WO2018045566A1 - Procédé d'imagerie doppler d'angle de radar doppler à impulsions aléatoires fondé sur une détection compressée - Google Patents

Procédé d'imagerie doppler d'angle de radar doppler à impulsions aléatoires fondé sur une détection compressée Download PDF

Info

Publication number
WO2018045566A1
WO2018045566A1 PCT/CN2016/098598 CN2016098598W WO2018045566A1 WO 2018045566 A1 WO2018045566 A1 WO 2018045566A1 CN 2016098598 W CN2016098598 W CN 2016098598W WO 2018045566 A1 WO2018045566 A1 WO 2018045566A1
Authority
WO
WIPO (PCT)
Prior art keywords
doppler
space
time
angle
clutter
Prior art date
Application number
PCT/CN2016/098598
Other languages
English (en)
Chinese (zh)
Inventor
阳召成
全桂华
黄建军
黄敬雄
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2016/098598 priority Critical patent/WO2018045566A1/fr
Publication of WO2018045566A1 publication Critical patent/WO2018045566A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging

Definitions

  • the invention belongs to the field of radar signal processing, and more particularly to a random pulse Doppler radar angle-Doppler imaging method based on compressed sensing.
  • STAP Space-Time Adaptive Processing
  • ACP Auxiliary Channel Processor
  • PC Principal Components
  • JDL Joint Domain Localized
  • MTF Multistage Winer Filter
  • a series of dimensionality reduction or descending rank algorithms such as the Auxiliary Eigen Vector Processor (AEP) reduces the number of samples required to 2 times the dimension after dimensionality reduction or the number of wavelet ranks after 2 times the reduced rank.
  • AEP Auxiliary Eigen Vector Processor
  • the sparse-based STAP algorithm proposed to improve the convergence of the system is based on the sparse property of the clutter power spectrum in the angle-Doppler domain, and the sparse recovery algorithm is used to reconstruct the clutter of the Doppler.
  • the image is thus estimated to estimate the clutter covariance matrix, and then the space-time filter is designed to achieve the purpose of clutter suppression and target detection.
  • Most existing sparse-based STAP algorithms are implemented in spatial and Doppler dimensions in a uniform sampling manner.
  • PRF uniform pulse repetition frequency
  • array element array modes are inevitable. Problems such as Doppler or distance blur will eventually lead to system clutter suppression and target detection performance degradation.
  • the uniform pulse transmission mode Doppler radar emission waveform is easy to be intercepted, and the anti-interference ability is poor.
  • the object of the present invention is to provide a method for random pulse Doppler radar angle-Doppler imaging based on compressed sensing, aiming at solving the uniform pulse transmitting Doppler radar in the prior art.
  • the transmit waveform is easily intercepted and has poor anti-interference ability, while improving the target processing capability in a single coherent processing time interval.
  • the invention provides a method for random pulse Doppler radar angle-Doppler imaging based on compressed sensing, comprising the following steps:
  • S1 obtaining space-time compressed sampling data based on a radar system
  • S3 Estimating the space-time power spectrum according to the space-time guiding dictionary, and obtaining an angle-Doppler image including the clutter and the target.
  • T m+1 is the pulse emission time of the index m+1
  • m is the pulse index
  • T r is the uniform pulse repetition period
  • is the offset factor
  • t m is the random factor of the index m
  • B(0,T r ) obeys the Bernoulli distribution in the range of (0,T r ).
  • the space-time guidance dictionary is represented by the matrix ⁇ ; wherein Clutter space-time snapshot of the complex amplitude on the angle-Doppler domain
  • v(f d,i , f s,j ) is the space-time steering vector
  • f d,i is the Doppler frequency
  • f s , j is the spatial frequency
  • ⁇ c i, j is the complex amplitude of the clutter in the angle-Doppler plane grid
  • i 1,...
  • N d is the Doppler frequency partition index
  • N d is the number of Doppler frequency divisions
  • N s is the number of spatial frequency divisions.
  • the whole angle-Doppler plane is divided into N s N d grids; where ⁇ d , ⁇ s represent the resolution scale of the Doppler frequency and the spatial frequency, respectively, f s is the normalized spatial frequency range, N is The number of receiving arrays, f d is the Doppler frequency range, and f r is the maximum unambiguous Doppler frequency.
  • the method for realizing angle-Doppler imaging based on the radar system has the following advantages: (1) effectively solving the target, the clutter Doppler blur problem, and improving the miscellaneous Wave suppression and target detection performance; (2) reduce the number of pulses emitted by the radar system, can transmit other radar waveforms in the same pulse coherent processing interval (CPI) or simultaneously observe multiple angles, thereby effectively improving the radar time dimension The multiplexing capability; (3) can effectively improve the Doppler resolution capability under the same number of pulses; (4) the low interception capability of the radar waveform, and the stronger anti-interference ability.
  • CPI pulse coherent processing interval
  • FIG. 1 is a flow chart of a method for implementing a compressed pulse-based random pulse Doppler radar angle-Doppler imaging according to the present invention
  • Figure 2 is a plot of the degree of defuzzification versus the parameter factor ⁇ ;
  • FIG. 3 is an angle-Doppler imaging diagram obtained by different compression ratios in a pulse dimension; wherein (a) is a compression ratio of 1:2, (b) is a compression ratio of 1:3, and (c) is a compression ratio of 1: 4, (d) is a compression ratio of 1:6;
  • Figure 4 is a schematic diagram of angle-Doppler imaging obtained by Doppler radar, where (a) is an angle-Doppler imaging diagram obtained by a uniform PRF radar, and (b) is an angle-Doppler imaging obtained by a random PRF radar. schematic diagram.
