WO2018042872A1 - Impact rotary tool - Google Patents

Impact rotary tool Download PDF

Info

Publication number
WO2018042872A1
WO2018042872A1 PCT/JP2017/024687 JP2017024687W WO2018042872A1 WO 2018042872 A1 WO2018042872 A1 WO 2018042872A1 JP 2017024687 W JP2017024687 W JP 2017024687W WO 2018042872 A1 WO2018042872 A1 WO 2018042872A1
Authority
WO
WIPO (PCT)
Prior art keywords
hammer
steel ball
cam structure
main
groove
Prior art date
Application number
PCT/JP2017/024687
Other languages
French (fr)
Japanese (ja)
Inventor
隆司 草川
雅理 村松
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018042872A1 publication Critical patent/WO2018042872A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket

Definitions

  • the present invention relates to an impact rotary tool.
  • Patent Document 1 discloses a striking tool that strikes an anvil holding a tip tool with a reciprocating hammer.
  • the impact tool includes a tool main body that accommodates the hammer so as to be reciprocally movable, a stopper that is provided inside the tool main body and restricts a range in which the hammer is retracted, and relieves the hammer before the hammer contacts the stopper. And a relaxation mechanism.
  • Patent Document 2 discloses an impact including a spindle rotated by a drive unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotary striking mechanism for converting the rotation of the spindle into a rotational striking and transmitting the rotation to the anvil.
  • Disclose wrench has a main hammer that is rotatable about the rotation axis of the spindle and is movable in the axial direction, and a cylindrical portion that accommodates the main hammer and that is inserted into the spindle and rotates integrally with the main hammer. With a secondary hammer.
  • the impact wrench disclosed in Patent Document 2 is provided with a cam structure in which a steel ball is arranged between a guide groove on the spindle side and an engagement groove on the main hammer side, and the main hammer can move backward and forward at high speed.
  • the rotation hitting force is transmitted to the anvil. Since the axial vibration generated at this time does not contribute to tightening of the bolt or nut, it is preferable to reduce it as much as possible. Further, when a steel ball moving between the guide groove and the engagement groove collides with the end of the groove, an impact is transmitted to the tool body, which may impair the user's workability.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for reducing vibration or impact transmitted to a tool body in an impact rotary tool having a main hammer and a sub hammer.
  • an impact rotary tool includes a drive unit, a spindle rotated by the drive unit, a main unit that is rotatable about the rotation axis of the spindle and is movable in the rotation axis direction.
  • a first cam structure in which a first steel ball is disposed between a hammer, a first guide groove on the spindle side, and a first engagement groove on the main hammer side; an anvil to which a rotational striking force is applied by the main hammer; A sub-hammer that accommodates the hammer and can rotate integrally with the main hammer; a carrier that is formed on the rear end side of the spindle and accommodates a power transmission gear; a second guide groove on the carrier side; and a second guide groove on the sub-hammer side.
  • a second cam structure in which a second steel ball is disposed between the two engaging grooves.
  • the impact rotary tool of this aspect is configured such that when the main hammer moves in the rotation axis direction, the sub hammer moves in the direction opposite to the movement direction of the main hammer.
  • the impact rotary tool is provided with a stopper member for restricting the movement range in the rotational axis direction of at least one of the main hammer and the sub hammer so that the first steel ball and the second steel ball do not contact the groove end portions of the respective cam structures. Further prepare.
  • FIG. 1 It is a section schematic diagram of the principal part of an impact rotary tool concerning an embodiment. It is a disassembled perspective view of the component of the rotation impact mechanism which concerns on embodiment. It is an assembly perspective view of the rotation impact mechanism concerning an embodiment.
  • (A) is a front side perspective view of a main hammer
  • (b) is a perspective view of a spindle and a carrier
  • (c) is a rear side perspective view of a sub hammer.
  • (A) And (b) is a figure for demonstrating the operation state of a 1st cam structure.
  • (A)-(c) is a figure which shows the positional relationship which expanded the engagement surface of the main hammer and the anvil typically in the circumferential direction.
  • (A) And (b) is a figure for demonstrating the operation state of a 2nd cam structure.
  • (A)-(c) is a figure which shows the rotation impact mechanism which concerns on embodiment. It is a schematic sectional drawing of a rotation impact mechanism.
  • (A) is a figure which shows the state which the steel ball contact
  • (b) is a figure which shows the state which the steel ball contact
  • (A) And (b) is a figure which shows the stopper member which controls the movement range of a main hammer and a sub hammer.
  • the impact rotary tool of the embodiment includes a spindle rotated by a drive unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotary impact mechanism that converts the rotation of the spindle into a rotary impact and transmits it to the anvil.
  • the rotary striking mechanism has a main hammer that is rotatable about the rotation axis of the spindle and is movable in the axial direction, and a cylindrical portion that accommodates the main hammer and that is inserted into the spindle and rotates integrally with the main hammer.
  • the rotary striking mechanism has a function of causing the main hammer to impactably engage the anvil and rotating the anvil about the axis.
  • FIG. 1 is a schematic cross-sectional view of a main part of an impact rotary tool according to an embodiment.
  • the alternate long and short dash line indicates the rotational axis of the impact rotary tool 1.
  • FIG. 2 is an exploded perspective view of components of the rotary impact mechanism according to the embodiment
  • FIG. 3 is an assembled perspective view of the rotary impact mechanism according to the embodiment.
  • the illustration of a later-described stopper member 27 is omitted for ease of viewing.
  • 4A is a front perspective view of the main hammer
  • FIG. 4B is a perspective view of the spindle and the carrier
  • FIG. 4C is a rear perspective view of the auxiliary hammer.
  • the impact rotary tool 1 includes a housing 2 that constitutes a tool body.
  • the upper part of the housing 2 forms an accommodation space for accommodating various components, and the lower part of the housing 2 constitutes a grip portion 3 that is gripped by the user.
  • An operation switch 4 that is operated by a user's finger is provided on the front side of the grip 3, and a battery (not shown) that supplies power to the drive unit 10 is provided at the lower end of the grip 3.
  • the drive unit 10 is an electric motor, and the drive shaft 10 a of the drive unit 10 is connected to the carrier 16 and the spindle 11 via the power transmission mechanism 12.
  • the carrier 16 is formed on the rear end side of the spindle 11 and accommodates a power transmission gear. Referring to FIG. 4B, the carrier 16 has a front member 16b having a diameter larger than that of the spindle 11, and a rear member 16c positioned rearward of the front member 16b. A space 16d for accommodating the gear is formed between the member 16c and the member 16c.
  • the power transmission mechanism 12 includes a sun gear 13 that is press-fitted and fixed to the tip of the drive shaft 10 a, two planetary gears 14 that mesh with the sun gear 13, and an internal gear 15 that meshes with the planetary gear 14.
  • the planetary gear 14 is rotatably supported in a space 16d of the carrier 16 by a support shaft 14a fixed to the front member 16b and the rear member 16c.
  • the internal gear 15 is fixed to the inner peripheral surface of the housing 2.
  • the rotation of the drive shaft 10a is decelerated based on the ratio between the number of teeth of the sun gear 13 and the number of teeth of the internal gear 15, and the rotational torque is increased. .
  • the carrier 16 and the spindle 11 can be driven at low speed and high torque.
  • the rotary impact mechanism of the impact rotary tool 1 includes a spindle 11, a carrier 16, a main hammer 20, a secondary hammer 21, and a spring member 23.
  • the spindle 11 is formed in a columnar shape, and a small-diameter protrusion 11 a is formed at the tip thereof coaxially with the axis of the spindle 11.
  • the protrusion 11a is inserted in a rotatable state into a hole having a cylindrical inner space formed in the rear part of the anvil 22.
  • a steel main hammer 20 having a substantially disc shape and having a through hole in the center is mounted on the outer periphery of the spindle 11.
  • a pair of hammer claws 20 a projecting toward the anvil 22 are formed on the front surface of the main hammer 20.
  • the main hammer 20 is attached to the spindle 11 so as to be rotatable about the rotation axis of the spindle 11 and to be movable in the direction of the rotation axis of the spindle 11, that is, in the front-rear direction.
  • the main hammer 20 can apply a rotational striking force to the anvil 22.
  • the auxiliary hammer 21 is formed as a steel cylindrical member, and is divided into a front part 21a and a rear part 21b by an annular partition part 21e.
  • the sub hammer 21 accommodates the main hammer 20 in the internal space of the front portion 21a.
  • the auxiliary hammer 21 and the main hammer 20 are provided with an integral rotation mechanism that rotates together.
  • the main hammer 20 includes four first pin grooves 20 d on its outer peripheral surface and having a semicircular cross section and parallel to the rotation axis of the spindle 11.
  • the auxiliary hammer 21 includes four second pin grooves 21 c on the inner peripheral surface of the front portion 21 a and having a semicircular cross section and parallel to the rotation axis of the spindle 11.
  • the four second pin grooves 21 c of the sub hammer 21 are formed at positions corresponding to the four first pin grooves 20 d of the main hammer 20.
  • the first pin grooves 20 d may be formed at an interval of 90 degrees on the outer peripheral surface of the main hammer 20.
  • the second pin grooves 21 c are formed at an interval of 90 degrees on the inner peripheral surface of the sub hammer 21.
  • an engagement pin 26 that is a cylindrical member is disposed in the second pin groove 21c.
  • the engagement pin 26 may be a needle roller.
  • the engaging pin 26 is inserted into the second pin groove 21c from the front end side of the sub hammer 21 and inserted to the groove bottom.
  • a stop member 27 having a function of preventing the engagement pin 26 from being detached is fitted into the annular groove 21d formed on the inner peripheral surface of the sub hammer 21.
  • the four first pin grooves 20d of the main hammer 20 and the four engagement pins 26 are aligned with the four engagement pins 26 attached to the four second pin grooves 21c of the sub hammer 21. Then, the main hammer 20 is inserted into the sub hammer 21. As a result, the main hammer 20 and the sub hammer 21 can be rotated together around the rotation axis of the spindle 11.
  • the main hammer 20 has an annular recess 20c on the rear side.
  • the spring member 23 is interposed between the concave portion 20 c of the main hammer 20 and the annular partition portion 21 e of the sub hammer 21.
  • the main hammer 20 can move in the front-rear direction using the engaging pin 26 as a guide, and can apply a rotational striking force to the anvil 22 by the biasing force of the spring member 23.
  • the spindle 11 includes two first guide grooves 11b on the outer peripheral surface thereof, and the main hammer 20 includes two first engagement grooves 20b on the inner peripheral surface of the through hole.
  • a steel ball 19 is disposed between the first guide groove 11b and the first engagement groove 20b.
  • the first guide groove 11b on the spindle 11 side, the first engagement groove 20b on the main hammer 20 side, and the steel ball 19 disposed therebetween constitute a “first cam structure”.
  • the first cam structure has a role of moving the main hammer 20 in the rotation axis direction with respect to the spindle 11.
  • the carrier 16 includes three second guide grooves 16a on the outer periphery of the front surface of the front member 16b, and the auxiliary hammer 21 includes three second engagement grooves 21f on the rear surface of the annular partition portion 21e.
  • a steel ball 17 is disposed between the second guide groove 16a and the second engagement groove 21f.
  • the second guide groove 16a on the carrier 16 side, the second engagement groove 21f on the sub hammer 21 side, and the steel ball 17 disposed between them constitute a “second cam structure”.
  • the second cam structure has a role of moving the auxiliary hammer 21 in the rotational axis direction with respect to the carrier 16.
  • the first guide groove 11b is formed in a V-shape or a U-shape when viewed from the tip side of the tool. That is, the 1st guide groove 11b has two inclination grooves which incline in the back diagonal direction symmetrically from the foremost part.
  • the first engagement groove 20b is formed in a V-shape or U-shape that is opposite to the tool tip side.
  • the second guide groove 16a is formed in a V shape or a U shape as viewed from the rear end side of the tool. That is, the second guide groove 16a has two inclined grooves that are symmetrically inclined in the front oblique direction from the rearmost part.
  • the second engagement groove 21f is formed in a V-shape or U-shape in the reverse direction when viewed from the tool rear end side.
  • the first guide groove 11b and the second guide groove 16a are formed with inclined grooves extending in different directions in the rotation axis direction.
  • the anvil 22 that engages with the main hammer 20 is made of steel, and is rotatably supported by the housing 2 via a steel or brass sliding bearing.
  • the tip of the anvil 22 is provided with a tool mounting portion 22a having a square cross section for mounting a socket body to be mounted on the head of a hexagon bolt or a hexagon nut.
  • a pair of anvil claws that engage with the pair of hammer claws 20a of the main hammer 20 are provided at the rear of the anvil 22.
  • Each of the pair of anvil claws is formed as a columnar member having a sectional fan shape.
  • the anvil claw of the anvil 22 and the hammer claw 20a of the main hammer 20 do not necessarily have to be two, and if the number of the respective claws is equal, three or more at equal intervals in the circumferential direction of the anvil 22 and the main hammer 20 It may be provided.
  • the impact rotary tool 1 includes at least one of the main hammer 20 and the sub hammer 21 so that the steel ball 19 in the first cam structure and the steel ball 17 in the second cam structure do not come into contact with the groove end portions in the respective cam structures.
  • a stopper member for restricting the movement range in the direction of the one rotation axis is provided.
  • the stopper member 30 is provided between the main hammer 20 and the carrier 16 and restricts the movement range of the main hammer 20 in the rotation axis direction. The stopper member 30 will be described in detail later.
  • FIG. 5A is a diagram for explaining the state of the first cam structure immediately after the start of tightening of the bolts and nuts.
  • FIG. 5B is a diagram for explaining the state of the first cam structure after a lapse of time from the start of tightening.
  • FIGS. 6A to 6C show a positional relationship in which the engagement surfaces of the main hammer 20 and the anvil 22 are schematically developed in the circumferential direction.
  • FIG. 6A shows an engagement state between the hammer claw 20a of the main hammer 20 and the anvil claw 22b of the anvil 22 immediately after the start of tightening the bolts and nuts.
  • a rotational force A due to the rotation of the driving unit 10 is applied to the main hammer 20 in the direction indicated by the arrow. Further, a forward biasing force B by the spring member 23 is applied to the main hammer 20 in the direction indicated by the arrow.
  • the rotational force of the main hammer 20 is transmitted to the anvil 22 due to the engagement between the hammer claws 20a and the anvil claws 22b.
  • a socket body (not shown) attached to the tool mounting portion 22a rotates, and initial tightening is performed by applying a rotational force to the bolts and nuts. Since the spring member 23 applies the urging force B to the main hammer 20, the steel ball 19 is positioned at the foremost part in the first guide groove 11 b as shown in FIG. At this time, the hammer claw 20a and the anvil claw 22b are engaged with each other with the maximum engagement length.
  • the hammer claw 20 a moves along the locus indicated by the arrow G, collides with the anvil claw 22 b, and applies a striking force in the rotation direction to the anvil 22. Thereafter, the hammer claw 20a is moved in the direction opposite to the locus G by the reaction, but finally returns to the state shown in FIG. 6A by the rotational force A and the urging force B. The above operation is repeated, and the rotational hitting force by the main hammer 20 is repeatedly applied to the anvil 22.
  • FIG. 7A is a diagram for explaining the state of the second cam structure immediately after the start of tightening of the bolts and nuts.
  • FIG.7 (b) is a figure for demonstrating the state of the 2nd cam structure after time progress from a fastening start.
  • FIG. 7B shows a state in which the steel ball 17 is moving in the second guide groove 16a.
  • the secondary hammer 21 moves in the direction opposite to the moving direction (X direction) of the main hammer 20. That is, when the main hammer 20 moves backward, the auxiliary hammer 21 moves forward.
  • the sub hammer 21 moves in the direction opposite to the moving direction of the main hammer 20. Is configured to do. Since the sub hammer 21 moves in the direction opposite to the moving direction of the main hammer 20, vibration generated by the movement of the main hammer 20 in the axial direction can be absorbed, and vibration transmitted to the user's hand can be reduced.
  • the amount of movement of the main hammer 20 in the axial direction and the amount of movement of the auxiliary hammer 21 in the axial direction are defined by the shapes of the first cam structure and the second cam structure, respectively. Since the ratio of the amount of movement for canceling axial vibrations preferably depends on the masses of the main hammer 20 and the secondary hammer 21, the shapes of the first cam structure and the second cam structure are the main hammer 20 and It is preferable to design appropriately according to the mass of the secondary hammer 21.
  • FIG. 8A shows a front view of the rotary striking mechanism.
  • FIG. 8A shows a state in which the steel ball 19 is positioned at the foremost part of the first guide groove 11b.
  • the first engagement groove 20b having a shape opposite to that of the first guide groove 11b has two inclined grooves inclined forward from the rearmost part where the steel ball 19 is disposed.
  • FIG. 8B shows a CC cross-sectional view of the rotary impact mechanism. In FIG. 8B, illustration of the spring member 23, the planetary gear 14 and the like is omitted. In this state, the steel ball 17 is located at the rearmost part of the second guide groove 16a.
  • FIG. 8C shows a DD sectional view of the rotary striking mechanism.
  • the second guide groove 16a has two inclined grooves inclined forward from the rearmost part where the steel ball 17 is disposed.
  • FIG. 9 is a schematic cross-sectional view of the rotary impact mechanism when the steel ball moves in the first cam structure and the second cam structure.
  • the main hammer 20 moves backward by the movement amount M with respect to the spindle 11, and the auxiliary hammer 21 moves forward by the movement amount N with respect to the carrier 16.
  • the movement amount M of the main hammer 20 reaches a distance corresponding to the maximum engagement length between the hammer claws 20a and the anvil claws 22b, the engagement between the hammer claws 20a and the anvil claws 22b. The match is released.
  • the inclined groove length of the first guide groove 11b is such that when the movement amount M of the main hammer 20 reaches the maximum engagement length of the hammer claw 20a and the anvil claw 22b, the steel ball 19 is at the end of the inclined groove of the first guide groove 11b. Designed to a length that does not abut. The same applies to the second cam structure.
  • the steel ball 17 hits the inclined groove end of the second guide groove 16a.
  • the inclined groove length of the second guide groove 16a is designed so as not to contact.
  • FIG. 10A shows a state in which the steel ball 17 is in contact with the groove end portion 16e of the second guide groove 16a in the second cam structure. If the steel ball 17 collides with the groove end portion 16e, the impact is transmitted to the user, which is not preferable.
  • FIG. 10B shows a state in which the steel ball 19 is in contact with the groove end portion 11c of the first guide groove 11b in the first cam structure. Similarly to the state shown in FIG. 10A, it is not preferable that the steel ball 19 collides with the groove end portion 11c.
  • the movable range of the inclined groove of the first cam structure is approximately 90 degrees
  • the movable range of the inclined groove of the second cam structure is Is approximately 60 degrees
  • the range of motion of the second cam structure is narrower. This means that the second cam structure reaches the movable limit earlier than the first cam structure.
  • the steel ball 19 does not collide with the groove end portion 11c in the first cam structure.
  • Which cam structure reaches the movable limit first depends on the circumferential movable range of each guide groove. Therefore, if the movable range of the first cam structure is narrower, the steel ball 19 may collide with the groove end portion 11c of the first guide groove 11b as shown in FIG. 10 (b).
  • the impact rotary tool 1 is a stopper that restricts the movement range of at least one of the main hammer 20 and the sub hammer 21 in the rotational axis direction so that the steel ball 19 and the steel ball 17 do not come into contact with the groove ends of the respective cam structures.
  • a member is provided.
  • the stopper member 30 is an annular member fixed to the front member 16 b so as to surround the base portion of the spindle 11, and restricts the range of movement of the main hammer 20 in the backward direction.
  • the front end portion of the stopper member 30 in the initial state before the operation of the impact rotary tool 1 is the rear end of the main hammer 20 before the steel ball 19 or the steel ball 17 contacts the groove end portion of the cam structure when the main hammer 20 is retracted. It arrange
  • the cam structure that reaches the movable limit first is specified by the width of the circumferential movable range of the first cam structure and the second cam structure.
  • the stopper member is the groove end of the first cam structure. It is preferable to restrict the movement of the main hammer 20 in the direction of the rotation axis so as not to contact the portion 11c. By restricting the movement of the main hammer 20 connected to the first cam structure having the movable limit first, the collision between the steel ball 19 and the groove end portion 11c can be effectively avoided.
  • the stopper member 30 is disposed so as to face the rear end portion of the main hammer 20, so that the operation of the first cam structure can be limited before the movable limit.
  • the stopper member is configured such that the steel ball 17 is the second cam. It is preferable to restrict the range of movement of the auxiliary hammer 21 in the rotation axis direction so as not to contact the groove end portion 16e of the structure.
  • FIG. 11 shows a stopper member 31 that regulates the movement range of the auxiliary hammer 21.
  • the stopper member 31 is provided between the sub hammer 21 and a member located in the forward direction of the sub hammer 21 and restricts the movement range of the sub hammer 21 in the rotation axis direction.
  • the member located in the forward direction of the auxiliary hammer 21 is the housing 2, but may be another member.
  • the stopper member 31 is an annular member that faces the front end portion of the sub hammer 21 and is fixed to the housing 2. In the initial state, the rear end portion of the stopper member 31 is disposed at a position where it contacts the front end portion of the sub hammer 21 before the steel ball 17 contacts the groove end portion 16e in the second cam structure.
  • the impact rotary tool 1 may be provided with either the stopper member 30 or the stopper member 31 corresponding to the cam structure in which the movable limit comes first, but may also include both.
  • the stopper member 30 restricts the movement range of the main hammer 20 in the rotation axis direction
  • the stopper member 31 restricts the movement range of the sub hammer 21 in the rotation axis direction.
  • the impact rotary tool 1 preferably includes both the stopper member 30 and the stopper member 31.
  • FIG. 12A shows the stopper member 32 that regulates the movement range of the main hammer 20 and the sub hammer 21.
  • the stopper member 32 is provided inside the sub hammer 21 and restricts the movement range of the main hammer 20 and the sub hammer 21 in the rotation axis direction.
  • FIG. 12B shows an example of the assembly process of the stopper member 32.
  • the stopper member 32 is provided with four pin grooves 32 a on the outer peripheral surface thereof and having a semicircular cross section and parallel to the rotation axis of the spindle 11. Engagement pins 26 attached to the sub hammer 21 are inserted into the four pin grooves 32 a of the stopper member 32.
  • the stopper member 32 may be fixed to the annular partition portion 21e, but may not be fixed.
  • the front end portion of the stopper member 32 faces the outer peripheral rear end portion of the main hammer 20.
  • the distance between the front end portion of the stopper member 32 and the outer peripheral rear end portion of the main hammer 20 in the initial state is such that the steel ball 19 or the steel ball 17 comes into contact with the groove end portion of each cam structure when the main hammer 20 is retracted.
  • the distance between the front end portion of the member 32 and the outer peripheral rear end portion of the main hammer 20 is set.
  • the stopper member 32 has an advantage that the movement range in the rotation axis direction of the main hammer 20 and the sub hammer 21 can be restricted independently.
  • An impact rotary tool (1) includes a drive unit (10), a spindle (11) rotated by the drive unit, and can rotate about the rotation axis of the spindle and move in the rotation axis direction.
  • a first hammer structure in which a first steel ball (19) is disposed between a main hammer (20), a first guide groove (11b) on the spindle side, and a first engagement groove (20b) on the main hammer side;
  • the second cam structure in which the second steel ball (17) is disposed between the carrier (16) for housing the second guide groove (16a) on the carrier side and the second engagement groove (21f) on the sub hammer side
  • Hammer is configured to move in a direction opposite to the moving direction of the main hammer.
  • the impact rotary tool (1) regulates the movement range in the rotational axis direction of at least one of the primary hammer and the secondary hammer so that the first steel ball and the second steel ball do not contact the groove end portions of the respective cam structures.
  • a stopper member (30, 31, 32) is further provided.
  • the stopper member (30) The movement range of the main hammer in the rotational axis direction may be restricted so that the first steel ball does not contact the groove end portion of the first cam structure.
  • the stopper member (31 ) May regulate the range of movement of the auxiliary hammer in the rotational axis direction so that the second steel ball does not contact the groove end of the second cam structure.
  • the stopper member (30) may be provided between the main hammer and the carrier to regulate the movement range of the main hammer in the rotation axis direction. Further, the stopper member (31) may be provided between the sub hammer and the member (2) positioned in the forward direction of the sub hammer to restrict the movement range of the sub hammer in the rotation axis direction. Further, the stopper member (32) may be provided inside the auxiliary hammer to restrict the movement range of the main hammer and the auxiliary hammer in the rotation axis direction.
  • SYMBOLS 1 Impact rotary tool, 2 ... Housing, 11 ... Spindle, 11b ... 1st guide groove, 11c ... Groove edge part, 12 ... Power transmission mechanism, 16 ... Carrier, 16a ... second guide groove, 16e ... groove end, 17, 19 ... steel ball, 20 ... main hammer, 20b ... first engagement groove, 21 ... sub hammer, 21f ... 2nd engagement groove, 22 ... Anvil, 23 ... Spring member, 30, 31, 32 ... Stopper member.
  • the present invention can be used for tools such as impact rotary tools.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

