WO2018045936A1 - 升压功率变换电路和控制方法 - Google Patents

升压功率变换电路和控制方法 Download PDF

Info

Publication number
WO2018045936A1
WO2018045936A1 PCT/CN2017/100458 CN2017100458W WO2018045936A1 WO 2018045936 A1 WO2018045936 A1 WO 2018045936A1 CN 2017100458 W CN2017100458 W CN 2017100458W WO 2018045936 A1 WO2018045936 A1 WO 2018045936A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage
flying capacitor
power conversion
conversion circuit
Prior art date
Application number
PCT/CN2017/100458
Other languages
English (en)
French (fr)
Inventor
叶飞
石磊
刘云峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018045936A1 publication Critical patent/WO2018045936A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the embodiments of the present application relate to electronic circuit technologies, and in particular, to a boost power conversion circuit and a control method.
  • the Boost circuit does not specifically refer to a specific circuit. It refers to a boost circuit, that is, a circuit that inputs a voltage, outputs a higher voltage, implements power conversion, and can input a voltage greater than or equal to three levels. It is a multi-level Boost circuit.
  • FIG. 1a is a flying capacitor multi-level Boost circuit
  • FIG. 1b is a schematic diagram of a control signal of a flying capacitor multi-level Boost circuit, as shown in FIG. 1a and FIG. 1b
  • L is an inductor, D1, D2.
  • T1 and T2 are semiconductor switches (which can be insulated gate bipolar transistors (English: Insulated Gate Bipolar Transistor, IGBT), metal-oxide semiconductor field effect transistors (English: Metal-Oxide-Semiconductor) Field-Effect Transistor (abbreviation: MOSFET), etc.), C1 and C2 are capacitors, R is a resistive load, Vin is the input power supply, and Vout is the voltage of the load resistor.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor
  • the T1 and T2 tubes are controlled to be turned on and off, so that the output voltage Vout is greater than the input voltage Vin.
  • 0 ⁇ D*T phase T1 is in the on state, T2 is in the off state, at this time, the inductor current flows to the load via T1, C1, D6, and the voltage VL across the inductor is Vout-Vc-Vin ( D5 withstand voltage is equal to Vc voltage 0.5*Vout; T2 withstand voltage is Vout minus Vc, which is 0.5*Vout); D*T ⁇ 0.5T phase: T1 and T2 are both off, and the inductor current is via D5, D6 Flow to the load, at this time the voltage VL across the inductor is Vout-Vin, (T1 withstand voltage equals Vc voltage 0.5*Vout; T2 withstand voltage is Vout minus Vc, 0.5*Vout); 0.5T ⁇ D*T+0.5 T phase: T2 is in the on state, T1 is
  • the inductor current flows to the power supply via D5, Vc, and T2.
  • the voltage VL across the inductor is Vc-Vin, (T1 withstand voltage is equal to Vc voltage 0.5*) Vout; D6 withstand voltage is Vout minus Vc, which is 0.5*Vout); D*T+0.5T ⁇ T phase: T1 and T2 are all in the off state.
  • the inductor current flows to the load via D5 and D6.
  • the voltage VL across the inductor is Vout-Vin
  • the T1 withstand voltage is equal to Vc voltage 0.5*Vout
  • the T2 withstand voltage is Vout minus Vc, which is 0.5*Vout
  • the maximum withstand voltage of all semiconductor light-emitting tubes is 0.5Vout
  • the principle of voltage volt-second conservation at both ends of the inductor that is, the product of the voltage across the inductor and the time is 0 in one duty cycle.
  • the following formula can be obtained:
  • T2 and D2 are subjected to input voltage Vin
  • D6 is subjected to withstand voltage Vout-Vin; if Vin ⁇ 0.5Vout, T2 and D2 are subjected to input voltage Vin, Vin ⁇ 0.5Vout, which is resistant to D2 and T2.
  • the pressure is 0.5Vout, D2 and T2 will not over-voltage breakdown; D6 withstand voltage Vout-Vin, Vout-Vin>0.5Vout, exceed D6's withstand voltage, D6 will over-voltage breakdown; if Vin>0.5Vout, then T2, D2 withstand input voltage Vin, Vin>0.5Vout, exceed D2, T2 withstand voltage 0.5Vout, D2, T2 will overvoltage breakdown; D6 withstand voltage Vout-Vin, Vout-Vin ⁇ 0.5Vout, no more than D6 Withstand voltage, D6 will not over-voltage breakdown; from the above analysis, if the flying capacitor voltage Vc is zero, the semiconductor in the above scheme has the risk of over-voltage breakdown.
  • the embodiment of the present application provides a boost power conversion circuit and a control method for solving the problem that a semiconductor device may be over-voltage breakdown when the voltage of the flying capacitor is zero in the current multi-level circuit.
  • the first aspect of the present application provides a boost power conversion circuit, including: N first switch modules, N second switch modules, N-1 third switch modules, N-1 flying capacitors, and N-1 Precharge units; N is a positive integer greater than or equal to 2;
  • the N second switch modules are sequentially connected in series with the inductor and the input power source to form a loop;
  • the N first switch modules are sequentially connected in series with the load, the inductor, and the input power source to form a loop;
  • the ith first switch a functional circuit is connected in parallel between the first common point between the module and the i+1th first switch module and the second common point between the i-th second switch module and the i+1th second switch module;
  • Each functional circuit is composed of a flying capacitor and a third switching module connected in series; i is a positive integer smaller than N;
  • Each pre-charging unit is connected in parallel with a pre-charging unit; each pre-charging unit is configured to be disconnected from the third switching module connected to the flying-parallel capacitor connected in parallel, and the voltage of the flying-span capacitor is less than a preset threshold And pre-charging the flying capacitor.
  • the boost power conversion circuit adds a switch module to each of the bridge arms, that is, the above-mentioned switch module connected in series with each flying-span capacitor, and a pre-charge unit in parallel for each flying-span capacitor.
  • the pre-charging unit detects the voltage of the corresponding flying capacitor, and if the voltage of the flying capacitor meets the set value range, closing the third in series with the flying capacitor.
  • the switch module if the voltage of the flying capacitor does not satisfy the set value range, the flying capacitor is charged by the corresponding pre-charging unit until the voltage on the flying capacitor reaches the set range, and then the third is closed.
  • the switch module after the third switch module is turned off, the other first switch module and the second switch module can perform normal switching operations according to system instructions.
  • the first switch module includes a diode or a diode parallel reverse conducting semiconductor switch; and the second switch module includes a diode parallel semiconductor switch.
  • the third switch module includes a normally open switch and a switch control circuit; the switch control circuit is configured to control the normally open switch to be closed or opened.
  • the third switch module By setting the third switch module in series with the flying capacitor in the circuit and the pre-charging unit for charging each flying capacitor, it is ensured that the voltage of the flying capacitor is not as low as 0V in any working state of the system. This avoids the problem that the semiconductor device may be over-voltage breakdown when the boost power conversion circuit is used in a high voltage system.
  • the boosting power conversion circuit further includes: N reverse conducting switching tubes; and each of the first switching modules is connected in parallel with a reverse conducting switching tube for synchronous rectification.
  • the reverse conducting switch tube comprises a metal-oxide semiconductor field effect transistor or a reverse conducting insulated gate bipolar transistor.
  • the normally open switch comprises a relay, a contactor or a semiconductor bidirectional switch.
  • the solution can not only realize multi-level technology, but also reduce the distortion of the output waveform, avoid the problem that the semiconductor device in the circuit is over-voltage breakdown, and effectively improve the system efficiency.
  • the second aspect of the present application provides a control method of a boost power conversion circuit, which is applied to a boost power conversion circuit.
  • the boost power conversion circuit includes: N first switch modules, N second switch modules, and N- 1 third switch module, N-1 flying capacitors and N-1 pre-charging units; N is a positive integer greater than or equal to 2;
  • the N second switch modules are sequentially connected in series with the inductor and the input power source to form a loop;
  • the N first switch modules are sequentially connected in series with the load, the inductor, and the input power source to form a loop;
  • the ith first switch a functional circuit is connected in parallel between the first common point between the module and the i+1th first switch module and the second common point between the i-th second switch module and the i+1th second switch module;
  • Each functional circuit is composed of a flying capacitor and a third switching module connected in series; i is a positive integer smaller than N; the method includes:
  • the first flying capacitor is charged by the first pre-charging unit in parallel with the first flying capacitor until the When the first voltage across the first flying capacitor reaches the predetermined threshold, the third switching module in series with the first flying capacitor is closed.
  • the method further includes:
  • the third switching module in series with the first flying capacitor is closed.
  • the method further includes:
  • the N-1 third switch modules are turned off.
  • the first switch module comprises a diode or a diode parallel reverse conducting semiconductor switch
  • the second switch module comprises a diode parallel semiconductor switch
  • the third switch module includes a normally open switch and a switch control circuit; the switch control circuit is configured to control the normally open switch to be closed or opened.
  • the boosting power conversion circuit further includes: N reverse conducting switching tubes; and each of the first switching modules is connected in parallel with a reverse conducting switching tube for synchronous rectification.
