WO2015182512A1 - Impact tool - Google Patents

Impact tool Download PDF

Info

Publication number
WO2015182512A1
WO2015182512A1 PCT/JP2015/064757 JP2015064757W WO2015182512A1 WO 2015182512 A1 WO2015182512 A1 WO 2015182512A1 JP 2015064757 W JP2015064757 W JP 2015064757W WO 2015182512 A1 WO2015182512 A1 WO 2015182512A1
Authority
WO
WIPO (PCT)
Prior art keywords
striking
hammer
anvil
output member
circumferential direction
Prior art date
Application number
PCT/JP2015/064757
Other languages
French (fr)
Japanese (ja)
Inventor
西河 智雅
哲祐 原田
松野 智
Original Assignee
日立工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立工機株式会社 filed Critical 日立工機株式会社
Publication of WO2015182512A1 publication Critical patent/WO2015182512A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/04Portable percussive tools with electromotor or other motor drive in which the tool bit or anvil is hit by an impulse member

Definitions

  • the present invention includes an output member that is rotated by a rotating member, and a striking member that is provided between the rotating member and the output member, and that converts the rotational force of the rotating member into a striking force in the rotational direction of the output member.
  • an impact tool including an impact member that converts a rotational force of a rotary member rotated by a drive source into an impact force in the rotation direction of an output member.
  • An example of this striking tool is described in Patent Document 1.
  • the impact tool described in Patent Document 1 is provided between a spindle (rotating member) to which the rotational force of a driving source is transmitted, and between the spindle and the anvil (output member), and the rotational force of the spindle is used to rotate the anvil.
  • a hammer a striking member
  • a pair of spindle cams are provided on the outer peripheral part of the spindle, and a pair of hammer cams (grooves) are provided on the inner peripheral part of the hammer, and steel balls (steel balls) are respectively provided between these cams.
  • a pair of spindle cams are provided on the outer peripheral part of the spindle
  • a pair of hammer cams are provided on the inner peripheral part of the hammer
  • steel balls steel balls
  • the rotational force of the drive source is transmitted to the tip tool via the spindle, steel ball, hammer and anvil.
  • the steel ball rolls following the spindle cam and the hammer cam.
  • the hammer moves away from the anvil against the spring force of the coil spring, and then approaches the anvil by the spring force of the coil spring.
  • the hammer rotates relative to the anvil when separated from the anvil, and the hammer pawl and the anvil pawl engage with each other and collide when approaching the anvil.
  • the hammer claw and the anvil claw are repeatedly released and engaged, whereby a striking force in the rotational direction is generated on the tip tool.
  • the objective of this invention is providing the impact tool which can improve assembly workability
  • a striking tool including three first engaging claws provided side by side in the circumferential direction on the output member side of the striking member, and a striking member side of the output member in the circumferential direction.
  • a second engaging claw that is provided side by side and that engages with each of the first engaging claws and transmits the rotational force of the striking member to the output member, and follows the rotational direction of the rotating member.
  • a relative play angle between the striking member and the output member is 90 degrees or less.
  • the play angle is 30 degrees or more.
  • a striking tool comprising: a first engaging claw provided in a row in the circumferential direction on the output member side of the striking member; and a circumferential direction on the striking member side of the output member. Are arranged side by side, and are respectively engaged with the first engaging claws to transmit the rotational force of the striking member to the output member.
  • the relative play angle between the hitting member and the output member along is approximately 60 degrees.
  • a striking tool comprising: a first engaging claw provided in a row in the circumferential direction on the output member side of the striking member; and a circumferential direction on the striking member side of the output member. And a second engagement claw that engages with each of the first engagement claws and transmits a rotational force of the striking member to the output member, and is provided on a radially outer side of the striking member.
  • the width dimension of the first engagement claw in the direction along the circumferential direction is 5.5 mm or more
  • the width dimension of the second engagement claw in the direction along the circumferential direction outside the output member in the radial direction is 4. 0 mm or more.
  • the width dimension of the first engagement claw is 15.5 mm or less, and the width dimension of the second engagement claw is 14.0 mm or less.
  • a striking tool comprising: a first engaging claw provided in a row in the circumferential direction on the output member side of the striking member; and a circumferential direction on the striking member side of the output member. And a second engagement claw that engages with each of the first engagement claws and transmits a rotational force of the striking member to the output member, and is provided on a radially outer side of the striking member.
  • the width dimension of the first engagement claw in the direction along the circumferential direction is approximately 10.0 mm, and the width dimension of the second engagement claw in the direction along the circumferential direction outside the output member in the radial direction is approximately 8 mm. .5 mm.
  • three first engaging claws and three second engaging claws for generating a striking force are provided, and the relative play angle between the striking member and the output member along the rotation direction of the rotating member is 90. Be less than 1 degree.
  • weight reduction of a hitting tool can be attained compared with before, fully reducing the vibration which a hitting tool generates.
  • the distance between the adjacent first engaging claws can be made longer than before, it is possible to improve the assembling workability of the impact tool such as the incorporation of a steel ball.
  • FIG. 3 is an exploded perspective view of the striking mechanism according to the first embodiment.
  • 3A is a view of the striking mechanism of FIG. 3 viewed from a direction orthogonal to the axial direction
  • FIG. 3B is a view of the striking mechanism of FIG. 3 viewed from the axial direction
  • FIG. It is the figure which expand
  • (A), (b), (c) is the figure corresponding to FIG.
  • FIG. (A), (b), (c) is the figure corresponding to FIG. 4 which shows the striking mechanism of Embodiment 3.
  • FIG. (A), (b), (c) is the figure corresponding to FIG. 4 which shows the striking mechanism of Embodiment 4.
  • FIG. (A), (b), (c) is the figure corresponding to FIG. 4 which shows the striking mechanism of Embodiment 5.