  • the invention proposes a stochastic PRF pulse Doppler radar system based on compressed sensing from the perspective of solving the problem of pulse Doppler ambiguity, improving the practical value of the system and the anti-interference ability of the system. Due to the introduction of random pulses, the Doppler ambiguity can be effectively eliminated and the interception capability of the radar waveform can be reduced. Since the number of transmitted pulses is reduced, the practical value of the system can be effectively improved, and multiple groups can be transmitted in one CPI time. Radar waveforms or simultaneous observation of multiple angles can improve the multiplexing ability of the radar time dimension.
  • the method for compressive sensing based random pulse Doppler radar angle-Doppler imaging comprises the following steps:
  • S1 obtaining space-time compressed sampling data based on a random pulse Doppler radar system under compressed sampling
  • Process 1 based on a random pulsed Doppler frequency radar system under compressed sampling, obtaining space-time compressed sampling data;
  • the traditional pulse Doppler radar system transmits M equally spaced pulse sequences (period T r ) in one CPI period.
  • the thermal noise component, N is the number of receiving antenna elements.
  • v dt (f dt ) [1,exp(j2 ⁇ f dt T 1 )...,exp(j2 ⁇ f dt T M-1 )] T ,
  • v st (f st ) [1,exp(j2 ⁇ f st ),...,exp(j2 ⁇ (N-1)f st )] T ,
  • the clutter component can be expressed as: among them They are the complex amplitude, time and space steering vectors of the i-th clutter block on the interest distance loop, and N c is the number of independent clutter blocks in the interest distance clutter loop.
  • NK ⁇ NM NK ⁇ 1
  • H H
  • the sampling matrix and the measurement matrix, respectively
  • I N an N ⁇ N unit matrix
  • Process 2 Design a space-time oriented dictionary to complete the sparse representation of the signal.
  • the clutter space-time snap signal can be expressed as:
  • v(f d,k ,f s,i ), f d,k ,f s,i are the space-time guided vectors of the ki discrete points of the entire angle-Doppler plane, and the discretized Doppler Frequency, normalized spatial frequency.
  • Process 3 Estimating the space-time power spectrum to achieve angle-Doppler imaging.
  • the angle containing the clutter and the target - the Doppler image ⁇ can be estimated by solving the optimization problem of the following formula Subject to among them, Indicates the l p norm, ⁇ e is the noise error allowed.
  • the angle-Doppler image can be estimated Express And
  • the beneficial effects of the newly proposed radar system in the present invention will be analyzed from the following two points: First, the Doppler ambiguity (including target Doppler ambiguity and clutter Doppler ambiguity) under the radar system is analyzed. Secondly, the angle-Doppler image recovery performance based on Doppler-dimensional compression sampling is analyzed.
  • P b and P r represent the sum of the energy powers of all clutter blocks in the clutter fuzzy region and the clutter ridge region on the angle-Doppler plane, respectively.
  • the graph reflects the relationship between the degree of defuzzification and the different parameters ⁇ .
  • the appropriate parameter selection range such as 0.3 ⁇ ⁇ ⁇ 0.7
  • the sum of the powers of all the clutter blocks in the fuzzy region is better.
  • the clutter Doppler blur (as well as the target Doppler blur) is basically eliminated.
  • complete de-fuzzing of Doppler is not possible.
  • the invention relates to radar signal processing and ground moving target detection, and proposes a random impulse Doppler array radar based on compressed sensing, which constructs a clutter containing according to the sparse characteristics of the clutter or target in the angle-Doppler domain.
  • the angle of the target - the sparse recovery problem of the Doppler image, the angle-Doppler image is obtained by solving the problem, which provides a basis for subsequent target detection.
  • the introduction of random pulses can effectively eliminate the Doppler blur; because the number of transmitted pulses is reduced, the radar waveform interception capability is reduced, and multiple sets of radar waveforms are transmitted in one CPI. Or observing multiple angles at the same time, improving the multiplexing ability of the radar time dimension.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'invention concerne un procédé d'imagerie Doppler d'angle de radar Doppler à impulsions aléatoires fondé sur une détection compressée consistant : S1, à obtenir des données d'échantillonnage compressées d'espace-temps en fonction d'un système radar ; S2, à réaliser respectivement un traitement de discrétisation spatiale sur un espace de fréquence Doppler et une fréquence spatiale dans les données d'échantillonnage compressées d'espace-temps et à obtenir un dictionnaire orienté espace-temps ; et S3, à estimer un spectre de puissance d'espace-temps en fonction du dictionnaire orienté espace-temps et à obtenir une image d'angle-Doppler comportant un fouillis et une cible. Le problème de l'ambiguïté Doppler de cible et de fouillis est résolu efficacement, la suppression de fouillis et la performance de détection de cible sont améliorées ; le nombre d'impulsions transmises par un système radar est réduit et d'autres formes d'onde radar peuvent être transmises ou des angles multiples peuvent être observés en même temps à un même intervalle de traitement cohérent d'impulsion, ce qui permet d'améliorer efficacement la capacité de multiplexage de dimension temporel d'un radar ; au même nombre d'impulsions, la capacité de résolution Doppler peut être efficacement améliorée ; les capacités d'interception basse et de capture de forme d'onde de radar et la capacité de résistance au brouillage sont plus fortes.
PCT/CN2016/098598 2016-09-09 2016-09-09 Procédé d'imagerie doppler d'angle de radar doppler à impulsions aléatoires fondé sur une détection compressée WO2018045566A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098598 WO2018045566A1 (fr) 2016-09-09 2016-09-09 Procédé d'imagerie doppler d'angle de radar doppler à impulsions aléatoires fondé sur une détection compressée

