WO2018043067A1 - 厚鋼板およびその製造方法 - Google Patents
厚鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2018043067A1 WO2018043067A1 PCT/JP2017/028790 JP2017028790W WO2018043067A1 WO 2018043067 A1 WO2018043067 A1 WO 2018043067A1 JP 2017028790 W JP2017028790 W JP 2017028790W WO 2018043067 A1 WO2018043067 A1 WO 2018043067A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- phase
- less
- thick steel
- steel plate
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present disclosure relates to a thick steel plate and a manufacturing method thereof.
- Patent Document 1 discusses a technique for producing a steel having a uniform elongation and good strength by obtaining a fine metal structure mainly composed of an ⁇ phase and further strengthening precipitation.
- the steel slab is heated to the Ac3 transformation point to 1050 ° C., and then hot rolling is performed at a start temperature of 850 ° C. or less, an end temperature of 750 ° C. or more, and a cumulative rolling reduction of 50 to 95%.
- accelerated cooling at a cooling rate of 5 to 100 ° C./s starts from 750 ° C. or lower and stops at 600 ° C. or higher.
- Patent Document 2 discusses a technique for increasing uniform elongation without deteriorating toughness by obtaining a metal structure having a fine hard phase and retained austenite.
- heating is performed at a temperature not lower than the Ac3 transformation point and not higher than 1300 ° C, and austenite non-recrystallized region rolling having a cumulative rolling reduction of 30% or higher at least in the range of 950 ° C to Ar3 transformation point or higher
- accelerated cooling at 3 to 100 ° C./s is performed from the temperature above the Ar3 transformation point to a temperature at which the austenite fraction becomes 20 to 70%.
- One or a combination of two or more types of cooling at a cooling rate of 0.5 ° C./s or less was performed, and the steel temperature was maintained within the accelerated cooling stop temperature ⁇ 100 ° C. for 10 s to 100 s after the accelerated cooling stopped Later, cooling is disclosed.
- the space factor of ferrite occupying the entire structure is more than 90%, the average ferrite particle size is 3 to 12 ⁇ m, the maximum ferrite particle size is 40 ⁇ m or less, and the average equivalent circle diameter of the second phase is 0.8 ⁇ m.
- a technique for producing a steel excellent in impact absorption (that is, uniform elongation) and base material toughness by satisfying the following conditions and having a tensile strength of 490 MPa or more has been studied.
- the finish rolling temperature is set to 700 to 850 ° C.
- the temperature range of 700 to 500 ° C. is cooled at 3 ° C./s or more, reheated at a predetermined temperature, and after reheating, 600 to 500 It is disclosed that the temperature range of ° C. is further cooled at 2 ° C./s.
- Patent Documents 1 to 3 as described above, various studies have been made in terms of uniform elongation, strength, toughness, etc. However, when focusing on uniform elongation, problems still remain from the viewpoint of productivity. The current situation is that it must be said.
- the embodiment of the present invention has been made in view of the above circumstances, and its main purpose is to provide a thick steel plate excellent in uniform elongation and a method for manufacturing the same.
- the thick steel plate according to the embodiment of the present invention has C: 0.04 to 0.06 mass%, Si: 0.35 to 0.45 mass%, Mn: 1.49 to 1.59 mass%, P: 0 More than mass%, 0.01 mass% or less, S: more than 0 mass%, 0.002 mass% or less, Cu: 0.23 to 0.33 mass%, Al: 0.02 to 0.06 mass%, Ni : 0.24 to 0.34 mass%, Nb: 0.015 to 0.021 mass%, Ti: 0.012 to 0.018 mass%, B: 0.0007 to 0.0013 mass%, Ca: 0 .0010-0.0030 mass%, and N: 0.0040-0.0060 mass%, the balance is made of iron and inevitable impurities, and the metal structure is a hard phase harder than the first phase and the first phase. Including a certain second phase, and the hard phase is a phase composed of pearlite, and the hardness of the second phase is 260H. (Vickers hardness) is less than or equal to.
- a method for producing a thick steel plate according to an embodiment of the present invention includes: (a) a heating step of heating a steel slab having the chemical component composition to 900 to 1250 ° C .; and (b) after the step (a), 680 to A step of finish rolling at a finish rolling temperature of 800 ° C., and a step of (c) cooling to room temperature at a cooling rate A satisfying the following expression (1) after the step (b). 736.02 ⁇ [C] + 8.5 ⁇ A + 208.53 ⁇ 260 (1)
- [C] is the C content (% by mass)
- A is the cooling rate (° C./s) after finish rolling.
- the embodiment of the present invention provides a thick steel plate excellent in uniform elongation and a method for manufacturing the same.
- FIG. 1 is a graph showing the relationship between the hardness of the second phase and the value on the left side of equation (1).
- FIG. 2 is a graph showing the relationship between uniform elongation and the hardness of the second phase.
- the present inventor appropriately controlled the chemical composition of the thick steel plate, and the metal phase is a hard phase that is harder than the first phase and the first phase. That the hard phase is controlled to be a phase composed of pearlite, and further, by controlling the hardness of the second phase to 260 HV or less, a thick steel plate excellent in uniform elongation can be obtained. I found it.
- the correlation between the C content (% by mass), the cooling rate after finish rolling, and the hardness of the second phase formed after rolling is found, and the C content so as to satisfy the following formula (1) It was found that by controlling the cooling rate after finish rolling and cooling to room temperature, the hardness of the second phase can be reduced to 260 HV or less and excellent uniform elongation can be obtained. 736.02 ⁇ [C] + 8.5 ⁇ A + 208.53 ⁇ 260 (1)
- [C] is the C content (% by mass)
- A is the cooling rate (° C./s) after finish rolling.
- Thick steel plate > [1-1. Metallographic structure]
- a thick steel plate (hereinafter sometimes referred to as “steel”) according to an embodiment of the present invention has a first phase and a hard phase harder than the first phase (hereinafter referred to as “second phase”) as a metal structure. , Sometimes referred to as “hard second phase”).
- the desired uniform elongation can be obtained by controlling the hardness of the hard second phase to 260 HV or less.
- the hardness of the second phase at a portion t / 4 from the steel plate surface may be controlled as described above.
- each configuration will be described in detail.
- the hard phase to be the hard second phase is made of pearlite.
- the thick steel plate according to the embodiment of the present invention may include martensite as a third phase other than the first phase and the second phase, but does not include bainite.
- the area ratio of the hard second phase is preferably 10% or less, and more preferably 5% or less.
- the hardness of the second phase needs to be 260 HV or less, preferably 255 HV. Hereinafter, it is more preferably 250 HV or less.
- the first phase of the thick steel plate according to the embodiment of the present invention is not particularly limited, and examples thereof include a soft phase made of ferrite.
- the average particle size of the ferrite is preferably 30 ⁇ m or less.
- the average particle size of the ferrite is preferably 5 ⁇ m or more.
- the average particle diameter of the ferrite may be measured by, for example, a line segment method by photographing a metal structure using a scanning electron microscope (SEM).
- the plate thickness of the thick steel plate according to the embodiment of the present invention is not particularly limited, but is preferably 10 mm or more and 50 mm or less.
- the thick steel plate according to the embodiment of the present invention has C: 0.04 to 0.06 mass%, Si: 0.35 to 0.45 mass%, Mn: 1.49 to 1.59 mass%, P: 0 More than mass%, 0.01 mass% or less, S: more than 0 mass%, 0.002 mass% or less, Cu: 0.23 to 0.33 mass%, Al: 0.02 to 0.06 mass%, Ni : 0.24 to 0.34 mass%, Nb: 0.015 to 0.021 mass%, Ti: 0.012 to 0.018 mass%, B: 0.0007 to 0.0013 mass%, Ca: 0 .0010 to 0.0030 mass%, and N: 0.0040 to 0.0060 mass%, with the balance being iron and inevitable impurities.
- a thick steel plate excellent in uniform elongation can be obtained.
- each element will be described in detail.
- C 0.04 to 0.06 mass%
- the C content is preferably 0.042% by mass or more, more preferably 0.045% by mass or more.
- the C content is 0.06% by mass or less.
- the C content is preferably 0.058% by mass or less, more preferably 0.055% by mass or less.
- Si is an element necessary for securing high strength because it is possible to obtain a first phase that does not inhibit elongation by utilizing solid solution strengthening by suppressing precipitation.
- the Si amount needs to be 0.35% by mass or more.
- the amount of Si is preferably 0.36% by mass or more, more preferably 0.37% by mass or more.
- the amount of Si needs to be 0.45 mass% or less.
- the amount of Si is preferably 0.44% by mass or less, more preferably 0.43% by mass or less.
