WO2018043546A1 - 変異型酵素の製造方法及び変異型アルコールアシルトランスフェラーゼ - Google Patents

変異型酵素の製造方法及び変異型アルコールアシルトランスフェラーゼ Download PDF

Info

Publication number
WO2018043546A1
WO2018043546A1 PCT/JP2017/031116 JP2017031116W WO2018043546A1 WO 2018043546 A1 WO2018043546 A1 WO 2018043546A1 JP 2017031116 W JP2017031116 W JP 2017031116W WO 2018043546 A1 WO2018043546 A1 WO 2018043546A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
cysteine
seq
acid sequence
substitution
Prior art date
Application number
PCT/JP2017/031116
Other languages
English (en)
French (fr)
Inventor
不二夫 湯
渉 水無
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to BR112019003003-4A priority Critical patent/BR112019003003A2/pt
Priority to EP17846550.6A priority patent/EP3508585B1/en
Priority to ES17846550T priority patent/ES2903263T3/es
Priority to MYPI2019001083A priority patent/MY190749A/en
Priority to JP2017548070A priority patent/JP7024951B2/ja
Priority to CN201780053652.3A priority patent/CN109844127B/zh
Publication of WO2018043546A1 publication Critical patent/WO2018043546A1/ja
Priority to US16/288,970 priority patent/US10907136B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to a method for producing a mutant enzyme and a mutant alcohol acyltransferase. More specifically, the present invention relates to a method for obtaining an enzyme such as alcohol acyltransferase as a highly active soluble recombinant protein.
  • the protein After the protein is translated in the cell, the protein is folded into a unique three-dimensional structure and has a function.
  • a heterologous protein is expressed using a transformant (recombinant)
  • normal folding of the protein is not performed in the host cell, and an inclusion body may be formed.
  • the protein in the inclusion body becomes an inactive protein in which the original activity is lost, and is insolubilized in some cases.
  • the formation of inclusion bodies is thought to be due to the fact that the protein does not normally fold in the intracellular environment of the host, which is different from the intracellular environment (temperature, transcription rate, translation rate, etc.) of the protein-derived species. Yes.
  • Non-patent Document 1 an enzyme whose solubility has been greatly improved by introduction of mutations has been obtained.
  • Patent Documents 1 to 3 propose a method for producing isobutyric acid ester or methacrylic acid ester from isobutyryl-CoA or methacrylyl-CoA produced from biomass using alcohol acyltransferase (AAT).
  • Carboxylic acid esters are used as raw materials for various industrial chemicals, fragrances, pharmaceuticals and the like.
  • isobutyric acid ester is an ester compound that is important as a raw material mainly for fragrance esters, pharmaceuticals, peroxides and the like.
  • Methacrylic acid esters are mainly used as raw materials for acrylic resins, and are in great demand as comonomers in fields such as paints, adhesives and resin modifiers.
  • esters such as isobutyric acid ester and methacrylic acid ester from biomass using AAT
  • a gene group for synthesizing CoA compounds such as isobutyryl-CoA and methacrylyl-CoA from biomass, and from CoA compounds to esters Fermentative production using a recombinant microorganism introduced with an AAT gene that catalyzes the reaction is conceivable.
  • Non-patent Document 2 Plant-derived AAT is known to be expressed as an inactive insoluble protein in the majority when expressed using Escherichia coli as a host (Non-patent Document 2).
  • Non-patent Documents 3 and 4 when apple-derived AAT is expressed in an E. coli recombinant, it is obtained as a soluble protein only when a specific strain (C43 (DE3)) is used, and a general strain (BL21 ( It has been reported that DE3) derivative strain) was not obtained as a soluble protein.
  • C43 specific strain
  • BL21 It has been reported that DE3 derivative strain
  • the main object of the present invention is to provide an efficient method for expressing the target protein as an active soluble recombinant protein in the recombinant.
  • the present invention provides the following [1] to [25].
  • [1] A step of expressing a variant having an amino acid sequence in which two or more cysteines are substituted with other amino acid residues in the amino acid sequence of the reference product, A method for producing an enzyme having improved activity per recombinant as compared to a standard.
  • [2] The method for producing an enzyme according to [1], comprising the following steps; (1) creating a recombinant that expresses a mutant having an amino acid sequence in which one or more cysteines are substituted with other amino acid residues in the amino acid sequence of the reference compound; (2) a step of selecting a plurality of mutants exhibiting an activity per recombinant of 50% or more compared to 100% of the activity of the reference body, (3) A step of expressing a variant in which corresponding amino acid residues are substituted at two or more sites among the sites in which the amino acid residues of each variant selected in step (2) are substituted. . [3] The method for producing an enzyme according to [1] or [2], wherein the enzyme is an alcohol acyltransferase.
  • a mutant alcohol acyltransferase having improved activity compared to a reference substance A mutant alcohol acyltransferase having an amino acid sequence in which one or more cysteines are substituted with other amino acid residues in the reference amino acid sequence.
  • mutant alcohol acyltransferase of [6] having one or more amino acid substitutions selected from the following amino acid substitutions in the amino acid sequence shown in SEQ ID NO: 1 or 2; (1) Substitution of the 48th cysteine to another amino acid residue, (2) substitution of the 150th cysteine to another amino acid residue, (3) substitution of the 167th cysteine to another amino acid residue, (4) substitution of the 270th cysteine with another amino acid residue, (5) substitution of 274th cysteine with another amino acid residue, (6) Substitution of 447th cysteine to another amino acid residue.
  • mutant alcohol acyltransferase of [6] having one or more amino acid substitutions selected from the following amino acid substitutions in the amino acid sequence shown in SEQ ID NO: 64 or 66; (1) substitution of the 206th cysteine with another amino acid residue, (2) substitution of the 209th cysteine with another amino acid residue, (3) substitution of the 256th cysteine to another amino acid residue, (4) substitution of the 269th cysteine to another amino acid residue, (5) Substitution of 322nd cysteine to another amino acid residue.
  • [14] The mutant alcohol acyltransferase of [6] having one or more amino acid substitutions selected from the following amino acid substitutions in the amino acid sequence shown in SEQ ID NO: 65; (1) substitution of the 115th cysteine to another amino acid residue, (2) substitution of the 167th cysteine with another amino acid residue, (3) substitution of the 179th cysteine to another amino acid residue, (4) substitution of the 325th cysteine to another amino acid residue, (5) Substitution of 356th cysteine to another amino acid residue.
  • the mutant alcohol acyltransferase of [12] comprising the amino acid sequence of SEQ ID NO: 4 or 7.
  • the mutant alcohol acyltransferase according to [17] comprising the amino acid sequence of any one of SEQ ID NOs: 5, 6, 8 to 11, 13.
  • a mutant alcohol acyltransferase comprising an amino acid sequence having 70% or more sequence identity with the amino acid sequence shown in SEQ ID NO: 1 or 2,
  • a mutant alcohol acyltransferase having one or more amino acid substitutions selected from the following amino acid substitutions; (1) substitution of the amino acid residue corresponding to the 64th alanine with valine, isoleucine or threonine in the alignment with the amino acid sequence shown in SEQ ID NO: 1 or 2; (2) substitution of the amino acid corresponding to the 117th lysine with glutamine in the alignment with the amino acid sequence shown in SEQ ID NO: 1 or 2; (3) substitution of the amino acid corresponding to the 248th valine with alanine in the alignment with the amino acid sequence shown in SEQ ID NO: 1 or 2; (4) Substitution of the amino acid corresponding to the 363th glutamine in the alignment with the amino acid sequence shown in SEQ ID NO: 1 or 2 with lysine, proline, adenine, arginine, gly
  • the present invention also provides the following [1] to [24].
  • [1] A method for producing an enzyme having improved activity per recombinant as compared to a standard, comprising the following steps. (1) A step of creating a recombinant that expresses a mutant having an amino acid sequence in which one or more cysteines are substituted with other amino acid residues in the amino acid sequence of the reference body. (2) A step of selecting a mutant having an activity per recombinant of 50% or more compared to a reference body. (3) A step of expressing a mutant introduced with the corresponding amino acid substitution at two or more sites among the sites introduced with the amino acid substitutions of the respective variants selected in step (2).
  • [2] The production method of [1], wherein the enzyme is an alcohol acyltransferase.
  • [5] A step of expressing a mutant having an amino acid sequence in which one or more cysteines are substituted with other amino acid residues in the amino acid sequence of the reference body, And a method for producing an enzyme having improved activity per recombinant as compared to a standard.
  • the production method of [6], wherein the amino acid sequence of the reference is an amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 2 or SEQ ID NO: 3.
  • [8] The method according to any one of [5] to [7], wherein the other amino acid residue is alanine or arginine.
  • a mutant alcohol acyltransferase comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence of SEQ ID NO: 1,
  • a mutant alcohol acyltransferase having one or more amino acid substitutions selected from the following amino acid substitutions: (1) Substitution of the cysteine corresponding to the 48th cysteine in the alignment with the amino acid sequence shown in SEQ ID NO: 1 with another amino acid residue. (2) Substitution of the cysteine corresponding to the 150th cysteine in the alignment with the amino acid sequence shown in SEQ ID NO: 1 with another amino acid residue. (3) Substitution of the cysteine corresponding to the 167th cysteine in the alignment with the amino acid sequence shown in SEQ ID NO: 1 with another amino acid residue.
  • Substitution of the 48th cysteine to another amino acid residue. Substitution of the 150th cysteine to another amino acid residue.
  • Substitution of the 167th cysteine with another amino acid residue. (4) Substitution of 270th cysteine to another amino acid residue.
  • the mutant alcohol acyltransferase according to [11] wherein the other amino acid residue is alanine or arginine.
  • a mutant alcohol acyltransferase comprising an amino acid sequence having 80% or more sequence identity with the amino acid sequence set forth in SEQ ID NO: 1,
  • a mutant alcohol acyltransferase having one or more amino acid substitutions selected from the following amino acid substitutions: (1) Substitution of the amino acid residue corresponding to the 64th alanine with valine, isoleucine or threonine in the alignment with the amino acid sequence shown in SEQ ID NO: 1. (2) Substitution of the amino acid corresponding to the 248th valine with alanine in the alignment with the amino acid sequence shown in SEQ ID NO: 1.
  • a method for producing a plant-derived enzyme having improved activity per recombinant as compared to a reference body (1) creating a non-plant cell recombinant that expresses a mutant having an amino acid sequence in which one or two or more cysteines are substituted with other amino acid residues in the amino acid sequence of the reference body; (2) measuring the enzyme activity per recombinant of the mutant; (3) selecting a mutant that exhibits 50% or more activity per recombinant as compared to the reference; (4) Expressing, in the non-plant cell, a mutant in which the corresponding amino acid substitution is introduced in two or more sites among the sites in which the amino acid substitutions of the respective variants selected in step (3) are introduced
  • a manufacturing method comprising: [22] The production method of [21], wherein the enzyme is an apple-derived alcohol acyltransferase.
  • the “reference substance” means an enzyme to which substitution of one or more cysteines into other amino acid residues is introduced.
  • the amino acid sequence of the mutant enzyme obtained by the production method according to the present invention is different from the amino acid sequence of the reference substance only in that one or more cysteines are substituted with other amino acid residues.
  • the reference body is not limited to a natural type (wild type) enzyme, and may be a mutant type enzyme in which one or more amino acid substitutions are introduced into the amino acid sequence of the wild type enzyme.
  • the reference body is an amino acid sequence in which one or more amino acids are inserted or added to the amino acid sequence of the wild type enzyme, or a mutant type having an amino acid sequence in which one or more amino acids are deleted from the amino acid sequence of the wild type enzyme. It may be an enzyme. By using these mutant enzymes as reference substances and further introducing substitution of one or more cysteines into other amino acid residues, mutant enzymes with improved activity can be obtained.
  • the present invention provides an efficient method for expressing a target protein as an active soluble recombinant protein in a recombinant.
  • FIG. 65 shows alignment of the amino acid sequence of AAT derived from SEQ ID NO: 65 (strawberry), SEQ ID NO: 71 (Chile strawberry), SEQ ID NO: 72 (Ezosnake strawberry), and SEQ ID NO: 73 (Humanus).
  • FIG. 65 shows alignment of the amino acid sequence of AAT derived from SEQ ID NO: 65 (strawberry), SEQ ID NO: 71 (Chile strawberry), SEQ ID NO: 72 (Ezosnake strawberry), and SEQ ID NO: 73 (Humanus).
  • FIG. 65 shows alignment of the amino acid sequence of AAT derived from SEQ ID NO: 65 (strawberry), SEQ ID NO: 71 (Chile strawberry), SEQ ID NO: 72 (Ezosnake strawberry), and SEQ ID NO: 73 (Humanus).
  • FIG. 65 shows alignment of the amino acid sequence of AAT derived from SEQ ID NO: 65 (strawberry), SEQ ID NO: 71 (Chile strawberry), SEQ ID NO:
  • the upper row shows a mutant (pAAT021) in which a quadruple mutation is introduced into apple wild-type AAT, a mutant in which cysteine 6 substitution is introduced (pAAT024), a mutant in which quadruple mutation and cysteine 6 substitution are introduced (pAAT025), 4 About the recombinant which expresses the mutant (pAAT155) which introduced the double mutation and Cys150Arg introduction (pAAT155), the quadruple mutation and cysteine 6 substitution (of which Cys150Arg is the 150th place), AAT activity per cell weight It is a graph which shows the measurement result.
  • the vertical axis shows AAT activity as a relative value with the activity of a recombinant expressing a reference (pAAT116) having no quadruple mutation and cysteine substitution as 1.
  • the lower part of the figure is an SDS-polyacrylamide gel electrophoresis image of the soluble fraction and the insoluble fraction of the cell extract containing the mutant.
  • the upper part of the figure shows a mutant (pAAT021) in which a quadruple mutation is introduced into apple wild-type AAT (pAAT021), a mutant in which a quadruple mutation and cysteine 6 substitution are introduced (pAAT025), and a mutant in which a quadruple mutation and cysteine 5 substitution are introduced ( (pAAT151)
  • the vertical axis shows AAT activity as a relative value with the activity of a recombinant expressing a reference (pAAT116) having no quadruple mutation and cysteine substitution as 1.
  • the lower part of the figure is an SDS-polyacrylamide gel electrophoresis image of the soluble fraction and the insoluble fraction of the cell extract containing the mutant.
  • the upper part of the figure shows a recombinant that expresses 8 types of mutants prepared by substituting 8 cysteines of tomato AAT one by one with alanine, and a mutant in which cysteine 5 substitution is introduced into tomato wild-type AAT (pAAT164). It is a graph which shows the result of having measured AAT activity per cell weight about the recombinant which expresses.
  • the vertical axis shows the AAT activity as a relative value with the activity of the recombinant expressing the reference body (pAAT032) as 1.
  • the lower part of the figure is an SDS-polyacrylamide gel electrophoresis image of the soluble fraction and the insoluble fraction of the cell extract containing the mutant.
  • the upper row shows a recombinant that expresses nine types of mutants prepared by substituting nine cysteines of strawberry AAT one by one with alanine, and a mutant in which cysteine 5 substitution is introduced into strawberry wild type AAT (pAAT037). It is a graph which shows the result of having measured AAT activity per cell weight about the recombinant which expresses.
  • the vertical axis shows AAT activity as a relative value with the activity of the recombinant expressing the reference body (pAAT033) as 1.
  • the lower part of the figure is an SDS-polyacrylamide gel electrophoresis image of the soluble fraction and the insoluble fraction of the cell extract containing the mutant.
  • the present invention includes a step of expressing a mutant having an amino acid sequence in which two or more cysteines are substituted with other amino acid residues in the amino acid sequence of the reference body, as compared with the reference body.
  • the present invention relates to a method for producing an enzyme having improved activity per recombinant.
  • the method for producing a mutant enzyme according to the present invention includes the following steps (1) to (3).
  • (1) A step of creating a recombinant that expresses a mutant having an amino acid sequence in which one or more cysteines are substituted with other amino acid residues in the amino acid sequence of the reference body.
  • (2) A step of selecting a plurality of mutants exhibiting an activity per recombinant of 50% or more as compared with 100% of the activity of the reference body.
  • the enzyme targeted by the method for producing a mutant enzyme according to the present invention forms an inclusion body in a transformant (recombinant) when a reference body is expressed in a host different from the species from which the enzyme is derived. It is preferably an enzyme.
  • the enzyme targeted by the method for producing a mutant enzyme according to the present invention is, for example, a plant-derived enzyme, and an inclusion body in a recombinant cell when a reference body is expressed in a non-plant cell such as Escherichia coli. It may be an enzyme that forms
  • enzymes include, but are not limited to, transferases such as alcohol acyltransferase (AAT); oxidoreductases such as dehydrogenase, oxidase, and oxygenase; hydrolases such as esterase, nitrilase, and amidase; racemase, epimerase, and mutase Examples include isomerases; ligases such as acyl CoA synthetase and DNA ligase; and lyases such as nitrile hydratase, hydroxynitrile lyase, and ammonia lyase.
  • transferases such as alcohol acyltransferase (AAT); oxidoreductases such as dehydrogenase, oxidase, and oxygenase; hydrolases such as esterase, nitrilase, and amidase; racemase, epimerase, and mutase
  • transferases such as alcohol acyltransfera
  • Examples of the origin of the enzyme include animals, plants, filamentous fungi, yeasts, archaea and eubacteria, and are not particularly limited as long as they have the above characteristics.
  • the origin of the AAT of the present invention includes, for example, Zingiberales, Rosales, Azaleas (Ericales), Cucurbites, Brassicales, Laureles, Rice ( Poales, Alesales, Asparagales, Saxifragales, Caryophyllese, Vitales, Alpidae, Malphiales , Sapindales, Mallows, Myrtales, Buttercups (Ranunculales), Solanales (Solanales), lamiales (Lamiales), those belonging to one of the eye selected from the group consisting of gentianales (Gentianales) and calycerales (Asterales).
  • Zingiberales Rosales, Azaleas, Ericales, Cucurbitales, Brassicales and Laurales
  • Musaceae and Zingiberaceae as for belonging to Rosaceae, for Rosaceae and Moraceae, as for belonging to Azalea (Ericaceae) , Actinidaceae, Ebenaceae and Theaceae, Cucurbitaceae as belonging to the order of Cucurbitaceae, Papaceae (Caricaceae) and Rasaceae as belonging to the order of Brassicaceae As for the family belonging to the order of the camphoraceae, Lauraceae, as for the order of the rice, the pineapple family (Bromeliaceae) e) and Gramineae (Poaceae), as for those belonging to the order of coconuts (Arecaceae), as belonging to the order of Cryptoniaceae (Orchidaceae), for the family of Iridaceae, and as for those belonging to the order of Cryptoniaceae (Grossulariaceae), those belonging to the order of Nadesicoaceae (Cary
  • the genus Musa belongs to the genus Musacea
  • the genus Zingiberaceae belongs to the genus Zingiber
  • the genus Rosaceae belongs to the genus Fragaria, the apple (Malus) ), Prunus, Pyrus, Eriobotrya, Chaenomeles, Rubus and Rose, Moraceae (Ficus), belonging to the genus Azalea, belonging to the genus Vaccinium, belonging to the family Matabidae, belonging to the genus Actinidia, belonging to the oyster family, Diospyros
  • camellia family camellia (Camellia) genus, as for belonging to the Cucurbitaceae family, the genus Cucumis and the watermelon (Citullulus) genus, as belonging to the family of papaya family, the genus Papaya (Carica) and Vasconcellea (Vasconcellea) ), Belonging to
