WO2018043518A1 - 光学積層体 - Google Patents

光学積層体 Download PDF

Info

Publication number
WO2018043518A1
WO2018043518A1 PCT/JP2017/031036 JP2017031036W WO2018043518A1 WO 2018043518 A1 WO2018043518 A1 WO 2018043518A1 JP 2017031036 W JP2017031036 W JP 2017031036W WO 2018043518 A1 WO2018043518 A1 WO 2018043518A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical
path length
optical path
absolute phase
Prior art date
Application number
PCT/JP2017/031036
Other languages
English (en)
French (fr)
Inventor
齊藤 之人
大助 柏木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018537317A priority Critical patent/JP6765429B2/ja
Publication of WO2018043518A1 publication Critical patent/WO2018043518A1/ja
Priority to US16/253,212 priority patent/US10613262B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0087Simple or compound lenses with index gradient
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/286Interference filters comprising deposited thin solid films having four or fewer layers, e.g. for achieving a colour effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/287Interference filters comprising deposited thin solid films comprising at least one layer of organic material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to an optical laminate including a wavelength selective reflection element.
  • a wavelength selective reflection element that selectively reflects light in a specific wavelength region is known.
  • a cholesteric liquid crystal which is a type of wavelength-selective reflective element, has the property of selectively reflecting specific circularly polarized light of specific wavelength and transmitting other wavelengths and circularly polarized light.
  • Color filters and brightness enhancement films in display devices Etc. are used.
  • Japanese Patent Laid-Open No. 2007-279129 Japanese Patent Laid-Open No. 2011-102843, etc.
  • Japanese Patent Application Laid-Open Nos. 2007-279129 and 2011-102843 provide a cholesteric liquid crystal layer having a hologram layer containing hologram images for left and right eyes, and a predetermined pattern on the cholesteric liquid crystal layer.
  • An identification medium with a ⁇ / 2 plate is disclosed.
  • an object of the present invention is to provide an optical laminate that can be easily manufactured and can arbitrarily design a wavefront of reflected light by a wavelength selective reflection element.
  • the optical layered body of the present invention includes a wavelength-selective reflective element including a reflective layer that selectively reflects light in a specific reflection wavelength region, and an optical provided on at least one surface side of the wavelength-selective reflective element.
  • An absolute phase adjustment layer having isotropic properties, The absolute phase adjustment layer has an in-plane distribution in the optical path length in the film thickness direction by having an in-plane distribution in at least one of the refractive index and the film thickness, Of light incident from the absolute phase adjustment layer side, light in a specific reflection wavelength region by the wavelength selective reflection element is emitted as reflected light having a wavefront different from the wavefront of the incident light.
  • the reflection layer of the wavelength selective reflection element may be a cholesteric liquid crystal layer.
  • the reflection layer of the wavelength selective reflection element may be a dielectric multilayer film in which at least two layers having different refractive indexes are alternately laminated.
  • the in-plane distribution of the optical path length in the absolute phase adjusting layer can have a pattern in which the optical path length changes in a stepped manner.
  • the in-plane distribution of the optical path length in the absolute phase adjustment layer can have a pattern in which the optical path length gradually increases as the distance from one point increases.
  • the in-plane distribution of the optical path length in the absolute phase adjusting layer can have a pattern in which the optical path length gradually decreases as the distance from one point increases.
  • any one of the above patterns or a combination of each pattern may be periodically repeated.
  • the optical layered body of the present invention includes a wavelength-selective reflective element including a reflective layer that selectively reflects light in a specific reflection wavelength region, and an optical layer disposed on at least one surface side of the wavelength-selective reflective element.
  • An absolute phase adjustment layer having an isotropic property, and the absolute phase adjustment layer has an in-plane distribution in the optical path length in the film thickness direction by having an in-plane distribution in at least one of the refractive index and the film thickness.
  • light incident from the adjustment layer side light in a specific reflection wavelength region by the wavelength selective reflection element can be emitted as reflected light having a wavefront different from the wavefront of the incident light.
  • the wavefront of the reflected light can be controlled. Compared with the case where a wavefront control is possible by forming a fine pattern on the wavelength selective reflection element itself, it can be easily manufactured and is more suitable for practical use.
  • the side surface schematic diagram which shows the optical laminated body of the 1st Embodiment of this invention, and the optical path length distribution in the in-plane one direction of an absolute phase adjusting layer are shown.
  • a cross-sectional schematic diagram A showing a first pattern configuration example of the absolute phase adjustment layer, a refractive index distribution B in the x-axis direction of the refractive index, and an optical path length distribution C in the x-axis direction are shown.
  • 7A is a schematic cross-sectional view showing a second pattern configuration example of the absolute phase adjustment layer, a film thickness distribution B in the x-axis direction, and an optical path length distribution C in the x-axis direction.
  • FIG. 1 shows a side view of the optical layered body 10 according to the first embodiment of the present invention and a change in the optical path length L in one in-plane direction of the absolute phase adjusting layer 14 (in-plane distribution of the optical path length).
  • the optical layered body 10 of the present embodiment is provided on the side of at least one of the wavelength-selective reflective element 12 and the wavelength-selective reflective element 12 that includes a reflective layer that reflects light in a specific reflection wavelength region. And an absolute phase adjusting layer 14 having optical isotropy.
  • the cholesteric liquid crystal layer constituting the wavelength selective reflection element 12 in this embodiment is a liquid crystal phase in which rod-like liquid crystal compounds or disk-like liquid crystal compounds are arranged in a spiral.
  • the reflection center wavelength can be adjusted by changing the pitch or refractive index of the helical structure in the cholesteric liquid crystal phase.
  • the pitch of this helical structure can be easily adjusted by changing the amount of chiral agent added.
  • the absolute phase adjustment layer has optical isotropy.
  • “having optical isotropy” means that there is no phase difference due to birefringence in the light passing through the absolute phase adjustment layer, that is, the polarization state of the passing light is not affected by birefringence. Means that. However, it is allowed that a phase difference is generated within a range that does not impair the function as the absolute phase adjustment layer 14 described below.
  • the absolute phase adjustment layer 14 has an in-plane distribution in the optical path length in the film thickness direction.
  • the optical path length L has a pattern that changes in a sawtooth shape in one direction of the surface (for example, the x-axis direction of the xy plane).
  • the optical path length L is represented by the product of the refractive index n and the film thickness d. Since the optical layered body 10 includes the absolute phase adjusting layer 14, the selective reflection wavelength by the wavelength selective reflection element 12 among the incident light I incident on the optical layered body 10 from the absolute phase adjusting layer 14 side.
  • the reflected light R that is the left circularly polarized light component light or the right circularly polarized light component of the region can be emitted as light having a wavefront different from the wavefront at the time of incidence.
  • the reflected light R reflected by the wavelength selective reflection element 12 is emitted in an oblique direction having an angle with respect to the normal of the surface. .
  • the absolute phase adjustment layer 14 can generate an absolute phase corresponding to the optical path length in the reflected light. Therefore, the in-plane distribution of the optical path length in the absolute phase adjusting layer 14 generates reflected light having different absolute phases depending on the incident position, and the incident light is incident on the optical laminate 10 and reflected by strengthening or weakening the reflection characteristics. As a whole, the light to be transmitted has a wavefront different from the wavefront at the time of incidence. That is, the wavefront of the reflected light can be controlled by the in-plane distribution of the optical path length of the absolute phase adjustment layer 14.
  • the optical path length L in the film thickness direction is represented by the product of the refractive index n and the film thickness d. Therefore, in order to generate an in-plane distribution in the optical path length L, an in-plane distribution may be provided in at least one of the refractive index n and the film thickness d.
  • the wavefront of the reflected light can be controlled by changing the absolute phase by the absolute phase adjusting layer 14, there is no need for fine alignment direction control in the reflecting layer itself made of the cholesteric liquid crystal layer. In-plane uniform alignment treatment can be used.
  • FIG. 2 shows a first pattern configuration example in which the in-plane distribution of the optical path length is formed by providing the absolute phase adjusting layer 14 with the in-plane distribution of the refractive index n.
  • A is an enlarged schematic cross-sectional view of the optical laminate 10A
  • B is a refractive index distribution in the x-axis direction of the absolute phase adjustment layer
  • C is an optical path length distribution in the x-axis direction of the absolute phase adjustment layer.
  • the absolute phase adjusting layer 14 is formed by periodically arranging a first region A 1 to a sixth region A 6 having different refractive indexes n 1 to n 6 in one direction in the plane.
  • the film thickness d of the first region A 1 to the sixth region A 6 is the same.
  • the refractive indexes n 1 , n 2 , n 3 , n 4 , n 5 and n 6 of each layer constituting the first region A 1 to the sixth region A 6 are n
  • the relationship is 1 ⁇ n 2 ⁇ n 3 ⁇ n 4 ⁇ n 5 ⁇ n 6 , and the refractive index increases stepwise from the first region A 1 toward the sixth region A 6 .
  • the optical path length L has a step-like distribution corresponding to the refractive index distribution, which increases as the refractive index n increases, as indicated by C in FIG. With this configuration, the sawtooth wave-shaped optical path length pattern shown in the above embodiment can be substantially realized.
  • FIG. 3 shows a second pattern configuration example in which the in-plane distribution of the optical path length is formed by providing the absolute phase adjusting layer 14 with the in-plane distribution of the film thickness d.
  • A is an enlarged schematic cross-sectional view of the optical laminate 10B
  • B is a film thickness distribution in the x-axis direction of the absolute phase adjustment layer
  • C is an optical path length distribution in the x-axis direction of the absolute phase adjustment layer.
  • the absolute phase adjustment layer 14 has a structure in which a pattern whose thickness changes stepwise from d 1 to d 6 is periodically provided.
  • the absolute phase adjustment layer 14 is composed of the same composition throughout the entire area, and the refractive index is uniform over the entire area.
  • the film thickness increases stepwise from d 1 to d 6
  • the optical path length L increases as the film thickness increases. It has a step-like distribution according to the thickness distribution. Also with this configuration, the sawtooth wave-shaped optical path length pattern shown in the above embodiment can be substantially realized.
  • FIG. 4 shows a third pattern configuration example in which the in-plane distribution of the optical path length is formed by providing the absolute phase adjustment layer 14 with the in-plane distribution of the film thickness d, as in the second pattern configuration example.
  • A is an enlarged schematic cross-sectional view of the optical laminated body 10C, and B shows an optical path length distribution in the x-axis direction of the absolute phase adjustment layer.
  • the absolute phase adjustment layer 14 has a configuration in which regions where the film thickness gradually changes (smoothly) are periodically provided. As shown in FIG. 4, the absolute phase adjusting layer 14 has a sawtooth waveform in cross section. Similar to the example of FIG. 3, the absolute phase adjusting layer 14 is composed of the same composition in the entire region, and the refractive index is uniform over the entire region. With this configuration, as shown in FIG. 4B, the optical path length L gradually increases from L 0 to L t as the film thickness increases. In other words, the optical path length L has a sawtooth pattern corresponding to the film thickness pattern.
  • optical path length is changed in a sawtooth waveform by changing only the refractive index or only the film thickness.
  • the optical path length may be changed.
  • FIGS. 2 to 4 show examples in which the optical path length changes in a sawtooth waveform in the x-axis direction.
  • the in-plane distribution of the optical path length is not limited to the above, and various designs are possible depending on the application.
  • 5 to 8 are schematic plan views showing other examples of the in-plane distribution of the optical path length in the absolute phase adjusting layer 14 of the optical laminated body.
  • the optical path lengths L 1 to L 6 are L 1 ⁇ L 2 ⁇ L 3 ⁇ L 4 ⁇ L 5 ⁇ L 6 , and in this configuration, the optical path length increases as the distance from the point C 1 increases. It has a long in-plane distribution.
  • Such in-plane distribution of the optical path length can be realized by changing the refractive index or film thickness for each region.
  • the in-plane distribution pattern of the optical path length shown in FIG. 5 shows the function of the convex lens and can diverge the reflected light.
  • the absolute phase adjusting layer 14 shown in FIG. 6 is a first region having different optical path lengths L 1 to L 6 arranged concentrically around the predetermined point C 2 from the outside toward the point C 2.
  • the optical path lengths L 1 to L 6 are L 1 ⁇ L 2 ⁇ L 3 ⁇ L 4 ⁇ L 5 ⁇ L 6 , and in this configuration, the optical path length decreases as the distance from the point C 2 increases. It has a long in-plane distribution.