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098598 WO2018045566A1 (fr) 2016-09-09 2016-09-09 Procédé d'imagerie doppler d'angle de radar doppler à impulsions aléatoires fondé sur une détection compressée

Publications (1)

Publication Number Publication Date
WO2018045566A1 true WO2018045566A1 (fr) 2018-03-15

Family

ID=61561630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098598 WO2018045566A1 (fr) 2016-09-09 2016-09-09 Procédé d'imagerie doppler d'angle de radar doppler à impulsions aléatoires fondé sur une détection compressée

Country Status (1)

Country Link
WO (1) WO2018045566A1 (fr)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931766A (zh) * 2018-04-28 2018-12-04 河海大学 一种基于稀疏重构的非均匀stap干扰目标滤除方法
CN109116352A (zh) * 2018-07-20 2019-01-01 中国石油大学(华东) 一种圆扫isar模式船只超分辨率成像方法
CN109932716A (zh) * 2019-03-03 2019-06-25 中国人民解放军空军工程大学 一种低空目标微多普勒特征提取方法
CN109946696A (zh) * 2019-04-15 2019-06-28 西安电子科技大学 基于目标先验信息的雷达凝视关联成像方法
CN109946668A (zh) * 2019-03-18 2019-06-28 西安电子科技大学 基于多波束形成的目标二次甄别方法
CN110007284A (zh) * 2019-04-10 2019-07-12 南京航空航天大学 一种脉冲体制1-比特雷达非线性目标重构问题降维方法
CN110716201A (zh) * 2019-09-10 2020-01-21 中国人民解放军空军工程大学 一种基于发射脉冲周期时延设计的空间旋转目标视频isar成像方法
CN110967676A (zh) * 2019-11-26 2020-04-07 西安电子科技大学 基于epc-mimo编解码设计的目标距离解模糊方法
CN111337895A (zh) * 2020-01-14 2020-06-26 北京理工大学 多通道海杂波空时相关性分析方法
CN111458690A (zh) * 2020-04-17 2020-07-28 西安电子工程研究所 基于数学形态学的雷达气象杂波抑制方法
CN111693960A (zh) * 2020-06-11 2020-09-22 中山大学 一种变频压缩感知雷达的信号处理方法
CN111781595A (zh) * 2020-06-28 2020-10-16 中国人民解放军空军工程大学 基于匹配搜索和多普勒解模糊的复杂机动群目标成像方法
CN111812598A (zh) * 2020-07-30 2020-10-23 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于时域频域多特征的地海杂波分类方法
CN111880154A (zh) * 2020-05-29 2020-11-03 西安电子科技大学 基于对称波数谱对消的复图像域运动目标检测方法
CN111896930A (zh) * 2020-08-28 2020-11-06 西安电子科技大学 基于运动平台空时自适应杂波抑制的子阵划分方法
CN112014805A (zh) * 2020-08-12 2020-12-01 西安电子科技大学 基于时间分集阵mimo雷达的欺骗式干扰抑制方法
CN112162281A (zh) * 2020-08-28 2021-01-01 西安电子科技大学 一种多通道sar-gmti图像域两步处理方法
CN112213709A (zh) * 2020-10-17 2021-01-12 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于相参脉冲串的仿机载数据分组方法
CN112525338A (zh) * 2020-11-30 2021-03-19 合肥工业大学 一种基于压缩感知理论的旋转声源多普勒效应消除方法
CN112684425A (zh) * 2020-11-11 2021-04-20 西安电子科技大学 一种恒虚警检测后的目标二次甄别方法
CN112835003A (zh) * 2020-12-31 2021-05-25 西安电子科技大学 基于重采样预处理的雷达重频变化稳健目标识别方法