  • FIG. 1 is a perspective view showing the impact tool of the present invention
  • FIG. 2 is a partial sectional view of the impact tool of FIG. 1
  • FIG. 3 is an exploded perspective view of the impact mechanism of Embodiment 1
  • FIG. 3 is a view of the striking mechanism of FIG. 3 viewed from a direction orthogonal to the axial direction
  • FIG. 3B is a view of the striking mechanism of FIG. 3 viewed from the axial direction
  • FIG. FIG. 5 is an explanatory diagram for explaining the procedure for assembling the steel ball to the hammer cam
  • FIG. 6 is an explanatory diagram for explaining the hammer processing procedure.
  • an impact driver 10 as a striking tool includes a battery pack 11 that houses a battery cell that can be charged and discharged, and an electric motor that is driven by power supplied from the battery pack 11. 12.
  • the electric motor 12 is a drive source that converts electrical energy into kinetic energy.
  • the impact driver 10 includes a casing 13 made of plastic or the like, and the electric motor 12 is provided inside the casing 13.
  • the electric motor 12 includes a rotating shaft 14 that rotates about an axis A.
  • the rotary shaft 14 is rotated in the forward direction or the reverse direction by operating the trigger switch 15. That is, by operating the trigger switch 15, power is supplied from the battery pack 11 to the electric motor 12.
  • the rotation direction of the rotating shaft 14 can be switched by operating a changeover switch 16 provided in the vicinity of the trigger switch 15.
  • the impact driver 10 includes an anvil (output member) 18 that supports a tip tool 17 such as a driver bit.
  • the anvil 18 is rotatably supported by a sleeve 19 mounted inside the casing 13. Note that grease (not shown) is applied to the inside of the sleeve 19 to smooth the rotation of the anvil 18.
  • the anvil 18 rotates about the axis A, and a tip tool 17 is detachably provided at a tip portion of the anvil 18 via an attaching / detaching mechanism 20.
  • a reduction gear 21 is provided inside the casing 13 and between the electric motor 12 and the anvil 18 in the direction along the axis A.
  • the speed reducer 21 is a power transmission device that transmits the rotational force of the electric motor 12 to the anvil 18, and the speed reducer 21 is configured by a so-called single pinion type planetary gear mechanism.
  • the speed reducer 21 includes a sun gear 22 disposed coaxially with the rotary shaft 14, a ring gear 23 disposed so as to surround the sun gear 22, and a plurality of planetary gears 24 meshed with both the sun gear 22 and the ring gear 23, It has a carrier 25 that supports each planetary gear 24 so that it can rotate and revolve.
  • the ring gear 23 is fixed to the casing 13 and cannot rotate.
  • the carrier 25 is integrally provided with a spindle (rotating member) 26 that rotates about the axis A together with the carrier 25. That is, the rotating shaft 14, the speed reducer 21, the spindle 26, and the anvil 18 of the electric motor 12 are respectively arranged around the axis A.
  • the spindle 26 is provided between the anvil 18 in the direction along the axis A and the speed reducer 21, and a shaft portion 26 a protruding in the direction along the axis A is formed at the tip portion of the spindle 26 on the anvil 18 side. Is formed.
  • a holder member 27 formed in a substantially bowl shape is provided inside the casing 13 and between the electric motor 12 and the speed reducer 21 in the direction along the axis A.
  • a bearing 28 is attached to the center portion of the holder member 27, and this bearing 28 rotatably supports a proximal end portion of the spindle 26 on the electric motor 12 side.
  • a pair of (two) groove-like spindle cams 26b are provided around the spindle 26 on the anvil 18 side.
  • a part of a steel ball (steel ball) 29 enters each of the spindle cams 26b.
  • a holding hole 18a coaxial with the axis A is provided at the base end portion of the anvil 18 on the spindle 26 side.
  • a shaft portion 26a of the spindle 26 is rotatably inserted into the holding hole 18a. That is, the anvil 18 and the spindle 26 are relatively rotatable about the axis A. Note that grease (not shown) is also applied between the shaft portion 26a and the holding hole 18a so as to make the relative rotation of both of them smooth.
  • the anvil 18 is provided with a mounting hole 18b coaxially with the axis A.
  • the mounting hole 18 b is opened toward the outside of the casing 13 and is provided for attaching and detaching the proximal end portion of the tip tool 17.
  • a hammer (striking member) 30 formed in a substantially annular shape is provided around the spindle 26.
  • the hammer 30 is disposed between the speed reducer 21 and the anvil 18 in the direction along the axis A.
  • the hammer 30 is rotatable relative to the spindle 26 and is relatively movable in the direction along the axis A.
  • a pair of (two) groove-shaped hammer cams 30 a extending in the direction along the axis A are formed on the inner side in the radial direction of the hammer 30. A part of each steel ball 29 enters each of the hammer cams 30a.
  • one of the two spindle cams 26b and one hammer cam 30a are used as one set, and one of the two steel balls 29 is held.
  • the other one of the two spindle cams 26b and the other hammer cam 30a is set as one set, and the other two steel balls 29 are held.
  • the steel ball 29 is formed of a metal rolling element. Therefore, the hammer 30 can move in the direction along the axis A within a range in which the steel ball 29 can roll with respect to the spindle 26. Further, the hammer 30 is movable in the circumferential direction about the axis A within a range in which the steel ball 29 can roll with respect to the spindle 26.
  • An annular plate 31 made of a steel plate is provided around the spindle 26 and between the reducer 21 and the hammer 30 in the direction along the axis A.
  • a coil spring 32 is provided in a compressed state between the annular plate 31 and the hammer 30 in the direction along the axis A.
  • the carrier 25 is restricted from moving in the direction along the axis A by contacting the bearing 28 and the holder member 27, and the pressing force of the coil spring 32 is applied to the hammer 30. Thereby, the hammer 30 is pushed toward the anvil 18 in the direction along the axis A by the pressing force of the coil spring 32.
  • An annular stopper 33 is provided around the spindle 26 and inside the annular plate 31 in the radial direction.
  • the stopper 33 is formed of an elastic body such as rubber and is attached to the spindle 26.
  • the stopper 33 regulates the amount of movement of the hammer 30 toward the reduction gear 21 along the axis A.
  • the striking mechanism SM for imparting striking force to the tip tool 17 is formed by the spindle 26, the hammer 30, the anvil 18, the steel ball 29 and the coil spring 32.