  • Such in-plane distribution of the optical path length can be realized by changing the refractive index or film thickness for each region.
  • the in-plane distribution pattern of the optical path length shown in FIG. 6 shows the function of the concave lens, and the reflected light can be condensed.
  • the absolute phase adjustment layer 14 has a function of a microlens array in which a plurality of in-plane distribution patterns of the optical path length indicating the concave lens function shown in FIG. You can also
  • the in-plane distribution of the optical path length in the absolute phase adjustment layer 14 may be a combination of two or more of the plurality of patterns described above.
  • FIG. 8 is a diagram illustrating a change in the x-axis direction of the optical path length in the absolute phase adjustment layer 14.
  • the absolute phase adjustment layer 14 may have an in-plane distribution pattern of the optical path length like the Fresnel lens as shown in FIG.
  • the optical layered body of the present invention may have a configuration in which a wavelength selective reflection element and an absolute phase adjusting layer are sequentially stacked on an alignment layer provided on one surface of a support. Further, another optically isotropic layer may be provided between the wavelength selective reflection element and the absolute phase adjustment layer. Further, the wavelength selective reflection element and the absolute phase adjusting layer may be bonded via an adhesive layer.
  • the wavelength-selective reflective element including the reflective layer that selectively reflects light in the specific reflection wavelength region in the optical layered body has been described for the case where the reflective layer is formed of a cholesteric liquid crystal layer.
  • the selective reflection element is not limited to this.
  • the reflection layer may be a dielectric multilayer film.
  • FIG. 9 is a schematic cross-sectional view showing a part of the optical layered body 110 according to the second embodiment of the present invention.
  • the optical laminated body 110 of this embodiment is replaced with the wavelength-selective reflective element 12 made of a reflective layer that is a cholesteric liquid crystal layer in the optical laminated body 10 of the above-described first embodiment, and has at least two different refractive indexes.
  • a wavelength-selective reflection element 112 including a reflective layer which is a dielectric multilayer film in which layers are alternately laminated is provided.
  • the dielectric multilayer film is formed by alternately stacking a high refractive index layer 112H having a relatively high refractive index and a low refractive index layer 112L having a relatively low refractive index.
  • the high refractive index layer 112H and the low refractive index layer 112L may be made of an organic layer or an inorganic layer.
  • the dielectric multilayer film may be any film that selectively reflects a specific wavelength region, and may or may not have polarization reflectivity.
  • the optical layered body 110 has the same in-plane distribution of the optical path length as the absolute phase adjusting layer 14 of the first structural example of the optical layered body 10 of the first embodiment, The same effect is produced. That is, of the incident light I incident perpendicularly to the surface, the reflected light R reflected by the wavelength selective reflection element 112 is emitted in an oblique direction with an angle with respect to the normal of the surface.
  • the layer configuration of the dielectric multilayer film for example, the refractive index of the high refractive index layer 112H and the low refractive index layer 112L, the refractive index difference between them, the layer thickness, etc., the desired reflection center wavelength and reflection wavelength band That is, a specific reflection wavelength region can be set.
  • the high refractive index layer 112H and the low refractive index layer 112L constituting the dielectric multilayer film do not have in-plane anisotropy, there is no polarization reflectivity. Regardless of the reflection.
  • at least one of the high refractive index layer 112H and the low refractive index layer 112L constituting the dielectric multilayer film may have an in-plane anisotropy and reflect a specific linearly polarized light.
  • the polarization of the reflected light differs depending on the polarization characteristics of the reflective layer, but the other functions are almost the same.
  • the reflective layer is a cholesteric liquid crystal layer
  • specific circularly polarized light corresponding to the direction of the spiral of the cholesteric phase is reflected.
  • the reflective layer is a dielectric multilayer film having no polarization characteristics, it is reflected regardless of the polarization. In the case of a dielectric multilayer film having linearly polarized light reflectivity, specific linearly polarized light is reflected.
  • the incident light is in a specific reflection wavelength region for each reflection layer, and polarized light or non-polarized light according to the polarization characteristics for each reflection layer is the absolute phase adjustment layer.
  • the wavefront is controlled according to the pattern, and the reflected light is emitted in a direction different from the regular reflection direction of the incident light.
  • the reflection center wavelength can be adjusted by changing the pitch or refractive index of the helical structure in the cholesteric liquid crystal phase.
  • the pitch of this helical structure can be easily adjusted by changing the amount of chiral agent added.
  • Fujifilm research report No. 50 (2005) p. There is a detailed description in 60-63.
  • it can also adjust by conditions, such as temperature, illumination intensity, and irradiation time, when fixing a cholesteric liquid crystal phase.
  • the cholesteric liquid crystal layer selectively reflects one of right circularly polarized light and left circularly polarized light in the selective reflection wavelength region and transmits the other circularly polarized light.
  • the polymerizable liquid crystal composition for forming the cholesteric liquid crystal layer contains a rod-like liquid crystal compound or a disk-like liquid crystal compound, and further contains other components such as a chiral agent, an alignment controller, a polymerization initiator, and an alignment aid. You may do it.
  • rod-like liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.
  • high-molecular liquid crystalline molecules can also be used.
  • the polymerizable rod-like liquid crystal compound examples include those described in Makromol. Chem. 190, 2255 (1989), Advanced Materials, 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648 and 5,770,107, WO 95/22586, 95/24455. Publication Nos. 97/00600, 98/23580, 98/52905, JP-A 1-272551, 6-16616, 7-110469, 11-80081 The compounds described in the gazette and Japanese Patent Application No. 2001-64627 can be used. Further, as the rod-like liquid crystal compound, for example, those described in JP-A-11-513019 and JP-A-2007-279688 can be preferably used.
  • discotic liquid crystal compounds for example, those described in JP2007-108732A and JP2010-244038A can be preferably used.
  • composition used for forming the cholesteric liquid crystal layer may contain other components such as a chiral agent, an alignment controller, a polymerization initiator, and an alignment aid in addition to the above-mentioned discotic liquid crystal compound. . Any known material can be used.
  • organic solvent As the solvent for the composition for forming the cholesteric liquid crystal layer, an organic solvent is preferably used.
  • organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclohexanone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • Application and curing of polymerizable liquid crystal composition is performed by appropriately applying a liquid crystal composition such as a roll coating method, a gravure printing method, or a spin coating method in which the polymerizable liquid crystal composition is made into a solution state with a solvent or a liquid material such as a melt by heating. It can be performed by a method that develops by various methods. Furthermore, it can be performed by various methods such as a wire bar coating method, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, and a die coating method. In addition, a coating film can be formed by discharging a liquid crystal composition from a nozzle using an inkjet apparatus.
  • a liquid crystal composition such as a roll coating method, a gravure printing method, or a spin coating method in which the polymerizable liquid crystal composition is made into a solution state with a solvent or a liquid material such as a melt by heating. It can be performed by a method that develops by various methods. Furthermore, it can be performed
  • the polymerizable liquid crystal composition is cured to fix the alignment state of the molecules of the liquid crystal compound.
  • Curing is preferably carried out by a polymerization reaction of a polymerizable group introduced into a liquid crystal molecule.
  • the coating film may be dried by a known method after the application of the polymerizable liquid crystal composition and before the polymerization reaction for curing. For example, it may be dried by standing or may be dried by heating.
  • the liquid crystal compound molecules in the polymerizable liquid crystal composition only need to be aligned in the steps of applying and drying the polymerizable liquid crystal composition.
  • the dielectric multilayer film is formed by laminating two or more dielectric layers having different refractive indexes, and a reflective layer capable of selectively reflecting a desired wavelength region by adjusting the refractive index and thickness of each layer. It becomes.
  • the dielectric multilayer film made of an organic layer can be formed, for example, by alternately laminating two kinds of oriented birefringent polymer layers. For example, it can be produced with reference to the multilayer optical film material and the multilayer optical film production method described in JP-T-11-508378.
  • the dielectric multilayer film made of an inorganic layer can be produced with reference to the dielectric multilayer film material and the dielectric multilayer film production method described in International Publication WO2014 / 010532, for example.
  • a metal oxide is mainly used as the inorganic material, but the metal oxide that can be used is not particularly limited, but is preferably a transparent dielectric material.
  • examples include copper, magnesium oxide, magnesium hydroxide, strontium titanate, yttrium oxide, niobium oxide, europium oxide, lanthanum oxide, zircon, and tin oxide.
  • Both the low refractive index layer and the high refractive index layer have a refractive index. You may use together suitably in order to adjust.
  • the high refractive index material according to the present invention include titanium oxide, zirconium oxide, zinc oxide and the like, but the stability of the composition containing metal oxide particles for forming the high refractive index layer.
  • titanium oxide is more preferably used.
  • rutile type titanium oxide having a low photocatalytic activity and a high refractive index is particularly preferably used.
  • the composition constituting the absolute phase adjusting layer is not particularly limited as long as it has optical isotropy and can form an in-plane distribution in the optical path length.
  • ITO indium tin oxide
  • a resin material added with metal oxide fine particles can be used.
  • a known material can be appropriately used as the transparent material for adjusting the refractive index.
  • Examples of a material that realizes a low refractive index include a composition containing a fluorine-containing curable resin and inorganic fine particles described in JP-A-2007-298974, JP-A-2002-317152, and JP-A-2003-2003. Hollow silica fine particle-containing low refractive index coatings described in 202406, JP-A 2003-292831, and the like can be suitably used.
  • a material for realizing a high refractive index for example, materials described in paragraphs [0054] to [0057] of JP-A-2002-311204 and general known high refractive index materials can be used.
  • JP-A-2008-262187 can be used.
  • a refractive index light modulation type material that changes the value of the refractive index by light irradiation can also be used.
  • a material such as a photopolymer used for holography can be used.
  • Formation of absolute phase adjustment layer Prepare a plurality of compositions containing the material that achieves the above low refractive index or the material that realizes the high refractive index, and use a mask to obtain the desired position on the wavelength selective reflecting element or on the temporary support. By repeating the procedure of applying and exposing to light for each composition, regions having different refractive indexes can be patterned.
  • 3 to 6 can be produced with reference to the method described in Japanese Patent Application Laid-Open No. 2004-114419, for example. Specifically, it can be produced by applying a cured composition to a support and using a process such as curing after pressing with an embossing mold having a desired shape.
  • a transparent support is preferable, a polyacrylic resin film such as polymethyl methacrylate, a cellulose resin film such as cellulose triacetate, and a cycloolefin polymer film [for example, trade name “ARTON”, manufactured by JSR Corporation, Trade name “Zeonoa”, manufactured by Nippon Zeon Co., Ltd.].
  • the support is not limited to a flexible film but may be a non-flexible substrate such as a glass substrate.
  • the optical layered body of the present invention may be used while being supported by a support when forming a film.
  • the support when forming a film is a temporary support, and another support. And may be used after the temporary support is peeled off.
  • an alignment layer may be provided on the film forming surface.
  • the alignment layer can be provided by means such as a rubbing treatment of an organic compound (preferably a polymer), oblique vapor deposition of an inorganic compound, or formation of a layer having a microgroove.
  • an alignment layer in which an alignment function is generated by application of an electric field, application of a magnetic field, or light irradiation is also known.
  • the alignment layer is preferably formed by rubbing the surface of the polymer film.
  • the alignment layer is preferably peeled off together with the support.
  • the support can function as an orientation layer by directly subjecting the support to an orientation treatment (for example, rubbing treatment) without providing an orientation layer.
  • an orientation treatment for example, rubbing treatment
  • An example of such a support is PET (polyethylene terephthalate).
  • Adhesive layer (adhesive layer)
  • adhesive layer (adhesive layer)
  • laminating the wavelength selective reflection element and the absolute phase adjusting layer they may be laminated via an adhesive layer.
  • the pressure-sensitive adhesive used for the adhesive layer examples include resins such as polyester resins, epoxy resins, polyurethane resins, silicone resins, and acrylic resins. You may use these individually or in mixture of 2 or more types.