  • Genus belonging to the genus Phyllidae, belonging to the genus Gypsophila, belonging to the vine family, belonging to the genus Gratis (Vitis), belonging to the family Quintranoaceae, belonging to the genus Malpighia, As for those belonging to the genus Passiflora, belonging to Euphorbiaceae, belonging to the genus Ricinus, as belonging to the willow family, as belonging to the genus Populus, as belonging to the family Oxalis, to the genus Averrhoa, legume As belonging to the genus Medagogo, the genus Lupinus, the genus soybean (Glycine) and the genus Clitoria, as belonging to the citrus family, the genus Citrus and Aegle, As belonging to the genus Litchi, belonging to the urushi family, genus Mangofera, belonging to the mallow family, genus Durian and cocoa (Theobroma), pome
  • the plant belonging to the genus (Rauvolfia), the genus Catharanthus, and the family Asteraceae is preferably a plant of the genus Chamaemelum.
  • a plant belonging to the genus Bacho, Dutch strawberry, Apple, Sakura, Pear, Sunoki, Matabi, Cucumber, Papaya or Alligator is more preferable.
  • plants belonging to the genus Bacho, apple genus, pear genus, loquat genus, oyster mushroom genus, matabavi genus, cucumber genus, papaya genus or crocodile genus are particularly preferred.
  • those belonging to the genus Basho include bananas (Musa xadparadisiaca), Basho (Musa basjoo), Himebasho (Musa coccinea), Malayamabasho (Musa acuminata), and ginger (Zing) as belonging to the genus Ginger.
  • bananas Musa xadparadisiaca
  • Basho Musa basjoo
  • Himebasho Moccinea
  • Malayamabasho Malayamabasho
  • Zing ginger
  • officinale and the Dutch strawberry genus are the Dutch strawberry (Fragaria x ananassa) (hereinafter sometimes simply referred to as “strawberry”), Virginia strawberry (Fragaria virginiana), Chile strawberry (Fragaria chiloensis) and Ezo snake strawberry.
  • Enzymes targeted by the method for producing a mutant enzyme according to the present invention are particularly derived from plants such as apples, tomatoes, strawberries, pears, loquats, oysters, melons, bananas, papayas, salamanders, grapes, kiwi and roman chamomile.
  • AAT derived from apple, tomato, strawberry, pear, loquat and oyster is preferable.
  • SEQ ID NOs: 1 to 3 examples of amino acid sequences of enzymes that can be used as “reference substances” in the method for producing a mutant enzyme according to the present invention are shown in SEQ ID NOs: 1 to 3.
  • SEQ ID NO: 1 shows the amino acid sequence of wild type AAT. Wild type apple AAT has 15 cysteines in the amino acid sequence.
  • SEQ ID NO: 2 is the amino acid sequence of mutant AAT (M2K type AAT) in which the second methionine is substituted with lysine in the amino acid sequence of wild type AAT.
  • SEQ ID NO: 3 is a mutant AAT in which the 64th alanine is replaced with valine, the 248th valine with alanine, the 363rd glutamine with lysine, and the 117th lysine with glutamine in the amino acid sequence of wild-type AAT (This mutant AAT is highly active compared to wild-type AAT).
  • SEQ ID NOs: 64 and 66 show examples of amino acid sequences of enzymes that can serve as “reference substances” in the method for producing a mutant enzyme according to the present invention.
  • SEQ ID NO: 66 shows the amino acid sequence of tomato (wild-type) wild-type AAT.
  • SEQ ID NO: 64 is the amino acid sequence of mutant AAT (A2K type AAT) in which the second alanine is substituted with lysine in the amino acid sequence of wild type AAT.
  • A2K type AAT mutant AAT
  • SEQ ID NO: 65 amino acid sequence of an enzyme that can be a “reference substance” in the method for producing a mutant enzyme according to the present invention is shown in SEQ ID NO: 65.
  • SEQ ID NO: 65 is the amino acid sequence of wild type AAT.
  • Step (1) This step is a step of preparing a recombinant that expresses a mutant having an amino acid sequence in which one or more cysteines are substituted with other amino acid residues in the amino acid sequence of the reference body.
  • a plurality of recombinants are produced that express a variant having an amino acid sequence in which one or more cysteines are replaced with other amino acid residues in the amino acid sequence of the reference body.
  • N cysteines are present in the amino acid sequence of the standard
  • N types of mutants in which each cysteine is substituted with an amino acid other than cysteine can be prepared.
  • N cysteines are present in the amino acid sequence of the standard
  • N (N-1) / 2 types of mutants in which any two cysteines are substituted with amino acids other than cysteine can be prepared.
  • the number of cysteines to be substituted in one mutant may be 1 or 2 or more, and is at most less than the total number of cysteines present in the amino acid sequence of the reference body.
  • the number of cysteines substituted in one variant is preferably 1.
  • the number of substituted cysteines among the plurality of mutants to be created may be different or the same.
  • the amino acid substituted from cysteine is not particularly limited as long as it is an amino acid other than cysteine, and can be, for example, alanine or arginine.
  • the DNA encoding the amino acid sequence of the mutant can be prepared by introducing a mutation into the DNA encoding the amino acid sequence of the reference body by a conventionally known genetic engineering technique.
  • a DNA encoding the amino acid sequence of the created mutant is conventionally incorporated into a general-purpose expression vector.
  • the expression of the mutant may be performed by introducing an expression vector into the host cell by a conventionally known technique.
  • Host cells are not particularly limited, and bacteria include E. coli, Rhodococcus genus, Pseudomonas genus, Corynebacterium genus, Bacillus genus, Streptococcus genus, Streptomyces genus, etc.
  • yeast Saccharomyces genus
  • Candida Examples of filamentous fungi include the genus Aspergillus. Among these, it is particularly convenient to use E. coli, because it is simple and efficient.
  • the enzyme activity per recombinant of the mutant prepared in step (1) may be measured.
  • the enzyme activity per recombinant of the mutant is measured by preparing a cell extract or cell disruption solution containing the mutant from a certain amount of the recombinant into which an expression vector containing DNA encoding the amino acid sequence of the mutant has been introduced. Then, it may be carried out by measuring the enzyme activity in the cell extract or the like.
  • the enzyme activity can be measured by mixing the substrate of the enzyme reaction with a cell extract and the like, and detecting the amount of the reaction product produced using a known means such as chromatography.
  • Step (2) This step is a step of selecting a plurality of mutants that exhibit 50% or more activity per recombinant as compared to 100% of the activity of the reference body.
  • the activity per recombinant of the mutant is 50% or more compared to 100% of the activity of the reference body” means that the reaction product catalyzed by the mutant expressed from a certain amount of the recombinant. It means that the amount is 50% or more of the amount of the reaction product catalyzed by the reference compound expressed from the same amount of the recombinant under the same conditions due to the high activity and solubility of the mutant.
  • step (1) when 10 cysteines are present in the amino acid sequence of the reference substance, and each of the cysteines is replaced with an amino acid other than cysteine and 10 variants are prepared, the activity of the reference substance is 100%. When five types of mutants exhibiting activity per recombinant of 50% or more are present, those five types of mutants are selected.
  • cysteines present in the amino acid sequence of the reference body, cysteines that maintain a certain enzymatic activity even when this is replaced with other amino acids in the mutant have a small contribution to the normal protein folding of the reference body. Rather, it is believed that when the reference is expressed in a host cell different from the source species, it may interfere with normal protein folding by forming excess disulfide bonds.
  • the criterion for selecting a mutant is to show 50% or more of the activity per recombinant as compared with 100% of the activity of the standard, but higher activity than 100% of the activity of the standard.
  • a reference substance that shows an activity per recombinant of 60% or more, preferably 70% or more, more preferably 80% or more, further preferably 90% or more, and most preferably 100% or more.
  • Step (3) This step is a step of expressing a variant in which corresponding amino acid residues are substituted at two or more sites among the sites in which the amino acid residues of each variant selected in step (2) are substituted. .
  • cysteines are present in the amino acid sequence of the above-mentioned standard
  • cysteines that maintain a certain enzyme activity even when they are substituted with other amino acids in the mutant are different from the reference species. When expressed in host cells, it may interfere with normal protein folding. Mutants in which all of these cysteines are substituted with other amino acids are normally or nearly normal folded when expressed in a host cell different from the source species, and are thus expressed in the host cell. It is considered that it becomes highly active and highly soluble as compared to the reference standard.
  • the amino acid substituted from cysteine in the variant in this step is preferably the same as the amino acid substituted from cysteine in the variant selected in step (2), but may be different.
  • the activity of the recombinant can be further improved by variously changing the type of amino acid substituted from cysteine.
  • the DNA encoding the amino acid sequence of the mutant in this step can also be prepared by introducing a mutation into the DNA encoding the amino acid sequence of the reference body by a conventionally known genetic engineering technique.
  • the DNA encoding the produced mutant is incorporated into a conventional general-purpose expression vector, and is transfected into a host cell and expressed in the same manner as in step (1).
  • Mutant alcohol acyltransferase I The present invention also provides a mutant AAT obtained by the aforementioned method for producing a mutant enzyme.
  • the mutant AAT according to the present invention is a mutant alcohol acyltransferase having an improved activity compared to a reference substance, wherein one or more cysteines are substituted with other amino acid residues in the reference substance amino acid sequence A mutant alcohol acyltransferase having a sequence.
  • the mutant AAT according to the present invention has one or more amino acid substitutions selected from the following amino acid substitutions in the reference amino acid sequence.
  • Reference bodies are wild type apple AAT (SEQ ID NO: 1), mutant type AAT in which the second methionine is substituted with lysine in the amino acid sequence of wild type apple AAT (SEQ ID NO: 2, apple M2K type), or wild type apple AAT
  • the mutated AAT (SEQ ID NO: 3) in which the 64th alanine is replaced with valine, the 248th valine with alanine, the 363rd glutamine with lysine, and the 117th lysine with glutamine in the amino acid sequence of .
  • the 48th, 150th, 167th, 270th, 274th and 447th cysteines are preferably substituted in combination of two or more, and are substituted in combination of three or more. More preferably, 4 or more combined and substituted are more preferable, 5 or more combined and substituted are particularly preferable, and all combined and substituted are most preferable.
  • the amino acid substituted from cysteine is not particularly limited as long as it is an amino acid other than cysteine, and can be, for example, alanine or arginine.
  • the activity of mutant AAT can be further improved by substituting arginine for the 150th cysteine.
  • mutant AAT examples include a mutant AAT having an amino acid sequence described in SEQ ID NO: 4 or 7, which is prepared using apple M2K type AAT (SEQ ID NO: 2) as a reference substance.
  • the mutant AAT having the amino acid sequence of SEQ ID NO: 4 is obtained by substituting all cysteines at the 48th, 150th, 167th, 270th, 274th and 447th of apple M2K type AAT (SEQ ID NO: 2) with alanine. is there.
  • the mutant AAT having the amino acid sequence of SEQ ID NO: 7 is obtained by substituting the cysteines at the 48th, 167th, 270th, 274th and 447th positions with alanine and the cysteine at the 150th position with arginine.
  • mutant AAT from the amino acid sequence according to any one of SEQ ID NOs: 5, 6, 8 to 11, 13 prepared using the mutant AAT (SEQ ID NO: 3) as a reference substance
  • the mutant AAT is also mentioned.
  • the introduction positions of mutations and cysteine substitutions in the amino acid sequences of SEQ ID NOS: 5, 6, 8 to 11, 13 are shown in “Table 1”.
  • the 64th alanine may be isoleucine or threonine.
  • the 363rd glutamine may be proline, adenine, arginine, glycine or tryptophan. Also in these cases, it is possible to obtain a highly active mutant AAT.
  • the mutant AAT according to the present invention is characterized in that it has one or more amino acid substitutions selected from the following amino acid substitutions in the amino acid sequence of the standard.
  • Reference bodies were tomato (wild type) wild type AAT (SEQ ID NO: 66), mutant AAT (SEQ ID NO: 64, tomato (wild type) in which the second alanine was substituted with lysine in the amino acid sequence of tomato (wild type) wild type AAT. Wild type) A2K type).
  • cysteines are preferably substituted in combination of two or more, and may be substituted in combination of three or more. More preferably, four or more combined and substituted are more preferable, and all combined and substituted are most preferable.
  • the amino acid substituted from cysteine is not particularly limited as long as it is an amino acid other than cysteine, and can be, for example, alanine or arginine.
  • mutant AAT according to the present invention has one or more amino acid substitutions selected from the following amino acid substitutions in the reference amino acid sequence.
  • the reference body may be a wild-type strawberry AAT consisting of the amino acid sequence shown in SEQ ID NO: 65.
  • the 115th, 167th, 179th, 325th and 356th cysteines are preferably substituted in combination of two or more, and may be substituted in combination of three or more. More preferably, four or more combined and substituted are more preferable, and all combined and substituted are most preferable.
  • the amino acid substituted from cysteine is not particularly limited as long as it is an amino acid other than cysteine, and can be, for example, alanine or arginine.
  • the amino acid sequence of apple wild type AAT of SEQ ID NO: 1 or apple M2K type AAT of SEQ ID NO: 2 is 70% or more, preferably 80 or more, more preferably 90% or more, particularly preferably 95% or more.
  • a variant AAT comprising an amino acid sequence having sequence identity, the variant AAT having one or more amino acid substitutions selected from the following amino acid substitutions. (1) Substitution of cysteine corresponding to the 48th cysteine in the alignment with the amino acid sequence shown in SEQ ID NO: 1 or 2 with another amino acid residue. (2) Substitution of a cysteine corresponding to the 150th cysteine in the alignment with the amino acid sequence shown in SEQ ID NO: 1 or 2 with another amino acid residue.
  • the 48th, 150th, 167th, 270th, 274th and 447th cysteines are preferably substituted in combination of two or more, and are substituted in combination of three or more. More preferably, 4 or more combined and substituted are more preferable, 5 or more combined and substituted are particularly preferable, and all combined and substituted are most preferable.
  • the amino acid substituted from cysteine is not particularly limited as long as it is an amino acid other than cysteine, and can be, for example, alanine or arginine.
  • the activity of mutant AAT can be further improved by substituting arginine for the 150th cysteine.
  • the amino acid sequence of the tomato (wild type) AAT of SEQ ID NO: 66 or the tomato (wild type) A2K type AAT of SEQ ID NO: 64 is 70% or more, preferably 80 or more, more preferably 90% or more.
  • a variant AAT comprising an amino acid sequence having a sequence identity of 95% or more, wherein the variant AAT has one or more amino acid substitutions selected from the following amino acid substitutions.
  • cysteines are preferably substituted in combination of two or more, and may be substituted in combination of three or more. More preferably, four or more combined and substituted are more preferable, and all combined and substituted may be most preferable.
  • the amino acid substituted from cysteine is not particularly limited as long as it is an amino acid other than cysteine, and can be, for example, alanine or arginine.
  • the amino acid sequence having the sequence identity of 70% or more, preferably 80 or more, more preferably 90% or more, particularly preferably 95% or more with the amino acid sequence of strawberry wild type AAT of SEQ ID NO: 65 Also provided is a mutant AAT comprising one or more amino acid substitutions selected from the following amino acid substitutions: (1) substitution of the cysteine corresponding to the 115th cysteine with another amino acid residue in the alignment with the amino acid sequence shown in SEQ ID NO: 65; (2) substitution of the cysteine corresponding to the 167th cysteine with another amino acid residue in the alignment with the amino acid sequence shown in SEQ ID NO: 65; (3) substitution of the cysteine corresponding to the 179th cysteine in the alignment with the amino acid sequence shown in SEQ ID NO: 65 with another amino acid residue; (4) substitution of the cysteine corresponding to the 325th cysteine with another amino acid residue in the alignment with the amino acid sequence shown in SEQ ID NO: 65; (5) Substitution of cysteine corresponding to the 3
  • the 115th, 167th, 179th, 325th and 356th cysteines are preferably substituted in combination of two or more, and may be substituted in combination of three or more. More preferably, four or more combined and substituted are more preferable, and all combined and substituted may be most preferable.
  • the amino acid substituted from cysteine is not particularly limited as long as it is an amino acid other than cysteine, and can be, for example, alanine or arginine.
  • the amino acid sequence of AAT to be substituted for cysteine is the amino acid sequence of apple wild type AAT of SEQ ID NO: 1 or apple M2K type AAT of SEQ ID NO: 2, tomato (wild type) wild type AAT of SEQ ID NO: 66 or sequence
  • the amino acid sequence of SEQ ID No. 1, 2, 64, 65 or 66 And 50% or more, 60% or more, 70% or more, preferably 80 or more, more preferably 90% or more, and particularly preferably 95% or more.
  • Alignment is performed by aligning both sequences so that the amino acid residues of the two sequences to be compared match as much as possible. When aligning, a gap is appropriately inserted in one or both of the two sequences to be compared, if necessary.
  • Such alignment of sequences can be performed using a known program such as BLAST, FASTA, CLUSTALW, and the like.
  • sequence identity between the amino acid sequence of AAT to which cysteine substitution is introduced and the amino acid sequence of SEQ ID NOs: 1, 2, 64, 65, 66 is aligned, and the number of matched amino acids is calculated as the total number of amino acids. Obtained by dividing by a number. When gaps are inserted, the total number of amino acids is the number of residues obtained by counting one gap as one amino acid residue. If the total number of amino acids counted in this way differs between the two sequences being compared, identity (%) is calculated by dividing the total number of amino acids in the longer sequence by the number of matched amino acids.
  • an AAT comprising an amino acid sequence having a high sequence identity with the amino acid sequence of apple wild type AAT of SEQ ID NO: 1 or apple M2K type AAT of SEQ ID NO: 2, apple wild type AAT of SEQ ID NO: 1 or apple M2K type of SEQ ID NO: 2
  • apple wild type AAT of SEQ ID NO: 1 or apple M2K type of SEQ ID NO: 2 It is highly possible that the 48th, 150th, 167th, 270th, 274th and 447th cysteines found in the amino acid sequence of AAT are conserved. By substituting these cysteines with other amino acids, It is considered that a highly active mutant can be obtained also in AAT (preferably various AATs derived from plants).
  • apple AAT consisting of the amino acid sequence shown in SEQ ID NO: 12 derived from a different subspecies of the genus Apple.
  • cysteines found in the amino acid sequence of apple wild-type AAT of SEQ ID NO: 1
  • the 48th, 150th, 167th, 270th, 274th and 447th cysteines are all conserved in the amino acid sequence shown in SEQ ID NO: 12.
  • pear AAT consisting of the amino acid sequence shown in SEQ ID NO: 61.
  • cysteines found in the amino acid sequence of apple wild-type AAT of SEQ ID NO: 1 the 48th, 150th, 167th, 270th and 274th cysteines are all conserved in the amino acid sequence shown in SEQ ID NO: 61. . Furthermore, as an AAT showing 91% sequence identity with the apple wild-type AAT of SEQ ID NO: 1, there is a loquat AAT consisting of the amino acid sequence shown in SEQ ID NO: 62.
  • cysteines at the 48th, 150th, 167th, 270th, 274th and 447th cysteines are any of the amino acid sequences shown in SEQ ID NO: 62.
  • the tomato (wild type) wild type AAT of SEQ ID NO: 66 or the tomato (wild type) A2K type AAT of SEQ ID NO: 64 the tomato (wild type) wild The 206th, 209th, 256th, 269th and 322nd cysteines found in the amino acid sequence of type AAT or tomato (wild type) A2K type AAT are likely to be conserved. It is considered that a highly active mutant can be obtained in various AATs (preferably various plant-derived AATs).
  • an AAT having 93% sequence identity with the tomato (wild type) wild type AAT of SEQ ID NO: 66 there is a tomato AAT consisting of the amino acid sequence shown in SEQ ID NO: 67 derived from tomato (cultivated species).