This impact rotary tool (1) is provided with: a primary hammer (20) capable of rotating about the axis of rotation of a spindle (11) and capable of moving in the direction of the axis of rotation; a first cam structure having a steel ball (19) disposed between a first guide groove (11b) on the spindle side and a first engagement groove (20b) on the primary hammer side; a secondary hammer (21) accommodating the primary hammer and capable of rotating with the primary hammer; a carrier (16) formed on the rear end side of the spindle and accommodating a gear for transmitting power; and a second cam structure having a steel ball (17) disposed between a second guide groove (16a) on the carrier side and a second engagement groove (21f) on the secondary hammer side. A stopper member (30) restricts the range of movement of the primary hammer and/or the secondary hammer in the direction of the axis of rotation so that the steel ball (19) and the steel ball (17) will not come into contact with groove ends of the respective cam structures.

Description

インパクト回転工具Impact rotary tool
 本発明は、インパクト回転工具に関する。 The present invention relates to an impact rotary tool.
 特許文献1は、先端工具を保持するアンビルを、往復動作するハンマで打撃する打撃工具を開示する。この打撃工具は、ハンマを往復動作可能に収容する工具本体と、工具本体の内部に設けられてハンマが後退する範囲を規制するストッパと、ハンマがストッパに接触する前にハンマの後退を緩和する緩和機構とを備える。 Patent Document 1 discloses a striking tool that strikes an anvil holding a tip tool with a reciprocating hammer. The impact tool includes a tool main body that accommodates the hammer so as to be reciprocally movable, a stopper that is provided inside the tool main body and restricts a range in which the hammer is retracted, and relieves the hammer before the hammer contacts the stopper. And a relaxation mechanism.
 特許文献2は、駆動部によって回転されるスピンドルと、スピンドルの回転軸線方向の前方に配置されたアンビルと、スピンドルの回転を回転打撃に変換してアンビルに伝達する回転打撃機構とを備えたインパクトレンチを開示する。回転打撃機構は、スピンドルの回転軸線を中心に回転可能かつ軸線方向に移動可能な主ハンマと、主ハンマが収容されるとともにスピンドルが挿通されて主ハンマと一体となって回転する円筒部を有する副ハンマとを備える。 Patent Document 2 discloses an impact including a spindle rotated by a drive unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotary striking mechanism for converting the rotation of the spindle into a rotational striking and transmitting the rotation to the anvil. Disclose wrench. The rotary striking mechanism has a main hammer that is rotatable about the rotation axis of the spindle and is movable in the axial direction, and a cylindrical portion that accommodates the main hammer and that is inserted into the spindle and rotates integrally with the main hammer. With a secondary hammer.
特開2014-188612号公報JP 2014-188612 A 特開2014-240108号公報JP 2014-240108 A
 特許文献2に開示されるインパクトレンチでは、スピンドル側の案内溝と主ハンマ側の係合溝との間に鋼球を配置したカム構造が設けられ、主ハンマがカム構造により後退と前進を高速で繰り返すことでアンビルに回転打撃力を伝達する。このとき発生する軸線方向の振動はボルトやナットの締め付けに寄与しないため、可能な限り低減することが好ましい。また案内溝と係合溝の間を移動する鋼球が溝端部に衝突すると、工具本体に衝撃が伝達されて、ユーザの作業性を損なうことがある。 The impact wrench disclosed in Patent Document 2 is provided with a cam structure in which a steel ball is arranged between a guide groove on the spindle side and an engagement groove on the main hammer side, and the main hammer can move backward and forward at high speed. By repeating the above, the rotation hitting force is transmitted to the anvil. Since the axial vibration generated at this time does not contribute to tightening of the bolt or nut, it is preferable to reduce it as much as possible. Further, when a steel ball moving between the guide groove and the engagement groove collides with the end of the groove, an impact is transmitted to the tool body, which may impair the user's workability.
 本発明はこうした状況に鑑みなされたものであり、その目的は、主ハンマと副ハンマとを有するインパクト回転工具において、工具本体に伝達される振動ないしは衝撃を低減させる技術を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a technique for reducing vibration or impact transmitted to a tool body in an impact rotary tool having a main hammer and a sub hammer.
 上記課題を解決するために、本発明のある態様のインパクト回転工具は、駆動部と、駆動部により回転されるスピンドルと、スピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能な主ハンマと、スピンドル側の第1案内溝と主ハンマ側の第1係合溝との間に第1鋼球を配置した第1カム構造と、主ハンマにより回転打撃力が加えられるアンビルと、主ハンマを収容して主ハンマと一体に回転可能な副ハンマと、スピンドルの後端側に形成されて動力伝達用の歯車を収容するキャリアと、キャリア側の第2案内溝と副ハンマ側の第2係合溝との間に第2鋼球を配置した第2カム構造とを備える。この態様のインパクト回転工具は、主ハンマが回転軸線方向に移動すると、副ハンマが主ハンマの移動方向とは逆方向に移動するように構成される。インパクト回転工具は、第1鋼球および第2鋼球がそれぞれのカム構造における溝端部に当接しないように、主ハンマまたは副ハンマの少なくとも一方の回転軸線方向の移動範囲を規制するストッパ部材をさらに備える。 In order to solve the above-described problems, an impact rotary tool according to an aspect of the present invention includes a drive unit, a spindle rotated by the drive unit, a main unit that is rotatable about the rotation axis of the spindle and is movable in the rotation axis direction. A first cam structure in which a first steel ball is disposed between a hammer, a first guide groove on the spindle side, and a first engagement groove on the main hammer side; an anvil to which a rotational striking force is applied by the main hammer; A sub-hammer that accommodates the hammer and can rotate integrally with the main hammer; a carrier that is formed on the rear end side of the spindle and accommodates a power transmission gear; a second guide groove on the carrier side; and a second guide groove on the sub-hammer side. A second cam structure in which a second steel ball is disposed between the two engaging grooves. The impact rotary tool of this aspect is configured such that when the main hammer moves in the rotation axis direction, the sub hammer moves in the direction opposite to the movement direction of the main hammer. The impact rotary tool is provided with a stopper member for restricting the movement range in the rotational axis direction of at least one of the main hammer and the sub hammer so that the first steel ball and the second steel ball do not contact the groove end portions of the respective cam structures. Further prepare.
実施形態に係るインパクト回転工具の主要部の断面概略図である。It is a section schematic diagram of the principal part of an impact rotary tool concerning an embodiment. 実施形態に係る回転打撃機構の構成部品の分解斜視図である。It is a disassembled perspective view of the component of the rotation impact mechanism which concerns on embodiment. 実施形態に係る回転打撃機構の組立斜視図である。It is an assembly perspective view of the rotation impact mechanism concerning an embodiment. (a)は主ハンマの前面側斜視図であり、(b)はスピンドルおよびキャリアの斜視図であり、(c)は副ハンマの後面側斜視図である。(A) is a front side perspective view of a main hammer, (b) is a perspective view of a spindle and a carrier, and (c) is a rear side perspective view of a sub hammer. (a)および(b)は第1カム構造の動作状態を説明するための図である。(A) And (b) is a figure for demonstrating the operation state of a 1st cam structure. (a)~(c)は主ハンマとアンビルの係合面を周方向に模式的に展開した位置関係を示す図である。(A)-(c) is a figure which shows the positional relationship which expanded the engagement surface of the main hammer and the anvil typically in the circumferential direction. (a)および(b)は第2カム構造の動作状態を説明するための図である。(A) And (b) is a figure for demonstrating the operation state of a 2nd cam structure. (a)~(c)は、実施形態に係る回転打撃機構を示す図である。(A)-(c) is a figure which shows the rotation impact mechanism which concerns on embodiment. 回転打撃機構の概略断面図である。It is a schematic sectional drawing of a rotation impact mechanism. (a)は第2カム構造において鋼球が溝端部に当接した状態を示す図であり、(b)は第1カム構造において鋼球が溝端部に当接した状態を示す図である。(A) is a figure which shows the state which the steel ball contact | abutted to the groove end part in the 2nd cam structure, (b) is a figure which shows the state which the steel ball contact | abutted to the groove end part in the 1st cam structure. 副ハンマの移動範囲を規制するストッパ部材を示す図である。It is a figure which shows the stopper member which controls the movement range of a sub hammer. (a)および(b)は主ハンマおよび副ハンマの移動範囲を規制するストッパ部材を示す図である。(A) And (b) is a figure which shows the stopper member which controls the movement range of a main hammer and a sub hammer.
 実施形態のインパクト回転工具は、駆動部により回転されるスピンドルと、スピンドルの回転軸線方向の前方に配置されたアンビルと、スピンドルの回転を回転打撃に変換してアンビルに伝達する回転打撃機構とを備える。回転打撃機構は、スピンドルの回転軸線を中心に回転可能かつ軸線方向に移動可能な主ハンマと、主ハンマが収容されるとともにスピンドルが挿通されて主ハンマと一体となって回転する円筒部を有する副ハンマを備える。回転打撃機構は、主ハンマをアンビルに衝撃的に係合させて、アンビルを軸線回りに回転させる機能をもつ。 The impact rotary tool of the embodiment includes a spindle rotated by a drive unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotary impact mechanism that converts the rotation of the spindle into a rotary impact and transmits it to the anvil. Prepare. The rotary striking mechanism has a main hammer that is rotatable about the rotation axis of the spindle and is movable in the axial direction, and a cylindrical portion that accommodates the main hammer and that is inserted into the spindle and rotates integrally with the main hammer. Provide a secondary hammer. The rotary striking mechanism has a function of causing the main hammer to impactably engage the anvil and rotating the anvil about the axis.
 図1は、実施形態に係るインパクト回転工具の主要部の断面概略図を示す。図1において一点鎖線は、インパクト回転工具1における回転軸線を示している。図2は、実施形態に係る回転打撃機構の構成部品の分解斜視図を示し、図3は、実施形態に係る回転打撃機構の組立斜視図を示す。なお図3では見やすさのために、後述する止め部材27の図示を省略している。図4(a)は主ハンマの前面側斜視図を示し、図4(b)はスピンドルおよびキャリアの斜視図を示し、図4(c)は副ハンマの後面側斜視図を示す。以下、図1~図4を用いて、インパクト回転工具1の構造について説明する。 FIG. 1 is a schematic cross-sectional view of a main part of an impact rotary tool according to an embodiment. In FIG. 1, the alternate long and short dash line indicates the rotational axis of the impact rotary tool 1. FIG. 2 is an exploded perspective view of components of the rotary impact mechanism according to the embodiment, and FIG. 3 is an assembled perspective view of the rotary impact mechanism according to the embodiment. In FIG. 3, the illustration of a later-described stopper member 27 is omitted for ease of viewing. 4A is a front perspective view of the main hammer, FIG. 4B is a perspective view of the spindle and the carrier, and FIG. 4C is a rear perspective view of the auxiliary hammer. Hereinafter, the structure of the impact rotary tool 1 will be described with reference to FIGS.
 インパクト回転工具1は、工具本体を構成するハウジング2を備える。ハウジング2の上部は、各種構成部品を収容するための収容空間を形成し、ハウジング2の下部は、ユーザにより把持される把持部3を構成する。把持部3の前側には、ユーザの手指により操作される操作スイッチ4が設けられ、把持部3の下端部には、駆動部10に電力を供給するバッテリ(図示せず)が設けられる。 The impact rotary tool 1 includes a housing 2 that constitutes a tool body. The upper part of the housing 2 forms an accommodation space for accommodating various components, and the lower part of the housing 2 constitutes a grip portion 3 that is gripped by the user. An operation switch 4 that is operated by a user's finger is provided on the front side of the grip 3, and a battery (not shown) that supplies power to the drive unit 10 is provided at the lower end of the grip 3.