  • an acrylic resin is preferable because it is excellent in reliability such as water resistance, heat resistance, and light resistance, has good adhesive strength and transparency, and can easily adjust the refractive index to be compatible with a liquid crystal display.
  • a sheet-like photo-curing adhesive (Toagosei Group Research Annual Report 11 TREND 2011 No. 14) can also be used for the adhesive layer. Bonding between optical films is easy, like an adhesive, crosslinks and cures with ultraviolet rays (UV), improves storage elastic modulus, adhesive strength and heat resistance, and is an adhesive method suitable for the present invention. .
  • UV ultraviolet rays
  • Example 1 An optical laminate including a reflective layer composed of a cholesteric liquid crystal layer as a wavelength selective reflective element was produced. A cholesteric liquid crystal layer was formed on the alignment layer provided on the glass substrate, and an optical layered product was prepared by laminating a separately prepared absolute phase adjustment layer with the cholesteric liquid crystal layer. Details will be described below.
  • composition A for forming an alignment layer prepared above is uniformly coated on a glass substrate using a slit coater, and then dried in an oven at 100 ° C. for 2 minutes to obtain a glass substrate with an alignment layer having a thickness of 0.5 ⁇ m. Obtained.
  • the cholesteric liquid crystal composition Gm is a material that forms a layer that reflects light having a central wavelength of 532 nm.
  • the cholesteric liquid crystal composition Gm is a material for forming a layer that reflects right circularly polarized light. That is, the cholesteric liquid crystal composition Gm is a material for forming the right polarization green layer.
  • the cholesteric liquid crystal composition Gm prepared above was uniformly applied using a slit coater, dried at 95 ° C. for 30 seconds, and then irradiated with ultraviolet light.
  • the film was cured by irradiating with an ultraviolet ray of 500 mJ / cm 2 at room temperature with an irradiator to form a reflective layer composed of a cholesteric liquid crystal layer having a thickness of 2 ⁇ m.
  • the reflection center wavelength was about 532 nm.
  • a cross section of the cholesteric liquid crystal layer was observed, a twisted structure of approximately 8 pitches (8 rotations) was formed.
  • Dispersion D1 A component of dispersion D1 having the following composition was prepared, mixed with 17,000 parts by mass of zirconia beads (0.3 mm ⁇ ), and dispersed for 12 hours using a paint shaker. Zirconia beads (0.3 mm ⁇ ) were filtered off to obtain dispersion D1.
  • MAEVE (1-ethoxyethyl methacrylate: Wako Pure Chemical Industries, Ltd.) 0.4 molar equivalent, GMA (glycidyl methacrylate: Wako Pure Chemical Industries) 0.3 molar equivalent, MAA (methacrylic acid: Wako Pure Chemical Industries, Ltd.) 0.1 molar equivalent, HEMA (hydroxyethyl methacrylate: manufactured by Wako Pure Chemical Industries, Ltd.) 0.2 molar equivalent, V-65 (azo polymerization initiator; manufactured by Wako Pure Chemical Industries, Ltd.) (Corresponding to 4 mol% with respect to 100 mol% in total) was dissolved and added dropwise over 2 hours. After completion of the dropwise addition, the reaction was terminated by stirring for 2 hours. Thereby, polymer E1 was obtained.
  • the ratio of MEDG to the total amount of other components was 60:40. That is, a polymer solution having a solid content concentration of 40% was prepared.
  • compositions C1 to C6 A composition for forming a refractive index layer is prepared by mixing the raw materials in the composition (parts by mass) shown in Table 1 below to obtain a uniform solution, and then filtering using a polyethylene filter having a pore size of 0.2 ⁇ m. C1-C6 were prepared.
  • PAG-1 A compound having the following structure synthesized according to the method described in paragraph No. [0108] of JP-T-2002-528451 (Ts moiety represents trisulfonate).
  • Sensitizer 1 Dibutoxyanthracene having the following structure (manufacturer: Kawasaki Kasei Co., Ltd., product number: 9,10-dibutoxyanthracene) [[Basic compounds]]
  • Basic compound Compound having the following structure (manufacturer: Toyo Kasei Kogyo, product number: CMTU)
  • Surfactant F-554 Perfluoroalkyl group-containing nonionic surfactant represented by the following structural formula (manufactured by DIC)
  • the composition C2 On the substrate on which the first region obtained above is formed, the composition C2 is applied in the same manner, and the mask alignment is performed by shifting the pitch by one pitch using the same exposure machine, and next to the first region. It exposed so that composition C2 might remain. After the exposure, the composition C2 was developed with an alkali developer (0.4 mass% tetramethylammonium hydroxide aqueous solution) at 23 ° C./60 seconds, rinsed with ultrapure water for 20 seconds, and then 200 ° C. And post-baking heat treatment for 30 minutes. The finished C2 layer (second region) had a thickness of 0.71 ⁇ m, a line width of 13.3 ⁇ m, and a refractive index of 1.57.
  • an alkali developer 0.4 mass% tetramethylammonium hydroxide aqueous solution
  • compositions C3 to C6 are repeatedly applied, exposed, developed, and baked while sequentially shifting by one pitch, so that the film thickness is 0.71 ⁇ m, each line width is 13.3 ⁇ m, and the refractive index is 1.50 (C1 Layer: first region), 1.57 (C2 layer: second region), 1.64 (C3 layer: third region), 1.71 (C4 layer: fourth region), 1.78
  • An absolute phase adjusting layer was obtained in which the layers to be (C5 layer: fifth region) and 1.85 (C6 layer: sixth region) were taken as one unit and this was continuously arranged.
  • Example 1 an optical layered body of Example 1 in which an absolute phase adjusting layer was laminated on a reflecting layer (wavelength selective reflecting element) made of a cholesteric liquid crystal layer was obtained.
  • Example 2 Adjustment of refractive index layer forming compositions C7 to 11
  • the raw materials were mixed to obtain a uniform solution, and then filtered using a polyethylene filter having a pore size of 0.2 ⁇ m to form a refractive index layer forming composition C7. ⁇ 11 were prepared.
  • the composition C7 was uniformly coated on a cholesteric liquid crystal layer formed on a glass substrate using a slit coater, dried at 80 ° C. for 60 seconds, and then PLA manufactured by Canon Inc.
  • the composition C7 was developed with an alkali developer (0.4 mass% tetramethylammonium hydroxide aqueous solution) at 23 ° C./60 seconds, rinsed with ultrapure water for 20 seconds, and then at 200 ° C. for 30 minutes. Post bake heat treatment was performed.
  • the finished C7 layer (second region) had a thickness of 0.1 ⁇ m, a line width of 13.3 ⁇ m, and a refractive index of 1.50.
  • Example 2 Thereafter, as in Example 1, the compositions C8 to C11 were repeatedly applied, exposed, developed, and baked while sequentially shifting by one pitch, so that the refractive index was 1.50, each line width was 13.3 ⁇ m, and the film thickness was 0. 0.1 ⁇ m (C7 layer: second region), 0.2 ⁇ m (C8 layer: third region), 0.3 ⁇ m (C9 layer: fourth region), 0.4 ⁇ m (C10 layer: fifth region) , 0.5 ⁇ m (C11 layer: sixth region), and a layer having no patterning composition (first region) adjacent thereto as one unit, and an implementation comprising an absolute phase adjusting layer in which this is continuously arranged
  • the optical layered body of Example 2 was obtained.
  • compositions C7 to C7 having different amounts of matrix (polymer E1) in each composition as shown in Table 2 are used. Although it is formed using C11, the refractive index of the C7 layer to the C11 layer is 1.5 and common.
  • Comparative Example 1 was obtained by providing a cholesteric liquid crystal layer on the alignment film of the glass substrate with an alignment film prepared in Example 1. That is, Comparative Example 1 is a reflective polarizer made of a conventional wavelength selective reflection element that does not include an absolute phase adjustment layer.
  • Table 3 summarizes the configuration and evaluation results of each example.
  • Comparative Example 1 that does not include an absolute phase adjusting layer, a specific wavelength region of incident light and a specific circularly polarized light are regularly reflected.
  • the absolute phase adjustment layer in which the first to sixth regions having different optical path lengths are arranged as in Examples 1 and 2 the reflection angle is 0.45 °, and the reflected light is normal. It was emitted in an oblique direction, not reflected.
  • Example 11 An optical laminate including a reflective layer made of a dielectric multilayer film D1 was produced as a wavelength selective reflective element.
  • the wavelength-selective reflecting element was produced with reference to JP-T-11-508378. Details will be described below.
  • the dielectric multilayer film D1 was produced by alternately laminating two kinds of oriented birefringent polymer layers and biaxially stretching so that the in-plane refractive index was different between the two kinds of layers. Dielectric so that the optical path length, which is the value obtained by multiplying the thickness of each of the two kinds of oriented refractive index polymer layers by the respective refractive index, is equal to a quarter of the desired reflection wavelength (here, 532 nm). The thickness of the multilayer film was designed.
  • the method for producing a dielectric multilayer film described in JP-A-11-508378 is uniaxial stretching, but here it is biaxial stretching, and the refractive index of each layer has no in-plane anisotropy. It was supposed to be.
  • the refractive index of the low refractive index layer was 1.64
  • the refractive index of the high refractive index layer was 1.88.
  • the thickness of the low refractive index layer is 81.1 nm
  • the thickness of the high refractive index layer is 70.7 nm.
  • a film consisting of a total of 256 layers was prepared by laminating 128 layers. In this way, a reflection layer made of the dielectric multilayer film D1 having a specific selective reflection region having a reflection center wavelength of 532 nm was produced. The full width at half maximum of the selective reflection region was about 80 nm.
  • the absolute phase adjustment layer was produced on the dielectric multilayer film D1 by the same production method as that in Example 1. That is, an absolute phase adjusting layer having a pattern configuration in which the first to sixth regions were periodically arranged, which were prepared using the refractive index layer forming compositions C1 to C6, as in Example 1, was prepared.
  • Example 11 an optical layered body of Example 11 in which the absolute phase adjusting layer was laminated on the reflecting layer (wavelength selective reflecting element) made of the dielectric multilayer film D1 was obtained.
  • Example 12 A reflective layer made of the dielectric multilayer film D1 was produced in the same manner as in Example 11.
  • the absolute phase adjustment layer was produced on the dielectric multilayer film D1 by the same production method as that in Example 2. That is, an absolute phase adjusting layer having a pattern configuration in which the first to sixth regions were periodically arranged, which were prepared using the refractive index layer forming compositions C7 to C11, as in Example 2, was prepared.
  • Example 12 an optical layered body of Example 12 in which the absolute phase adjusting layer was formed on the reflective layer made of the dielectric multilayer film D1 was obtained.
  • Example 13 An optical laminate including a reflective layer made of a dielectric multilayer film D2 was produced as a wavelength selective reflective element.
  • Dielectric multilayer film D2 Two kinds of oriented birefringent polymer layers are alternately laminated on the dielectric multilayer film D2.
  • the two kinds of oriented refractive index polymer layers have substantially the same refractive index in one direction (for example, the x axis) in the plane and different refractive indexes in the direction orthogonal to the two (for example, the y axis),
  • the thickness of the dielectric multilayer film was designed so that the optical path length, which is a value obtained by multiplying each thickness by the refractive index in the y-axis direction, is equal to one-fourth of the desired reflection wavelength (here, 532 nm).
  • the structure similar to that shown in FIGS. 1 and 2 of JP-A-11-508378 is obtained by uniaxial stretching.
  • a specific linearly polarized light is selectively reflected by polarization.
  • the thickness of the low refractive index layer is 81.1 nm
  • the thickness of the high refractive index layer is 70.7 nm.
  • a film consisting of a total of 256 layers was prepared by laminating 128 layers. In this way, a reflection layer made of the dielectric multilayer film D2 having a reflection center wavelength of 550 nm, having a specific selective reflection region, and reflecting a specific linearly polarized light was produced.
  • the half width was about 80 nm.
  • the absolute phase adjustment layer was produced on the dielectric multilayer film D2 by the same production method as that in Example 1. That is, an absolute phase adjusting layer having a pattern configuration in which the first to sixth regions were periodically arranged, which were prepared using the refractive index layer forming compositions C1 to C6, as in Example 1, was prepared.
  • Example 13 an optical layered body of Example 13 in which the absolute phase adjusting layer was laminated and formed on the reflecting layer (wavelength selective reflecting element) made of the dielectric multilayer film D2 was obtained.
  • Comparative Example 11 The wavelength-selective reflective element composed of the dielectric multilayer film D1 produced in Example 11 was set as Comparative Example 11. That is, Comparative Example 11 was not provided with an absolute phase adjustment layer, and consisted only of a wavelength selective reflection element.
  • Example 11 For Examples 11 to 14 and Comparative Example 11, the same evaluation as in Example 1 was performed. Table 4 summarizes the configuration and evaluation results of each example.
  • Comparative Example 11 that does not include an absolute phase adjustment layer, light in a specific wavelength region of incident light is regularly reflected.
  • the absolute phase adjustment layer in which the first to sixth regions having different optical path lengths are arranged as in Examples 11 to 13 the reflection angle is 0.45 °, and the reflected light is normal. It was emitted in an oblique direction, not reflected. Similar effects were obtained for the optical laminates of Examples 11 and 12 having no polarization reflectivity and also for the optical laminate of Example 13 that selectively reflects specific linearly polarized light.
  • Wavelength selective reflection element (cholesteric liquid crystal layer) 14 Absolute phase adjustment layer 112 Wavelength selective reflection element (dielectric multilayer film) A 1 to A 6 , S 1 to S 6 regions n, n 1 to n 6 Refractive index d, d 1 to d 6 Film thickness L, L 1 to L 6 Optical path length I Incident light R Reflected light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Optical Filters (AREA)