  • cysteines found in the amino acid sequence of tomato (wild type) wild type AAT the 209th, 256th, 269th and 322nd cysteines are all conserved in the amino acid sequence shown in SEQ ID NO: 67.
  • an AAT having 84% sequence identity with the tomato (wild-type) wild-type AAT of SEQ ID NO: 66 there is a potato AAT consisting of the amino acid sequence shown by SEQ ID NO: 68.
  • cysteines found in the amino acid sequence of tomato (wild type) wild type AAT are all conserved in the amino acid sequence shown in SEQ ID NO: 68. .
  • cysteines at 206, 209, 256, 269 and 322 are all conserved in the amino acid sequence shown in SEQ ID NO: 68.
  • capsicum AAT consisting of the amino acid sequence shown by SEQ ID NO: 69.
  • cysteines found in the amino acid sequence of tomato (wild type) wild type AAT the 206th, 209th, 269th and 322nd cysteines are all conserved in the amino acid sequence shown in SEQ ID NO: 69.
  • tobacco AAT consisting of the amino acid sequence shown in SEQ ID NO: 70 as an AAT showing 74% sequence identity with the tomato (wild-type) wild-type AAT of SEQ ID NO: 66.
  • cysteines found in the amino acid sequence of tomato (wild-type) wild-type AAT, the 206th, 209th and 322nd cysteines are all conserved in the amino acid sequence shown in SEQ ID NO: 70.
  • An alignment of the amino acid sequences of SEQ ID NOs: 66-70 is shown in FIG.
  • the AAT consisting of an amino acid sequence having high sequence identity with the amino acid sequence of strawberry wild type AAT of SEQ ID NO: 65
  • the 115th, 167th, 179th, 325th and 356 found in the amino acid sequence of strawberry wild type AAT
  • the second cysteine is conserved, and it is possible to obtain highly active mutants in various AATs (preferably various AATs derived from plants) by substituting these cysteines with other amino acids.
  • cysteines found in the amino acid sequence of strawberry wild-type AAT are all conserved in the amino acid sequence shown in SEQ ID NO: 71.
  • an AAT showing 91% sequence identity with the strawberry wild-type AAT of SEQ ID NO: 65 there is a snake strawberry AAT consisting of the amino acid sequence shown in SEQ ID NO: 72.
  • the 115th, 167th, 179th, 325th and 356th cysteines are all conserved in the amino acid sequence shown in SEQ ID NO: 71.
  • AAT showing 67% sequence identity with the strawberry wild-type AAT of SEQ ID NO: 65 there is a humanus AAT consisting of the amino acid sequence shown in SEQ ID NO: 73.
  • cysteines found in the amino acid sequence of strawberry wild type AAT the 167th, 325th and 356th cysteines are all conserved in the amino acid sequence shown in SEQ ID NO: 73.
  • the alignment of the amino acid sequences of SEQ ID NOs: 65, 71 to 73 is shown in FIG.
  • Mutant alcohol acyltransferase II The present invention also provides a mutant AAT in which the 64th alanine, 248th valine, 363th glutamine, and 117th lysine are substituted in the amino acid sequence of apple wild type AAT or apple M2K type AAT. This mutant AAT exhibits higher activity and solubility than wild-type AAT.
  • the mutant AAT according to the present invention has one or more amino acid substitutions selected from the following amino acid substitutions in the amino acid sequence shown in SEQ ID NO: 1 or 2.
  • the 64th alanine, the 117th lysine, the 248th valine and the 363th glutamine are preferably substituted in combination of 2 or more, and are substituted in combination of 3 or more. More preferably, all are combined and most preferably substituted.
  • mutant AAT include mutant alcohol acyltransferases comprising the amino acid sequences set forth in any of SEQ ID NOs: 3, 5, 6, 8 to 13 (see Table 1).
  • High activation by mutation introduction in the above-mentioned apple mutant AAT is a variety of AATs comprising amino acid sequences having high sequence identity with the amino acid sequence of apple wild type AAT of SEQ ID NO: 1 or apple M2K type AAT of SEQ ID NO: 2 (preferably Is considered to be applicable to various plant-derived AAT).
  • the amino acid sequence of apple wild-type AAT of SEQ ID NO: 1 or apple M2K-type AAT of SEQ ID NO: 2 is 70% or more, preferably 80 or more, more preferably 90% or more, particularly preferably 95%.
  • a variant AAT comprising one or more amino acid substitutions selected from the following amino acid substitutions, which is an AAT comprising an amino acid sequence having the above sequence identity, is provided. (1) Replacement of the amino acid residue corresponding to the 64th alanine with valine, isoleucine or threonine in the alignment with the amino acid sequence shown in SEQ ID NO: 1 or 2.
  • an amino acid residue corresponding to the 64th alanine, an amino acid residue corresponding to the 117th lysine, an amino acid residue corresponding to the 248th valine, an amino acid corresponding to the 363th glutamine are preferably substituted in combination of two or more, more preferably substituted in combination of three or more, and most preferably substituted in combination.
  • the 117th lysine, 248th valine and 363th glutamine found in the amino acid sequence of apple wild type AAT of SEQ ID NO: 1 or apple M2K type AAT of SEQ ID NO: 2 are shown in SEQ ID NOs: 12, 61, 62 and 63. Any amino acid sequence is conserved. Therefore, by substituting these amino acids with isoleucine or threonine; glutamine; alanine; lysine, proline, adenine, arginine, glycine or tryptophan, various AATs (preferably plant-derived AAT, particularly preferably apple-derived plants) It is considered possible to obtain a highly active mutant also in (AAT).
  • AAT preferably plant-derived AAT, particularly preferably apple-derived plants
  • the amino acid sequence of AAT into which amino acid substitutions are to be introduced is aligned with the amino acid sequence of apple wild type AAT of SEQ ID NO: 1 or apple M2K type AAT of SEQ ID NO: 2, It preferably consists of an amino acid sequence having 50% or more, 60% or more, 70% or more, preferably 80 or more, more preferably 90% or more, particularly preferably 95% or more.
  • Vector / transformant The expression vector into which the mutant AAT and the DNA encoding the mutant AAT according to the present invention are inserted can be prepared using a conventionally known genetic engineering technique.
  • the vector is not limited as long as it can replicate autonomously in the host cell, and a vector suitable for the host cell can be used.
  • the insertion of the mutant AAT gene into the vector can be performed using a gene recombination technique known to those skilled in the art. For example, a method using a restriction enzyme cleavage and ligation kit, a method using topoisomerase, an In Fusion kit (Takara Bio) or the like can be used.
  • the gene inserted into the vector is inserted linked to the downstream of a promoter capable of controlling transcription and translation of the protein encoded by each gene in the host cell. Further, if necessary at the time of insertion, an appropriate linker may be added.
  • a terminator sequence an enhancer sequence, a splicing signal sequence, a poly
  • a ribosome binding sequence such as an SD sequence or a Kozak sequence
  • a selectable marker gene etc. that can be used in the host organism into which the gene is to be introduced, if necessary.
  • selectable marker genes include drug resistance genes such as ampicillin resistance gene, tetracycline resistance gene, neomycin resistance gene, kanamycin resistance gene, chloramphenicol resistance gene, and intracellular biosynthesis of nutrients such as amino acids and nucleic acids.
  • examples include genes involved or genes encoding fluorescent proteins such as luciferase. A part of the amino acid sequence encoded by the DNA may be replaced with the insertion.
  • a vector is introduced into a host cell by a method known to those skilled in the art, and used to produce a transformant.
  • the method for introducing the vector into the host cell is not particularly limited as long as it is a method suitable for the host cell, and examples thereof include an electroporation method, a spheroplast method, a lithium acetate method, and a junction transfer method. It is done.
  • Host cells are not particularly limited, and bacteria include E. coli, Rhodococcus genus, Pseudomonas genus, Corynebacterium genus, Bacillus genus, Streptococcus genus, Streptomyces genus, etc.
  • yeast Saccharomyces genus
  • Candida Examples of filamentous fungi include the genus Aspergillus. Among these, it is particularly convenient to use E. coli, because it is simple and efficient.
  • a wild-type apple AAT gene (SEQ ID NO: 14) optimized for E. coli codon was synthesized (consigned to DNA2.0).
  • the AAT gene was inserted into an expression vector (pJexpress404) and named pAAT012.
  • the AAT gene was transferred from an expression vector having a T7 promoter (pJexpress404) to an expression vector having a trc promoter (pTrc99A) by the following method.
  • PCR reaction was performed using primers MMA-156 and MMA-163 with pAAT012 as a template to amplify a fragment containing the AAT gene.
  • primers MMA-156 and MMA-163 with pAAT012 as a template to amplify a fragment containing the AAT gene.
  • the second codon ATG (Met) of the AAT gene was converted to GTG (Val).
  • Primer MMA-156 (SEQ ID NO: 15): CACAGGAAACAGACCATGGTGAGCTTTTCTGTACTCCAAGTCAAACG
  • Primer MMA-163 (SEQ ID NO: 16): GCCAAGCTTGCATGCCTGCAGGTTACTGGCTGGTGCTACGCAG
  • the amplified product was purified using Gel / PCR Purification Kit (manufactured by FAVORGEN) and used as an insert fragment.
  • the vector pTrc99A previously cut with restriction enzymes NcoI and Sse8387I was mixed with the inserted fragment, and ligated using In-Fusion HD Cloning Kit.
  • the reaction solution was incubated at 50 ° C. for 15 minutes, then cooled on ice and used for transformation of E. coli JM109 strain.
  • the Escherichia coli transformant was subjected to liquid culture in an LB medium (LBAmp medium) containing 100 mg / L of ampicillin, and the target plasmid pAAT115 was prepared using Mini prep Kit (QIAGEN).
  • the second amino acid residue of the gene product of the apple AAT gene inserted into pAAT115 is valine, but it is known that the amount of protein expression is improved by substituting the second amino acid residue with lysine, arginine or the like. (Japanese Patent Laid-Open No. 2008-61547). Therefore, the second codon of the AAT gene was converted as follows.
  • pAAT115 was cleaved with NcoI and SmaI to prepare a fragment containing a vector region of about 5.1 kb.
  • a PCR reaction was performed using primers MMA-166 and MMA-169 and pAAT115 as a template to amplify a fragment containing the AAT gene (about 400 bp) and purified by the above-mentioned method to obtain an inserted fragment.
  • Primer MMA-166 (SEQ ID NO: 17): CACAGGAAACAGACCATGAAAAGCTTTTCTGTACTCCAAGTC Primer MMA-169 (SEQ ID NO: 18): CGATGATACCATCGCTGCCCGGGAAGTTGTACAG
  • E. coli transformant (recombinant) was cultured in liquid to prepare the desired plasmid pAAT116.
  • pAAT116 the second codon GTG (Val) of the AAT gene was replaced with AAA (Lys).
  • Example 1 Production of highly active apple AAT
  • the protein encoded by the apple AAT gene in the plasmid pAAT116 prepared in Reference Example 1 has 15 cysteines. . Fifteen plasmids in which each cysteine was replaced with alanine were commissioned (Genscript) (Table 2).
  • Escherichia coli JM109 strain was transformed with 16 kinds of plasmids shown in “Table 2”.
  • the Escherichia coli transformant was inoculated in LB (1% bactotryptone, 0.5% bacto yeast extract, 1% NaCl) medium containing ampicillin, and precultured at 37 ° C. for 7 hours.
  • 0.1 ml of the culture solution was taken, added to 100 ml of the same medium (containing 1 mM IPTG), and cultured with shaking at 37 ° C. for 15 hours.
  • the cells were collected from the culture, washed with 50 mM phosphate-sodium buffer (pH 7.0), and suspended in the same buffer.
  • mutants were obtained that showed AAT activity per recombinant of 50% or more compared to 100% activity of the standard expressed from pAAT116.
  • pAAT116C48A, pAAT116C150A, pAAT116C167A, pAAT116C270A, pAAT116C274A and pAAT116C447A were obtained.
  • the expressed mutant showed 70% or more AAT activity per recombinant compared to 100% of the activity of the standard expressed from pAAT116. Therefore, mutants were prepared in which all of the amino acid substitutions C48A, C150A, C167A, C270A, C274A and C447A possessed by these six mutants were introduced.
  • AAT activity means an activity that catalyzes the formation of an ester from a CoA compound.
  • the AAT activity per recombinant of the mutant is 50% or more compared to 100% of the activity of the standard” means that the production of an ester catalyzed by the mutant expressed from a certain amount of E. coli recombinant It means that the amount is 50% or more of the amount of ester produced by the catalyst of the standard expressed from the recombinant E. coli under the same conditions due to the high activity and solubility of the mutant.
  • the cell extract containing the mutant was prepared by the method described above, and the AAT activity of the cell extract was measured. Furthermore, the cell extract (soluble fraction) and the insoluble fraction (bacteria and membrane fraction) separated from the cell extract by centrifugation were separated by SDS-polyacrylamide gel electrophoresis, and recombinant AAT was separated. A protein band was detected.
  • the results are shown in FIG.
  • the vertical axis of the graph shows the AAT activity per cell weight, with the AAT activity of the reference body expressed from pAAT116 as 1.
  • the AAT activity per recombinant of the mutant expressed from pAAT024 was about 5 times that of the standard.
  • the mutant expressed from pAAT024 was present more in the soluble fraction than in the reference. This result revealed that the substitution of cysteine at positions 48, 150, 167, 270, 274, and 447 with alanine can enhance the solubility of AAT and improve the activity per recombinant. .
  • the amplified fragment is treated with restriction enzymes BspHI and SpeI, separated by agarose gel electrophoresis, extracted from a gel using Gel / PCR Purification Kit (FAVORGEN), and this is a random mutant gene library (mutant AAT ( M2K) gene library).
  • MMA-152 (SEQ ID NO: 21): GCCCCCGTTTTCACGATGGGCAAATAT
  • Reverse primer MMA-153 (SEQ ID NO: 22): ATATTTGCCCATCGTGAAAACGGGGGC
  • a plasmid was prepared from the E. coli transformant and designated pSTV28N.
  • Primer MMA-156 (SEQ ID NO: 23): CACAGGAAACAGACCATGGTGAGCTTTTCTGTACTCCAAGTCAAACG
  • Primer MMA-157 (SEQ ID NO: 24): GTGATTTTTTTCTCCGCACTAGTCTACTGGCTGGTGCTACGCAG
  • the CAT gene fragment was amplified by PCR using pSTV28N as a template and primers MMA-159 and 160, followed by purification.
  • Primer MMA-159 (SEQ ID NO: 25): CTGCGTAGCACCAGCCAGTAGACTAGTGCGGAGAAAAAAATCAC Primer MMA-160 (SEQ ID NO: 26): GCCAAGCTTGCATGCCTGCAGGTTACGCCCCGCCCTGCCACTCATCG
  • the AAT gene fragment and the CAT gene fragment were mixed with the vector pTrc99A previously cut with NcoI and Sse8387I, and the three fragments were ligated using In-Fusion HD Cloning Kit. Escherichia coli JM109 strain was transformed with the reaction solution. A plasmid was prepared from the E. coli transformant and designated pAAT113. The second amino acid of the AAT gene in pAAT113 is valine.
  • the Escherichia coli transformant was cultured on an LBAmp agar medium, and about 12,000 colonies were collected to prepare a cell suspension. A part of the cell suspension was taken and a plasmid was prepared using Mini prep Kit (QIAGEN) to obtain a mutant AAT (M2K) -CAT fusion gene plasmid library.
  • PCR was performed using pAAT116 as a template and the primer sets shown in Table 4 below. 1 ⁇ l of DpnI was added to the reaction solution and incubated at 37 ° C. for 1 hour. Escherichia coli JM109 strain was transformed with DpnI treatment solution. A plasmid containing a mutant AAT gene was prepared from an E. coli transformant.
  • E. coli JM109 strain was transformed with the plasmid shown in “Table 4”, and the AAT activity of the cell disruption solution of the E. coli transformant was measured by the method described in Example 1. The results are shown in “Table 5”. In the table, the activity value is shown as a relative value with the activity of the reference body expressed from pAAT116 as 1.
  • AAT activity was observed by introducing mutations of A64V, V248A and Q363K.
  • the mutation of K117Q also showed a slight improvement in activity.
  • glutamine at position 363 is replaced with proline, adenine, arginine, glycine or tryptophan, An activity of 120% or more compared to the activity was confirmed.
  • the quadruple mutant was about 6 times more active than the standard expressed from pAAT116.
  • Example 2 Preparation and activity evaluation of cysteine 6-substituted quadruple mutants
  • E. coli strain JM109 was transformed with rasmid pAAT025, and the AAT activity of the cell lysate of the E. coli transformant was measured by the method described in Example 1.
  • the results are shown in FIG.
  • the cysteine 6-substituted quadruple mutant showed about 2.8 times the activity per recombinant compared to the reference body (4-fold mutant) expressed from pAAT021.
  • Example 3 Preparation of cysteine 6-substituted quadruple mutant recombinant and activity evaluation 2] Plasmids pAAT155 and pAAT025 (cysteine 6-substituted quadruple mutants) in which cysteine at position 150 of AAT is replaced with arginine in plasmid pAAT021 (quadruple mutant) Plasmids in which cysteine at position 150 in AAT is replaced with arginine pAAT154 was created.
  • Plasmid pAAT155 contains a mutant AAT gene in which the cysteine at position 150 of AAT is replaced with arginine and has a quadruple mutation of A64V, K117Q, V248A, and Q363K.
  • Plasmid pAAT154 is a 4-fold A64V, K117Q, V248A and Q363K in which cysteines at positions 48, 167, 270, 274 and 447 of AAT are all substituted with alanine, cysteine at position 150 is substituted with arginine.
  • a mutant AAT gene having a mutation is included.
  • the amino acid substitution was performed following the preparation of pAAT116 from pAAT115 in Reference Example 1.
  • the PCR reaction was performed using primers MMA-380 and MMA-381 and the template as pAAT021 or pAAT025.
  • Primer MMA-380 (SEQ ID NO: 59): CTGATTCAAGTCACTCGTCTGACGTGTGGTGG
  • Primer MMA-381 (SEQ ID NO: 60): CCACCACACGTCAGACGAGTGACTTGAATCAG
  • Escherichia coli JM109 strain was transformed with plasmids pAAT155 and pAAT154, and the AAT activity of the cell lysate of the E. coli transformant was measured by the method described in Example 1.
  • the cell extract (soluble fraction) and the insoluble fraction (bacteria and membrane fraction) separated from the cell extract by centrifugation were separated by SDS-polyacrylamide gel electrophoresis, and recombinant AAT was separated. A protein band was detected.
  • the results are shown in FIG.
  • the recombinants expressed from pAAT155 and pAAT154 exhibited AAT activity per recombinant of about 3.7 times and about 5 times that of the reference body (quadruple mutant) expressed from pAAT021, respectively.
  • AAT activity per recombinant of about 3.7 times and about 5 times that of the reference body (quadruple mutant) expressed from pAAT021, respectively.
  • more protein was present in the soluble fraction than in the recombinant expressing the reference body. From this result, it has been clarified that by substituting cysteine at position 150 with arginine in particular, the solubility of the reference substance can be further increased and the activity can be further improved.
  • Example 4 Preparation and activity evaluation of cysteine 4-5 substituted quadruple mutants
  • Five or four of the six cysteines at positions 48, 150, 167, 270, 274 and 447 of AAT are substituted with alanine, and four mutations of A64V, K117Q, V248A and Q363K are performed.
  • the AAT gene possessed was commissioned (Genscript) and inserted into the vector pTrc99A to obtain the plasmids shown in Table 6.
  • E. coli JM109 strain was transformed with each plasmid, and the AAT activity of the E. coli transformant cell disruption solution was measured by the method described in Example 1.
  • the results are shown in FIG.
  • the vertical axis of the graph shows the AAT activity per cell weight, with 1 representing the activity of the reference body expressed from pAAT116.
  • Both the cysteine 5-substituted quadruple mutant and the cysteine 4-substituted quadruple mutant showed higher solubility and activity per recombinant than the reference body expressed from pAAT021 (4-fold mutant).
  • Example 5 Production of highly active tomato AAT
  • pAAT032 expressing a tomato AAT (SpAAT) gene was commissioned and synthesized (Genscript, the same applies hereinafter).
  • pAAT032 includes tomato (wild type) A2K type AAT (SEQ ID NO: 64) in which the second amino acid of tomato (wild type) wild type AAT (SEQ ID NO: 66) is substituted from alanine to lysine.
  • SEQ ID NO: 64 tomato (wild type) A2K type AAT
  • SEQ ID NO: 66 the second amino acid of tomato (wild type) wild type AAT
  • Escherichia coli JM109 strain was transformed with nine kinds of plasmids shown in “Table 7”.
  • Example 6 Production of highly active strawberry AAT
  • SAAT033 expressing a strawberry AAT (SAAT) gene (SEQ ID NO: 65) was commissioned and synthesized. There are 9 cysteines in the protein encoded by this gene. Nine types of plasmids in which each cysteine was replaced with alanine were commissioned and synthesized (Table 8).
  • Escherichia coli JM109 strain was transformed with 10 kinds of plasmids shown in “Table 8”.
  • Sequence number 1 Apple wild type AAT (Mp-AAT1_apple)
  • Sequence number 2 Apple M2K type AAT SEQ ID NO: 3: AAT in which quadruple mutation has been introduced into apple M2K type
  • Sequence number 4 AAT which introduce
  • SEQ ID NO: 5 AAT in which quadruple mutation and cysteine 6 substitution are introduced into apple M2K type
  • SEQ ID NO: 7 AAT in which quadruple mutation and cysteine 6 substitution (of which Cys150Arg at position 150) is introduced into apple M2K type
  • SEQ ID NO: 9 AAT in which quadruple mutation and cysteine 4 substitution have been introduced into apple M2K type SEQ ID NO