- Cu 0.23 to 0.33 mass%
- the amount of Cu is preferably 0.24% by mass or more, more preferably 0.25% by mass or more.
- the amount of Cu needs to be 0.33% by mass or less.
- the amount of Cu is preferably 0.32% by mass or less, more preferably 0.31% by mass or less.
- Mn is an element effective in improving hardenability and ensuring strength and toughness. In order to exhibit such an effect, it is necessary to contain 1.49 mass% or more of Mn. Mn content becomes like this. Preferably it is 1.50 mass% or more, More preferably, it is 1.51 mass% or more. However, if Mn is contained excessively, weldability and the like deteriorate, so the upper limit is made 1.59% by mass.
- the Mn content is preferably 1.58% by mass or less, more preferably 1.57% by mass or less.
- Al 0.02 to 0.06 mass% or less
- Al is an element necessary for deoxidation, and also has an effect of fixing N in steel and preventing deterioration of base metal toughness due to solute N.
- it is necessary to contain Al 0.02 mass% or more.
- Al content becomes like this.
- it is 0.025 mass% or more, More preferably, it is 0.030 mass% or more.
- Al content needs to be 0.06% by mass or less.
- Al content becomes like this.
- it is 0.055 mass% or less, More preferably, it is 0.050 mass% or less.
- Ni 0.24 to 0.34 mass%
- Ni content becomes like this.
- it is 0.25 mass% or more, More preferably, it is 0.26 mass% or more.
- the amount of Ni needs to be 0.34 mass% or less.
- Ni content becomes like this.
- it is 0.33 mass% or less, More preferably, it is 0.32 mass% or less.
- Nb is an element that is effective in improving the strength by forming carbides and carbonitrides. In order to obtain such an effect, it is necessary to contain Nb in an amount of 0.015% by mass or more.
- the Nb content is preferably 0.016% by mass or more, more preferably 0.017% by mass or more.
- the Nb content needs to be 0.021% by mass or less.
- the Nb content is preferably 0.020% by mass or less, more preferably 0.019% by mass or less.
- Ti is an element that combines with N to form TiN, prevents austenite grains, that is, ⁇ grains from being coarsened during heating before hot rolling, and contributes to improvement of base material toughness. Moreover, there is also an effect of fixing N in steel and preventing deterioration of base metal toughness due to solute N. In order to exhibit these effects, it is necessary to contain Ti 0.012 mass% or more. Ti content becomes like this. Preferably it is 0.013 mass% or more, More preferably, it is 0.014 mass% or more. On the other hand, if the Ti content is excessive, TiN becomes coarse and the base material toughness deteriorates, so it is necessary to make it 0.018% by mass or less. Ti content becomes like this. Preferably it is 0.017 mass% or less, More preferably, it is 0.016 mass% or less.
- B makes it easy to suppress the formation of a coarse ferrite structure. In order to exert such an effect, it is necessary to contain 0.0007 mass% or more of B. B content becomes like this. Preferably it is 0.0008 mass% or more, More preferably, it is 0.0009 mass% or more. However, if the amount of B is excessive, the hardenability becomes excessive and the desired uniform elongation cannot be obtained, so it is necessary to make it 0.0013% by mass or less. B content becomes like this. Preferably it is 0.0012 mass% or less, More preferably, it is 0.0011 mass% or less.
- Ca is an element that contributes to the spheroidization of MnS and is effective in improving base material toughness and ductility in the thickness direction.
- the Ca content is preferably 0.0010% by mass or more. Ca content becomes like this. Preferably it is 0.0012 mass% or more, More preferably, it is 0.0015 mass% or more. However, if the Ca content exceeds 0.0030% by mass, the inclusions become coarse and the base material toughness deteriorates. Therefore, the Ca content is 0.0030% by mass or less. Ca content becomes like this. Preferably it is 0.0028 mass% or less, More preferably, it is 0.0025 mass% or less.
- N (N: 0.0040 to 0.0060 mass%) N generates TiN and AlN, prevents coarsening of ⁇ grains during heating before hot rolling and during welding, and toughness of the base metal toughness and heat affected zone (Heat Affected Zone: HAZ) , And HAZ toughness).
- HAZ Heat Affected Zone
- HAZ heat affected Zone
- the N content needs to be 0.0040% by mass or more. N content becomes like this. Preferably it is 0.0042 mass% or more, More preferably, it is 0.0044 mass% or more.
- N content shall be 0.0060 mass% or less. N content becomes like this. Preferably it is 0.0058 mass% or less, More preferably, it is 0.0056 mass% or less.
- P is an unavoidable impurity that adversely affects the toughness of the base metal and the weld.
- the content needs to be suppressed to 0.010% by mass or less.
- P content becomes like this.
- it is 0.009 mass% or less, More preferably, it is 0.008 mass% or less.
- it is difficult to make it 0% industrially, and a minimum is about 0.002 mass%.
- S is an unavoidable impurity that adversely affects toughness and ductility in the thickness direction of the steel sheet, and is preferably as small as possible. From such a viewpoint, it is necessary to suppress S content to 0.002 mass% or less.
- the S content is more preferably 0.001% by mass or less, and still more preferably 0.0005% by mass or less.
- the basic components in the thick steel plate according to the embodiment of the present invention are as described above, and the balance is substantially iron.
- steel it is permissible for steel to contain inevitable impurities other than P and S which are brought in depending on the situation of raw materials, materials or manufacturing equipment.
- Inevitable impurities may also include Cr, Mo and / or V as other impurities introduced by the use of scrap or the like or other factors.
- the Cr content is preferably 0.1% by mass or less.
- the Cr content is more preferably 0.09 mass% or less, still more preferably 0.08 mass% or less.
- the Mo content is preferably 0.05% by mass or less. Mo content becomes like this. More preferably, it is 0.04 mass% or less, More preferably, it is 0.03 mass% or less.
- the V content is preferably 0.005% by mass or less.
- the V content is more preferably 0.003% by mass or less, and still more preferably 0.001% by mass or less.
- the thick steel plate according to the embodiment of the present invention having such a configuration is excellent in uniform elongation, and may be preferably used as a structural material for ships, buildings, bridges, construction machines and the like.
- a steel slab containing the above-described chemical composition for example, a slab is used, and the heating temperature of the steel slab, the finish rolling temperature, and the subsequent cooling rate are appropriately set. adjust. Specifically, (a) a heating step in which the steel slab having the chemical composition is heated to 900 to 1250 ° C., (b) after the step (a), finish rolling at a finish rolling temperature of 680 to 800 ° C. And (c) after the step (b), a step of cooling to room temperature at a cooling rate A satisfying the following formula (1). 736.02 ⁇ [C] + 8.5 ⁇ A + 208.53 ⁇ 260 (1)
- [C] is the C content (% by mass)
- A is the cooling rate (° C./s) after finish rolling.
- the “temperature” defined in this specification is the temperature of the material.
- (A) Heating step of heating a steel slab having the chemical composition to 900 to 1250 ° C. A steel slab containing the above-mentioned chemical composition, such as a slab, is heated to 900 to 1250 ° C. where hot rolling is possible.
- the heating temperature is preferably 1000 ° C. or higher, more preferably 1050 ° C. or higher, preferably 1200 ° C. or lower, more preferably 1150 ° C. or lower.
- finish rolling temperature is controlled to 680 to 800 ° C. to ensure strength and elongation.
- finish rolling temperature is preferably 690 ° C. or higher, more preferably 700 ° C. or higher, preferably 790 ° C. or lower, more preferably 780 ° C. or lower.
- FIG. 1 is a graph showing the relationship between the hardness of the second phase and the value on the left side of the equation (1).
- FIG. 2 is a graph showing the relationship between the hardness of the second phase and the uniform elongation.
- the plot represented by “ ⁇ ” indicates the thick steel plate of the embodiment of the present invention manufactured by cooling at a cooling rate satisfying the above formula (1).
- the plot represented by “ ⁇ ” indicates a thick steel plate of a comparative example manufactured at a cooling rate that does not satisfy the above formula (1).
- the inventor performs the steps (a) and (b) on a steel slab having a chemical composition defined in the present application, and the cooling rate after finish rolling according to the C content [C] in the steel slab.
- A so as to satisfy the above formula (1)
- the hardness of the second phase can be made 260 HV or less, and an excellent uniform elongation of 17.5% or more can be achieved.
- the above formula (1) is defined in the present application. From the viewpoint of obtaining a thick steel plate excellent in uniform elongation, the value on the left side of the above formula (1) is preferably 200 or more, more preferably 210 or more, and preferably 255 or less. Is 250 or less.
- the cumulative reduction ratio in the all hot rolling process is 60% or more. More preferably, it is 65% or more. In order to form ⁇ grains, it is necessary to apply sufficient reduction in the non-recrystallization temperature range.