  • the reverse conducting switch tube comprises a metal-oxide semiconductor field effect transistor or a reverse conducting insulated gate bipolar transistor.
  • the normally open switch comprises a relay, a contactor or a semiconductor bidirectional switch.
  • the boost power conversion circuit and the control method provided by the application provide a third switch module connected in series with the flying capacitor on the bridge arm of the boost power conversion circuit, and a pre-charge unit in parallel for each flying capacitor
  • the third switch module is disconnected to pre-charge the flying capacitor.
  • the third switch module is closed to ensure that the voltage of the flying capacitor is not As low as 0V, the problem that the semiconductor device may be over-voltage breakdown when using the boost power conversion circuit in a high voltage system is avoided.
  • Figure 1a is a flying capacitor multi-level Boost circuit
  • 1b is a schematic diagram of a control signal of a flying capacitor multi-level Boost circuit
  • Embodiment 1 of a boost power conversion circuit provided by the present application
  • FIG. 3 is a schematic diagram of an example of a boost power conversion circuit provided by the present application.
  • FIG. 4 is a schematic diagram of still another example of a boost power conversion circuit provided by the present application.
  • FIG. 5 is a schematic diagram of still another example of a boost power conversion circuit provided by the present application.
  • FIG. 6 is a schematic diagram of another connection mode of the boost power conversion circuit provided by the present application.
  • FIG. 7 is a flowchart of Embodiment 1 of a method for controlling a boost power conversion circuit provided by the present application.
  • the boost power conversion circuit provided by the present application includes: N first switch modules, N second switch modules, N-1 third switching modules, N-1 flying capacitors (C 1 , C 2 ... C N-1 ) and N-1 pre-charging units; N is a positive integer greater than or equal to 2;
  • the N second switch modules and the inductor L and the input power source E are sequentially connected in series to form a loop; the N first switch modules and the load (R and C), the inductor and the input power source are sequentially connected in series to form a loop a first common point A between the i-th first switch module and the i+1th first switch module (A1, A2, etc. in the figure) and an i-th second switch module and an i+1th A functional circuit is connected in parallel between the second common point P (P1, P2, etc.
  • each functional circuit is composed of a flying capacitor and a third switching module connected in series; i is a positive integer smaller than N;
  • Each pre-charging unit is connected in parallel with a pre-charging unit; each pre-charging unit is configured to be disconnected from the third switching module connected to the flying-parallel capacitor connected in parallel, and the voltage of the flying-span capacitor is less than a preset threshold And pre-charging the flying capacitor.
  • the first switch module and the second switch module may be diode or diode parallel reverse-conducting semiconductor switches (MOSFET, reverse-conducting IGBT, etc.), wherein the second switch module is a diode-parallel semiconductor switch
  • MOSFET reverse-conducting semiconductor switches
  • the second switch module is a diode-parallel semiconductor switch
  • the input power source and the inductor and the plurality of second switch modules are sequentially connected in series, and the input power source and the inductor and the plurality of first switch modules and the load circuit are sequentially connected in series to form a loop, and it is known that the N first switch modules and the N series in series are connected in series
  • the second switch modules are connected in parallel, and the nodes A1, A2, ... between the first switch modules connected in series are the first common point, and the nodes P1, P2, ... between the second switch modules connected in series are the first Two public points.
  • the present solution provides a plurality of third switch modules and pre-charge units. specific,
  • the third switch module may be composed of a normally open type switch and a switch control circuit, and the normally open type switch includes but is not limited to a relay, a contactor, a semiconductor bidirectional switch, etc.; the precharge unit is connected to the flying capacitor C 1 ... C N Both ends of -1 can realize the functions of capacitor voltage detection and charging of capacitor voltage; the pre-charging unit can be realized in parallel with the flying capacitor.
  • the above-mentioned boost power conversion circuit can be specifically applied to the power conversion system, and specifically determines the working state of the power conversion system, and has four states: 1. pre-boot state, 2. normal working state after power-on, 3. Pre Shutdown state, 4, shutdown state; perform different actions according to different states of the system.
  • the pre-charging unit detects the voltage of the flying capacitor. If the flying capacitor voltage satisfies the set value range, the third switching module is closed; if the flying capacitor voltage does not satisfy the set value range, the pre-charging is passed.
  • the charging unit charges the capacitor voltage to a preset value, and then closes the third switch module; when the third switch module is closed, the first switch module and the second switch module can perform normal opening and tube operations according to system instructions, and the system enters Normal working condition;
  • the pre-charging unit and the third switch module maintain the existing state without further action
  • the pre-charging unit and the third switching module maintain the existing state without further action.
  • the boost power conversion circuit provided in this embodiment is configured by disposing a third switch module in series with the flying capacitor on the bridge arm of the boost power conversion circuit, and pre-charging the unit in parallel with each flying capacitor, in the flying capacitor
  • the third switch module is disconnected to pre-charge the flying capacitor.
  • the third switch module is closed to ensure that the voltage of the flying capacitor is not low. 0V, thereby avoiding the problem that the semiconductor device may be over-voltage breakdown when the boost power conversion circuit is used in a high voltage system.
  • the first switch module comprises a diode or a diode parallel reverse conducting semiconductor switch; and the second switch module comprises a diode parallel semiconductor switch.
  • the third switch module includes a normally open switch and a switch control circuit; the switch control circuit is configured to control the normally open switch to be closed or opened.
  • the boost power conversion circuit provided by the present application will be described below by several examples.
  • FIG. 3 is a schematic diagram of an example of a boost power conversion circuit provided by the present application; as shown in FIG. 3, the first switch module in the present embodiment is a diode D1, D2, ..., Dn.
  • the second switch module is a diode parallel semiconductor switch, each second switch module includes a MOSFET and a diode, for example, T1 and Dn+1, T2 and Dn+2, ..., S1, S2, ... Sn- in the figure 1 is equivalent to N-1 third switch modules.
  • C1, C2, ..., Cn-1 in the figure are equivalent to N-1 flying capacitors, and each flying capacitor adds a pre-charging unit with pre-charging function. That is, in the present embodiment (n is equivalent to N in the first embodiment, it is a positive integer of 2 or more).
  • FIG. 4 is a schematic diagram of another example of the boost power conversion circuit provided by the present application, as shown in FIG. 4 .
  • the portion of the wireframe 3 in the figure is the boost power conversion circuit of the present application, and together with the input power source, the inductor and the load circuit constitute a complete power conversion system.
  • the first switch modules S1, S2 and the second switch modules S3, S4 are semiconductor switch modules; S1, S2 are diode or diode parallel reverse conducting semiconductor switches (MOSFET, reverse-conducting IGBT, etc.), S3, S4 are diodes in parallel The semiconductor switch tube; the four semiconductor switch modules are sequentially connected in the order of S1, S2, S3, and S4, the node A2 is a common point of S1, S2, the node A3 is a common point of S2, S3, and the node A4 is a common of S3, S4. Point; the input power and inductor are connected at the end where A3 and S4 are not connected to S3.
  • C1 is a flying capacitor
  • wire frame 1 is a pre-charging unit, which is connected in parallel at both ends of the flying capacitor C1; and wire frame 2 is a third switching module S.
  • the third switch module 2 (ie, S) is composed of a normally open switch and a switch control circuit, and the normally open switch includes but is not limited to a relay, a contactor, a semiconductor bidirectional switch, etc.; the precharge unit 1 is connected to the flying capacitor Both ends of C1 can realize the functions of capacitor voltage detection and charging of capacitor voltage;
  • the pre-charging unit and the third switching module are connected in series by way, the node A6 is a common point of the third switching module, the pre-charging unit and the flying capacitor C1; the other node of the pre-charging unit is connected to the node A2, the third Switching mode Another node of the block is connected to node A4;
  • One end of the inductor is connected to the node A3, the other end is connected to the positive pole of the input power source; the node A5 is connected to the negative terminal of the input power source and the input power source; the node A1 is connected to the positive terminal of the output power source.
  • the pre-charging unit detects the voltage of the flying capacitor C1, and if the flying capacitor C1 voltage satisfies the set value range, the switch S is closed; if the flying capacitor voltage does not satisfy the set value range Then, the pre-charging unit will preset the flying capacitor voltage charging value, and then close the switch S (ie, the third switch module 2); after the switch S is closed, the switches S1, S2, S3, and S4 can be normal according to the system command. Open and tube action, the system enters normal working state;