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

目的タンパク質を活性な可溶性組換タンパク質として形質転換体中で発現させるための効率的な方法として、以下の工程を含む、基準体に比して、組換体あたりの活性が向上した酵素を製造する方法を提供する。 (1)基準体のアミノ酸配列において1以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現する組換体を作成する工程、 (2)基準体の活性100%に比して50%以上の組換体あたりの活性を示す複数の変異体を選択する工程、 (3)工程(2)において選択されたそれぞれの変異体が有するアミノ酸残基が置換された部位のうち、2以上の部位において、それぞれ対応するアミノ酸残基が置換された変異体を発現させる工程。

Description

変異型酵素の製造方法及び変異型アルコールアシルトランスフェラーゼ
 本発明は、変異型酵素の製造方法及び変異型アルコールアシルトランスフェラーゼに関する。より詳しくは、アルコールアシルトランスフェラーゼなどの酵素を、高活性な可溶性組換タンパク質として得るための方法等に関する。
 タンパク質は、細胞内で翻訳された後、固有の立体構造に折りたたまれて、機能を有するようになる。形質転換体(組換体)を用いて異種タンパク質を発現させる場合には、タンパク質の正常なフォールディングが宿主細胞内で行われず、封入体が形成されてしまうことがある。封入体中のタンパク質は、本来の活性が失われた不活性型タンパク質となり、場合によって不溶化することが知られている。タンパク質の由来種の細胞内環境(温度、転写速度、翻訳速度等)とは異なる宿主の細胞内環境下では当該タンパク質の正常なフォールディングがなされないことが、封入体の形成の要因と考えられている。
 この問題を解決するため、タンパク質に変異を導入することによって、組換体中で野生型タンパク質と同様の正常なフォールディングを実現し、活性型として発現する変異タンパク質を取得する試みがなされている。例えば、植物由来のヒドロキシニトリルリアーゼについて、変異の導入によって可溶性が大きく向上した酵素を取得できたことが報告されている(非特許文献1)。
 本発明に関連して、アルコールアシルトランスフェラーゼ(AAT)について説明する。特許文献1~3には、バイオマスから生成されるイソブチリル-CoAやメタクリリル-CoAからアルコールアシルトランスフェラーゼ(AAT)を用いてイソ酪酸エステルやメタクリル酸エステルを製造する方法が提案されている。
 カルボン酸エステル類は、各種の工業用化学品、香料、医薬品などの原料として用いられている。例えばイソ酪酸エステルは、主に香料用エステル類、医薬品、過酸化物などの原料として重要なエステル化合物である。メタクリル酸エステルは、主にアクリル樹脂の原料として使われており、塗料、接着剤、樹脂改質剤などの分野のコモノマーとしても多くの需要がある。
 近年、地球温暖化防止及び環境保護の観点から、炭素源として従来の化石原料に替えてバイオマスを用い、種々の化学製品を製造する技術が注目されている。イソ酪酸エステルやメタクリル酸エステルについても、バイオマスからの製造が期待されている。
 AATを用いてバイオマスからイソ酪酸エステルやメタクリル酸エステルなどのエステルを合成するための方法として、バイオマスからイソブチリル-CoAやメタクリリル-CoAなどのCoA化合物を合成する遺伝子群と、CoA化合物からエステルへの反応を触媒するAAT遺伝子とを導入した微生物組換体を用いた発酵生産が考えられる。
 しかしながら、組換体中でAATを発現させる場合にも、上述の封入体形成が問題となっている。特に植物由来AATは、大腸菌を宿主として発現させた場合、大部分が不活性な不溶性タンパク質として発現することが知られている(非特許文献2)。
 非特許文献3,4では、リンゴ由来のAATを大腸菌組換体で発現させた場合、特定の系統(C43(DE3))を用いた場合においてのみ可溶性タンパク質として得られ、一般的な系統(BL21(DE3)誘導株)では可溶性タンパク質としては得られなかったことが報告されている。
特開2015-116141号公報 国際公開2014/038214号 国際公開2014/038216号
Protein Eng. Des. Sel. (2011) 24:607-616. Metabolic Engineering (2015) 27:20-28. FEBS J. (2005) 272: 3132-3144. Phytochemistry (2006) 67:658-667.
 上述の通り、封入体形成を抑制するため、タンパク質に変異を導入することによって、形質転換体(組換体)中で野生型タンパク質と同様の正常なフォールディングを実現する方法が提案されている。しかし、この方法においては、正常なフォールディングの実現を可能とする変異をどのようにして効率的に探索するかが課題となる。
 そこで、本発明は、目的タンパク質を活性な可溶性組換タンパク質として組換体中で発現させるための効率的な方法を提供することを主な目的とする。
 上記課題解決のため、本発明は、以下の〔1〕~〔25〕を提供する。
〔1〕 基準体のアミノ酸配列において2以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現させる工程、
を含む、基準体に比して、組換体あたりの活性が向上した酵素の製造方法。
〔2〕 以下の工程を含む、〔1〕の酵素の製造方法;
(1)基準体のアミノ酸配列において1以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現する組換体を作成する工程、
(2)基準体の活性100%に比して50%以上の組換体あたりの活性を示す複数の変異体を選択する工程、
(3)工程(2)において選択されたそれぞれの変異体が有するアミノ酸残基が置換された部位のうち、2以上の部位において、それぞれ対応するアミノ酸残基が置換された変異体を発現させる工程。
〔3〕 前記酵素がアルコールアシルトランスフェラーゼである〔1〕又は〔2〕の酵素の製造方法。
〔4〕 前記基準体のアミノ酸配列が、配列番号1、2、3、64、65及び66のいずれかに示されるアミノ酸配列である、〔3〕の酵素の製造方法。
〔5〕 前記他のアミノ酸残基が、アラニン又はアルギニンである〔1〕~〔4〕のいずれかの酵素の製造方法。
〔6〕 基準体に比して活性が向上した、変異型アルコールアシルトランスフェラーゼであって、
基準体のアミノ酸配列において1以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する、変異型アルコールアシルトランスフェラーゼ。
〔7〕 配列番号1又は2に示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなる〔6〕の変異型アルコールアシルトランスフェラーゼであって、
以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ;
(1)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて48番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(2)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて150番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(3)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて167番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(4)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて270番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(5)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて274番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(6)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて447番目のシステインに相当するシステインの他のアミノ酸残基への置換。
〔8〕 配列番号64又は66に示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなる〔6〕の変異型アルコールアシルトランスフェラーゼであって、
以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ;
(1)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて206番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(2)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて209番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(3)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて256番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(4)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて269番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(5)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて322番目のシステインに相当するシステインの他のアミノ酸残基への置換。
〔9〕 配列番号65に示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなる〔6〕の変異型アルコールアシルトランスフェラーゼであって、
以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ;
(1)配列番号65に示すアミノ酸配列とのアラインメントにおいて115番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(2)配列番号65に示すアミノ酸配列とのアラインメントにおいて167番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(3)配列番号65に示すアミノ酸配列とのアラインメントにおいて179番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(4)配列番号65に示すアミノ酸配列とのアラインメントにおいて325番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(5)配列番号65に示すアミノ酸配列とのアラインメントにおいて356番目のシステインに相当するシステインの他のアミノ酸残基への置換。
〔10〕 前記他のアミノ酸残基が、アラニン又はアルギニンである〔6〕~〔9〕のいずれかの変異型アルコールアシルトランスフェラーゼ。
〔11〕 植物由来である〔7〕~〔10〕のいずれかの変異型アルコールアシルトランスフェラーゼ。
〔12〕 配列番号1又は2に示すアミノ酸配列において以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する〔6〕の変異型アルコールアシルトランスフェラーゼ;
(1)48番目のシステインの他のアミノ酸残基への置換、
(2)150番目のシステインの他のアミノ酸残基への置換、
(3)167番目のシステインの他のアミノ酸残基への置換、
(4)270番目のシステインの他のアミノ酸残基への置換、
(5)274番目のシステインの他のアミノ酸残基への置換、
(6)447番目のシステインの他のアミノ酸残基への置換。
〔13〕 配列番号64又は66に示すアミノ酸配列において以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する〔6〕の変異型アルコールアシルトランスフェラーゼ;
(1)206番目のシステインの他のアミノ酸残基への置換、
(2)209番目のシステインの他のアミノ酸残基への置換、
(3)256番目のシステインの他のアミノ酸残基への置換、
(4)269番目のシステインの他のアミノ酸残基への置換、
(5)322番目のシステインの他のアミノ酸残基への置換。
〔14〕 配列番号65に示すアミノ酸配列において以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する〔6〕の変異型アルコールアシルトランスフェラーゼ;
(1)115番目のシステインの他のアミノ酸残基への置換、
(2)167番目のシステインの他のアミノ酸残基への置換、
(3)179番目のシステインの他のアミノ酸残基への置換、
(4)325番目のシステインの他のアミノ酸残基への置換、
(5)356番目のシステインの他のアミノ酸残基への置換。
〔15〕 前記他のアミノ酸残基が、アラニン又はアルギニンである〔12〕~〔14〕のいずれか一項に記載の変異型アルコールアシルトランスフェラーゼ。
〔16〕 配列番号4又は7に記載のアミノ酸配列からなる〔12〕の変異型アルコールアシルトランスフェラーゼ。
〔17〕 さらに以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する〔7〕又は〔12〕記載の変異型アルコールアシルトランスフェラーゼ;
(1)64番目のアラニンのバリン、イソロイシン又はスレオニンへの置換、
(2)117番目のリジンのグルタミンへの置換、
(3)248番目のバリンのアラニンへの置換、
(4)363番目のグルタミンのリジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンへの置換。
〔18〕 配列番号5,6,8~11,13のいずれかに記載のアミノ酸配列からなる〔17〕の変異型アルコールアシルトランスフェラーゼ。
〔19〕 配列番号1又は2に示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなる変異型アルコールアシルトランスフェラーゼであって、
以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ;
(1)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて64番目のアラニンに相当するアミノ酸残基のバリン、イソロイシン又はスレオニンへの置換、
(2)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて117番目のリジンに相当するアミノ酸のグルタミンへの置換、
(3)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて248番目のバリンに相当するアミノ酸のアラニンへの置換、
(4)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて363番目のグルタミンに相当するアミノ酸のリジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンへの置換。
〔20〕 植物由来である〔19〕のいずれかの変異型アルコールアシルトランスフェラーゼ。
〔21〕 配列番号1又は2に示すアミノ酸配列において以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ;
(1)64番目のアラニンのバリン、イソロイシン又はスレオニンへの置換、
(2)117番目のリジンのグルタミンへの置換、
(3)248番目のバリンのアラニンへの置換、
(4)363番目のグルタミンのリジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンへの置換。
〔22〕 配列番号3,5,6,8~11,13のいずれかに記載のアミノ酸配列からなる〔21〕の変異型アルコールアシルトランスフェラーゼ。
〔23〕 〔6〕~〔20〕のいずれかのアルコールアシルトランスフェラーゼを発現するベクター。
〔24〕 〔23〕のベクターが導入された形質転換体。
 また、本発明は、他の一側面において、以下の[1]~[24]をも提供する。
[1] 以下の工程を含む、基準体に比して、組換体あたりの活性が向上した酵素を製造する方法。
(1)基準体のアミノ酸配列において1以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現する組換体を作成する工程。
(2)基準体に比して50%以上の組換体あたりの活性を示す変異体を選択する工程。
(3)工程(2)において選択されたそれぞれの変異体が有するアミノ酸置換が導入された部位のうち2以上の部位においてそれぞれ対応するアミノ酸置換が導入された変異体を発現させる工程。
[2] 前記酵素がアルコールアシルトランスフェラーゼである[1]の製造方法。
[3] 前記基準体のアミノ酸配列が、配列番号1、配列番号2又は配列番号3に示されるアミノ酸配列である、[2]の製造方法。
[4] 前記他のアミノ酸残基が、アラニン又はアルギニンである[1]~[3]のいずれかの製造方法。
[5] 基準体のアミノ酸配列において1以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現させる工程、
を含む、基準体に比して組換体あたりの活性が向上した酵素の製造方法。
[6] 前記酵素がアルコールアシルトランスフェラーゼである[5]の製造方法。
[7] 前記基準体のアミノ酸配列が、配列番号1、配列番号2又は配列番号3に示されるアミノ酸配列である、[6]の製造方法。
[8] 前記他のアミノ酸残基が、アラニン又はアルギニンである[5]~[7]のいずれかの製造方法。
[9] 配列番号1記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなる変異型アルコールアシルトランスフェラーゼであって、
以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ。
(1)配列番号1に示すアミノ酸配列とのアラインメントにおいて48番目のシステインに相当するシステインの他のアミノ酸残基への置換。
(2)配列番号1に示すアミノ酸配列とのアラインメントにおいて150番目のシステインに相当するシステインの他のアミノ酸残基への置換。
(3)配列番号1に示すアミノ酸配列とのアラインメントにおいて167番目のシステインに相当するシステインの他のアミノ酸残基への置換。
(4)配列番号1に示すアミノ酸配列とのアラインメントにおいて270番目のシステインに相当するシステインの他のアミノ酸残基への置換。
(5)配列番号1に示すアミノ酸配列とのアラインメントにおいて274番目のシステインに相当するシステインの他のアミノ酸残基への置換。
(6)配列番号1に示すアミノ酸配列とのアラインメントにおいて447番目のシステインに相当するシステインの他のアミノ酸残基への置換。
[10] 前記他のアミノ酸残基が、アラニン又はアルギニンである[9]の変異型アルコールアシルトランスフェラーゼ。
[11] 配列番号1に示すアミノ酸配列において以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ。
(1)48番目のシステインの他のアミノ酸残基への置換。
(2)150番目のシステインの他のアミノ酸残基への置換。
(3)167番目のシステインの他のアミノ酸残基への置換。
(4)270番目のシステインの他のアミノ酸残基への置換。
(5)274番目のシステインの他のアミノ酸残基への置換。
(6)447番目のシステインの他のアミノ酸残基への置換。
[12] 前記他のアミノ酸残基が、アラニン又はアルギニンである[11]の変異型アルコールアシルトランスフェラーゼ。
[13] 配列番号4又は7に記載のアミノ酸配列からなる[11]の変異型アルコールアシルトランスフェラーゼ。
[14] さらに以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する[11]の変異型アルコールアシルトランスフェラーゼ。
(1)64番目のアラニンのバリン、イソロイシン又はスレオニンへの置換。
(2)117番目のリジンのグルタミンへの置換。
(3)248番目のバリンのアラニンへの置換。
(4)363番目のグルタミンのリジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンへの置換。
[15] 配列番号5,6,8~11,13のいずれかに記載のアミノ酸配列からなる[14]の変異型アルコールアシルトランスフェラーゼ。
[16] 配列番号1記載のアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなる変異型アルコールアシルトランスフェラーゼであって、
以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ。
(1)配列番号1に示すアミノ酸配列とのアラインメントにおいて64番目のアラニンに相当するアミノ酸残基のバリン、イソロイシン又はスレオニンへの置換。
(2)配列番号1に示すアミノ酸配列とのアラインメントにおいて248番目のバリンに相当するアミノ酸のアラニンへの置換。
(3)配列番号1に示すアミノ酸配列とのアラインメントにおいて363番目のグルタミンに相当するアミノ酸のリジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンへの置換。
(4)配列番号1に示すアミノ酸配列とのアラインメントにおいて117番目のリジンに相当するアミノ酸のグルタミンへの置換。
[17] 配列番号1に示すアミノ酸配列において以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ。
(1)64番目のアラニンのバリン、イソロイシン又はスレオニンへの置換。
(2)117番目のリジンのグルタミンへの置換。
(3)248番目のバリンのアラニンへの置換。
(4)363番目のグルタミンのリジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンへの置換。
[18] 配列番号3,5,6,8~11,13のいずれかに記載のアミノ酸配列からなる[17]の変異型アルコールアシルトランスフェラーゼ。
[19] [9]~[18]のアルコールアシルトランスフェラーゼを発現するベクター。
[20] [19]のベクターが導入された形質転換体。
[21] 基準体に比して、組換体あたりの活性が向上した植物由来酵素を製造する方法であって、
(1)基準体のアミノ酸配列において1又は2以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現する非植物細胞組換体を作成する工程と、
(2)前記変異体の組換体あたりの酵素活性を測定する工程と、
(3)基準体に比して50%以上の組換体あたりの活性を示す変異体を選択する工程と、
(4)工程(3)において選択されたそれぞれの変異体が有するアミノ酸置換が導入された部位のうち2以上の部位においてそれぞれ対応するアミノ酸置換が導入された変異体を前記非植物細胞中で発現させる工程と、を含む製造方法。
[22] 前記酵素がリンゴ由来のアルコールアシルトランスフェラーゼである[21]の製造方法。
[23] 前記非植物細胞が大腸菌細胞である[21]又は[22]の製造方法。
[24] 前記他のアミノ酸残基が、アラニン又はアルギニンである[21]~[23]のいずれかの製造方法。
 本発明に係る変異型酵素の製造方法において、「基準体」とは、1以上のシステインの他のアミノ酸残基への置換を導入する対象となる酵素を意味する。本発明に係る製造方法により得られる変異型酵素のアミノ酸配列は、1以上のシステインが他のアミノ酸残基に置換されている点でのみ、基準体のアミノ酸配列と相違する。基準体は、天然型(野生型)の酵素に限られず、野生型の酵素のアミノ酸配列にアミノ酸置換が一以上導入された変異型の酵素であってもよい。また、基準体は、野生型の酵素のアミノ酸配列に一以上のアミノ酸を挿入又は付加したアミノ酸配列、あるいは野生型の酵素のアミノ酸配列から一以上のアミノ酸を欠失させたアミノ酸配列を有する変異型の酵素であってもよい。これらの変異型の酵素を基準体として、さらに1又は2以上のシステインの他のアミノ酸残基への置換を導入することによって、活性の向上した変異型酵素を得ることができる。
 本発明により、目的タンパク質を活性な可溶性組換タンパク質として組換体中で発現させるための効率的な方法が提供される。
配列番号1(リンゴ)、配列番号12(リンゴ)、配列番号61(ナシ)、配列番号62(ビワ)及び配列番号63(カキ)由来のAATのアミノ酸配列のアラインメントを示す図である。 配列番号66(トマト(野生種))、配列番号67(トマト(栽培種))、配列番号68(バレイショ)、配列番号69(トウガラシ)及び配列番号70(タバコ)由来のAATのアミノ酸配列のアラインメントを示す図である。 配列番号65(イチゴ)、配列番号71(チリイチゴ)、配列番号72(エゾヘビイチゴ)及び配列番号73(ハマナス)由来のAATのアミノ酸配列のアラインメントを示す図である。 リンゴAATの15個のシステインを1つずつアラニンに置換して作成した15種類の変異体を発現する組換体について、AAT活性を測定した結果を示すグラフである。縦軸は、菌体重量あたりのAAT活性を、システイン置換を有さない基準体(pAAT116)を発現する組換体の活性を1とした相対値で示す。 図上段は、リンゴ野生型AATに4重変異を導入した変異体(pAAT021)、システイン6置換を導入した変異体(pAAT024)、4重変異とシステイン6置換を導入した変異体(pAAT025)、4重変異とCys150Argを導入した変異体(pAAT155)、4重変異とシステイン6置換(うち150位はCys150Arg)を導入した変異体(pAAT154)を発現する組換体について、菌体重量あたりのAAT活性を測定した結果を示すグラフである。縦軸は、AAT活性を、4重変異及びシステイン置換を有さない基準体(pAAT116)を発現する組換体の活性を1とした相対値で示す。図下段は、変異体を含む細胞抽出液の可溶性画分と不溶性画分のSDS-ポリアクリルアミドゲル電気泳動像である。 図上段は、リンゴ野生型AATに4重変異を導入した変異体(pAAT021)、4重変異とシステイン6置換を導入した変異体(pAAT025)、4重変異とシステイン5置換を導入した変異体(pAAT151)、4重変異とシステイン4置換を導入した変異体(pATM017、pATM018、pATM019、pATM021)を発現する組換体について、菌体重量あたりのAAT活性を測定した結果を示すグラフである。縦軸は、AAT活性を、4重変異及びシステイン置換を有さない基準体(pAAT116)を発現する組換体の活性を1とした相対値で示す。図下段は、変異体を含む細胞抽出液の可溶性画分と不溶性画分のSDS-ポリアクリルアミドゲル電気泳動像である。 図上段は、トマトAATの8個のシステインを1つずつアラニンに置換して作成した8種類の変異体を発現する組換体と、トマト野生型AATにシステイン5置換を導入した変異体(pAAT164)を発現する組換体について、菌体重量あたりのAAT活性を測定した結果を示すグラフである。縦軸は、AAT活性を、基準体(pAAT032)を発現する組換体の活性を1とした相対値で示す。図下段は、変異体を含む細胞抽出液の可溶性画分と不溶性画分のSDS-ポリアクリルアミドゲル電気泳動像である。 図上段は、イチゴAATの9個のシステインを1つずつアラニンに置換して作成した9種類の変異体を発現する組換体と、イチゴ野生型AATにシステイン5置換を導入した変異体(pAAT037)を発現する組換体について、菌体重量あたりのAAT活性を測定した結果を示すグラフである。縦軸は、AAT活性を、基準体(pAAT033)を発現する組換体の活性を1とした相対値で示す。図下段は、変異体を含む細胞抽出液の可溶性画分と不溶性画分のSDS-ポリアクリルアミドゲル電気泳動像である。
