体が無人航空機を構成する構造体である場合には、飛行中に容易に損傷を検出することが可能となる。このため、損傷の検出情報を飛行制御に反映し、飛行中における航空機への過剰な荷重を低減させることができる。その結果、安全性を向上させることができる。
 加えて、樹脂シートに光路2を形成した光導波路シートを用いれば、40μm程度の極めて狭い間隔で光路2を形成することができる。航空機構造体6では、ミリメートルオーダで損傷を検知できれば十分である。このため、十分な位置分解能で損傷を検知することができる。しかも、光導波路シートを用いれば、光路2を交差させても、光の伝播方向に垂直な方向への光の漏れを回避することができる。また、光ファイバのように、複合材等で構成される構造体の内部に埋め込むことなく、構造体の外表面に単に光導波路シートを貼り付けるのみで、簡易に損傷検知システム1を構造体に実装することが可能である。
(他の実施形態)
 以上、特定の実施形態について記載したが、記載された実施形態は一例に過ぎず、発明の範囲を限定するものではない。ここに記載された新規な方法及び装置は、様々な他の様式で具現化することができる。また、ここに記載された方法及び装置の様式において、発明の要旨から逸脱しない範囲で、種々の省略、置換及び変更を行うことができる。添付された請求の範囲及びその均等物は、発明の範囲及び要旨に包含されているものとして、そのような種々の様式及び変形例を含んでいる。

Claims (9)

  1.  互いに異なる3方向以上の複数の方向に光を伝播させる複数の光路であって、1つの方向につき少なくとも2つの光路を有する複数の光路と、
     前記複数の光路の各一端にそれぞれ光を入射させる光源と、
     前記複数の光路の各他端から出射する光を検出する光検出器と、
     前記光検出器において検出された光の検出信号に基づいて損傷の位置を特定する信号処理系と、
    を備える損傷検知システム。
  2.  前記光路としてポリマー光導波路を用いた請求項1記載の損傷検知システム。
  3.  3本以上の光路が1箇所で交差しないように前記複数の光路を配置した請求項1又は2記載の損傷検知システム。
  4.  1mm以下のピッチで3軸以上の格子状に前記複数の光路を配置した請求項1乃至3のいずれか1項に記載の損傷検知システム。
  5.  前記信号処理系は、少なくとも互いに異なる3方向にそれぞれ光を伝播させる3つの光路からそれぞれ出射される光の各強度が減少した場合に前記3つの光路の各一部を含む領域を損傷の発生位置として特定するように構成される請求項1乃至4のいずれか1項に記載の損傷検知システム。
  6.  前記信号処理系は、前記3つの光路の複数の組合わせが複数箇所存在する場合には前記複数の組合わせに対応する複数の損傷の位置を特定するように構成される請求項5記載の損傷検知システム。
  7.  前記光源は、波長が異なる光を少なくとも2つの光路に入射させるように構成され、
     前記少なくとも2つの光路から出射する前記波長が異なる光を共通の光検出器で検出するようにした請求項1乃至6のいずれか1項に記載の損傷検知システム。
  8.  互いに異なる3方向以上の複数の方向に光を伝播させる複数の光路であって、1つの方向につき少なくとも2つの光路を有する複数の光路の各一端にそれぞれ光を入射させるステップと、
     前記複数の光路の各他端から出射する光を光検出器で検出するステップと、
     前記光検出器において検出された光の検出信号に基づいて損傷の位置を特定するステップと、
    を有する損傷検知方法。
  9.  前記複数の光路として複数の光導波路を形成した樹脂のシートを航空機構造体の表面に貼り付け、前記航空機構造体に生じた損傷の位置を特定する請求項8記載の損傷検知方法。
PCT/JP2017/016643 2016-09-07 2017-04-26 損傷検知システム及び損傷検知方法 WO2018047405A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017523547A JP6405461B2 (ja) 2016-09-07 2017-04-26 損傷検知システム及び損傷検知方法
CN201780046741.5A CN109564085B (zh) 2016-09-07 2017-04-26 损伤检测系统和损伤检测方法
EP17848351.7A EP3480551B1 (en) 2016-09-07 2017-04-26 Damage detection system and damage detection method
US16/257,550 US10451560B2 (en) 2016-09-07 2019-01-25 Damage detection system and damage detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016174377 2016-09-07
JP2016-174377 2016-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/257,550 Continuation US10451560B2 (en) 2016-09-07 2019-01-25 Damage detection system and damage detection method

Publications (1)

Publication Number Publication Date
WO2018047405A1 true WO2018047405A1 (ja) 2018-03-15

Family

ID=61561815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016643 WO2018047405A1 (ja) 2016-09-07 2017-04-26 損傷検知システム及び損傷検知方法

Country Status (5)