  • the system is in a normal working state, the pre-charging unit and the third switch module 2 maintain the existing state, no further action; the system is in the pre-shutdown state, after the S1, S2, S3, S4 are turned off according to the system command, the third switch module 2 Shutdown, the pre-charging unit has no further action, the system enters the shutdown state; the system enters the shutdown state, the pre-charging ternary and the third switching module 2 maintain the existing state, no further action.
  • L is an inductor
  • D1, D2, D5, and D6 are diodes
  • T1 and T2 are semiconductor switches
  • R is a resistive load
  • Vin is an input power supply
  • Vout is a load resistor voltage.
  • the inductance of the inductor L is infinite (that is, the inductor current is kept constant), and the capacitances of capacitors C and C1 are infinite (capacitance capacity remains unchanged).
  • this scheme also A semiconductor switch with a withstand voltage of 0.5Vout is selected.
  • the third switch module 2 (ie, S) is in the off state, assuming that the input voltage is Vin at this time, the output voltage Vout, Vin ⁇ Vout, S3, and S4 are collectively withstand the voltage Vin, and each switch tube is resistant.
  • Pressure 0.5Vin, 0.5Vin ⁇ 0.5Vout, S3, S4 will not over-voltage breakdown; S1, S2 together with Vout-Vin, each tube withstand voltage 0.5 (Vout-Vin), 0.5 (Vout-Vin) ⁇ 0.5Vout , S1, S2 will also not be damaged by overvoltage.
  • all semiconductor switches will not be damaged.
  • the switch S When the system works normally: the switch S is closed. If the control signal is controlled according to Figure 1b, T1 is in the on state and T2 is in the off state. At this time, the inductor current passes through T1, S (equivalent to the wire), C1. D6 flows to the load. At this time, the voltage VL across the inductor is Vout-Vc-Vin; both T1 and T2 are in the off state.
  • the inductor current flows to the load via D5 and D6, and the voltage VL across the inductor is Vout- Vin; T2 is in the on state, T1 is in the off state, at this time, the inductor current flows to the power supply via D5, Vc, T2, and the voltage VL across the inductor is Vc-Vin; both T1 and T2 are in the off state.
  • the inductor current flows to the load via D5 and D6, the voltage VL across the inductor is Vout-Vin; the circuit of the present application works normally, and the withstand voltage of all semiconductor switches does not exceed 0.5Vout. When working normally, all semiconductors will not pass. Pressure breakdown.
  • the third switch module 2 When the system is in the off state: the third switch module 2 is disconnected, the same system is in the pre-boot state, and all semiconductors will not over-voltage breakdown.
  • the boost power conversion circuit provided by the present application can avoid the semiconductor overvoltage breakdown problem that may occur in the existing circuit in various operating states of the system.
  • the third switch module 2 When the system works normally, the third switch module 2 is in a closed state, which can be equivalent to a short circuit, and the pre-charge circuit does not operate. Therefore, multi-level technology can be realized in normal operation, and thus the multi-level technology band can be obtained by using the technology of the present application. Benefits include reducing output waveform distortion and improving system efficiency.
  • the boost power conversion circuit further includes: N reverse conducting switch tubes; each A reverse conducting switch tube is connected in parallel to both ends of the first switch module for synchronous rectification.
  • FIG. 5 is a schematic diagram of still another example of the boost power conversion circuit provided by the present application; as shown in FIG. 5, on the basis of the solution shown in FIG. 4, each first switch module is connected in parallel with one
  • the switching tube of the three-quadrant conduction characteristic, that is, the reverse-conducting type switching tube, that is, the D5 and D6 tubes are connected in parallel with the switching tubes T5 and T6 having the third quadrant conduction characteristics, including the MOSFET and the reverse conducting type IGBT, which can realize synchronous rectification and multi-electricity.
  • Flat boost the switching tube of the three-quadrant conduction characteristic, that is, the reverse-conducting type switching tube, that is, the D5 and D6 tubes are connected in parallel with the switching tubes T5 and T6 having the third quadrant conduction characteristics, including the MOSFET and the reverse conducting type IGBT, which can realize synchronous rectification and multi-electricity.
  • Flat boost the switching tube of the three-quadrant conduction characteristic, that is, the reverse
  • FIG. 6 is a schematic diagram of another connection mode of the boost power conversion circuit provided by the present application.
  • the inductor and D5 and D6 are connected to the negative pole of the input power source, according to the forward conduction characteristic of the diode, D5.
  • the cathode is connected to the inductor.
  • N level increase circuit it is also possible to connect in this manner.
  • the boost power conversion circuit provided by any one of the above embodiments solves the problem of using low voltage semiconductor devices in a high voltage system by serially connecting switches at one end of the flying capacitor and adding a precharge unit to each flying capacitor. It meets the problem of withstand voltage requirements, and while achieving multi-level output function, it can greatly improve system efficiency and reduce the volume of the filter.
  • FIG. 7 is a flowchart of Embodiment 1 of a method for controlling a boost power conversion circuit provided by the present application. As shown in FIG. 7 , the control method is applied to the boost power provided by any of the embodiments shown in FIG. 2 to FIG. 6 .
  • the specific implementation steps of the control method of the boost power conversion circuit include:
  • the system refers to a power conversion system using the above-mentioned boost power conversion circuit to detect the state of the system in real time, and during the pre-boot process of the system, the voltage of each flying capacitor is detected by the pre-charging unit, As an example of the embodiment shown in FIG. 4, the pre-charging unit detects the capacitance of the flying capacitor C1.
  • S102 Determine whether the first voltage of each of the flying capacitors reaches a preset threshold.
  • a preset threshold of the flying capacitor is required to be preset.
  • the preset threshold is a minimum voltage, which is a minimum voltage for ensuring that the semiconductor device in the circuit is not over-voltage breakdown, and the power conversion is performed.
  • the system compares with the preset threshold to determine whether the voltage of the flying capacitor is greater than a preset threshold.
  • the voltage of each flying capacitor needs to be compared with a preset threshold.
  • the first flying capacitor needs to be pre-charged until the first flying capacitor The voltage of the terminal is greater than or equal to the threshold threshold, and the third switch module is closed after the charging is completed, so that the power conversion system works normally.
  • the third switching module connected in series with the first flying capacitor is closed.
  • the first flying capacitor here refers to each flying capacitor in the circuit. If the voltage across each flying capacitor in the circuit reaches a preset threshold, each third switching module can be directly closed, according to a certain The law of the boost power conversion circuit can be controlled.
  • the N-1 third switch modules are turned off.
  • the general system includes at least the following states: 1. a pre-boot state, 2. a normal working state after power-on, a pre-shutdown state, and a shutdown state; Perform different actions depending on the different states in which the system is located.
  • the pre-charging unit detects the voltage of the flying capacitor. If the flying capacitor voltage satisfies the set value range, the third switching module is closed; when the flying capacitor voltage does not satisfy the set value range, the pre-charging is passed.
  • the charging unit will fly the capacitor voltage charging value preset value, and then close the second switch module; after the third switch module is closed, the other switch modules can perform normal opening and closing actions according to the system command, and the system enters a normal working state; In the normal working state, the pre-charging unit and the third switch module maintain the existing state; the system is in the pre-shutdown state, after the first switch module and the second switch module are turned off according to the system instruction, the third switch module page is turned off, pre- The charging unit has no further action, the system enters the shutdown state; the system enters the shutdown state, and the pre-charging unit and the third switching module maintain the existing state.
  • the control method of the boost power conversion circuit provides a third switch module connected in series with the flying capacitor on the bridge arm of the boost power conversion circuit, and a pre-charge unit in parallel for each flying capacitor.
  • the third switching module is disconnected to pre-charge the flying capacitor.
  • the third switching module is closed to ensure that the voltage of the flying capacitor is not It will be as low as 0V, thereby avoiding the problem that the semiconductor device may be over-voltage breakdown when using the boost power conversion circuit in a high voltage system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种升压功率变换电路和控制方法。该电路包括:N个第一开关模块、N个第二开关模块、N-1个第三开关模块、N-1个飞跨电容和N-1个预充电单元;N个第二开关模块与电感器和输入电源串联形成回路;N个第一开关模块与负载、电感器和输入电源串联形成回路;第一开关模块之间的第一公共点与第二开关模块之间的第二公共点之间连接飞跨电容和一个第三开关模块;每个飞跨电容并联一个预充电单元;每个预充电单元用于在与其并联的飞跨电容连接的第三开关模块断开、且飞跨电容的电压小于预设阈值时,对飞跨电容进行预充电。该升压功率变换电路和控制方法能够保证飞跨电容的电压不会低至0V,从而避免在高压系统中使用升压功率变换电路时,半导体器件可能被过压击穿的问题。