Abstract

容易に作製可能であり、波長選択性反射素子による反射光の波面を任意に設計可能な光学積層体を提供する。 特定の反射波長領域の光を選択的に反射する反射層を備えた波長選択性反射素子と、波長選択性反射素子の少なくとも一方の面側に備えられた、光学等方性を有する絶対位相調整層とを備え、絶対位相調整層は、屈折率および膜厚の少なくとも一方に面内分布を有することにより膜厚方向の光路長に面内分布を有する構成とする。

Description

光学積層体
 本発明は、波長選択性反射素子を備えた光学積層体に関する。
 特定の波長領域の光を選択的に反射する波長選択性反射素子が知られている。
 波長選択性反射素子の一種であるコレステリック液晶は特定の波長の特定の円偏光を選択的に反射し、その他の波長および円偏光を透過させる性質を有し、表示装置におけるカラーフィルタや輝度向上フィルム等に使用されている。
 また、コレステリック液晶層を識別媒体に利用する技術も知られている(特開2007-279129号公報、特開2011-102843号公報等)。特開2007-279129号公報、特開2011-102843号公報には、左目用および右目用のホログラム像を含むホログラム層を有するコレステリック液晶層と、コレステリック液晶層上に所定のパターンを有して設けられたλ/2板を備えた識別媒体が開示されている。
 一方、Kobayashi et al "Planar optics with patterned chiral liquid crystal" Nature Photonics, 2016.66(2016)においては、コレステリック液晶から反射される光の位相が螺旋構造の位相によって変化することを見出し、螺旋構造の位相を空間的に制御することによって、反射光の波面を任意に設計できることが示されている。
 Kobayashi et al "Planar optics with patterned chiral liquid crystal" Nature Photonics, 2016.66(2016)においては、コレステリック液晶層の形成工程においてパターン配向させることにより、コレステリック液晶の螺旋構造の位相を制御する方法が提案されている。しかしながら、この方法では、微細な液晶配向方向の制御が必要であるため、実用化への適用が困難である。コレステリック液晶層に限らず、波長選択性反射素子における反射光の波面を任意に設計可能な光学部材に対する需要は高い。
 本発明は、上記事情に鑑みて、容易に作製でき、波長選択性反射素子による反射光の波面を任意に設計可能な光学積層体を提供することを目的とする。
 本発明の光学積層体は、特定の反射波長領域の光を選択的に反射する反射層を備えた波長選択性反射素子と、波長選択性反射素子の少なくとも一方の面側に備えられた、光学等方性を有する絶対位相調整層とを備え、
 絶対位相調整層は、屈折率および膜厚の少なくとも一方に面内分布を有することにより膜厚方向の光路長に面内分布を有し、
 絶対位相調整層側から入射した光のうち、波長選択性反射素子による特定の反射波長領域の光を、入射した光の波面とは異なる波面を有する反射光として出射する。
 本発明の光学積層体においては、波長選択性反射素子の反射層が、コレステリック液晶層であってもよい。
 本発明の光学積層体においては、波長選択性反射素子の反射層が、屈折率の異なる少なくとも2つの層が交互に多層積層された誘電体多層膜であってもよい。
 本発明の光学積層体において、絶対位相調整層における光路長の面内分布は、光路長が階段状に変化するパターンを有することができる。
 本発明の光学積層体において、絶対位相調整層における光路長の面内分布は、一点から離れるにつれて光路長が徐々に長くなるパターンを有することができる。
 本発明の光学積層体において、絶対位相調整層における光路長の面内分布は、一点から離れるにつれて光路長が徐々に短くなるパターンを有することができる。
 さらに、本発明の光学積層体の絶対位相調整層おける光路長の面内分布においては、上記のいずれかのパターンもしくは各パターンの組合せが周期的に繰り返されていてもよい。
 本発明の光学積層体は、特定の反射波長領域の光を選択的に反射する反射層を備えた波長選択性反射素子と、波長選択性反射素子の少なくとも一方の面側に配された、光学等方性を有する絶対位相調整層とを備え、絶対位相調整層は屈折率および膜厚の少なくとも一方に面内分布を有することにより膜厚方向の光路長に面内分布を有するので、絶対位相調整層側から入射した光のうち、波長選択性反射素子による特定の反射波長領域の光を、入射した光の波面とは異なる波面を有する反射光として出射することができる。すなわち、一様な波長選択性反射素子に絶対位相調整層を備えることにより、反射光の波面制御を行うことができる。波長選択性反射素子自体に微細なパターンを形成しては波面制御可能とする場合と比較して、簡単に作製することができより実用化に適する。
本発明の第1の実施形態の光学積層体を示す側面模式図および絶対位相調整層の面内一方向における光路長分布を示す。 絶対位相調整層の第1のパターン構成例を示す断面模式図A、屈折率のx軸方向における屈折率分布B、およびx軸方向における光路長分布Cを示す。 絶対位相調整層の第2のパターン構成例を示す断面模式図A、x軸方向における膜厚分布B,およびx軸方向における光路長分布Cである。 絶対位相調整層の第3のパターン構成例を示す断面模式図Aおよびx軸方向における光路長分布Bである。 絶対位相調整層における光路長の面内分布の他の例を示す平面図である。 絶対位相調整層における光路長の面内分布の他の例を示す平面図である。 絶対位相調整層における光路長の面内分布の他の例を示す平面図である。 絶対位相調整層のx軸方向における光路長分布を示す図である。 本発明の第2の実施形態の光学積層体の一部を示す断面模式図である。
 以下、本発明の光学積層体の実施形態について図面を参照して説明する。なお、各図面においては、視認しやすくするため、構成要素の縮尺は実際のものとは適宜異ならせてある。
<光学積層体>
 図1は、本発明の第1の実施形態の光学積層体10の側面図およびその絶対位相調整層14の面内一方向における光路長Lの変化(光路長の面内分布)を示す。
 本実施形態の光学積層体10は、特定の反射波長領域の光を反射する反射層を備えた波長選択性反射素子12と、波長選択性反射素子12の少なくとも一方の面側に備えられた、光学等方性を有する絶対位相調整層14とを有する。
 本実施形態における波長選択性反射素子12を構成するコレステリック液晶層は、棒状液晶化合物もしくは円盤状液晶化合物が螺旋状に配列された液晶相である。このコレステリック液晶相における螺旋構造のピッチまたは屈折率を変えることにより反射中心波長を調整することができる。この螺旋構造のピッチはキラル剤の添加量を変えることによって容易に調整可能である。
 絶対位相調整層は、光学等方性を有する。ここで、「光学等方性を有する」とは絶対位相調整層を通過する光に複屈折による位相差が生じない、すなわち、通過する光の偏光状態に複屈折による影響を与えないものであることを意味する。但し、以下に述べる絶対位相調整層14としての機能を損なわない範囲で位相差が生じることは許容される。
 図1中に示すように、絶対位相調整層14は、膜厚方向の光路長に面内分布を有している。ここでは、光路長Lが、面の一方向(例えば、xy平面のx軸方向)にのこぎり波状に変化するパターンを有している。光路長Lは屈折率nと膜厚dの積で表される。
 本光学積層体10は、この絶対位相調整層14を備えたことにより、本光学積層体10に絶対位相調整層14側から入射した入射光Iのうち、波長選択性反射素子12による選択反射波長領域の左円偏光成分もしくは右円偏光成分光である反射光Rを、入射時の波面とは異なる波面を有する光として出射することができる。
 本実施形態の構成においては、面に垂直に入射する入射光Iのうち、波長選択性反射素子12で反射された反射光Rは、面の法線に角度を持った斜め方向に出射される。
 絶対位相調整層14はその光路長に応じた絶対位相を反射光に生じさせることができる。したがって、絶対位相調整層14における光路長の面内分布により、入射位置によって絶対位相の異なる反射光が生じ、反射特性を強め合い、あるいは弱め合うことにより、本光学積層体10に入射して反射する光は、全体として入射時の波面とは異なる波面を有することとなる。
 すなわち、絶対位相調整層14の光路長の面内分布によって反射光の波面を制御することができる。
 既述の通り、膜厚方向の光路長Lは屈折率nと膜厚dとの積で表される。したがって、光路長Lに面内分布を生じさせるためには、屈折率nおよび膜厚dの少なくとも一方に面内分布を設ければよい。
 本発明の光学積層体においては、絶対位相調整層14により絶対位相を変化させることにより反射光の波面を制御できるので、コレステリック液晶層からなる反射層自体には微細な配向方向制御の必要がなく、面内一様配向処理を用いることができる。
 以下、図2~図8を参照して、絶対位相調整層における光路長の面内分布のパターン構成例について説明する。
 図2は、絶対位相調整層14に屈折率nの面内分布を設けることにより、光路長の面内分布を形成した第1のパターン構成例を示す。図2において、Aは光学積層体10Aの拡大断面模式図であり、Bは絶対位相調整層のx軸方向における屈折率分布、Cは絶対位相調整層のx軸方向における光路長分布を示している。
 絶対位相調整層14は、異なる屈折率n~nをそれぞれ有する第1の領域A~第6の領域Aが面内の一方の方向に周期的に配列されてなる。第1の領域A~第6の領域Aの膜厚dは同一である。図2中のBに示すように、第1の領域A~第6の領域Aを構成する各層の屈折率n、n、n、n、nおよびnは、n<n<n<n<n<nの関係にあり、第1の領域Aから第6の領域Aに向かって屈折率が階段状に大きくなっている。そして、光路長Lは、図2中のCに示すように、屈折率nが大きくなるにつれて大きくなる、屈折率分布に応じた階段状の分布を有している。本構成により、上記実施形態に示した、のこぎり波状の光路長パターンを概ね実現することができる。
 図3は、絶対位相調整層14に膜厚dの面内分布を設けることにより、光路長の面内分布を形成した第2のパターン構成例を示す。図3において、Aは光学積層体10Bの拡大断面模式図であり、Bは絶対位相調整層のx軸方向における膜厚分布、Cは絶対位相調整層のx軸方向における光路長分布を示している。
 絶対位相調整層14は、膜厚がd~dに階段状に変化するパターンが周期的に設けられた構成である。本例において絶対位相調整層14は全域同一の組成物から構成されており、屈折率は全域に亘って均一である。図3中のBに示すように、膜厚はdからdに階段状に大きくなり、図3中のCに示すように、光路長Lは、膜厚が大きくなるにつれて大きくなる、膜厚分布に応じた階段状の分布を有している。本構成によっても、上記実施形態に示した、のこぎり波状の光路長パターンを概ね実現することができる。
 図4は、第2のパターン構成例と同様に、絶対位相調整層14に膜厚dの面内分布を設けることにより、光路長の面内分布を形成した第3のパターン構成例を示す。図4において、Aは光学積層体10Cの拡大断面模式図であり、Bは絶対位相調整層のx軸方向における光路長分布を示している。
