WO2018043257A1 - 露光装置及び露光方法 - Google Patents
露光装置及び露光方法 Download PDFInfo
- Publication number
- WO2018043257A1 WO2018043257A1 PCT/JP2017/030184 JP2017030184W WO2018043257A1 WO 2018043257 A1 WO2018043257 A1 WO 2018043257A1 JP 2017030184 W JP2017030184 W JP 2017030184W WO 2018043257 A1 WO2018043257 A1 WO 2018043257A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mask
- substrate
- exposure
- predetermined direction
- alignment
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/22—Exposing sequentially with the same light pattern different positions of the same surface
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2051—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
- G03F7/2059—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
- G03F7/2063—Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam for the production of exposure masks or reticles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70141—Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7003—Alignment type or strategy, e.g. leveling, global alignment
Definitions
- the present invention relates to an exposure apparatus and an exposure method, and more particularly to an exposure apparatus and an exposure method for exposing a substrate having a plurality of exposure areas using a mask smaller than the substrate.
- a divided sequential exposure apparatus is known in which exposure light is emitted from an exposure illuminating device toward a mask for each step while performing step movement, and a mask pattern is sequentially exposed and transferred onto a substrate. .
- the alignment between the substrate being exposed and the photomask can be performed with high accuracy.
- a color filter A scanning exposure apparatus for forming a colored layer is disclosed (for example, see Patent Document 1).
- the imaging device photographs the light shielding layer formed in the exposure region on the substrate to obtain the inclination of the light shielding layer with respect to the substrate transport direction, and rotates and moves the photomask based on this to rotate the photomask with respect to the light shielding layer.
- the photo mask tilt is corrected.
- the substrate holding part for holding the substrate is moved to a predetermined exposure position and stopped (Ta1)
- the mark of the mask and the substrate is obtained by the alignment camera.
- Ta2 the mark of the mask and the substrate is obtained by the alignment camera.
- Ta3 the alignment camera is retracted from the exposure area (Ta5), and the mask pattern is exposed and transferred by irradiating the substrate with exposure light through the mask (Ta6).
- Vw represents the moving speed of the substrate holding part
- Vm represents the moving speed of the mask holding part
- Vc represents the retracting moving speed of the alignment camera.
- the substrate holding unit, the mask holding unit, and the alignment camera are repeatedly moved and stopped for each exposure, so that the time required for one exposure is long and a plurality of exposures are performed on one substrate.
- the tact time increases as the number of exposures increases and the production efficiency decreases.
- the scan exposure apparatus as in Patent Document 1 is specialized for line-shaped exposure in which the pattern in the substrate transport direction is uniform, it supports exposure of patterns used in the division sequential exposure apparatus. Not what you want.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an exposure apparatus and an exposure method that can reduce the tact time and efficiently perform exposure transfer on a substrate having a plurality of exposure regions. Is to provide.
- a substrate holding unit for holding a substrate as an exposed material having a plurality of exposure regions;
- a mask holding part for holding a mask on which a pattern having a size substantially equal to the exposure area is formed;
- a substrate transfer unit capable of driving the substrate holding unit to transfer the substrate in a predetermined direction;
- An alignment detection system for detecting an alignment mark provided on the mask and the substrate;
- a mask driving unit capable of adjusting the alignment between the substrate and the mask by driving the mask holding unit;
- a mask transporting unit capable of driving a driving unit mounting table on which the mask driving unit is mounted and transporting the mask in the predetermined direction;
- An illumination device that irradiates the exposure area of the substrate with exposure light through the mask;
- An exposure apparatus comprising: (2) It further includes a detection system driving unit that drives the alignment detection system, The exposure apparatus according to (1), wherein the alignment detection system and the detection system driving unit are disposed in the mask holding unit and are transported along the predetermined direction by the mask transport unit.
- the exposure apparatus according to (1) or (2) further including an illumination device transport unit capable of transporting the illumination device in the predetermined direction.
- an illumination device transport unit capable of transporting the illumination device in the predetermined direction.
- a substrate holding unit for holding a substrate as an exposed material having a plurality of exposure regions;
- a mask holding part for holding a mask on which a pattern having a size substantially equal to the exposure area is formed;
- a substrate transfer unit capable of driving the substrate holding unit to transfer the substrate in a predetermined direction;
- An alignment detection system for detecting an alignment mark provided on the mask and the substrate;
- a mask driving unit capable of adjusting the alignment between the substrate and the mask by driving the mask holding unit;
- a mask transport unit capable of driving the drive unit mounting table on which the mask drive unit is mounted and transporting the mask in a predetermined direction;
- An illumination device that irradiates the exposure area of the substrate with exposure light through the mask;
- An exposure method using an exposure apparatus comprising: A step of transporting the substrate in a predetermined direction by the substrate transport unit; A step of moving the mask in the predetermined direction by the mask transfer unit to synchronize with the substrate; A step of aligning the mask and the substrate by the alignment detection system and the mask driving unit
- a substrate holding unit that holds a substrate having a plurality of exposure regions, a mask holding unit that holds a mask on which a pattern having a size substantially equal to the exposure region, and a substrate are predetermined.
- a substrate transport unit capable of transporting in the direction of the substrate, an alignment detection system for detecting alignment marks provided on the mask and the substrate, a mask drive unit capable of adjusting the alignment between the substrate and the mask, and the mask in a predetermined direction.
- a mask transport unit that can be transported and an illuminating device that irradiates exposure light to the exposure region through the mask, so that alignment adjustment for each exposure region is possible at least while transporting the substrate in a predetermined direction.
- the step of transporting the substrate in a predetermined direction by the substrate transport unit, the step of moving the mask in synchronization with the substrate by the mask transport unit, and the step of aligning the mask and the substrate And irradiating exposure light from the illumination device to expose and transfer the mask pattern onto the exposure region of the substrate, and at least the alignment step is performed in a state where the substrate and the mask are synchronized. Alignment adjustment for each exposure region is possible at least while being conveyed in this direction, and the tact time is shortened so that the mask pattern can be efficiently exposed on the substrate to be conveyed.
- FIG. 1 is a front view of an exposure apparatus according to a first embodiment of the present invention. It is a right view of the exposure apparatus shown in FIG. It is a rear view of the exposure apparatus shown in FIG. It is explanatory drawing which shows the procedure which exposes the pattern of a mask to a 1st exposure area
- the exposure apparatus PE of the first embodiment uses a mask M smaller than the substrate W as a material to be exposed, holds the mask M by the mask holding unit 1, and holds the substrate W on the substrate.
- the pattern of the mask M is exposed and transferred onto the substrate W by being held by the holding unit 2 and irradiating the substrate W with light for pattern exposure from the illumination device 3 via the mask M and the reduction projection lens 61.
- the substrate W has a plurality of exposure areas E (six exposure areas of E1 to E6 in 2 rows and 3 columns as shown in FIG. 4 in the present embodiment) having substantially the same size as the pattern of the mask M. It is formed in a rectangular shape.
- the three rows of exposure areas E1 to E3 and E4 to E6 are held on the substrate holding unit 2 so as to be arranged in a predetermined direction (X direction or -X direction in the embodiment shown in the figure).
- the substrate transport unit 10 capable of transporting the substrate W held by the substrate holding unit 2 in the X direction in the horizontal plane, the Y direction orthogonal to the X direction, and the Z direction orthogonal to the X direction and the Y direction is an X-axis feed.
- a base 11, a Y-axis feed base 12, and a Z-axis feed base 13 are provided.
- the Z-axis feed base 13 supported by the vertical drive mechanism 14 is disposed on the base 4 installed on the ground G with the anti-vibration legs or the air suspension 5.
- the vertical drive mechanism 14 includes a pair of drive blocks 14b and 14c each having an inclined surface 14a, and the pair of drive blocks 14b and 14c are arranged so that the inclined surfaces 14a slide with each other. Then, one of the drive blocks 14b and 14c is moved by a feed screw mechanism (not shown) driven by the motor 15 to drive the Z-axis feed base 13 up and down.
- One vertical drive mechanism 14 is provided on one end side in the Y-axis direction (front end in FIG. 2) of the Z-axis feed base 13, and two on the other end side in the Y-axis direction on both sides in the X direction (left and right ends in FIG. 1). A total of three units are installed, and each is independently driven and controlled. Accordingly, the vertical drive mechanism 14 adjusts the height and tilt (tilt) of the substrate holding unit 2 by finely adjusting the height independently based on the measurement result of the upper surface position of the substrate W by a laser sensor (not shown). To do.
- a Y-axis feed mechanism 16 that moves the Y-axis feed base 12 in the Y direction is installed.
- the Y-axis feed mechanism 16 includes a plurality of (four in the embodiment shown in the drawing) guide rails 17 arranged in the Y-axis direction on the Z-axis feed base 13 and a slider fixed to the lower surface of the Y-axis feed base 12. 18 and a slider 18 is straddled on each guide rail 17.
- the Y-axis feed base 12 can be reciprocated in the Y-axis direction along the guide rail 17 by the feed screw mechanism 20 driven by the Y-axis drive motor 19.
- an X-axis feed mechanism 30 that moves the X-axis feed base 11 in the X direction is installed on the Y-axis feed base 12.
- the X-axis feed mechanism 30 includes a plurality of (two in the illustrated embodiment) guide rails 31 arranged in the X-axis direction on the Y-axis feed base 12 and a slider fixed to the lower surface of the X-axis feed base 11. 32 and a slider 32 is straddled on each guide rail 31.