  • the first engagement claw 30e of the hammer 30 and the second engagement claw 18d of the anvil 18 are released and engaged. Are repeated at a high speed, thereby generating a striking force on the tip tool 17.
  • the weight of the hammer 30 is set to be larger than the weight of the anvil 18, and the hammer 30 converts the rotational force of the spindle 26 into a striking force in the rotational direction of the anvil 18.
  • the hammer 30 includes a main body 30b formed in a substantially cylindrical shape.
  • a mounting hole that extends in a direction along the axis A and is rotatably mounted on the spindle 26 is radially inward of the main body 30b.
  • 30c is provided.
  • the anvil 18 side of the main body 30b is tapered. That is, the spindle 26 side of the main body 30b has a large diameter, and the anvil 18 side of the main body 30b has a small diameter.
  • the diameter dimension of the main body 30b on the spindle 26 side (large diameter side) is set to about 40 mm.
  • An opposing plane 30d that faces the anvil 18 is provided on the anvil 18 side of the main body 30b, and three first engaging claws 30e that protrude toward the anvil 18 in the direction along the axis A are provided on the opposing plane 30d. It is provided integrally. These first engaging claws 30e are arranged side by side at equal intervals (120 degree intervals) along the circumferential direction of the opposing flat surface 30d, and the cross-sectional shape along the direction intersecting the axis A is substantially fan-shaped.
  • the distal end side of the first engaging claw 30e that is tapered, that is, the radially inner side of the sector, is directed to the radially inner side of the hammer 30, that is, the mounting hole 30c.
  • a first contact plane SF1 is provided on one side of the first engagement claw 30e along the circumferential direction of the hammer 30.
  • a second contact plane SF2 is provided on the other side of the first engagement claw 30e along the circumferential direction of the hammer 30.
  • each 4th contact plane SF4 of the 2nd engaging claw 18d of the anvil 18 mentioned later contacts each 1st contact plane SF1, and the 2nd engagement of the anvil 18 touches each 2nd contact plane SF2.
  • Each third contact plane SF3 of the joint claw 18d comes into contact with the entire surface.
  • the width dimension of the 1st engaging claw 30e of the direction outside the diameter direction of the hammer 30 and the circumferential direction is set to 10.0 mm as shown in FIG.4 (c).
  • the second engaging claws 18d of the anvil 18 can enter between the first engaging claws 30e adjacent in the circumferential direction of the hammer 30 with a margin.
  • the line segment connecting the first contact plane SF ⁇ b> 1 and the second contact plane SF ⁇ b> 2 of the first engaging claws 30 e adjacent along the circumferential direction of the hammer 30 is the axis line A of the hammer 30.
  • a straight line L extending straight in the intersecting direction is formed. That is, since the three first engaging claws 30e are provided on the hammer 30, three straight lines L are formed.
  • the first and second contact planes SF1 and SF2 of the three first engaging claws 30e are arranged on the three straight lines L, respectively. Therefore, in the present embodiment, as shown in FIG. 6, the hammer 30 can be easily processed. Specifically, as shown in FIG. 6, a cutting tool T provided with a twist drill D is used, and the cutting tool T is moved along a broken line arrow M ⁇ b> 1 from a direction intersecting the axis A of the hammer 30. D is moved along the straight line L. Then, by repeating this operation for the number of straight lines L (three times), the first and second contact planes SF1 and SF2 (total of six surfaces) of the three first engagement claws 30e are formed. Thus, since it is not necessary to form each of the first engaging claws 30e individually, the processing time of the hammer 30 can be greatly shortened and its workability can be improved.
  • end portions of a pair of hammer cams 30 a formed on the radially inner side of the hammer 30 are opened on the opposing plane 30 d of the hammer 30.
  • the shape of the opening side of these hammer cams 30a is formed in a substantially arc shape in cross section.
  • the pair of hammer cams 30a are opposed to each other with the mounting hole 30c as a center, and a recess 30f for incorporating the steel ball 29 is provided at the top of each hammer cam 30a.
  • each hammer cam 30a a pair of projections 30g projecting inward in the radial direction of the hammer 30 is provided, and the tip side of these projections 30g faces the mounting hole 30c, and the boundary of each hammer cam 30a. Forming part.
  • the three first engaging claws 30e are provided on the opposing plane 30d of the hammer 30 and the ends of the pair of (two) hammer cams 30a are opened, it is adjacent along the circumferential direction of the hammer 30.
  • a pair of recessed portions 30f can be disposed between the matching first engaging claws 30e. In this case, since the distance between the adjacent first engaging claws 30e can be made longer than before, the work of assembling each steel ball 29 into each hammer cam 30a can be easily performed.
  • the anvil 18 includes a main body portion 18c formed in a substantially cylindrical shape. On the hammer 30 side along the axial direction of the main body portion 18c, three second engaging claws 18d protruding outward in the radial direction are provided. It is provided integrally. These second engagement claws 18d are arranged at equal intervals (120 degree intervals) along the circumferential direction of the main body portion 18c, and the cross-sectional shape along the direction intersecting the axis A is substantially rectangular.
  • a third contact plane SF3 is provided on one side along the circumferential direction of the anvil 18 of the second engagement claw 18d.
  • a fourth contact plane SF4 is provided on the other side of the second engagement claw 18d along the circumferential direction of the anvil 18.
  • the second contact planes SF2 of the first engagement claws 30e of the hammer 30 are in contact with the entire third contact planes SF3, and the first engagement claws of the hammer 30 are in contact with the fourth contact planes SF4.
  • Each first contact plane SF1 of 30e comes into contact with the entire surface.
  • the width dimension of the 2nd engaging claw 18d of the direction along the radial direction outer side of the anvil 18 is set to 8.5 mm as shown in FIG.4 (c). That is, the width dimension is set slightly shorter than that of the first engagement claw 30e. Accordingly, the distance between the second engaging claws 18d adjacent to each other along the circumferential direction of the anvil 18 becomes a relatively long distance S1, and the first engaging claws 30e of the hammer 30 can enter with a margin. Yes.