- the amount of reduction in the non-recrystallization temperature region is preferably 20% or more, more preferably 25% or more, and further preferably 30% or more.
- the metal structure was observed according to the following procedure, and the average grain size of ferrite, the hardness of the second phase, and tensile properties (Uniform elongation: U. El, tensile strength: TS ) was measured.
- the metal structure was observed according to the following procedure. (1) A sample was taken from the steel plate so that a plate thickness cross section including the steel plate front and back surfaces parallel to the rolling direction and perpendicular to the steel plate surface could be observed. (2) As a polishing with wet emery polishing paper (# 150 to # 1000) or a polishing having a function equivalent to that, polishing of the observation surface was performed by polishing using a polishing agent such as diamond slurry. . (3) The polished sample was corroded using a 3% nital solution to reveal crystal grain boundaries.
- Table 3 shows the metal structure, the average particle diameter of ferrite, the hardness of the second phase, and the tensile properties (uniform elongation: U. El, tensile strength: TS).
- U. El tensile strength
- TS tensile strength
- Test No. Each of 1-4 and 19-24 is an example that satisfies all the requirements defined in the embodiment of the present invention, and is excellent in uniform elongation.
- test no. Examples 5 to 18 are examples that do not satisfy any of the requirements defined in the embodiment of the present invention.
- Test No. No. 5 is an example of a thick steel plate produced by using a steel type E in which Si, Cu and Ni are excessive and cooling at a high cooling rate not satisfying the formula (1).
- the two phase hardness exceeded 260 HV and the desired uniform elongation was not achieved.
- Test No. 6 and 7 were produced by using steel types F and G in which C is excessive, performing finish rolling at a temperature higher than the finish rolling temperature specified in the present application, and further cooling at a high cooling rate not satisfying the formula (1).
- Test No. 8 to 11 are examples of thick steel plates produced by cooling at a high cooling rate that does not satisfy the formula (1), and the desired uniform elongation was not achieved.
- Test No. Nos. 12 and 13 are examples of thick steel plates produced by finishing rolling at a temperature higher than the finishing rolling temperature specified in the present application and further cooling at a fast cooling rate not satisfying the formula (1). Exceeds 260 HV specified in the present application, and the desired uniform elongation was not achieved.
- Test No. No. 14 is an example of a thick steel plate manufactured by using a steel type N in which Si, Cu and Ni are excessive and cooling at a high cooling rate not satisfying the formula (1), and the hardness of the second phase is defined in the present application. The desired uniform elongation was not achieved.
- Test No. 15 to 18 were manufactured by using steel types O to R in which C is excessive, performing finish rolling at a temperature higher than the finish rolling temperature specified in the present application, and further cooling at a high cooling rate not satisfying the formula (1).
- the present application is a Japanese patent application filed on August 29, 2016, Japanese Patent Application No. 2016-166817, a Japanese patent application filed on May 30, 2017, and Japanese Patent Application No. 2017-106674. And a priority claim based on Japanese Patent Application No. 2017-122479, whose application date is June 22, 2017. Japanese Patent Application No. 2016-166817, Japanese Patent Application No. 2017-106667 and Japanese Patent Application No. 2017-122479 are incorporated herein by reference.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
C:0.04~0.06質量%、Si:0.35~0.45質量%、Mn:1.49~1.59質量%、P:0質量%超、0.01質量%以下、S:0質量%超、0.002質量%以下、Cu:0.23~0.33質量%、Al:0.02~0.06質量%、Ni:0.24~0.34質量%、Nb:0.015~0.021質量%、Ti:0.012~0.018質量%、B:0.0007~0.0013質量%、Ca:0.0010~0.0030質量%、およびN:0.0040~0.0060質量%を含有し、残部が鉄および不可避的不純物からなり、金属組織が第一相と第一相より硬い硬質相である第二相とを含み、当該硬質相は、パーライトからなる相であり、前記第二相の硬さが260HV以下である厚鋼板。
Description
本開示は、厚鋼板およびその製造方法に関する。
船舶、建築物、橋梁および建設機械等の大型構造物では、構造物の大型化が進む一方で、破損が生じた場合の損害の大きさから、その構造部材にはより一層の信頼性が求められている。これに伴い構造物を構成する鋼板には高強度が求められてきている。一方で鋼板は高強度になるに従って一様伸びに代表される加工性が低下する傾向にあり、双方を兼備した鋼板が求められている。
例えば特許文献1には、α相を主体とした微細な金属組織を得て、さらに析出強化を図ることにより、一様伸びおよび強度が良好な鋼を製造する技術が検討されている。