Description

升压功率变换电路和控制方法
本申请要求于2016年09月09日提交中国专利局、申请号为201610816131.6、申请名称为“升压功率变换电路和控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电子电路技术,尤其涉及一种升压功率变换电路和控制方法。
背景技术
Boost电路不特指一种具体电路,泛指一种升压电路,即通过该电路实现输入一个电压,输出一个更高的电压,实现功率变换,能够输入大于或等于三个电平的称之为多电平Boost电路。
图1a为一种飞跨电容多电平Boost电路,图1b为一种飞跨电容多电平Boost电路的控制信号示意图,如图1a、图1b所示,L为电感器,D1、D2、D5、D6为二极管,T1、T2为半导体开关(可以为绝缘栅双极型晶体管(英文:Insulated Gate Bipolar Transistor,简称:IGBT)、金属-氧化层半导体场效晶体管(英文:Metal-Oxide-Semiconductor Field-Effect Transistor,简称:MOSFET)等),C1、C2为电容器,R为电阻负载,Vin为输入电源,Vout为负载电阻的电压。为便于分析,假设电感器L感量无限大(即电感电流保持恒定),电容C1、C2容量无限大(电容容量保持不变)。按照一定规律控制T1、T2管的通断,即可实现输出电压Vout大于输入电压Vin。具体的:0~D*T阶段:T1处于导通状态,T2处于断开状态,此时电感电流经由T1、C1、D6流至负载,此时电感两端的电压VL为Vout-Vc-Vin(D5耐压等于Vc电压0.5*Vout;T2承受电压为Vout减去Vc,为0.5*Vout);D*T~0.5T阶段:T1、T2均处于断开状态,此时电感电流经由D5、D6流至负载,此时电感两端的电压VL为Vout-Vin,(T1耐压等于Vc电压0.5*Vout;T2承受电压为Vout减去Vc,为0.5*Vout);0.5T~D*T+0.5T阶段:T2处于导通状态,T1处于断开状态,此时电感电流经由D5、Vc、T2流至电源,此时电感两端的电压VL为Vc-Vin,(T1耐压等于Vc电压0.5*Vout;D6承受电压为Vout减去Vc,为0.5*Vout);D*T+0.5T~T阶段:T1、T2均处于断开状态,此时电感电流经由D5、D6流至负载,此时电感两端的电压VL为Vout-Vin,T1耐压等于Vc电压0.5*Vout;T2承受电压为Vout减去Vc,为0.5*Vout;综上所述,所有半导体开光管最高耐压均为0.5Vout,其他控制周期可以按照上述过程依次类推。根据电感两端电压伏秒守恒原理,即一个工作周期内,电感两端电压与时间的乘积为0。可得如下公式:
(Vout-Vc-Vin)*D*T+(Vout-Vin)*(0.5T-D*T)+(Vc-Vin)*0.2T+(Vout-Vin)*(0.5T-D*T)=0;化简上式可得Vout=Vin/(1-D),即通过对T1和T2的控制,可实现输出电压高于输入电压。
然而,根据上述分析可知Vout>Vin,所有开关管可选择耐压为0.5Vout;若飞跨电容上不存在电压,即Vc=0,电容电压为0,则电容可以视为短路,即T1管被D1、D5双向短路,此时T2、D2承受输入电压Vin,D6承受耐压Vout-Vin;若Vin<0.5Vout,则T2、D2承受输入电压Vin,Vin<0.5Vout,由于D2、T2耐压为0.5Vout,D2、T2不会过压击穿;D6承受耐压Vout-Vin,Vout-Vin>0.5Vout,超过D6的耐压,D6会过压击穿;若Vin>0.5Vout,则T2、D2承受输入电压Vin,Vin>0.5Vout,超过D2、T2耐压0.5Vout,D2、T2会过压击穿;D6承受耐压Vout-Vin,Vout-Vin<0.5Vout,不超过D6的耐压,D6不会过压击穿;由以上分析可知,若飞跨电容电压Vc为零,则上述方案中的半导体都存被过压击穿的风险。
发明内容
本申请实施例提供一种升压功率变换电路和控制方法,用于解决目前的多电平电路中当飞跨电容的电压为零时半导体器件可能被过压击穿的问题。
本申请第一方面提供一种升压功率变换电路,包括:N个第一开关模块、N个第二开关模块、N-1个第三开关模块、N-1个飞跨电容和N-1个预充电单元;N为大于或等于2的正整数;
所述N个第二开关模块与电感器和输入电源依次串联形成回路;所述N个第一开关模块与负载、所述电感器和所述输入电源依次串联形成回路;第i个第一开关模块和第i+1个第一开关模块之间的第一公共点与第i个第二开关模块和第i+1个第二开关模块之间的第二公共点之间并联一个功能电路;每个功能电路由依次串联的一个飞跨电容和一个第三开关模块组成;i为小于N的正整数;
每个飞跨电容的两端并联一个预充电单元;每个预充电单元用于在与其并联的飞跨电容连接的第三开关模块断开、且所述飞跨电容的电压小于预设阈值时,对所述飞跨电容进行预充电。
本方案提供的升压功率变换电路,在每个桥臂上增加开关模块,即上述与每个飞跨电容串联的开关模块,另外给每个飞跨电容并联预充电单元。当使用该升压功率变换电路的系统处于预开机状态,预充电单元检测对应的飞跨电容的电压,若飞跨电容的电压满足设定值范围,则闭合与该飞跨电容串联的第三开关模块,若飞跨电容的电压不满足设定值范围,则通过对应的预充电单元对该飞跨电容进行充电,直至该飞跨电容上的电压达到设定范围时,再闭合该第三开关模块,待该第三开关模块关闭后,其他的第一开关模块和第二开关模块可按照系统指令进行正常的开关动作。
在上述方案的具体实现中,所述第一开关模块包括二极管或者二极管并联逆导型半导体开关;所述第二开关模块包括二极管并联半导体开关。
所述第三开关模块包括常开型开关和开关控制电路;所述开关控制电路用于控制所述常开型开关闭合或者打开。
通过上述在电路中设置与飞跨电容串联的第三开关模块,以及为每个飞跨电容充电的预充电单元,保证在系统任何工作状态时,飞跨电容的电压均不会低至0V,从而避免在高压系统中使用升压功率变换电路时,半导体器件可能被过压击穿的问题。
此外,所述升压功率变换电路还包括:N个逆导型开关管;每个第一开关模块的两端并联连接一个逆导型开关管,用于实现同步整流。
可选的,所述逆导型开关管包括金属-氧化层半导体场效晶体管或者逆导型绝缘栅双极型晶体管。
可选的,所述常开型开关包括继电器、接触器或半导体双向开关。
该方案不仅可以实现多电平技术,而且可以降低输出波形畸变,避免电路中的半导体器件被过压击穿的问题,有效提高系统效率。
本申请第二方面提供一种升压功率变换电路的控制方法,应用于升压功率变换电路;所述升压功率变换电路包括:N个第一开关模块、N个第二开关模块、N-1个第三开关模块、N-1个飞跨电容和N-1个预充电单元;N为大于或等于2的正整数;
所述N个第二开关模块与电感器和输入电源依次串联形成回路;所述N个第一开关模块与负载、所述电感器和所述输入电源依次串联形成回路;第i个第一开关模块和第i+1个第一开关模块之间的第一公共点与第i个第二开关模块和第i+1个第二开关模块之间的第二公共点之间并联一个功能电路;每个功能电路由依次串联的一个飞跨电容和一个第三开关模块组成;i为小于N的正整数;所述方法包括:
当系统处于预开机状态时,通过每个预充电单元检测每个飞跨电容两端的第一电压;
判断每个飞跨电容两端的第一电压是否达到预设阈值;
若存在第一飞跨电容两端的第一电压未达到所述预设阈值,通过与所述第一飞跨电容并联的第一预充电单元对所述第一飞跨电容进行充电,直至所述第一飞跨电容的两端的第一电压达到所述预设阈值,则将与所述第一飞跨电容串联的第三开关模块闭合。