- a linear motor 33 extending in the X-axis direction is disposed between the X-axis feed base 11 and the Y-axis feed base 12.
- the linear motor 33 includes a mover 34 fixed to the lower surface of the X-axis feed base 11, a pair of stators 35, 35 facing the mover 34, fixed on the Y-axis feed base 12, and extending in the X-axis direction.
- the X-axis feed base 11 is movable in the X-axis direction by the movable element 34 driven by the magnetic field of the stator 35, and can be reciprocated in the X-axis direction by being guided by the guide rail 31.
- the movable distance in the X-axis direction of the X-axis feed base 11 is set to be longer than the length in the X-axis direction of the substrate W having a plurality of exposure regions E, and the substrate W can be continuously transferred.
- a substrate holding part 2 for holding the substrate W by vacuum suction with a work chuck or the like is fixed on the X-axis feed base 11.
- the substrate W is movable in the XYZ directions. In particular, continuous conveyance is possible in the X direction.
- a drive base 41 is arranged on the mask base 6 fixed between the pair of legs 4a standing from the base 4 so as to be transported in the X direction via the mask transport section 40. ing.
- a mask driving unit 50 is provided that drives the mask holding unit 1 in the XY direction and the ⁇ direction to adjust the alignment between the substrate W and the mask M.
- the mask transport unit 40 includes a plurality of (two in the illustrated embodiment) guide rails 42 arranged in the X-axis direction on the mask base 6, and a slider 43 fixed to the lower surface of the drive unit mounting base 41. , And a slider 43 is stretched over each guide rail 42.
- a linear motor 45 extending in the X direction is disposed between the mask base 6 and the drive unit mounting base 41.
- the linear motor 45 includes a mover 46 fixed to the lower surface of the drive unit mounting table 41, a pair of stators 47, 47 facing the mover 46, fixed on the mask base 6 and extending in the X direction, Is provided.
- the drive unit mounting table 41 can move back and forth in the X-axis direction by being guided by the guide rails 42 with the mover 46 being driven in the X-direction by the magnetic field of the stator 47.
- the mask drive unit 50 includes a plurality of motors 48 fixed on the drive unit mounting table 41 and a plurality of screw feed mechanisms (not shown) driven by the motors 48 and disposed along the X and Y directions. Is provided. By controlling each motor 48 independently, the mask holding unit 1 is driven in the X and Y directions and rotated in the ⁇ direction to adjust the alignment between the substrate W and the mask M.
- the drive unit mounting table 41 and the mask holding unit 1 are supported by a bearing 39 disposed therebetween so as to be relatively horizontally movable.
- the mask M held by the mask holding unit 1 can be reciprocated in the X-axis direction together with the drive unit mounting table 41, and is driven in the X, Y, and ⁇ directions by the mask drive unit 50, and the substrate W and the mask M Alignment adjustment is possible.
- a reduction projection lens 61 for reducing the pattern of the mask M and projecting it on the exposure area E of the substrate W is inserted into the lower surface of the drive unit mounting table 41 corresponding to the mask M. It is fixed through the hole 6a. Therefore, the reduction projection lens 61 moves in the X direction with the movement of the drive unit mounting table 41 by the mask transport unit 40.
- An alignment detection system 60 that detects alignment marks (not shown) provided on the mask M and the substrate W and a detection system drive unit 59 that drives the alignment detection system 60 are arranged on the mask holding unit 1. It is installed.
- Reference numeral 51 shown in FIG. 2 is a running observation optical system.
- the alignment detection system 60 includes a reflection mirror and a camera, and images an alignment mark provided on the mask M and the substrate W with the camera from above the mask M.
- the alignment mark on the mask M or the substrate W is not limited to the mark drawn on the mask M or the substrate W, and the outer shape of the mask M or the substrate W may be used as the mark.
- the pattern of the previous layer may be used as the mark as the alignment mark for the substrate W.
- the detection system drive unit 59 retracts the alignment detection system 60 from an effective irradiation area LA described later of the illumination device 3.
- the illumination device 3 includes a laser light source 62 that irradiates laser light for exposure, a plurality of mirrors 63 that reflect the laser light, and a fly-eye lens 64, and includes a laser light source.
- the laser light emitted from 62 is bent by a plurality of mirrors 63, converted into parallel light by a fly-eye lens 64, and irradiated to an exposure region E of the substrate W through a mask M and a reduction projection lens 61.
- the illumination device 3 is disposed on an illumination base 4b erected from the base 4 so as to be movable in the X direction. That is, a linear guide comprising a plurality of (two in the embodiment shown in the figure) guide rails 65 arranged in the X direction on the illumination base 4b and a slider 66 fixed to the lower surface of the illumination device 3 is provided. The slider 66 is slidably laid over each guide rail 65. Further, a feed screw mechanism 67 driven by a motor 68 is disposed between the illumination base 4 b and the illumination device 3, and the illumination device 3 is supported by the guide rail 65 by rotating the motor 68. Guided and moved in the X direction. Thereby, the effective irradiation area LA (refer FIG.
- the illuminating device 3 can move synchronizing with the movement to the X-axis direction of the mask M.
- the guide rail 65 and the slider 66 which comprise a linear guide, the motor 68, and the feed screw mechanism 67 comprise the illuminating device conveyance part 69 which conveys the illuminating device 3 to a X direction.
- the light source of the illumination device 3 is not limited to the laser light source, and may be arbitrarily configured such as an ultrahigh pressure mercury lamp.
- the vertical drive mechanism 14 is actuated as necessary to adjust the tilt, and the feed screw mechanism 20 moves the substrate holding unit 2 together with the Y-axis feed base 12 in the Y direction so that the mask M
- the Y-direction positions of the exposure areas E1 to E3 of the substrate W are matched.
- the X-axis feed base 11 is driven by the linear motor 33 to move the substrate W in the X direction (step 1).
- the drive unit mounting table 41 (mask M) is moved in the ⁇ X direction (the direction opposite to the predetermined direction) by the linear motor 45.
- step 2 when the mask M passes the exposure area E1, the movement direction of the mask M is reversed in the X direction (step 3), and the positions of the mask M and the exposure area E1 are matched (step 3). 4).
- the moving speed of the mask M after reversal may be increased, or the moving speed of the substrate W may be decreased.
- step S4 when the positions of the mask M and the exposure region E1 coincide with each other in step 4, the mask M and the substrate W are provided on the mask M and the substrate W by the alignment detection system 60 while moving the mask M and the substrate W in the X direction in synchronization.
- the alignment mark is detected, and the mask driving unit 50 is driven based on the detection result to drive the mask holding unit 1, that is, the mask M in the X and Y directions, and rotate in the ⁇ direction. Adjust the alignment.
- step S4 the illumination device 3 is moved by the feed screw mechanism 67 to match the positions of the effective irradiation area LA and the mask M, and then the mask M, the substrate W, and the effective irradiation area LA are synchronized. Move in the X direction.
- step 5 after the alignment is completed, the alignment detection system 60 is retracted from the effective irradiation area LA, and then the shutter S is opened while the substrate W, the mask M, and the effective irradiation area LA are moved in synchronization. (Step 6). Thereby, with the mask M and the substrate W moving synchronously, the laser beam for exposure is irradiated from the illumination device 3 to the substrate W via the mask M and the reduction projection lens 61, and the pattern of the mask M is exposed to the exposure region. E1 is exposed (step 7).
- the substrate W and the mask M may be transported at a constant speed or may be transported at a reduced speed.
- the oblique lines in the effective irradiation area LA indicate a state in which the laser light from the illumination device 3 is shielded by the shutter S, and the effective irradiation area LA without the oblique lines is exposed when the shutter S is opened.
- a state in which light is irradiated onto the substrate W through the mask M is shown.
- the effective irradiation area LA is shielded by the shutter S, and the alignment detection system 60 is returned to the original position on the mask M. Then, while the substrate W is continuously transported in the X direction, the effective irradiation area LA coincides with the exposure area E2, the mask M is moved in the ⁇ X direction, and the mask M passes the exposure area E2 (step 8). Then, the moving direction of the mask M is reversed and moved in the X direction (step 9), and the positions of the mask M and the next exposure region E2 are matched.
- step 10 after the positions of the mask M and the next exposure region E2 are made coincident with each other, the mask M is again moved in synchronization with the mask M, the substrate W and the effective irradiation area LA by the alignment detection system 60. Then, the alignment mark provided on the substrate W is detected, and the mask driving unit 50 is driven to drive the mask holding unit 1, that is, the mask M in the X and Y directions, and is rotated in the ⁇ direction to rotate the substrate W and the mask. Adjust the alignment with M.
- step 11 after the alignment adjustment between the substrate W and the mask M is completed, the alignment detection system 60 is retracted from the effective irradiation area LA, and the shutter S is opened (step 12).
- the substrate W is irradiated with laser light via the mask M and the reduction projection lens 61 to expose the pattern of the mask M to the exposure region E2 (step 13). ).
- the synchronization timing between the effective irradiation area LA and the mask M is not necessarily the above-described timing, but at least during the irradiation of the substrate W with the laser light through the mask M, the illumination device 3 (effective irradiation area LA) and the mask M move in synchronization with the substrate W.
- the same operation is performed to expose the pattern of the mask M to the exposure region E3.
- the substrate holding part 2 is moved in the Y-axis direction together with the Y-axis feed base 12 by the feed screw mechanism 20, and the Y-direction positions of the mask M and the exposure areas E4 to E6 of the second row of the substrate W are aligned.