  • FIG. 4 shows a state where the first contact plane SF1 of the first engagement claw 30e and the fourth contact plane SF4 of the second engagement claw 18d are in contact with each other over the entire surface.
  • the first engaging claws 30e and the second engaging claws 18d provided in three are respectively engaged and released simultaneously.
  • the second engagement claw 18 d of the anvil 18 is movable between the first engagement claws 30 e adjacent along the circumferential direction of the hammer 30.
  • the hammer 30 is rotated forward so that the first contact plane SF1 of the first engagement claw 30e and the fourth contact plane SF4 of the second engagement claw 18d are in contact with each other (shown by a solid line in the figure).
  • the hammer 30 is reversed so that the second contact plane SF2 of the first engagement claw 30e and the third contact plane SF3 of the second engagement claw 18d are in contact with each other (shown by a broken line in the figure)
  • the second engagement claw 18d is movable.
  • the angle formed when the second engaging claws 18d are in the first state and the second state is the striking member (hammer 30) and the output member in the present invention.
  • a relative play angle with (anvil 18) is formed.
  • the relative play angle between the hammer 30 and the anvil 18 is set to 60 degrees or less and 60 degrees or more and 30 degrees or more. This is because both the hammer 30 and the anvil 18 are provided with three first engagement claws 30e and three second engagement claws 18d at intervals of 120 degrees along the circumferential direction, and the first engagement. This is because the width dimension of the claw 30e is set to 10.0 mm and the width dimension of the second engagement claw 18d is set to 8.5 mm.
  • the spindle 26, the hammer 30, and the anvil 18 are arranged coaxially along the axis A as shown in FIG. Thereafter, the spindle 26 is mounted in the mounting hole 30c of the hammer 30 under this state.
  • an annular plate 31 and a coil spring 32 are incorporated between the two.
  • the pair of steel balls 29 are mounted between the hammer 30 and the spindle 26 so as to face the pair of depressions 30 f. Thereby, the steel balls 29 are respectively incorporated between the hammer cams 30a and the spindle cams 26b. Thereafter, the shaft portion 26a of the spindle 26 protruding toward the opposing flat surface 30d of the hammer 30 is mounted in the holding hole 18a (see FIG. 2) of the anvil 18. Thereby, the striking mechanism SM is completed.
  • the spindle 26 rotates together with the carrier 25.
  • the torque of the spindle 26 is transmitted to the hammer 30 via the steel ball 29.
  • the torque of the hammer 30 is transmitted to the anvil 18 by the engagement of the three first engaging claws 30e and the three second engaging claws 18d, whereby the anvil 18 is rotated.
  • the torque transmitted to the anvil 18 is transmitted to a bolt (not shown) via the tip tool 17, and the bolt is screwed into an object such as wood.
  • three first engagement claws 30e and three second engagement claws 18d that generate a striking force are provided, and the rotation direction of the spindle 26 is determined.
  • the relative play angle between the hammer 30 and the anvil 18 is set to 90 degrees or less.
  • the assembly workability of the impact driver 10 such as the incorporation of the steel ball 29 can be improved.
  • the diameter of the main body 30b is "about 40 mm”
  • the relative play angle between the hammer 30 and the anvil 18 is "60 degrees”
  • the first The width dimension of the engaging claw 30e is set to “10.0 mm”
  • the width dimension of the second engaging claw 18d is set to “8.5 mm”.
  • first and second contact planes SF1 and SF2 of the three first engagement claws 30e are shown in FIG. 5 while the strength of the first engagement claws 30e and the second engagement claws 18d is sufficient.
  • each can be arranged on three straight lines L. Therefore, the hammer 30 can be easily processed as shown in FIG.
  • Embodiment 2 of the present invention will be described in detail with reference to the drawings. Note that portions having the same functions as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 7A, 7B, and 7C show views corresponding to FIG. 4 showing the striking mechanism of the second embodiment.
  • the striking mechanism SM of the second embodiment has a shape of the first engaging claw 30e of the hammer (striking member) 130 as compared with the striking mechanism SM (see FIG. 4) of the first embodiment. And only the shape of the second engagement claw 18d of the anvil (output member) 118 is different.
  • the diameter of the main body 30b is “about 40 mm”
  • the relative play angle between the hammer 130 and the anvil 118 is “90 degrees”
  • the width dimension of the first engagement claw 30e is set to “5.5 mm”
  • (4) the width dimension of the second engagement claw 18d is set to “4.0 mm”.
  • the relative play angle between the hammer 130 and the anvil 118 is set to “90 degrees”. This is because the width dimension of the first engagement claw 30e is set to 5.5 mm, and the second engagement claw 18d. This is due to the fact that the width dimension of is set to 4.0 mm.
  • the width dimension of the first engagement claw 30e and the width dimension of the second engagement claw 18d are significantly narrower than those of the first embodiment. This is the narrowest dimension in which the first engagement claw 30e and the second engagement claw 18d can be stably manufactured without variation.
  • the hammer 130 and the anvil 118 are formed by casting, forging, cutting, etc., respectively. If the width is further narrowed, the first engaging claw 30e and the second engaging claw 18d are formed. This is a dimension that can cause defects such as “chips” of the nails in the machining process.
  • the first engagement claw 30e of the hammer 130 and the second engagement claw 18d of the anvil 118 in the second embodiment are carburized. It is desirable to perform surface hardening treatment such as pouring and electrolytic nickel plating.
  • the first engaging claw 30e and the second engaging claw 18d are set to be narrower, so that the product can be made lighter than the first embodiment. It becomes possible. Further, the distance S2 between the second engaging claws 18d adjacent to each other along the circumferential direction of the anvil 118 can be made longer than the distance S1 (see FIG. 4) of the first embodiment (S2> S1). Thereby, the 1st engagement nail
  • FIGS. 8A, 8B, and 8C are views corresponding to FIG. 4 showing the striking mechanism of the third embodiment.
  • the striking mechanism SM of the third embodiment has a shape of the first engaging claw 30e of the hammer (striking member) 230 as compared with the striking mechanism SM (see FIG. 4) of the first embodiment. And only the shape of the second engaging claw 18d of the anvil (output member) 218 is different.