可选的,所述方法还包括:
若第一飞跨电容两端的第一电压达到所述预设阈值,则将与所述第一飞跨电容串联的第三开关模块闭合。
可选的,所述方法还包括:
若所述N个第二开关模块根据系统指令关断,则将所述N-1个第三开关模块关断。
可选的,所述第一开关模块包括二极管或者二极管并联逆导型半导体开关;所述第二开关模块包括二极管并联半导体开关;
所述第三开关模块包括常开型开关和开关控制电路;所述开关控制电路用于控制所述常开型开关闭合或者打开。
此外,所述升压功率变换电路还包括:N个逆导型开关管;每个第一开关模块的两端并联连接一个逆导型开关管,用于实现同步整流。
可选的,所述逆导型开关管包括金属-氧化层半导体场效晶体管或者逆导型绝缘栅双极型晶体管。
可选的,所述常开型开关包括继电器、接触器或半导体双向开关。
本申请提供的升压功率变换电路和控制方法,通过在升压功率变换电路的桥臂上设置与飞跨电容串联的第三开关模块,并为每个飞跨电容并联预充电单元,在飞跨电容的电压小于预设阈值时,断开第三开关模块对飞跨电容进行预充电,当飞跨电容的电压达到预设阈值时,闭合第三开关模块,保证飞跨电容的电压不会低至0V,从而避免在高压系统中使用升压功率变换电路时,半导体器件可能被过压击穿的问题。
附图说明
图1a为一种飞跨电容多电平Boost电路;
图1b为一种飞跨电容多电平Boost电路的控制信号示意图;
图2为本申请提供的升压功率变换电路实施例一的原理图;
图3为本申请提供的升压功率变换电路一实例的原理图;
图4为本申请提供的升压功率变换电路又一实例的原理图;
图5为本申请提供的升压功率变换电路再一实例的原理图;
图6为本申请提供的升压功率变换电路的另一种连接方式的原理图;
图7为本申请提供的升压功率变换电路的控制方法实施例一的流程图。
具体实施方式
图2为本申请提供的升压功率变换电路实施例一的原理图,如图2所示,本申请提供的升压功率变换电路包括:N个第一开关模块、N个第二开关模块、N-1个第三开关模块、N-1个飞跨电容(C1、C2……CN-1)和N-1个预充电单元;N为大于或等于2的正整数;
所述N个第二开关模块与电感器L和输入电源E依次串联形成回路;所述N个第一开关模块与负载(R和C)、所述电感器和所述输入电源依次串联形成回路;第i个第一开关模块和第i+1个第一开关模块之间的第一公共点A(图中的A1、A2等)与第i个第二开关模块和第i+1个第二开关模块之间的第二公共点P(图中的P1、P2等)之间并联一个功能电路(例如:在图中A1和P1之间连接C1和第一个第三开关模块,在图中A2和P2之间连接C2和第二个第三开关模块,以此类推);每个功能电路由依次串联的一个飞跨电容和一个第三开关模块组成;i为小于N的正整数;
每个飞跨电容的两端并联一个预充电单元;每个预充电单元用于在与其并联的飞跨电容连接的第三开关模块断开、且所述飞跨电容的电压小于预设阈值时,对所述飞跨电容进行预充电。
在该升压功率变换电路中,第一开关模块和第二开关模块可以二极管或二极管并联逆导型半导体开关(MOSFET、逆导型IGBT等),其中,第二开关模块为二极管并联半导体开关管;输入电源与电感器和多个第二开关模块依次串联,输入电源与电感器与多个第一开关模块以及负载电路依次串联组成回路,可知串联的N个第一开关模块和串联的N个第二开关模块之间是并联的,依次串联的第一开关模块之间的节点A1、A2……为第一公共点,依次串联的第二开关模块之间的节点P1、P2……为第二公共点。为了保证第一开关模块和第二开关模块中的半导体器件不被击穿,本方案提供多个第三开关模块和预充电单元。具体的,
第三开关模块可由常开型的开关以及开关的控制电路组成,常开型开关包括但不限定于继电器、接触器、半导体双向开关等;预充电单元连接在飞跨电容C1……CN-1两端,可实现电容电压检测、对电容电压进行充电等功能;预充电单元可与飞跨电容并联实现。
在上述升压功率变换电路具体可以应用在功率转换系统中,具体通过判断该功率转换系统所处的工作状态,共四种状态:①、预开机状态,②、开机后正常工作状态,③、预 关机状态,④、关机状态;根据系统所处的不同状态执行不同的动作。
当系统处于预开机状态,预充电单元检测飞跨电容的电压,若飞跨电容电压满足设定值范围,则闭合第三开关模块;若飞跨电容电压不满足设定值范围,则通过预充电单元将电容电压充电值预设值,再闭合该第三开关模块;当第三开关模块闭合后,第一开关模块和第二开关模块可按照系统指令进行正常的开、管动作,系统进入正常工作状态;
当系统处于正常工作状态,预充电单元以及第三开关模块维持现有状态,无进一步动作;
当系统处于预关断状态,第一开关模块和第二开关模块按照系统指令关断后,第三开关模块关断,预充电单元无进一步动作,系统进入关机状态;
当系统进入关机状态,预充电单元以及第三开关模块维持现有状态,无进一步动作。
本实施例提供的升压功率变换电路,通过在升压功率变换电路的桥臂上设置与飞跨电容串联的第三开关模块,并为每个飞跨电容并联预充电单元,在飞跨电容的电压小于预设阈值时,断开第三开关模块对飞跨电容进行预充电,当飞跨电容的电压达到预设阈值时,闭合第三开关模块,保证飞跨电容的电压不会低至0V,从而避免在高压系统中使用升压功率变换电路时,半导体器件可能被过压击穿的问题。
在上述实施例的具体实现中,所述第一开关模块包括二极管或者二极管并联逆导型半导体开关;所述第二开关模块包括二极管并联半导体开关。所述第三开关模块包括常开型开关和开关控制电路;所述开关控制电路用于控制所述常开型开关闭合或者打开。
下面通过几个实例对本申请提供的升压功率变换电路进行说明。
图3为本申请提供的升压功率变换电路一实例的原理图;如图3所示,本方案中的第一开关模块为二极管D1、D2……Dn。第二开关模块为二极管并联半导体开关,每个第二开关模块包括一个MOSFET和一个二极管,例如,T1和Dn+1、T2和Dn+2、……,图中的S1、S2……Sn-1相当于N-1个第三开关模块,图中的C1、C2……Cn-1相当于N-1个飞跨电容,每个飞跨电容增加一个具备预充电功能的预充电单元。即在本方案中(n相当于实施例一中的N,为大于等于2的正整数)。
在上述实施例的基础上,以N等于2为例,对该升压功率变换电路进行分析说明,图4为本申请提供的升压功率变换电路又一实例的原理图,如图4所示,图中线框3中的部分为本申请的升压功率变换电路,与输入电源、电感器和负载电路一起组成完整的功率转换系统。第一开关模块S1、S2和第二开关模块S3、S4均为半导体开关模块;S1、S2为二极管或二极管并联逆导型半导体开关(MOSFET、逆导型IGBT等),S3、S4为二极管并联半导体开关管;四个半导体开关模块按照S1、S2、S3、S4的顺序依次连接,节点A2为S1、S2的公共点,节点A3为S2、S3的公共点,节点A4为S3、S4的公共点;输入电源和电感器连接在A3和S4未与S3连接的一端。C1为飞跨电容,线框1为预充电单元,并联在该飞跨电容C1的两端;线框2为第三开关模块S。
第三开关模块2(即S)由常开型的开关以及开关的控制电路组成,常开型开关包括但不限定于继电器、接触器、半导体双向开关等;预充电单元1连接在飞跨电容C1两端,可实现电容电压检测、对电容电压进行充电等功能;
预充电单元与第三开关模块通过串联的方式连接在一起,节点A6为第三开关模块、预充电单元和飞跨电容C1的公共点;预充电单元的另一节点连接至节点A2,第三开关模 块的另一节点连接至节点A4;