 駆動部10は電動モータであって、駆動部10の駆動軸10aは、動力伝達機構12を介してキャリア16およびスピンドル11に連結される。キャリア16はスピンドル11の後端側に形成されて、動力伝達用の歯車を収容する。図4(b)を参照して、キャリア16は、スピンドル11よりも大径の前側部材16bと、前側部材16bよりも後方に位置する後側部材16cとを有し、前側部材16bと後側部材16cとの間に歯車を収容するための空間16dを形成する。 The drive unit 10 is an electric motor, and the drive shaft 10 a of the drive unit 10 is connected to the carrier 16 and the spindle 11 via the power transmission mechanism 12. The carrier 16 is formed on the rear end side of the spindle 11 and accommodates a power transmission gear. Referring to FIG. 4B, the carrier 16 has a front member 16b having a diameter larger than that of the spindle 11, and a rear member 16c positioned rearward of the front member 16b. A space 16d for accommodating the gear is formed between the member 16c and the member 16c.
 動力伝達機構12は、駆動軸10aの先端に圧入固定される太陽歯車13と、太陽歯車13に噛合する2個の遊星歯車14と、遊星歯車14に噛合する内歯車15とを有する。遊星歯車14はキャリア16の空間16dにおいて、前側部材16bおよび後側部材16cに固定される支軸14aにより回転可能に支持される。内歯車15は、ハウジング2の内周面に固定されている。 The power transmission mechanism 12 includes a sun gear 13 that is press-fitted and fixed to the tip of the drive shaft 10 a, two planetary gears 14 that mesh with the sun gear 13, and an internal gear 15 that meshes with the planetary gear 14. The planetary gear 14 is rotatably supported in a space 16d of the carrier 16 by a support shaft 14a fixed to the front member 16b and the rear member 16c. The internal gear 15 is fixed to the inner peripheral surface of the housing 2.
 以上のように構成した動力伝達機構12により、駆動軸10aの回転が、太陽歯車13の歯数と内歯車15の歯数との比に基づいて減速されるとともに、その回転トルクが増大される。これによりキャリア16およびスピンドル11を低速高トルクで駆動できるようになる。 With the power transmission mechanism 12 configured as described above, the rotation of the drive shaft 10a is decelerated based on the ratio between the number of teeth of the sun gear 13 and the number of teeth of the internal gear 15, and the rotational torque is increased. . As a result, the carrier 16 and the spindle 11 can be driven at low speed and high torque.
 インパクト回転工具1の回転打撃機構は、スピンドル11、キャリア16、主ハンマ20、副ハンマ21およびばね部材23によって構成される。スピンドル11は円柱状に形成され、その先端には、小径の突起部11aがスピンドル11の軸線と同軸に形成される。突起部11aは、アンビル22の後部に形成した円柱状の内部空間を有する孔に回転可能な状態で挿入される。 The rotary impact mechanism of the impact rotary tool 1 includes a spindle 11, a carrier 16, a main hammer 20, a secondary hammer 21, and a spring member 23. The spindle 11 is formed in a columnar shape, and a small-diameter protrusion 11 a is formed at the tip thereof coaxially with the axis of the spindle 11. The protrusion 11a is inserted in a rotatable state into a hole having a cylindrical inner space formed in the rear part of the anvil 22.
 スピンドル11の外周には、略円盤状であって中心部に貫通孔を形成した鋼製の主ハンマ20が装着される。主ハンマ20の前面には、アンビル22に向けて突出する一対のハンマ爪20aが形成される。主ハンマ20は、スピンドル11の回転軸線を中心に回転可能であり、且つスピンドル11の回転軸線方向すなわち前後方向に移動可能となるように、スピンドル11に取り付けられる。これにより主ハンマ20は、アンビル22に対して回転打撃力を加えられるようになる。副ハンマ21は鋼製の円筒部材として形成され、環状仕切部21eにより前部21aと後部21bに仕切られる。副ハンマ21は、前部21aの内部空間に主ハンマ20を収容する。 A steel main hammer 20 having a substantially disc shape and having a through hole in the center is mounted on the outer periphery of the spindle 11. A pair of hammer claws 20 a projecting toward the anvil 22 are formed on the front surface of the main hammer 20. The main hammer 20 is attached to the spindle 11 so as to be rotatable about the rotation axis of the spindle 11 and to be movable in the direction of the rotation axis of the spindle 11, that is, in the front-rear direction. As a result, the main hammer 20 can apply a rotational striking force to the anvil 22. The auxiliary hammer 21 is formed as a steel cylindrical member, and is divided into a front part 21a and a rear part 21b by an annular partition part 21e. The sub hammer 21 accommodates the main hammer 20 in the internal space of the front portion 21a.
 副ハンマ21と主ハンマ20は、一体となって回転する一体回転機構を備える。図2を参照して、主ハンマ20は、その外周面に、断面が半円形でスピンドル11の回転軸線と平行な4つの第1ピン溝20dを備える。また副ハンマ21は、前部21aの内周面に、断面が半円形でスピンドル11の回転軸線と平行な4つの第2ピン溝21cを備える。ここで副ハンマ21の4つの第2ピン溝21cは、主ハンマ20の4つの第1ピン溝20dに対応する位置に形成される。第1ピン溝20dは、主ハンマ20の外周面において90度の間隔で形成されてよく、このとき第2ピン溝21cは、副ハンマ21の内周面において90度の間隔で形成される。 The auxiliary hammer 21 and the main hammer 20 are provided with an integral rotation mechanism that rotates together. Referring to FIG. 2, the main hammer 20 includes four first pin grooves 20 d on its outer peripheral surface and having a semicircular cross section and parallel to the rotation axis of the spindle 11. The auxiliary hammer 21 includes four second pin grooves 21 c on the inner peripheral surface of the front portion 21 a and having a semicircular cross section and parallel to the rotation axis of the spindle 11. Here, the four second pin grooves 21 c of the sub hammer 21 are formed at positions corresponding to the four first pin grooves 20 d of the main hammer 20. The first pin grooves 20 d may be formed at an interval of 90 degrees on the outer peripheral surface of the main hammer 20. At this time, the second pin grooves 21 c are formed at an interval of 90 degrees on the inner peripheral surface of the sub hammer 21.
 第2ピン溝21cには、円柱部材である係合ピン26が配設される。係合ピン26は、針状コロであってよい。係合ピン26は、副ハンマ21の前端側から第2ピン溝21cに挿入され、溝底部まで差し込まれる。係合ピン26を溝底部まで差し込んだ状態で、副ハンマ21の内周面に形成された環状溝21dに、係合ピン26の抜け止め機能をもつ止め部材27が嵌め込まれる。止め部材27が環状溝21dに配設されることで、第2ピン溝21cにおける係合ピン26の移動が制限される。 In the second pin groove 21c, an engagement pin 26 that is a cylindrical member is disposed. The engagement pin 26 may be a needle roller. The engaging pin 26 is inserted into the second pin groove 21c from the front end side of the sub hammer 21 and inserted to the groove bottom. With the engagement pin 26 inserted to the bottom of the groove, a stop member 27 having a function of preventing the engagement pin 26 from being detached is fitted into the annular groove 21d formed on the inner peripheral surface of the sub hammer 21. By disposing the stop member 27 in the annular groove 21d, the movement of the engagement pin 26 in the second pin groove 21c is limited.
 組付時、副ハンマ21の4つの第2ピン溝21cに4つの係合ピン26を取り付けた状態で、主ハンマ20の4つの第1ピン溝20dと4つの係合ピン26の位置を合わせて、主ハンマ20を副ハンマ21に挿入する。これにより主ハンマ20と副ハンマ21とは、スピンドル11の回転軸線を中心として一体となって回転可能となる。 At the time of assembly, the four first pin grooves 20d of the main hammer 20 and the four engagement pins 26 are aligned with the four engagement pins 26 attached to the four second pin grooves 21c of the sub hammer 21. Then, the main hammer 20 is inserted into the sub hammer 21. As a result, the main hammer 20 and the sub hammer 21 can be rotated together around the rotation axis of the spindle 11.
 主ハンマ20は後部側に、環状の凹部20cを有する。ばね部材23は、主ハンマ20の凹部20cと、副ハンマ21の環状仕切部21eとの間に介装される。主ハンマ20は係合ピン26をガイドとして前後方向に移動可能であり、ばね部材23の付勢力によりアンビル22に回転打撃力を加えることができる。 The main hammer 20 has an annular recess 20c on the rear side. The spring member 23 is interposed between the concave portion 20 c of the main hammer 20 and the annular partition portion 21 e of the sub hammer 21. The main hammer 20 can move in the front-rear direction using the engaging pin 26 as a guide, and can apply a rotational striking force to the anvil 22 by the biasing force of the spring member 23.
 スピンドル11は、その外周面に2つの第1案内溝11bを備え、主ハンマ20は、貫通孔の内周面に2つの第1係合溝20bを備える。スピンドル11の外周に主ハンマ20を装着した状態で、第1案内溝11bおよび第1係合溝20bの間には鋼球19が配置される。スピンドル11側の第1案内溝11bと、主ハンマ20側の第1係合溝20bと、両者の間に配置された鋼球19は「第1カム構造」を構成する。第1カム構造は、スピンドル11に対して主ハンマ20を回転軸線方向に移動させる役割をもつ。 The spindle 11 includes two first guide grooves 11b on the outer peripheral surface thereof, and the main hammer 20 includes two first engagement grooves 20b on the inner peripheral surface of the through hole. With the main hammer 20 mounted on the outer periphery of the spindle 11, a steel ball 19 is disposed between the first guide groove 11b and the first engagement groove 20b. The first guide groove 11b on the spindle 11 side, the first engagement groove 20b on the main hammer 20 side, and the steel ball 19 disposed therebetween constitute a “first cam structure”. The first cam structure has a role of moving the main hammer 20 in the rotation axis direction with respect to the spindle 11.
 キャリア16は、前側部材16bの前面外周に3つの第2案内溝16aを備え、副ハンマ21は、環状仕切部21eの後面に3つの第2係合溝21fを備える。副ハンマ21にスピンドル11を挿入した状態で、第2案内溝16aおよび第2係合溝21fの間には鋼球17が配置される。キャリア16側の第2案内溝16aと、副ハンマ21側の第2係合溝21fと、両者の間に配置された鋼球17は「第2カム構造」を構成する。第2カム構造は、キャリア16に対して副ハンマ21を回転軸線方向に移動させる役割をもつ。 The carrier 16 includes three second guide grooves 16a on the outer periphery of the front surface of the front member 16b, and the auxiliary hammer 21 includes three second engagement grooves 21f on the rear surface of the annular partition portion 21e. In a state where the spindle 11 is inserted into the auxiliary hammer 21, a steel ball 17 is disposed between the second guide groove 16a and the second engagement groove 21f. The second guide groove 16a on the carrier 16 side, the second engagement groove 21f on the sub hammer 21 side, and the steel ball 17 disposed between them constitute a “second cam structure”. The second cam structure has a role of moving the auxiliary hammer 21 in the rotational axis direction with respect to the carrier 16.
 第1カム構造において、第1案内溝11bは、工具先端側からみてV字ないしはU字形状に形成されている。つまり第1案内溝11bは、最前部から対称に後斜め方向に傾斜する2つの傾斜溝をもつ。第1係合溝20bは、工具先端側からみて逆向きのV字ないしはU字形状に形成されている。鋼球19が第1案内溝11bの最前部から傾斜溝に沿って移動すると、主ハンマ20はスピンドル11に対して相対的に後退することになる。 In the first cam structure, the first guide groove 11b is formed in a V-shape or a U-shape when viewed from the tip side of the tool. That is, the 1st guide groove 11b has two inclination grooves which incline in the back diagonal direction symmetrically from the foremost part. The first engagement groove 20b is formed in a V-shape or U-shape that is opposite to the tool tip side. When the steel ball 19 moves along the inclined groove from the foremost part of the first guide groove 11 b, the main hammer 20 moves backward relative to the spindle 11.