上記金属組織を得る方法として、鋼片をAc3変態点~1050℃に加熱後、開始温度が850℃以下、終了温度が750℃以上で、累積圧下率が50~95%の熱間圧延を行った後、冷却速度が5~100℃/sの加速冷却を750℃以下から開始し、600℃以上で停止することが開示されている。
上記金属組織を得る方法として、鋼片をAc3変態点~1050℃に加熱後、開始温度が850℃以下、終了温度が750℃以上で、累積圧下率が50~95%の熱間圧延を行った後、冷却速度が5~100℃/sの加速冷却を750℃以下から開始し、600℃以上で停止することが開示されている。
特許文献2には、微細な硬質相および残留オーステナイトを有する金属組織を得ることにより、靱性の劣化を伴わずに一様伸びを高める技術が検討されている。
上記金属組織を得る方法として、Ac3変態点以上、1300℃以下の温度に加熱し、少なくとも、950℃~Ar3変態点以上の範囲で累積圧下率が30%以上のオーステナイトの未再結晶域圧延を含む熱間圧延を行った後、3~100℃/sの加速冷却をAr3変態点以上の温度からオーステナイト分率が20~70%となる温度まで行い、加速冷却停止後、昇温、保持、冷速0.5℃/s以下の冷却の1種または2種以上の組み合わせを行って、加速冷却停止後から10s~100sの間、鋼の温度を加速冷却停止温度±100℃以内に維持した後、冷却することが開示されている。
上記金属組織を得る方法として、Ac3変態点以上、1300℃以下の温度に加熱し、少なくとも、950℃~Ar3変態点以上の範囲で累積圧下率が30%以上のオーステナイトの未再結晶域圧延を含む熱間圧延を行った後、3~100℃/sの加速冷却をAr3変態点以上の温度からオーステナイト分率が20~70%となる温度まで行い、加速冷却停止後、昇温、保持、冷速0.5℃/s以下の冷却の1種または2種以上の組み合わせを行って、加速冷却停止後から10s~100sの間、鋼の温度を加速冷却停止温度±100℃以内に維持した後、冷却することが開示されている。
特許文献3には、全組織に占めるフェライトの占積率:90%超、平均フェライト粒径:3~12μm、最大フェライト粒径:40μm以下、及び第2相の平均円相当径:0.8μm以下を満たし、引張強度が490MPa以上とすることにより、衝突吸収性(すなわち一様伸び)および母材靱性に優れた鋼を製造する技術が検討されている。
上記金属組織を得る方法として、仕上げ圧延温度を700~850℃とし、700~500℃の温度域を3℃/s以上で冷却し、所定の温度で再加熱し、再加熱後、600~500℃の温度域を2℃/sでさらに冷却することが開示されている。
上記金属組織を得る方法として、仕上げ圧延温度を700~850℃とし、700~500℃の温度域を3℃/s以上で冷却し、所定の温度で再加熱し、再加熱後、600~500℃の温度域を2℃/sでさらに冷却することが開示されている。
特許文献1および2共に、圧延後に加速冷却を利用して冷却速度を精緻に制御することにより微細な組織を実現しているが、実際の製造工程では長大な厚鋼板の先端から尾端までを厳密に管理することは難しく、鋼板の位置によって特性がばらつき、生産性を低下させる恐れがある。
また、特許文献3の製造方法では、一様伸びに寄与する残留オーステナイトを室温で残存させるために上記の再加熱工程が必要であり、製造工程数が多く、生産性が低下するという問題がある。
特許文献1ないし3では上記の通り、一様伸び、強度、靭性等の観点で種々の検討がなされてはいるが、特に一様伸びに着目した場合、生産性の観点からなおも問題が残されていると言わざるを得ないのが現状である。
本発明の実施形態は、上記のような事情に鑑みてなされたものであり、その主な目的は、一様伸びに優れた厚鋼板およびその製造方法を提供することにある。
本発明の実施形態に係る厚鋼板は、C:0.04~0.06質量%、Si:0.35~0.45質量%、Mn:1.49~1.59質量%、P:0質量%超、0.01質量%以下、S:0質量%超、0.002質量%以下、Cu:0.23~0.33質量%、Al:0.02~0.06質量%、Ni:0.24~0.34質量%、Nb:0.015~0.021質量%、Ti:0.012~0.018質量%、B:0.0007~0.0013質量%、Ca:0.0010~0.0030質量%、およびN:0.0040~0.0060質量%を含有し、残部が鉄および不可避的不純物からなり、金属組織が第一相と第一相より硬い硬質相である第二相とを含み、当該硬質相は、パーライトからなる相であり、前記第二相の硬さが260HV(ビッカース硬さ)以下である。
本発明の実施形態に係る厚鋼板の製造方法は、(a)前記化学成分組成を有する鋼片を、900~1250℃に加熱する加熱工程と、(b)前記工程(a)後、680~800℃の仕上げ圧延温度で仕上げ圧延する工程と、(c)前記工程(b)後、下記(1)式を満足する冷却速度Aで常温まで冷却する工程とを含む。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
本発明の実施形態により、一様伸びに優れた厚鋼板およびその製造方法が提供される。
本発明者は、上記課題を解決するために鋭意検討を行った結果、厚鋼板の化学成分組成を適切に制御し、金属組織が第一相と第一相より硬い硬質相である第二相とを含み、当該硬質相が、パーライトからなる相であるように制御し、さらに、第二相の硬さを260HV以下に制御することにより、一様伸びに優れた厚鋼板が得られることを見出した。
また、Cの含有量(質量%)および仕上げ圧延後の冷却速度と、圧延後に形成される第二相の硬さとの相関性を見出し、下記(1)式を満たすように、Cの含有量と仕上げ圧延後の冷却速度を制御して常温まで冷却することにより、第二相の硬さを260HV以下にすることができ、優れた一様伸びを得ることができることを見出した。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
また、Cの含有量(質量%)および仕上げ圧延後の冷却速度と、圧延後に形成される第二相の硬さとの相関性を見出し、下記(1)式を満たすように、Cの含有量と仕上げ圧延後の冷却速度を制御して常温まで冷却することにより、第二相の硬さを260HV以下にすることができ、優れた一様伸びを得ることができることを見出した。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
以下、本発明の実施形態に係る厚鋼板およびその製造方法について詳しく説明する。
<1.厚鋼板>
[1-1.金属組織]
本発明の実施形態に係る厚鋼板(以下、「鋼」と呼ぶことがある)は、金属組織として、第一相と第一相より硬い硬質相である第二相(以下、「第二相」、「硬質第二相」と呼ぶことがある)を含む。硬質第二相の硬さを260HV以下に制御することによって、所望の一様伸びを得ることができる。
板厚がtである厚鋼板において、例えば、鋼板表面からt/4の部位における第二相の硬さを、上記のように制御してよい。
以下、各構成について詳述する。
[1-1.金属組織]
本発明の実施形態に係る厚鋼板(以下、「鋼」と呼ぶことがある)は、金属組織として、第一相と第一相より硬い硬質相である第二相(以下、「第二相」、「硬質第二相」と呼ぶことがある)を含む。硬質第二相の硬さを260HV以下に制御することによって、所望の一様伸びを得ることができる。
板厚がtである厚鋼板において、例えば、鋼板表面からt/4の部位における第二相の硬さを、上記のように制御してよい。
以下、各構成について詳述する。
(硬質第二相)
本発明の実施形態に係る厚鋼板において、硬質第二相となる硬質相はパーライトからなる。なお、本発明の実施形態に係る厚鋼板は、第一相および第二相以外の第三相としてマルテンサイトを含む場合があるが、ベイナイトは含まない。高い一様伸びを得る観点から、硬質第二相の面積率は、10%以下であることが好ましく、より好ましくは5%以下である。
本発明の実施形態に係る厚鋼板において、硬質第二相となる硬質相はパーライトからなる。なお、本発明の実施形態に係る厚鋼板は、第一相および第二相以外の第三相としてマルテンサイトを含む場合があるが、ベイナイトは含まない。高い一様伸びを得る観点から、硬質第二相の面積率は、10%以下であることが好ましく、より好ましくは5%以下である。
(第二相の硬さ:260HV以下)
第二相が硬すぎると、非常に脆い相となり靭性が低下し、また、一様伸びが不十分となるため、第二相の硬さを260HV以下とすることが必要であり、好ましくは255HV以下、より好ましくは250HV以下である。
第二相が硬すぎると、非常に脆い相となり靭性が低下し、また、一様伸びが不十分となるため、第二相の硬さを260HV以下とすることが必要であり、好ましくは255HV以下、より好ましくは250HV以下である。
本発明の実施形態に係る厚鋼板の第一相は特に限定されないが、例えばフェライトからなる軟質相が挙げられる。第一相がフェライトからなる場合において、フェライトの平均粒径が大きすぎると、靭性が劣化すると共に、一様伸びが不十分となるため、フェライトの平均粒径を30μm以下とすることが好ましい。一方、フェライトの平均粒径が小さすぎると製造条件の制約が大きくなるため、フェライトの平均粒径を5μm以上とすることが好ましい。フェライトの平均粒径は、例えば、走査電子顕微鏡(Scanning Electron Microscope:SEM)を用いて金属組織を撮影し、線分法により測定してよい。
本発明の実施形態に係る厚鋼板の板厚は特に限定されないが、10mm以上、50mm以下であることが好ましい。
[1-2.化学成分組成]
本発明の実施形態に係る厚鋼板は、C:0.04~0.06質量%、Si:0.35~0.45質量%、Mn:1.49~1.59質量%、P:0質量%超、0.01質量%以下、S:0質量%超、0.002質量%以下、Cu:0.23~0.33質量%、Al:0.02~0.06質量%、Ni:0.24~0.34質量%、Nb:0.015~0.021質量%、Ti:0.012~0.018質量%、B:0.0007~0.0013質量%、Ca:0.0010~0.0030質量%、およびN:0.0040~0.0060質量%を含有し、残部が鉄および不可避的不純物からなる。
上記のように化学成分組成を制御することにより、一様伸びに優れた厚鋼板を得ることができる。
以下、各元素について詳述する。