电感器的一端连接至节点A3,另一端连接至输入电源的正极;节点A5连接输入电源与输入电源的负端;节点A1连接至输出电源的正端。
在该电路中,系统处于预开机状态,预充电单元检测飞跨电容C1的电压,若飞跨电容C1电压满足设定值范围,则闭合开关S;若飞跨电容电压不满足设定值范围,则通过预充电单元将飞跨电容电压充电值预设值,再闭合开关S(即第三开关模块2);开关S闭合后,开关S1、S2、S3、S4可按照系统指令进行正常的开、管动作,系统进入正常工作状态;
系统处于正常工作状态,预充电单元以及第三开关模块2维持现有状态,无进一步动作;系统处于预关断状态,S1、S2、S3、S4按照系统指令关断后,第三开关模块2关断,预充电单元无进一步动作,系统进入关机状态;系统进入关机状态,预充电三元以及第三开关模块2维持现有状态,无进一步动作。
L为电感器,D1、D2、D5、D6为二极管,T1、T2为半导体开关,R为电阻负载,Vin为输入电源,Vout为负载电阻的电压。为便于分析,假设电感器L感量无限大(即电感电流保持恒定),电容C、C1容量无限大(电容容量保持不变),根据图1a所示的电路的分析过程,本方案中也选用耐压为0.5Vout耐压的半导体开关。
当系统处于预开机状态:第三开关模块2(即S)处于断开状态,假设此时输入电压为Vin,输出电压Vout,Vin<Vout,S3,S4共同承受电压Vin,每个开关管耐压0.5Vin,0.5Vin<0.5Vout,S3,S4不会过压击穿;S1,S2共同承受Vout-Vin,每个管子耐压0.5(Vout-Vin),0.5(Vout-Vin)<0.5Vout,S1,S2同样不会过压损坏,在预开机状态下,所有半导体开关均不会损坏。
当系统正常工作时:开关S闭合,若按照图1b所示的控制信号进行控制,T1处于导通状态,T2处于断开状态,此时电感电流经由T1、S(相当于导线)、C1、D6流至负载,此时电感两端的电压VL为Vout-Vc-Vin;T1、T2均处于断开状态,此时电感电流经由D5、D6流至负载,此时电感两端的电压VL为Vout-Vin;T2处于导通状态,T1处于断开状态,此时电感电流经由D5、Vc、T2流至电源,此时电感两端的电压VL为Vc-Vin;T1、T2均处于断开状态,此时电感电流经由D5、D6流至负载,此时电感两端的电压VL为Vout-Vin;本申请电路正常工作,所有半导体开关的耐压不超过0.5Vout,正常工作时,所有半导体同样不会过压击穿。
当系统处于预关机状态:因为第三开关模块2(即S)晚于开关S1、S2、S3、S4进行关断,同系统正常工作时,所有半导体同样不会过压击穿。
当系统处于关机状态:第三开关模块2断开,同系统处于预开机状态,所有半导体同样不会过压击穿。
由以上分析可知,在系统各种工作状态中,本申请提供的升压功率变换电路均可以避免现有的电路中可能出现的半导体过压击穿问题。
系统正常工作时,第三开关模块2处于闭合状态,可等效为短路,预充电电路不动作,因此正常工作时,可实现多电平技术,因而使用本申请技术可获得多电平技术带来收益,包括降低输出波形畸变,提高系统效率等。
在上述任一实施例的基础上,该升压功率变换电路还包括:N个逆导型开关管;每个 第一开关模块的两端并联连接一个逆导型开关管,用于实现同步整流。
图5为本申请提供的升压功率变换电路再一实例的原理图;如图5所示,该,在上述图4所示的方案的基础上,每个第一开关模块并联连接一个具有第三象限导通特性的开关管,即逆导型开关管,即D5、D6管并联具有第三象限导通特性的开关管T5、T6,包括MOSFET以及逆导型IGBT,可实现同步整流多电平boost。
图6为本申请提供的升压功率变换电路的另一种连接方式的原理图,如图6所示,电感器和D5、D6连接在输入电源的负极,根据二极管的正向导通特性,D5的阴极与电感器连接。对于N电平增大电路,也可以采用该种方式进行连接。
上述任一实施例提供的升压功率变换电路,通过在飞跨电容一端串接开关,以及给每个飞跨电容增加预充电单元,解决在高压系统中使用低压半导体器件,部分器件存在的不满足耐压要求的问题,并且在实现多电平输出功能的同时,可大幅提高系统效率,减小滤波器的体积。
图7为本申请提供的升压功率变换电路的控制方法实施例一的流程图,如图7所示,该控制方法应用于图2至图6所示的任一实施例提供的升压功率变换电路,其电路原理和连接请参考前述实施例,在此不再赘述,在具体应用中,该升压功率变换电路的控制方法的具体实现步骤包括:
S101:当系统处于预开机状态时,通过每个预充电单元检测每个飞跨电容两端的第一电压。
在本步骤中,该系统指的是使用上述升压功率变换电路的功率变换系统,实时检测系统的状态,在系统的预开机过程中,通过预充电单元检测每个飞跨电容的电压,以图4所示的实施例为例,预充电单元检测飞跨电容C1的电容。
S102:判断每个飞跨电容两端的第一电压是否达到预设阈值。
在本步骤中,需要预先设置飞跨电容的预设阈值,一般情况下该预设阈值为最小电压,该最小电压为保证电路中的半导体器件不会被过压击穿的最小电压,功率变换系统在获取到飞跨电容的电压之后与设置的预设阈值进行对比,判断飞跨电容的电压是否大于预设阈值。
电路中存在多个飞跨电容时,需要将每个飞跨电容的电压与预设阈值进行对比。
S103:若存在第一飞跨电容两端的第一电压未达到所述预设阈值,通过与所述第一飞跨电容并联的第一预充电单元对所述第一飞跨电容进行充电,直至所述第一飞跨电容的两端的第一电压达到所述预设阈值,则将与所述第一飞跨电容串联的第三开关模块闭合。
在本步骤中,如果存在一个或者多个第一飞跨电容的电压,也就是上述的第一电压小于预设阈值,则需要对该第一飞跨电容进行预充电直至第一飞跨电容两端的电压大于或者等于阈值阈值,充电完成后将第三开关模块闭合,以使该功率变换系统正常工作。
进一步地,若第一飞跨电容两端的第一电压达到所述预设阈值,则将与所述第一飞跨电容串联的第三开关模块闭合。这里的第一飞跨电容泛指电路中的每个飞跨电容,如果电路中每个飞跨电容两端的电压均达到了预设阈值,则可以直接将每个第三开关模块闭合,根据一定的规律控制该升压功率变换电路工作即可。
另外,若所述N个第二开关模块根据系统指令关断,则将所述N-1个第三开关模块关断。
在本方案的步骤S101中,判断系统所处的工作状态,一般系统至少包括以下几个状态:①、预开机状态,②、开机后正常工作状态,③、预关机状态,④、关机状态;根据系统所处的不同状态执行不同的动作。当系统处于预开机状态,预充电单元检测飞跨电容的电压,若飞跨电容电压满足设定值范围,则闭合第三开关模块;当飞跨电容电压不满足设定值范围,则通过预充电单元将飞跨电容电压充电值预设值,再闭合第二开关模块;第三开关模块闭合后,其他的开关模块可按照系统指令进行正常的开、关动作,系统进入正常工作状态;系统处于正常工作状态,预充电单元以及第三开关模块维持现有状态;系统处于预关断状态,第一开关模块和第二开关模块按照系统指令关断后,第三开关模块页关断,预充电单元无进一步动作,系统进入关机状态;系统进入关机状态,预充电单元以及第三开关模块维持现有状态。
本实施例提供的升压功率变换电路的控制方法,通过在升压功率变换电路的桥臂上设置与飞跨电容串联的第三开关模块,并为每个飞跨电容并联预充电单元,在飞跨电容的电压小于预设阈值时,断开第三开关模块对飞跨电容进行预充电,当飞跨电容的电压达到预设阈值时,闭合第三开关模块,保证飞跨电容的电压不会低至0V,从而避免在高压系统中使用升压功率变换电路时,半导体器件可能被过压击穿的问题。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制。