  • the diameter of the main body 30b is “about 40 mm”
  • the relative play angle between the hammer 230 and the anvil 218 is “30 degrees”
  • the width dimension of the first engagement claw 30e is set to “15.5 mm”
  • (4) the width dimension of the second engagement claw 18d is set to “14.0 mm”.
  • the relative play angle between the hammer 230 and the anvil 218 is set to “30 degrees”. This is because the width dimension of the first engagement claw 30e is set to 15.5 mm, and the second engagement claw 18d. This is because the width dimension of is set to 14.0 mm.
  • the width dimension of the first engagement claw 30e and the width dimension of the second engagement claw 18d are much wider than those of the first embodiment. This is the widest dimension that can transmit the striking force of the hammer 230 to the anvil 218 when the striking mechanism SM is in operation. That is, if the width is further increased, the first engagement claw 30e cannot enter between the adjacent second engagement claws 18d with a margin.
  • the corner C1 of the first engagement claw 30e and the second This is a dimension that may cause a defect such as “chip” due to the collision with the corner C2 of the engaging claw 18d.
  • the same operational effects as those of the first embodiment described above can be obtained.
  • the first engagement claw 30e and the second engagement claw 18d are set wider, respectively, so that the first engagement claw 30e and The inertia (moment of inertia) of the second engaging claws 18d can be increased. Therefore, the striking force in the rotation direction of the anvil 218 can be made stronger.
  • the distance S3 between the second engaging claws 18d adjacent to each other along the circumferential direction of the anvil 218 is shorter than the distance S1 (see FIG. 4) of the first embodiment (S3 ⁇ S1). It is sufficiently longer than the width dimension of the joint claw 30e. Therefore, the first engaging claw 30e of the hammer 230 is moved along the broken line arrow M5 so that a striking force is reliably applied in the rotation direction of the anvil 218.
  • FIGS. 9A, 9B and 9C show views corresponding to FIG. 4 showing the striking mechanism of the fourth embodiment.
  • the striking mechanism SM of the fourth embodiment has a shape of the first engaging claw 30 e of the hammer (striking member) 330 as compared with the striking mechanism SM (see FIG. 4) of the first embodiment. And only the shape of the second engaging claw 18d of the anvil (output member) 318 is different.
  • the diameter of the main body 30b is “about 40 mm”
  • the relative play angle between the hammer 330 and the anvil 318 is “75 degrees”
  • the width dimension of the first engagement claw 30e is set to “7.0 mm”
  • (4) the width dimension of the second engagement claw 18d is set to “6.5 mm”.
  • the relative play angle between the hammer 330 and the anvil 318 is set to “75 degrees”. This is because the width dimension of the first engagement claw 30e is set to 7.0 mm, and the second engagement claw 18d. This is because the width dimension is set to 6.5 mm.
  • the width dimension of the first engagement claw 30e and the width dimension of the second engagement claw 18d are slightly narrower than those in the first embodiment.
  • the numerical values such as the dimensions realize a light weight while ensuring sufficient practical strength for the striking mechanism SM, and cause defects in the processing process (such as “chips” of the nails). The value is advantageous in that it can be reliably prevented.
  • the first engaging claw 30e and the second engaging claw 18d are set slightly narrower, so that the product can be made lighter than in the first embodiment. it can.
  • the distance S4 between the second engaging claws 18d adjacent to each other along the circumferential direction of the anvil 318 can be made slightly longer than the distance S1 (see FIG. 4) of the first embodiment (S4> S1). .
  • claw 30e of the hammer 330 can be moved along the broken-line arrow M6, and a striking force can be reliably given to the rotation direction of the anvil 318.
  • FIGS. 10A, 10B and 10C show views corresponding to FIG. 4 showing the striking mechanism of the fifth embodiment.
  • the striking mechanism SM of the fifth embodiment has a shape of the first engaging claw 30e of the hammer (striking member) 430 as compared with the striking mechanism SM (see FIG. 4) of the first embodiment. And only the shape of the second engagement claw 18d of the anvil (output member) 418 is different.
  • the diameter of the main body 30b is “about 40 mm”
  • the relative play angle between the hammer 430 and the anvil 418 is “65 degrees”
  • the width dimension of the first engagement claw 30e is set to “9.0 mm”
  • (4) the width dimension of the second engagement claw 18d is set to “7.5 mm”.
  • the relative play angle between the hammer 430 and the anvil 418 is set to “65 degrees”. This is because the width dimension of the first engagement claw 30e is set to 9.0 mm, and the second engagement claw 18d. This is because the width dimension is set to 7.5 mm.
  • the width dimension of the first engagement claw 30e and the width dimension of the second engagement claw 18d are slightly narrower than those in the first embodiment.
  • the numerical values such as the dimensions in the fifth embodiment are obtained by hitting the first engaging claws 30e of the hammer 430 and the second engaging claws 18d of the anvil 418 without subjecting them to surface hardening treatment such as carburizing and quenching or electrolytic nickel plating.
  • the mechanism SM is a numerical value that provides sufficient practical strength.
  • the same operational effects as those of the first embodiment described above can be obtained.
  • the weight of the product can be reduced as compared with the first embodiment. it can.
  • the distance S5 between the second engaging claws 18d adjacent to each other along the circumferential direction of the anvil 418 can be made slightly longer than the distance S1 (see FIG. 4) of the first embodiment (S5> S1). .
  • claw 30e of the hammer 430 can be moved along the broken-line arrow M7, and a striking force can be reliably given to the rotation direction of the anvil 418.
  • the impact tool of the present invention includes an impact wrench and the like in addition to the impact driver 10 described above.
  • the impact tool of the present invention includes a structure that can supply electric power from an AC power source to the electric motor 12 without using the battery pack 11.
  • the impact tool of the present invention includes a structure capable of switching the power of the battery pack 11 and the power of the AC power source and supplying the power to the electric motor 12.
  • the drive source of the present invention includes an engine, a pneumatic motor, a hydraulic motor, and the like in addition to the electric motor 12 described above.
  • the engine is a power source that converts thermal energy generated by burning fuel into kinetic energy, and includes, for example, a gasoline engine, a diesel engine, and a liquefied petroleum gas engine.
