WO2018142742A1 - Rotary impact tool - Google Patents

Rotary impact tool Download PDF

Info

Publication number
WO2018142742A1
WO2018142742A1 PCT/JP2017/043087 JP2017043087W WO2018142742A1 WO 2018142742 A1 WO2018142742 A1 WO 2018142742A1 JP 2017043087 W JP2017043087 W JP 2017043087W WO 2018142742 A1 WO2018142742 A1 WO 2018142742A1
Authority
WO
WIPO (PCT)
Prior art keywords
hammer
spindle
impact tool
holding groove
rotary impact
Prior art date
Application number
PCT/JP2017/043087
Other languages
French (fr)
Japanese (ja)
Inventor
隆司 草川
雅理 村松
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018142742A1 publication Critical patent/WO2018142742A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket

Definitions

  • the present invention relates to a rotary impact tool.
  • Patent Document 1 discloses an impact including a spindle rotated by a driving unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotary striking mechanism that converts the rotation of the spindle into a rotational striking and transmits it to the anvil.
  • the rotary striking mechanism includes a main hammer that can rotate about the rotation axis of the spindle and move in the axial direction, and a secondary hammer that houses the main hammer and rotates integrally with the main hammer, but does not move in the axial direction.
  • a rolling bearing that receives a load in the radial direction with respect to the rotation axis of the spindle is disposed between the auxiliary hammer and the spindle, and the inner periphery of the rear end of the auxiliary hammer is the rolling bearing. Press-fitted into the outer ring.
  • a radial load applied to the rolling bearing is reduced by forming a gap between the outer periphery of the spindle and the inner ring of the rolling bearing.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for reducing the size of a support structure of a secondary hammer in a rotary impact tool having a primary hammer and a secondary hammer.
  • a rotary impact tool includes a drive unit, a spindle rotated by the drive unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotation axis of the spindle.
  • a main hammer that is rotatable about the axis and movable in the direction of the rotation axis, a cam structure in which a first steel ball is disposed between a guide groove on the spindle side and an engagement groove on the main hammer side, and a main hammer.
  • the rotary impact tool of this aspect further includes a secondary hammer support structure in which a second steel ball is disposed between the secondary hammer and the large diameter portion.
  • the second steel ball has a rotational axis direction and a rotational axis. It arrange
  • FIG. 1 It is a section schematic diagram of the principal part of the rotary impact tool concerning an embodiment. It is a disassembled perspective view of the component of the rotation impact mechanism which concerns on embodiment. It is an assembly perspective view of the rotation impact mechanism concerning an embodiment.
  • (A) is a front side perspective view of a main hammer
  • (b) is a perspective view of a spindle and a carrier
  • (c) is a rear side perspective view of a sub hammer.
  • (A) And (b) is a figure which shows the operation state of a cam structure.
  • (A)-(c) is a figure which shows the positional relationship which expanded the engagement surface of the main hammer and the anvil typically in the circumferential direction.
  • the rotary impact tool of the embodiment includes a drive unit, a spindle rotated by the drive unit, an anvil disposed in front of the spindle in the rotation axis direction, and rotation for converting the rotation of the spindle into rotary strike and transmitting the rotation to the anvil.
  • a striking mechanism employs a double hammer configuration, and includes a main hammer that is rotatable about the rotation axis of the spindle and is movable in the axial direction, and a secondary hammer that accommodates the main hammer and can rotate together with the main hammer.
  • the rotary striking mechanism has a function of causing the main hammer to impactably engage the anvil and rotating the anvil about the axis.
  • FIG. 1 is a schematic cross-sectional view of a main part of a rotary impact tool according to an embodiment.
  • an alternate long and short dash line indicates a rotation axis of the rotary impact tool 1.
  • FIG. 2 is an exploded perspective view of components of the rotary impact mechanism according to the embodiment
  • FIG. 3 is an assembled perspective view of the rotary impact mechanism according to the embodiment.
  • 4A is a front perspective view of the main hammer
  • FIG. 4B is a perspective view of the spindle and the carrier
  • FIG. 4C is a rear perspective view of the auxiliary hammer.
  • FIG. 1 and FIG. 3 the illustration of a stop member 27 described later is omitted.
  • the structure of the rotary impact tool 1 will be described with reference to FIGS.
  • the rotary impact tool 1 includes a housing 2 that constitutes a tool body.
  • the upper part of the housing 2 forms an accommodation space for accommodating various components, and the lower part of the housing 2 constitutes a grip portion 3 that is gripped by the user.
  • An operation switch 4 that is operated by a user's finger is provided on the front side of the grip 3, and a battery (not shown) that supplies power to the drive unit 10 is provided at the lower end of the grip 3.
  • the drive unit 10 is an electric motor, and the drive shaft 10 a of the drive unit 10 is connected to the carrier 16 and the spindle 11 via the power transmission mechanism 12.
  • the carrier 16 is located on the rear end side of the spindle 11 and accommodates a power transmission gear.
  • the carrier 16 is configured as a large-diameter portion having an outer diameter larger than that of the spindle 11.
  • the carrier 16 has a front member 16b having a diameter larger than that of the spindle 11, and a rear member 16c positioned rearward of the front member 16b, and accommodates a gear between the front member 16b and the rear member 16c.
  • the space 16d is formed.
  • the power transmission mechanism 12 includes a sun gear 13 that is press-fitted and fixed to the tip of the drive shaft 10 a, two planetary gears 14 that mesh with the sun gear 13, and an internal gear 15 that meshes with the planetary gear 14.
  • the planetary gear 14 is rotatably supported in a space 16d of the carrier 16 by a support shaft 14a fixed to the front member 16b and the rear member 16c.
  • the internal gear 15 is fixed to the inner peripheral surface of the housing 2.
  • the rotation of the drive shaft 10a is decelerated based on the ratio between the number of teeth of the sun gear 13 and the number of teeth of the internal gear 15, and the rotational torque is increased. .
  • the carrier 16 and the spindle 11 can be driven at low speed and high torque.
  • Rotating impact mechanism of the rotating impact tool 1 includes a spindle 11, a carrier 16, a main hammer 20, a secondary hammer 21 and a spring member 23.
  • the spindle 11 is formed in a columnar shape, and a small-diameter protrusion 11 a is formed at the tip thereof coaxially with the axis of the spindle 11.
  • the protrusion 11a is inserted in a rotatable state into a hole having a cylindrical inner space formed in the rear part of the anvil 22.
  • a steel main hammer 20 having a substantially disc shape and having a through hole in the center is mounted on the outer periphery of the spindle 11.
  • a pair of hammer claws 20 a projecting toward the anvil 22 are formed on the front surface of the main hammer 20.
  • the main hammer 20 is attached to the spindle 11 so as to be rotatable about the rotation axis of the spindle 11 and to be movable in the direction of the rotation axis of the spindle 11, that is, in the front-rear direction.
  • the main hammer 20 can apply a rotational striking force to the anvil 22.
  • the auxiliary hammer 21 is formed as a steel cylindrical member, and is divided into a front part 21a and a rear part 21b by an annular partition part 21e.
  • the sub hammer 21 accommodates the main hammer 20 in the internal space of the front portion 21a.
  • the auxiliary hammer 21 and the main hammer 20 are provided with an integral rotation mechanism that rotates together.
  • the main hammer 20 includes four first pin grooves 20 d on its outer peripheral surface and having a semicircular cross section and parallel to the rotation axis of the spindle 11.
  • the auxiliary hammer 21 includes four second pin grooves 21 c on the inner peripheral surface of the front portion 21 a and having a semicircular cross section and parallel to the rotation axis of the spindle 11.
  • the four second pin grooves 21 c of the sub hammer 21 are formed at positions corresponding to the four first pin grooves 20 d of the main hammer 20.
  • the first pin grooves 20 d may be formed at an interval of 90 degrees on the outer peripheral surface of the main hammer 20.
  • the second pin grooves 21 c are formed at an interval of 90 degrees on the inner peripheral surface of the sub hammer 21.
  • an engagement pin 26 that is a cylindrical member is disposed in the second pin groove 21c.
  • the engagement pin 26 may be a needle roller.
  • the engagement pin 26 is inserted into the second pin groove 21c from the front end side of the sub hammer 21 and is inserted to the groove bottom portion provided in the step portion 21f protruding to the inner periphery.
  • a stop member 27 having a function of preventing the engagement pin 26 from being detached is fitted into the annular groove 21d formed on the inner peripheral surface of the sub hammer 21.
  • the four first pin grooves 20d of the main hammer 20 and the four engagement pins 26 are aligned with the four engagement pins 26 attached to the four second pin grooves 21c of the sub hammer 21. Then, the main hammer 20 is inserted into the sub hammer 21. As a result, the main hammer 20 and the sub hammer 21 can be rotated together around the rotation axis of the spindle 11.
  • the spring member 23 is interposed between the rear part of the main hammer 20 and the annular partition part 21e of the sub hammer 21.
  • the main hammer 20 can move in the front-rear direction using the engaging pin 26 as a guide, and can apply a rotational striking force to the anvil 22 by the biasing force of the spring member 23.
  • the spindle 11 includes two guide grooves 11b on the outer peripheral surface thereof, and the main hammer 20 includes two engagement grooves 20b on the inner peripheral surface of the through hole.
  • the two guide grooves 11b have the same shape and are arranged in the circumferential direction, and the two engagement grooves 20b have the same shape and are arranged in the circumferential direction.
  • a steel ball 19 is disposed between the guide groove 11b and the engagement groove 20b.
  • the guide groove 11b on the spindle 11 side, the engagement groove 20b on the main hammer 20 side, and the steel ball 19 disposed between them constitute a “cam structure”.
  • the two steel balls 19 support the main hammer 20 in the radial direction so that the main hammer 20 can rotate around the rotation axis of the spindle 11 and move in the direction of the rotation axis.
  • the guide groove 11b is formed in a V shape or a U shape when viewed from the tool tip side. That is, the guide groove 11b has two inclined grooves that are symmetrically inclined in the rear oblique direction from the foremost part.
  • the engagement groove 20b is formed in a V-shape or U-shape in the reverse direction when viewed from the tool front end side.
  • the auxiliary hammer 21 includes an annular first holding groove 21g on the rear surface of the annular partition portion 21e, and the carrier 16 having a diameter larger than that of the spindle 11 includes an annular second holding groove 16a on the front outer periphery of the front member 16b. Between the first holding groove 21g and the second holding groove 16a, the plurality of steel balls 17 are arranged without gaps in the circumferential direction. The steel ball 17 may be formed smaller than the steel ball 19.
  • the first holding groove 21g on the sub hammer 21 side, the second holding groove 16a on the carrier 16 side, and the steel ball 17 arranged without a gap therebetween constitute a “sub hammer support structure”.
  • the steel ball 17 is disposed between the secondary hammer 21 and the carrier 16 so as to receive a load in a direction different from the rotational axis direction of the spindle 11 and the radial direction orthogonal to the rotational axis direction.
  • the stopper member 30 is provided between the main hammer 20 and the carrier 16, and restricts the range of movement of the main hammer 20 in the rotational axis direction so that the steel ball 19 in the cam structure does not collide with the end of the inclined groove.
  • the stopper member 30 may be formed of a resin material, for example.
  • the anvil 22 that engages with the main hammer 20 is made of steel, and is rotatably supported by the housing 2 via a steel or brass sliding bearing.
  • the tip of the anvil 22 is provided with a tool mounting portion 22a having a square cross section for mounting a socket body to be mounted on the head of a hexagon bolt or a hexagon nut.
  • a pair of anvil claws that engage with the pair of hammer claws 20a of the main hammer 20 are provided at the rear of the anvil 22.
  • Each of the pair of anvil claws is formed as a columnar member having a sectional fan shape.
  • the anvil claw of the anvil 22 and the hammer claw 20a of the main hammer 20 do not necessarily have to be two, and if the number of the respective claws is equal, three or more at equal intervals in the circumferential direction of the anvil 22 and the main hammer 20 It may be provided.
  • FIG. 5 (a) shows the state of the cam structure immediately after the start of tightening the bolts and nuts
  • Fig. 5 (b) shows the state of the cam structure after a lapse of time from the start of tightening.
  • FIG.5 (b) is a comparison figure for comparing with the initial state of the cam structure shown to Fig.5 (a), and shows a mode that the steel ball 19 moves toward the groove edge part from the foremost part of the guide groove 11b. ing.
  • FIG. 6A shows an engaged state between the hammer claw 20a of the main hammer 20 and the anvil claw 22b of the anvil 22 immediately after the start of tightening the bolts and nuts.
  • a rotational force A due to the rotation of the driving unit 10 is applied to the main hammer 20 in the direction indicated by the arrow. Further, a forward biasing force B by the spring member 23 is applied to the main hammer 20 in the direction indicated by the arrow.
  • the rotational force of the main hammer 20 is transmitted to the anvil 22 by the circumferential engagement of the hammer claws 20a and the anvil claws 22b.
  • a socket body (not shown) attached to the tool mounting portion 22a rotates, and initial tightening is performed by applying a rotational force to the bolts and nuts. Since the spring member 23 applies the urging force B to the main hammer 20, the steel ball 19 is positioned at the foremost part of the guide groove 11b as shown in FIG. At this time, the hammer claw 20a and the anvil claw 22b are in an engaged state with the maximum engagement length.
  • the hammer claw 20 a moves along the locus indicated by the arrow G, collides with the anvil claw 22 b, and applies a striking force in the rotation direction to the anvil 22. Thereafter, the hammer claw 20a is moved in the direction opposite to the locus G by the reaction, but finally returns to the state shown in FIG. 6A by the rotational force A and the urging force B. The above operation is repeated at a high speed, and the rotational hammering force by the main hammer 20 is repeatedly applied to the anvil 22.
  • the magnitude of the impact in the rotational direction is proportional to the total moment of inertia of the main hammer 20 and the secondary hammer 21, while the magnitude of the impact in the rotational axis direction.
  • the length is proportional to the mass of the main hammer 20.
  • the rotary impact tool 1 of the embodiment has the same impact magnitude in the rotational direction as it is in the rotational axis direction. Reduce the magnitude of impact. By making the mass of the main hammer 20 as small as possible compared with the mass of the sub hammer 21, the impact force generated in the direction of the rotation axis can be further reduced.
  • the moment of inertia is increased by utilizing the fact that the magnitude of the moment of inertia is proportional to the square of the radius of rotation. That is, by providing the auxiliary hammer 21 having a large mass on the outer peripheral side of the main hammer 20, the moment of inertia of the auxiliary hammer 21 is increased and the impact force in the rotational direction by the double hammer is increased.
  • FIG. 7 is a view showing a sub hammer support structure according to the embodiment.
  • FIG. 8 shows the direction of load received by the steel ball in the auxiliary hammer support structure.
  • the auxiliary hammer support structure has a structure in which a plurality of steel balls 17 are arranged between the auxiliary hammer 21 and the carrier 16.
  • An annular first holding groove 21g for holding the steel ball 17 is provided on the rear surface of the annular partition portion 21e of the sub hammer 21.
  • the cross section of the first holding groove 21g in the rotation axis direction is formed in an arc shape, and the cross-sectional radius of the first holding groove 21g is larger than the radius of the steel ball 17.
  • An annular second holding groove 16 a for holding the steel ball 17 is provided on the outer periphery of the front surface of the front member 16 b of the carrier 16.
  • the cross section of the second holding groove 16 a in the rotation axis direction is formed in an arc shape, and the cross sectional radius of the second holding groove 16 a is larger than the radius of the steel ball 17.
  • the steel ball 17 is sandwiched between the first holding groove 21g and the second holding groove 16a.
  • 21g and the 2nd holding groove 16a are contacted stably and reliably.
  • the steel ball 17 can support the auxiliary hammer 21 suitably.
  • the steel ball 17 is arranged between the first holding groove 21g and the second holding groove 16a so as to receive a load in a direction different from the rotation axis direction and the radial direction of the spindle 11.
  • a load in the rotation axis direction and a load in the radial direction are generated by the impact of the rotary impact by the rotary impact mechanism.
  • the auxiliary hammer support structure of the embodiment is different from the case where the plurality of steel balls 17 receive a load in a direction different from the rotation axis direction and the radial direction, for example, compared to the case where the auxiliary hammer 21 is supported by a rolling bearing.
  • the support structure is downsized.
  • the load in the rotation axis direction acting on the steel ball 17 is compared with the magnitude of the load in the radial direction, since the spring load by the spring member 23 is applied in the rotation axis direction, the load in the rotation axis direction is the radial direction. Greater than load. Therefore, in order to disperse the resultant force of the load, it is preferable to set ⁇ to an angle smaller than 45 degrees, where ⁇ is an angle formed between the load direction received by the steel ball 17 and the radial direction. Thereby, the load in the rotation axis direction can be effectively dispersed, and the life of the steel ball 17 can be extended.
  • the steel ball 17 is disposed between the auxiliary hammer 21 and the carrier 16.
  • the steel ball 17 is connected to the auxiliary hammer 21 and a member having an outer diameter larger than that of the spindle 11.
  • the auxiliary hammer 21 may be supported by being disposed between the two.
  • a rotary impact tool (1) includes a drive unit (10), a spindle (11) rotated by the drive unit, an anvil (22) disposed in front of the spindle in the rotation axis direction, The first steel between the main hammer (20) that can rotate about the rotation axis of the spindle and move in the direction of the rotation axis, and the guide groove (11b) on the spindle side and the engagement groove (20b) on the main hammer side.
  • the rotary impact tool of this aspect further includes a secondary hammer support structure in which the second steel ball (17) is disposed between the secondary hammer and the large diameter portion.
  • the second steel ball (17) It arrange
  • the auxiliary hammer support structure has a structure in which a plurality of second steel balls (17) are arranged between the first holding groove (21g) on the auxiliary hammer side and the second holding groove (16a) on the large diameter side. It's okay.
  • the cross section of the first holding groove and the second holding groove in the rotation axis direction may be arcuate, and the radius of the first holding groove and the second holding groove is larger than the radius of the second steel ball (17). Is preferred.
  • the second holding groove (16a) may be provided on the front outer periphery of the large diameter portion.
  • the large-diameter portion may be a carrier (16) that is located on the rear end side of the spindle (11) and accommodates a power transmission gear.
  • the present invention can be used in the field of rotary impact tools.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