Claims (10)

  1. 一种升压功率变换电路,其特征在于,包括:N个第一开关模块、N个第二开关模块、N-1个第三开关模块、N-1个飞跨电容和N-1个预充电单元;N为大于或等于2的正整数;
    所述N个第二开关模块与电感器和输入电源依次串联形成回路;所述N个第一开关模块与负载、所述电感器和所述输入电源依次串联形成回路;第i个第一开关模块和第i+1个第一开关模块之间的第一公共点与第i个第二开关模块和第i+1个第二开关模块之间的第二公共点之间并联一个功能电路;每个功能电路由依次串联的一个飞跨电容和一个第三开关模块组成;i为小于N的正整数;
    每个飞跨电容的两端并联一个预充电单元;每个预充电单元用于在与其并联的飞跨电容连接的第三开关模块断开、且所述飞跨电容的电压小于预设阈值时,对所述飞跨电容进行预充电。
  2. 根据权利要求1所述的升压功率变换电路,其特征在于,所述第一开关模块包括二极管或者二极管并联逆导型半导体开关;所述第二开关模块包括二极管并联半导体开关。
  3. 根据权利要求1或2所述的升压功率变换电路,其特征在于,所述第三开关模块包括常开型开关和开关控制电路;所述开关控制电路用于控制所述常开型开关闭合或者打开。
  4. 根据权利要求1至3任一项所述的升压功率变换电路,其特征在于,所述升压功率变换电路还包括:N个逆导型开关管;每个第一开关模块的两端并联连接一个逆导型开关管,用于实现同步整流。
  5. 根据权利要求4所述的升压功率变换电路,其特征在于,所述逆导型开关管包括金属-氧化层半导体场效晶体管或者逆导型绝缘栅双极型晶体管。
  6. 根据权利要求3所述的升压功率变换电路,其特征在于,所述常开型开关包括继电器、接触器或半导体开关。
  7. 一种升压功率变换电路的控制方法,其特征在于,应用于升压功率变换电路;所述升压功率变换电路包括:N个第一开关模块、N个第二开关模块、N-1个第三开关模块、N-1个飞跨电容和N-1个预充电单元;N为大于或等于2的正整数;所述N个第二开关模块与电感器和输入电源依次串联形成回路;所述N个第一开关模块与负载、所述电感器和所述输入电源依次串联形成回路;第i个第一开关模块和第i+1个第一开关模块之间的第一公共点与第i个第二开关模块和第i+1个第二开关模块之间的第二公共点之间并联一个功能电路;每个功能电路由依次串联的一个飞跨电容和一个第三开关模块组成;i为小于N的正整数;所述方法包括:
    当系统处于预开机状态时,通过每个预充电单元检测每个飞跨电容两端的第一电压;
    判断每个飞跨电容两端的第一电压是否达到预设阈值;
    若存在第一飞跨电容两端的第一电压未达到所述预设阈值,通过与所述第一飞跨电容并联的第一预充电单元对所述第一飞跨电容进行充电,直至所述第一飞跨电容的两端的第一电压达到所述预设阈值,则将与所述第一飞跨电容串联的第三开关模块闭合。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    若第一飞跨电容两端的第一电压达到所述预设阈值,则将与所述第一飞跨电容串联的第三开关模块闭合。
  9. 权利要求7或8所述的方法,其特征在于,所述方法还包括:
    若所述N个第二开关模块根据系统指令关断,则将所述N-1个第三开关模块关断。
  10. 根据权利要求7至9任一项所述的方法,其特征在于,所述第一开关模块包括二极管或者二极管并联逆导型半导体开关;所述第二开关模块包括二极管并联半导体开关;
    所述第三开关模块包括常开型开关和开关控制电路;所述开关控制电路用于控制所述常开型开关闭合或者打开。
PCT/CN2017/100458 2016-09-09 2017-09-05 升压功率变换电路和控制方法 WO2018045936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610816131.6 2016-09-09
CN201610816131.6A CN106230253B (zh) 2016-09-09 2016-09-09 升压功率变换电路和控制方法

Publications (1)

Publication Number Publication Date
WO2018045936A1 true WO2018045936A1 (zh) 2018-03-15

Family

ID=58075498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100458 WO2018045936A1 (zh) 2016-09-09 2017-09-05 升压功率变换电路和控制方法

Country Status (2)