  • the electric motor 12 includes a brushed motor, a brushless motor, and the like.
  • the impact tool of the present invention includes not only a structure in which the tip tool 17 is directly attached to the anvils 18, 118, 218, 318, 418 but also a structure in which the tip tool is attached to the anvil via a socket, an adapter, or the like. .

Abstract

In order to make assembly of an impact driver more efficient while allowing sufficient mitigation of vibrations and reduction of weight to be achieved, three each of first engagement pawls (30e) and second engagement pawls (18d) for generating a striking force are disposed, and the relative play angle between a hammer (30) and anvil (18) along a rotating direction of a spindle is set to 90 degrees or smaller. This allows the weight of the impact driver to be reduced more than before while sufficiently mitigating vibrations generated by the impact driver. In addition, because the distance between adjoining first engagement pawls (30e) can be made longer than before, assembly of the impact driver including work such as installing steel balls can be made more efficient.

Description

打撃工具Impact tool
本発明は、回転部材により回転される出力部材と、回転部材と出力部材との間に設けられ、回転部材の回転力を出力部材の回転方向の打撃力に変換する打撃部材と、を有する打撃工具に関する。 The present invention includes an output member that is rotated by a rotating member, and a striking member that is provided between the rotating member and the output member, and that converts the rotational force of the rotating member into a striking force in the rotational direction of the output member. Related to tools.
従来、駆動源により回転される回転部材の回転力を、出力部材の回転方向の打撃力に変換する打撃部材を備えた打撃工具が知られている。この打撃工具の一例が、特許文献1に記載されている。特許文献1に記載された打撃工具は、駆動源の回転力が伝達されるスピンドル(回転部材)と、スピンドルとアンビル(出力部材)との間に設けられ、スピンドルの回転力をアンビルの回転方向の打撃力に変換するハンマ(打撃部材)とを備えている。 2. Description of the Related Art Conventionally, an impact tool including an impact member that converts a rotational force of a rotary member rotated by a drive source into an impact force in the rotation direction of an output member is known. An example of this striking tool is described in Patent Document 1. The impact tool described in Patent Document 1 is provided between a spindle (rotating member) to which the rotational force of a driving source is transmitted, and between the spindle and the anvil (output member), and the rotational force of the spindle is used to rotate the anvil. And a hammer (a striking member) that converts it into a striking force.
スピンドルの外周部分には一対のスピンドルカム(溝)が設けられ、ハンマの内周部分には一対のハンマカム(溝)が設けられ、これらのカムの間には、それぞれスチールボール(鋼球)が配置されている。また、ハンマのアンビル側には、周方向に等間隔で4つ並べられたハンマ爪が設けられ、アンビルのハンマ側には、周方向に等間隔で4つ並べられたアンビル爪が設けられている。そして、これらのハンマ爪およびアンビル爪はそれぞれ互いに係合し、これによりハンマの回転力がアンビルに伝達される。なお、アンビルの軸方向に沿うハンマ側とは反対側には、ドライバビット等の先端工具が取り付けられる。 A pair of spindle cams (grooves) are provided on the outer peripheral part of the spindle, and a pair of hammer cams (grooves) are provided on the inner peripheral part of the hammer, and steel balls (steel balls) are respectively provided between these cams. Has been placed. Further, four hammer claws arranged at equal intervals in the circumferential direction are provided on the anvil side of the hammer, and four anvil claws arranged at equal intervals in the circumferential direction are provided on the hammer side of the anvil. Yes. The hammer claws and the anvil claws are engaged with each other, whereby the rotational force of the hammer is transmitted to the anvil. A tip tool such as a driver bit is attached to the side opposite to the hammer side along the axial direction of the anvil.
駆動源の回転力は、スピンドル,スチールボール,ハンマおよびアンビルを介して先端工具に伝達される。そして、先端工具に所定の負荷が加わると、スチールボールがスピンドルカムおよびハンマカムに倣って転動する。これによりハンマは、コイルばねのばね力に抗してアンビルから離間した後、コイルばねのばね力によってアンビルに向けて近接する。このときハンマは、アンビルから離間したときにアンビルに対して相対回転し、アンビルに近接したときにハンマ爪とアンビル爪とが互いに係合して衝突する。このハンマ爪とアンビル爪とが開放および係合を繰り返すことで、先端工具に回転方向の打撃力が発生する。 The rotational force of the drive source is transmitted to the tip tool via the spindle, steel ball, hammer and anvil. When a predetermined load is applied to the tip tool, the steel ball rolls following the spindle cam and the hammer cam. Thus, the hammer moves away from the anvil against the spring force of the coil spring, and then approaches the anvil by the spring force of the coil spring. At this time, the hammer rotates relative to the anvil when separated from the anvil, and the hammer pawl and the anvil pawl engage with each other and collide when approaching the anvil. The hammer claw and the anvil claw are repeatedly released and engaged, whereby a striking force in the rotational direction is generated on the tip tool.
実開平01-170570号公報Japanese Utility Model Publication No. 01-170570
しかしながら、上述の特許文献1に記載された打撃工具においては、ハンマ爪およびアンビル爪がそれぞれ4個ずつと多いため、回転バランスを良好にして打撃工具の振動軽減には有利であるが、打撃工具をより軽量化するのが難しくなるという問題があった。また、隣り合うハンマ爪間の距離が短いため、ハンマ爪間からハンマカムにスチールボールを組み込む作業が困難になるという問題もあった。 However, in the hitting tool described in the above-mentioned Patent Document 1, there are four hammer claws and four anvil claws, which is advantageous for reducing the vibration of the hitting tool by improving the rotation balance. There has been a problem that it is difficult to make more lightweight. Moreover, since the distance between adjacent hammer claws is short, there is also a problem that it becomes difficult to incorporate the steel ball into the hammer cam from between the hammer claws.
本発明の目的は、十分な振動軽減および製品の軽量化を実現しつつ、組立作業性を向上させることが可能な打撃工具を提供することにある。 The objective of this invention is providing the impact tool which can improve assembly workability | operativity, implement | achieving sufficient vibration reduction and weight reduction of a product.