 以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
1.変異型酵素の製造方法
 本発明は、基準体のアミノ酸配列において2以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現させる工程、を含む、基準体に比して組換体あたりの活性が向上した酵素の製造方法に関する。
 具体的には、本発明に係る変異型酵素の製造方法は、以下の工程(1)~(3)を含むことを特徴とする。
(1)基準体のアミノ酸配列において1以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現する組換体を作成する工程。
(2)基準体の活性100%に比して50%以上の組換体あたりの活性を示す複数の変異体を選択する工程。
(3)工程(2)において選択されたそれぞれの変異体が有するアミノ酸残基が置換された部位のうち2以上の部位においてそれぞれ対応するアミノ酸残基が置換された変異体を発現させる工程。
[酵素]
 本発明に係る変異型酵素の製造方法が対象とする酵素は、当該酵素の由来種とは異なる宿主で基準体を発現させた場合に、形質転換体(組換体)中で封入体を形成する酵素であることが好ましい。本発明に係る変異型酵素の製造方法が対象とする酵素は、例えば、植物由来の酵素であって、大腸菌等の非植物細胞で基準体を発現させた場合に、組換体細胞中で封入体を形成する酵素であってよい。
 酵素の例としては、特に限定されないが、アルコールアシルトランスフェラーゼ(AAT)などのトランスフェラーゼ類;デヒドロゲナーゼやオキシダーゼ、オキシゲナーゼなどのオキシドレダクターゼ類;エステラーゼやニトリラーゼ、アミダーゼなどのヒドロラーゼ類;ラセマーゼやエピメラーゼ、ムターゼなどのイソメラーゼ類;アシルCoAシンテターゼやDNAリガーゼなどのリガーゼ類;ニトリルヒドラターゼやヒドロキシニトリルリアーゼ、アンモニアリアーゼなどのリアーゼ類などが挙げられる。
 酵素の由来としては、動物、植物、糸状菌、酵母、古細菌や真正細菌が挙げられ、上記の特徴を有するものであれば特に限定されない。
 本発明のAATの由来としては、例えば、ショウガ目(Zingiberales)、バラ目(Rosales)、ツツジ目(Ericales)、ウリ目(Cucurbitales)、アブラナ目(Brassicales)、クスノキ目(Laurales)、イネ目(Poales)、ヤシ目(Arecales)、クサスギカズラ目(Asparagales)、ユキノシタ目(Saxifragales)、ナデシコ目(Caryophyllales)、ブドウ目(Vitales)、キントラノオ目(Malpighiales)、カタバミ目(Oxalidales)、マメ目(Fabales)、ムクロジ目(Sapindales)、アオイ目(Malvales)、フトモモ目(Myrtales)、キンポウゲ目(Ranunculales)、ナス目(Solanales)、シソ目(Lamiales)、リンドウ目(Gentianales)およびキク目(Asterales)からなる群から選択されるいずれかの目に属するものである。これらの中で、好ましくは、ショウガ目(Zingiberales)、バラ目(Rosales)、ツツジ目(Ericales)、ウリ目(Cucurbitales)、アブラナ目(Brassicales)およびクスノキ目(Laurales)からなる群から選択されるいずれかの目に属するものが挙げられる。
 ショウガ目に属するものとしてはバショウ科(Musaceae)およびショウガ科(Zingiberaceae)、バラ目に属するものとしてはバラ科(Rosaceae)およびクワ科(Moraceae)、ツツジ目に属するものとしてはツツジ科(Ericaceae)、マタタビ科(Actinidiaceae)、カキノキ科(Ebenaceae)およびツバキ科(Theaceae)、ウリ目に属するものとしてはウリ科(Cucurbitaceae)、アブラナ目に属するものとしてはパパイア科(Caricaceae)およびアブラナ科(Brassicaceae)、クスノキ目に属するものとしてはクスノキ科(Lauraceae)、イネ目に属するものとしてはパイナップル科(Bromeliaceae)およびイネ科(Poaceae)、ヤシ目に属するものとしてはヤシ科(Arecaceae)、クサスギカズラ目に属するものとしてはラン科(Orchidaceae)およびアヤメ科(Iridaceae)、ユキノシタ目に属するものとしてはスグリ科(Grossulariaceae)、ナデシコ目に属するものとしてはナデシコ科(Caryophyllaceae)、ブドウ目に属するものとしてはブドウ科(Vitaceae)、キントラノオ目に属するものとしてはキントラノオ科(Malpighiaceae)、トケイソウ科(Passifloraceae)、トウダイグサ科(Euphorbiaceae)およびヤナギ科(Salicaceae)、カタバミ目に属するものとしてはカタバミ科(Oxalidaceae)、マメ目に属するものとしてはマメ科(Fabaceae)、ムクロジ目に属するものとしてはミカン科(Rutaceae)、ムクロジ科(Sapindaceae)およびウルシ科(Anacardiaceae)、アオイ目に属するものとしてはアオイ科(Malvaceae)、フトモモ目に属するものとしてはミソハギ科(Lythraceae)、アカバナ科(Onagraceae)およびフトモモ科(Myrtaceae)、キンポウゲ目に属するものとしてはキンポウゲ科(Ranunculaceae)およびケシ科(Papaveraceae)、ナス目に属するものとしてはナス科(Solanaceae)、シソ目に属するものとしてはモクセイ科(Oleaceae)、クマツヅラ科(Verbenaceae)およびシソ科(Lamiaceae)、リンドウ目に属するものとしてはキョウチクトウ科(Apocynaceae)、キク目(Asterales)に属するものとしてはキク科(Asteraceae)の植物が好ましい。上記植物の近縁種も利用することができる。これらの中でさらに好ましくは、バショウ科(Musaceae)、バラ科(Rosaceae)、ツツジ科(Ericaceae)、マタタビ科(Actinidiaceae)、ウリ科(Cucurbitaceae)、パパイア科(Caricaceae)およびクスノキ科(Lauraceae)に属する植物である。
 具体的にはバショウ科に属するものとしてはバショウ(Musa)属、ショウガ科(Zingiberaceae)に属するものとしてはショウガ属(Zingiber)、バラ科に属するものとしてはオランダイチゴ(Fragaria)属、リンゴ(Malus)属、サクラ(Prunus)属、ナシ(Pyrus)属、ビワ(Eriobotrya)属、ボケ(Chaenomeles)属、キイチゴ(Rubus)属およびバラ(Rosa)属、クワ科(Moraceae)に属するものとしてはイチジク(Ficus)属、ツツジ科に属するものとしてはスノキ(Vaccinium)属、マタタビ科に属するものとしてはマタタビ(Actinidia)属、カキノキ科に属するものとしてはカキノキ(Diospyros)属、ツバキ科に属するものとしてはツバキ(Camellia)属、ウリ科に属するものとしてはキュウリ(Cucumis)属およびスイカ(Citrullus)属、パパイア科に属するものとしてはパパイア(Carica)属およびヴァスコンセレア(Vasconcellea)属、アブラナ科に属するものとしてはシロイヌナズナ(Arabidopsis)属、クスノキ科に属するものとしてはワニナシ(Persea)属、パイナップル科に属するものとしてはアナナス属(Ananas)、イネ科に属するものとしてはイネ(Oryza)属、コムギ(Triticum)属、オオムギ(Hordeum)属、トウモロコシ(Zea)属、モロコシ(Sorghum)属およびヤマカモジグサ(Brachypodium)属、ヤシ科に属するものとしてはココヤシ(Cocos)属、ラン科に属するものとしてはバンダ(Vanda)属、アヤメ科に属するものとしてはアヤメ(Iris)属、スグリ科に属するものとしてはスグリ(Ribes)属、ナデシコ科に属するものとしてはカスミソウ属(Gypsophila)、ブドウ科に属するものとしてはブドウ(Vitis)属、キントラノオ科に属するものとしてはヒイラギトラノオ(Malpighia)属、トケイソウ科に属するものとしてはトケイソウ(Passiflora)属、トウダイグサ科に属するものとしてはトウゴマ(Ricinus)属、ヤナギ科に属するものとしてはヤマナラシ(Populus)属、カタバミ科に属するものとしてはゴレンシ(Averrhoa)属、マメ科に属するものとしてはウマゴヤシ(Medicago)属、ハウチワマメ(Lupinus)属、ダイズ(Glycine)属およびチョウマメ(Clitoria)属、ミカン科に属するものとしてはミカン(Citrus)属およびアエグレ(Aegle)属、ムクロジ科に属するものとしてはレイシ(Litchi)属、ウルシ科に属するものとしてはマンゴー(Mangifera)属、アオイ科に属するものとしてはドリアン(Durio)属およびカカオ(Theobroma)属、ミソハギ科に属するものとしてはザクロ(Punica)属、アカバナ科に属するものとしてはサンジソウ(Clarkia)属、フトモモ科に属するものとしてはバンジロウ(Psidium)属、キンポウゲ科に属するものとしてはルイヨウショウマ(Actaea)属、ケシ科に属するものとしてはケシ(Papaver)属、ナス科に属するものとしてはナス(Solanum)属、トウガラシ(Capsicum)属、タバコ(Nicotiana)属およびツクバネアサガオ(Petunia)属、モクセイ科に属するものとしてはオリーブ(Olea)属、クマツヅラ科に属するものとしてはグランデュラリア(Glandularia)属、シソ科に属するものとしてはアキギリ(Salvia)属、キョウチクトウ科に属するものとしてはラウオルフィア(Rauvolfia)属およびニチニチソウ(Catharanthus)属、キク科に属するものとしてはカミツレ(Chamaemelum)属の植物が好ましい。その中でも、バショウ属、オランダイチゴ属、リンゴ属、サクラ属、ナシ属、スノキ属、マタタビ属、キュウリ属、パパイア属又はワニナシ属に属する植物がより好ましい。
 さらにその中でも、バショウ属、リンゴ属、ナシ属、ビワ属、カキノキ属、マタタビ属、キュウリ属、パパイア属又はワニナシ属に属する植物が特に好ましい。
 さらに、具体的にはバショウ属に属するものとしてはバナナ(Musa x paradisiaca)、バショウ(Musa basjoo)、ヒメバショウ(Musa coccinea)およびマレーヤマバショウ(Musa acuminata)、ショウガ属に属するものとしてはショウガ(Zingiber officinale)、オランダイチゴ属に属するものとしてはオランダイチゴ(Fragaria x ananassa)(以下、単に「イチゴ」と記載することもある。)、バージニアイチゴ(Fragaria virginiana)、チリイチゴ(Fragaria chiloensis)およびエゾノヘビイチゴ(Fragaria vesca)、リンゴ属に属するものとしてはリンゴ(Malus pumila、Malus domestica、Malus baccata)、ハナカイドウ(Malus halliana)、カイドウズミ(Malus floribunda)およびイヌリンゴ(Malus prunifolia)、サクラ属に属するものとしてはウメ(Prunus mume)、セイヨウミザクラ(Prunus avium)、モモ(Prunus persica)、アンズ(Prunus armeniaca)、アーモンド(Prunus dulcis)、スモモ(Prunus salicina)およびセイヨウスモモ(Prunus domestica)、ナシ属に属するものとしてはセイヨウナシ(Pyrus communis)、ナシ(Pyrus pyrifolia)、マメナシ(Pyrus calleryana)、ヤセイセイヨウナシ(Pyrus pyraster)およびチュウゴクナシ(Pyrus x bretschneideri)、ビワ属に属するものとしてはビワ(Eriobotrya japonica)、ボケ属に属するものとしてはカリン(Chaenomeles sinensis)、キイチゴ属に属するものとしてはラズベリー(Rubus idaeus)およびブラックラズベリー(Rubus fruticosus)、バラ属に属するものとしてはハマナス(Rosa rugosa)、イチジク属に属するものとしてはイチジク(Ficus carica)、スノキ属に属するものとしてはブリーベリー(Vaccinium corymbosum、Vaccinium angustifolium)、ビルベリー(Vaccinium myrtillus)、コケモモ(Vaccinium vitis-idaea)およびツルコケモモ(Vaccinium oxycoccos)、マタタビ属に属するものとしてはキウイ(Actinidia chinensis、Actinidia deliciosa)、サルナシ(Actinidia arguta)、シマサルナシ(Actinidia rufa)およびマタタビ(Actinidia polygama)、カキノキ属に属するものとしてはカキ(Diospyros kaki)、ツバキ属に属するものとしてはチャノキ(Camellia sinensis)、キュウリ属に属するものとしてはキュウリ(Cucumis sativus)、メロン(Cucumis melo)、ニシインドコキュウリ(Cucumis anguria)およびツノニガウリ(Cucumis metulifer)、スイカ属に属するものとしてはスイカ(Citrullus lanatus)、パパイア属に属するものとしてはパパイア(Carica papaya)、ヴァスコンセレア属に属するものとしてはマウンテンパパイア(Vasconcellea cundinamarcensis)、シロイヌナズナ属に属するものとしてはシロイヌナズナ(Arabidopsis thaliana)およびミヤマハタザオ(Arabidopsis lyrata)、ワニナシ属に属するものとしてはアボカド(Persea americana)、アナナス属に属するものとしてはパイナップル(Ananas comosus)、イネ属に属するものとしてはイネ(Oryza sativa)、コムギ属に属するものとしてはコムギ(Triticum aestivum)、オオムギ属に属するものとしてはオオムギ(Hordeum vulgare)、トウモロコシ属に属するものとしてはトウモロコシ(Zea mays)、モロコシ属に属するものとしてはモロコシ(Sorghum bicolor)、ヤマカモジグサ属に属するものとしてはセイヨウヤマカモジ(Brachypodium distachyon)、ココヤシ属に属するものとしてはココナッツ(Cocos nucifera)、バンダ属に属するものとしてはバンダ(Vanda hybrid cultivar)、アヤメ属に属するものとしてはオランダアヤメ(Iris x hollandica)、スグリ属に属するものとしてはクロスグリ(カシス)(Ribesnigrum)、カスミソウ属に属するものとしてはカスミソウ(Gypsophila paniculata、Gypsophila elegans)、ブドウ属に属するものとしてはブドウ(Vitis vinifera、Vitis labrusca)、ヒイラギトラノオ属に属するものとしてはアセロラ(Malpighia glabra)、トケイソウ属に属するものとしてはパッションフルーツ(Passiflora edulis)、トウゴマ属に属するものとしてはトウゴマ(Ricinus communis)、ヤマナラシ属に属するものとしてはコットンウッド(Populus trichocarpa)、ゴレンシ属に属するものとしてはスターフルーツ(Averrhoa carambola)、ウマゴヤシ属に属するものとしてはタルウマゴヤシ(Medicago truncatula)、ハウチワマメ属に属するものとしてはルピナス(シロバナハウチワマメ)(Lupinus albus)、ダイズ属に属するものとしてはダイズ(Glycine max)、チョウマメ属に属するものとしてはチョウマメ(Clitoria ternatea)、ミカン属に属するものとしてはレモン(Citrus limon)、スダチ(Citrus sudachi)、カボス(Citrussphaerocarpa)、グレープフルーツ(Citrus x paradisi)、ユズ(Citrus junos)ライム(Citrus aurantifolia)、ウンシュウミカン(Citrus unshiu)およびオレンジ(Citrus sinensis)、アエグレ属に属するものとしてはアエグレ・マルメロス(Aeglemarmelos)、レイシ属に属するものとしてはライチ(Litchi chinensis)、マンゴー属に属するものとしてはマンゴー(Mangifera indica)、ドリアン属に属するものとしてはドリアン(Durio zibethinus)、カカオ属に属するものとしてはカカオ(Theobroma cacao)、ザクロ属に属するものとしてはザクロ(Punica granatum)、サンジソウ属に属するものとしてはフェアリーファンズ(fairy fans)(Clarkia breweri)およびレッドリボンズ(Red ribbons)(Clarkia concinna)、バンジロウ属に属するものとしてはグァバ(Psidium guajava)、ルイヨウショウマ属に属するものとしてはアメリカショウマ(Actaea racemosa)、ケシ属に属するものとしてはケシ(Papaver somniferum)、オニゲシ(Papaver orientale)およびハカマオニゲシ(Papaver bracteatum)、ナス属に属するものとしてはトマト(Solanum Pennellii,Solanum lycopersicum)およびバレイショ(Solanum tuberosum)、トウガラシ属に属するものとしてはトウラガシ(Capsicum annuum)およびハバネロ(Capsicum chinense)、タバコ属に属するものとしてはタバコ(Nicotiana tabacum、Nicotiana attenuata)、ツクバネアサガオ属に属するものとしてはペチュニア(Petunia x hybrida)、オリーブ属に属するものとしてはオリーブ(Olea europaea)、グランデュラリア属に属するものとしてはビジョザクラ(Glandularia x hybrida)、アキギリ属に属するものとしてはサルビア(Salvia splendens)、ラウオルフィア属に属するものとしてはインドジャボク(Rauvolfia serpentina)、ニチニチソウ属に属するものとしてはニチニチソウ(Catharanthus roseus)、カミツレ属に属するものとしてはローマカミツレ(Chamaemelum nobile)が特に好ましい。
 本発明に係る変異型酵素の製造方法が対象とする酵素としては、特に、リンゴ、トマト、イチゴ、ナシ、ビワ、カキ、メロン、バナナ、パパイア、サンジソウ、ブドウ、キウイ及びローマンカモミール等の植物由来のAATが挙げられ、このうちリンゴ、トマト、イチゴ、ナシ、ビワ及びカキ由来のAATが好ましい。
 リンゴAATに関し、本発明に係る変異型酵素の製造方法において「基準体」となり得る酵素のアミノ酸配列の例を、配列番号1~3に示す。配列番号1は、野生型AATのアミノ酸配列を示す。野生型リンゴAATは、アミノ酸配列中に15個のシステインを有する。配列番号2は、野生型AATのアミノ酸配列において2番目のメチオニンがリジンに置換された変異型AAT(M2K型AAT)のアミノ酸配列である。配列番号3は、野生型AATのアミノ酸配列において、64番目のアラニンがバリンに、248番目のバリンがアラニンに、363番目のグルタミンがリジンに、117番目のリジンがグルタミンに置換された変異型AATのアミノ酸配列である(この変異型AATは、野生型AATに比して高活性である)。
 トマトAATに関し、本発明に係る変異型酵素の製造方法において「基準体」となり得る酵素のアミノ酸配列の例を、配列番号64,66に示す。配列番号66は、トマト(野生種)野生型AATのアミノ酸配列を示す。配列番号64は、野生型AATのアミノ酸配列において2番目のアラニンがリジンに置換された変異型AAT(A2K型AAT)のアミノ酸配列である。
 イチゴAATに関し、本発明に係る変異型酵素の製造方法において「基準体」となり得る酵素のアミノ酸配列の例を、配列番号65に示す。配列番号65は、野生型AATのアミノ酸配列である。
[工程(1)]
 本工程は、基準体のアミノ酸配列において1以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現する組換体を作成する工程である。
 本工程では、基準体のアミノ酸配列において1又は2以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現する組換体を複数作成する。例えば、基準体のアミノ酸配列中にシステインがN個存在する場合、各システインをシステイン以外のアミノ酸に置換した変異体はN種類作成できる。また、例えば、基準体のアミノ酸配列中にシステインがN個存在する場合、いずれか2つのシステインをシステイン以外のアミノ酸に置換した変異体はN(N-1)/2種類作成できる。
 1つの変異体において置換されるシステインの個数は、1又は2以上であってよく、最大で、基準体のアミノ酸配列中に存在するシステインの全数未満とされる。1つの変異体において置換されるシステインの個数は、好ましくは1である。作成される複数の変異体間において、置換されるシステインの個数は、異なっていてもよく同じであってもよい。システインから置換されるアミノ酸は、システイン以外のアミノ酸であればよく、特に限定されないが、例えばアラニン又はアルギニンとすることができる。
 変異体のアミノ酸配列をコードするDNAは、従来公知の遺伝子工学的手法により、基準体のアミノ酸配列をコードするDNAに変異を導入することにより作成できる。作成された変異体のアミノ酸配列をコードするDNAは、従来汎用の発現ベクターに組み込まれる。
 変異体の発現は、発現ベクターを従来公知の手法により宿主細胞に導入することにより行えばよい。
 宿主細胞は、特に限定されないが、細菌として、大腸菌、Rhodococcus属、Pseudomonas属、Corynebacterium属、Bacillus属、Streptococcus属、Streptomyces属などが挙げられ、酵母ではSaccharomyces属、Candida属、Shizosaccharomyces属、Pichia属、糸状菌ではAspergillus属などが挙げられる。これらの中で、特に大腸菌を用いることが簡便であり、効率もよく好ましい。
 必要に応じて、工程(1)で作成された変異体のそれぞれの組換体あたりの酵素活性を測定すればよい。
 変異体の組換体あたりの酵素活性の測定は、変異体のアミノ酸配列をコードするDNAを含む発現ベクターが導入された一定量の組換体から、変異体を含む細胞抽出液あるいは細胞破砕液を調製し、細胞抽出液等中の酵素活性を測定することにより行えばよい。酵素反応の基質と細胞抽出液等とを混合し、反応生成物の生成量をクロマトグラフィー等の公知の手段を用いて検出することにより酵素活性を測定できる。
[工程(2)]
 本工程は、基準体の活性100%に比して50%以上の組換体あたりの活性を示す複数の変異体を選択する工程である。ここで、「変異体の組換体あたりの活性が基準体の活性100%に比して50%以上である」とは、一定量の組換体から発現した変異体によって触媒される反応生成物の量が、当該変異体の高い活性と可溶性に起因して、同一条件下において同一量の組換体から発現させた基準体の触媒による反応生成物の量の50%以上となることを意味する。
 例えば、工程(1)において、基準体のアミノ酸配列中にシステインが10個存在し、各システインをシステイン以外のアミノ酸に置換して変異体を10種類作成した場合に、基準体の活性100%に比して50%以上の組換体あたりの活性を示す変異体が5種類存在した場合、それら5種の変異体を選択する。
 基準体のアミノ酸配列中に存在するシステインのうち、これを変異体において他のアミノ酸に置換した場合にも一定の酵素活性が維持されるシステインは、基準体の正常なタンパク質フォールディングへの寄与が小さく、むしろ基準体を由来種とは異なる宿主細胞中で発現させた場合に過剰なジスルフィド結合を形成することで正常なタンパク質フォールディングを妨げる可能性があると考えられる。
 変異体の選択基準は、基準体の活性100%に比して50%以上の組換体あたりの活性を示すことを一応の指標とするが、基準体の活性100%に比してより高い活性、例えば60%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、最も好ましくは100%以上の組換体あたりの活性を示す基準体を選択することも可能である。
[工程(3)]
 本工程は、工程(2)で選択したそれぞれの変異体が有するアミノ酸残基が置換された部位のうち2以上の部位においてそれぞれ対応するアミノ酸残基が置換された変異体を発現させる工程である。
 例えば、上述の基準体のアミノ酸配列中にシステインが10個存在する例では、基準体の活性100%に比して50%以上の組換体あたりの活性を示した5種類の変異体が存在するので、その5種類の変異体がそれぞれ有する変異部位(合計5ヶ所)のうち2ヶ所以上の変異部位(2ヶ所以上のシステインの他のアミノ酸への置換)を有する変異体を発現させる。3ヶ所以上の変異部位を有する変異体を発現させることが好ましく、4ヶ所以上の変異部位を有する変異体を発現させることがより好ましく、全ての変異部位を有する変異体を発現させることがさらに好ましい。
 上述の通り、基準体のアミノ酸配列中に存在するシステインのうち、これを変異体において他のアミノ酸に置換した場合にも一定の酵素活性が維持されるシステインは、基準体を由来種とは異なる宿主細胞中で発現させた場合に正常なタンパク質フォールディングを妨げる可能性がある。これらのシステインを全て他のアミノ酸に置換した変異体は、由来種とは異なる宿主細胞中で発現させた場合にも正常かあるいは正常に近いフォールディンが行われ、これによって当該宿主細胞中で発現させた基準体に比して高活性、高可溶性となるものと考えられる。