CN112986944A (zh) * 2021-03-04 2021-06-18 西安电子科技大学 一种基于cuda异构并行加速的雷达mti和mtd实现方法
CN113030878A (zh) * 2021-02-08 2021-06-25 西安电子科技大学 对空时自适应处理的非均匀间歇采样随机转发干扰方法
CN113253222A (zh) * 2021-01-19 2021-08-13 西安电子科技大学 机载fda-mimo双基地雷达距离模糊杂波抑制及降维搜索方法
CN113376599A (zh) * 2021-01-19 2021-09-10 西安电子科技大学 基于主瓣校正的fda距离模糊杂波抑制方法
CN113504509A (zh) * 2021-06-08 2021-10-15 西安理工大学 一种波束域补偿的匀加速机载雷达杂波抑制方法
CN113514812A (zh) * 2021-09-14 2021-10-19 北京海兰信数据科技股份有限公司 一种岸基雷达杂波抑制处理方法及系统
CN113702934A (zh) * 2021-06-25 2021-11-26 北京理工大学 适用于mimo雷达的距离-多普勒-角度三维副瓣抑制方法
CN113945901A (zh) * 2021-09-12 2022-01-18 河南大学 一种压缩感知抑制射频干扰的工程实现方法
CN115047425A (zh) * 2022-05-25 2022-09-13 西安电子科技大学 超高速平台杂波快速仿真方法及其装置
CN115453477A (zh) * 2022-08-03 2022-12-09 西安电子科技大学 一种外辐射源雷达监视通道信号中多径杂波的对消方法
CN116359857A (zh) * 2023-06-02 2023-06-30 中国人民解放军空军预警学院 机载预警雷达空时频自适应抗主瓣欺骗干扰方法与装置
CN117784078A (zh) * 2024-02-27 2024-03-29 中国人民解放军空军预警学院 机载雷达空时极化联合自适应处理杂波抑制方法与装置
CN118209955A (zh) * 2024-05-22 2024-06-18 常熟理工学院 基于字典动态学习的目标参数估计方法、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7397418B1 (en) * 2006-06-05 2008-07-08 Sandia Corporation SAR image formation with azimuth interpolation after azimuth transform
CN103018727A (zh) * 2011-09-27 2013-04-03 中国科学院电子学研究所 一种基于样本训练的机载雷达非平稳杂波抑制方法
CN103105610A (zh) * 2013-01-18 2013-05-15 北京理工大学 基于非均匀采样的dpc-mab sar成像方法
CN106324596A (zh) * 2016-09-09 2017-01-11 深圳大学 基于压缩感知的随机脉冲多普勒雷达角度‑多普勒成像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7397418B1 (en) * 2006-06-05 2008-07-08 Sandia Corporation SAR image formation with azimuth interpolation after azimuth transform
CN103018727A (zh) * 2011-09-27 2013-04-03 中国科学院电子学研究所 一种基于样本训练的机载雷达非平稳杂波抑制方法
CN103105610A (zh) * 2013-01-18 2013-05-15 北京理工大学 基于非均匀采样的dpc-mab sar成像方法
CN106324596A (zh) * 2016-09-09 2017-01-11 深圳大学 基于压缩感知的随机脉冲多普勒雷达角度‑多普勒成像方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG, ZHAOCHENG ET AL.: "On Clutter Sparsity Analysis in Space-Time Adaptive Processing Airborne Radar", IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, vol. 10, no. 5, 30 September 2013 (2013-09-30), pages 1214 - 1215, XP011515206 *
YANG, ZHAOCHENG ET AL.: "Sparsity-Based Space-Time Adaptive Processing Using Complex-Valued Homotopy Technique for Airborne Radar", IET SIGNAL PROCESSING, vol. 8, no. 5, 31 January 2014 (2014-01-31), pages 552 - 564, XP006048709 *