 第2カム構造において、第2案内溝16aは、工具後端側からみてV字ないしはU字形状に形成されている。つまり第2案内溝16aは、最後部から対称に前斜め方向に傾斜する2つの傾斜溝をもつ。第2係合溝21fは、工具後端側からみて逆向きのV字ないしはU字形状に形成されている。鋼球17が第2案内溝16aの最後部から傾斜溝に沿って移動すると、副ハンマ21はキャリア16に対して相対的に前進することになる。 In the second cam structure, the second guide groove 16a is formed in a V shape or a U shape as viewed from the rear end side of the tool. That is, the second guide groove 16a has two inclined grooves that are symmetrically inclined in the front oblique direction from the rearmost part. The second engagement groove 21f is formed in a V-shape or U-shape in the reverse direction when viewed from the tool rear end side. When the steel ball 17 moves along the inclined groove from the rearmost part of the second guide groove 16 a, the auxiliary hammer 21 moves forward relative to the carrier 16.
 このように第1案内溝11bと第2案内溝16aは、回転軸線方向において互いに異なる向きに延びる傾斜溝を備えて形成される。第1カム構造および第2カム構造により、主ハンマ20が回転軸線方向に移動すると、主ハンマ20と一体回転する副ハンマ21が主ハンマ20の移動方向とは逆方向に移動する構成が実現される。つまり回転軸線方向において主ハンマ20が後退するときには副ハンマ21が前進し、主ハンマ20が前進するときには副ハンマ21が後退する。 Thus, the first guide groove 11b and the second guide groove 16a are formed with inclined grooves extending in different directions in the rotation axis direction. With the first cam structure and the second cam structure, when the main hammer 20 moves in the rotation axis direction, a configuration in which the auxiliary hammer 21 that rotates integrally with the main hammer 20 moves in the direction opposite to the movement direction of the main hammer 20 is realized. The That is, when the main hammer 20 moves backward in the rotation axis direction, the sub hammer 21 moves forward, and when the main hammer 20 moves forward, the sub hammer 21 moves backward.
 主ハンマ20に係合するアンビル22は鋼製であり、鋼製もしくは黄銅製の滑り軸受を介してハウジング2に回転自在に支持されている。アンビル22の先端には、6角ボルトの頭部や6角ナットに装着するソケット体を取り付けるための、断面が四角形状の工具装着部22aが設けられる。 The anvil 22 that engages with the main hammer 20 is made of steel, and is rotatably supported by the housing 2 via a steel or brass sliding bearing. The tip of the anvil 22 is provided with a tool mounting portion 22a having a square cross section for mounting a socket body to be mounted on the head of a hexagon bolt or a hexagon nut.
 アンビル22の後部には、主ハンマ20の一対のハンマ爪20aに係合する一対のアンビル爪が設けられる。一対のアンビル爪は、それぞれ断面扇形の柱状部材として形成される。なおアンビル22のアンビル爪および主ハンマ20のハンマ爪20aは、必ずしも2個である必要はなく、それぞれの爪の数が等しければ、アンビル22および主ハンマ20の周方向に等間隔に3個以上設けてもよい。 A pair of anvil claws that engage with the pair of hammer claws 20a of the main hammer 20 are provided at the rear of the anvil 22. Each of the pair of anvil claws is formed as a columnar member having a sectional fan shape. The anvil claw of the anvil 22 and the hammer claw 20a of the main hammer 20 do not necessarily have to be two, and if the number of the respective claws is equal, three or more at equal intervals in the circumferential direction of the anvil 22 and the main hammer 20 It may be provided.
 実施形態のインパクト回転工具1は、第1カム構造における鋼球19および第2カム構造における鋼球17がそれぞれのカム構造における溝端部に当接しないように、主ハンマ20または副ハンマ21の少なくとも一方の回転軸線方向の移動範囲を規制するストッパ部材を備える。図1においてストッパ部材30は、主ハンマ20とキャリア16の間に設けられて、主ハンマ20の回転軸線方向の移動範囲を規制する。ストッパ部材30については、後に詳述する。 The impact rotary tool 1 according to the embodiment includes at least one of the main hammer 20 and the sub hammer 21 so that the steel ball 19 in the first cam structure and the steel ball 17 in the second cam structure do not come into contact with the groove end portions in the respective cam structures. A stopper member for restricting the movement range in the direction of the one rotation axis is provided. In FIG. 1, the stopper member 30 is provided between the main hammer 20 and the carrier 16 and restricts the movement range of the main hammer 20 in the rotation axis direction. The stopper member 30 will be described in detail later.
 次に、実施形態のインパクト回転工具1における第1カム構造の動作を説明する。
 ユーザによる操作スイッチ4の引き操作により駆動部10が回転駆動すると、動力伝達機構12を介してキャリア16およびスピンドル11が回転する。スピンドル11の回転力は、スピンドル11の第1案内溝11bと主ハンマ20の第1係合溝20bの間に嵌め込まれた鋼球19を介して主ハンマ20に伝達され、主ハンマ20および副ハンマ21が一体となって回転する。
Next, operation | movement of the 1st cam structure in the impact rotary tool 1 of embodiment is demonstrated.
When the drive unit 10 is rotationally driven by the pulling operation of the operation switch 4 by the user, the carrier 16 and the spindle 11 are rotated via the power transmission mechanism 12. The rotational force of the spindle 11 is transmitted to the main hammer 20 via a steel ball 19 fitted between the first guide groove 11b of the spindle 11 and the first engagement groove 20b of the main hammer 20, and the main hammer 20 and the auxiliary hammer 20 The hammer 21 rotates as a unit.
 図5(a)は、ボルトやナットの締め付け開始直後の第1カム構造の状態を説明するための図である。図5(b)は、締め付け開始から時間経過後の第1カム構造の状態を説明するための図である。図6(a)~図6(c)は、主ハンマ20とアンビル22の係合面を周方向に模式的に展開した位置関係を示す。なお図6(a)は、ボルトやナットの締め付け開始直後の主ハンマ20のハンマ爪20aとアンビル22のアンビル爪22bとの係合状態を示す。 FIG. 5A is a diagram for explaining the state of the first cam structure immediately after the start of tightening of the bolts and nuts. FIG. 5B is a diagram for explaining the state of the first cam structure after a lapse of time from the start of tightening. FIGS. 6A to 6C show a positional relationship in which the engagement surfaces of the main hammer 20 and the anvil 22 are schematically developed in the circumferential direction. FIG. 6A shows an engagement state between the hammer claw 20a of the main hammer 20 and the anvil claw 22b of the anvil 22 immediately after the start of tightening the bolts and nuts.
 図6(a)~図6(c)に示すように、主ハンマ20には、駆動部10の回転による回転力Aが矢印で示す方向に加わる。また主ハンマ20には、ばね部材23による前進方向の付勢力Bが矢印で示す方向に加わる。 As shown in FIGS. 6A to 6C, a rotational force A due to the rotation of the driving unit 10 is applied to the main hammer 20 in the direction indicated by the arrow. Further, a forward biasing force B by the spring member 23 is applied to the main hammer 20 in the direction indicated by the arrow.
 主ハンマ20が回転すると、ハンマ爪20aとアンビル爪22bとの係合により、主ハンマ20の回転力がアンビル22に伝達される。そしてアンビル22の回転によって、工具装着部22aに取付けられたソケット体(図示せず)が回転し、ボルトやナットに回転力を与えて初期の締め付けが行われる。ばね部材23が主ハンマ20に対して付勢力Bを加えているため、鋼球19は、図5(a)に示すように、第1案内溝11b内における最前部に位置する。このときハンマ爪20aとアンビル爪22bとは、最大係合長で係合している状態にある。 When the main hammer 20 rotates, the rotational force of the main hammer 20 is transmitted to the anvil 22 due to the engagement between the hammer claws 20a and the anvil claws 22b. As the anvil 22 rotates, a socket body (not shown) attached to the tool mounting portion 22a rotates, and initial tightening is performed by applying a rotational force to the bolts and nuts. Since the spring member 23 applies the urging force B to the main hammer 20, the steel ball 19 is positioned at the foremost part in the first guide groove 11 b as shown in FIG. At this time, the hammer claw 20a and the anvil claw 22b are engaged with each other with the maximum engagement length.
 ボルトやナットの締め付けが進むに伴ってアンビル22に加わる負荷トルクが大きくなると、主ハンマ20にY方向の回転力が生じる。そして負荷トルクが所定値を超えると、ばね部材23の付勢力Bに抗して、鋼球19が第1案内溝11bおよび第1係合溝20bの斜面に沿って矢印Fで示す方向に移動し、主ハンマ20が後退する方向(X方向)に移動する。 When the load torque applied to the anvil 22 increases as the tightening of the bolts and nuts proceeds, a rotational force in the Y direction is generated in the main hammer 20. When the load torque exceeds a predetermined value, the steel ball 19 moves in the direction indicated by the arrow F along the slopes of the first guide groove 11b and the first engagement groove 20b against the biasing force B of the spring member 23. Then, the main hammer 20 moves in the backward direction (X direction).
 そして図5(b)に示すように、鋼球19が傾斜溝内を移動して、主ハンマ20がX方向に、ハンマ爪20aとアンビル爪22bとの最大係合長分の距離を移動すると、図6(b)に示すように、ハンマ爪20aとアンビル爪22bとの係合が解除される。 Then, as shown in FIG. 5B, when the steel ball 19 moves in the inclined groove, the main hammer 20 moves in the X direction by a distance corresponding to the maximum engagement length between the hammer claw 20a and the anvil claw 22b. As shown in FIG. 6B, the engagement between the hammer claw 20a and the anvil claw 22b is released.
 ハンマ爪20aがアンビル爪22bから外れると、押し縮められたばね部材23の付勢力Bが開放されることによって、主ハンマ20は高速で、回転力Aが加えられている方向に回転しながら、付勢力Bにより前進する。 When the hammer claw 20a is detached from the anvil claw 22b, the biasing force B of the compressed spring member 23 is released, so that the main hammer 20 rotates at a high speed in the direction in which the rotational force A is applied. Move forward by force B.
 そして図6(c)に示すように、ハンマ爪20aが、矢印Gで示す軌跡で移動してアンビル爪22bに衝突し、アンビル22に回転方向の打撃力を付与する。その後、反動によりハンマ爪20aは、軌跡Gとは逆方向に移動するが、最終的には、回転力Aおよび付勢力Bにより図6(a)に示す状態に戻る。以上の動作が繰り返され、主ハンマ20による回転打撃力がアンビル22に対して繰り返し付与される。 Then, as shown in FIG. 6C, the hammer claw 20 a moves along the locus indicated by the arrow G, collides with the anvil claw 22 b, and applies a striking force in the rotation direction to the anvil 22. Thereafter, the hammer claw 20a is moved in the direction opposite to the locus G by the reaction, but finally returns to the state shown in FIG. 6A by the rotational force A and the urging force B. The above operation is repeated, and the rotational hitting force by the main hammer 20 is repeatedly applied to the anvil 22.
 以上はボルトやナットを締め付ける際の動作についての説明であるが、締め付けられたボルトやナットを緩める際にも、回転打撃機構により締め付け時とほぼ同様の動作が行われる。この場合、駆動部10を締め付け時とは逆方向に回転させることにより、鋼球19が図5(a)に示す第1案内溝11bに沿って右上方に移動し、ハンマ爪20aがアンビル爪22bを、締め付け時とは逆方向に打撃する。 The above is the description of the operation when tightening the bolt or nut, but when the tightened bolt or nut is loosened, the rotary hammering mechanism performs almost the same operation as when tightening. In this case, by rotating the drive unit 10 in the direction opposite to that at the time of tightening, the steel ball 19 moves to the upper right along the first guide groove 11b shown in FIG. 5A, and the hammer claw 20a is moved to the anvil claw. Strike 22b in the opposite direction to that during tightening.
 次に、第2カム構造の動作について説明する。
 副ハンマ21は主ハンマ20と一体となって回転するため、副ハンマ21と主ハンマ20の回転方向における相対位置は変化しない。そのため第1カム構造において鋼球19が第1案内溝11bの溝端部に向けて移動すると、第2カム構造においても鋼球17が第2案内溝16aの溝端部に向けて移動する。
Next, the operation of the second cam structure will be described.
Since the auxiliary hammer 21 rotates integrally with the main hammer 20, the relative position in the rotation direction of the auxiliary hammer 21 and the main hammer 20 does not change. Therefore, when the steel ball 19 moves toward the groove end portion of the first guide groove 11b in the first cam structure, the steel ball 17 moves toward the groove end portion of the second guide groove 16a also in the second cam structure.