In a rotary impact tool 1, a sub-hammer support structure has a structure in which a plurality of steel balls 17 are disposed between a sub-hammer 21 and a carrier 16. The plurality of steel balls 17 are disposed between a first retention groove 21g of the sub-hammer 21 and a second retention groove 16a of the carrier 16 so as to receive the loads in a direction different from the rotational-axis direction and radial directions perpendicular to the rotational-axis direction. The first retention groove 21g and the second retention groove 16a are formed into an arc shape in cross section in the rotational-axis direction, and cross-sectional radii thereof are larger than the steel balls 17.

Description

回転打撃工具Rotating hammer tool
 本発明は、回転打撃工具に関する。 The present invention relates to a rotary impact tool.
 特許文献1は、駆動部によって回転されるスピンドルと、スピンドルの回転軸線方向の前方に配置されたアンビルと、スピンドルの回転を回転打撃に変換してアンビルに伝達する回転打撃機構とを備えたインパクトレンチを開示する。回転打撃機構は、スピンドルの回転軸線を中心に回転可能かつ軸線方向に移動可能な主ハンマと、主ハンマを収容して主ハンマと一体となって回転する一方で軸線方向には移動しない副ハンマとを備える。特許文献1に開示されるインパクトレンチでは、スピンドル側の案内溝と主ハンマ側の係合溝との間に鋼球を配置したカム構造が設けられ、主ハンマがカム構造により後退と前進を高速で繰り返すことでアンビルに回転打撃力を付与する。 Patent Document 1 discloses an impact including a spindle rotated by a driving unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotary striking mechanism that converts the rotation of the spindle into a rotational striking and transmits it to the anvil. Disclose wrench. The rotary striking mechanism includes a main hammer that can rotate about the rotation axis of the spindle and move in the axial direction, and a secondary hammer that houses the main hammer and rotates integrally with the main hammer, but does not move in the axial direction. With. In the impact wrench disclosed in Patent Document 1, a cam structure in which a steel ball is arranged between a guide groove on the spindle side and an engagement groove on the main hammer side is provided, and the main hammer can move backward and forward at high speed. Repeat with to give the anvil a rotational impact.
 特許文献1に開示されるインパクトレンチにおいて、副ハンマとスピンドルの間にはスピンドルの回転軸線に対してラジアル方向の荷重を受ける転がり軸受が配設され、副ハンマの後端内周は転がり軸受の外輪に圧入される。このインパクトレンチでは、スピンドルの外周と転がり軸受の内輪の間に隙間を形成することで、転がり軸受に加わるラジアル荷重を低減させている。 In the impact wrench disclosed in Patent Document 1, a rolling bearing that receives a load in the radial direction with respect to the rotation axis of the spindle is disposed between the auxiliary hammer and the spindle, and the inner periphery of the rear end of the auxiliary hammer is the rolling bearing. Press-fitted into the outer ring. In this impact wrench, a radial load applied to the rolling bearing is reduced by forming a gap between the outer periphery of the spindle and the inner ring of the rolling bearing.
特開2014-240108号公報JP 2014-240108 A
 特許文献1に開示されるインパクトレンチにおいて、スピンドルと副ハンマとの芯振れを防止するためには、大型の転がり軸受を使用し、且つ転がり軸受外輪に圧入される副ハンマ後端を厚く形成する必要がある。そのため副ハンマの支持構造の重量およびサイズは大きくなる傾向がある。 In the impact wrench disclosed in Patent Document 1, in order to prevent the core and the secondary hammer from swinging, a large rolling bearing is used and the trailing end of the secondary hammer that is press-fitted into the outer ring of the rolling bearing is formed thick. There is a need. For this reason, the weight and size of the support structure of the secondary hammer tend to increase.
 本発明はこうした状況に鑑みなされたものであり、その目的は、主ハンマと副ハンマとを有する回転打撃工具において、副ハンマの支持構造の小型化を実現する技術を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for reducing the size of a support structure of a secondary hammer in a rotary impact tool having a primary hammer and a secondary hammer.
 上記課題を解決するために、本発明のある態様の回転打撃工具は、駆動部と、駆動部により回転されるスピンドルと、スピンドルの回転軸線方向の前方に配置されたアンビルと、スピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能な主ハンマと、スピンドル側の案内溝と主ハンマ側の係合溝との間に第1鋼球を配置したカム構造と、主ハンマを収容して主ハンマと一体に回転可能な副ハンマと、案内溝の後方側に設けられて案内溝が形成されたスピンドルの部分より大きい外径を有する大径部と、を備える。この態様の回転打撃工具は、副ハンマと大径部の間に第2鋼球を配置した副ハンマ支持構造をさらに備え、副ハンマ支持構造において、第2鋼球は、回転軸線方向および回転軸線方向に直交する径方向とは異なる方向の荷重を受けるように、副ハンマと大径部の間に配置される。 In order to solve the above-described problems, a rotary impact tool according to an aspect of the present invention includes a drive unit, a spindle rotated by the drive unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotation axis of the spindle. A main hammer that is rotatable about the axis and movable in the direction of the rotation axis, a cam structure in which a first steel ball is disposed between a guide groove on the spindle side and an engagement groove on the main hammer side, and a main hammer. And a sub-hammer that can rotate integrally with the main hammer, and a large-diameter portion that is provided on the rear side of the guide groove and has a larger outer diameter than the portion of the spindle on which the guide groove is formed. The rotary impact tool of this aspect further includes a secondary hammer support structure in which a second steel ball is disposed between the secondary hammer and the large diameter portion. In the secondary hammer support structure, the second steel ball has a rotational axis direction and a rotational axis. It arrange | positions between a sub hammer and a large diameter part so that the load of a direction different from the radial direction orthogonal to a direction may be received.
実施形態に係る回転打撃工具の主要部の断面概略図である。It is a section schematic diagram of the principal part of the rotary impact tool concerning an embodiment. 実施形態に係る回転打撃機構の構成部品の分解斜視図である。It is a disassembled perspective view of the component of the rotation impact mechanism which concerns on embodiment. 実施形態に係る回転打撃機構の組立斜視図である。It is an assembly perspective view of the rotation impact mechanism concerning an embodiment. (a)は主ハンマの前面側斜視図であり、(b)はスピンドルおよびキャリアの斜視図であり、(c)は副ハンマの後面側斜視図である。(A) is a front side perspective view of a main hammer, (b) is a perspective view of a spindle and a carrier, and (c) is a rear side perspective view of a sub hammer. (a)および(b)はカム構造の動作状態を示す図である。(A) And (b) is a figure which shows the operation state of a cam structure. (a)~(c)は主ハンマとアンビルの係合面を周方向に模式的に展開した位置関係を示す図である。(A)-(c) is a figure which shows the positional relationship which expanded the engagement surface of the main hammer and the anvil typically in the circumferential direction. 実施形態に係る副ハンマ支持構造を示す図である。It is a figure which shows the sub hammer support structure which concerns on embodiment. 副ハンマ支持構造において鋼球が受ける荷重方向を示す図である。It is a figure which shows the load direction which a steel ball receives in a sub hammer support structure.
 実施形態の回転打撃工具は、駆動部と、駆動部により回転されるスピンドルと、スピンドルの回転軸線方向の前方に配置されたアンビルと、スピンドルの回転を回転打撃に変換してアンビルに伝達する回転打撃機構とを備える。回転打撃機構はダブルハンマ構成を採用し、スピンドルの回転軸線を中心に回転可能且つ軸線方向に移動可能な主ハンマと、主ハンマを収容して主ハンマと一体に回転可能な副ハンマを備える。回転打撃機構は、主ハンマをアンビルに衝撃的に係合させて、アンビルを軸線回りに回転させる機能をもつ。 The rotary impact tool of the embodiment includes a drive unit, a spindle rotated by the drive unit, an anvil disposed in front of the spindle in the rotation axis direction, and rotation for converting the rotation of the spindle into rotary strike and transmitting the rotation to the anvil. A striking mechanism. The rotary hammering mechanism employs a double hammer configuration, and includes a main hammer that is rotatable about the rotation axis of the spindle and is movable in the axial direction, and a secondary hammer that accommodates the main hammer and can rotate together with the main hammer. The rotary striking mechanism has a function of causing the main hammer to impactably engage the anvil and rotating the anvil about the axis.