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931766A (zh) * 2018-04-28 2018-12-04 河海大学 一种基于稀疏重构的非均匀stap干扰目标滤除方法
CN108931766B (zh) * 2018-04-28 2022-02-01 河海大学 一种基于稀疏重构的非均匀stap干扰目标滤除方法
CN109116352A (zh) * 2018-07-20 2019-01-01 中国石油大学(华东) 一种圆扫isar模式船只超分辨率成像方法
CN109116352B (zh) * 2018-07-20 2022-02-11 中国石油大学(华东) 一种圆扫isar模式船只超分辨率成像方法
CN109932716A (zh) * 2019-03-03 2019-06-25 中国人民解放军空军工程大学 一种低空目标微多普勒特征提取方法
CN109946668A (zh) * 2019-03-18 2019-06-28 西安电子科技大学 基于多波束形成的目标二次甄别方法
CN109946668B (zh) * 2019-03-18 2022-12-02 西安电子科技大学 基于多波束形成的目标二次甄别方法
CN110007284B (zh) * 2019-04-10 2023-01-31 南京航空航天大学 一种脉冲体制1-比特雷达非线性目标重构问题降维方法
CN110007284A (zh) * 2019-04-10 2019-07-12 南京航空航天大学 一种脉冲体制1-比特雷达非线性目标重构问题降维方法
CN109946696B (zh) * 2019-04-15 2022-12-06 西安电子科技大学 基于目标先验信息的雷达凝视关联成像方法
CN109946696A (zh) * 2019-04-15 2019-06-28 西安电子科技大学 基于目标先验信息的雷达凝视关联成像方法
CN110716201B (zh) * 2019-09-10 2024-01-26 中国人民解放军空军工程大学 一种基于发射脉冲周期时延设计的空间旋转目标视频isar成像方法
CN110716201A (zh) * 2019-09-10 2020-01-21 中国人民解放军空军工程大学 一种基于发射脉冲周期时延设计的空间旋转目标视频isar成像方法
CN110967676B (zh) * 2019-11-26 2023-03-10 西安电子科技大学 基于epc-mimo编解码设计的目标距离解模糊方法
CN110967676A (zh) * 2019-11-26 2020-04-07 西安电子科技大学 基于epc-mimo编解码设计的目标距离解模糊方法
CN111337895A (zh) * 2020-01-14 2020-06-26 北京理工大学 多通道海杂波空时相关性分析方法
CN111458690A (zh) * 2020-04-17 2020-07-28 西安电子工程研究所 基于数学形态学的雷达气象杂波抑制方法
CN111880154A (zh) * 2020-05-29 2020-11-03 西安电子科技大学 基于对称波数谱对消的复图像域运动目标检测方法
CN111880154B (zh) * 2020-05-29 2023-07-04 西安电子科技大学 基于对称波数谱对消的复图像域运动目标检测方法
CN111693960A (zh) * 2020-06-11 2020-09-22 中山大学 一种变频压缩感知雷达的信号处理方法
CN111781595B (zh) * 2020-06-28 2023-06-27 中国人民解放军空军工程大学 基于匹配搜索和多普勒解模糊的复杂机动群目标成像方法
CN111781595A (zh) * 2020-06-28 2020-10-16 中国人民解放军空军工程大学 基于匹配搜索和多普勒解模糊的复杂机动群目标成像方法
CN111812598A (zh) * 2020-07-30 2020-10-23 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于时域频域多特征的地海杂波分类方法
CN111812598B (zh) * 2020-07-30 2022-03-22 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于时域频域多特征的地海杂波分类方法
CN112014805B (zh) * 2020-08-12 2023-03-24 西安电子科技大学 基于时间分集阵mimo雷达的欺骗式干扰抑制方法
CN112014805A (zh) * 2020-08-12 2020-12-01 西安电子科技大学 基于时间分集阵mimo雷达的欺骗式干扰抑制方法
CN112162281B (zh) * 2020-08-28 2022-11-25 西安电子科技大学 一种多通道sar-gmti图像域两步处理方法
CN111896930A (zh) * 2020-08-28 2020-11-06 西安电子科技大学 基于运动平台空时自适应杂波抑制的子阵划分方法