 本工程の変異体においてシステインから置換されるアミノ酸は、工程(2)で選択された変異体においてシステインから置換されているアミノ酸と同じであることが好ましいが、異なっていてもよい。システインから置換されるアミノ酸の種類を種々変更することで、組換体の活性をさらに向上させることができる場合がある。
 本工程の変異体のアミノ酸配列をコードするDNAも、従来公知の遺伝子工学的手法により、基準体のアミノ酸配列をコードするDNAに変異を導入することにより作成できる。作成された変異体をコードするDNAは、工程(1)と同様に、従来汎用の発現ベクターに組み込まれ、宿主細胞にトランスフェクトされて発現させられる。
2.変異型アルコールアシルトランスフェラーゼI
 本発明は、上述の変異型酵素の製造方法により得られる変異型AATをも提供する。
 本発明に係る変異型AATは、基準体に比して活性が向上した、変異型アルコールアシルトランスフェラーゼであって、基準体のアミノ酸配列において1以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する、変異型アルコールアシルトランスフェラーゼである。
 本発明に係る変異型AATは、基準体のアミノ酸配列において、以下のアミノ酸置換から選択される一以上のアミノ酸置換を有することを特徴とする。基準体は、野生型リンゴAAT(配列番号1)、野生型リンゴAATのアミノ酸配列において2番目のメチオニンがリジンに置換された変異型AAT(配列番号2、リンゴM2K型)、又は野生型リンゴAATのアミノ酸配列において64番目のアラニンがバリンに、248番目のバリンがアラニンに、363番目のグルタミンがリジンに、117番目のリジンがグルタミンに置換された変異型AAT(配列番号3)であってよい。
(1)48番目のシステインの他のアミノ酸残基への置換。
(2)150番目のシステインの他のアミノ酸残基への置換。
(3)167番目のシステインの他のアミノ酸残基への置換。
(4)270番目のシステインの他のアミノ酸残基への置換。
(5)274番目のシステインの他のアミノ酸残基への置換。
(6)447番目のシステインの他のアミノ酸残基への置換。
 本発明に係る変異型AATにおいて、48番目、150番目、167番目、270番目、274番目及び447番目の各システインは、2以上組み合わされて置換されることが好ましく、3以上組み合わされて置換されることがより好ましく、4以上組み合わされて置換されることがさらに好ましく、5以上組み合わされて置換されることが特に好ましく、全て組み合わされて置換されることが最も好ましい。システインから置換されるアミノ酸は、システイン以外のアミノ酸であればよく、特に限定されないが、例えばアラニン又はアルギニンとできる。特に150番目のシステインをアルギニンに置換することで、変異型AATの活性をさらに向上させることができる。
 本発明に係る変異型AATとして、具体的には、リンゴM2K型AAT(配列番号2)を基準体として作成された、配列番号4又は7に記載のアミノ酸配列からなる変異型AATが挙げられる。配列番号4のアミノ酸配列を有する変異型AATは、リンゴM2K型AAT(配列番号2)の48番目、150番目、167番目、270番目、274番目及び447番目のシステインを全てアラニンに置換したものである。また、配列番号7のアミノ酸配列を有する変異型AATは、48番目、167番目、270番目、274番目及び447番目のシステインをアラニンに、150番目のシステインをアルギニンに置換したものである。
 本発明に係る変異型AATの他の具体例として、変異型AAT(配列番号3)を基準体として作成された、配列番号5,6,8~11,13のいずれかに記載のアミノ酸配列からなる変異型AATも挙げられる。配列番号5,6,8~11,13のアミノ酸配列における変異及びシステイン置換の導入箇所を「表1」に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表において64番目のアラニンはイソロイシン又はスレオニンとされてもよい。また、363番目のグルタミンは、プロリン、アデニン、アルギニン、グリシン又はトリプトファンとされてもよい。これらの場合にも、高活性の変異型AATを得ることが可能である。
 また、本発明に係る変異型AATは、基準体のアミノ酸配列において、以下のアミノ酸置換から選択される一以上のアミノ酸置換を有することを特徴とする。基準体は、トマト(野生種)野生型AAT(配列番号66)、トマト(野生種)野生型AATのアミノ酸配列において2番目のアラニンがリジンに置換された変異型AAT(配列番号64、トマト(野生種)A2K型)であってよい。
(1)206番目のシステインの他のアミノ酸残基への置換、
(2)209番目のシステインの他のアミノ酸残基への置換、
(3)256番目のシステインの他のアミノ酸残基への置換、
(4)269番目のシステインの他のアミノ酸残基への置換、
(5)322番目のシステインの他のアミノ酸残基への置換。
 本発明に係る変異型AATにおいて、206番目、209番目、256番目、269番目及び322番目の各システインは、2以上組み合わされて置換されることが好ましく、3以上組み合わされて置換されることがより好ましく、4以上組み合わされて置換されることがさらに好ましく、全て組み合わされて置換されることが最も好ましい。システインから置換されるアミノ酸は、システイン以外のアミノ酸であればよく、特に限定されないが、例えばアラニン又はアルギニンとすることができる。
 さらに、本発明に係る変異型AATは、基準体のアミノ酸配列において、以下のアミノ酸置換から選択される一以上のアミノ酸置換を有することを特徴とする。基準体は、配列番号65に示すアミノ酸配列からなる野生型イチゴAATであってよい。
(1)115番目のシステインの他のアミノ酸残基への置換、
(2)167番目のシステインの他のアミノ酸残基への置換、
(3)179番目のシステインの他のアミノ酸残基への置換、
(4)325番目のシステインの他のアミノ酸残基への置換、
(5)356番目のシステインの他のアミノ酸残基への置換。
 本発明に係る変異型AATにおいて、115番目、167番目、179番目、325番目及び356番目の各システインは、2以上組み合わされて置換されることが好ましく、3以上組み合わされて置換されることがより好ましく、4以上組み合わされて置換されることがさらに好ましく、全て組み合わされて置換されることが最も好ましい。システインから置換されるアミノ酸は、システイン以外のアミノ酸であればよく、特に限定されないが、例えばアラニン又はアルギニンとすることができる。
 本発明によれば、配列番号1のリンゴ野生型AAT又は配列番号2のリンゴM2K型AATのアミノ酸配列と70%以上、好ましくは80以上、より好ましくは90%以上、特に好ましくは95%以上の配列同一性を有するアミノ酸配列からなる変異型AATであって、以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型AATも提供される。
(1)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて48番目のシステインに相当するシステインの他のアミノ酸残基への置換。
(2)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて150番目のシステインに相当するシステインの他のアミノ酸残基への置換。
(3)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて167番目のシステインに相当するシステインの他のアミノ酸残基への置換。
(4)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて270番目のシステインに相当するシステインの他のアミノ酸残基への置換。
(5)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて274番目のシステインに相当するシステインの他のアミノ酸残基への置換。
(6)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて447番目のシステインに相当するシステインの他のアミノ酸残基への置換。
 本発明に係る変異型AATにおいて、48番目、150番目、167番目、270番目、274番目及び447番目の各システインは、2以上組み合わされて置換されることが好ましく、3以上組み合わされて置換されることがより好ましく、4以上組み合わされて置換されることがさらに好ましく、5以上組み合わされて置換されることが特に好ましく、全て組み合わされて置換されることが最も好ましい。システインから置換されるアミノ酸は、システイン以外のアミノ酸であればよく、特に限定されないが、例えばアラニン又はアルギニンとすることができる。特に150番目のシステインをアルギニンに置換することで、変異型AATの活性をさらに向上させることができる。
 また、本発明によれば、配列番号66のトマト(野生種)AAT又は配列番号64のトマト(野生種)A2K型AATのアミノ酸配列と70%以上、好ましくは80以上、より好ましくは90%以上、特に好ましくは95%以上の配列同一性を有するアミノ酸配列からなる変異型AATであって、以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型AATも提供される。
(1)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて206番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(2)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて209番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(3)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて256番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(4)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて269番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(5)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて322番目のシステインに相当するシステインの他のアミノ酸残基への置換。
 本発明に係る変異型AATにおいて、206番目、209番目、256番目、269番目及び322番目の各システインは、2以上組み合わされて置換されることが好ましく、3以上組み合わされて置換されることがより好ましく、4以上組み合わされて置換されることがさらに好ましく、全て組み合わされて置換されることが最も好ましいていてよい。システインから置換されるアミノ酸は、システイン以外のアミノ酸であればよく、特に限定されないが、例えばアラニン又はアルギニンとすることができる。
 さらに、本発明によれば、配列番号65のイチゴ野生型AATのアミノ酸配列と70%以上、好ましくは80以上、より好ましくは90%以上、特に好ましくは95%以上の配列同一性を有するアミノ酸配列からなる変異型AATであって、以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型AATも提供される。
(1)配列番号65に示すアミノ酸配列とのアラインメントにおいて115番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(2)配列番号65に示すアミノ酸配列とのアラインメントにおいて167番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(3)配列番号65に示すアミノ酸配列とのアラインメントにおいて179番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(4)配列番号65に示すアミノ酸配列とのアラインメントにおいて325番目のシステインに相当するシステインの他のアミノ酸残基への置換、
(5)配列番号65に示すアミノ酸配列とのアラインメントにおいて356番目のシステインに相当するシステインの他のアミノ酸残基への置換。
 本発明に係る変異型AATにおいて、115番目、167番目、179番目、325番目及び356番目の各システインは、2以上組み合わされて置換されることが好ましく、3以上組み合わされて置換されることがより好ましく、4以上組み合わされて置換されることがさらに好ましく、全て組み合わされて置換されることが最も好ましいていてよい。システインから置換されるアミノ酸は、システイン以外のアミノ酸であればよく、特に限定されないが、例えばアラニン又はアルギニンとすることができる。
 システインの置換を導入する対象となるAATのアミノ酸配列は、配列番号1のリンゴ野生型AAT又は配列番号2のリンゴM2K型AATのアミノ酸配列、配列番号66のトマト(野生種)野生型AAT又は配列番号64のトマト(野生種)A2K型AATのアミノ酸配列、あるいは配列番号65のイチゴ野生型AATのアミノ酸配列とのアラインメントを可能とするため、配列番号1、2、64、65あるいは66のアミノ酸配列と50%以上、60%以上、70%以上、好ましくは80以上、より好ましくは90%以上、特に好ましくは95%以上の配列同一性を有するアミノ酸配列からなることが好ましい。アラインメントは、比較すべき2つの配列のアミノ酸残基ができるだけ多く一致するように両配列を整列させることにより行われる。整列の際には、必要に応じ、比較する2つの配列の一方又は双方に適宜ギャップを挿入する。このような配列の整列化は、例えばBLAST、FASTA、CLUSTALW等の周知のプログラムを用いて行なうことができる。
 また、システインの置換を導入する対象となるAATのアミノ酸配列と、配列番号1、2、64、65、66のアミノ酸配列との配列同一性は、アラインメントを行って、一致したアミノ酸数を全アミノ酸数で除すことにより得られる。ギャップが挿入される場合、上記全アミノ酸数は、1つのギャップを1つのアミノ酸残基として数えた残基数となる。このようにして数えた全アミノ酸数が、比較する2つの配列間で異なる場合には、同一性(%)は、長い方の配列の全アミノ酸数で、一致したアミノ酸数を除して算出される。
 配列番号1のリンゴ野生型AAT又は配列番号2のリンゴM2K型AATのアミノ酸配列と高い配列同一性を有するアミノ酸配列からなるAATでは、配列番号1のリンゴ野生型AAT又は配列番号2のリンゴM2K型AATのアミノ酸配列にみられる48番目、150番目、167番目、270番目、274番目及び447番目のシステインが保存されている可能性が高く、これらのシステインを他のアミノ酸に置換することで、各種AAT(好ましくは植物由来の各種AAT)においても、高活性の変異体を得ることが可能と考えられる。
 例えば、配列番号1のリンゴ野生型AATと88%の配列同一性を示すAATとして、リンゴ属の異なる亜種に由来する配列番号12に示すアミノ酸配列からなるリンゴAATがある。配列番号1のリンゴ野生型AATのアミノ酸配列にみられるシステインのうち、48番目、150番目、167番目、270番目、274番目及び447番目のシステインは、配列番号12に示すアミノ酸配列においていずれも保存されている。
 また、配列番号1のリンゴ野生型AATと91%の配列同一性を示すAATとして、配列番号61に示すアミノ酸配列からなるナシAATがある。配列番号1のリンゴ野生型AATのアミノ酸配列にみられるシステインのうち、48番目、150番目、167番目、270番目及び274番目のシステインは、配列番号61に示すアミノ酸配列においていずれも保存されている。
 さらに、配列番号1のリンゴ野生型AATと91%の配列同一性を示すAATとして、配列番号62に示すアミノ酸配列からなるビワAATがある。配列番号1のリンゴ野生型AATのアミノ酸配列にみられるシステインのうち、48番目、150番目、167番目、270番目、274番目及び447番目のシステインのシステインは、配列番号62に示すアミノ酸配列においていずれも保存されている。
 加えて、配列番号1のリンゴ野生型AATと90%の配列同一性を示すAATとして、配列番号63に示すアミノ酸配列からなるカキAATがある。配列番号1のリンゴ野生型AATのアミノ酸配列にみられるシステインのうち、150番目、167番目、270番目、274番目及び447番目のシステインのシステインは、配列番号63に示すアミノ酸配列においていずれも保存されている。
 配列番号1,12,61~63のアミノ酸配列のアラインメントを図1に示す。
 また、配列番号66のトマト(野生種)野生型AAT又は配列番号64のトマト(野生種)A2K型AATのアミノ酸配列と高い配列同一性を有するアミノ酸配列からなるAATでは、トマト(野生種)野生型AAT又はトマト(野生種)A2K型AATのアミノ酸配列にみられる206番目、209番目、256番目、269番目及び322番目のシステインが保存されている可能性が高く、これらのシステインを他のアミノ酸に置換することで、各種AAT(好ましくは植物由来の各種AAT)においても、高活性の変異体を得ることが可能と考えられる。
 例えば、配列番号66のトマト(野生種)野生型AATと93%の配列同一性を示すAATとして、トマト(栽培種)に由来する配列番号67に示すアミノ酸配列からなるトマトAATがある。トマト(野生種)野生型AATのアミノ酸配列にみられるシステインのうち、209番目、256番目、269番目及び322番目のシステインは、配列番号67に示すアミノ酸配列においていずれも保存されている。
 また、配列番号66のトマト(野生種)野生型AATと84%の配列同一性を示すAATとして、配列番号68示すアミノ酸配列からなるバレイショAATがある。トマト(野生種)野生型AATのアミノ酸配列にみられるシステインのうち、206番目、209番目、256番目、269番目及び322番目のシステインは、配列番号68に示すアミノ酸配列においていずれも保存されている。
 さらに、配列番号66のトマト(野生種)野生型AATと78%の配列同一性を示すAATとして、配列番号69示すアミノ酸配列からなるトウガラシAATがある。トマト(野生種)野生型AATのアミノ酸配列にみられるシステインのうち、206番目、209番目、269番目及び322番目のシステインは、配列番号69に示すアミノ酸配列においていずれも保存されている。
 加えて、配列番号66のトマト(野生種)野生型AATと74%の配列同一性を示すAATとして、配列番号70に示すアミノ酸配列からなるタバコAATがある。トマト(野生種)野生型AATのアミノ酸配列にみられるシステインのうち、206番目、209番目及び322番目のシステインは、配列番号70に示すアミノ酸配列においていずれも保存されている。
 配列番号66~70のアミノ酸配列のアラインメントを図2に示す。
 さらに、配列番号65のイチゴ野生型AATのアミノ酸配列と高い配列同一性を有するアミノ酸配列からなるAATでは、イチゴ野生型AATのアミノ酸配列にみられる115番目、167番目、179番目、325番目及び356番目のシステインが保存されている可能性が高く、これらのシステインを他のアミノ酸に置換することで、各種AAT(好ましくは植物由来の各種AAT)においても、高活性の変異体を得ることが可能と考えられる。
 例えば、配列番号65のイチゴ野生型AATと94%の配列同一性を示すAATとして、配列番号71に示すアミノ酸配列からなるチリイチゴAATがある。イチゴ野生型AATのアミノ酸配列にみられるシステインのうち、115番目、167番目、179番目、325番目及び356番目のシステインは、配列番号71に示すアミノ酸配列においていずれも保存されている。
 例えば、配列番号65のイチゴ野生型AATと91%の配列同一性を示すAATとして、配列番号72示すアミノ酸配列からなるエゾヘビイチゴAATがある。イチゴ野生型AATのアミノ酸配列にみられるシステインのうち、115番目、167番目、179番目、325番目及び356番目のシステインは、配列番号71に示すアミノ酸配列においていずれも保存されている。
 例えば、配列番号65のイチゴ野生型AATと67%の配列同一性を示すAATとして、配列番号73に示すアミノ酸配列からなるハマナスAATがある。イチゴ野生型AATのアミノ酸配列にみられるシステインのうち、167番目、325番目及び356番目のシステインは、配列番号73に示すアミノ酸配列においていずれも保存されている。
 配列番号65,71~73のアミノ酸配列のアラインメントを図3に示す。 
3.変異型アルコールアシルトランスフェラーゼII
 また、本発明は、リンゴ野生型AAT又はリンゴM2K型AATのアミノ酸配列において64番目のアラニン、248番目のバリン、363番目のグルタミン、117番目のリジンが置換された変異型AATをも提供する。この変異型AATは、野生型AATに比して高い活性と可溶性を示す。
 すなわち、本発明に係る変異型AATは、配列番号1又は2に示すアミノ酸配列において以下のアミノ酸置換から選択される一以上のアミノ酸置換を有することを特徴とする。
(1)64番目のアラニンのバリン、イソロイシン又はスレオニンへの置換。
(2)117番目のリジンのグルタミンへの置換。
(3)248番目のバリンのアラニンへの置換。
(4)363番目のグルタミンのリジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンへの置換。
 本発明に係る変異型AATにおいて、64番目のアラニン、117番目のリジン、248番目のバリン、363番目のグルタミンは、2以上組み合わされて置換されることが好ましく、3以上組み合わされて置換されることがより好ましく、全て組み合わされて置換されることが最も好ましい。
 本発明に係る変異型AATとして、具体的には、配列番号3,5,6,8~13のいずれかに記載のアミノ酸配列からなる変異型アルコールアシルトランスフェラーゼが挙げられる(表1参照)。
 上述のリンゴ変異型AATにおける変異導入による高活性化は、配列番号1のリンゴ野生型AAT又は配列番号2のリンゴM2K型AATのアミノ酸配列と高い配列同一性を有するアミノ酸配列からなる各種AAT(好ましくは各種植物由来AAT)にも適用が可能と考えられる。
 従って、本発明によれば、配列番号1のリンゴ野生型AAT又は配列番号2のリンゴM2K型AATのアミノ酸配列と70%以上、好ましくは80以上、より好ましくは90%以上、特に好ましくは95%以上の配列同一性を有するアミノ酸配列からなるAATであって、以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型AATが提供される。
(1)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて64番目のアラニンに相当するアミノ酸残基のバリン、イソロイシン又はスレオニンへの置換。
(2)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて117番目のリジンに相当するアミノ酸のグルタミンへの置換。
(3)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて248番目のバリンに相当するアミノ酸のアラニンへの置換。
(4)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて363番目のグルタミンに相当するアミノ酸のリジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンへの置換。
 本発明に係る変異型AATにおいて、64番目のアラニンに相当するアミノ酸残基、117番目のリジンに相当するアミノ酸残基、248番目のバリンに相当するアミノ酸残基、363番目のグルタミンに相当するアミノ酸残基は、2以上組み合わされて置換されることが好ましく、3以上組み合わされて置換されることがより好ましく、全て組み合わされて置換されることが最も好ましい。
 配列番号1のリンゴ野生型AAT又は配列番号2のリンゴM2K型AATのアミノ酸配列にみられる117番目のリジン、248番目のバリン及び363番目のグルタミンは、配列番号12,61,62,63に示すアミノ酸配列においていずれも保存されている。従って、これらのアミノ酸をそれぞれイソロイシン又はスレオニン;グルタミン;アラニン;リジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンに置換することで、各種AAT(好ましくは植物由来AAT,特に好ましくはリンゴ属の各種植物由来AAT)においても、高活性の変異体を得ることが可能と考えられる。アミノ酸の置換を導入する対象となるAATのアミノ酸配列は、配列番号1のリンゴ野生型AAT又は配列番号2のリンゴM2K型AATのアミノ酸配列とのアラインメントを可能とするため、配列番号1又は2のアミノ酸配列と50%以上、60%以上、70%以上、好ましくは80以上、より好ましくは90%以上、特に好ましくは95%以上の配列同一性を有するアミノ酸配列からなることが好ましい。
4.ベクター・形質転換体
 本発明に係る変異型AAT及び変異型AATをコードするDNAを挿入した発現ベクターは、従来公知の遺伝子工学的手法を用いて作成できる。
 ベクターは宿主細胞中で自立複製可能なものであればく、宿主細胞に適したベクターを用いることができる。ベクターへの変異型AAT遺伝子の挿入は、当業者に知られた遺伝子組換え技術を用いて行うことができる。例えば、制限酵素切断とライゲーションキットを用いる方法、トポイソメラーゼを用いる方法、In Fusionキット(タカラバイオ)等を利用することができる。ベクターに挿入される遺伝子は、宿主細胞中で各遺伝子にコードされるタンパク質の転写翻訳を調節することが可能なプロモーターの下流に連結して挿入される。また、挿入の際に必要であれば、適当なリンカーを付加してもよい。また、必要に応じて、遺伝子を導入しようとする宿主生物において利用可能なターミネーター配列、エンハンサー配列、スプライシングシグナル配列、ポリA付加シグナル配列、SD配列やKozak配列などのリボソーム結合配列、選択マーカー遺伝子などを連結することができる。選択マーカー遺伝子の例としては、アンピシリン耐性遺伝子、テトラサイクリン耐性遺伝子、ネオマイシン耐性遺伝子、カナマイシン耐性遺伝子、クロラムフェニコール耐性遺伝子等の薬剤耐性遺伝子の他、アミノ酸や核酸等の栄養素の細胞内生合成に関与する遺伝子、あるいはルシフェラーゼ等の蛍光タンパク質をコードする遺伝子などを挙げることができる。挿入にともない、DNAがコードするアミノ酸配列の一部を置換してもよい。
 ベクターは、当業者に知られた方法によって、宿主細胞に導入され、形質転換体の作成に用いられる。宿主細胞へのベクターの導入方法としては、宿主細胞に適した方法であれば特に限定されるものではなく、例えば、エレクトロポレーション法、スフェロプラスト法、酢酸リチウム法、接合伝達法等が挙げられる。
 宿主細胞は、特に限定されないが、細菌として、大腸菌、Rhodococcus属、Pseudomonas属、Corynebacterium属、Bacillus属、Streptococcus属、Streptomyces属などが挙げられ、酵母ではSaccharomyces属、Candida属、Shizosaccharomyces属、Pichia属、糸状菌ではAspergillus属などが挙げられる。これらの中で、特に大腸菌を用いることが簡便であり、効率もよく好ましい。