Country Link
CN (1) CN106230253B (zh)
WO (1) WO2018045936A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112448580A (zh) * 2019-08-28 2021-03-05 台达电子工业股份有限公司 飞跨电容转换器
CN113556029A (zh) * 2020-04-23 2021-10-26 台达电子企业管理(上海)有限公司 飞跨电容多电平端口失压保护电路
CN113794373A (zh) * 2021-08-26 2021-12-14 华为技术有限公司 多电平直流转换器及供电系统
EP3910777A4 (en) * 2019-07-19 2022-04-27 Huawei Digital Power Technologies Co., Ltd. BOOST CIRCUIT AND CONTROL METHOD FOR BOOST CIRCUIT
WO2022227696A1 (zh) * 2021-04-28 2022-11-03 科华数据股份有限公司 一种功率变换电路
CN115473417A (zh) * 2022-09-05 2022-12-13 上能电气股份有限公司 基于混合逻辑驱动的变换器电流控制方法及装置
EP4178097A4 (en) * 2020-07-22 2023-12-20 Huawei Digital Power Technologies Co., Ltd. THREE STAGE UP CONVERTER AND CONTROL METHOD
WO2024037058A1 (zh) * 2022-08-18 2024-02-22 阳光电源股份有限公司 飞跨电容三电平dcdc变换器、光伏系统及控制方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230253B (zh) * 2016-09-09 2019-05-07 华为技术有限公司 升压功率变换电路和控制方法
CN108258899B (zh) * 2017-12-29 2021-06-15 华为技术有限公司 一种升压功率变换电路
US10554128B2 (en) * 2018-01-05 2020-02-04 Futurewei Technologies, Inc. Multi-level boost converter
TWI742358B (zh) * 2018-05-04 2021-10-11 德商伍爾特電子eiSos有限公司 功率變換器及形成其一部分的電路
CN108847769B (zh) * 2018-06-22 2020-03-24 阳光电源股份有限公司 一种三电平boost装置及其控制方法
CN108900078B (zh) * 2018-08-03 2020-07-07 阳光电源股份有限公司 一种飞跨电容型三电平变换器及其控制方法
CN108988635B (zh) * 2018-09-13 2019-09-20 阳光电源股份有限公司 一种多电平Boost变换器、逆变系统及控制方法
CN109617148B (zh) * 2018-10-24 2020-08-07 华为技术有限公司 一种飞跨电容的充电方法及装置
CN109756115B (zh) 2018-12-21 2021-12-03 华为数字技术(苏州)有限公司 一种升压功率变换电路、方法、逆变器、装置及系统
DE102019107112B3 (de) * 2019-03-20 2020-07-09 Lisa Dräxlmaier GmbH Schaltvorrichtung, Spannungsversorgungssystem, Verfahren zum Betreiben einer Schaltvorrichtung und Herstellverfahren
JP7270139B2 (ja) * 2019-08-21 2023-05-10 パナソニックIpマネジメント株式会社 Dc/dc変換装置
US11205958B2 (en) 2019-09-18 2021-12-21 Delta Electronics, Inc. Power conversion system
US11205963B2 (en) 2019-09-18 2021-12-21 Delta Electronics, Inc. Multiphase buck converter with extended duty cycle range using multiple bootstrap capacitors
US11309878B2 (en) 2019-09-18 2022-04-19 Delta Electronics, Inc. Power conversion system
US11532428B2 (en) 2019-09-18 2022-12-20 Delta Electronics, Inc. Power conversion system and magnetic component thereof
CN112532049B (zh) * 2019-09-18 2022-04-05 台达电子工业股份有限公司 电源转换系统
CN110611447B (zh) * 2019-09-26 2021-07-30 丰郅(上海)新能源科技有限公司 多电平逆变器的飞跨电容的预充电方法
CN112701913A (zh) * 2019-10-22 2021-04-23 阳光电源股份有限公司 升压功率变换电路及其控制方法与应用装置
CN113078815B (zh) 2020-01-03 2022-04-15 台达电子工业股份有限公司 电源转换系统
CN112383219B (zh) * 2020-12-10 2022-03-18 深圳科士达科技股份有限公司 一种三电平升压电路及其控制方法
CN112928907B (zh) * 2021-02-26 2022-04-12 华中科技大学 一种多电平双向dc-dc变换器启动控制方法及系统
CN112953202B (zh) * 2021-03-03 2023-10-20 华为数字能源技术有限公司 电压转换电路及供电系统
CN115720049A (zh) * 2021-08-24 2023-02-28 中兴通讯股份有限公司 多电平电容预充电路和电源设备
CN114640253B (zh) * 2022-03-24 2023-03-14 苏州罗约科技有限公司 一种混合三电平飞跨电容Boost电路
CN114640252B (zh) * 2022-03-24 2023-03-14 苏州罗约科技有限公司 一种混合三电平飞跨电容升压电路
CN114785103B (zh) * 2022-06-21 2022-09-02 绍兴圆方半导体有限公司 三电平电路电压纹波的控制方法、装置、电子设备
CN115912903A (zh) * 2022-11-30 2023-04-04 捷蒽迪电子科技(上海)有限公司 一种具有预充电电路的串联电容降压转换器
CN117691849A (zh) * 2023-11-02 2024-03-12 深圳市极测科技有限公司 三电平软启动电路及充电方法、充电装置、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2234663Y (zh) * 1995-01-18 1996-09-04 华东冶金学院 新型直流环零电压开关装置
CN103683356A (zh) * 2012-09-20 2014-03-26 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 在线式不间断电源拓扑
CN104811075A (zh) * 2014-12-12 2015-07-29 武汉绿鼎天舒科技发展有限公司 一种组合变换器的控制方法
CN104868716A (zh) * 2014-02-20 2015-08-26 艾默生网络能源有限公司 一种升压变换器
US20160077536A1 (en) * 2014-09-16 2016-03-17 Dialog Semiconductor (Uk) Limited Power Converter
CN105610337A (zh) * 2016-03-01 2016-05-25 北京京仪椿树整流器有限责任公司 一种通过峰值电流控制L-Boost多电平电路输出均压的方法
CN106230253A (zh) * 2016-09-09 2016-12-14 华为技术有限公司 升压功率变换电路和控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012005974A1 (de) * 2012-03-23 2013-09-26 Tq-Systems Gmbh Elektrische Schaltung und Verfahren zu deren Betrieb

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2234663Y (zh) * 1995-01-18 1996-09-04 华东冶金学院 新型直流环零电压开关装置
CN103683356A (zh) * 2012-09-20 2014-03-26 伊顿制造(格拉斯哥)有限合伙莫尔日分支机构 在线式不间断电源拓扑
CN104868716A (zh) * 2014-02-20 2015-08-26 艾默生网络能源有限公司 一种升压变换器
US20160077536A1 (en) * 2014-09-16 2016-03-17 Dialog Semiconductor (Uk) Limited Power Converter
CN104811075A (zh) * 2014-12-12 2015-07-29 武汉绿鼎天舒科技发展有限公司 一种组合变换器的控制方法
CN105610337A (zh) * 2016-03-01 2016-05-25 北京京仪椿树整流器有限责任公司 一种通过峰值电流控制L-Boost多电平电路输出均压的方法
CN106230253A (zh) * 2016-09-09 2016-12-14 华为技术有限公司 升压功率变换电路和控制方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3910777A4 (en) * 2019-07-19 2022-04-27 Huawei Digital Power Technologies Co., Ltd. BOOST CIRCUIT AND CONTROL METHOD FOR BOOST CIRCUIT
AU2020317327B2 (en) * 2019-07-19 2023-10-26 Huawei Digital Power Technologies Co., Ltd. Step-Up Circuit and Step-Circuit Control Method
CN112448580A (zh) * 2019-08-28 2021-03-05 台达电子工业股份有限公司 飞跨电容转换器
CN113556029B (zh) * 2020-04-23 2023-02-28 台达电子企业管理(上海)有限公司 飞跨电容多电平端口失压保护电路
CN113556029A (zh) * 2020-04-23 2021-10-26 台达电子企业管理(上海)有限公司 飞跨电容多电平端口失压保护电路
US11451135B2 (en) 2020-04-23 2022-09-20 Delta Electronics (Shanghai) Co., Ltd. Multilevel port under-voltage protection circuit with flying capacitor
EP4178097A4 (en) * 2020-07-22 2023-12-20 Huawei Digital Power Technologies Co., Ltd. THREE STAGE UP CONVERTER AND CONTROL METHOD
WO2022227696A1 (zh) * 2021-04-28 2022-11-03 科华数据股份有限公司 一种功率变换电路
CN113794373A (zh) * 2021-08-26 2021-12-14 华为技术有限公司 多电平直流转换器及供电系统
CN113794373B (zh) * 2021-08-26 2024-03-01 华为技术有限公司 多电平直流转换器及供电系统
WO2024037058A1 (zh) * 2022-08-18 2024-02-22 阳光电源股份有限公司 飞跨电容三电平dcdc变换器、光伏系统及控制方法
CN115473417A (zh) * 2022-09-05 2022-12-13 上能电气股份有限公司 基于混合逻辑驱动的变换器电流控制方法及装置
CN115473417B (zh) * 2022-09-05 2024-01-09 上能电气股份有限公司 基于混合逻辑驱动的变换器电流控制方法及装置

Also Published As

Publication number Publication date
CN106230253A (zh) 2016-12-14
CN106230253B (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2018045936A1 (zh) 升压功率变换电路和控制方法
US11463009B2 (en) Flying capacitor charging method and apparatus
WO2019129027A1 (zh) 一种升压功率变换电路
US10554128B2 (en) Multi-level boost converter
US8675374B2 (en) Auto-optimization circuits and methods for cyclical electronic systems
CN105226975B (zh) Tnpc逆变器装置及其桥臂短路检测方法
US20200044578A1 (en) Multi-Level Power Converter with Light Load Flying Capacitor Voltage Regulation
CN102810993A (zh) 一种电源转换器及其方法
WO2021013101A1 (zh) 升压电路以及升压电路的控制方法
CN109245055B (zh) 功率变换系统、功率开关管的过流保护电路及方法
CN103795385A (zh) 功率管驱动方法、电路及直流固态功率控制器
CN107809171B (zh) 开关电源及其功率开关管的驱动方法与驱动电路
CN108092493B (zh) 一种SiC MOSFET串联电路
CN102946205A (zh) 三电平逆变器和供电设备
CN107659128B (zh) Dc/dc开关变换器功率输出晶体管集成驱动电路
CN103424602A (zh) 基于源极驱动的次级绕组电流检测电路
US10404176B2 (en) Switched capacitor voltage converters with current sense circuits coupled to tank circuits
US20130301176A1 (en) Protection circuit for a cascode switch, and a method of protecting a cascode switch
CN203747779U (zh) 功率管驱动电路及直流固态功率控制器
WO2024036800A1 (zh) 应用全桥同步整流启动防倒灌电路及电子设备
US11581885B2 (en) Pre-charge control circuit and method of controlling the same
CN116260315A (zh) 一种具备逐周电流检测型失效保护和氮化镓直驱能力的升降压转换器
CN110677027A (zh) 一种嵌位型升压功率变换电路
WO2021120220A1 (zh) 一种直流变换器
US11234302B2 (en) Control circuit, driving circuit and control method for controlling a transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848109

Country of ref document: EP

Kind code of ref document: A1