- the X-axis feed base 11 is driven by the linear motor 33 to move the substrate W in the ⁇ X direction opposite to the previous one, and the effective irradiation area LA and the mask M are moved synchronously with the substrate W as described above. Similarly, the pattern of the mask M is sequentially exposed on the exposure areas E4 to E6.
- the movement speed Vw of the substrate holding portion indicated by the dotted line indicates a case where the mask M is a constant speed from the period T1 in which the mask M moves in synchronization with the substrate W to the next period T1.
- the moving speed Vm of the mask holding part is also the same constant speed as the moving speed Vw.
- the substrate holding unit 2 that holds the substrate W having the plurality of exposure regions E1 to E6 and the pattern having a size substantially equal to the exposure region E are formed.
- a mask holding unit 1 that holds the mask M
- a substrate transfer unit 10 that can transfer the substrate W in a predetermined direction
- an alignment detection system 60 that detects alignment marks provided on the mask M and the substrate W
- a mask drive unit 50 that can adjust the alignment between the substrate W and the mask M
- a mask transport unit 40 that can transport the mask M in a predetermined direction
- an illumination device that irradiates the exposure region E via the mask M. 3.
- a detection system driving unit 59 for driving the alignment detection system 60.
- the alignment detection system 60 and the detection system driving unit 59 are disposed in the mask holding unit 1 and are moved in a predetermined direction by the mask transport unit 40. Therefore, even when the substrate W and the mask M are moving synchronously, the alignment detection system 60 can be easily moved back and forth with respect to the transferred mask M.
- the illumination device transporting unit 69 that can transport the illumination device 3 in a predetermined direction is further provided, the illumination device 3 is transported in synchronization with the substrate W and the mask M to be transported, thereby improving the efficiency of the substrate W It can be well exposed and transferred.
- the step of transporting the substrate W in a predetermined direction by the substrate transport unit 10 the step of moving the mask M in synchronization with the substrate W by the mask transport unit 40, and the alignment detection system 60 and the mask driving unit 50 align the mask M and the substrate W, irradiate the substrate W and the mask M with exposure light from the illumination device 3, and expose the pattern of the mask M to the exposure region E of the substrate W.
- the alignment adjustment is performed while moving the mask M synchronously with the substrate W by utilizing the timing of moving the exposure area E of the substrate W to be exposed next to the effective irradiation area LA of the illumination device 3.
- the tact time is shortened.
- the exposure process is further performed in a state where the substrate W and the mask M are synchronized, alignment adjustment and exposure can be performed for each exposure region E while transporting the substrate W in a predetermined direction, greatly increasing the tact time.
- the pattern of the mask M can be efficiently exposed with respect to the board
- a detection system driving unit 59 for driving the alignment detection system 60 is further provided. After the alignment step, the alignment detection system 60 is connected to the illumination device 3 by the detection system driving unit 59 in a state where the substrate W and the mask M are synchronized. Since the process of retracting from the effective irradiation area LA is further provided, the tact time can be further shortened.
- the illumination device 3 is moved in a predetermined direction in synchronization with the substrate W and the mask M. Therefore, the effective irradiation area LA may be at least large enough to expose the pattern of the mask M. 3 can be configured compactly.
- the substrate W and the mask M are transported at a constant speed or transported at a reduced speed. Accordingly, the pattern of the mask M can be exposed and transferred efficiently and stably.
- the mask M is moved in the ⁇ X direction and then moved in the X direction to synchronize with the substrate W, the synchronous movement of the mask M and the substrate W can be reliably performed, and the mask transport unit 40 Can be shortened.
- the mask M is once moved in the direction opposite to the transport direction of the substrate W ( ⁇ X direction), and then the mask M is moved downstream in the transport direction with respect to the exposure area to be exposed next.
- the mask M and the exposure area E2 are aligned with each other by reversing in the X direction.
- the mask M moves in the X direction at a speed slower than the speed at which the substrate W is transported or stops. From the state, the speed may be increased in the X direction and moved to synchronize with the substrate W.
- the mask M may be increased up to the transfer speed of the substrate W and synchronized with the substrate W, or may be increased once until the transfer speed of the substrate W is exceeded and synchronized with the substrate W.
- the moving speed of the mask M is decelerated so as to be slower than the speed at which the substrate W is transferred, or is temporarily stopped and the exposure area E2 is moved to the mask M.
- the mask M is accelerated and moved in the X direction to align the position of the mask M with the exposure area E2 (step 10).
- the alignment detection system 60 detects the alignment mark provided on the mask M and the substrate W while synchronously transporting the mask M, the substrate W, and the effective irradiation area LA, and drives the mask driving unit 50 to drive the mask holding unit. 1. That is, the mask M is driven in the X and Y directions and rotated in the ⁇ direction to adjust the alignment between the substrate W and the mask M (step 11).
- the alignment detection system 60 is retracted from the effective irradiation area LA and the shutter S is opened (step 12).
- the substrate W is irradiated with laser light through the mask M and the reduction projection lens 61 to expose the pattern of the mask M to the exposure region E2 (step 13).
- the mask M is moved in the X direction at a speed slower than the speed at which the substrate W is transferred, or from the stopped state, the mask M is moved at an increased speed in the X direction and synchronized with the substrate W. Therefore, the mask M and the exposure region E2 can be synchronized in a short time without moving the mask M in the ⁇ X direction.
- the substrate W is transported at a constant speed after the exposure area E is exposed until the exposure area E adjacent in the X direction is exposed, thereby reducing the tact time.
- the exposure transfer can be performed efficiently and stably.
- this modification can also be applied to the exposure in the other exposure areas E1, E3 to E6.
- the exposure apparatus of the second embodiment is different from that of the first embodiment in that it does not have an illumination device transport unit.
- the effective irradiation area LA of the illumination device 3 is longer in a predetermined direction (X direction) than that of the first embodiment, and at least in the exposure regions E1 to E3 (or E4 to E6). It is configured to be longer than the total length in the X direction (see FIG. 8).
- step 7 after the pattern of the mask M is exposed to the exposure area E1 (step 7), the moving speed of the mask M is decelerated or temporarily stopped and the exposure area E2 passes the position of the mask M. (Step 9a), the mask M is accelerated and moved in the X direction.
- step S10 when the positions of the mask M and the exposure area E2 are aligned, the alignment marks provided on the mask M and the substrate W are detected by the alignment detection system 60 while the mask M and the substrate W are synchronously conveyed. Based on the detection result, the mask driving unit 50 is driven to drive the mask holding unit 1, that is, the mask M in the X and Y directions, and is rotated in the ⁇ direction to adjust the alignment between the substrate W and the mask M.
- the alignment detection system 60 is retracted from the area above the mask M, and an exposure area to be exposed (exposure area E2 in the embodiment shown in the figure).
- the shutter S is opened (step 12).
- the substrate W is irradiated with laser light through the mask M and the reduction projection lens 61 to expose the pattern of the mask M to the exposure region E2 (step 13).
- portions other than the exposure area E2 to be exposed are shielded by the shutter S, and only the exposure area E2 is exposed.
- the exposure areas E1, E3 to E6 can be exposed in the same manner.
- the illuminating device 3 since the illuminating device 3 has the effective irradiation area LA that is longer in at least the predetermined direction than the exposure region E of the substrate W, the illuminating device 3 that does not include the illuminating device transporting unit also has the substrate W to be transported.
- the pattern of the mask M can be exposed to a plurality of exposure regions E of the substrate W by irradiating exposure light from the illumination device 3.
- the present invention is not limited to the above-described embodiments and modifications, and modifications, improvements, and the like can be made as appropriate.
- the alignment process and the exposure process are performed in a state where the substrate W and the mask M are synchronously moved.
- the present invention performs at least the alignment process while the substrate W and the mask M are synchronously moved.
- the tact time can be shortened by performing.
- the exposure process may be performed in a state where the substrate W and the mask M are stopped.
- the illumination device transport unit 69 of the first embodiment and the effective irradiation area LA of the second embodiment are used. Can be small.
- the substrate W and the mask M are moved synchronously while the substrate W is transported at a reduced speed or while the substrate W is transported at a constant speed.
- the substrate W and the mask M may be moved synchronously while the substrate W is transported at an increased speed.
- the present invention is not limited to this, and the mask holding unit 1 may be disposed close to the substrate holding unit 2 and the mask M and the substrate W may be brought close to each other to perform proximity exposure.