 図7(a)は、ボルトやナットの締め付け開始直後の第2カム構造の状態を説明するための図である。図7(b)は、締め付け開始から時間経過後の第2カム構造の状態を説明するための図である。第1カム構造において鋼球19が第1案内溝11bの最前部に位置する場合(図5(a)参照)、第2カム構造において鋼球17は、第2案内溝16aの最後部に位置する(図7(a)参照)。 FIG. 7A is a diagram for explaining the state of the second cam structure immediately after the start of tightening of the bolts and nuts. FIG.7 (b) is a figure for demonstrating the state of the 2nd cam structure after time progress from a fastening start. When the steel ball 19 is positioned at the foremost portion of the first guide groove 11b in the first cam structure (see FIG. 5A), the steel ball 17 is positioned at the rearmost portion of the second guide groove 16a in the second cam structure. (See FIG. 7A).
 それから第1カム構造において鋼球19が第1案内溝11bの最前部から傾斜面に沿って移動すると、第2カム構造においても、鋼球17が第2案内溝16aの最後部から傾斜面に沿って移動する。図7(b)は、鋼球17が第2案内溝16aを移動している状態を示す。このとき副ハンマ21は、主ハンマ20の移動方向(X方向)とは逆方向に移動する。つまり主ハンマ20が後退すると、副ハンマ21は前進する。 Then, when the steel ball 19 moves along the inclined surface from the foremost portion of the first guide groove 11b in the first cam structure, the steel ball 17 moves from the rearmost portion of the second guide groove 16a to the inclined surface also in the second cam structure. Move along. FIG. 7B shows a state in which the steel ball 17 is moving in the second guide groove 16a. At this time, the secondary hammer 21 moves in the direction opposite to the moving direction (X direction) of the main hammer 20. That is, when the main hammer 20 moves backward, the auxiliary hammer 21 moves forward.
 このように実施形態のインパクト回転工具1は、第1カム構造および第2カム構造により、主ハンマ20が回転軸線方向に移動すると、副ハンマ21が主ハンマ20の移動方向とは逆方向に移動するように構成されている。副ハンマ21が主ハンマ20の移動方向とは逆方向に動くことで、主ハンマ20の軸線方向の動きにより生じる振動を吸収することができ、ユーザの手に伝わる振動を低減できる。 As described above, in the impact rotary tool 1 according to the embodiment, when the main hammer 20 moves in the rotation axis direction by the first cam structure and the second cam structure, the sub hammer 21 moves in the direction opposite to the moving direction of the main hammer 20. Is configured to do. Since the sub hammer 21 moves in the direction opposite to the moving direction of the main hammer 20, vibration generated by the movement of the main hammer 20 in the axial direction can be absorbed, and vibration transmitted to the user's hand can be reduced.
 主ハンマ20の軸線方向の移動量と副ハンマ21の軸線方向の移動量は、それぞれ第1カム構造および第2カム構造の形状によって規定される。軸線方向の振動を好適に打ち消し合うための両者の移動量の比は、主ハンマ20および副ハンマ21の質量に依存するため、第1カム構造および第2カム構造の形状は、主ハンマ20および副ハンマ21の質量に応じて適宜設計されることが好ましい。 The amount of movement of the main hammer 20 in the axial direction and the amount of movement of the auxiliary hammer 21 in the axial direction are defined by the shapes of the first cam structure and the second cam structure, respectively. Since the ratio of the amount of movement for canceling axial vibrations preferably depends on the masses of the main hammer 20 and the secondary hammer 21, the shapes of the first cam structure and the second cam structure are the main hammer 20 and It is preferable to design appropriately according to the mass of the secondary hammer 21.
 図8(a)は回転打撃機構の前面図を示す。図8(a)には、鋼球19が第1案内溝11bの最前部に位置している様子が示される。第1案内溝11bと逆向きの形状をもつ第1係合溝20bは、鋼球19が配置されている最後部から、前方に傾斜する2つの傾斜溝を有している。
 図8(b)は、回転打撃機構のC-C断面図を示す。図8(b)では、ばね部材23や遊星歯車14などの図示を省略している。この状態で鋼球17は、第2案内溝16aの最後部に位置している。
 図8(c)は、回転打撃機構のD-D断面図を示す。第2案内溝16aは、鋼球17が配置されている最後部から、前方に傾斜する2つの傾斜溝を有している。
FIG. 8A shows a front view of the rotary striking mechanism. FIG. 8A shows a state in which the steel ball 19 is positioned at the foremost part of the first guide groove 11b. The first engagement groove 20b having a shape opposite to that of the first guide groove 11b has two inclined grooves inclined forward from the rearmost part where the steel ball 19 is disposed.
FIG. 8B shows a CC cross-sectional view of the rotary impact mechanism. In FIG. 8B, illustration of the spring member 23, the planetary gear 14 and the like is omitted. In this state, the steel ball 17 is located at the rearmost part of the second guide groove 16a.
FIG. 8C shows a DD sectional view of the rotary striking mechanism. The second guide groove 16a has two inclined grooves inclined forward from the rearmost part where the steel ball 17 is disposed.
 図9は、第1カム構造および第2カム構造において鋼球が移動したときの回転打撃機構の概略断面図を示す。この例では、主ハンマ20がスピンドル11に対して移動量Mだけ後退し、副ハンマ21がキャリア16に対して移動量Nだけ前進している。図6(b)に関して説明したように、主ハンマ20の移動量Mが、ハンマ爪20aとアンビル爪22bとの最大係合長分の距離に達すると、ハンマ爪20aとアンビル爪22bとの係合が解除される。 FIG. 9 is a schematic cross-sectional view of the rotary impact mechanism when the steel ball moves in the first cam structure and the second cam structure. In this example, the main hammer 20 moves backward by the movement amount M with respect to the spindle 11, and the auxiliary hammer 21 moves forward by the movement amount N with respect to the carrier 16. As described with reference to FIG. 6B, when the movement amount M of the main hammer 20 reaches a distance corresponding to the maximum engagement length between the hammer claws 20a and the anvil claws 22b, the engagement between the hammer claws 20a and the anvil claws 22b. The match is released.
 第1案内溝11bの傾斜溝長は、主ハンマ20の移動量Mがハンマ爪20aとアンビル爪22bの最大係合長に達したときに鋼球19が第1案内溝11bの傾斜溝端部に当接しない長さに設計されている。なお第2カム構造も同様であり、主ハンマ20の移動量Mがハンマ爪20aとアンビル爪22bの最大係合長に達するときに、鋼球17が第2案内溝16aの傾斜溝端部に当接しないように、第2案内溝16aの傾斜溝長は設計されている。 The inclined groove length of the first guide groove 11b is such that when the movement amount M of the main hammer 20 reaches the maximum engagement length of the hammer claw 20a and the anvil claw 22b, the steel ball 19 is at the end of the inclined groove of the first guide groove 11b. Designed to a length that does not abut. The same applies to the second cam structure. When the movement amount M of the main hammer 20 reaches the maximum engagement length of the hammer pawl 20a and the anvil pawl 22b, the steel ball 17 hits the inclined groove end of the second guide groove 16a. The inclined groove length of the second guide groove 16a is designed so as not to contact.
 しかしながら主ハンマ20および副ハンマ21は一体回転しながら、回転軸線方向に高速で往復運動するため、慣性力により主ハンマ20が最大係合長分の距離を超えて後退する可能性がある。 However, since the main hammer 20 and the secondary hammer 21 reciprocate at high speed in the direction of the rotation axis while rotating integrally, there is a possibility that the main hammer 20 moves backward beyond the distance of the maximum engagement length due to inertial force.
 図10(a)は、第2カム構造において鋼球17が第2案内溝16aの溝端部16eに当接した状態を示す。鋼球17が溝端部16eに衝突すると、その衝撃がユーザに伝わり好ましくない。
 図10(b)は、第1カム構造において鋼球19が第1案内溝11bの溝端部11cに当接した状態を示す。図10(a)に示した状態と同様に、鋼球19が溝端部11cに衝突することは好ましくない。
FIG. 10A shows a state in which the steel ball 17 is in contact with the groove end portion 16e of the second guide groove 16a in the second cam structure. If the steel ball 17 collides with the groove end portion 16e, the impact is transmitted to the user, which is not preferable.
FIG. 10B shows a state in which the steel ball 19 is in contact with the groove end portion 11c of the first guide groove 11b in the first cam structure. Similarly to the state shown in FIG. 10A, it is not preferable that the steel ball 19 collides with the groove end portion 11c.
 なお実施形態の第1カム構造と第2カム構造の周方向の可動域を比較すると、第1カム構造の傾斜溝の可動域が略90度であり、第2カム構造の傾斜溝の可動域が略60度であるため、第2カム構造の可動域の方が狭い。このことは、第2カム構造の方が第1カム構造よりも先に可動限界に達することを意味する。 When the movable range in the circumferential direction of the first cam structure and the second cam structure of the embodiment is compared, the movable range of the inclined groove of the first cam structure is approximately 90 degrees, and the movable range of the inclined groove of the second cam structure is Is approximately 60 degrees, the range of motion of the second cam structure is narrower. This means that the second cam structure reaches the movable limit earlier than the first cam structure.
 そのため実施形態では、第2カム構造において鋼球17が溝端部16eに衝突した後に、第1カム構造において鋼球19が溝端部11cに衝突することはない。いずれのカム構造が先に可動限界に達するかは、各案内溝の周方向可動域に依存する。そのため第1カム構造の可動域の方が狭ければ、図10(b)に示すように鋼球19が第1案内溝11bの溝端部11cに衝突する可能性がある。 Therefore, in the embodiment, after the steel ball 17 collides with the groove end portion 16e in the second cam structure, the steel ball 19 does not collide with the groove end portion 11c in the first cam structure. Which cam structure reaches the movable limit first depends on the circumferential movable range of each guide groove. Therefore, if the movable range of the first cam structure is narrower, the steel ball 19 may collide with the groove end portion 11c of the first guide groove 11b as shown in FIG. 10 (b).
 そこでインパクト回転工具1は、鋼球19および鋼球17がそれぞれのカム構造における溝端部に当接しないように、主ハンマ20または副ハンマ21の少なくとも一方の回転軸線方向の移動範囲を規制するストッパ部材を備える。図1においてストッパ部材30は、スピンドル11の根元部分を環囲するように前側部材16bに固定される環状部材であって、主ハンマ20の後退方向の移動範囲を規制する。インパクト回転工具1の動作前である初期状態におけるストッパ部材30の前端部は、主ハンマ20の後退時に鋼球19または鋼球17がカム構造における溝端部に当接する前に、主ハンマ20の後端部に接触する位置に配置される。 Therefore, the impact rotary tool 1 is a stopper that restricts the movement range of at least one of the main hammer 20 and the sub hammer 21 in the rotational axis direction so that the steel ball 19 and the steel ball 17 do not come into contact with the groove ends of the respective cam structures. A member is provided. In FIG. 1, the stopper member 30 is an annular member fixed to the front member 16 b so as to surround the base portion of the spindle 11, and restricts the range of movement of the main hammer 20 in the backward direction. The front end portion of the stopper member 30 in the initial state before the operation of the impact rotary tool 1 is the rear end of the main hammer 20 before the steel ball 19 or the steel ball 17 contacts the groove end portion of the cam structure when the main hammer 20 is retracted. It arrange | positions in the position which contacts an edge part.
 なお上記したように、第1カム構造と第2カム構造の周方向可動域の広狭により、先に可動限界に達するカム構造が特定される。鋼球19が鋼球17よりも先に溝端部に当接するように第1カム構造および第2カム構造が形成されている場合には、ストッパ部材は、鋼球19が第1カム構造の溝端部11cに当接しないように、主ハンマ20の回転軸線方向の移動を規制することが好ましい。先に可動限界がくる第1カム構造に連結する主ハンマ20の移動を規制することで、効果的に鋼球19と溝端部11cとの衝突を回避できる。この場合、図1に示すようにストッパ部材30を主ハンマ20の後端部に対向して配置することで、第1カム構造の動作を可動限界手前で制限できる。 Note that, as described above, the cam structure that reaches the movable limit first is specified by the width of the circumferential movable range of the first cam structure and the second cam structure. When the first cam structure and the second cam structure are formed so that the steel ball 19 comes into contact with the end of the groove before the steel ball 17, the stopper member is the groove end of the first cam structure. It is preferable to restrict the movement of the main hammer 20 in the direction of the rotation axis so as not to contact the portion 11c. By restricting the movement of the main hammer 20 connected to the first cam structure having the movable limit first, the collision between the steel ball 19 and the groove end portion 11c can be effectively avoided. In this case, as shown in FIG. 1, the stopper member 30 is disposed so as to face the rear end portion of the main hammer 20, so that the operation of the first cam structure can be limited before the movable limit.