 図1は、実施形態に係る回転打撃工具の主要部の断面概略図を示す。図1において一点鎖線は、回転打撃工具1における回転軸線を示している。図2は、実施形態に係る回転打撃機構の構成部品の分解斜視図を示し、図3は、実施形態に係る回転打撃機構の組立斜視図を示す。図4(a)は主ハンマの前面側斜視図を示し、図4(b)はスピンドルおよびキャリアの斜視図を示し、図4(c)は副ハンマの後面側斜視図を示す。なお図1、図3では、後述する止め部材27の図示を省略している。以下、図1~図4を用いて、回転打撃工具1の構造について説明する。 FIG. 1 is a schematic cross-sectional view of a main part of a rotary impact tool according to an embodiment. In FIG. 1, an alternate long and short dash line indicates a rotation axis of the rotary impact tool 1. FIG. 2 is an exploded perspective view of components of the rotary impact mechanism according to the embodiment, and FIG. 3 is an assembled perspective view of the rotary impact mechanism according to the embodiment. 4A is a front perspective view of the main hammer, FIG. 4B is a perspective view of the spindle and the carrier, and FIG. 4C is a rear perspective view of the auxiliary hammer. In FIG. 1 and FIG. 3, the illustration of a stop member 27 described later is omitted. Hereinafter, the structure of the rotary impact tool 1 will be described with reference to FIGS.
 回転打撃工具1は、工具本体を構成するハウジング2を備える。ハウジング2の上部は、各種構成部品を収容するための収容空間を形成し、ハウジング2の下部は、ユーザにより把持される把持部3を構成する。把持部3の前側には、ユーザの手指により操作される操作スイッチ4が設けられ、把持部3の下端部には、駆動部10に電力を供給するバッテリ(図示せず)が設けられる。 The rotary impact tool 1 includes a housing 2 that constitutes a tool body. The upper part of the housing 2 forms an accommodation space for accommodating various components, and the lower part of the housing 2 constitutes a grip portion 3 that is gripped by the user. An operation switch 4 that is operated by a user's finger is provided on the front side of the grip 3, and a battery (not shown) that supplies power to the drive unit 10 is provided at the lower end of the grip 3.
 駆動部10は電動モータであって、駆動部10の駆動軸10aは、動力伝達機構12を介してキャリア16およびスピンドル11に連結される。キャリア16はスピンドル11の後端側に位置して、動力伝達用の歯車を収容する。図4(b)を参照してキャリア16は、スピンドル11より大きい外径を有する大径部として構成される。キャリア16は、スピンドル11より大径の前側部材16bと、前側部材16bよりも後方に位置する後側部材16cとを有し、前側部材16bと後側部材16cとの間に歯車を収容するための空間16dを形成する。 The drive unit 10 is an electric motor, and the drive shaft 10 a of the drive unit 10 is connected to the carrier 16 and the spindle 11 via the power transmission mechanism 12. The carrier 16 is located on the rear end side of the spindle 11 and accommodates a power transmission gear. With reference to FIG. 4B, the carrier 16 is configured as a large-diameter portion having an outer diameter larger than that of the spindle 11. The carrier 16 has a front member 16b having a diameter larger than that of the spindle 11, and a rear member 16c positioned rearward of the front member 16b, and accommodates a gear between the front member 16b and the rear member 16c. The space 16d is formed.
 動力伝達機構12は、駆動軸10aの先端に圧入固定される太陽歯車13と、太陽歯車13に噛合する2個の遊星歯車14と、遊星歯車14に噛合する内歯車15とを有する。遊星歯車14はキャリア16の空間16dにおいて、前側部材16bおよび後側部材16cに固定される支軸14aにより回転可能に支持される。内歯車15は、ハウジング2の内周面に固定されている。 The power transmission mechanism 12 includes a sun gear 13 that is press-fitted and fixed to the tip of the drive shaft 10 a, two planetary gears 14 that mesh with the sun gear 13, and an internal gear 15 that meshes with the planetary gear 14. The planetary gear 14 is rotatably supported in a space 16d of the carrier 16 by a support shaft 14a fixed to the front member 16b and the rear member 16c. The internal gear 15 is fixed to the inner peripheral surface of the housing 2.
 以上のように構成した動力伝達機構12により、駆動軸10aの回転が、太陽歯車13の歯数と内歯車15の歯数との比に基づいて減速されるとともに、その回転トルクが増大される。これによりキャリア16およびスピンドル11を低速高トルクで駆動できるようになる。 With the power transmission mechanism 12 configured as described above, the rotation of the drive shaft 10a is decelerated based on the ratio between the number of teeth of the sun gear 13 and the number of teeth of the internal gear 15, and the rotational torque is increased. . As a result, the carrier 16 and the spindle 11 can be driven at low speed and high torque.
 回転打撃工具1の回転打撃機構は、スピンドル11、キャリア16、主ハンマ20、副ハンマ21およびばね部材23によって構成される。スピンドル11は円柱状に形成され、その先端には、小径の突起部11aがスピンドル11の軸線と同軸に形成される。突起部11aは、アンビル22の後部に形成した円柱状の内部空間を有する孔に回転可能な状態で挿入される。 Rotating impact mechanism of the rotating impact tool 1 includes a spindle 11, a carrier 16, a main hammer 20, a secondary hammer 21 and a spring member 23. The spindle 11 is formed in a columnar shape, and a small-diameter protrusion 11 a is formed at the tip thereof coaxially with the axis of the spindle 11. The protrusion 11a is inserted in a rotatable state into a hole having a cylindrical inner space formed in the rear part of the anvil 22.
 スピンドル11の外周には、略円盤状であって中心部に貫通孔を形成した鋼製の主ハンマ20が装着される。主ハンマ20の前面には、アンビル22に向けて突出する一対のハンマ爪20aが形成される。主ハンマ20は、スピンドル11の回転軸線を中心に回転可能であり、且つスピンドル11の回転軸線方向すなわち前後方向に移動可能となるように、スピンドル11に取り付けられる。これにより主ハンマ20は、アンビル22に対して回転打撃力を加えられるようになる。副ハンマ21は鋼製の円筒部材として形成され、環状仕切部21eにより前部21aと後部21bに仕切られる。副ハンマ21は、前部21aの内部空間に主ハンマ20を収容する。 A steel main hammer 20 having a substantially disc shape and having a through hole in the center is mounted on the outer periphery of the spindle 11. A pair of hammer claws 20 a projecting toward the anvil 22 are formed on the front surface of the main hammer 20. The main hammer 20 is attached to the spindle 11 so as to be rotatable about the rotation axis of the spindle 11 and to be movable in the direction of the rotation axis of the spindle 11, that is, in the front-rear direction. As a result, the main hammer 20 can apply a rotational striking force to the anvil 22. The auxiliary hammer 21 is formed as a steel cylindrical member, and is divided into a front part 21a and a rear part 21b by an annular partition part 21e. The sub hammer 21 accommodates the main hammer 20 in the internal space of the front portion 21a.
 副ハンマ21と主ハンマ20は、一体となって回転する一体回転機構を備える。図2を参照して、主ハンマ20は、その外周面に、断面が半円形でスピンドル11の回転軸線と平行な4つの第1ピン溝20dを備える。また副ハンマ21は、前部21aの内周面に、断面が半円形でスピンドル11の回転軸線と平行な4つの第2ピン溝21cを備える。ここで副ハンマ21の4つの第2ピン溝21cは、主ハンマ20の4つの第1ピン溝20dに対応する位置に形成される。第1ピン溝20dは、主ハンマ20の外周面において90度の間隔で形成されてよく、このとき第2ピン溝21cは、副ハンマ21の内周面において90度の間隔で形成される。 The auxiliary hammer 21 and the main hammer 20 are provided with an integral rotation mechanism that rotates together. Referring to FIG. 2, the main hammer 20 includes four first pin grooves 20 d on its outer peripheral surface and having a semicircular cross section and parallel to the rotation axis of the spindle 11. The auxiliary hammer 21 includes four second pin grooves 21 c on the inner peripheral surface of the front portion 21 a and having a semicircular cross section and parallel to the rotation axis of the spindle 11. Here, the four second pin grooves 21 c of the sub hammer 21 are formed at positions corresponding to the four first pin grooves 20 d of the main hammer 20. The first pin grooves 20 d may be formed at an interval of 90 degrees on the outer peripheral surface of the main hammer 20. At this time, the second pin grooves 21 c are formed at an interval of 90 degrees on the inner peripheral surface of the sub hammer 21.
 第2ピン溝21cには、円柱部材である係合ピン26が配設される。係合ピン26は、針状コロであってよい。係合ピン26は、副ハンマ21の前端側から第2ピン溝21cに挿入され、内周に張り出した段部21fに設けられた溝底部まで差し込まれる。係合ピン26を溝底部まで差し込んだ状態で、副ハンマ21の内周面に形成された環状溝21dに、係合ピン26の抜け止め機能をもつ止め部材27が嵌め込まれる。止め部材27が環状溝21dに配設されることで、第2ピン溝21cにおける係合ピン26の移動が制限される。 In the second pin groove 21c, an engagement pin 26 that is a cylindrical member is disposed. The engagement pin 26 may be a needle roller. The engagement pin 26 is inserted into the second pin groove 21c from the front end side of the sub hammer 21 and is inserted to the groove bottom portion provided in the step portion 21f protruding to the inner periphery. With the engagement pin 26 inserted to the bottom of the groove, a stop member 27 having a function of preventing the engagement pin 26 from being detached is fitted into the annular groove 21d formed on the inner peripheral surface of the sub hammer 21. By disposing the stop member 27 in the annular groove 21d, the movement of the engagement pin 26 in the second pin groove 21c is limited.