 絶対位相調整層14は、膜厚が徐々に(滑らかに)変化する領域が周期的に設けられた構成である。図4に示すように、絶対位相調整層14は断面形状が、のこぎり波状である。図3の例と同様に、絶対位相調整層14は全域同一の組成物から構成されており、屈折率は全域に亘って均一である。本構成により、図4のBに示すように光路長Lは、膜厚が大きくなるにつれてLからLまで徐々に長くなっている。すなわち、光路長Lは、膜厚のパターンに応じた、のこぎり波状のパターンを有している。
 図2~図4に示した例では、屈折率のみ、もしくは膜厚のみを変化させることにより光路長をのこぎり波状に変化させる場合について説明したが、屈折率および膜厚の両者を変化させて同様に光路長を変化させてもよい。
 図2~図4においては、光路長がx軸方向にのこぎり波状に変化する例を示したが、光路長の面内分布は上記に限らず、用途に応じて種々の設計が可能である。図5~図8は光学積層体の絶対位相調整層14における光路長の面内分布の他の例を示す平面模式図である。
 図5に示す絶対位相調整層14は、所定の一点Cを中心とする同心円状に点Cから外側に向けて配置された、互いに異なる光路長L~Lを有する第1の領域S、第2の領域S…第6の領域Sの領域を有している。ここで、光路長L~Lは、L<L<L<L<L<Lであり、本構成においては、点Cから離れるにつれて光路長が長くなる、光路長の面内分布を有している。このような光路長の面内分布は領域毎に屈折率もしくは膜厚を変化させることにより実現することができる。
 図5に示す光路長の面内分布パターンは凸面レンズの機能を示し、反射光を発散させることができる。
 図6に示す絶対位相調整層14は、所定の一点Cを中心とする同心円状に外側から点Cに向けて配置された、互いに異なる光路長L~Lを有する第1の領域S、第2の領域S…第6の領域Sの領域を有している。ここで、光路長L~Lは、L<L<L<L<L<Lであり、本構成においては、点Cから離れるにつれて光路長が短くなる、光路長の面内分布を有している。このような光路長の面内分布は領域毎に屈折率もしくは膜厚を変化させることにより実現することができる。
 図6に示す光路長の面内分布パターンは凹面レンズの機能を示し、反射光を集光させることができる。
 また、図7に示すように、絶対位相調整層14は、図5に示した凹面レンズ機能を示す光路長の面内分布パターンが複数、縦横に配列されてマイクロレンズアレイの機能を有するものとすることもできる。
 さらに、絶対位相調整層14における光路長の面内分布は、上記した複数のパターンの2以上の組み合わせであってもよい。
 図8は、絶対位相調整層14における光路長のx軸方向の変化を示す図である。絶対位相調整層14は、図8に示すようなフレネルレンズ様の光路長の面内分布パターンを有するものとしてもよい。
 なお、本発明の光学積層体は、支持体の一面に設けられた配向層上に波長選択性反射素子および絶対位相調整層が順に積層されてなる構成であってもよい。また、波長選択性反射素子と絶対位相調整層との間には、他の光学的に等方性を有する層を備えていてもよい。また、波長選択性反射素子と絶対位相調整層とは、接着層を介して接着されたものであってもよい。
 上記実施形態においては、光学積層体における特定の反射波長領域の光を選択的に反射する反射層を備えた波長選択性反射素子として、反射層がコレステリック液晶層からなる場合について説明したが、波長選択性反射素子はこれに限らない。波長選択性反射素子は、反射層が誘電体多層膜であってよい。
 図9は、本発明の第2の実施形態の光学積層体110の一部を示す断面模式図である。
 本実施形態の光学積層体110は、上述の第1の実施形態の光学積層体10における、コレステリック液晶層である反射層からなる波長選択性反射素子12に代えて、屈折率の異なる少なくとも2つの層が交互に多層積層された誘電体多層膜である反射層からなる波長選択性反射素子112を備えている。
 誘電体多層膜は、相対的に高い屈折率を有する高屈折率層112Hと、相対的に低い屈折率を有する低屈折率層112Lとが交互に積層されてなる。高屈折率層112Hと低屈折率層112Lは、有機層からなるものであっても無機層からなるものであってもよい。また、誘電体多層膜は特定の波長領域を選択的に反射するものであればよく、偏光反射性を有していても有していなくてもよい。
 本光学積層体110は、第1の実施形態の光学積層体10の第1の構成例の絶対位相調整層14と同一の光路長の面内分布を備えているので、第1の実施形態と同様の効果を奏する。すなわち、面に垂直に入射する入射光Iのうち、波長選択性反射素子112で反射された反射光Rは、面の法線に角度を持った斜め方向に出射される。
 誘電体多層膜の層構成、例えば、高屈折率層112Hおよび低屈折率層112Lの屈折率および両者の屈折率差、層厚などを適宜設定することにより、所望の反射中心波長および反射波長帯域、すなわち特定の反射波長領域を設定することができる。
 誘電体多層膜を構成する高屈折率層112Hおよび低屈折率層112Lが面内異方性を有していない場合には偏光反射性がないため、特定の反射波長領域の光であれば偏光に拘わらず反射する。
 他方、誘電体多層膜を構成する高屈折率層112Hと低屈折率層112Lの少なくとも一方が面内異方性を有し、特定の直線偏光を反射するように構成されていてもよい。
 光学積層体において、反射層の偏光特性によって反射する光の偏光が異なるが、それ以外の作用はほぼ同等である。反射層がコレステリック液晶層である場合には、そのコレステリック相の螺旋の向きに応じた特定の円偏光が反射される。反射層が偏光特性を有していない誘電体多層膜である場合には、偏光に関係なく反射される。また直線偏光反射性を有する誘電体多層膜である場合には、特定の直線偏光が反射される。このように、本発明の光学積層体においては、入射光は、反射層毎の特定の反射波長領域であって、反射層毎の偏光特性に応じた偏光もしくは非偏光が、絶対位相調整層のパターンに応じて波面制御されて、入射光の正反射方向とは異なる方向に反射光を出射する。
 以下、光学積層体を構成する各層の材料について説明する。
[波長選択性反射素子]
[[反射層:コレステリック液晶層]]
コレステリック液晶相における螺旋構造のピッチまたは屈折率を変えることにより反射中心波長を調整することができる。この螺旋構造のピッチはキラル剤の添加量を変えることによって容易に調整可能である。具体的には富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。また、コレステリック液晶相を固定するときの温度や照度と照射時間などの条件などで調整することもできる。
 コレステリック液晶層は、選択反射波長領域において右円偏光および左円偏光のいずれか一方の円偏光を選択的に反射し、他方の円偏光を透過させる。
(重合性液晶化合物)
 コレステリック液晶層を形成するための重合性液晶組成物は、棒状液晶化合物もしくは円盤状液晶化合物を含有し、さらに、キラル剤、配向制御剤、重合開始剤および配向助剤などのその他の成分を含有していてもよい。
-棒状液晶化合物-
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性分子だけではなく、高分子液晶性分子も用いることができる。
 棒状液晶化合物を重合によって配向を固定することがより好ましく、重合性棒状液晶化合物としては、Makromol. Chem., 190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許4683327号公報、同5622648号公報、同5770107号公報、WO95/22586号公報、同95/24455号公報、同97/00600号公報、同98/23580号公報、同98/52905号公報、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および特願2001-64627号公報などに記載の化合物を用いることができる。さらに棒状液晶化合物としては、例えば、特表平11-513019号公報や特開2007-279688号公報に記載のものも好ましく用いることができる。
-円盤状液晶化合物-
円盤状液晶化合物としては、例えば、特開2007-108732号公報や特開2010-244038号公報に記載のものを好ましく用いることができる。
 以下に、円盤状液晶化合物の好ましい例を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000001
-その他の成分-
 コレステリック液晶層を形成するために用いられる組成物には、上記円盤状液晶化合物の他、キラル剤、配向制御剤、重合開始剤、および配向助剤などのその他の成分を含有していてもよい。いずれも公知の材料を利用することができる。
-溶媒-
 コレステリック液晶層を形成するための組成物の溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N、N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン、シクロヘキサノン)、エーテル(例、テトラヒドロフラン、1、2-ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
(重合性液晶組成物の塗布および硬化)
 重合性液晶組成物の塗布は、重合性液晶組成物を溶媒により溶液状態としたり、加熱による溶融液等の液状物としたりしたものを、ロールコーティング方式やグラビア印刷方式、スピンコート方式などの適宜な方式で展開する方法などにより行うことができる。さらにワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、等の種々の方法によって行うことができる。また、インクジェット装置を用いて、液晶組成物をノズルから吐出して、塗布膜を形成することもできる。
 その後重合性液晶組成物の硬化により、液晶化合物の分子の、配向状態を維持して固定する。硬化は、液晶性分子に導入した重合性基の重合反応により実施することが好ましい。
 重合性液晶組成物の塗布後であって、硬化のための重合反応前に、塗布膜は、公知の方法で乾燥してもよい。例えば放置によって乾燥してもよく、加熱によって乾燥してもよい。
 重合性液晶組成物の塗布および乾燥の工程で、重合性液晶組成物中の液晶化合物分子が配向していればよい。
[[反射層:誘電体多層膜]
 誘電体多層膜は、互いに異なる屈折率を有する2以上の誘電体層が積層されて構成され、各層の屈折率や厚みを調整することにより、所望の波長領域が選択的に反射可能な反射層となる。
 有機層からなる誘電体多層膜は、例えば、2種類の配向複屈折ポリマーの層を交互に積層して形成することができる。例えば特表平11-508378号公報に記載の多層光学フィルムの材料および多層光学フィルムの作製方法を参照して作製することができる。