 一方で、鋼球17が鋼球19よりも先に溝端部に当接するように第1カム構造および第2カム構造が形成されている場合には、ストッパ部材は、鋼球17が第2カム構造の溝端部16eに当接しないように、副ハンマ21の回転軸線方向の移動範囲を規制することが好ましい。 On the other hand, when the first cam structure and the second cam structure are formed such that the steel ball 17 comes into contact with the end of the groove before the steel ball 19, the stopper member is configured such that the steel ball 17 is the second cam. It is preferable to restrict the range of movement of the auxiliary hammer 21 in the rotation axis direction so as not to contact the groove end portion 16e of the structure.
 図11は、副ハンマ21の移動範囲を規制するストッパ部材31を示す。ストッパ部材31は、副ハンマ21と、副ハンマ21の前進方向に位置する部材との間に設けられて、副ハンマ21の回転軸線方向の移動範囲を規制する。図11において、副ハンマ21の前進方向に位置する部材はハウジング2であるが、別の部材であってもよい。 FIG. 11 shows a stopper member 31 that regulates the movement range of the auxiliary hammer 21. The stopper member 31 is provided between the sub hammer 21 and a member located in the forward direction of the sub hammer 21 and restricts the movement range of the sub hammer 21 in the rotation axis direction. In FIG. 11, the member located in the forward direction of the auxiliary hammer 21 is the housing 2, but may be another member.
 ストッパ部材31は、副ハンマ21の前端部に対向する環状部材であって、ハウジング2に固定される。初期状態においてストッパ部材31の後端部は、鋼球17が第2カム構造における溝端部16eに当接する前に、副ハンマ21の前端部に接触する位置に配置される。先に可動限界がくる第2カム構造に連結する副ハンマ21の移動を規制することで、効果的に鋼球17と溝端部16eとの衝突を回避できる。 The stopper member 31 is an annular member that faces the front end portion of the sub hammer 21 and is fixed to the housing 2. In the initial state, the rear end portion of the stopper member 31 is disposed at a position where it contacts the front end portion of the sub hammer 21 before the steel ball 17 contacts the groove end portion 16e in the second cam structure. By restricting the movement of the secondary hammer 21 connected to the second cam structure having the movable limit first, it is possible to effectively avoid the collision between the steel ball 17 and the groove end portion 16e.
 なおインパクト回転工具1は、先に可動限界がくるカム構造に対応してストッパ部材30またはストッパ部材31のいずれか一方を備えてよいが、双方を備えてもよい。この場合、ストッパ部材30が主ハンマ20の回転軸線方向の移動範囲を規制し、またストッパ部材31が副ハンマ21の回転軸線方向の移動範囲を規制することで、鋼球19および鋼球17が、それぞれのカム構造における溝端部に当接する状況を確実に回避できるようになる。特に第1カム構造と第2カム構造の周方向の可動域が実質的に同じである場合、インパクト回転工具1は、ストッパ部材30とストッパ部材31の双方を備えることが好ましい。 The impact rotary tool 1 may be provided with either the stopper member 30 or the stopper member 31 corresponding to the cam structure in which the movable limit comes first, but may also include both. In this case, the stopper member 30 restricts the movement range of the main hammer 20 in the rotation axis direction, and the stopper member 31 restricts the movement range of the sub hammer 21 in the rotation axis direction. Thus, it is possible to reliably avoid the situation of contacting the groove end in each cam structure. In particular, when the movable ranges in the circumferential direction of the first cam structure and the second cam structure are substantially the same, the impact rotary tool 1 preferably includes both the stopper member 30 and the stopper member 31.
 図12(a)は、主ハンマ20および副ハンマ21の移動範囲を規制するストッパ部材32を示す。ストッパ部材32は副ハンマ21の内部に設けられて、主ハンマ20および副ハンマ21の回転軸線方向の移動範囲を規制する。 FIG. 12A shows the stopper member 32 that regulates the movement range of the main hammer 20 and the sub hammer 21. The stopper member 32 is provided inside the sub hammer 21 and restricts the movement range of the main hammer 20 and the sub hammer 21 in the rotation axis direction.
 図12(b)は、ストッパ部材32の組付工程の例を示す。ストッパ部材32は、その外周面に、断面が半円形でスピンドル11の回転軸線と平行な4つのピン溝32aを備える。ストッパ部材32の4つのピン溝32aには、副ハンマ21に取り付けられた係合ピン26が挿入される。ストッパ部材32は、環状仕切部21eに固定されてよいが、固定されなくてもよい。 FIG. 12B shows an example of the assembly process of the stopper member 32. The stopper member 32 is provided with four pin grooves 32 a on the outer peripheral surface thereof and having a semicircular cross section and parallel to the rotation axis of the spindle 11. Engagement pins 26 attached to the sub hammer 21 are inserted into the four pin grooves 32 a of the stopper member 32. The stopper member 32 may be fixed to the annular partition portion 21e, but may not be fixed.
 ストッパ部材32の前端部は、主ハンマ20の外周後端部に対向する。初期状態におけるストッパ部材32の前端部と主ハンマ20の外周後端部の間隔は、主ハンマ20の後退時に鋼球19または鋼球17がそれぞれのカム構造における溝端部に当接する前に、ストッパ部材32の前端部と主ハンマ20の外周後端部とが接触する距離に設定される。ストッパ部材32は、主ハンマ20および副ハンマ21の回転軸線方向の移動範囲を単独で規制できる利点を有する。 The front end portion of the stopper member 32 faces the outer peripheral rear end portion of the main hammer 20. The distance between the front end portion of the stopper member 32 and the outer peripheral rear end portion of the main hammer 20 in the initial state is such that the steel ball 19 or the steel ball 17 comes into contact with the groove end portion of each cam structure when the main hammer 20 is retracted. The distance between the front end portion of the member 32 and the outer peripheral rear end portion of the main hammer 20 is set. The stopper member 32 has an advantage that the movement range in the rotation axis direction of the main hammer 20 and the sub hammer 21 can be restricted independently.
 本発明の一態様の概要は、次の通りである。
 本発明のある態様のインパクト回転工具(1)は、駆動部(10)と、駆動部により回転されるスピンドル(11)と、スピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能な主ハンマ(20)と、スピンドル側の第1案内溝(11b)と主ハンマ側の第1係合溝(20b)との間に第1鋼球(19)を配置した第1カム構造と、主ハンマにより回転打撃力が加えられるアンビル(22)と、主ハンマを収容して主ハンマと一体に回転可能な副ハンマ(21)と、スピンドルの後端側に形成されて動力伝達用の歯車を収容するキャリア(16)と、キャリア側の第2案内溝(16a)と副ハンマ側の第2係合溝(21f)との間に第2鋼球(17)を配置した第2カム構造と、を備え、主ハンマが回転軸線方向に移動すると、副ハンマが主ハンマの移動方向とは逆方向に移動するように構成される。インパクト回転工具(1)は、第1鋼球および第2鋼球が、それぞれのカム構造における溝端部に当接しないように、主ハンマまたは副ハンマの少なくとも一方の回転軸線方向の移動範囲を規制するストッパ部材(30,31,32)をさらに備える。
The outline of one embodiment of the present invention is as follows.
An impact rotary tool (1) according to an aspect of the present invention includes a drive unit (10), a spindle (11) rotated by the drive unit, and can rotate about the rotation axis of the spindle and move in the rotation axis direction. A first hammer structure in which a first steel ball (19) is disposed between a main hammer (20), a first guide groove (11b) on the spindle side, and a first engagement groove (20b) on the main hammer side; An anvil (22) to which a rotational hammering force is applied by the main hammer, a sub-hammer (21) that accommodates the main hammer and can rotate together with the main hammer, and a gear for power transmission formed on the rear end side of the spindle The second cam structure in which the second steel ball (17) is disposed between the carrier (16) for housing the second guide groove (16a) on the carrier side and the second engagement groove (21f) on the sub hammer side When the main hammer moves in the rotation axis direction, Hammer is configured to move in a direction opposite to the moving direction of the main hammer. The impact rotary tool (1) regulates the movement range in the rotational axis direction of at least one of the primary hammer and the secondary hammer so that the first steel ball and the second steel ball do not contact the groove end portions of the respective cam structures. A stopper member (30, 31, 32) is further provided.
 第1鋼球(19)が第2鋼球(17)よりも先に溝端部に当接するように第1カム構造および第2カム構造が形成されている場合には、ストッパ部材(30)は、第1鋼球が第1カム構造の溝端部に当接しないように主ハンマの回転軸線方向の移動範囲を規制してよい。一方、第2鋼球(17)が第1鋼球(19)よりも先に溝端部に当接するように第1カム構造および第2カム構造が形成されている場合には、ストッパ部材(31)は、第2鋼球が第2カム構造の溝端部に当接しないように副ハンマの回転軸線方向の移動範囲を規制してよい。 When the first cam structure and the second cam structure are formed such that the first steel ball (19) contacts the groove end portion before the second steel ball (17), the stopper member (30) The movement range of the main hammer in the rotational axis direction may be restricted so that the first steel ball does not contact the groove end portion of the first cam structure. On the other hand, when the first cam structure and the second cam structure are formed so that the second steel ball (17) comes into contact with the end of the groove before the first steel ball (19), the stopper member (31 ) May regulate the range of movement of the auxiliary hammer in the rotational axis direction so that the second steel ball does not contact the groove end of the second cam structure.
 ストッパ部材(30)は、主ハンマとキャリアの間に設けられて、主ハンマの回転軸線方向の移動範囲を規制してよい。またストッパ部材(31)は、副ハンマと副ハンマの前進方向に位置する部材(2)との間に設けられて、副ハンマの回転軸線方向の移動範囲を規制してよい。またストッパ部材(32)は、副ハンマの内部に設けられて、主ハンマおよび副ハンマの回転軸線方向の移動範囲を規制してよい。 The stopper member (30) may be provided between the main hammer and the carrier to regulate the movement range of the main hammer in the rotation axis direction. Further, the stopper member (31) may be provided between the sub hammer and the member (2) positioned in the forward direction of the sub hammer to restrict the movement range of the sub hammer in the rotation axis direction. Further, the stopper member (32) may be provided inside the auxiliary hammer to restrict the movement range of the main hammer and the auxiliary hammer in the rotation axis direction.
 以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to each component or combination of each processing process, and such modifications are within the scope of the present invention. .
1・・・インパクト回転工具、2・・・ハウジング、11・・・スピンドル、11b・・・第1案内溝、11c・・・溝端部、12・・・動力伝達機構、16・・・キャリア、16a・・・第2案内溝、16e・・・溝端部、17,19・・・鋼球、20・・・主ハンマ、20b・・・第1係合溝、21・・・副ハンマ、21f・・・第2係合溝、22・・・アンビル、23・・・ばね部材、30,31,32・・・ストッパ部材。 DESCRIPTION OF SYMBOLS 1 ... Impact rotary tool, 2 ... Housing, 11 ... Spindle, 11b ... 1st guide groove, 11c ... Groove edge part, 12 ... Power transmission mechanism, 16 ... Carrier, 16a ... second guide groove, 16e ... groove end, 17, 19 ... steel ball, 20 ... main hammer, 20b ... first engagement groove, 21 ... sub hammer, 21f ... 2nd engagement groove, 22 ... Anvil, 23 ... Spring member, 30, 31, 32 ... Stopper member.
 本発明は、インパクト回転工具などの工具に利用できる。 The present invention can be used for tools such as impact rotary tools.