本発明の実施形態に係る厚鋼板は、C:0.04~0.06質量%、Si:0.35~0.45質量%、Mn:1.49~1.59質量%、P:0質量%超、0.01質量%以下、S:0質量%超、0.002質量%以下、Cu:0.23~0.33質量%、Al:0.02~0.06質量%、Ni:0.24~0.34質量%、Nb:0.015~0.021質量%、Ti:0.012~0.018質量%、B:0.0007~0.0013質量%、Ca:0.0010~0.0030質量%、およびN:0.0040~0.0060質量%を含有し、残部が鉄および不可避的不純物からなる。
上記のように化学成分組成を制御することにより、一様伸びに優れた厚鋼板を得ることができる。
以下、各元素について詳述する。
(C:0.04~0.06質量%)
Cは、鋼板の強度を高める効果があるが、硬質相を増加させ延性を劣化させる元素でもある。C含有量が0.04質量%未満であると必要な強度を確保することが困難になる。
よってC含有量は0.04質量%以上とする。C含有量は、好ましくは0.042質量%以上、より好ましくは0.045質量%以上である。一方、C含有量が0.06質量%を超えると、強度は確保しやすくなるが、硬質相を増加させ延性の劣化につながる。よってC含有量は0.06質量%以下とする。C含有量は、好ましくは0.058質量%以下、より好ましくは0.055質量%以下である。
Cは、鋼板の強度を高める効果があるが、硬質相を増加させ延性を劣化させる元素でもある。C含有量が0.04質量%未満であると必要な強度を確保することが困難になる。
よってC含有量は0.04質量%以上とする。C含有量は、好ましくは0.042質量%以上、より好ましくは0.045質量%以上である。一方、C含有量が0.06質量%を超えると、強度は確保しやすくなるが、硬質相を増加させ延性の劣化につながる。よってC含有量は0.06質量%以下とする。C含有量は、好ましくは0.058質量%以下、より好ましくは0.055質量%以下である。
(Si:0.35~0.45質量%)
Siは、析出の抑制により、固溶強化を活用して伸びに阻害を与えない第一相を得ることができ、高強度確保のために必要な元素である。この作用を有効に発揮させるためには、Si量は0.35質量%以上とする必要がある。Si量は、好ましくは0.36質量%以上、より好ましくは0.37質量%以上である。しかし、Si量が過剰になるとマルテンサイト-オーステナイト混合相が生成しやすくなるため、靱性等他の特性を低下させる恐れがある。そのため、Si量は0.45質量%以下とする必要がある。Si量は、好ましくは0.44質量%以下、より好ましくは0.43質量%以下である。
Siは、析出の抑制により、固溶強化を活用して伸びに阻害を与えない第一相を得ることができ、高強度確保のために必要な元素である。この作用を有効に発揮させるためには、Si量は0.35質量%以上とする必要がある。Si量は、好ましくは0.36質量%以上、より好ましくは0.37質量%以上である。しかし、Si量が過剰になるとマルテンサイト-オーステナイト混合相が生成しやすくなるため、靱性等他の特性を低下させる恐れがある。そのため、Si量は0.45質量%以下とする必要がある。Si量は、好ましくは0.44質量%以下、より好ましくは0.43質量%以下である。
(Cu:0.23~0.33質量%)
Cuは、固溶強化による強度確保のために必要な元素であり、この作用を有効に発揮させるためにはCu量は0.23質量%以上とする必要がある。Cu量は、好ましくは0.24質量%以上、より好ましくは0.25質量%以上である。しかし、Cu量が過剰となると析出により延性を低下させるだけでなく、焼入れ性が過剰となり熱間加工時に割れなどが生じやすくなるため、Cu量は0.33質量%以下とする必要がある。Cu量は、好ましくは0.32質量%以下、より好ましくは0.31質量%以下である。
Cuは、固溶強化による強度確保のために必要な元素であり、この作用を有効に発揮させるためにはCu量は0.23質量%以上とする必要がある。Cu量は、好ましくは0.24質量%以上、より好ましくは0.25質量%以上である。しかし、Cu量が過剰となると析出により延性を低下させるだけでなく、焼入れ性が過剰となり熱間加工時に割れなどが生じやすくなるため、Cu量は0.33質量%以下とする必要がある。Cu量は、好ましくは0.32質量%以下、より好ましくは0.31質量%以下である。
(Mn:1.49~1.59質量%)
Mnは、焼入れ性を向上させ、強度と靭性を確保する上で有効な元素である。こうした効果を発揮させるためには、Mnを1.49質量%以上含有させる必要がある。Mn含有量は、好ましくは1.50質量%以上、より好ましくは1.51質量%以上である。しかしながらMnを過剰に含有させると、溶接性などが劣化するため、上限を1.59質量%とする。Mn含有量は、好ましくは1.58質量%以下、より好ましくは1.57質量%以下である。
Mnは、焼入れ性を向上させ、強度と靭性を確保する上で有効な元素である。こうした効果を発揮させるためには、Mnを1.49質量%以上含有させる必要がある。Mn含有量は、好ましくは1.50質量%以上、より好ましくは1.51質量%以上である。しかしながらMnを過剰に含有させると、溶接性などが劣化するため、上限を1.59質量%とする。Mn含有量は、好ましくは1.58質量%以下、より好ましくは1.57質量%以下である。
(Al:0.02~0.06質量%以下)
Alは、脱酸に必要な元素であるとともに、鋼中のNを固定して、固溶Nによる母材靭性劣化を防ぐ効果もある。このような効果を発揮させるためには、Alを0.02質量%以上含有させる必要がある。Al含有量は、好ましくは0.025質量%以上、より好ましくは0.030質量%以上である。一方、Alが過剰に含まれると、アルミナ系の粗大な介在物が形成され母材靭性が低下するので、Al含有量は0.06質量%以下とする必要がある。Al含有量は、好ましくは0.055質量%以下、より好ましくは0.050質量%以下である。
Alは、脱酸に必要な元素であるとともに、鋼中のNを固定して、固溶Nによる母材靭性劣化を防ぐ効果もある。このような効果を発揮させるためには、Alを0.02質量%以上含有させる必要がある。Al含有量は、好ましくは0.025質量%以上、より好ましくは0.030質量%以上である。一方、Alが過剰に含まれると、アルミナ系の粗大な介在物が形成され母材靭性が低下するので、Al含有量は0.06質量%以下とする必要がある。Al含有量は、好ましくは0.055質量%以下、より好ましくは0.050質量%以下である。
(Ni:0.24~0.34質量%)
Niは、焼入れ性を向上させ、組織を微細にする効果があると同時に、Cu添加により生じやすくなる熱間加工時の割れを抑制する効果がある。このような効果を発揮させるため、Ni量を0.24質量%以上含有させる必要がある。Ni含有量は、好ましくは0.25質量%以上、より好ましくは0.26質量%以上である。しかし、Niを過剰に含有させると焼入れ性が過剰となり、所望とする一様伸びが得られない。そのため、Ni量は0.34質量%以下とする必要がある。Ni含有量は、好ましくは0.33質量%以下、より好ましくは0.32質量%以下である。
Niは、焼入れ性を向上させ、組織を微細にする効果があると同時に、Cu添加により生じやすくなる熱間加工時の割れを抑制する効果がある。このような効果を発揮させるため、Ni量を0.24質量%以上含有させる必要がある。Ni含有量は、好ましくは0.25質量%以上、より好ましくは0.26質量%以上である。しかし、Niを過剰に含有させると焼入れ性が過剰となり、所望とする一様伸びが得られない。そのため、Ni量は0.34質量%以下とする必要がある。Ni含有量は、好ましくは0.33質量%以下、より好ましくは0.32質量%以下である。
(Nb:0.015~0.021質量%)
Nbは、炭化物、炭窒化物を形成して強度を向上させるのに有効な元素である。このような効果を得るには、Nbを0.015質量%以上含有させる必要がある。Nb含有量は、好ましくは0.016質量%以上、より好ましくは0.017質量%以上である。一方、Nbが過剰に含まれると、析出する炭化物や炭窒化物が過多となり、析出強化能が過剰となり、降伏比増大につながる。よってNb含有量は0.021質量%以下とする必要がある。Nb含有量は、好ましくは0.020質量%以下、より好ましくは0.019質量%以下である。
Nbは、炭化物、炭窒化物を形成して強度を向上させるのに有効な元素である。このような効果を得るには、Nbを0.015質量%以上含有させる必要がある。Nb含有量は、好ましくは0.016質量%以上、より好ましくは0.017質量%以上である。一方、Nbが過剰に含まれると、析出する炭化物や炭窒化物が過多となり、析出強化能が過剰となり、降伏比増大につながる。よってNb含有量は0.021質量%以下とする必要がある。Nb含有量は、好ましくは0.020質量%以下、より好ましくは0.019質量%以下である。
(Ti:0.012~0.018質量%)
Tiは、Nと結合してTiNを形成し、熱間圧延前の加熱時におけるオーステナイト粒、即ちγ粒の粗大化を防止し、母材靭性の向上に寄与する元素である。また、鋼中のNを固定して、固溶Nによる母材靭性の劣化を防ぐ効果もある。これらの効果を発揮させるには、Tiを0.012質量%以上含有させる必要がある。Ti含有量は、好ましくは0.013質量%以上、より好ましくは0.014質量%以上である。一方、Ti含有量が過剰になると、TiNが粗大化して母材靭性が劣化するので、0.018質量%以下とする必要がある。Ti含有量は、好ましくは0.017質量%以下、より好ましくは0.016質量%以下である。
Tiは、Nと結合してTiNを形成し、熱間圧延前の加熱時におけるオーステナイト粒、即ちγ粒の粗大化を防止し、母材靭性の向上に寄与する元素である。また、鋼中のNを固定して、固溶Nによる母材靭性の劣化を防ぐ効果もある。これらの効果を発揮させるには、Tiを0.012質量%以上含有させる必要がある。Ti含有量は、好ましくは0.013質量%以上、より好ましくは0.014質量%以上である。一方、Ti含有量が過剰になると、TiNが粗大化して母材靭性が劣化するので、0.018質量%以下とする必要がある。Ti含有量は、好ましくは0.017質量%以下、より好ましくは0.016質量%以下である。
(B:0.0007~0.0013質量%)