 また、無機層からなる誘電体多層膜は、例えば、国際公開WO2014/010532に記載の誘電多層膜の材料および誘電多層膜の作製方法を参照して作製することができる。無機材料としては金属酸化物が主に用いられるが、使用できる金属酸化物として、特に制限されないが、透明な誘電体材料であることが好ましい。例えば、酸化チタン、酸化ジルコニウム、酸化亜鉛、合成非晶質シリカ、コロイダルシリカ、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズ等を挙げることができ、低屈折率層、高屈折率層いずれも屈折率を調整するために適宜併用しても構わない。 上記のうち、本発明に係る高屈折率材料としては、酸化チタン、酸化ジルコニウム、酸化亜鉛等が好ましく挙げられるが、高屈折率層を形成するための金属酸化物粒子含有組成物の安定性の観点からは、酸化チタンがより好ましく用いられる。その中で、光触媒活性が低く屈折率が高いルチル型酸化チタンは特に好ましく用いられる。
[絶対位相調整層]
 絶対位相調整層を構成する組成物は、光学的に等方性を有し、光路長に面内分布を形成することができれば、特に制限はない。例えば、ITO(酸化インジウムスズ)の他、樹脂材料中に金属酸化物微粒子を添加したものが挙げられる。屈折率調整用透明材料として公知の材料を適宜使用することができる。
 低屈折率を実現する素材としては、例えば、特開2007-298974号公報に記載される含フッ素硬化性樹脂と無機微粒子を含有する組成物や、特開2002-317152号公報、特開2003-202406号公報、および特開2003-292831号公報等に記載される中空シリカ微粒子含有低屈折率コーティングを好適に用いることができる。
 高屈折率を実現する素材としては、例えば、特開2002-311204号公報中の[0054]~[0057]段落に記載のものや一般的な公知の高屈折率の材料も用いることができる。具体的には、特開2008-262187号公報の段落番号[0074]~[0094]に記載のものを用いることができる。また、光照射によって屈折率の値を変える屈折率光変調型の材料も用いることが出来る。例えばホログラフィーに用いられるようなフォトポリマー等の材料を用いることが出来る。
(絶対位相調整層の形成)
 上記の低屈折率を実現する素材あるいは高屈折率を実現する素材を含有する組成物を複数用意して、マスクを利用する等により波長選択性反射素子上のあるいは仮支持体上の所望の位置に塗布し、露光硬化させる手順を組成物毎に繰り返すことにより、異なる屈折率を有する領域をパターン形成することができる。
 図3~6に示すようなパターンは、たとえば特開2004-114419号公報記載の方法を参考にして作製することができる。具体的には、支持体に硬化組成物を塗布し、所望の形状を有するエンボス型等で圧着後に硬化させる等のプロセスを用いることで作製することができる。
 次に、光学積層体に備えられ得る、その他の層について説明する。
[支持体]
 支持体としては、透明支持体が好ましく、ポリメチルメタクリレート等のポリアクリル系樹脂フィルム、セルローストリアセテート等のセルロース系樹脂フィルム、およびシクロオレフィンポリマー系フィルム[例えば、商品名「アートン」、JSR社製、商品名「ゼオノア」、日本ゼオン社製]等を挙げることができる。支持体は、可撓性のフィルムに限らず、ガラス基板等の非可撓性の基板であってもよい。
 なお、本発明の光学積層体は、製膜する際の支持体に支持されたまま使用されるものであってもよいし、製膜する際の支持体は仮支持体とし、他の支持体に転写され、仮支持体を剥離して用いられるものであってもよい。
[配向層]
 波長選択性反射素子がコレステリック液晶層を備える場合にはその製膜面に配向層が備えられていてもよい。配向層は有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成等の手段で設けることができる。さらには、電場の付与、磁場の付与、或いは光照射により配向機能が生じる配向層も知られている。配向層は、ポリマーの膜の表面を、ラビング処理することにより形成することが好ましい。配向層は、支持体と共に剥離することが好ましい。
 支持体に用いられるポリマー種によっては、配向層を設けなくても、支持体を直接配向処理(例えば、ラビング処理)することで、配向層として機能させることもできる。そのような支持体の一例としては、PET(ポリエチレンテレフタレート)を挙げることができる。
[接着層(粘着剤層)]
 本明細書において、「接着」は「粘着」も含む概念で用いられる。
 波長選択性反射素子と絶対位相調整層とを積層させる場合には接着層を介して積層されていてもよい。
 接着層に用いられる粘着剤の例としては、ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、シリコーン系樹脂、アクリル系樹脂等の樹脂をあげることができる。これらは単独もしくは2種以上混合して使用してもよい。特に、アクリル系樹脂は、耐水性、耐熱性、耐光性等の信頼性に優れ、接着力、透明性が良く、さらに、屈折率を液晶ディスプレイに適合するように調整し易い等から好ましい。
 シート状光硬化型粘接着剤(東亞合成グループ研究年報 11 TREND 2011 第14号記載)を接着層に用いることもできる。粘着剤のように光学フィルム同士の貼合が簡便で、紫外線(UV)で架橋・硬化し、貯蔵弾性率、接着力および耐熱性が向上するものであり、本発明に適した接着法である。
 以下、本発明の光学積層体の実施例および比較例について説明する。
[実施例1]
 波長選択性反射素子としてコレステリック液晶層からなる反射層を備えた光学積層体を作製した。ガラス基板上に設けられた配向層上にコレステリック液晶層を形成し、別途作製した絶対位相調整層をコレステリック液晶層と貼り合せることにより光学積層体を作製した。以下詳細について説明する。
(配向層の形成)
 下記に示す配向層形成用組成物Aの成分を、80℃に保温された容器中にて攪拌、溶解させ、配向層形成用組成物Aを調製した。
-------------------------------
配向層形成用組成物A(質量部)
-------------------------------
純水                         97.2
PVA-205 (クラレ製)               2.8
-------------------------------
 上記で調製した配向層形成用組成物Aを、ガラス基板上にスリットコーターを用いて均一塗布した後、100℃のオーブン内で2分乾燥し、膜厚0.5μmの配向層付きガラス基板を得た。
(コレステリック液晶層の形成)
 下記に示すコレステリック液晶組成物Gmの成分を、25℃に保温された容器中にて、攪拌、溶解させ、コレステリック液晶組成物Gmを調製した。
-------------------------------
コレステリック液晶組成物Gm(質量部)
-------------------------------
メトキシエチルアクリレート            145.0
下記の棒状液晶化合物の混合物           100.0
IRGACURE 819 (BASF社製)       10.0
下記構造のキラル剤A                 5.98
下記構造の界面活性剤                 0.08
-------------------------------
棒状液晶化合物
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 コレステリック液晶組成物Gmは、中心波長532nmの光を反射する層を形成する材料である。また、コレステリック液晶組成物Gmは、右円偏光を反射する層を形成する材料である。すなわち、コレステリック液晶組成物Gmは、右偏光緑色層を形成するための材料である。
 上記で作製した配向膜付きガラス基板の配向膜表面をラビング処理した後、上記で調製したコレステリック液晶組成物Gmを、スリットコーターを用いて均一塗布した後、95℃、30秒間乾燥した後に、紫外線照射装置により、室温で500mJ/cm2の紫外線を照射して硬化させて、膜厚2μmのコレステリック液晶層からなる反射層を形成した。なお、本コレステリック層の反射率を測定したところ、反射中心波長は略532nmであった。また、コレステリック液晶層の断面を観察したところ、略8ピッチ(8回転)の捩れ構造が形成されていた。
(絶対位相調整層の作製)
 ガラス基板上の配向層上に設けられたコレステリック液晶層の上に、互いに屈折率が異なる第1~第6の領域が図2に示したように一方向に配列されたパターンが周期的に繰り返された面内分布を有する絶対位相調整層を形成した。
-第1~第6の領域を形成するための組成物の準備-
[分散液D1の調製]
 下記組成の分散液D1の成分を調合し、これをジルコニアビーズ(0.3mmφ)17,000質量部と混合し、ペイントシェーカーを用いて12時間分散を行った。ジルコニアビ-ズ(0.3mmφ)をろ別し、分散液D1を得た。
-------------------------------
分散液D1(質量部)
-------------------------------
二酸化ジルコニウム(ジルコニア)
(日産化学工業(株)製、商品名:ナノユースZR、
平均一次粒径:10~30nm)           1875
DISPERBYK-111(ビックケミー・ジャパン(株)製)
30%PGMEA溶液               2200
溶剤 PGMEA                 3425
-------------------------------
[[ポリマーE1の合成]]
 3つ口フラスコにMEDG(ジエチレングリコールメチルエチルエーテル:東邦化学工業製)89gを入れ、窒素雰囲気下において90℃に昇温した。その溶液にMAEVE(1-エトキシエチルメタクリレート:和光純薬工業社製)0.4モル当量、GMA(グリシジルメタクリレート:和光純薬工業製)0.3モル当量、MAA(メタクリル酸:和光純薬工業社製)0.1モル当量、HEMA(ヒドロキシエチルメタクリレート:和光純薬工業社製)0.2モル当量、V-65(アゾ系重合開始剤;和光純薬工業製、全単量体成分の合計100mol%に対して4mol%に相当)を溶解させ、2時間かけて滴下した。滴下終了後2時間撹拌し、反応を終了させた。それによりポリマーE1を得た。なお、MEDGとその他の成分の合計量との比を60:40とした。すなわち、固形分濃度40%の重合体溶液を調製した。
[屈折率層形成用組成物C1~C6の調製]
 下記表1に示す組成(質量部)にて、各素材を混合して均一な溶液とした後、0.2μmのポアサイズを有するポリエチレン製フィルターを用いてろ過して、屈折率層形成用組成物C1~C6を調製した。
Figure JPOXMLDOC01-appb-T000005
[[光酸発生剤]]
 PAG-1:特表2002-528451号公報の段落番号[0108]に記載の方法に従って合成した下記構造の化合物(Ts部分はトリスルホネートを表す)。
Figure JPOXMLDOC01-appb-C000006