- the present invention is based on a Japanese patent application (Japanese Patent Application No. 2016-167193) filed on Aug. 29, 2016, the contents of which are incorporated herein by reference.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
露光装置は、複数の露光領域(E1)~(E6)を有する基板(W)を保持する基板保持部(2)と、露光領域(E)と略等しい大きさを有するパターンが形成されたマスク(M)を保持するマスク保持部(1)と、基板(W)を所定の方向に搬送可能な基板搬送部(10)と、マスク(M)を所定の方向に搬送可能なマスク搬送部(40)と、基板(W)とマスク(M)とのアライメントを調整可能なマスク駆動部(50)と、マスク(M)を介して露光領域(E)に露光光を照射する照明装置(3)と、を備える。
Description
本発明は、露光装置及び露光方法に関し、より詳細には、複数の露光領域を有する基板に対して、基板より小さなマスクを用いて露光する露光装置及び露光方法に関する。
従来、被露光材としての基板より小さいマスクをマスク保持部で保持すると共に、基板を基板保持部で保持し、マスクと基板とを所定のギャップで対向配置した状態で、基板をマスクに対してステップ移動させながら、ステップ毎に露光用照明装置から露光用の光をマスクに向けて照射して、マスクのパターンを基板上に順次、露光転写するようにした分割逐次露光装置が知られている。
また、基板を連続搬送しながら、基板搬送方向と直交する方向に並べた小型のフォトマスクを用い、露光中の基板とフォトマスクとの位置合わせを高精度に行うことができる、例えば、カラーフィルタの着色層を形成するスキャン露光装置が開示されている(例えば、特許文献1参照。)。この場合、撮像装置が、基板上の露光領域内に形成されている遮光層を撮影して基板搬送方向に対する遮光層の傾きを求め、これに基づいてフォトマスクを回転、移動させて遮光層に対するフォトマスクの傾きを補正している。
ところで、従来の分割逐次露光装置によれば、図9に示すように、基板を保持する基板保持部を所定の露光位置に移動させて停止した後(Ta1)、アライメントカメラでマスク及び基板のマークを撮像し(Ta2)、マスクを駆動させながら、マスクと基板のマークを合わせるようにアライメント補正する(Ta3)。さらに、補正結果を確認した後(Ta4)、アライメントカメラを露光エリアから退避させ(Ta5)、マスクを介して基板に露光光を照射してマスクのパターンを露光転写する(Ta6)。なお、図9中、Vwは基板保持部の移動速度、Vmはマスク保持部の移動速度、Vcは、アライメントカメラの退避移動速度を表している。このような分割逐次露光装置では、露光ごとに基板保持部、マスク保持部、アライメントカメラの移動と停止とを繰り返すので、1回の露光に要する時間が長く、1枚の基板に複数の露光を行う場合、露光回数が増えるに伴ってタクトタイムが増加して生産効率が低下するという課題があった。
また、特許文献1のようなスキャン露光装置は、基板の搬送方向におけるパターンが一様であるライン状の露光に特化したものであるため、分割逐次露光装置で使用されるパターンの露光に対応するものではない。
本発明は、前述した課題に鑑みてなされたものであり、その目的は、タクトタイムを短縮して、複数の露光領域を有する基板に対して効率よく露光転写することができる露光装置及び露光方法を提供することにある。
本発明の上記目的は、下記の構成により達成される。
(1) 複数の露光領域を有する被露光材としての基板を保持する基板保持部と、
前記露光領域と略等しい大きさを有するパターンが形成されたマスクを保持するマスク保持部と、
前記基板保持部を駆動して、前記基板を所定の方向に搬送可能な基板搬送部と、
前記マスク及び前記基板に設けられたアライメント用マークを検出するアライメント検出系と、
前記マスク保持部を駆動して、前記基板と前記マスクとのアライメントを調整可能なマスク駆動部と、
前記マスク駆動部が載置される駆動部載置台を駆動して、前記マスクを前記所定の方向に搬送可能なマスク搬送部と、
前記マスクを介して前記基板の前記露光領域に露光光を照射する照明装置と、
を備えることを特徴とする露光装置。
(2) 前記アライメント検出系を駆動する検出系駆動部をさらに備え、
前記アライメント検出系及び前記検出系駆動部は、前記マスク保持部に配設され、前記マスク搬送部によって前記所定の方向に沿って搬送されることを特徴とする(1)に記載の露光装置。
(3) 前記照明装置を前記所定の方向に搬送可能な照明装置搬送部をさらに備えることを特徴とする(1)又は(2)に記載の露光装置。
(4) 前記照明装置は、少なくとも前記基板の露光領域よりも前記所定の方向において長い有効照射エリアを有することを特徴とする(1)又は(2)のいずれかに記載の露光装置。
(5) 複数の露光領域を有する被露光材としての基板を保持する基板保持部と、
前記露光領域と略等しい大きさを有するパターンが形成されたマスクを保持するマスク保持部と、
前記基板保持部を駆動して、前記基板を所定の方向に搬送可能な基板搬送部と、
前記マスク及び前記基板に設けられたアライメント用マークを検出するアライメント検出系と、
前記マスク保持部を駆動して、前記基板と前記マスクとのアライメントを調整可能なマスク駆動部と、
前記マスク駆動部が載置される駆動部載置台を駆動して、前記マスクを所定の方向に搬送可能なマスク搬送部と、
前記マスクを介して前記基板の前記露光領域に露光光を照射する照明装置と、
を備える露光装置を用いた露光方法であって、
前記基板搬送部により、前記基板を所定の方向に搬送する工程と、
前記マスク搬送部により、前記マスクを前記所定の方向に移動させて前記基板に同期させる工程と、
前記アライメント検出系及び前記マスク駆動部により、前記マスクと前記基板とをアライメントする工程と、
前記照明装置から露光光を照射して、前記マスクのパターンを前記基板の前記露光領域に露光転写する工程と、
を備え、
前記基板と前記マスクとが同期した状態で、少なくとも前記アライメント工程を行うことを特徴とする露光方法。
(6) 前記基板と前記マスクとが同期した状態で、前記露光工程をさらに行うことを特徴とする(5)に記載の露光方法。
(7) 前記アライメント検出系を駆動する検出系駆動部をさらに備え、
前記アライメント工程後、前記基板と前記マスクとが同期した状態で、前記アライメント検出系を、前記検出系駆動部により前記照明装置の有効照射エリアから退避する工程をさらに備えることを特徴とする(5)又は(6)に記載の露光方法。
(8) 前記照射工程では、前記照明装置を前記基板及び前記マスクと同期させて前記所定の方向に移動させることを特徴とする(5)~(7)のいずれかに記載の露光方法。
(9) 前記露光工程において、前記基板と前記マスクとが同期した状態では、前記基板と前記マスクとは、一定速度で搬送されるか、又は、減速して搬送されることを特徴とする(5)~(8)のいずれかに記載の露光方法。
(10) 前記マスクは、前記所定の方向と逆方向に移動させた後で、前記所定の方向に移動させて前記基板に同期させることを特徴とする(5)~(9)のいずれかに記載の露光方法。
(11) 前記マスクは、前記基板を搬送する速度より遅い速度で前記所定の方向に移動した後、又は、停止した状態から、前記所定の方向に増速して移動させて前記基板に同期させることを特徴とする(5)~(9)のいずれかに記載の露光方法。
(12) 前記基板は、前記露光領域を露光した後、前記所定の方向に隣接する前記露光領域を露光するまでの間、一定の速度で搬送されることを特徴とする(11)に記載の露光方法。
(1) 複数の露光領域を有する被露光材としての基板を保持する基板保持部と、
前記露光領域と略等しい大きさを有するパターンが形成されたマスクを保持するマスク保持部と、
前記基板保持部を駆動して、前記基板を所定の方向に搬送可能な基板搬送部と、
前記マスク及び前記基板に設けられたアライメント用マークを検出するアライメント検出系と、
前記マスク保持部を駆動して、前記基板と前記マスクとのアライメントを調整可能なマスク駆動部と、
前記マスク駆動部が載置される駆動部載置台を駆動して、前記マスクを前記所定の方向に搬送可能なマスク搬送部と、
前記マスクを介して前記基板の前記露光領域に露光光を照射する照明装置と、
を備えることを特徴とする露光装置。
(2) 前記アライメント検出系を駆動する検出系駆動部をさらに備え、
前記アライメント検出系及び前記検出系駆動部は、前記マスク保持部に配設され、前記マスク搬送部によって前記所定の方向に沿って搬送されることを特徴とする(1)に記載の露光装置。
(3) 前記照明装置を前記所定の方向に搬送可能な照明装置搬送部をさらに備えることを特徴とする(1)又は(2)に記載の露光装置。
(4) 前記照明装置は、少なくとも前記基板の露光領域よりも前記所定の方向において長い有効照射エリアを有することを特徴とする(1)又は(2)のいずれかに記載の露光装置。
(5) 複数の露光領域を有する被露光材としての基板を保持する基板保持部と、
前記露光領域と略等しい大きさを有するパターンが形成されたマスクを保持するマスク保持部と、
前記基板保持部を駆動して、前記基板を所定の方向に搬送可能な基板搬送部と、
前記マスク及び前記基板に設けられたアライメント用マークを検出するアライメント検出系と、
前記マスク保持部を駆動して、前記基板と前記マスクとのアライメントを調整可能なマスク駆動部と、
前記マスク駆動部が載置される駆動部載置台を駆動して、前記マスクを所定の方向に搬送可能なマスク搬送部と、
前記マスクを介して前記基板の前記露光領域に露光光を照射する照明装置と、
を備える露光装置を用いた露光方法であって、
前記基板搬送部により、前記基板を所定の方向に搬送する工程と、
前記マスク搬送部により、前記マスクを前記所定の方向に移動させて前記基板に同期させる工程と、
前記アライメント検出系及び前記マスク駆動部により、前記マスクと前記基板とをアライメントする工程と、
前記照明装置から露光光を照射して、前記マスクのパターンを前記基板の前記露光領域に露光転写する工程と、
を備え、
前記基板と前記マスクとが同期した状態で、少なくとも前記アライメント工程を行うことを特徴とする露光方法。