Bは、粗大なフェライト組織の生成を抑制しやすくする。こうした効果を発揮させるためには、Bを0.0007質量%以上含有させる必要がある。B含有量は、好ましくは0.0008質量%以上、より好ましくは0.0009質量%以上である。しかし、B量が過剰になると焼入れ性が過剰となり、所望とする一様伸びが得られないため、0.0013質量%以下とする必要がある。B含有量は、好ましくは0.0012質量%以下、より好ましくは0.0011質量%以下である。
Bは、粗大なフェライト組織の生成を抑制しやすくする。こうした効果を発揮させるためには、Bを0.0007質量%以上含有させる必要がある。B含有量は、好ましくは0.0008質量%以上、より好ましくは0.0009質量%以上である。しかし、B量が過剰になると焼入れ性が過剰となり、所望とする一様伸びが得られないため、0.0013質量%以下とする必要がある。B含有量は、好ましくは0.0012質量%以下、より好ましくは0.0011質量%以下である。
(Ca:0.0010%~0.0030質量%)
Caは、MnSの球状化に寄与し、母材靭性や板厚方向の延性の改善に有効な元素である。このような効果を発揮させるには、Ca含有量を0.0010質量%以上とすることが好ましい。Ca含有量は、好ましくは0.0012質量%以上、より好ましくは0.0015質量%以上である。しかしながら、Ca含有量が0.0030質量%を超えて過剰になると、介在物が粗大化し、母材靭性が劣化する。よってCa含有量は0.0030質量%以下とする。Ca含有量は、好ましくは0.0028質量%以下、より好ましくは0.0025質量%以下である。
Caは、MnSの球状化に寄与し、母材靭性や板厚方向の延性の改善に有効な元素である。このような効果を発揮させるには、Ca含有量を0.0010質量%以上とすることが好ましい。Ca含有量は、好ましくは0.0012質量%以上、より好ましくは0.0015質量%以上である。しかしながら、Ca含有量が0.0030質量%を超えて過剰になると、介在物が粗大化し、母材靭性が劣化する。よってCa含有量は0.0030質量%以下とする。Ca含有量は、好ましくは0.0028質量%以下、より好ましくは0.0025質量%以下である。
(N:0.0040~0.0060質量%)
Nは、TiN、AlNを生成し、熱間圧延前の加熱時、および溶接時におけるγ粒の粗大化を防止し、母材靭性や溶接熱影響部(Heat Affected Zone:HAZ)の靭性(以下、HAZ靭性という。)を向上させるのに有効な元素である。Nの含有量が0.0040質量%未満であると、上記TiN等が不足し、上記γ粒が粗大になり、母材靭性が劣化する。よってN含有量は0.0040質量%以上とする必要がある。N含有量は、好ましくは0.0042質量%以上であり、より好ましくは0.0044質量%以上である。一方、N含有量が0.0060質量%を超えて過剰になると、固溶Nの増大により、母材靭性・HAZ靭性に悪影響を及ぼす。よって、N含有量は0.0060質量%以下とする。N含有量は、好ましくは0.0058質量%以下、より好ましくは0.0056質量%以下である。
Nは、TiN、AlNを生成し、熱間圧延前の加熱時、および溶接時におけるγ粒の粗大化を防止し、母材靭性や溶接熱影響部(Heat Affected Zone:HAZ)の靭性(以下、HAZ靭性という。)を向上させるのに有効な元素である。Nの含有量が0.0040質量%未満であると、上記TiN等が不足し、上記γ粒が粗大になり、母材靭性が劣化する。よってN含有量は0.0040質量%以上とする必要がある。N含有量は、好ましくは0.0042質量%以上であり、より好ましくは0.0044質量%以上である。一方、N含有量が0.0060質量%を超えて過剰になると、固溶Nの増大により、母材靭性・HAZ靭性に悪影響を及ぼす。よって、N含有量は0.0060質量%以下とする。N含有量は、好ましくは0.0058質量%以下、より好ましくは0.0056質量%以下である。
(P:0質量%超、0.010質量%以下)
Pは、母材と溶接部の靭性に悪影響を及ぼす不可避的不純物である。こうした不都合を招かないように、その含有量を0.010質量%以下に抑制する必要がある。P含有量は、好ましくは0.009質量%以下、より好ましくは0.008質量%以下である。尚、工業上0%にすることは困難であり、下限は0.002質量%程度である。
Pは、母材と溶接部の靭性に悪影響を及ぼす不可避的不純物である。こうした不都合を招かないように、その含有量を0.010質量%以下に抑制する必要がある。P含有量は、好ましくは0.009質量%以下、より好ましくは0.008質量%以下である。尚、工業上0%にすることは困難であり、下限は0.002質量%程度である。
(S:0質量%超、0.002質量%以下)
Sは、靭性や鋼板の板厚方向の延性に悪影響を及ぼす不可避的不純物であり、少ない方が好ましい。こうした観点から、S含有量は0.002質量%以下に抑制する必要がある。S含有量は、より好ましくは0.001質量%以下、さらに好ましくは0.0005質量%以下である。
Sは、靭性や鋼板の板厚方向の延性に悪影響を及ぼす不可避的不純物であり、少ない方が好ましい。こうした観点から、S含有量は0.002質量%以下に抑制する必要がある。S含有量は、より好ましくは0.001質量%以下、さらに好ましくは0.0005質量%以下である。
本発明の実施形態に係る厚鋼板における基本成分は上述の通りであり、残部は実質的に鉄である。
但し、原料、資材または製造設備等の状況によって持ち込まれるPおよびS以外の不可避的不純物が鋼中に含まれることは当然に許容される。
また、不可避的不純物は、スクラップ等の使用または他の要因により混入されるその他の不純物として、Cr、Moおよび/またはVを含み得る。
但し、原料、資材または製造設備等の状況によって持ち込まれるPおよびS以外の不可避的不純物が鋼中に含まれることは当然に許容される。
また、不可避的不純物は、スクラップ等の使用または他の要因により混入されるその他の不純物として、Cr、Moおよび/またはVを含み得る。
Crを過剰に含有させると焼入れ性が過剰となり、所望とする一様伸びが得られない。そこで、不純物としてCrを含有する場合、Cr含有量は0.1質量%以下とすることが好ましい。Cr含有量は、より好ましくは0.09質量以下、さらに好ましくは0.08質量%以下である。
Moが過剰に含まれると焼入れ性が過剰となり、結果として耐溶接割れ性が劣化するので、不純物としてMoを含有する場合、Mo含有量は0.05質量%以下とすることが好ましい。Mo含有量は、より好ましくは0.04質量以下、さらに好ましくは0.03質量%以下である。
Vが過剰に含まれると、析出する炭化物または炭窒化物が過多となり、析出強化能が過剰となり、降伏比増大につながる。よって、不純物としてVを含有する場合、V含有量は0.005質量%以下とすることが好ましい。V含有量は、より好ましくは0.003質量%以下、さらに好ましくは0.001質量%以下である。
このような構成を有する本発明の実施形態に係る厚鋼板は一様伸びに優れており、船舶、建築物、橋梁、建設機械等の構造用材料として好ましく用いられてよい。
<2.厚鋼板の製造方法>
本発明の実施形態に係る厚鋼板を製造するためには、上述の化学成分組成を含有する鋼片、例えばスラブを用い、鋼片の加熱温度、仕上げ圧延温度、およびその後の冷却速度を適切に調整する。
具体的には、(a)前記化学成分組成を有する鋼片を、900~1250℃に加熱する加熱工程と、(b)前記工程(a)後、680~800℃の仕上げ圧延温度で仕上げ圧延する工程と、(c)前記工程(b)後、下記(1)式を満足する冷却速度Aで常温まで冷却する工程とを含む。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
本発明の実施形態に係る厚鋼板を製造するためには、上述の化学成分組成を含有する鋼片、例えばスラブを用い、鋼片の加熱温度、仕上げ圧延温度、およびその後の冷却速度を適切に調整する。
具体的には、(a)前記化学成分組成を有する鋼片を、900~1250℃に加熱する加熱工程と、(b)前記工程(a)後、680~800℃の仕上げ圧延温度で仕上げ圧延する工程と、(c)前記工程(b)後、下記(1)式を満足する冷却速度Aで常温まで冷却する工程とを含む。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
以下、各工程について詳述する。なお、本明細書で規定した「温度」は、材料の温度のことである。
[(a)前記化学成分組成を有する鋼片を、900~1250℃に加熱する加熱工程]
上述の化学成分組成を含有する鋼片、例えばスラブを、熱間圧延が可能な900~1250℃に加熱する。加熱温度は、好ましくは1000℃以上、より好ましくは1050℃以上であり、好ましくは1200℃以下、より好ましくは1150℃以下である。
上述の化学成分組成を含有する鋼片、例えばスラブを、熱間圧延が可能な900~1250℃に加熱する。加熱温度は、好ましくは1000℃以上、より好ましくは1050℃以上であり、好ましくは1200℃以下、より好ましくは1150℃以下である。
[(b)前記工程(a)後、680~800℃の仕上げ圧延温度で仕上げ圧延する工程] 前記工程(a)後、強度及び伸びを確保するため、仕上げ圧延温度を680~800℃に制御して仕上げ圧延する。仕上げ圧延温度は、好ましくは690℃以上、より好ましくは700℃以上であり、好ましくは790℃以下、より好ましくは780℃以下である。
[(c)前記工程(b)後、(1)式を満足する冷却速度Aで常温まで冷却する工程]
前記工程(b)後、下記(1)式を満足する冷却速度Aで常温まで冷却する。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
以下に、上記(1)式の技術的意義を説明する。
前記工程(b)後、下記(1)式を満足する冷却速度Aで常温まで冷却する。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
以下に、上記(1)式の技術的意義を説明する。
図1は、第二相の硬さと上記(1)式の左辺の値との関係を示すグラフである。また、図2は、第二相の硬さと一様伸びとの関係を示すグラフである。