[[光増感剤]]
増感剤1:下記構造のジブトキシアントラセン(製造元:川崎化成社製、品番:9,10-ジブトキシアントラセン)
Figure JPOXMLDOC01-appb-C000007

[[塩基性化合物]]
塩基性化合物:下記構造の化合物(製造元:東洋化成工業製、品番:CMTU)
Figure JPOXMLDOC01-appb-C000008

[[界面活性剤]]
 界面活性剤F-554:下記構造式で示されるパーフルオロアルキル基含有ノニオン界面活性剤(DIC製)
Figure JPOXMLDOC01-appb-C000009
(屈折率違いのパターニング層の形成)
 上記で作製したコレステリック層付きガラス基板上に、上記組成物C1をスリットコーターを用いて均一塗布し、80℃、60秒間乾燥した後に、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)を用い、ライン線幅13.3μm、L/S=1/5のマスクを介して露光した。そして、露光後、組成物C1を、アルカリ現像液(0.4質量%のテトラメチルアンモニウムヒドロキシド水溶液)で23℃/60秒間現像した後、超純水で20秒リンス、200℃で30分間のポストベーク加熱処理を行った。出来上がったC1層(第1の領域)の厚みは0.71μm、線幅は13.3μm、屈折率は1.50であった。
 上記で得られた第1の領域が形成された基板上に、組成物C2を同様に塗布し、同様の露光機にて、1ピッチずらしてマスク位置合わせを行い、第1の領域のとなりに組成物C2が残るように露光した。そして、露光後、組成物C2を、アルカリ現像液(0.4質量%のテトラメチルアンモニウムヒドロキシド水溶液)で23℃/60秒間現像した後、超純水で20秒リンスし、その後、200℃で30分間のポストベーク加熱処理を行った。出来上がったC2層(第2の領域)の厚みは0.71μm、線幅は13.3μm、屈折率は1.57であった。
 以下、同様に組成物C3~C6を、順次1ピッチずらしながら塗布、露光、現像、焼成を繰り返すことで、膜厚0.71μm、各々の線幅13.3μm、屈折率が1.50(C1層:第1の領域)、1.57(C2層:第2の領域)、1.64(C3層:第3の領域)、1.71(C4層:第4の領域)、1.78(C5層:第5の領域)、1.85(C6層:第6の領域)となる層を1単位として、これが連続的に配置された絶対位相調整層を得た。
 こうして、コレステリック液晶層からなる反射層(波長選択性反射素子)に絶対位相調整層が積層形成されてなる実施例1の光学積層体を得た。
[実施例2]
(屈折率層形成用組成物C7~11の調整)
 表2に示す組成(質量部)にて、各素材を混合して均一な溶液とした後、0.2μmのポアサイズを有するポリエチレン製フィルターを用いてろ過して、屈折率層形成用組成物C7~11を調製した。
Figure JPOXMLDOC01-appb-T000010
 実施例1と同様に、ガラス基板上に形成されたコレステリック液晶層の上に、上記組成物C7をスリットコーターを用いて均一塗布し、80℃、60秒間乾燥した後に、キヤノン(株)製PLA-501F露光機(超高圧水銀ランプ)を用い、ライン線幅13.3μm、L/S=1/5のマスクを介して露光した。そして、露光後、組成物C7を、アルカリ現像液(0.4質量%のテトラメチルアンモニウムヒドロキシド水溶液)で23℃/60秒間現像した後、超純水で20秒リンス、200℃で30分間のポストベーク加熱処理を行った。出来上がったC7層(第2の領域)の厚みは0.1μm、線幅は13.3μm、屈折率は1.50であった。
 以下、実施例1と同様に組成物C8~C11を、順次1ピッチずらしながら塗布、露光、現像、焼成を繰り返すことで、屈折率1.50、各々の線幅13.3μm、膜厚が0.1μm(C7層:第2の領域)、0.2μm(C8層:第3の領域)、0.3μm(C9層:第4の領域)、0.4μm(C10層:第5の領域)、0.5μm(C11層:第6の領域)、およびその隣にパターニング組成物の無い層(第1の領域)を1単位として、これが連続的に配置された絶対位相調整層を備えた実施例2の光学積層体を得た。なお、C7層からC11層は互いに膜厚が異なるため、膜形成プロセス時に層を安定化させるために、表2に示すように各組成物におけるマトリクス(ポリマーE1)の量が異なる組成物C7~C11を用いて形成しているが、C7層からC11層の屈折率は1.5で共通である。
[比較例1]
 実施例1で作製した配向膜付きガラス基板の配向膜上にコレステリック液晶層が設けられてなるものを比較例1とした。すなわち、比較例1は絶対位相調整層を備えない従来の波長選択性反射素子からなる反射偏光子である。
[評価]
 各光学積層体について、絶対位相調整層の表面側から、表面に対する法線方向(極角0°)から光を入射させ、その反射光の反射角を測定した。
 反射角の測定は、532nmに出力の中心波長をもつレーザ光を表面に対する法線方向から50cmの距離から入射し、その反射光のスポットを50cmの距離に配置したスクリーンで捉えて、反射角度を算出した。
 表3に各例の構成および評価結果を纏めて示す。
Figure JPOXMLDOC01-appb-T000011
 表3に示すように、絶対位相調整層を備えない比較例1では入射光の特定の波長領域かつ特定の円偏光が正反射される。一方、実施例1、2のように、光路長の異なる第1~第6の領域をパターン配置した絶対位相調整層を備えた場合には、反射角が0.45°となり、反射光は正反射ではなく、斜め方向に出射された。
[実施例11]
 波長選択性反射素子として誘電体多層膜D1からなる反射層を備えた光学積層体を作製した。波長選択性反射素子は特表平11-508378号公報を参照して作製した。以下詳細について説明する。
(誘電体多層膜D1)
 誘電体多層膜D1を、2種類の配向複屈折ポリマー層を交互に積層し、その面内屈折率が2種類の層で異なるように2軸延伸させることで作製した。2種類の配向屈折率ポリマーの層のそれぞれの厚さにそれぞれの屈折率を掛けた値である光路長が、所望の反射波長(ここでは、532nm)の4分の1に等しくなるよう誘電体多層膜の厚さを設計した。本実施例では、特表平11-508378号公報に記載の誘電体多層膜の作製方法は1軸延伸であるが、ここでは2軸延伸とし、各層の屈折率は面内異方性が無いものとした。2種類の配向屈折率ポリマーのうち低屈折率層の屈折率が1.64、高屈折率層の屈折率が1.88になるようにした。532nmを中心波長とした波長領域を選択的に反射する反射層とするために、低屈折率層の厚さを81.1nm、高屈折率層の厚さを70.7nmとし、これを交互に128層ずつ積層し計256層からなるフィルムを作製した。このようにして、反射中心波長が532nmである特定の選択反射領域を有する誘電体多層膜D1からなる反射層を作製した。なお、選択反射領域の半値幅は約80nmであった。
(絶対位相調整層)
 絶対位相調整層は、実施例1のものと同一の作製方法で誘電体多層膜D1上に作製した。すなわち、実施例1と同じ、屈折率層形成用組成物C1~C6を用いて作製した第1から第6の領域が周期配置されたパターン構成の絶対位相調整層を作製した。
 このようにして、誘電体多層膜D1からなる反射層(波長選択性反射素子)に絶対位相調整層が積層形成されてなる実施例11の光学積層体を得た。
[実施例12]
 実施例11と同様にして誘電体多層膜D1からなる反射層を作製した。絶対位相調整層は、実施例2のものと同一の作製方法で誘電体多層膜D1上に作製した。すなわち、実施例2と同じ、屈折率層形成用組成物C7~C11を用いて作製した第1から第6の領域が周期配置されたパターン構成の絶対位相調整層を作製した。
 このようにして、誘電体多層膜D1からなる反射層に絶対位相調整層が形成されてなる実施例12の光学積層体を得た。
[実施例13]
 波長選択性反射素子として誘電体多層膜D2からなる反射層を備えた光学積層体を作製した。
(誘電体多層膜D2)
 誘電体多層膜D2を、2種類の配向複屈折ポリマー層を交互に積層する。このとき、2種類の配向性屈折率ポリマー層は、その面内の一方向(例えばx軸)の屈折率が略等しく、それと直交の方向(例えばy軸)の屈折率が互いに異なるものとし、それぞれの厚さにy軸方向の屈折率を掛けた値である光路長が、所望の反射波長(ここでは532nm)の4分の1に等しくなるよう誘電体多層膜の厚さを設計した。本実施例では、特表平11-508378号公報に記載の誘電体多層膜の作製方法に則って1軸延伸により特表平11-508378号公報の図1、図2の構成と同様の、特定の直線偏光を選択的に偏光反射する構成とした。532nmを中心波長とした波長領域を選択的に反射する反射層とするために、低屈折率層の厚さを81.1nm、高屈折率層の厚さを70.7nmとし、これを交互に128層ずつ積層し計256層からなるフィルムを作製した。このようにして、反射中心波長が550nmであり、特定の選択反射領域を有し、かつ特定の直線偏光を反射する誘電体多層膜D2からなる反射層を作製した。なお、半値幅は約80nmであった。
(絶対位相調整層)
 絶対位相調整層は、実施例1のものと同一の作製方法で誘電体多層膜D2上に作製した。すなわち、実施例1と同じ、屈折率層形成用組成物C1~C6を用いて作製した第1から第6の領域が周期配置されたパターン構成の絶対位相調整層を作製した。
 このようにして、誘電体多層膜D2からなる反射層(波長選択性反射素子)に絶対位相調整層が積層形成されてなる実施例13の光学積層体を得た。
[比較例11]
 実施例11で作製した誘電体多層膜D1からなる波長選択性反射素子を比較例11とした。すなわち、比較例11は絶対位相調整層を備えず波長選択性反射素子のみからなるものとした。
 実施例11~14および比較例11について、実施例1等と同様の評価を行った。表4に各例の構成および評価結果を纏めて示す。
Figure JPOXMLDOC01-appb-T000012
 表4に示すように、絶対位相調整層を備えない比較例11では入射光の特定の波長領域の光が正反射される。一方、実施例11~13のように、光路長の異なる第1~第6の領域をパターン配置した絶対位相調整層を備えた場合には、反射角が0.45°となり、反射光は正反射ではなく、斜め方向に出射された。偏光反射性を有しない実施例11、12の光学積層体についても、特定の直線偏光を選択的に反射する実施例13の光学積層体についても同様の効果が得られた。
 10、10A、10B、10C、110 光学積層体
 12 波長選択性反射素子(コレステリック液晶層)
 14 絶対位相調整層
 112 波長選択性反射素子(誘電体多層膜)
 A~A、S~S 領域
 n、n~n 屈折率
 d、d~d 膜厚
 L、L~L 光路長
 I 入射光
 R 反射光