 組付時、副ハンマ21の4つの第2ピン溝21cに4つの係合ピン26を取り付けた状態で、主ハンマ20の4つの第1ピン溝20dと4つの係合ピン26の位置を合わせて、主ハンマ20を副ハンマ21に挿入する。これにより主ハンマ20と副ハンマ21とは、スピンドル11の回転軸線を中心として一体となって回転可能となる。 At the time of assembly, the four first pin grooves 20d of the main hammer 20 and the four engagement pins 26 are aligned with the four engagement pins 26 attached to the four second pin grooves 21c of the sub hammer 21. Then, the main hammer 20 is inserted into the sub hammer 21. As a result, the main hammer 20 and the sub hammer 21 can be rotated together around the rotation axis of the spindle 11.
 ばね部材23は、主ハンマ20の後部と、副ハンマ21の環状仕切部21eとの間に介装される。主ハンマ20は係合ピン26をガイドとして前後方向に移動可能であり、ばね部材23の付勢力によりアンビル22に回転打撃力を加えることができる。 The spring member 23 is interposed between the rear part of the main hammer 20 and the annular partition part 21e of the sub hammer 21. The main hammer 20 can move in the front-rear direction using the engaging pin 26 as a guide, and can apply a rotational striking force to the anvil 22 by the biasing force of the spring member 23.
 スピンドル11は、その外周面に2つの案内溝11bを備え、主ハンマ20は、貫通孔の内周面に2つの係合溝20bを備える。2つの案内溝11bは同一形状を有して周方向に並べて設けられ、また2つの係合溝20bは同一形状を有して周方向に並べて設けられる。スピンドル11の外周に主ハンマ20を装着した状態で、案内溝11bおよび係合溝20bの間には鋼球19が配置される。スピンドル11側の案内溝11bと、主ハンマ20側の係合溝20bと、両者の間に配置された鋼球19は「カム構造」を構成する。2つの鋼球19は、主ハンマ20がスピンドル11の回転軸線を中心に回転可能且つ回転軸線方向に移動可能となるように主ハンマ20を径方向に支持する。 The spindle 11 includes two guide grooves 11b on the outer peripheral surface thereof, and the main hammer 20 includes two engagement grooves 20b on the inner peripheral surface of the through hole. The two guide grooves 11b have the same shape and are arranged in the circumferential direction, and the two engagement grooves 20b have the same shape and are arranged in the circumferential direction. With the main hammer 20 mounted on the outer periphery of the spindle 11, a steel ball 19 is disposed between the guide groove 11b and the engagement groove 20b. The guide groove 11b on the spindle 11 side, the engagement groove 20b on the main hammer 20 side, and the steel ball 19 disposed between them constitute a “cam structure”. The two steel balls 19 support the main hammer 20 in the radial direction so that the main hammer 20 can rotate around the rotation axis of the spindle 11 and move in the direction of the rotation axis.
 カム構造において、案内溝11bは、工具先端側からみてV字ないしはU字形状に形成されている。つまり案内溝11bは、最前部から対称に後斜め方向に傾斜する2つの傾斜溝をもつ。係合溝20bは、工具先端側からみて逆向きのV字ないしはU字形状に形成されている。鋼球19が案内溝11bの最前部から傾斜溝に沿って移動すると、主ハンマ20はスピンドル11に対して相対的に後退することになる。 In the cam structure, the guide groove 11b is formed in a V shape or a U shape when viewed from the tool tip side. That is, the guide groove 11b has two inclined grooves that are symmetrically inclined in the rear oblique direction from the foremost part. The engagement groove 20b is formed in a V-shape or U-shape in the reverse direction when viewed from the tool front end side. When the steel ball 19 moves along the inclined groove from the frontmost part of the guide groove 11b, the main hammer 20 moves backward relative to the spindle 11.
 副ハンマ21は、環状仕切部21eの後面に環状の第1保持溝21gを備え、スピンドル11よりも大径のキャリア16は、前側部材16bの前面外周に環状の第2保持溝16aを備える。第1保持溝21gと第2保持溝16aの間には、複数の鋼球17が周方向に隙間無く配置される。鋼球17は、鋼球19よりも小さく形成されてよい。副ハンマ21側の第1保持溝21gと、キャリア16側の第2保持溝16aと、両者の間に隙間無く配置された鋼球17は「副ハンマ支持構造」を構成する。副ハンマ支持構造において、鋼球17は、スピンドル11の回転軸線方向および回転軸線方向に直交する径方向とは異なる方向の荷重を受けるように、副ハンマ21とキャリア16の間に配置される。 The auxiliary hammer 21 includes an annular first holding groove 21g on the rear surface of the annular partition portion 21e, and the carrier 16 having a diameter larger than that of the spindle 11 includes an annular second holding groove 16a on the front outer periphery of the front member 16b. Between the first holding groove 21g and the second holding groove 16a, the plurality of steel balls 17 are arranged without gaps in the circumferential direction. The steel ball 17 may be formed smaller than the steel ball 19. The first holding groove 21g on the sub hammer 21 side, the second holding groove 16a on the carrier 16 side, and the steel ball 17 arranged without a gap therebetween constitute a “sub hammer support structure”. In the secondary hammer support structure, the steel ball 17 is disposed between the secondary hammer 21 and the carrier 16 so as to receive a load in a direction different from the rotational axis direction of the spindle 11 and the radial direction orthogonal to the rotational axis direction.
 ストッパ部材30は主ハンマ20とキャリア16の間に設けられて、カム構造における鋼球19が傾斜溝の端部に衝突しないように、主ハンマ20の回転軸線方向の移動範囲を規制する。ストッパ部材30は、たとえば樹脂材料で形成されてよい。 The stopper member 30 is provided between the main hammer 20 and the carrier 16, and restricts the range of movement of the main hammer 20 in the rotational axis direction so that the steel ball 19 in the cam structure does not collide with the end of the inclined groove. The stopper member 30 may be formed of a resin material, for example.
 主ハンマ20に係合するアンビル22は鋼製であり、鋼製もしくは黄銅製の滑り軸受を介してハウジング2に回転自在に支持されている。アンビル22の先端には、6角ボルトの頭部や6角ナットに装着するソケット体を取り付けるための、断面が四角形状の工具装着部22aが設けられる。 The anvil 22 that engages with the main hammer 20 is made of steel, and is rotatably supported by the housing 2 via a steel or brass sliding bearing. The tip of the anvil 22 is provided with a tool mounting portion 22a having a square cross section for mounting a socket body to be mounted on the head of a hexagon bolt or a hexagon nut.
 アンビル22の後部には、主ハンマ20の一対のハンマ爪20aに係合する一対のアンビル爪が設けられる。一対のアンビル爪は、それぞれ断面扇形の柱状部材として形成される。なおアンビル22のアンビル爪および主ハンマ20のハンマ爪20aは、必ずしも2個である必要はなく、それぞれの爪の数が等しければ、アンビル22および主ハンマ20の周方向に等間隔に3個以上設けてもよい。 A pair of anvil claws that engage with the pair of hammer claws 20a of the main hammer 20 are provided at the rear of the anvil 22. Each of the pair of anvil claws is formed as a columnar member having a sectional fan shape. The anvil claw of the anvil 22 and the hammer claw 20a of the main hammer 20 do not necessarily have to be two, and if the number of the respective claws is equal, three or more at equal intervals in the circumferential direction of the anvil 22 and the main hammer 20 It may be provided.
 次に、実施形態の回転打撃工具1におけるカム構造の動作を説明する。
 ユーザによる操作スイッチ4の引き操作により駆動部10が回転駆動すると、動力伝達機構12を介してキャリア16およびスピンドル11が回転する。スピンドル11の回転力は、スピンドル11の案内溝11bと主ハンマ20の係合溝20bの間に嵌め込まれた鋼球19を介して主ハンマ20に伝達され、主ハンマ20および副ハンマ21が一体となって回転する。
Next, the operation of the cam structure in the rotary impact tool 1 of the embodiment will be described.
When the drive unit 10 is rotationally driven by the pulling operation of the operation switch 4 by the user, the carrier 16 and the spindle 11 are rotated via the power transmission mechanism 12. The rotational force of the spindle 11 is transmitted to the main hammer 20 through a steel ball 19 fitted between the guide groove 11b of the spindle 11 and the engagement groove 20b of the main hammer 20, and the main hammer 20 and the sub hammer 21 are integrated. And rotate.