図1および2中、「□」で表されるプロットは、上記(1)式を満足する冷却速度で冷却して製造した本発明の実施形態の例の厚鋼板を示す。一方、「○」で表されるプロットは、上記(1)式を満足しない冷却速度で製造した比較例の厚鋼板を示す。
図1および2中、「□」で表されるプロットは、上記(1)式を満足する冷却速度で冷却して製造した本発明の実施形態の例の厚鋼板を示す。一方、「○」で表されるプロットは、上記(1)式を満足しない冷却速度で製造した比較例の厚鋼板を示す。
図1に示されるように、上記(1)式の左辺の値が大きくなると、第二相の硬さが大きくなる。また、図2に示されるように、第二相の硬さが大きくなると、一様伸びが小さくなる。図1および2の結果から、上記(1)式の左辺の値を制御する、すなわち、厚鋼板中のCの含有量および仕上げ圧延後の冷却速度を制御することにより、一様伸びおよび硬質第二相の硬さの両方を制御することができることが分かる。
本発明者は、本願に規定の化学成分組成を有する鋼片に前記工程(a)および(b)を施し、鋼片中のCの含有量[C]に応じて、仕上げ圧延後の冷却速度Aを、上記(1)式を満足するように制御することにより、第二相の硬さを260HV以下にすることができ、17.5%以上の優れた一様伸びを達成することができることを見出し、上記(1)式を本願に規定した。
一様伸びに優れた厚鋼板を得る観点から、上記(1)式の左辺の値は、200以上であることが好ましく、より好ましくは210以上であり、255以下であることが好ましく、より好ましくは250以下である。
一様伸びに優れた厚鋼板を得る観点から、上記(1)式の左辺の値は、200以上であることが好ましく、より好ましくは210以上であり、255以下であることが好ましく、より好ましくは250以下である。
全熱間圧延工程での累積圧下率は60%以上とすることが好ましい。より好ましくは65%以上である。α粒を作り込むためには、未再結晶温度域で十分な圧下を加える必要がある。未再結晶温度域の圧下量は20%以上が好ましく、より好ましくは25%以上、さらに好ましくは30%以上である。
以上のように本発明の実施形態に係る厚鋼板の製造方法を説明したが、本発明の実施形態に係る厚鋼板の所望の特性を理解した当業者が試行錯誤を行い、本発明の実施形態に係る所望の特性を有する厚鋼板を製造する方法であって、上記の製造方法以外の方法を見出す可能性がある。
以下、実施例を挙げて本発明の実施形態をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前記または後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。
表1に示す鋼種A~Xの化学成分組成の鋼片を、通常の溶製法に従って溶製し鋳造した後、表2に示す製造条件で鋼片の加熱、仕上げ圧延および冷却を行ない、厚さ12~50mmである試験No.1~24の厚鋼板を製造した。
表1および2中、下線が付されたものは本発明の実施形態の規定から外れていることを意味する。
表1および2中、下線が付されたものは本発明の実施形態の規定から外れていることを意味する。
各厚鋼板について、以下の要領に従って、金属組織の観察を行い、フェライトの平均粒径、第二相の硬さ、および引張特性(一様伸び(Uniform elongation):U.El、引張強度:TS)の測定を行った。
[1.金属組織の観察]
金属組織の観察を以下の手順で行った。
(1)圧延方向に平行でかつ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を観察できるよう上記鋼板からサンプルを採取した。
(2)湿式エメリー研磨紙(#150~#1000)での研磨、またはそれと同等の機能を有する研磨として、例えばダイヤモンドスラリー等の研磨剤を用いた研磨等により、観察面の鏡面仕上を行った。
(3)研磨されたサンプルを、3%ナイタール溶液を用いて腐食し、結晶粒界を現出させた。
(4)板厚t/4部位において、光学顕微鏡を用いて、現出させた組織を400倍の倍率で観察し、組織がフェライトを有する場合には、フェライト以外を硬質第二相とし、フェライトを第一相とした。すなわち、硬質第二相は第一相より硬い。組織がフェライトを有さず、ベイナイトおよびマルテンサイトを有する場合には、ベイナイトを第一相とし、ベイナイトより硬いマルテンサイトを第二相とした。
金属組織の観察を以下の手順で行った。
(1)圧延方向に平行でかつ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を観察できるよう上記鋼板からサンプルを採取した。
(2)湿式エメリー研磨紙(#150~#1000)での研磨、またはそれと同等の機能を有する研磨として、例えばダイヤモンドスラリー等の研磨剤を用いた研磨等により、観察面の鏡面仕上を行った。
(3)研磨されたサンプルを、3%ナイタール溶液を用いて腐食し、結晶粒界を現出させた。
(4)板厚t/4部位において、光学顕微鏡を用いて、現出させた組織を400倍の倍率で観察し、組織がフェライトを有する場合には、フェライト以外を硬質第二相とし、フェライトを第一相とした。すなわち、硬質第二相は第一相より硬い。組織がフェライトを有さず、ベイナイトおよびマルテンサイトを有する場合には、ベイナイトを第一相とし、ベイナイトより硬いマルテンサイトを第二相とした。
[2.フェライトの平均粒径]
3%ナイタール溶液で腐食した上記サンプルについて、板厚t/4部位において、光学顕微鏡を用いて、第一相を100倍の倍率で観察し、10視野の写真を撮影した。当該顕微鏡写真から比較法(JIS G0551)でフェライトの粒径を求め、その平均値をフェライトの平均粒径とした。
3%ナイタール溶液で腐食した上記サンプルについて、板厚t/4部位において、光学顕微鏡を用いて、第一相を100倍の倍率で観察し、10視野の写真を撮影した。当該顕微鏡写真から比較法(JIS G0551)でフェライトの粒径を求め、その平均値をフェライトの平均粒径とした。
[3.第二相の硬さの測定方法]
3%ナイタール溶液で腐食した上記サンプルについて、板厚t/4の部位において、マイクロビッカース硬度計を用いて、0.05Nの測定荷重で第二相の硬さを測定した。第二相において10箇所以上で硬さを測定し、その平均値を第二相の硬さとした。なお、組織がマルテンサイトのみ、すなわちマルテンサイト単相の場合には、当該相の硬さを第二相の硬さとして測定した。
3%ナイタール溶液で腐食した上記サンプルについて、板厚t/4の部位において、マイクロビッカース硬度計を用いて、0.05Nの測定荷重で第二相の硬さを測定した。第二相において10箇所以上で硬さを測定し、その平均値を第二相の硬さとした。なお、組織がマルテンサイトのみ、すなわちマルテンサイト単相の場合には、当該相の硬さを第二相の硬さとして測定した。
[4.引張試験]
試験片の長手方向が圧延方向と直角となるよう全厚板状試験片(5号)を採取して、JIS Z2241:2015の要領で引張試験を行い、引張強度(TS)、および一様伸び(U.El)を測定した。
U.Elが17.5%以上の厚鋼板を実用可能な水準であると判定した。
試験片の長手方向が圧延方向と直角となるよう全厚板状試験片(5号)を採取して、JIS Z2241:2015の要領で引張試験を行い、引張強度(TS)、および一様伸び(U.El)を測定した。
U.Elが17.5%以上の厚鋼板を実用可能な水準であると判定した。
金属組織、フェライトの平均粒径、第二相の硬さ、および引張特性(一様伸び:U.El、引張強度:TS)を表3に示す。表3中、下線が付されたものは本発明の実施形態の規定から外れていることを意味する。
表3の結果より、次のように考察できる。試験No.1~4および19~24はいずれも、本発明の実施形態で規定する要件の全てを満足する例であり、一様伸びに優れている。
一方、試験No.5~18は、本発明の実施形態で規定する要件のいずれかを満たしていない例である。
試験No.5は、Si、CuおよびNiが過剰な鋼種Eを用い、(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、Cu過剰により延性が低下し、また、第二相の硬さが260HVを超えており、所望の一様伸びが達成されなかった。
試験No.6および7はそれぞれ、Cが過剰な鋼種FおよびGを用い、本願に規定の仕上げ圧延温度より高い温度で仕上げ圧延を行い、さらに(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、第二相の硬さが260HVを超えており、所望の一様伸びが達成されなかった。
試験No.8~11はそれぞれ、(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、所望の一様伸びが達成されなかった。
試験No.12および13は、本願に規定の仕上げ圧延温度より高い温度で仕上げ圧延を行い、さらに(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、第二相の硬さが本願に規定の260HVを超えており、所望の一様伸びが達成されなかった。
試験No.14は、Si、CuおよびNiが過剰な鋼種Nを用い、さらに(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、第二相の硬さが本願に規定の260HVを超えており、所望の一様伸びが達成されなかった。
試験No.15~18はそれぞれ、Cが過剰な鋼種O~Rを用い、本願に規定の仕上げ圧延温度より高い温度で仕上げ圧延を行い、さらに(1)式を満足しない速い冷却速度で冷却して製造した厚鋼板の例であり、第二相の硬さが260HVを超えており、所望の一様伸びが達成されなかった。
本出願は、出願日が2016年8月29日である日本国特許出願、特願第2016-166817号、出願日が2017年5月30日である日本国特許出願、特願第2017-106674号、及び出願日が2017年6月22日である日本国特許出願、特願第2017-122479号を基礎出願とする優先権主張を伴う。特願第2016-166817号、特願第2017-106674号及び特願第2017-122479号は参照することにより本明細書に取り込まれる。
Claims (2)
- C :0.04~0.06質量%、
Si:0.35~0.45質量%、
Mn:1.49~1.59質量%、