(6) 前記基板と前記マスクとが同期した状態で、前記露光工程をさらに行うことを特徴とする(5)に記載の露光方法。
(7) 前記アライメント検出系を駆動する検出系駆動部をさらに備え、
前記アライメント工程後、前記基板と前記マスクとが同期した状態で、前記アライメント検出系を、前記検出系駆動部により前記照明装置の有効照射エリアから退避する工程をさらに備えることを特徴とする(5)又は(6)に記載の露光方法。
(8) 前記照射工程では、前記照明装置を前記基板及び前記マスクと同期させて前記所定の方向に移動させることを特徴とする(5)~(7)のいずれかに記載の露光方法。
(9) 前記露光工程において、前記基板と前記マスクとが同期した状態では、前記基板と前記マスクとは、一定速度で搬送されるか、又は、減速して搬送されることを特徴とする(5)~(8)のいずれかに記載の露光方法。
(10) 前記マスクは、前記所定の方向と逆方向に移動させた後で、前記所定の方向に移動させて前記基板に同期させることを特徴とする(5)~(9)のいずれかに記載の露光方法。
(11) 前記マスクは、前記基板を搬送する速度より遅い速度で前記所定の方向に移動した後、又は、停止した状態から、前記所定の方向に増速して移動させて前記基板に同期させることを特徴とする(5)~(9)のいずれかに記載の露光方法。
(12) 前記基板は、前記露光領域を露光した後、前記所定の方向に隣接する前記露光領域を露光するまでの間、一定の速度で搬送されることを特徴とする(11)に記載の露光方法。
本発明の露光装置によれば、複数の露光領域を有する基板を保持する基板保持部と、露光領域と略等しい大きさを有するパターンが形成されたマスクを保持するマスク保持部と、基板を所定の方向に搬送可能な基板搬送部と、マスク及び基板に設けられたアライメント用マークを検出するアライメント検出系と、基板とマスクとのアライメントを調整可能なマスク駆動部と、マスクを所定の方向に搬送可能なマスク搬送部と、マスクを介して露光領域に露光光を照射する照明装置と、を備えるので、基板を所定の方向に搬送しながら、露光領域ごとのアライメント調整が少なくとも可能となり、タクトタイムを短縮して、搬送される基板に対してマスクのパターンを効率よく露光することができる。
また、本発明の露光方法によれば、基板搬送部により基板を所定の方向に搬送する工程と、マスク搬送部によりマスクを基板に同期させて移動させる工程と、マスクと基板とをアライメントする工程と、照明装置から露光光を照射して、マスクのパターンを基板の露光領域に露光転写する工程と、を備え、基板とマスクとが同期した状態で、少なくともアライメント工程を行うので、基板を所定の方向に搬送しながら、露光領域ごとのアライメント調整が少なくとも可能となり、タクトタイムを短縮して、搬送される基板に対してマスクのパターンを効率よく露光することができる。
以下、本発明の各実施形態に係る露光装置及び露光方法を図面に基づいて詳細に説明する。なお、以下の説明においては、露光装置のX方向、Y方向、及びZ方向は、図面に示す方向に従うものとする。
(第1実施形態)
第1実施形態の露光装置PEは、図1~図3に示すように、被露光材としての基板Wより小さいマスクMを用い、マスクMをマスク保持部1で保持すると共に、基板Wを基板保持部2で保持し、照明装置3からパターン露光用の光をマスクM及び縮小投影レンズ61を介して基板Wに照射することにより、マスクMのパターンを基板W上に露光転写する。
第1実施形態の露光装置PEは、図1~図3に示すように、被露光材としての基板Wより小さいマスクMを用い、マスクMをマスク保持部1で保持すると共に、基板Wを基板保持部2で保持し、照明装置3からパターン露光用の光をマスクM及び縮小投影レンズ61を介して基板Wに照射することにより、マスクMのパターンを基板W上に露光転写する。
基板Wは、マスクMのパターンと略同じ大きさの複数の露光領域E(本実施形形態では図4に示すように2行3列のE1~E6の6つの露光領域)を有して略矩形状に形成されている。そして、3列の露光領域E1~E3、E4~E6が所定の方向(図に示す実施形態ではX方向または-X方向)に並ぶようにして、基板保持部2上に保持されている。
基板保持部2で保持された基板Wを、水平面内のX方向、X方向と直交するY方向、及びX方向及びY方向に直交するZ方向に搬送可能な基板搬送部10は、X軸送り台11、Y軸送り台12、及びZ軸送り台13を備える。
詳細には、防振脚またはエアサスペンション5でグラウンドGに設置されたベース4上に、上下駆動機構14に支持されたZ軸送り台13が配置されている。上下駆動機構14は、それぞれ傾斜面14aを有する一対の駆動ブロック14b,14cを備え、一対の駆動ブロック14b,14cは、該傾斜面14a同士が摺動するように重ね合わされて配置されている。そして、いずれか一方の駆動ブロック14b,14cを、モータ15で駆動される不図示の送りねじ機構により移動させてZ軸送り台13を上下駆動する。
この上下駆動機構14は、Z軸送り台13のY軸方向の一端側(図2の前端)に1台、Y軸方向の他端側で、X方向両側(図1の左右端)に2台、合計3台設置されて、それぞれが独立に駆動制御されるようになっている。これにより、上下駆動機構14は、不図示のレーザーセンサによる基板Wの上面位置の計測結果に基づき、高さを独立に微調整することで基板保持部2の高さ及び傾き(チルト)を調整する。
Z軸送り台13上には、Y軸送り台12をY方向に移動させるY軸送り機構16が設置されている。Y軸送り機構16は、Z軸送り台13上にY軸方向に配置された複数(図に示す実施形態では4本)のガイドレール17と、Y軸送り台12の下面に固定されたスライダ18と、備え、それぞれのガイドレール17にスライダ18が跨架されている。これにより、Y軸送り台12は、Y軸駆動モータ19で駆動される送りねじ機構20により、ガイドレール17に沿ってY軸方向に往復移動可能である。
また、Y軸送り台12上には、X軸送り台11をX方向に移動させるX軸送り機構30が設置されている。X軸送り機構30は、Y軸送り台12上にX軸方向に配置された複数(図に示す実施形態では2本)のガイドレール31と、X軸送り台11の下面に固定されたスライダ32と、備え、それぞれのガイドレール31にスライダ32が跨架されている。
また、X軸送り台11とY軸送り台12との間には、X軸方向に延びるリニアモータ33が配設されている。リニアモータ33は、X軸送り台11の下面に固定された可動子34と、可動子34に対向し、Y軸送り台12上固定されてX軸方向に延びる一対の固定子35,35と、を備える。これにより、X軸送り台11は、固定子35の磁界により可動子34がX軸方向に駆動され、ガイドレール31に案内されてX軸方向に往復移動可能である。なお、X軸送り台11のX軸方向の移動可能距離は、複数の露光領域Eを有する基板WのX軸方向長さより長く設定されており、基板Wを連続搬送可能である。
X軸送り台11上には、ワークチャック等で基板Wを真空吸引して保持する基板保持部2が固定されている。これにより、基板Wは、XYZ方向に移動可能である。特に、X方向には、連続搬送可能である。
また、ベース4から立設する一対の脚部4a間に架け渡されて固定されたマスク基台6には、マスク搬送部40を介して駆動部載置台41がX方向に搬送可能に配置されている。駆動部載置台41上には、マスク保持部1をXY方向、及びθ方向に駆動して基板WとマスクMとのアライメントを調整するマスク駆動部50が配設されている。
マスク搬送部40は、マスク基台6上にX軸方向に配置された複数(図に示す実施形態では2本)のガイドレール42と、駆動部載置台41の下面に固定されたスライダ43と、を備え、それぞれのガイドレール42にスライダ43が跨架されている。
また、マスク基台6と駆動部載置台41との間には、X方向に延びるリニアモータ45が配設されている。リニアモータ45は、駆動部載置台41の下面に固定された可動子46と、可動子46に対向し、マスク基台6上に固定されてX方向に延びる一対の固定子47,47と、を備える。これにより、駆動部載置台41は、固定子47の磁界により可動子46がX方向に駆動され、ガイドレール42に案内されてX軸方向に往復移動可能である。
マスク駆動部50は、駆動部載置台41上に固定された複数のモータ48と、該モータ48で駆動され、X、Y方向に沿って配設された複数のねじ送り機構(図示せず)を備える。それぞれのモータ48を独立して制御することで、マスク保持部1をX、Y方向に駆動すると共に、θ方向に回転させて基板WとマスクMとのアライメントを調整する。駆動部載置台41とマスク保持部1とは、これらの間に配置されたベアリング39によって相対的に水平移動可能に支持されている。
これにより、マスク保持部1で保持されたマスクMは、駆動部載置台41と共にX軸方向に往復移動可能、且つマスク駆動部50によってX、Y、θ方向に駆動されて基板WとマスクMとのアライメント調整が可能である。
また、マスクMに対応する駆動部載置台41の下面には、マスクMのパターンを縮小して基板Wの露光領域Eに投影する縮小投影レンズ61が、マスク基台6に形成されたレンズ挿通孔6aを貫通して固定されている。したがって、縮小投影レンズ61は、マスク搬送部40による駆動部載置台41の移動に伴ってX方向に移動する。
また、マスク保持部1上には、マスクM及び基板Wに設けられた不図示のアライメント用マークを検出するアライメント検出系60と、アライメント検出系60を駆動する検出系駆動部59と、が配設されている。なお、図2に示す符号51は、走り観測用光学系である。
アライメント検出系60は、反射ミラーやカメラを含んで構成され、マスクMの上方から、該カメラでマスクM及び基板Wに設けられたアライメント用マークを撮像する。なお、マスクMや基板Wのアライメント用マークとは、マスクMや基板Wに描画されたマークに限らず、マスクMや基板Wの外形形状をマークとしてもよい。また、基板Wに複数層を露光する際には、基板Wのアライメント用マークとしては、前の層のパターンをマークとしてもよい。
検出系駆動部59は、アライメント検出系60を照明装置3の後述する有効照射エリアLAから退避させる。
検出系駆動部59は、アライメント検出系60を照明装置3の後述する有効照射エリアLAから退避させる。
図2及び図3を参照して、照明装置3は、露光用のレーザ光を照射するレーザ光源62と、レーザ光を反射する複数のミラー63と、フライアイレンズ64と、を備え、レーザ光源62から照射されたレーザ光を複数のミラー63で屈曲させると共に、フライアイレンズ64で平行光にして、マスクM及び縮小投影レンズ61を介して基板Wの露光領域Eに照射する。