Claims (5)

  1.  駆動部と、前記駆動部により回転されるスピンドルと、前記スピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能な主ハンマと、前記スピンドル側の第1案内溝と前記主ハンマ側の第1係合溝との間に第1鋼球を配置した第1カム構造と、前記主ハンマにより回転打撃力が加えられるアンビルと、前記主ハンマを収容して前記主ハンマと一体に回転可能な副ハンマと、前記スピンドルの後端側に形成されて動力伝達用の歯車を収容するキャリアと、前記キャリア側の第2案内溝と前記副ハンマ側の第2係合溝との間に第2鋼球を配置した第2カム構造と、を備え、前記主ハンマが回転軸線方向に移動すると、前記副ハンマが前記主ハンマの移動方向とは逆方向に移動するように構成されたインパクト回転工具であって、
     前記第1鋼球および前記第2鋼球が、それぞれのカム構造における溝端部に当接しないように、前記主ハンマまたは前記副ハンマの少なくとも一方の回転軸線方向の移動範囲を規制するストッパ部材を、さらに備える、
     ことを特徴とするインパクト回転工具。
    A drive unit; a spindle rotated by the drive unit; a main hammer rotatable about a rotation axis of the spindle and movable in the direction of the rotation axis; a first guide groove on the spindle side; and a main hammer side A first cam structure in which a first steel ball is disposed between the first engagement groove, an anvil to which a rotational striking force is applied by the main hammer, and the main hammer can be accommodated and rotated integrally with the main hammer. An auxiliary hammer, a carrier formed on the rear end side of the spindle and accommodating a power transmission gear, and a second guide groove on the carrier side and a second engagement groove on the auxiliary hammer side. A second cam structure in which two steel balls are arranged, and when the main hammer moves in the rotation axis direction, the secondary hammer moves in a direction opposite to the movement direction of the main hammer. A tool,
    A stopper member for restricting a movement range in the rotational axis direction of at least one of the main hammer and the sub hammer so that the first steel ball and the second steel ball do not come into contact with the groove end portions of the respective cam structures. And more,
    An impact rotary tool characterized by that.
  2.  前記第1鋼球が前記第2鋼球よりも先に溝端部に当接するように前記第1カム構造および前記第2カム構造が形成されている場合には、前記ストッパ部材は、前記第1鋼球が前記第1カム構造の溝端部に当接しないように前記主ハンマの回転軸線方向の移動範囲を規制し、
     前記第2鋼球が前記第1鋼球よりも先に溝端部に当接するように前記第1カム構造および前記第2カム構造が形成されている場合には、前記ストッパ部材は、前記第2鋼球が前記第2カム構造の溝端部に当接しないように前記副ハンマの回転軸線方向の移動範囲を規制する、
     ことを特徴とする請求項1に記載のインパクト回転工具。
    When the first cam structure and the second cam structure are formed so that the first steel ball comes into contact with the end of the groove before the second steel ball, the stopper member is the first member. Restricting the range of movement of the main hammer in the rotational axis direction so that the steel ball does not contact the groove end of the first cam structure;
    When the first cam structure and the second cam structure are formed so that the second steel ball comes into contact with the end of the groove before the first steel ball, the stopper member is Restricting the movement range of the auxiliary hammer in the rotation axis direction so that the steel ball does not contact the groove end of the second cam structure;
    The impact rotary tool according to claim 1.
  3.  前記ストッパ部材は、前記主ハンマと前記キャリアの間に設けられて、前記主ハンマの回転軸線方向の移動範囲を規制する、
     ことを特徴とする請求項1または2に記載のインパクト回転工具。
    The stopper member is provided between the main hammer and the carrier, and regulates a movement range of the main hammer in the rotation axis direction.
    The impact rotary tool according to claim 1, wherein the impact rotary tool is provided.
  4.  前記ストッパ部材は、前記副ハンマと前記副ハンマの前進方向に位置する部材との間に設けられて、前記副ハンマの回転軸線方向の移動範囲を規制する、
     ことを特徴とする請求項1から3のいずれかに記載のインパクト回転工具。
    The stopper member is provided between the auxiliary hammer and a member positioned in the forward direction of the auxiliary hammer, and restricts a movement range of the auxiliary hammer in the rotation axis direction.
    The impact rotary tool according to any one of claims 1 to 3, wherein the impact rotary tool is provided.
  5.  前記ストッパ部材は、前記副ハンマの内部に設けられて、前記主ハンマおよび前記副ハンマの回転軸線方向の移動範囲を規制する、
     ことを特徴とする請求項1または2に記載のインパクト回転工具。
    The stopper member is provided inside the sub hammer and regulates a movement range in a rotation axis direction of the main hammer and the sub hammer.
    The impact rotary tool according to claim 1, wherein the impact rotary tool is provided.
PCT/JP2017/024687 2016-08-31 2017-07-05 Impact rotary tool WO2018042872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-169872 2016-08-31
JP2016169872A JP6607502B2 (en) 2016-08-31 2016-08-31 Impact rotary tool