CN112162281A (zh) * 2020-08-28 2021-01-01 西安电子科技大学 一种多通道sar-gmti图像域两步处理方法
CN112213709A (zh) * 2020-10-17 2021-01-12 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于相参脉冲串的仿机载数据分组方法
CN112213709B (zh) * 2020-10-17 2022-03-04 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于相参脉冲串的仿机载数据分组方法
CN112684425B (zh) * 2020-11-11 2023-12-22 西安电子科技大学 一种恒虚警检测后的目标二次甄别方法
CN112684425A (zh) * 2020-11-11 2021-04-20 西安电子科技大学 一种恒虚警检测后的目标二次甄别方法
CN112525338A (zh) * 2020-11-30 2021-03-19 合肥工业大学 一种基于压缩感知理论的旋转声源多普勒效应消除方法
CN112525338B (zh) * 2020-11-30 2022-10-04 合肥工业大学 一种基于压缩感知理论的旋转声源多普勒效应消除方法
CN112835003A (zh) * 2020-12-31 2021-05-25 西安电子科技大学 基于重采样预处理的雷达重频变化稳健目标识别方法
CN112835003B (zh) * 2020-12-31 2023-06-30 西安电子科技大学 基于重采样预处理的雷达重频变化稳健目标识别方法
CN113253222B (zh) * 2021-01-19 2023-04-11 西安电子科技大学 机载fda-mimo双基地雷达距离模糊杂波抑制及降维搜索方法
CN113253222A (zh) * 2021-01-19 2021-08-13 西安电子科技大学 机载fda-mimo双基地雷达距离模糊杂波抑制及降维搜索方法
CN113376599A (zh) * 2021-01-19 2021-09-10 西安电子科技大学 基于主瓣校正的fda距离模糊杂波抑制方法
CN113376599B (zh) * 2021-01-19 2024-02-06 西安电子科技大学 基于主瓣校正的fda距离模糊杂波抑制方法
CN113030878A (zh) * 2021-02-08 2021-06-25 西安电子科技大学 对空时自适应处理的非均匀间歇采样随机转发干扰方法
CN112986944B (zh) * 2021-03-04 2023-09-08 西安电子科技大学 一种基于cuda异构并行加速的雷达mti和mtd实现方法
CN112986944A (zh) * 2021-03-04 2021-06-18 西安电子科技大学 一种基于cuda异构并行加速的雷达mti和mtd实现方法
CN113504509B (zh) * 2021-06-08 2023-07-11 西安理工大学 一种波束域补偿的匀加速机载雷达杂波抑制方法
CN113504509A (zh) * 2021-06-08 2021-10-15 西安理工大学 一种波束域补偿的匀加速机载雷达杂波抑制方法
CN113702934A (zh) * 2021-06-25 2021-11-26 北京理工大学 适用于mimo雷达的距离-多普勒-角度三维副瓣抑制方法
CN113702934B (zh) * 2021-06-25 2023-12-05 北京理工大学 适用于mimo雷达的距离-多普勒-角度三维副瓣抑制方法
CN113945901A (zh) * 2021-09-12 2022-01-18 河南大学 一种压缩感知抑制射频干扰的工程实现方法
CN113514812A (zh) * 2021-09-14 2021-10-19 北京海兰信数据科技股份有限公司 一种岸基雷达杂波抑制处理方法及系统
CN115047425A (zh) * 2022-05-25 2022-09-13 西安电子科技大学 超高速平台杂波快速仿真方法及其装置
CN115453477A (zh) * 2022-08-03 2022-12-09 西安电子科技大学 一种外辐射源雷达监视通道信号中多径杂波的对消方法
CN116359857B (zh) * 2023-06-02 2023-09-01 中国人民解放军空军预警学院 机载预警雷达空时频自适应抗主瓣欺骗干扰方法与装置
CN116359857A (zh) * 2023-06-02 2023-06-30 中国人民解放军空军预警学院 机载预警雷达空时频自适应抗主瓣欺骗干扰方法与装置
CN117784078A (zh) * 2024-02-27 2024-03-29 中国人民解放军空军预警学院 机载雷达空时极化联合自适应处理杂波抑制方法与装置
CN117784078B (zh) * 2024-02-27 2024-05-14 中国人民解放军空军预警学院 机载雷达空时极化联合自适应处理杂波抑制方法与装置
CN118209955A (zh) * 2024-05-22 2024-06-18 常熟理工学院 基于字典动态学习的目标参数估计方法、系统及存储介质