照明装置3は、ベース4から立設する照明基台4b上にX方向に移動可能に配設されている。即ち、照明基台4b上にX方向に配置された複数(図に示す実施形態では2本)のガイドレール65と、照明装置3の下面に固定されたスライダ66と、からなるリニアガイドを備え、それぞれのガイドレール65にスライダ66が摺動自在に跨架されている。また、照明基台4bと照明装置3との間には、モータ68で駆動される送りねじ機構67が配設されており、モータ68を回転駆動することで照明装置3が、ガイドレール65で案内されてX方向に移動する。これにより、照明装置3の有効照射エリアLA(図4参照)は、マスクMのX軸方向への移動と同期して移動可能である。
なお、リニアガイドを構成するガイドレール65及びスライダ66と、モータ68及び送りねじ機構67は、照明装置3をX方向に搬送する照明装置搬送部69を構成する。
また、照明装置3の光源としては、レーザ光源に限定されず、超高圧水銀灯等、任意に構成される。
なお、リニアガイドを構成するガイドレール65及びスライダ66と、モータ68及び送りねじ機構67は、照明装置3をX方向に搬送する照明装置搬送部69を構成する。
また、照明装置3の光源としては、レーザ光源に限定されず、超高圧水銀灯等、任意に構成される。
次に、図4~図6を参照して、マスクMのパターンを基板Wの露光領域E1~E6に露光する手順について説明する。
まず、図4に示すように、必要に応じて上下駆動機構14を作動させてチルト調整し、送りねじ機構20により基板保持部2をY軸送り台12と共にY方向に移動させてマスクMと基板Wの露光領域E1~E3とのY方向位置を合わせる。そして、リニアモータ33によりX軸送り台11を駆動して基板WをX方向に移動させる(ステップ1)。また同時に、リニアモータ45により駆動部載置台41(マスクM)を-X方向(所定の方向と逆方向)に移動させる。
そして、ステップ2に示すように、マスクMが露光領域E1を通り過ぎると、マスクMの移動方向をX方向に反転移動させ(ステップ3)、マスクMと露光領域E1との位置を一致させる(ステップ4)。なお、マスクMと露光領域E1とを一致させるには、反転後のマスクMの移動速度を増速してもよく、また基板Wの移動速度を減速させてもよい。
次いで、ステップ4にてマスクMと露光領域E1との位置が一致すると、マスクMと基板Wとを同期させてX方向に移動させながら、アライメント検出系60でマスクM及び基板Wに設けられたアライメント用マークを検出し、検出結果に基づいてマスク駆動部50を駆動させてマスク保持部1、即ちマスクMをX、Y方向に駆動すると共に、θ方向に回転させて基板WとマスクMとのアライメントを調整する。また、ステップS4では、送りねじ機構67により照明装置3を移動させて、有効照射エリアLAとマスクMとの位置を一致させた後、マスクMと基板Wと有効照射エリアLAとを同期させてX方向に移動させる。
そして、ステップ5にて、アライメントを完了後、アライメント検出系60を有効照射エリアLAから退避させた後、基板WとマスクMと有効照射エリアLAとを同期して移動させながらシャッタSを開放する(ステップ6)。これにより、マスクMと基板Wとが同期移動した状態で、照明装置3から露光用のレーザ光をマスクM及び縮小投影レンズ61を介して、基板Wに照射してマスクMのパターンを露光領域E1に露光する(ステップ7)。
基板WとマスクMとが同期した状態では、基板WとマスクMとは、一定速度で搬送されてもよく、また減速して搬送されてもよい。
なお、図中、有効照射エリアLA内の斜線は、照明装置3からのレーザ光が、シャッタSで遮蔽されている状態を示し、斜線のない有効照射エリアLAは、シャッタSが開放されて露光光がマスクMを介して基板Wに照射されている状態を示している。
次いで、露光領域E1の露光完了後、図5に示すように、有効照射エリアLAをシャッタSで遮蔽すると共に、アライメント検出系60をマスクM上の元の位置に復帰させる。そして、基板Wを引き続きX方向に搬送しながら、有効照射エリアLAが露光領域E2と一致すると共に、マスクMを-X方向に移動させ、マスクMが露光領域E2を通り過ぎた後(ステップ8)、マスクMの移動方向をX方向に反転移動させ(ステップ9)、マスクMと次の露光領域E2との位置を一致させる。
そして、ステップ10にて、マスクMと次の露光領域E2との位置を一致させた後、再び、マスクMと基板Wと有効照射エリアLAとを同期移動しながら、アライメント検出系60でマスクM及び基板Wに設けられたアライメント用マークを検出し、マスク駆動部50を駆動させてマスク保持部1、即ちマスクMをX、Y方向に駆動すると共に、θ方向に回転させて基板WとマスクMとのアライメントを調整する。
ステップ11にて、基板WとマスクMとのアライメント調整完了後に、アライメント検出系60を有効照射エリアLAから退避させ、シャッタSを開放する(ステップ12)。これにより、マスクMと基板Wとが同期移動した状態で、レーザ光をマスクM及び縮小投影レンズ61を介して、基板Wに照射してマスクMのパターンを露光領域E2に露光する(ステップ13)。
有効照射エリアLAとマスクMとの同期タイミングは、必ずしも上記したタイミングである必要はないが、少なくともレーザ光をマスクMを介して基板Wに照射している間は、照明装置3(有効照射エリアLA)とマスクMとが基板Wと同期して移動する。
以下、図示しないが、同様に操作して、マスクMのパターンを露光領域E3に露光する。次いで、送りねじ機構20により基板保持部2をY軸送り台12と共にY軸方向に移動させてマスクMと基板Wの2列目の露光領域E4~E6とのY方向位置を合わせる。
そして、リニアモータ33によりX軸送り台11を駆動して基板Wを先とは逆の-X方向に移動させると共に、有効照射エリアLAとマスクMを基板Wと同期移動させながら、前述したと同様に、露光領域E4~E6にマスクMのパターンを順次露光する。
上記した露光手順によれば、図6に示すように、基板Wを有効照射エリアLAに向けて移動させ、マスクMが基板Wと同期移動した後(T1)、同期移動した状態でアライメント調整を行った後(T2)、さらに、露光する(T3)。これにより、従来の露光装置では必須であった基板Wの停止期間をなくす、若しくは、大幅に削減することができ、露光のタクトタイムが短縮されて、効率のよい露光が可能となる。なお、図6中、点線で示される基板保持部の移動速度Vwは、マスクMが基板Wと同期移動する期間T1から次の期間T1まで一定速度とした場合を示しており、この場合、図示されていないが、マスク保持部の移動速度Vmも、移動速度Vwと同じ一定速度となる。
以上説明したように、本実施形態の露光装置PEによれば、複数の露光領域E1~E6を有する基板Wを保持する基板保持部2と、露光領域Eと略等しい大きさを有するパターンが形成されたマスクMを保持するマスク保持部1と、基板Wを所定の方向に搬送可能な基板搬送部10と、マスクM及び基板Wに設けられたアライメント用マークを検出するアライメント検出系60と、基板WとマスクMとのアライメントを調整可能なマスク駆動部50と、マスクMを所定の方向に搬送可能なマスク搬送部40と、マスクMを介して露光領域Eに露光光を照射する照明装置3と、を備える。これにより、基板Wを所定の方向に搬送しながら、露光領域Eごとのアライメント調整や露光転写が可能となり、タクトタイムを短縮して、搬送される基板Wに対してマスクMのパターンを効率よく露光することができる。
また、アライメント検出系60を駆動する検出系駆動部59と、をさらに備え、アライメント検出系60及び検出系駆動部59は、マスク保持部1に配設され、マスク搬送部40によって所定の方向に沿って搬送されるので、基板WとマスクMが同期移動している際にも、搬送されるマスクMに対するアライメント検出系60の進退を容易に行うことができる。
また、照明装置3を所定の方向に搬送可能な照明装置搬送部69をさらに備えるので、搬送される基板W及びマスクMに同期させて照明装置3を搬送することにより、基板Wに対して効率よく露光転写することができる。
また、本発明の露光方法によれば、基板搬送部10により基板Wを所定の方向に搬送する工程と、マスク搬送部40によりマスクMを基板Wに同期させて移動させる工程と、アライメント検出系60及びマスク駆動部50により、マスクMと基板Wとをアライメントする工程と、基板WとマスクMに照明装置3から露光光を照射して、マスクMのパターンを基板Wの露光領域Eに露光転写する工程と、を備え、基板WとマスクMとが同期した状態で、少なくともアライメント工程を行う。これにより、基板Wを所定の方向に搬送しながら、露光領域Eごとのアライメント調整が可能となり、タクトタイムを短縮して、搬送される基板Wに対してマスクMのパターンを効率よく露光することができる。
したがって、次に露光される基板Wの露光領域Eを照明装置3の有効照射エリアLAへ移動させるタイミングを活用して、マスクMを基板Wと同期移動させながら、アライメント調整を行うようにしたので、タクトタイムの短縮が図られている。
また、基板WとマスクMとが同期した状態で、露光工程をさらに行うので、基板Wを所定の方向に搬送しながら、露光領域Eごとのアライメント調整及び露光が可能となり、タクトタイムを大幅に短縮して、搬送される基板Wに対してマスクMのパターンを効率よく露光することができる。
また、アライメント検出系60を駆動する検出系駆動部59をさらに備え、アライメント工程後、基板WとマスクMとが同期した状態で、アライメント検出系60を、検出系駆動部59により照明装置3の有効照射エリアLAから退避する工程をさらに備えるので、タクトタイムをさらに短縮することができる。
また、照射工程では、照明装置3を基板W及びマスクMと同期させて所定の方向に移動させるので、有効照射エリアLAは少なくともマスクMのパターンを露光する大きさを有すればよく、照明装置3をコンパクトに構成できる。
また、露光工程において、基板WとマスクMとが同期した状態では、基板WとマスクMとは、一定速度で搬送されるか、又は、減速して搬送されるので、基板Wの搬送速度に応じて、マスクMのパターンを効率よく且つ安定して露光転写することができる。
また、マスクMは、-X方向に移動させた後で、X方向に移動させて基板Wに同期させるので、マスクMと基板Wとの同期移動を確実に行うことができ、マスク搬送部40の長さを短くすることができる。