 図5(a)は、ボルトやナットの締め付け開始直後のカム構造の状態を示し、図5(b)は、締め付け開始から時間経過後のカム構造の状態を示す。図5(b)は、図5(a)に示すカム構造の初期状態と比較するための比較図であり、鋼球19が案内溝11bの最前部から溝端部に向かって移動する様子を示している。 Fig. 5 (a) shows the state of the cam structure immediately after the start of tightening the bolts and nuts, and Fig. 5 (b) shows the state of the cam structure after a lapse of time from the start of tightening. FIG.5 (b) is a comparison figure for comparing with the initial state of the cam structure shown to Fig.5 (a), and shows a mode that the steel ball 19 moves toward the groove edge part from the foremost part of the guide groove 11b. ing.
 図6(a)~図6(c)は、主ハンマ20とアンビル22の係合面を周方向に模式的に展開した位置関係を示す。ここで図6(a)は、ボルトやナットの締め付け開始直後の主ハンマ20のハンマ爪20aとアンビル22のアンビル爪22bとの係合状態を示している。 6 (a) to 6 (c) show a positional relationship in which the engagement surfaces of the main hammer 20 and the anvil 22 are schematically developed in the circumferential direction. Here, FIG. 6A shows an engaged state between the hammer claw 20a of the main hammer 20 and the anvil claw 22b of the anvil 22 immediately after the start of tightening the bolts and nuts.
 図6(a)~図6(c)に示すように、主ハンマ20には、駆動部10の回転による回転力Aが矢印で示す方向に加わる。また主ハンマ20には、ばね部材23による前進方向の付勢力Bが矢印で示す方向に加わる。 As shown in FIGS. 6A to 6C, a rotational force A due to the rotation of the driving unit 10 is applied to the main hammer 20 in the direction indicated by the arrow. Further, a forward biasing force B by the spring member 23 is applied to the main hammer 20 in the direction indicated by the arrow.
 主ハンマ20が回転すると、ハンマ爪20aとアンビル爪22bとの周方向の係合により、主ハンマ20の回転力がアンビル22に伝達される。そしてアンビル22の回転によって、工具装着部22aに取付けられたソケット体(図示せず)が回転し、ボルトやナットに回転力を与えて初期の締め付けが行われる。ばね部材23が主ハンマ20に対して付勢力Bを加えているため、鋼球19は、図5(a)に示すように、案内溝11bにおける最前部に位置する。このときハンマ爪20aとアンビル爪22bとは、最大係合長で係合した状態にある。 When the main hammer 20 rotates, the rotational force of the main hammer 20 is transmitted to the anvil 22 by the circumferential engagement of the hammer claws 20a and the anvil claws 22b. As the anvil 22 rotates, a socket body (not shown) attached to the tool mounting portion 22a rotates, and initial tightening is performed by applying a rotational force to the bolts and nuts. Since the spring member 23 applies the urging force B to the main hammer 20, the steel ball 19 is positioned at the foremost part of the guide groove 11b as shown in FIG. At this time, the hammer claw 20a and the anvil claw 22b are in an engaged state with the maximum engagement length.
 ボルトやナットの締め付けが進むに伴ってアンビル22に加わる負荷トルクが大きくなると、主ハンマ20にY方向の回転力が生じる。そして負荷トルクが所定値を超えると、ばね部材23の付勢力Bに抗して、鋼球19が案内溝11bおよび係合溝20bの斜面に沿って矢印Fで示す方向に移動し、主ハンマ20が後退する方向(X方向)に移動する。 When the load torque applied to the anvil 22 increases as the tightening of the bolts and nuts proceeds, a rotational force in the Y direction is generated in the main hammer 20. When the load torque exceeds a predetermined value, the steel ball 19 moves in the direction indicated by the arrow F along the inclined surfaces of the guide groove 11b and the engagement groove 20b against the biasing force B of the spring member 23, and the main hammer. 20 moves in the backward direction (X direction).
 そして鋼球19が傾斜溝内を移動して、主ハンマ20がX方向に、ハンマ爪20aとアンビル爪22bとの最大係合長分の距離を移動すると、図6(b)に示すように、ハンマ爪20aとアンビル爪22bとの係合が解除される。 When the steel ball 19 moves in the inclined groove and the main hammer 20 moves in the X direction by a distance corresponding to the maximum engagement length between the hammer claw 20a and the anvil claw 22b, as shown in FIG. The engagement between the hammer claw 20a and the anvil claw 22b is released.
 ハンマ爪20aがアンビル爪22bから外れると、押し縮められたばね部材23の付勢力Bが開放されることによって、主ハンマ20は高速で、回転力Aが加えられている方向に回転しながら、付勢力Bにより前進する。 When the hammer claw 20a is detached from the anvil claw 22b, the biasing force B of the compressed spring member 23 is released, so that the main hammer 20 rotates at a high speed in the direction in which the rotational force A is applied. Move forward by force B.
 そして図6(c)に示すように、ハンマ爪20aが、矢印Gで示す軌跡で移動してアンビル爪22bに衝突し、アンビル22に回転方向の打撃力を付与する。その後、反動によりハンマ爪20aは、軌跡Gとは逆方向に移動するが、最終的には、回転力Aおよび付勢力Bにより図6(a)に示す状態に戻る。以上の動作が高速で繰り返され、主ハンマ20による回転打撃力がアンビル22に対して繰り返し付与される。 Then, as shown in FIG. 6C, the hammer claw 20 a moves along the locus indicated by the arrow G, collides with the anvil claw 22 b, and applies a striking force in the rotation direction to the anvil 22. Thereafter, the hammer claw 20a is moved in the direction opposite to the locus G by the reaction, but finally returns to the state shown in FIG. 6A by the rotational force A and the urging force B. The above operation is repeated at a high speed, and the rotational hammering force by the main hammer 20 is repeatedly applied to the anvil 22.
 以上はボルトやナットを締め付ける際の動作についての説明であるが、締め付けられたボルトやナットを緩める際にも、回転打撃機構により締め付け時と同様の動作が行われる。この場合、駆動部10を締め付け時とは逆方向に回転させることにより、鋼球19が図5(a)に示す案内溝11bに沿って右上方に移動し、ハンマ爪20aがアンビル爪22bを、締め付け時とは逆方向に打撃する。 The above is the description of the operation when tightening the bolt or nut, but when the tightened bolt or nut is loosened, the same operation as when tightening is performed by the rotary impact mechanism. In this case, by rotating the drive unit 10 in a direction opposite to that during tightening, the steel ball 19 moves to the upper right along the guide groove 11b shown in FIG. 5A, and the hammer claw 20a moves the anvil claw 22b. Strike in the direction opposite to the direction of tightening.
 実施形態の回転打撃工具1はダブルハンマ構成を採用するため、回転方向の衝撃の大きさは、主ハンマ20および副ハンマ21の合計の慣性モーメントに比例する一方で、回転軸線方向の衝撃の大きさは、主ハンマ20の質量に比例する。主ハンマ20および副ハンマ21の合計の質量をもつ1つのハンマを用いた回転打撃工具と比較すると、実施形態の回転打撃工具1は、回転方向の衝撃の大きさをそのままに、回転軸線方向の衝撃の大きさを低減する。主ハンマ20の質量を副ハンマ21の質量と比較してできるだけ小さくすることで、回転軸線方向に生じる衝撃力をより小さくすることが可能となる。 Since the rotary impact tool 1 of the embodiment employs a double hammer configuration, the magnitude of the impact in the rotational direction is proportional to the total moment of inertia of the main hammer 20 and the secondary hammer 21, while the magnitude of the impact in the rotational axis direction. The length is proportional to the mass of the main hammer 20. Compared with the rotary impact tool 1 using one hammer having the total mass of the main hammer 20 and the secondary hammer 21, the rotary impact tool 1 of the embodiment has the same impact magnitude in the rotational direction as it is in the rotational axis direction. Reduce the magnitude of impact. By making the mass of the main hammer 20 as small as possible compared with the mass of the sub hammer 21, the impact force generated in the direction of the rotation axis can be further reduced.
 さらに実施形態の回転打撃工具1では、慣性モーメントの大きさが回転半径の2乗に比例することを利用して、慣性モーメントの増大を図っている。すなわち質量の大きい副ハンマ21を主ハンマ20の外周側に設けることで、副ハンマ21の慣性モーメントを大きくし、ダブルハンマによる回転方向の衝撃力を増大させている。 Furthermore, in the rotary impact tool 1 of the embodiment, the moment of inertia is increased by utilizing the fact that the magnitude of the moment of inertia is proportional to the square of the radius of rotation. That is, by providing the auxiliary hammer 21 having a large mass on the outer peripheral side of the main hammer 20, the moment of inertia of the auxiliary hammer 21 is increased and the impact force in the rotational direction by the double hammer is increased.
 図7は、実施形態に係る副ハンマ支持構造を示す図である。図8は、副ハンマ支持構造において鋼球が受ける荷重方向を示す。副ハンマ支持構造は、副ハンマ21とキャリア16との間に複数の鋼球17を配置した構造をもつ。 FIG. 7 is a view showing a sub hammer support structure according to the embodiment. FIG. 8 shows the direction of load received by the steel ball in the auxiliary hammer support structure. The auxiliary hammer support structure has a structure in which a plurality of steel balls 17 are arranged between the auxiliary hammer 21 and the carrier 16.