Similar Documents

Publication Publication Date Title
WO2018045566A1 (fr) Procédé d'imagerie doppler d'angle de radar doppler à impulsions aléatoires fondé sur une détection compressée
Wang et al. Improved global range alignment for ISAR
CN109116311B (zh) 基于知识辅助稀疏迭代协方差估计的杂波抑制方法
CN106338723B (zh) 一种基于互质脉冲重复间隔的空时自适应处理方法及装置
CN109061589A (zh) 随机跳频雷达的目标运动参数估计方法
CN106324596B (zh) 基于压缩感知的随机脉冲多普勒雷达角度-多普勒成像方法
CN109212500A (zh) 一种基于稀疏重构的ka-stap杂噪协方差矩阵高精度估计方法
CN104076360B (zh) 基于压缩感知的二维sar稀疏目标成像方法
CN107576947B (zh) 基于时间平滑的l型阵对相干信源二维波达方向估计方法
CN109507666A (zh) 基于离网变分贝叶斯算法的isar稀疏频带成像方法
Zhu et al. On the dimensionality of wall and target return subspaces in through-the-wall radar imaging
Rabideau Clutter and jammer multipath cancellation in airborne adaptive radar
CN105929397B (zh) 基于正则化的偏置相位中心天线成像方法
Zhang et al. Space-time adaptive processing in bistatic passive radar exploiting complex Bayesian learning
Yang et al. Enhanced knowledge-aided space–time adaptive processing exploiting inaccurate prior knowledge of the array manifold
Wang et al. Research on anti-Narrowband AM jamming of Ultra-wideband impulse radio detection radar based on improved singular spectrum analysis
Zhang et al. Interrupted sampling repeater jamming countermeasure technology based on random interpulse frequency coding LFM signal
Wang et al. Research on instantaneous polarization radar system and external experiment
CN106980110B (zh) 一种自适应对抗含多径有源压制干扰的副瓣对消方法
Qiu et al. Research on SAR anti-jamming technique based on orthogonal LFM-PC signals with adaptive initial phase
Ji et al. A fast false large-scene images generation method against SAR based on two-dimension CZT and multi-transmitter cooperation
Gao et al. Knowledge-aided direct data domain STAP algorithm for forward-looking airborne radar
Zhang et al. Multiband passive ISAR processing based on Bayesian compressive sensing
Yang et al. Compressive space-time adaptive processing airborne radar with random pulse repetition interval and random arrays
Ma et al. High-resolution imaging using a narrowband MIMO radar system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16915500

Country of ref document: EP

Kind code of ref document: A1