なお、上記実施形態では、一旦、マスクMを基板Wの搬送方向と逆方向(-X方向)に移動させ、次に露光する露光領域に対してマスクMを搬送方向下流側へ移動させた後、X方向に反転移動させてマスクMと露光領域E2との位置を合わせている。しかしながら、マスクMが次に露光する露光領域に対して搬送方向上流側に位置する場合には、マスクMは、基板Wを搬送する速度より遅い速度でX方向に移動した後、又は、停止した状態から、X方向に増速して移動させ基板Wに同期させてもよい。
なお、マスクMは、基板Wの搬送速度まで増速させて基板Wに同期させてもよいし、基板Wの搬送速度を越えるまで一旦増速させて基板Wに同期させてもよい。
なお、マスクMは、基板Wの搬送速度まで増速させて基板Wに同期させてもよいし、基板Wの搬送速度を越えるまで一旦増速させて基板Wに同期させてもよい。
以下、露光領域E1に続いて隣接する露光領域E2の露光を例に、図7を参照して説明する。露光領域E1にマスクMのパターンを露光した後(ステップ7)、マスクMの移動速度を、基板Wを搬送する速度より遅くなるように減速し、あるいは一旦停止して露光領域E2がマスクMの位置を通過した後(ステップ9a)、マスクMをX方向に増速して移動させてマスクMと露光領域E2の位置を合わせる(ステップ10)。そして、マスクMと基板Wと有効照射エリアLAとを同期搬送しながらアライメント検出系60でマスクM及び基板Wに設けられたアライメント用マークを検出し、マスク駆動部50を駆動させてマスク保持部1、即ちマスクMをX、Y方向に駆動すると共に、θ方向に回転させて基板WとマスクMとのアライメントを調整する(ステップ11)。
そして、基板WとマスクMとのアライメント調整完了後に、アライメント検出系60を有効照射エリアLAから退避させてシャッタSを開放する(ステップ12)。これにより、レーザ光をマスクM及び縮小投影レンズ61を介して基板Wに照射してマスクMのパターンを露光領域E2に露光する(ステップ13)。
したがって、この変形例では、マスクMは、基板Wを搬送する速度より遅い速度でX方向に移動した後、又は、停止した状態から、X方向に増速して移動させて基板Wに同期させるので、-X方向にマスクMを移動させることがなく、マスクMと露光領域E2とを短時間で同期させることができる。
また、この変形例においても、基板Wは、露光領域Eを露光した後、X方向に隣接する露光領域Eを露光するまでの間、一定の速度で搬送することで、タクトタイムを短縮して効率よく且つ安定して露光転写することができる。
なお、図7では、露光領域E2の露光について説明したが、この変形例は、他の露光領域E1、E3~E6の露光の際にも適用することができる。
なお、図7では、露光領域E2の露光について説明したが、この変形例は、他の露光領域E1、E3~E6の露光の際にも適用することができる。
(第2実施形態)
次に、第2実施形態の露光装置を用いた露光方法について詳細に説明する。なお、第2実施形態の露光装置は、図示しないが、照明装置搬送部を有しない点において第1実施形態のものと異なる。一方、本実施形態では、代わりに、照明装置3の有効照射エリアLAが、第1実施形態のものより所定の方向(X方向)に長く、少なくとも露光領域E1~E3(又はE4~E6)のX方向合計長さよりも長くなるように構成されている(図8参照)。
次に、第2実施形態の露光装置を用いた露光方法について詳細に説明する。なお、第2実施形態の露光装置は、図示しないが、照明装置搬送部を有しない点において第1実施形態のものと異なる。一方、本実施形態では、代わりに、照明装置3の有効照射エリアLAが、第1実施形態のものより所定の方向(X方向)に長く、少なくとも露光領域E1~E3(又はE4~E6)のX方向合計長さよりも長くなるように構成されている(図8参照)。
なお、ここでは、説明の便宜上、第1実施形態の変形例と同様に、露光領域E1に続いて隣接する露光領域E2を露光する場合について説明する。また、以下では、第1実施形態の変形例と同様に、露光領域E1を露光後に、マスクMの移動速度を減速して、あるいはマスクMを一旦停止させて露光領域E2の位置に合わせる。
図8に示すように、露光領域E1にマスクMのパターンを露光した後(ステップ7)、マスクMの移動速度を減速し、あるいは一旦停止して露光領域E2がマスクMの位置を通過した後(ステップ9a)、マスクMをX方向に加速して移動させる。そして、ステップS10にて、マスクMと露光領域E2の位置を合わせると、マスクMと基板Wとを同期搬送しながらアライメント検出系60でマスクM及び基板Wに設けられたアライメント用マークを検出し、検出結果に基づいてマスク駆動部50を駆動させてマスク保持部1、即ちマスクMをX、Y方向に駆動すると共に、θ方向に回転させて基板WとマスクMとのアライメントを調整する。
そして、基板WとマスクMとのアライメント調整完了後に(ステップ11)、アライメント検出系60をマスクMの上方領域から退避させて、露光対象となる露光領域(図に示す実施例では露光領域E2)のシャッタSを開く(ステップ12)。これにより、レーザ光をマスクM及び縮小投影レンズ61を介して基板Wに照射してマスクMのパターンを露光領域E2に露光する(ステップ13)。
なお、露光対象となる露光領域E2以外の部分は、シャッタSで遮蔽されており、露光領域E2のみが露光される。露光領域E1,E3~E6の露光も同様に行うことができる。
このように、照明装置3は、少なくとも基板Wの露光領域Eよりも所定の方向において長い有効照射エリアLAを有するので、照明装置搬送部を備えない照明装置3によっても、搬送される基板Wに対して照明装置3から露光光を照射して基板Wの複数の露光領域EにマスクMのパターンを露光することができる。
尚、本発明は、前述した実施形態及び変形例に限定されるものではなく、適宜、変形、改良、等が可能である。
例えば、上記実施形態では、基板WとマスクMとが同期移動した状態で、アライメント工程と露光工程を行っているが、本発明は、基板WとマスクMとを同期移動させながら、少なくともアライメント工程を行うことで、タクトタイムを短縮することができる。
例えば、露光工程は、基板WとマスクMとが停止している状態で行われてもよく、この場合、第1実施形態の照明装置搬送部69や、第2実施形態の有効照射エリアLAを小さくすることができる。
例えば、上記実施形態では、基板WとマスクMとが同期移動した状態で、アライメント工程と露光工程を行っているが、本発明は、基板WとマスクMとを同期移動させながら、少なくともアライメント工程を行うことで、タクトタイムを短縮することができる。
例えば、露光工程は、基板WとマスクMとが停止している状態で行われてもよく、この場合、第1実施形態の照明装置搬送部69や、第2実施形態の有効照射エリアLAを小さくすることができる。
また、上記実施形態では、基板Wが減速して搬送される間、又は、基板Wが一定の速度で搬送される間において、基板WとマスクMが同期移動しているが、本発明は、基板Wが増速して搬送される間においても、基板WとマスクMが同期移動してもよい。
さらに、上記実施形態においては、マスク保持部1と基板保持部2との間に縮小投影レンズ61を配設してマスクMのパターンの像を基板W上に結像する場合について説明したが、本発明はこれに限られず、マスク保持部1を基板保持部2に近接配置し、マスクMと基板Wとを近接させて近接露光するようにしてもよい。
本発明は、2016年8月29日出願の日本特許出願(特願2016-167193)に基づくものであり、その内容はここに参照として取り込まれる。
1 マスク保持部
2 基板保持部
3 照明装置
10 基板搬送部
40 マスク搬送部
41 駆動部載置台
50 マスク駆動部
59 検出系駆動部
60 アライメント検出系
67 送りねじ機構(照明装置搬送部)
LA 有効照射エリア
E,E1-E6 露光領域
M マスク
PE 露光装置
W 基板(被露光材)
2 基板保持部
3 照明装置
10 基板搬送部
40 マスク搬送部
41 駆動部載置台
50 マスク駆動部
59 検出系駆動部
60 アライメント検出系
67 送りねじ機構(照明装置搬送部)
LA 有効照射エリア
E,E1-E6 露光領域
M マスク
PE 露光装置
W 基板(被露光材)
Claims (12)
- 複数の露光領域を有する被露光材としての基板を保持する基板保持部と、
前記露光領域と略等しい大きさを有するパターンが形成されたマスクを保持するマスク保持部と、
前記基板保持部を駆動して、前記基板を所定の方向に搬送可能な基板搬送部と、
前記マスク及び前記基板に設けられたアライメント用マークを検出するアライメント検出系と、
前記マスク保持部を駆動して、前記基板と前記マスクとのアライメントを調整可能なマスク駆動部と、
前記マスク駆動部が載置される駆動部載置台を駆動して、前記マスクを前記所定の方向に搬送可能なマスク搬送部と、
前記マスクを介して前記基板の前記露光領域に露光光を照射する照明装置と、
を備えることを特徴とする露光装置。 - 前記アライメント検出系を駆動する検出系駆動部をさらに備え、
前記アライメント検出系及び前記検出系駆動部は、前記マスク保持部に配設され、前記マスク搬送部によって前記所定の方向に沿って搬送されることを特徴とする請求項1に記載の露光装置。 - 前記照明装置を前記所定の方向に搬送可能な照明装置搬送部をさらに備えることを特徴とする請求項1又は2に記載の露光装置。
- 前記照明装置は、少なくとも前記基板の露光領域よりも前記所定の方向において長い有効照射エリアを有することを特徴とする請求項1又は2に記載の露光装置。
- 複数の露光領域を有する被露光材としての基板を保持する基板保持部と、
前記露光領域と略等しい大きさを有するパターンが形成されたマスクを保持するマスク保持部と、
前記基板保持部を駆動して、前記基板を所定の方向に搬送可能な基板搬送部と、
前記マスク及び前記基板に設けられたアライメント用マークを検出するアライメント検出系と、
前記マスク保持部を駆動して、前記基板と前記マスクとのアライメントを調整可能なマスク駆動部と、
前記マスク駆動部が載置される駆動部載置台を駆動して、前記マスクを所定の方向に搬送可能なマスク搬送部と、
前記マスクを介して前記基板の前記露光領域に露光光を照射する照明装置と、
を備える露光装置を用いた露光方法であって、
前記基板搬送部により、前記基板を所定の方向に搬送する工程と、
前記マスク搬送部により、前記マスクを前記所定の方向に移動させて前記基板に同期させる工程と、
前記アライメント検出系及び前記マスク駆動部により、前記マスクと前記基板とをアライメントする工程と、
前記照明装置から露光光を照射して、前記マスクのパターンを前記基板の前記露光領域に露光転写する工程と、