 副ハンマ21の環状仕切部21eの後面に、鋼球17を保持するための環状の第1保持溝21gが設けられる。第1保持溝21gの回転軸線方向の断面は、円弧状に形成されており、第1保持溝21gの断面半径は、鋼球17の半径よりも大きい。またキャリア16の前側部材16bの前面外周に、鋼球17を保持するための環状の第2保持溝16aが設けられる。第2保持溝16aの回転軸線方向の断面は、円弧状に形成されており、第2保持溝16aの断面半径は、鋼球17の半径よりも大きい。 An annular first holding groove 21g for holding the steel ball 17 is provided on the rear surface of the annular partition portion 21e of the sub hammer 21. The cross section of the first holding groove 21g in the rotation axis direction is formed in an arc shape, and the cross-sectional radius of the first holding groove 21g is larger than the radius of the steel ball 17. An annular second holding groove 16 a for holding the steel ball 17 is provided on the outer periphery of the front surface of the front member 16 b of the carrier 16. The cross section of the second holding groove 16 a in the rotation axis direction is formed in an arc shape, and the cross sectional radius of the second holding groove 16 a is larger than the radius of the steel ball 17.
 このように第1保持溝21gおよび第2保持溝16aを形成して、鋼球17を第1保持溝21gと第2保持溝16aの間に挟み込むことで、鋼球17は、第1保持溝21gおよび第2保持溝16aに安定且つ確実に接触する。これにより鋼球17は、副ハンマ21を好適に支持できるようになる。 In this way, the first holding groove 21g and the second holding groove 16a are formed, and the steel ball 17 is sandwiched between the first holding groove 21g and the second holding groove 16a. 21g and the 2nd holding groove 16a are contacted stably and reliably. Thereby, the steel ball 17 can support the auxiliary hammer 21 suitably.
 図8に示すように、鋼球17は、スピンドル11の回転軸線方向および径方向とは異なる方向の荷重を受けるように第1保持溝21gと第2保持溝16aの間に配置される。回転打撃工具1では、回転打撃機構による回転打撃衝撃により、回転軸線方向の荷重と径方向の荷重がそれぞれ発生する。実施形態の副ハンマ支持構造は、複数の鋼球17が、回転軸線方向および径方向とは異なる方向の荷重を受けることにより、たとえば転がり軸受で副ハンマ21を支持する場合と比べると、副ハンマ支持構造の小型化を実現している。 As shown in FIG. 8, the steel ball 17 is arranged between the first holding groove 21g and the second holding groove 16a so as to receive a load in a direction different from the rotation axis direction and the radial direction of the spindle 11. In the rotary impact tool 1, a load in the rotation axis direction and a load in the radial direction are generated by the impact of the rotary impact by the rotary impact mechanism. The auxiliary hammer support structure of the embodiment is different from the case where the plurality of steel balls 17 receive a load in a direction different from the rotation axis direction and the radial direction, for example, compared to the case where the auxiliary hammer 21 is supported by a rolling bearing. The support structure is downsized.
 ここで鋼球17に作用する回転軸線方向の荷重と、径方向の荷重の大きさを比較すると、回転軸線方向にはばね部材23によるばね荷重がかかるため、回転軸線方向荷重の方が径方向荷重よりも大きい。そこで、かかる荷重の合力を分散させるために、鋼球17が受ける荷重方向と径方向のなす角度をαとすると、αを45度よりも小さい角度に設定することが好ましい。これにより、回転軸線方向の荷重を効果的に分散させることができ、鋼球17の寿命を延ばすことが可能となる。 Here, if the load in the rotation axis direction acting on the steel ball 17 is compared with the magnitude of the load in the radial direction, since the spring load by the spring member 23 is applied in the rotation axis direction, the load in the rotation axis direction is the radial direction. Greater than load. Therefore, in order to disperse the resultant force of the load, it is preferable to set α to an angle smaller than 45 degrees, where α is an angle formed between the load direction received by the steel ball 17 and the radial direction. Thereby, the load in the rotation axis direction can be effectively dispersed, and the life of the steel ball 17 can be extended.
 以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to each component or combination of each processing process, and such modifications are within the scope of the present invention. .
 実施形態の副ハンマ支持構造では、鋼球17を副ハンマ21とキャリア16の間に配置したが、変形例では、鋼球17を、副ハンマ21と、スピンドル11より大きな外径を有する部材との間に配置して、副ハンマ21を支持させてもよい。 In the auxiliary hammer support structure of the embodiment, the steel ball 17 is disposed between the auxiliary hammer 21 and the carrier 16. However, in the modified example, the steel ball 17 is connected to the auxiliary hammer 21 and a member having an outer diameter larger than that of the spindle 11. The auxiliary hammer 21 may be supported by being disposed between the two.
 本発明の一態様の概要は、次の通りである。
 本発明のある態様の回転打撃工具(1)は、駆動部(10)と、駆動部により回転されるスピンドル(11)と、スピンドルの回転軸線方向の前方に配置されたアンビル(22)と、スピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能な主ハンマ(20)と、スピンドル側の案内溝(11b)と主ハンマ側の係合溝(20b)との間に第1鋼球(19)を配置したカム構造と、主ハンマを収容して主ハンマと一体に回転可能な副ハンマ(21)と、案内溝の後方側に設けられて案内溝が形成されたスピンドルの部分より大きい外径を有する大径部(16)と、を備える。この態様の回転打撃工具は、副ハンマと大径部の間に第2鋼球(17)を配置した副ハンマ支持構造をさらに備え、副ハンマ支持構造において、第2鋼球(17)は、回転軸線方向および回転軸線方向に直交する径方向とは異なる方向の荷重を受けるように、副ハンマと大径部の間に配置される。
The outline of one embodiment of the present invention is as follows.
A rotary impact tool (1) according to an aspect of the present invention includes a drive unit (10), a spindle (11) rotated by the drive unit, an anvil (22) disposed in front of the spindle in the rotation axis direction, The first steel between the main hammer (20) that can rotate about the rotation axis of the spindle and move in the direction of the rotation axis, and the guide groove (11b) on the spindle side and the engagement groove (20b) on the main hammer side. A cam structure in which a ball (19) is arranged, a sub-hammer (21) that accommodates the main hammer and is rotatable together with the main hammer, and a spindle portion provided on the rear side of the guide groove and formed with the guide groove A large diameter portion (16) having a larger outer diameter. The rotary impact tool of this aspect further includes a secondary hammer support structure in which the second steel ball (17) is disposed between the secondary hammer and the large diameter portion. In the secondary hammer support structure, the second steel ball (17) It arrange | positions between a subhammer and a large diameter part so that the load of a direction different from the radial direction orthogonal to a rotating shaft direction and a rotating shaft direction may be received.
 副ハンマ支持構造は、副ハンマ側の第1保持溝(21g)と大径部側の第2保持溝(16a)の間に、複数の第2鋼球(17)を配置した構造を有してよい。第1保持溝および第2保持溝の回転軸線方向の断面は円弧状であってよく、また第1保持溝および第2保持溝の半径は、第2鋼球(17)の半径よりも大きいことが好ましい。 The auxiliary hammer support structure has a structure in which a plurality of second steel balls (17) are arranged between the first holding groove (21g) on the auxiliary hammer side and the second holding groove (16a) on the large diameter side. It's okay. The cross section of the first holding groove and the second holding groove in the rotation axis direction may be arcuate, and the radius of the first holding groove and the second holding groove is larger than the radius of the second steel ball (17). Is preferred.
 第2保持溝(16a)は、大径部の前面外周に設けられてよい。また大径部は、スピンドル(11)の後端側に位置して動力伝達用の歯車を収容するキャリア(16)であってよい。 The second holding groove (16a) may be provided on the front outer periphery of the large diameter portion. The large-diameter portion may be a carrier (16) that is located on the rear end side of the spindle (11) and accommodates a power transmission gear.
1・・・回転打撃工具、10・・・駆動部、11・・・スピンドル、11b・・・案内溝、12・・・動力伝達機構、16・・・キャリア、16a・・・第2保持溝、17,19・・・鋼球、20・・・主ハンマ、20b・・・係合溝、21・・・副ハンマ、21e・・・環状仕切部、21g・・・第1保持溝、22・・・アンビル、23・・・ばね部材。 DESCRIPTION OF SYMBOLS 1 ... Rotary impact tool, 10 ... Drive part, 11 ... Spindle, 11b ... Guide groove, 12 ... Power transmission mechanism, 16 ... Carrier, 16a ... 2nd holding groove , 17, 19 ... steel balls, 20 ... main hammer, 20b ... engagement groove, 21 ... sub-hammer, 21e ... annular partition, 21g ... first holding groove, 22 ... Anvil, 23 ... Spring member.
 本発明は、回転打撃工具の分野で利用できる。 The present invention can be used in the field of rotary impact tools.