P :0質量%超、0.01質量%以下、
S :0質量%超、0.002質量%以下、
Cu:0.23~0.33質量%、
Al:0.02~0.06質量%、
Ni:0.24~0.34質量%、
Nb:0.015~0.021質量%、
Ti:0.012~0.018質量%、
B :0.0007~0.0013質量%、
Ca:0.0010~0.0030質量%、および
N :0.0040~0.0060質量%を含有し、
残部が鉄および不可避的不純物からなり、
金属組織が第一相と第一相より硬い硬質相である第二相とを含み、当該硬質相は、パーライトからなる相であり、
前記第二相の硬さが260HV以下である厚鋼板。 - 請求項1に記載の厚鋼板の製造方法であって、
(a)前記化学成分組成を有する鋼片を、900~1250℃に加熱する加熱工程と、 (b)前記工程(a)後、680~800℃の仕上げ圧延温度で仕上げ圧延する工程と、
(c)前記工程(b)後、下記(1)式を満足する冷却速度Aで常温まで冷却する工程と
を含む厚鋼板の製造方法。
736.02×[C]+8.5×A+208.53≦260 (1)
ここで、[C]はCの含有量(質量%)であり、Aは仕上げ圧延後の冷却速度(℃/s)である。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780051084.3A CN109642285B (zh) | 2016-08-29 | 2017-08-08 | 厚钢板及其制造方法 |
KR1020197005678A KR20190034279A (ko) | 2016-08-29 | 2017-08-08 | 후강판 및 그의 제조 방법 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-166817 | 2016-08-29 | ||
JP2016166817 | 2016-08-29 | ||
JP2017106674 | 2017-05-30 | ||
JP2017-106674 | 2017-05-30 | ||
JP2017-122479 | 2017-06-22 | ||
JP2017122479A JP6771429B2 (ja) | 2016-08-29 | 2017-06-22 | 厚鋼板およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018043067A1 true WO2018043067A1 (ja) | 2018-03-08 |
Family
ID=61300638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/028790 WO2018043067A1 (ja) | 2016-08-29 | 2017-08-08 | 厚鋼板およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018043067A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020012169A (ja) * | 2018-07-19 | 2020-01-23 | 日本製鉄株式会社 | ラインパイプ用厚鋼板およびその製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH108188A (ja) * | 1996-06-26 | 1998-01-13 | Kobe Steel Ltd | 加熱部の耐高速破壊特性に優れた加工用鋼板 |
JP2008045195A (ja) * | 2006-08-21 | 2008-02-28 | Kobe Steel Ltd | 高張力厚鋼板およびその製造方法 |
JP2009235514A (ja) * | 2008-03-27 | 2009-10-15 | Kobe Steel Ltd | 溶接熱影響部の靭性に優れた低降伏比厚鋼板 |
JP2012172258A (ja) * | 2011-02-24 | 2012-09-10 | Nippon Steel Corp | 厚鋼板の製造方法 |
WO2013015428A1 (ja) * | 2011-07-27 | 2013-01-31 | 新日鐵住金株式会社 | 伸びフランジ性及び精密打ち抜き性に優れた高強度冷延鋼板とその製造方法 |
JP2014055317A (ja) * | 2012-09-11 | 2014-03-27 | Kobe Steel Ltd | 低温靭性に優れた高張力鋼板およびその製造方法 |
JP2015127447A (ja) * | 2013-12-27 | 2015-07-09 | Jfeスチール株式会社 | 耐疲労き裂伝ぱ特性に優れた高強度鋼材およびその判定方法 |
-
2017
- 2017-08-08 WO PCT/JP2017/028790 patent/WO2018043067A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH108188A (ja) * | 1996-06-26 | 1998-01-13 | Kobe Steel Ltd | 加熱部の耐高速破壊特性に優れた加工用鋼板 |
JP2008045195A (ja) * | 2006-08-21 | 2008-02-28 | Kobe Steel Ltd | 高張力厚鋼板およびその製造方法 |
JP2009235514A (ja) * | 2008-03-27 | 2009-10-15 | Kobe Steel Ltd | 溶接熱影響部の靭性に優れた低降伏比厚鋼板 |
JP2012172258A (ja) * | 2011-02-24 | 2012-09-10 | Nippon Steel Corp | 厚鋼板の製造方法 |
WO2013015428A1 (ja) * | 2011-07-27 | 2013-01-31 | 新日鐵住金株式会社 | 伸びフランジ性及び精密打ち抜き性に優れた高強度冷延鋼板とその製造方法 |
JP2014055317A (ja) * | 2012-09-11 | 2014-03-27 | Kobe Steel Ltd | 低温靭性に優れた高張力鋼板およびその製造方法 |
JP2015127447A (ja) * | 2013-12-27 | 2015-07-09 | Jfeスチール株式会社 | 耐疲労き裂伝ぱ特性に優れた高強度鋼材およびその判定方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020012169A (ja) * | 2018-07-19 | 2020-01-23 | 日本製鉄株式会社 | ラインパイプ用厚鋼板およびその製造方法 |
JP7155703B2 (ja) | 2018-07-19 | 2022-10-19 | 日本製鉄株式会社 | ラインパイプ用厚鋼板およびその製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101892839B1 (ko) | 후강판 및 그 제조 방법 | |
JP5804229B1 (ja) | 耐摩耗鋼板およびその製造方法 | |
JP5145803B2 (ja) | 低温靭性および耐低温焼戻し脆化割れ特性に優れた耐磨耗鋼板 | |
KR101374422B1 (ko) | 고강도 강판 및 그 제조 방법 | |
JP4976906B2 (ja) | Haz靭性、母材靭性、伸び、及び強度−伸びバランスに優れた厚鋼板 | |
JP6771047B2 (ja) | 低降伏比特性及び低温靭性に優れた高強度鋼板及びその製造方法 | |
JP2011052271A (ja) | 加工性に優れた高強度冷延鋼板およびその製造方法 | |
JP6856119B2 (ja) | H形鋼およびその製造方法 | |
JP5692305B2 (ja) | 大入熱溶接特性と材質均質性に優れた厚鋼板およびその製造方法 | |
JP6847225B2 (ja) | 低温靭性に優れた低降伏比鋼板及びその製造方法 | |
JP7048378B2 (ja) | 高強度高延性鋼板 | |
JP5701483B2 (ja) | 厚さ中心部の強度及び靭性に優れて材質偏差の少ない溶接構造用極厚物鋼板及びその製造方法 | |
JP2007197823A (ja) | 低降伏比550MPa級高張力厚鋼板およびその製造方法 | |
JP4867177B2 (ja) | 焼付硬化性及び成形性に優れた高張力熱延鋼板およびその製造方法 | |
EP3964600A1 (en) | Ultra-high strength steel sheet having excellent shear workability and method for manufacturing same | |
JPWO2016060141A1 (ja) | 大入熱溶接用鋼材 | |
KR102200222B1 (ko) | 냉간 벤딩성이 우수한 고강도 구조용 강재 및 그 제조방법 | |
JP2018168411A (ja) | 高強度・高靭性厚鋼板の製造方法 | |
JP2004124113A (ja) | 非水冷型薄手低降伏比高張力鋼およびその製造方法 | |
JP7048379B2 (ja) | 高強度高延性鋼板 | |
WO2018043067A1 (ja) | 厚鋼板およびその製造方法 | |
JP6673320B2 (ja) | 厚鋼板および厚鋼板の製造方法 | |
JP4547951B2 (ja) | 加工性に優れた厚物高強度熱延鋼板およびその製造方法 | |
CN109642285B (zh) | 厚钢板及其制造方法 | |
JP6327186B2 (ja) | 非調質低降伏比高張力厚鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17846076 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197005678 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17846076 Country of ref document: EP Kind code of ref document: A1 |