本発明の一態様では、回転部材により回転される出力部材と、前記回転部材と前記出力部材との間に設けられ、前記回転部材の回転力を前記出力部材の回転方向の打撃力に変換する打撃部材と、を有する打撃工具であって、前記打撃部材の前記出力部材側に周方向に3つ並んで設けられた第1係合爪と、前記出力部材の前記打撃部材側に周方向に3つ並んで設けられ、前記第1係合爪にそれぞれ係合して前記打撃部材の回転力を前記出力部材に伝達する第2係合爪と、を備え、前記回転部材の回転方向に沿う前記打撃部材と前記出力部材との相対的な遊び角度が90度以下である。 In one aspect of the present invention, an output member rotated by a rotating member, and provided between the rotating member and the output member, the rotating force of the rotating member is converted into a striking force in the rotating direction of the output member. A striking tool including three first engaging claws provided side by side in the circumferential direction on the output member side of the striking member, and a striking member side of the output member in the circumferential direction. A second engaging claw that is provided side by side and that engages with each of the first engaging claws and transmits the rotational force of the striking member to the output member, and follows the rotational direction of the rotating member. A relative play angle between the striking member and the output member is 90 degrees or less.
本発明の他の態様では、前記遊び角度が30度以上である。 In another aspect of the invention, the play angle is 30 degrees or more.
本発明の他の態様では、回転部材により回転される出力部材と、前記回転部材と前記出力部材との間に設けられ、前記回転部材の回転力を前記出力部材の回転方向の打撃力に変換する打撃部材と、を有する打撃工具であって、前記打撃部材の前記出力部材側に周方向に3つ並んで設けられた第1係合爪と、前記出力部材の前記打撃部材側に周方向に3つ並んで設けられ、前記第1係合爪にそれぞれ係合して前記打撃部材の回転力を前記出力部材に伝達する第2係合爪と、を備え、前記回転部材の回転方向に沿う前記打撃部材と前記出力部材との相対的な遊び角度が略60度である。 In another aspect of the present invention, an output member rotated by a rotating member, and provided between the rotating member and the output member, the rotational force of the rotating member is converted into a striking force in the rotational direction of the output member. A striking tool comprising: a first engaging claw provided in a row in the circumferential direction on the output member side of the striking member; and a circumferential direction on the striking member side of the output member. Are arranged side by side, and are respectively engaged with the first engaging claws to transmit the rotational force of the striking member to the output member. The relative play angle between the hitting member and the output member along is approximately 60 degrees.
本発明の他の態様では、回転部材により回転される出力部材と、前記回転部材と前記出力部材との間に設けられ、前記回転部材の回転力を前記出力部材の回転方向の打撃力に変換する打撃部材と、を有する打撃工具であって、前記打撃部材の前記出力部材側に周方向に3つ並んで設けられた第1係合爪と、前記出力部材の前記打撃部材側に周方向に3つ並んで設けられ、前記第1係合爪にそれぞれ係合して前記打撃部材の回転力を前記出力部材に伝達する第2係合爪と、を備え、前記打撃部材の径方向外側で周方向に沿う方向の前記第1係合爪の幅寸法が5.5mm以上で、かつ前記出力部材の径方向外側で周方向に沿う方向の前記第2係合爪の幅寸法が4.0mm以上である。 In another aspect of the present invention, an output member rotated by a rotating member, and provided between the rotating member and the output member, the rotational force of the rotating member is converted into a striking force in the rotational direction of the output member. A striking tool comprising: a first engaging claw provided in a row in the circumferential direction on the output member side of the striking member; and a circumferential direction on the striking member side of the output member. And a second engagement claw that engages with each of the first engagement claws and transmits a rotational force of the striking member to the output member, and is provided on a radially outer side of the striking member. And the width dimension of the first engagement claw in the direction along the circumferential direction is 5.5 mm or more, and the width dimension of the second engagement claw in the direction along the circumferential direction outside the output member in the radial direction is 4. 0 mm or more.
本発明の他の態様では、前記第1係合爪の幅寸法が15.5mm以下で、かつ前記第2係合爪の幅寸法が14.0mm以下である。 In another aspect of the present invention, the width dimension of the first engagement claw is 15.5 mm or less, and the width dimension of the second engagement claw is 14.0 mm or less.
本発明の他の態様では、回転部材により回転される出力部材と、前記回転部材と前記出力部材との間に設けられ、前記回転部材の回転力を前記出力部材の回転方向の打撃力に変換する打撃部材と、を有する打撃工具であって、前記打撃部材の前記出力部材側に周方向に3つ並んで設けられた第1係合爪と、前記出力部材の前記打撃部材側に周方向に3つ並んで設けられ、前記第1係合爪にそれぞれ係合して前記打撃部材の回転力を前記出力部材に伝達する第2係合爪と、を備え、前記打撃部材の径方向外側で周方向に沿う方向の前記第1係合爪の幅寸法が略10.0mmで、かつ前記出力部材の径方向外側で周方向に沿う方向の前記第2係合爪の幅寸法が略8.5mmである。 In another aspect of the present invention, an output member rotated by a rotating member, and provided between the rotating member and the output member, the rotational force of the rotating member is converted into a striking force in the rotational direction of the output member. A striking tool comprising: a first engaging claw provided in a row in the circumferential direction on the output member side of the striking member; and a circumferential direction on the striking member side of the output member. And a second engagement claw that engages with each of the first engagement claws and transmits a rotational force of the striking member to the output member, and is provided on a radially outer side of the striking member. The width dimension of the first engagement claw in the direction along the circumferential direction is approximately 10.0 mm, and the width dimension of the second engagement claw in the direction along the circumferential direction outside the output member in the radial direction is approximately 8 mm. .5 mm.
本発明によれば、打撃力を発生させる第1係合爪および第2係合爪をそれぞれ3つずつ設け、回転部材の回転方向に沿う打撃部材と出力部材との相対的な遊び角度が90度以下となるようにする。 According to the present invention, three first engaging claws and three second engaging claws for generating a striking force are provided, and the relative play angle between the striking member and the output member along the rotation direction of the rotating member is 90. Be less than 1 degree.