Claims (6)

  1.  駆動部と、前記駆動部により回転されるスピンドルと、前記スピンドルの回転軸線方向の前方に配置されたアンビルと、前記スピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能な主ハンマと、前記スピンドル側の案内溝と前記主ハンマ側の係合溝との間に第1鋼球を配置したカム構造と、前記主ハンマを収容して前記主ハンマと一体に回転可能な副ハンマと、前記案内溝の後方側に設けられて前記案内溝が形成された前記スピンドルの部分より大きい外径を有する大径部と、を備えた回転打撃工具であって、
     前記副ハンマと前記大径部の間に第2鋼球を配置した副ハンマ支持構造をさらに備え、
     前記副ハンマ支持構造において、前記第2鋼球は、回転軸線方向および回転軸線方向に直交する径方向とは異なる方向の荷重を受けるように、前記副ハンマと前記大径部の間に配置される、
     ことを特徴とする回転打撃工具。
    A drive unit, a spindle rotated by the drive unit, an anvil disposed in front of the spindle in the rotation axis direction, and a main hammer rotatable around the rotation axis of the spindle and movable in the rotation axis direction A cam structure in which a first steel ball is disposed between the guide groove on the spindle side and the engagement groove on the main hammer side; and a secondary hammer that accommodates the main hammer and is rotatable together with the main hammer. A rotary impact tool comprising a large diameter portion provided on a rear side of the guide groove and having a larger outer diameter than a portion of the spindle on which the guide groove is formed,
    A secondary hammer support structure in which a second steel ball is disposed between the secondary hammer and the large diameter portion;
    In the secondary hammer support structure, the second steel ball is disposed between the secondary hammer and the large diameter portion so as to receive a load in a direction different from a rotational axis direction and a radial direction orthogonal to the rotational axis direction. The
    Rotating impact tool characterized by that.
  2.  前記副ハンマ支持構造は、前記副ハンマ側の第1保持溝と前記大径部側の第2保持溝の間に、複数の第2鋼球を配置した構造である、
     ことを特徴とする請求項1に記載の回転打撃工具。
    The auxiliary hammer support structure is a structure in which a plurality of second steel balls are arranged between the first holding groove on the auxiliary hammer side and the second holding groove on the large diameter portion side.
    The rotary impact tool according to claim 1.
  3.  前記第1保持溝および前記第2保持溝の回転軸線方向の断面は、円弧状である、
     ことを特徴とする請求項2に記載の回転打撃工具。
    Cross sections in the rotation axis direction of the first holding groove and the second holding groove are arcuate,
    The rotary impact tool according to claim 2.
  4.  前記第1保持溝および前記第2保持溝の半径は、前記第2鋼球の半径よりも大きい、
     ことを特徴とする請求項3に記載の回転打撃工具。
    A radius of the first holding groove and the second holding groove is larger than a radius of the second steel ball,
    The rotary impact tool according to claim 3.
  5.  前記第2保持溝は、前記大径部の前面外周に設けられる、
     ことを特徴とする請求項2から4のいずれかに記載の回転打撃工具。
    The second holding groove is provided on the outer periphery of the front surface of the large diameter portion.
    The rotary impact tool according to any one of claims 2 to 4, wherein:
  6.  前記大径部は、前記スピンドルの後端側に位置して動力伝達用の歯車を収容するキャリアである、
     ことを特徴とする請求項1から5のいずれかに記載の回転打撃工具。
    The large-diameter portion is a carrier that is positioned on the rear end side of the spindle and accommodates a power transmission gear.
    The rotary impact tool according to any one of claims 1 to 5.
PCT/JP2017/043087 2017-01-31 2017-11-30 Rotary impact tool WO2018142742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017016137A JP2018122393A (en) 2017-01-31 2017-01-31 Rotary impact tool
JP2017-016137 2017-01-31