Publications (1)

Publication Number Publication Date
WO2018042872A1 true WO2018042872A1 (en) 2018-03-08

Family

ID=61300567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024687 WO2018042872A1 (en) 2016-08-31 2017-07-05 Impact rotary tool

Country Status (2)

Country Link
JP (1) JP6607502B2 (en)
WO (1) WO2018042872A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046078A (en) * 2000-08-04 2002-02-12 Hitachi Koki Co Ltd Impact tool
WO2010140268A1 (en) * 2009-06-03 2010-12-09 株式会社空研 Impact wrench
JP2016117140A (en) * 2014-12-22 2016-06-30 株式会社Tjmデザイン Rotary tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5468570B2 (en) * 2011-06-17 2014-04-09 株式会社マキタ Impact tool
JP6027946B2 (en) * 2013-06-12 2016-11-16 パナソニック株式会社 Impact wrench

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046078A (en) * 2000-08-04 2002-02-12 Hitachi Koki Co Ltd Impact tool
WO2010140268A1 (en) * 2009-06-03 2010-12-09 株式会社空研 Impact wrench
JP2016117140A (en) * 2014-12-22 2016-06-30 株式会社Tjmデザイン Rotary tool

Also Published As

Publication number Publication date
JP6607502B2 (en) 2019-11-20
JP2018034263A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6832509B2 (en) Rotary striking tool
US7455121B2 (en) Power tool
JP4457170B1 (en) Impact wrench
JP4501757B2 (en) Impact tools
JP6397325B2 (en) Rotating tool
JP2017159418A (en) Impact rotary tool
EP2883657A2 (en) Rotary impact tool
WO2018061389A1 (en) Rotary impact tool
JP6607502B2 (en) Impact rotary tool
WO2018061388A1 (en) Rotary impact tool
WO2018142742A1 (en) Rotary impact tool
JP2009172732A (en) Impact rotary tool
JP6719084B2 (en) Rotary impact tool
JP2013022691A (en) Impact rotary tool
JP4399864B2 (en) Electric tool
JP3815686B2 (en) Electric tool
JP7462276B2 (en) Impact Tools
WO2015182512A1 (en) Impact tool
JP4056041B2 (en) Electric tool
JP2008284659A (en) Striking tool
JP2007054934A (en) Connecting tool and impact tool provided with the same
JP4283166B2 (en) Noise prevention device for rotary impact tool
JP2018051712A (en) Power tool
JP2010036282A (en) Power tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845882

Country of ref document: EP

Kind code of ref document: A1