[参考例1:リンゴAAT(MpAAT1)遺伝子発現プラスミドpAAT012・pAAT115・pAAT116の作製]
 リンゴAAT(MpAAT1)遺伝子を発現するプラスミドを3種類作成した。
 プラスミドpAAT012は、野生型リンゴAAT(配列番号1)を含む。
 プラスミドpAAT115は、野生型リンゴAATの2番目のアミノ酸がメチオニンからバリンに置換された改変リンゴAATを含む。
 プラスミドpAAT116は、野生型リンゴAATの2番目のアミノ酸がメチオニンからリジンに置換された改変リンゴAAT(配列番号2)を含む。
 はじめに、大腸菌コドンに最適化した野生型リンゴAAT遺伝子(配列番号14)を合成した(DNA2.0社に委託)。AAT遺伝子を発現ベクター(pJexpress404)に挿入し、pAAT012と命名した。
 以下の方法によって、AAT遺伝子を、T7プロモーターを有する発現ベクター(pJexpress404)から、trcプロモーターを有する発現ベクター(pTrc99A)に移し替えた。
 プライマーMMA-156、MMA-163を用いてpAAT012を鋳型としてPCR反応を行い、AAT遺伝子を含む断片を増幅した。この際、NcoI制限酵素部位を導入するために、AAT遺伝子の2番目のコドンATG(Met)をGTG(Val)に変換した。
プライマーMMA-156(配列番号15):
CACAGGAAACAGACCATGGTGAGCTTTTCTGTACTCCAAGTCAAACG
プライマーMMA-163(配列番号16):
GCCAAGCTTGCATGCCTGCAGGTTACTGGCTGGTGCTACGCAG
 増幅産物をGel/PCR Purification Kit(FAVORGEN社製)を用いて精製し、これを挿入断片とした。制限酵素NcoIおよびSse8387Iにより予め切断しておいたベクターpTrc99Aと挿入断片を混合し、In-Fusion HD Cloning Kitを用いて連結を行った。
 反応液を50℃で15分間インキュベートした後、氷上で冷却し、大腸菌JM109株の形質転換に用いた。大腸菌形質転換体をアンピシリン100mg/Lを含むLB培地(LBAmp培地)で液体培養し、Mini prep Kit(QIAGEN社)を用いて目的のプラスミドpAAT115を調製した。
 pAAT115に挿入したリンゴAAT遺伝子の遺伝子産物の2番目のアミノ酸残基はバリンであるが、2番目のアミノ酸残基をリジンやアルギニン等に置換することによりタンパク質の発現量が向上するという例が知られている(特開2008-61547号公報)。そこで、以下のようにして、AAT遺伝子の2番目のコドンの変換を行った。
 まず、pAAT115をNcoIとSmaIで切断し、約5.1kbのベクター領域を含む断片を調製した。
 プライマーMMA-166、MMA-169を用いてpAAT115を鋳型としてPCR反応を行い、AAT遺伝子を含む断片(約400bp)を増幅し、上述の方法で精製して挿入断片を得た。
プライマーMMA-166(配列番号17):
CACAGGAAACAGACCATGAAAAGCTTTTCTGTACTCCAAGTC
プライマーMMA-169(配列番号18):
CGATGATACCATCGCTGCCCGGGAAGTTGTACAG
 ベクター領域を含む断片と挿入断片を、In-Fusion HD Cloning Kitを用いて連結させた後、大腸菌JM109株の形質転換に供した。大腸菌形質転換体(組換体)を液体培養し、目的のプラスミドpAAT116を調製した。pAAT116では、AAT遺伝子の2番目のコドンGTG(Val)がAAA(Lys)に置換されていた。
[実施例1:高活性リンゴAATの製造]
(1)システイン残基がアラニン残基に置換された変異体を発現する組換体の作成
 参考例1で作製したプラスミドpAAT116中のリンゴAAT遺伝子がコードするタンパク質には、15個のシステインが存在する。それぞれのシステインがアラニンに置換された15種のプラスミドを委託合成(Genscript社)した(表2)。
Figure JPOXMLDOC01-appb-T000002
 「表2」に示した16種のプラスミドにより大腸菌JM109株を形質転換した。アンピシリンを含むLB(1%バクトトリプトン、0.5%バクトイーストエキス、1%NaCl)培地に大腸菌形質転換体を植菌し、37℃にて7時間前培養を行った。培養液を0.1ml取り、100mlの同培地(1mMIPTG含有)に加え、37℃にて15時間振盪培養した。培養液から菌体を回収し、50mMリン酸-ナトリウム緩衝液(pH7.0)で洗浄した後、同緩衝液に懸濁した。
(2)変異体を含む細胞抽出液の調製
 得られた菌体懸濁液をOD630が10となるように調整した。超音波処理により細胞を破砕し、遠心分離により菌体及び膜画分を除き、細胞抽出液を調製した。
(3)変異体を含む細胞抽出液のAAT活性測定
 メタクリリル-CoA 1mMとn-ブタノール 40mMを含む反応液0.8mlに0.2mlの細胞抽出液を添加し、ブチリル酸エステルの生成反応を開始した。反応は、10ml容量のセプタム付サンプル瓶(GC用)中で行った。サンプル瓶を30℃で1~2時間インキュベートして反応を進行させた。反応終了後、サンプル瓶中の反応液に1mlのアセトニトリルを添加し混和した。その後、シリンジフィルターDISMIC(穴径0.45μm、ADVANTEC社製)を用いて濾過後、HPLC分析に供した。
HPLC分析条件:
装置:Waters 2695
カラム:Shiseido CAPCELL PAK C18 UG120 5μm
移動相:65%MeOH、0.2%リン酸
流量:0.25ml/min
カラム温度:35℃
検出:UV210nm
注入量:10μL
 結果を図4に示す。pAAT116から発現する基準体の活性100%に比して50%以上の組換体あたりのAAT活性を示した変異体は8つ得られ、その中でも、pAAT116C48A、pAAT116C150A、pAAT116C167A、pAAT116C270A、pAAT116C274A及びpAAT116C447Aから発現する変異体は、pAAT116から発現する基準体の活性100%に比して70%以上の組換体あたりのAAT活性を示した。そこでこれら6つの変異体が有する全てのアミノ酸置換C48A、C150A、C167A、C270A、C274A及びC447Aが全て導入された変異体を作成した。なお、ここで、「AAT活性」とは、CoA化合物からのエステルの生成を触媒する活性を意味する。また、「変異体の組換体あたりのAAT活性が基準体の活性100%に比して50%以上である」とは、一定量の大腸菌組換体から発現した変異体によって触媒されるエステルの生成量が、当該変異体の高い活性と可溶性に起因して、同一条件下において大腸菌組換体から発現させた基準体の触媒により生成するエステル量の50%以上となることを意味する。
(4)システイン残基がアラニン残基に6置換された変異体を発現する組換体の作成
 48位、150位、167位、270位、274位及び447位のシステインが全てアラニンに置換されたAAT遺伝子を委託合成(Genscript社)し、ベクターpTrc99Aへ挿入してプラスミドpAAT024を取得した。
 上述の方法により、変異体を含む細胞抽出液を調製し、細胞抽出液のAAT活性を測定した。さらに、細胞抽出液(可溶性画分)と、遠心分離によって細胞抽出液から分離された不溶性画分(菌体及び膜画分)とを、SDS-ポリアクリルアミドゲル電気泳動によって分離し、組換体AATタンパク質のバンドを検出した。
 結果を図5に示す。グラフ縦軸は、菌体重量あたりのAAT活性を、pAAT116から発現する基準体のAAT活性を1として示す。pAAT024から発現する変異体の組換体あたりのAAT活性は、基準体の活性に比して約5倍を示した。また、pAAT024から発現する変異体は、基準体に比べて、可溶性画分により多く存在していた。この結果により、48位、150位、167位、270位、274位及び447位のシステインのアラニンへの置換によってAATの可溶性を高め、組換体あたりの活性を向上させられることが明らかとなった。
[参考例2:AAT-クロラムフェニコール(CAT)融合タンパク質を利用した高可溶性変異体のスクリーニング]
 リンゴAATの高可溶性変異体の取得のために、まず、AAT遺伝子のランダム変異ライブラリーを作製した。次に、変異型AAT遺伝子にクロラムフェニコール(CAT)耐性遺伝子を連結させた変異AAT-CAT融合遺伝子を含む発現プラスミドライブラリーを作製し、これらにより形質転換された大腸菌形質転換体から、クロラムフェニコール耐性を指標にして高可溶性AATのスクリーニングを行った。AATタンパク質の可溶性が向上すれば、AAT-クロラムフェニコール融合タンパク質の可溶性も向上し、結果として大腸菌形質転換体のクロラムフェニコール耐性が向上する。具体的には、以下の手順で行った。
(1)ランダム変異遺伝子ライブラリーの作製
 GeneMorph II Random Mutagenesis Kit(STRATAGENE社)とプライマーMMA-185、MMA-157を用いて、pAAT116を鋳型としたPCRを行い、増幅断片(1.4Kb)を得た。
プライマーMMA-185(配列番号19):
GGATCATGAAAAGCTTTTCTGTACTCCAAGTC
プライマーMMA-157(配列番号20):
GTGATTTTTTTCTCCGCACTAGTCTACTGGCTGGTGCTACGCAG
 増幅断片を制限酵素BspHI及びSpeIで処理し、アガロースゲル電気泳動により断片を分離後、Gel/PCR Purification Kit(FAVORGEN社)を用いてゲルより抽出し、これをランダム変異遺伝子ライブラリー(変異AAT(M2K)遺伝子ライブラリー)とした。
(2)AAT-CAT融合遺伝子を含む発現プラスミドpAAT113の作製
プラスミドベクターpSTV28Nの作製
 CAT遺伝子には、プラスミドベクターpSTV28(タカラバイオ)由来のものを用いた。本CAT遺伝子内にはNcoI制限酵素部位が存在するが、後のライブラリーの作製において不都合が生じるため、NcoI部位である配列をNcoIにより切断されない配列に変換した。変換は、プラスミドpSTV28を鋳型としたPCR反応により以下のようにして行った。
フォワードプライマーMMA-152(配列番号21):
GCCCCCGTTTTCACGATGGGCAAATAT
リバースプライマーMMA-153(配列番号22):
ATATTTGCCCATCGTGAAAACGGGGGC
 PCR反応液12.5μlにDpnIを0.5μl添加し、37℃で1時間インキュベートし、処理後の反応液を用いて大腸菌JM109株を形質転換した。大腸菌形質転換体からプラスミドを調製し、pSTV28Nと命名した。
AAT-CAT融合遺伝子を発現するプラスミドpAAT113の作製
 参考例1に記載のプラスミドpAAT012を鋳型として、プライマーMMA-156、157を用いて、PCRによりAAT遺伝子断片を増幅した後、精製を行った。
プライマーMMA-156(配列番号23):
CACAGGAAACAGACCATGGTGAGCTTTTCTGTACTCCAAGTCAAACG
プライマーMMA-157(配列番号24):
GTGATTTTTTTCTCCGCACTAGTCTACTGGCTGGTGCTACGCAG
 pSTV28Nを鋳型として、プライマーMMA-159、160を用いて、PCRによりCAT遺伝子断片を増幅した後、精製を行った。
プライマーMMA-159(配列番号25):
CTGCGTAGCACCAGCCAGTAGACTAGTGCGGAGAAAAAAATCAC
プライマーMMA-160(配列番号26):
GCCAAGCTTGCATGCCTGCAGGTTACGCCCCGCCCTGCCACTCATCG
 AAT遺伝子断片及びCAT遺伝子断片と、NcoIおよびSse8387Iにより予め切断しておいたベクターpTrc99Aとを混合し、In-Fusion HD Cloning Kitを用いて3断片を連結した。反応液を用いて大腸菌JM109株を形質転換した。大腸菌形質転換体からプラスミドを調製し、pAAT113と命名した。pAAT113中のAAT遺伝子の2番目のアミノ酸はバリンである。
AAT(V2K)-CAT融合遺伝子を発現するプラスミドpAAT117の作製
 pAAT113中のAAT遺伝子の2番目のアミノ酸をバリンからリジンに変換し、プラスミドpAAT117を作製した。アミノ酸の置換は、参考例1におけるpAAT115からのpAAT116の作製にならって行った。
(3)変異AAT-CAT融合遺伝子プラスミドライブラリーの作製
 pAAT113をNcoIとSpeIにより切断後、SAP(Shrimp Alkaline Phosphatase)処理を行った。アガロースゲル電気泳動とGel/PCR Purification Kit(FAVORGEN社)によりDNA断片を精製した。DNA断片と上記(1)で得られたランダム変異遺伝子ライブラリーをDNA ligation kit ver.2(タカラバイオ)を用いて連結した。反応液を用いて大腸菌JM109株を形質転換した。
 大腸菌形質転換体をLBAmp寒天培地上で培養し、約12,000個のコロニーを回収し、菌体懸濁液を調製した。菌体懸濁液の一部を取り、Mini prep Kit(QIAGEN社)を用いてプラスミドを調製し、変異AAT(M2K)-CAT融合遺伝子プラスミドライブラリーとした。
(4)クロラムフェニコール耐性を指標とした高可溶性AATのスクリーニングと変異箇所の同定
 上記(3)で得られた変異AAT(M2K)-CAT融合遺伝子プラスミドライブラリーを用いて大腸菌JM109株を形質転換した。大腸菌形質転換体の培養液を、30mg/l クロラムフェニコールと0.4mM IPTGを含むLB寒天培地に塗布し、37℃で一晩培養した。得られたコロニーを液体培養し、プラスミドを調製した。プラスミド中のAAT遺伝子配列を解析し、変異箇所を同定した(表3)。
Figure JPOXMLDOC01-appb-T000003
(5)同定された変異を導入した変異体のAAT活性評価
 「表3」に示す変異を導入した変異体を発現するプラスミドを作製した(表4)。
 まず、pAAT116を鋳型として下記の「表4」に示すプライマーセットを用いてPCRを行った。反応液にDpnIを1μl添加し、37℃で1時間インキュベートした。DpnI処理液を用いて大腸菌JM109株を形質転換した。大腸菌形質転換体より変異型AAT遺伝子を含むプラスミドを調製した。
Figure JPOXMLDOC01-appb-T000004
 「表4」に示すプラスミドにより大腸菌JM109株を形質転換し、大腸菌形質転換体の細胞破砕液のAAT活性を、実施例1に記載の方法により測定した。「表5」に結果を示す。表中、活性値は、pAAT116から発現する基準体の活性を1とした相対値により示す。
Figure JPOXMLDOC01-appb-T000005
 A64V、V248A及びQ363Kの変異の導入によりAAT活性の向上が認められた。K117Qの変異も若干の活性向上を示した。表には示していないが、64位のアラニンをイソロイシン又はスレオニンに置換した場合、及び363位のグルタミンをプロリン、アデニン、アルギニン、グリシン又はトリプトファンに置換した場合にも、pAAT116から発現する基準体の活性に比して120%以上の活性が確認された。
 次に、A64V、K117Q、V248A及びQ363Kの4重変異体を作成した。
(6)4重変異体の作成及び活性評価
 A64V、K117Q、V248A及びQ363Kの4箇所の変異を有するAAT遺伝子を委託合成(Genscript社)し、ベクターpTrc99Aへ挿入してプラスミドpAAT021を取得した。プラスミドpAAT021により大腸菌JM109株を形質転換し、大腸菌形質転換体の細胞破砕液のAAT活性を、実施例1に記載の方法により測定した。
 結果を図5に示す。pAAT116から発現する基準体に対して、4重変異体は約6倍の活性を示した。
[実施例2:システイン6置換4重変異体の作成及び活性評価]
 AATの48位、150位、167位、270位、274位及び447位のシステインが全てアラニンに置換され、かつ、A64V、K117Q、V248A及びQ363Kの4箇所の変異を有するAAT遺伝子を委託合成(Genscript社)し、ベクターpTrc99Aへ挿入してプラスミドpAAT025を取得した。ラスミドpAAT025により大腸菌JM109株を形質転換し、大腸菌形質転換体の細胞破砕液のAAT活性を、実施例1に記載の方法により測定した。
 結果を図5に示す。pAAT021から発現する基準体(4重変異体)に対して、システイン6置換4重変異体は約2.8倍の組換体あたりの活性を示した。
[実施例3:システイン6置換4重変異組換体の作成及び活性評価2]
 プラスミドpAAT021(4重変異体)において、AATの150位のシステインがアルギニンに置換されたプラスミドpAAT155、pAAT025(システイン6置換4重変異体)において、AATの150位のシステインがアルギニンに置換されたプラスミドpAAT154を作成した。
 プラスミドpAAT155は、AATの150位のシステインがアルギニンに置換され、かつ、A64V、K117Q、V248A及びQ363Kの4重変異を有する変異型AAT遺伝子を含む。
 プラスミドpAAT154は、AATの48位、167位、270位、274位及び447位のシステインが全てアラニンに置換され、150位のシステインがアルギニンに置換され、かつA64V、K117Q、V248A及びQ363Kの4重変異を有する変異型AAT遺伝子を含む。
 アミノ酸の置換は、参考例1におけるpAAT115からのpAAT116の作成にならって行った。PCR反応は、プライマーMMA-380、MMA-381を用い、鋳型をpAAT021又はpAAT025として行った。
プライマーMMA-380(配列番号59):
CTGATTCAAGTCACTCGTCTGACGTGTGGTGG
プライマーMMA-381(配列番号60):
CCACCACACGTCAGACGAGTGACTTGAATCAG
 プラスミドpAAT155、pAAT154により大腸菌JM109株を形質転換し、大腸菌形質転換体の細胞破砕液のAAT活性を、実施例1に記載の方法により測定した。また、細胞抽出液(可溶性画分)と、遠心分離によって細胞抽出液から分離された不溶性画分(菌体及び膜画分)とを、SDS-ポリアクリルアミドゲル電気泳動によって分離し、組換体AATタンパク質のバンドを検出した。
 結果を図5に示す。pAAT155、pAAT154から発現する組換体は、pAAT021から発現する基準体(4重変異体)に比してそれぞれ約3.7倍、約5倍の組換体あたりのAAT活性を示した。また、pAAT155、pAAT154を発現する組換体では、基準体を発現する組換体に比べて、可溶性画分により多くのタンパク質が存在していた。この結果により、150位のシステインを特にアルギニンに置換することによって基準体の可溶性をより高め、活性をさらに向上させられることが明らかとなった。
[実施例4:システイン4~5置換4重変異体の作成及び活性評価]
 AATの48位、150位、167位、270位、274位及び447位の6つのシステインのうち5つ又は4つがアラニンに置換され、かつ、A64V、K117Q、V248A及びQ363Kの4箇所の変異を有するAAT遺伝子を委託合成(Genscript社)し、ベクターpTrc99Aへ挿入して「表6」に示すプラスミドを取得した。各プラスミドにより大腸菌JM109株を形質転換し、大腸菌形質転換体の細胞破砕液のAAT活性を、実施例1に記載の方法により測定した。
Figure JPOXMLDOC01-appb-T000006
 結果を図6に示す。グラフ縦軸は、菌体重量あたりのAAT活性を、pAAT116から発現する基準体の活性を1として示す。システイン5置換4重変異体、及びシステイン4置換4重変異体はいずれも、pAAT021から発現する基準体(4重変異体)に比して高い可溶性及び組換体あたりの活性を示した。
[実施例5:高活性トマトAATの製造]
(1)システイン残基がアラニン残基に置換された変異体を発現する組換体の作成
 トマトAAT(SpAAT)遺伝子を発現するプラスミドpAAT032を委託合成した(Genscript社、以下同じ)。pAAT032は、トマト(野生種)野生型AAT(配列番号66)の2番目のアミノ酸がアラニンからリジンに置換されたトマト(野生種)A2K型AAT(配列番号64)を含む。本遺伝子がコードするタンパク質には、8個のシステインが存在する。それぞれのシステインがアラニンに置換された8種のプラスミドを委託合成した(表7)。
Figure JPOXMLDOC01-appb-T000007
 「表7」に示した9種のプラスミドにより大腸菌JM109株を形質転換した。
(2)変異体を含む細胞抽出液のAAT活性測定
 実施例1と同様にして大腸菌形質転回体を培養し、菌体を回収して、細胞抽出液を調製し、AAT活性を測定した。結果を図7に示す。
 pAAT032から発現する基準体の活性100%に比して50%以上の組換体あたりのAAT活性を示した変異体は5つ得られた(pATM104、pATM105、pATM106、pATM107、pATM108から発現する変異体)。
(3)システイン残基がアラニン残基に5置換された変異体を発現する組換体の作成
 そこでこれら5つの変異体が有する全てのアミノ酸置換C206A、C209A、C256A、C269A及びC322Aが導入された変異体を含むプラスミドpAAT164を委託合成した。AAT活性を測定した結果を図7に示す。
 pAAT164から発現する変異体の組換体あたりのAAT活性は、基準体の活性に比して約3倍を示した。また、pAAT164から発現する変異体は、基準体に比べて、可能性画分により多く存在していた。この結果により、206位、209位、256位、269位及び322位のシステインのアラニンへの置換によってAATの可溶性を高め、組換体あたりの活性を向上させられることが明らかとなった。
[実施例6:高活性イチゴAATの製造]
(1)システイン残基がアラニン残基に置換された変異体を発現する組換体の作成
 イチゴAAT(SAAT)遺伝子(配列番号65)を発現するプラスミドpAAT033を委託合成した。本遺伝子がコードされたタンパク質には、9個のシステインが存在する。それぞれのシステインがアラニンに置換された9種のプラスミドを委託合成した(表8)。
Figure JPOXMLDOC01-appb-T000008
 「表8」に示した10種のプラスミドにより大腸菌JM109株を形質転換した。
(2)変異体を含む細胞抽出液のAAT活性測定
 実施例1と同様にして大腸菌形質転回体を培養し、菌体を回収して、細胞抽出液を調製し、AAT活性を測定した。結果を図8に示す。
 pAAT033から発現する基準体の活性100%に比して50%以上の組換体あたりのAAT活性を示した変異体は7つ得られた(pATM202、pATM203、pATM204、pATM205、pATM206、pATM207、pATM208から発現する変異体)。
(3)システイン残基がアラニン残基に5置換された変異体を発現する組換体の作成
 上記7つの変異体が有するアミノ酸置換のうち、C115A、C167A、C179A、C325A及びC356Aが導入された変異体を含むプラスミドpAAT037を委託合成した。AAT活性を測定した結果を図8に示す。
 pAAT037から発現する変異体の組換体あたりのAAT活性は、基準体の活性に比して約1.7倍を示した。この結果により、115位、167位、179位、325位及び356位のシステインのアラニンへの置換によって組換体あたりの活性を向上させられることが明らかとなった。
配列番号1:リンゴ野生型AAT(Mp-AAT1_apple)
配列番号2:リンゴM2K型AAT
配列番号3:リンゴM2K型に4重変異を導入したAAT
配列番号4:リンゴM2K型にシステイン6置換を導入したAAT
配列番号5:リンゴM2K型に4重変異とシステイン6置換を導入したAAT
配列番号6:リンゴM2K型に4重変異とCys150Argを導入したAAT
配列番号7:リンゴM2K型に4重変異とシステイン6置換(うち150位はCys150Arg)を導入したAAT
配列番号8:リンゴM2K型に4重変異とシステイン5置換を導入したAAT
配列番号9:リンゴM2K型に4重変異とシステイン4置換を導入したAAT
配列番号10:リンゴM2K型に4重変異とシステイン4置換を導入したAAT
配列番号11:リンゴM2K型に4重変異とシステイン4置換を導入したAAT
配列番号12:リンゴ由来AATのアミノ酸配列(Md-AAT2_apple)
配列番号13:リンゴM2K型に4重変異とシステイン4置換を導入したAAT
配列番号14:大腸菌コドンに最適化した野生型リンゴAAT遺伝子
配列番号15:プライマーMMA-156
配列番号16:プライマーMMA-163
配列番号17:プライマーMMA-166
配列番号18:プライマーMMA-169
配列番号19:プライマーMMA-185
配列番号20:プライマーMMA-157
配列番号21:プライマーMMA-152
配列番号22:プライマーMMA-153
配列番号23:プライマーMMA-156
配列番号24:プライマーMMA-157
配列番号25:プライマーMMA-159
配列番号26:プライマーMMA-160
配列番号27:プライマーMMA-207
配列番号28:プライマーMMA-208
配列番号29:プライマーMMA-215
配列番号30:プライマーMMA-216
配列番号31:プライマーMMA-217
配列番号32:プライマーMMA-218
配列番号33:プライマーMMA-219
配列番号34:プライマーMMA-220
配列番号35:プライマーMMA-221
配列番号36:プライマーMMA-222
配列番号37:プライマーMMA-223
配列番号38:プライマーMMA-224
配列番号39:プライマーMMA-225
配列番号40:プライマーMMA-226
配列番号41:プライマーMMA-241
配列番号42:プライマーMMA-242
配列番号43:プライマーMMA-243
配列番号44:プライマーMMA-244
配列番号45:プライマーMMA-229
配列番号46:プライマーMMA-230
配列番号47:プライマーMMA-231
配列番号48:プライマーMMA-232
配列番号49:プライマーMMA-245
配列番号50:プライマーMMA-246
配列番号51:プライマーMMA-233
配列番号52:プライマーMMA-234
配列番号53:プライマーMMA-239
配列番号54:プライマーMMA-240
配列番号55:プライマーMMA-237
配列番号56:プライマーMMA-238
配列番号57:プライマーMMA-235
配列番号58:プライマーMMA-236
配列番号59:プライマーMMA-380
配列番号60:プライマーMMA-381
配列番号61:ナシ由来AATのアミノ酸配列
配列番号62:ビワ由来AATのアミノ酸配列
配列番号63:カキ由来AATのアミノ酸配列
配列番号64:トマト(野生種)A2K型AAT
配列番号65:イチゴ野生型AATのアミノ酸配列
配列番号66:トマト(野生種)野生型AATのアミノ酸配列
配列番号67:トマト(栽培種)由来AATのアミノ酸配列
配列番号68:バレイショ由来AATのアミノ酸配列
配列番号69:トウガラシ由来AATのアミノ酸配列
配列番号70:タバコ由来AATのアミノ酸配列
配列番号71:チリイチゴ由来AATのアミノ酸配列
配列番号72:エゾヘビイチゴ由来AATのアミノ酸配列
配列番号73:ハマナス由来AATのアミノ酸配列