を備え、
前記基板と前記マスクとが同期した状態で、少なくとも前記アライメント工程を行うことを特徴とする露光方法。 - 前記基板と前記マスクとが同期した状態で、前記露光工程をさらに行うことを特徴とする請求項5に記載の露光方法。
- 前記アライメント検出系を駆動する検出系駆動部をさらに備え、
前記アライメント工程後、前記基板と前記マスクとが同期した状態で、前記アライメント検出系を、前記検出系駆動部により前記照明装置の有効照射エリアから退避する工程をさらに備えることを特徴とする請求項5又は6に記載の露光方法。 - 前記照射工程では、前記照明装置を前記基板及び前記マスクと同期させて前記所定の方向に移動させることを特徴とする請求項5~7のいずれか1項に記載の露光方法。
- 前記露光工程において、前記基板と前記マスクとが同期した状態では、前記基板と前記マスクとは、一定速度で搬送されるか、又は、減速して搬送されることを特徴とする請求項5~8のいずれか1項に記載の露光方法。
- 前記マスクは、前記所定の方向と逆方向に移動させた後で、前記所定の方向に移動させて前記基板に同期させることを特徴とする請求項5~9のいずれか1項に記載の露光方法。
- 前記マスクは、前記基板を搬送する速度より遅い速度で前記所定の方向に移動した後、又は、停止した状態から、前記所定の方向に増速して移動させて前記基板に同期させることを特徴とする請求項5~9のいずれか1項に記載の露光方法。
- 前記基板は、前記露光領域を露光した後、前記所定の方向に隣接する前記露光領域を露光するまでの間、一定の速度で搬送されることを特徴とする請求項11に記載の露光方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197005864A KR20190042592A (ko) | 2016-08-29 | 2017-08-23 | 노광 장치 및 노광 방법 |
CN201780053508.XA CN109690414A (zh) | 2016-08-29 | 2017-08-23 | 曝光装置和曝光方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-167193 | 2016-08-29 | ||
JP2016167193A JP6723112B2 (ja) | 2016-08-29 | 2016-08-29 | 露光装置及び露光方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018043257A1 true WO2018043257A1 (ja) | 2018-03-08 |
Family
ID=61300682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/030184 WO2018043257A1 (ja) | 2016-08-29 | 2017-08-23 | 露光装置及び露光方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6723112B2 (ja) |
KR (1) | KR20190042592A (ja) |
CN (1) | CN109690414A (ja) |
TW (1) | TW201820046A (ja) |
WO (1) | WO2018043257A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61226924A (ja) * | 1985-04-01 | 1986-10-08 | Canon Inc | 露光装置 |
JPH06140305A (ja) * | 1992-10-28 | 1994-05-20 | Nikon Corp | 投影露光装置 |
JP2000035676A (ja) * | 1998-05-15 | 2000-02-02 | Nippon Seiko Kk | 分割逐次近接露光装置 |
JP2010243680A (ja) * | 2009-04-03 | 2010-10-28 | V Technology Co Ltd | 露光方法及び露光装置 |
JP2013229536A (ja) * | 2011-06-02 | 2013-11-07 | Nsk Technology Co Ltd | 露光装置及び露光方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2699883B2 (ja) * | 1994-08-31 | 1998-01-19 | 日本電気株式会社 | 露光装置 |
JP2001215718A (ja) * | 1999-11-26 | 2001-08-10 | Nikon Corp | 露光装置及び露光方法 |
JP5630864B2 (ja) | 2010-12-06 | 2014-11-26 | 凸版印刷株式会社 | 露光装置 |
CN102955368B (zh) * | 2011-08-22 | 2015-09-30 | 上海微电子装备有限公司 | 一种步进光刻设备及光刻曝光方法 |
-
2016
- 2016-08-29 JP JP2016167193A patent/JP6723112B2/ja not_active Expired - Fee Related
-
2017
- 2017-08-23 KR KR1020197005864A patent/KR20190042592A/ko not_active Application Discontinuation
- 2017-08-23 WO PCT/JP2017/030184 patent/WO2018043257A1/ja active Application Filing
- 2017-08-23 CN CN201780053508.XA patent/CN109690414A/zh not_active Withdrawn
- 2017-08-29 TW TW106129296A patent/TW201820046A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61226924A (ja) * | 1985-04-01 | 1986-10-08 | Canon Inc | 露光装置 |
JPH06140305A (ja) * | 1992-10-28 | 1994-05-20 | Nikon Corp | 投影露光装置 |
JP2000035676A (ja) * | 1998-05-15 | 2000-02-02 | Nippon Seiko Kk | 分割逐次近接露光装置 |
JP2010243680A (ja) * | 2009-04-03 | 2010-10-28 | V Technology Co Ltd | 露光方法及び露光装置 |
JP2013229536A (ja) * | 2011-06-02 | 2013-11-07 | Nsk Technology Co Ltd | 露光装置及び露光方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201820046A (zh) | 2018-06-01 |
KR20190042592A (ko) | 2019-04-24 |
CN109690414A (zh) | 2019-04-26 |
JP2018036330A (ja) | 2018-03-08 |
JP6723112B2 (ja) | 2020-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4777682B2 (ja) | スキャン露光装置 | |
TWI602006B (zh) | Polarization polarized light irradiation device | |
KR102333949B1 (ko) | 묘화 장치 | |
KR101787137B1 (ko) | 노광 방법 및 노광 장치 | |
KR20090116333A (ko) | 상하 독립구동 방식의 양면 동시 노광시스템 | |
JP5451175B2 (ja) | 露光装置 | |
CN107450276B (zh) | 曝光装置 | |
KR20130113356A (ko) | 포토마스크 및 그것을 사용하는 레이저 어닐링 장치 및 노광 장치 | |
JP4214849B2 (ja) | 露光方法及び露光装置 | |
WO2018043257A1 (ja) | 露光装置及び露光方法 | |
JP2010092021A (ja) | 露光装置及び露光方法 | |
KR100892875B1 (ko) | 복수의 라인패턴을 활용한 3차원 스캐닝 장치 및 방법 | |
WO2007132610A1 (ja) | 露光装置 | |
JP2012173337A (ja) | マスク、近接スキャン露光装置及び近接スキャン露光方法 | |
JP2006084783A (ja) | 両面露光装置のマスクアライメント方法及びマスクアライメント装置 | |
JP7175150B2 (ja) | 露光装置 | |
JP5499398B2 (ja) | 露光装置及び露光方法 | |
JP2008224754A (ja) | 分割逐次近接露光方法及び分割逐次近接露光装置 | |
TWI735655B (zh) | 接近式曝光方法 | |
JP2008209632A (ja) | マスク装着方法及び露光装置ユニット | |
JP2008209631A (ja) | 露光装置及びそのマスク装着方法 | |
JP4738887B2 (ja) | 露光装置 | |
JP7175149B2 (ja) | 露光装置および露光方法 | |
JP7364754B2 (ja) | 露光方法 | |
CN112162465A (zh) | 曝光装置、平面显示器的制造方法、元件制造方法、及曝光方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17846262 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197005864 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17846262 Country of ref document: EP Kind code of ref document: A1 |