Country Link
US (1) US10451560B2 (ja)
EP (1) EP3480551B1 (ja)
JP (1) JP6405461B2 (ja)
CN (1) CN109564085B (ja)
WO (1) WO2018047405A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451560B2 (en) 2016-09-07 2019-10-22 Subaru Corporation Damage detection system and damage detection method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177841A (ja) * 1992-12-08 1994-06-24 Fuji Xerox Co Ltd 相互接続可能な多端子スターカプラー
JPH09273906A (ja) * 1996-04-05 1997-10-21 Tech Res & Dev Inst Of Japan Def Agency 損傷・破損位置検出装置
JPH11258448A (ja) * 1998-03-13 1999-09-24 Nippon Telegr & Teleph Corp <Ntt> 光相互接続装置及びその製造方法
JP2005208000A (ja) 2004-01-26 2005-08-04 Mitsubishi Electric Corp リブ構造体およびその構造体の製造方法
JP2005321223A (ja) 2004-05-06 2005-11-17 Kawasaki Heavy Ind Ltd 構造体および損傷検知装置
JP2011509468A (ja) * 2008-01-11 2011-03-24 オーピーディーアイ テクノロジーズ エー/エス 接触感応装置
JP2011107278A (ja) * 2009-11-13 2011-06-02 Yamaha Corp 押力検出装置および楽器
JP2013018074A (ja) * 2011-07-11 2013-01-31 Nitto Denko Corp マニピュレータ装置
US20150230730A1 (en) * 2012-10-16 2015-08-20 Koninklijke Philips N.V. Pulmonary plethysmography based on optical shape sensing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149809A (ja) * 1991-11-28 1993-06-15 Yaskawa Electric Corp 光学式触覚センサ
US5915054A (en) 1992-03-05 1999-06-22 Fuji Xerox Co., Ltd. Star coupler for an optical communication network
WO2003023455A1 (en) * 2001-09-13 2003-03-20 Anzpac Systems Limited Method and apparatus for article inspection
JP2010048745A (ja) * 2008-08-25 2010-03-04 Asahi Glass Co Ltd 欠陥検査システムおよび欠陥検査方法
CN102519968A (zh) * 2011-11-28 2012-06-27 上海华力微电子有限公司 掩膜板缺陷检测装置
WO2018047405A1 (ja) 2016-09-07 2018-03-15 株式会社Subaru 損傷検知システム及び損傷検知方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177841A (ja) * 1992-12-08 1994-06-24 Fuji Xerox Co Ltd 相互接続可能な多端子スターカプラー
JPH09273906A (ja) * 1996-04-05 1997-10-21 Tech Res & Dev Inst Of Japan Def Agency 損傷・破損位置検出装置
JPH11258448A (ja) * 1998-03-13 1999-09-24 Nippon Telegr & Teleph Corp <Ntt> 光相互接続装置及びその製造方法
JP2005208000A (ja) 2004-01-26 2005-08-04 Mitsubishi Electric Corp リブ構造体およびその構造体の製造方法
JP2005321223A (ja) 2004-05-06 2005-11-17 Kawasaki Heavy Ind Ltd 構造体および損傷検知装置
JP2011509468A (ja) * 2008-01-11 2011-03-24 オーピーディーアイ テクノロジーズ エー/エス 接触感応装置
JP2011107278A (ja) * 2009-11-13 2011-06-02 Yamaha Corp 押力検出装置および楽器
JP2013018074A (ja) * 2011-07-11 2013-01-31 Nitto Denko Corp マニピュレータ装置
US20150230730A1 (en) * 2012-10-16 2015-08-20 Koninklijke Philips N.V. Pulmonary plethysmography based on optical shape sensing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451560B2 (en) 2016-09-07 2019-10-22 Subaru Corporation Damage detection system and damage detection method

Also Published As

Publication number Publication date
CN109564085A (zh) 2019-04-02
EP3480551C0 (en) 2023-11-15
JPWO2018047405A1 (ja) 2018-09-06
EP3480551A1 (en) 2019-05-08
EP3480551A4 (en) 2020-01-08
CN109564085B (zh) 2020-09-18
JP6405461B2 (ja) 2018-10-17
EP3480551B1 (en) 2023-11-15
US20190170656A1 (en) 2019-06-06
US10451560B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
JP6803268B2 (ja) 電流観測システム、電流観測方法及び航空機
EP2562529B1 (en) Composite structure having an embedded sensing system
EP2693187B1 (en) Composite structure having an embedded sensing system
JP2008139170A (ja) 衝撃探知システム
JPH07174527A (ja) 構造体の構造上の損傷の測定方法及び装置
US20130050685A1 (en) Composite structure having an embedded sensing system
JP2014052368A5 (ja)
JP6405461B2 (ja) 損傷検知システム及び損傷検知方法
JP6745445B2 (ja) 光観測システム及び光観測方法
JP4916739B2 (ja) 曲がりセンサ
KR20080033471A (ko) 범퍼 센서
JP4878013B2 (ja) 亀裂発生位置の検出方法
JP2889952B2 (ja) 損傷・破損位置検出装置
JP4565093B2 (ja) 可動式fbg超音波センサ
JP3384927B2 (ja) 透光性長尺体欠陥検出装置
JPH09288223A (ja) ファイバ光学プレート
JP3971440B2 (ja) 表面凹凸形状検出装置
JP2018122773A (ja) 雷撃検知システム、雷撃検知方法及び航空機
WO2022239568A1 (ja) ピンホール検出装置
KR20100039155A (ko) 비대칭 광섬유 커플러
JP2011214962A (ja) 歪センサ及び歪センサの取り付け方法
WO2011111281A1 (ja) 光導波路デバイス
KR20240014221A (ko) 자외선 감지용 광섬유 격자 센서 모듈 및 이의 제조방법
JP2022029807A (ja) センサー用光導波路
JP2016058014A (ja) 位置センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017523547

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017848351

Country of ref document: EP

Effective date: 20190129

NENP Non-entry into the national phase

Ref country code: DE