Claims (7)

  1.  特定の反射波長領域の光を選択的に反射する反射層を備えた波長選択性反射素子と、前記波長選択性反射素子の少なくとも一方の面側に備えられた、光学等方性を有する絶対位相調整層とを備え、
     前記絶対位相調整層は、屈折率および膜厚の少なくとも一方に面内分布を有することにより膜厚方向の光路長に面内分布を有し、
     該絶対位相調整層側から入射した光のうち、前記波長選択性反射素子による前記特定の反射波長領域の光を、前記入射した光の波面とは異なる波面を有する反射光として出射する光学積層体。
  2.  前記波長選択性反射素子の前記反射層が、コレステリック液晶層からなる請求項1記載の光学積層体。
  3.  前記波長選択性反射素子の前記反射層が、屈折率の異なる少なくとも2つの層が交互に多層積層された誘電体多層膜からなる請求項1記載の光学積層体。
  4.  前記光路長の前記面内分布は、前記光路長が階段状に変化するパターンを有する請求項1から3いずれか1項記載の光学積層体。
  5.  前記光路長の前記面内分布は、一点から離れるにつれて前記光路長が徐々に長くなるパターンを有する請求項1から4いずれか1項記載の光学積層体。
  6.  前記光路長の前記面内分布は、一点から離れるにつれて前記光路長が徐々に短くなるパターンを有する請求項1から4いずれか1項記載の光学積層体。
  7.  前記パターンが周期的に繰り返されている請求項4から6いずれか1項記載の光学積層体。
PCT/JP2017/031036 2016-08-30 2017-08-29 光学積層体 WO2018043518A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018537317A JP6765429B2 (ja) 2016-08-30 2017-08-29 光学積層体
US16/253,212 US10613262B2 (en) 2016-08-30 2019-01-21 Optical laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016167562 2016-08-30
JP2016-167562 2016-08-30
JP2017099353 2017-05-18
JP2017-099353 2017-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/253,212 Continuation US10613262B2 (en) 2016-08-30 2019-01-21 Optical laminate

Publications (1)

Publication Number Publication Date
WO2018043518A1 true WO2018043518A1 (ja) 2018-03-08

Family

ID=61301758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031036 WO2018043518A1 (ja) 2016-08-30 2017-08-29 光学積層体

Country Status (3)

Country Link
US (1) US10613262B2 (ja)
JP (1) JP6765429B2 (ja)
WO (1) WO2018043518A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6713062B2 (ja) * 2016-12-27 2020-06-24 富士フイルム株式会社 光学フィルムおよびその製造方法
EP3719546B1 (en) * 2018-01-03 2023-08-16 Lg Chem, Ltd. Optical film
JP7426415B2 (ja) * 2020-01-15 2024-02-01 富士フイルム株式会社 光学システム
CN113093407A (zh) * 2021-04-09 2021-07-09 上海理工大学 一种通过控制螺旋相位板内液体的温度改变涡旋光的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131031A (ja) * 2001-10-23 2003-05-08 Dainippon Printing Co Ltd 光学素子の製造方法および光学素子
JP2003139942A (ja) * 2001-11-08 2003-05-14 Dainippon Printing Co Ltd カラーフィルタ
JP2007098942A (ja) * 2005-09-07 2007-04-19 Dainippon Printing Co Ltd 体積型ホログラム付きコレステリック液晶媒体の製造方法
JP2007219527A (ja) * 2006-02-16 2007-08-30 Samsung Electronics Co Ltd 光学シート及びこれを有する表示装置
JP2007279129A (ja) * 2006-04-03 2007-10-25 Nhk Spring Co Ltd 識別媒体、識別方法および識別装置
JP2011102843A (ja) * 2009-11-10 2011-05-26 Nhk Spring Co Ltd 識別媒体およびその識別方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029693A1 (ja) 2005-09-07 2007-03-15 Dai Nippon Printing Co., Ltd. 体積型ホログラム付きコレステリック液晶媒体の製造方法
JP2011186414A (ja) * 2010-02-12 2011-09-22 Sony Corp 光学素子、日射遮蔽装置、建具、窓材および光学素子の製造方法
KR101436441B1 (ko) * 2013-07-23 2014-09-02 동우 화인켐 주식회사 반사 방지용 편광판 및 이를 포함하는 화상표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131031A (ja) * 2001-10-23 2003-05-08 Dainippon Printing Co Ltd 光学素子の製造方法および光学素子
JP2003139942A (ja) * 2001-11-08 2003-05-14 Dainippon Printing Co Ltd カラーフィルタ
JP2007098942A (ja) * 2005-09-07 2007-04-19 Dainippon Printing Co Ltd 体積型ホログラム付きコレステリック液晶媒体の製造方法
JP2007219527A (ja) * 2006-02-16 2007-08-30 Samsung Electronics Co Ltd 光学シート及びこれを有する表示装置
JP2007279129A (ja) * 2006-04-03 2007-10-25 Nhk Spring Co Ltd 識別媒体、識別方法および識別装置
JP2011102843A (ja) * 2009-11-10 2011-05-26 Nhk Spring Co Ltd 識別媒体およびその識別方法

Also Published As

Publication number Publication date
US20190170919A1 (en) 2019-06-06
US10613262B2 (en) 2020-04-07
JPWO2018043518A1 (ja) 2019-06-24
JP6765429B2 (ja) 2020-10-07

Similar Documents

Publication Publication Date Title
JP6931023B2 (ja) 偏光子及びその製造方法
JP7356480B2 (ja) 光学フィルム及びその製造方法
US10613262B2 (en) Optical laminate
US11016230B2 (en) Optical element and optical device
CN109477925B (zh) 椭圆偏光板
JP6336572B2 (ja) 反射部材、投映スクリーン、コンバイナ、および、遮熱部材
JP5227596B2 (ja) 複屈折パターンを有する物品の製造方法
JP6865795B2 (ja) 光配向可能な物品
JP6757424B2 (ja) 加飾フィルム
TW201708904A (zh) 積層體、含有該積層體之圓偏光板,及具備該積層體之顯示裝置
JP6985501B2 (ja) 光学素子、導光素子および画像表示装置
JP6193471B2 (ja) 投映像表示用部材および投映像表示用部材を含む投映システム
WO2021060402A1 (ja) ヘッドアップディスプレイ用プロジェクター
JPWO2020166691A1 (ja) 光学素子、導光素子および画像表示素子
WO2018193952A1 (ja) 光学フィルム、積層型光学フィルムおよびこの積層型光学フィルムを備えた空中結像装置
JP6586882B2 (ja) 位相差フィルム、位相差フィルムの製造方法、この位相差フィルムを用いた偏光板及び画像表示装置、この画像表示装置を使用した3d画像表示システム
JP4132779B2 (ja) 選択反射膜及びその製造方法
KR100789864B1 (ko) 콜레스테릭 액정 고분자, 이를 포함하는 근적외선 차단필름과 근적외선 차단 필터, 및 상기 근적외선 차단 필름또는 필터를 구비하는 표시소자
WO2019151334A1 (ja) 偏光板、円偏光板、表示装置
JP6732030B2 (ja) 光学積層体
WO2018230553A1 (ja) 光学フィルムの製造方法
JP2005202093A (ja) コレステリック液晶表示素子およびその製造方法
WO2024219433A1 (ja) 光学ユニットおよび画像表示システム
JP7247068B2 (ja) プロジェクター用反射部材およびヘッドアップディスプレイ用プロジェクター
JP2000147236A (ja) 多色反射板の製造方法及び多色反射板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846523

Country of ref document: EP

Kind code of ref document: A1