Claims (22)

  1.  基準体のアミノ酸配列において2以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現させる工程、
    を含む、基準体に比して、組換体あたりの活性が向上した酵素の製造方法。
  2.  以下の工程を含む、請求項1に記載の酵素の製造方法;
    (1)基準体のアミノ酸配列において1以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する変異体を発現する組換体を作成する工程、
    (2)基準体の活性100%に比して50%以上の組換体あたりの活性を示す複数の変異体を選択する工程、
    (3)工程(2)において選択されたそれぞれの変異体が有するアミノ酸残基が置換された部位のうち、2以上の部位において、それぞれ対応するアミノ酸残基が置換された変異体を発現させる工程。
  3.  前記酵素がアルコールアシルトランスフェラーゼである請求項1又は2に記載の酵素の製造方法。
  4.  前記基準体のアミノ酸配列が、配列番号1、2、3、64、65及び66のいずれかに示されるアミノ酸配列である、請求項3記載の酵素の製造方法。
  5.  前記他のアミノ酸残基が、アラニン又はアルギニンである請求項1~4のいずれか一項に記載の酵素の製造方法。
  6.  基準体に比して活性が向上した、変異型アルコールアシルトランスフェラーゼであって、
    基準体のアミノ酸配列において1以上のシステインが他のアミノ酸残基に置換されたアミノ酸配列を有する、変異型アルコールアシルトランスフェラーゼ。
  7.  配列番号1又は2に示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなる請求項6に記載の変異型アルコールアシルトランスフェラーゼであって、
    以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ;
    (1)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて48番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (2)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて150番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (3)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて167番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (4)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて270番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (5)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて274番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (6)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて447番目のシステインに相当するシステインの他のアミノ酸残基への置換。
  8.  配列番号64又は66に示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなる請求項6に記載の変異型アルコールアシルトランスフェラーゼであって、
    以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ;
    (1)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて206番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (2)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて209番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (3)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて256番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (4)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて269番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (5)配列番号64又は66に示すアミノ酸配列とのアラインメントにおいて322番目のシステインに相当するシステインの他のアミノ酸残基への置換。
  9.  配列番号65に示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなる請求項6に記載の変異型アルコールアシルトランスフェラーゼであって、
    以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ;
    (1)配列番号65に示すアミノ酸配列とのアラインメントにおいて115番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (2)配列番号65に示すアミノ酸配列とのアラインメントにおいて167番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (3)配列番号65に示すアミノ酸配列とのアラインメントにおいて179番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (4)配列番号65に示すアミノ酸配列とのアラインメントにおいて325番目のシステインに相当するシステインの他のアミノ酸残基への置換、
    (5)配列番号65に示すアミノ酸配列とのアラインメントにおいて356番目のシステインに相当するシステインの他のアミノ酸残基への置換。
  10.  前記他のアミノ酸残基が、アラニン又はアルギニンである請求項6~9のいずれか一項に記載の変異型アルコールアシルトランスフェラーゼ。
  11.  配列番号1又は2に示すアミノ酸配列において以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する請求項6に記載の変異型アルコールアシルトランスフェラーゼ;
    (1)48番目のシステインの他のアミノ酸残基への置換、
    (2)150番目のシステインの他のアミノ酸残基への置換、
    (3)167番目のシステインの他のアミノ酸残基への置換、
    (4)270番目のシステインの他のアミノ酸残基への置換、
    (5)274番目のシステインの他のアミノ酸残基への置換、
    (6)447番目のシステインの他のアミノ酸残基への置換。
  12.  配列番号64又は66に示すアミノ酸配列において以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する請求項6に記載の変異型アルコールアシルトランスフェラーゼ;
    (1)206番目のシステインの他のアミノ酸残基への置換、
    (2)209番目のシステインの他のアミノ酸残基への置換、
    (3)256番目のシステインの他のアミノ酸残基への置換、
    (4)269番目のシステインの他のアミノ酸残基への置換、
    (5)322番目のシステインの他のアミノ酸残基への置換。
  13.  配列番号65に示すアミノ酸配列において以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する請求項6に記載の変異型アルコールアシルトランスフェラーゼ;
    (1)115番目のシステインの他のアミノ酸残基への置換、
    (2)167番目のシステインの他のアミノ酸残基への置換、
    (3)179番目のシステインの他のアミノ酸残基への置換、
    (4)325番目のシステインの他のアミノ酸残基への置換、
    (5)356番目のシステインの他のアミノ酸残基への置換。
  14.  前記他のアミノ酸残基が、アラニン又はアルギニンである請求項11~13のいずれか一項に記載の変異型アルコールアシルトランスフェラーゼ。
  15.  配列番号4又は7に記載のアミノ酸配列からなる請求項11記載の変異型アルコールアシルトランスフェラーゼ。
  16.  さらに以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する請求項7又は11記載の変異型アルコールアシルトランスフェラーゼ;
    (1)64番目のアラニンのバリン、イソロイシン又はスレオニンへの置換、
    (2)117番目のリジンのグルタミンへの置換、
    (3)248番目のバリンのアラニンへの置換、
    (4)363番目のグルタミンのリジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンへの置換。
  17.  配列番号5,6,8~11,13のいずれかに記載のアミノ酸配列からなる請求項16記載の変異型アルコールアシルトランスフェラーゼ。
  18.  配列番号1又は2に示すアミノ酸配列と70%以上の配列同一性を有するアミノ酸配列からなる変異型アルコールアシルトランスフェラーゼであって、
    以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ;
    (1)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて64番目のアラニンに相当するアミノ酸残基のバリン、イソロイシン又はスレオニンへの置換、
    (2)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて117番目のリジンに相当するアミノ酸のグルタミンへの置換、
    (3)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて248番目のバリンに相当するアミノ酸のアラニンへの置換、
    (4)配列番号1又は2に示すアミノ酸配列とのアラインメントにおいて363番目のグルタミンに相当するアミノ酸のリジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンへの置換。
  19.  配列番号1又は2に示すアミノ酸配列において以下のアミノ酸置換から選択される一以上のアミノ酸置換を有する変異型アルコールアシルトランスフェラーゼ;
    (1)64番目のアラニンのバリン、イソロイシン又はスレオニンへの置換、
    (2)117番目のリジンのグルタミンへの置換、
    (3)248番目のバリンのアラニンへの置換、
    (4)363番目のグルタミンのリジン、プロリン、アデニン、アルギニン、グリシン又はトリプトファンへの置換。
  20.  配列番号3,5,6,8~11,13のいずれかに記載のアミノ酸配列からなる請求項19記載の変異型アルコールアシルトランスフェラーゼ。
  21.  請求項6~20のいずれか一項に記載のアルコールアシルトランスフェラーゼを発現するベクター。
  22.  請求項21記載のベクターが導入された形質転換体。

     
     
PCT/JP2017/031116 2016-08-30 2017-08-30 変異型酵素の製造方法及び変異型アルコールアシルトランスフェラーゼ WO2018043546A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112019003003-4A BR112019003003A2 (pt) 2016-08-30 2017-08-30 método para produção de enzima mutante e álcool aciltransferase mutante
EP17846550.6A EP3508585B1 (en) 2016-08-30 2017-08-30 Method for producing mutant enzyme, and mutant alcohol acyltransferase
ES17846550T ES2903263T3 (es) 2016-08-30 2017-08-30 Método para producir enzima mutante y alcohol aciltransferasa mutante
MYPI2019001083A MY190749A (en) 2016-08-30 2017-08-30 Method for producing mutant enzyme, and mutant alcohol acyltransferase
JP2017548070A JP7024951B2 (ja) 2016-08-30 2017-08-30 変異型酵素の製造方法及び変異型アルコールアシルトランスフェラーゼ
CN201780053652.3A CN109844127B (zh) 2016-08-30 2017-08-30 突变型酶的制造方法及突变型醇酰基转移酶
US16/288,970 US10907136B2 (en) 2016-08-30 2019-02-28 Method for producing mutant enzyme, and mutant alcohol acyltransferase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016168195 2016-08-30
JP2016-168195 2016-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/288,970 Continuation US10907136B2 (en) 2016-08-30 2019-02-28 Method for producing mutant enzyme, and mutant alcohol acyltransferase

Publications (1)

Publication Number Publication Date
WO2018043546A1 true WO2018043546A1 (ja) 2018-03-08

Family

ID=61309410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031116 WO2018043546A1 (ja) 2016-08-30 2017-08-30 変異型酵素の製造方法及び変異型アルコールアシルトランスフェラーゼ

Country Status (8)

Country Link
US (1) US10907136B2 (ja)
EP (1) EP3508585B1 (ja)
JP (1) JP7024951B2 (ja)
CN (1) CN109844127B (ja)
BR (1) BR112019003003A2 (ja)
ES (1) ES2903263T3 (ja)
MY (1) MY190749A (ja)
WO (1) WO2018043546A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168154A1 (ja) * 2018-03-02 2019-09-06 三菱ケミカル株式会社 3-ヒドロキシイソ酪酸エステルおよびメタクリル酸エステルの製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061547A (ja) 2006-09-06 2008-03-21 Mitsubishi Rayon Co Ltd ヒドロキシニトリルリアーゼ遺伝子、ニトリラーゼ遺伝子を含む形質転換体、並びにそれを用いたα−ヒドロキシカルボン酸の製造法
WO2009005140A1 (ja) * 2007-06-29 2009-01-08 Asubio Pharma Co., Ltd. 組換えC-末端α-アミド化酵素誘導体
JP2010529835A (ja) * 2007-05-25 2010-09-02 ビオマリン プハルマセウトイカル インコーポレイテッド 原核生物フェニルアラニンアンモニアリアーゼの組成物、及び、その組成物の使用方法
WO2012169341A1 (ja) * 2011-06-08 2012-12-13 株式会社ダイセル ギ酸脱水素酵素の変異体、およびその用途
WO2014038214A1 (ja) 2012-09-10 2014-03-13 三菱レイヨン株式会社 メタクリル酸エステルの製造方法
WO2014038216A1 (ja) 2012-09-10 2014-03-13 三菱レイヨン株式会社 メタクリル酸及び/又はそのエステルの製造方法
JP2014519841A (ja) * 2011-06-21 2014-08-21 イゾビオニクス・ベー・ベー バレンセンシンターゼ
JP2015517824A (ja) * 2012-05-29 2015-06-25 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 生合成経路、組み換え細胞、及び方法
JP2015116141A (ja) 2013-12-17 2015-06-25 三菱レイヨン株式会社 イソ酪酸エステル生産微生物およびイソ酪酸エステルの製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0716126D0 (en) * 2007-08-17 2007-09-26 Danisco Process
CN101184844A (zh) * 2005-03-30 2008-05-21 加拿大国家研究委员会 固醇酰基转移酶基因的鉴定
JP2014038216A (ja) 2012-08-16 2014-02-27 Fuji Xerox Co Ltd 画像形成装置及びプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008061547A (ja) 2006-09-06 2008-03-21 Mitsubishi Rayon Co Ltd ヒドロキシニトリルリアーゼ遺伝子、ニトリラーゼ遺伝子を含む形質転換体、並びにそれを用いたα−ヒドロキシカルボン酸の製造法
JP2010529835A (ja) * 2007-05-25 2010-09-02 ビオマリン プハルマセウトイカル インコーポレイテッド 原核生物フェニルアラニンアンモニアリアーゼの組成物、及び、その組成物の使用方法
WO2009005140A1 (ja) * 2007-06-29 2009-01-08 Asubio Pharma Co., Ltd. 組換えC-末端α-アミド化酵素誘導体
WO2012169341A1 (ja) * 2011-06-08 2012-12-13 株式会社ダイセル ギ酸脱水素酵素の変異体、およびその用途
JP2014519841A (ja) * 2011-06-21 2014-08-21 イゾビオニクス・ベー・ベー バレンセンシンターゼ
JP2015517824A (ja) * 2012-05-29 2015-06-25 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 生合成経路、組み換え細胞、及び方法
WO2014038214A1 (ja) 2012-09-10 2014-03-13 三菱レイヨン株式会社 メタクリル酸エステルの製造方法
WO2014038216A1 (ja) 2012-09-10 2014-03-13 三菱レイヨン株式会社 メタクリル酸及び/又はそのエステルの製造方法
JP2015116141A (ja) 2013-12-17 2015-06-25 三菱レイヨン株式会社 イソ酪酸エステル生産微生物およびイソ酪酸エステルの製造法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FEBS J., vol. 272, 2005, pages 3132 - 3144
GOULET, C. ET AL.: "Divergence in the enzymatic activities of a tomato and solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition", MOL. PLANT, vol. 8, no. 1, 2015, pages 153 - 162, XP055581730 *
KYOUNO, KIYOSHI: "Can we know the solubility of the recombinant protein just by looking at the colonies !?", CHEMISTRY AND BIOLOGY, vol. 42, no. 10, 2004, pages 663 - 665, XP009515725, DOI: 10.1271/kagakutoseibutsu1962.42.663 *
METABOLIC ENGINEERING, vol. 27, 2015, pages 20 - 28
PHYTOCHEMISTRY, vol. 67, 2006, pages 658 - 667
PROTEIN ENG. DES. SEL., vol. 24, 2011, pages 607 - 616

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168154A1 (ja) * 2018-03-02 2019-09-06 三菱ケミカル株式会社 3-ヒドロキシイソ酪酸エステルおよびメタクリル酸エステルの製造方法
JPWO2019168154A1 (ja) * 2018-03-02 2021-02-18 三菱ケミカル株式会社 3−ヒドロキシイソ酪酸エステルおよびメタクリル酸エステルの製造方法
JP7313635B2 (ja) 2018-03-02 2023-07-25 三菱ケミカル株式会社 3-ヒドロキシイソ酪酸エステルおよびメタクリル酸エステルの製造方法

Also Published As

Publication number Publication date
BR112019003003A2 (pt) 2019-05-14
US10907136B2 (en) 2021-02-02
EP3508585A4 (en) 2019-08-28
ES2903263T3 (es) 2022-03-31
EP3508585A1 (en) 2019-07-10
MY190749A (en) 2022-05-12
JP7024951B2 (ja) 2022-02-24
US20190185825A1 (en) 2019-06-20
CN109844127B (zh) 2023-09-19
JPWO2018043546A1 (ja) 2019-06-24
CN109844127A (zh) 2019-06-04
EP3508585B1 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
US11952580B2 (en) Heterologous production of psilocybin
Deng et al. Functional characterization of salicylic acid carboxyl methyltransferase from Camellia sinensis, providing the aroma compound of methyl salicylate during the withering process of white tea
RU2741103C2 (ru) Рекомбинантное получение стевиол-гликозидов
US9068194B2 (en) Increasing plant growth by modulating omega-amidase expression in plants
Ruppert et al. Alkaloid biosynthesis in Rauvolfia-cDNA cloning of major enzymes of the ajmaline pathway
US20200071715A1 (en) Transformed plant and method for producing exudate containing sugar using transformed plant
WO2009056803A1 (en) Methods and compositions
US20220315942A1 (en) A method for the production of plants with altered photorespiration and improved co2 fixation
CN117616129A (zh) 用于产生莱苞迪苷d的组合物和方法
WO2018043546A1 (ja) 変異型酵素の製造方法及び変異型アルコールアシルトランスフェラーゼ
Yan et al. Isopentenyl diphosphate isomerase (IPI) gene silencing negatively affects patchouli alcohol biosynthesis in Pogostemon cablin
Summerer et al. Stereochemical features of the hydrolysis of 9, 10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases
Kusumoto et al. Efficient production and partial characterization of aspartyl aminopeptidase from Aspergillus oryzae
Tian et al. Distinct properties of two glutamine synthetase isoforms in soybean root nodules
JP7313635B2 (ja) 3-ヒドロキシイソ酪酸エステルおよびメタクリル酸エステルの製造方法
US20210040494A1 (en) Non-transgenic plants with mutated glutamate decarboxlases for agronomic benefits
WO2015082441A1 (en) Shuttle vectors and expression vectors for amycolatopsis
Van Kerckhoven et al. Characterization of three L-asparaginases from maritime pine (Pinus pinaster Ait.)
KR101239666B1 (ko) 베타 아가라아제의 대량생산방법
JP2012044909A (ja) 野生型4クマロイルCoA合成酵素および変異型酵素によるアミドおよびペプチドの生産
Meijer et al. An artificial bifunctional enzyme, γ-glutamyl kinase/γ-glutamyl phosphate reductase, improves NaCl tolerance when expressed in Escherichia coli
Hao et al. Comparative analysis of proteomics in Tobacco cultivars with different Ralstonia solanacearm resistance
CN115197921A (zh) 五味子松脂醇-落叶松脂醇还原酶及其编码基因和应用
Yao et al. Overexpression of a recombinant gamma-glutamyltranspeptidase from Escherichia coli Novablue
Kang et al. Cloning and Biochemical Characterization of Aspartate Aminotransferase from Xanthomonas oryzae pv. oryzae

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017548070

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846550

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019003003

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017846550

Country of ref document: EP

Effective date: 20190401

ENP Entry into the national phase

Ref document number: 112019003003

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190213