Publications (1)

Publication Number Publication Date
WO2018142742A1 true WO2018142742A1 (en) 2018-08-09

Family

ID=63039557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043087 WO2018142742A1 (en) 2017-01-31 2017-11-30 Rotary impact tool

Country Status (2)

Country Link
JP (1) JP2018122393A (en)
WO (1) WO2018142742A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7462276B2 (en) 2021-06-28 2024-04-05 パナソニックIpマネジメント株式会社 Impact Tools

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB763116A (en) * 1953-07-03 1956-12-05 Chicago Pneumatic Tool Co Improvements in impact tools
US3001429A (en) * 1959-04-16 1961-09-26 Master Power Corp Rotary impact wrench
JP2010280021A (en) * 2009-06-03 2010-12-16 Kuken:Kk Impact wrench
JP2014240108A (en) * 2013-06-12 2014-12-25 パナソニック株式会社 Impact wrench

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB763116A (en) * 1953-07-03 1956-12-05 Chicago Pneumatic Tool Co Improvements in impact tools
US3001429A (en) * 1959-04-16 1961-09-26 Master Power Corp Rotary impact wrench
JP2010280021A (en) * 2009-06-03 2010-12-16 Kuken:Kk Impact wrench
JP2014240108A (en) * 2013-06-12 2014-12-25 パナソニック株式会社 Impact wrench

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7462276B2 (en) 2021-06-28 2024-04-05 パナソニックIpマネジメント株式会社 Impact Tools

Also Published As

Publication number Publication date
JP2018122393A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP6832509B2 (en) Rotary striking tool
JP6397325B2 (en) Rotating tool
US8490714B2 (en) Impact wrench
US9555532B2 (en) Rotary impact tool
US10668602B2 (en) Impact rotary tool
EP2813325A2 (en) Impact wrench
US20050061521A1 (en) Power tool
EP3009235A1 (en) Rotary impact tool
EP3792003B1 (en) Impact rotary tool
EP2883657A2 (en) Rotary impact tool
WO2018142742A1 (en) Rotary impact tool
WO2018061389A1 (en) Rotary impact tool
WO2018061388A1 (en) Rotary impact tool
WO2018061387A1 (en) Rotary impact tool
JP2009172732A (en) Impact rotary tool
JP6607502B2 (en) Impact rotary tool
WO2015182512A1 (en) Impact tool
JP6004294B2 (en) Impact rotary tool
JP2010036282A (en) Power tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895111

Country of ref document: EP

Kind code of ref document: A1