これにより、打撃工具が発生する振動を十分に軽減しつつ、従前に比して打撃工具の軽量化を図ることができる。 Thereby, weight reduction of a hitting tool can be attained compared with before, fully reducing the vibration which a hitting tool generates.
また、隣り合う第1係合爪間の距離を、従前に比して長くすることができるので、スチールボールの組み込み等、打撃工具の組立作業性を向上させることができる。 Moreover, since the distance between the adjacent first engaging claws can be made longer than before, it is possible to improve the assembling workability of the impact tool such as the incorporation of a steel ball.
本発明の打撃工具を示す斜視図である。It is a perspective view which shows the impact tool of this invention. 図1の打撃工具の部分断面図である。It is a fragmentary sectional view of the impact tool of FIG. 実施の形態1の打撃機構の分解斜視図である。FIG. 3 is an exploded perspective view of the striking mechanism according to the first embodiment. (a)は図3の打撃機構を軸方向と直交する方向から見た図,(b)は図3の打撃機構を軸方向から見た図,(c)は図3の第1係合爪および第2係合爪を周方向に展開した図である。3A is a view of the striking mechanism of FIG. 3 viewed from a direction orthogonal to the axial direction, FIG. 3B is a view of the striking mechanism of FIG. 3 viewed from the axial direction, and FIG. It is the figure which expand | deployed the 2nd engaging claw in the circumferential direction. ハンマカムに対するスチールボールの組み付け手順を説明する説明図である。It is explanatory drawing explaining the assembly procedure of the steel ball with respect to a hammer cam. ハンマの加工手順を説明する説明図である。It is explanatory drawing explaining the processing procedure of a hammer. (a),(b),(c)は、実施の形態2の打撃機構を示す図4に対応した図である。(A), (b), (c) is the figure corresponding to FIG. 4 which shows the striking mechanism of Embodiment 2. FIG. (a),(b),(c)は、実施の形態3の打撃機構を示す図4に対応した図である。(A), (b), (c) is the figure corresponding to FIG. 4 which shows the striking mechanism of Embodiment 3. FIG. (a),(b),(c)は、実施の形態4の打撃機構を示す図4に対応した図である。(A), (b), (c) is the figure corresponding to FIG. 4 which shows the striking mechanism of Embodiment 4. FIG. (a),(b),(c)は、実施の形態5の打撃機構を示す図4に対応した図である。(A), (b), (c) is the figure corresponding to FIG. 4 which shows the striking mechanism of Embodiment 5. FIG.
以下、本発明の実施の形態1について、図面を用いて詳細に説明する。 Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to the drawings.
図1は本発明の打撃工具を示す斜視図を、図2は図1の打撃工具の部分断面図を、図3は実施の形態1の打撃機構の分解斜視図を、図4(a)は図3の打撃機構を軸方向と直交する方向から見た図,(b)は図3の打撃機構を軸方向から見た図,(c)は図3の第1係合爪および第2係合爪を周方向に展開した図を、図5はハンマカムに対するスチールボールの組み付け手順を説明する説明図を、図6はハンマの加工手順を説明する説明図をそれぞれ示している。 1 is a perspective view showing the impact tool of the present invention, FIG. 2 is a partial sectional view of the impact tool of FIG. 1, FIG. 3 is an exploded perspective view of the impact mechanism of Embodiment 1, and FIG. 3 is a view of the striking mechanism of FIG. 3 viewed from a direction orthogonal to the axial direction, FIG. 3B is a view of the striking mechanism of FIG. 3 viewed from the axial direction, and FIG. FIG. 5 is an explanatory diagram for explaining the procedure for assembling the steel ball to the hammer cam, and FIG. 6 is an explanatory diagram for explaining the hammer processing procedure.
図1および図2に示すように、打撃工具としてのインパクトドライバ10は、充電および放電が可能な電池セルを収容した電池パック11と、この電池パック11から電力が供給されて駆動される電動モータ12とを有している。電動モータ12は、電気エネルギを運動エネルギに変換する駆動源である。インパクトドライバ10は、プラスチック等よりなるケーシング13を備え、電動モータ12はケーシング13の内部に設けられている。 As shown in FIGS. 1 and 2, an impact driver 10 as a striking tool includes a battery pack 11 that houses a battery cell that can be charged and discharged, and an electric motor that is driven by power supplied from the battery pack 11. 12. The electric motor 12 is a drive source that converts electrical energy into kinetic energy. The impact driver 10 includes a casing 13 made of plastic or the like, and the electric motor 12 is provided inside the casing 13.
電動モータ12は、軸線Aを中心に回転する回転軸14を備えている。この回転軸14は、トリガスイッチ15を操作することで正方向または逆方向に回転される。つまり、トリガスイッチ15を操作することで、電池パック11から電動モータ12に電力が供給される。なお、回転軸14の回転方向は、トリガスイッチ15の近傍に設けられた切替スイッチ16を操作することで切り替えられる。 The electric motor 12 includes a rotating shaft 14 that rotates about an axis A. The rotary shaft 14 is rotated in the forward direction or the reverse direction by operating the trigger switch 15. That is, by operating the trigger switch 15, power is supplied from the battery pack 11 to the electric motor 12. The rotation direction of the rotating shaft 14 can be switched by operating a changeover switch 16 provided in the vicinity of the trigger switch 15.
インパクトドライバ10は、ドライバビット等の先端工具17を支持するアンビル(出力部材)18を備えている。アンビル18は、ケーシング13の内側に装着されたスリーブ19によって回転自在に支持されている。なお、スリーブ19の内側には、アンビル18の回転をスムーズにするグリス(図示せず)が塗布されている。そして、アンビル18は軸線Aを中心に回転し、アンビル18の先端部分には、着脱機構20を介して先端工具17が着脱自在に設けられている。 The impact driver 10 includes an anvil (output member) 18 that supports a tip tool 17 such as a driver bit. The anvil 18 is rotatably supported by a sleeve 19 mounted inside the casing 13. Note that grease (not shown) is applied to the inside of the sleeve 19 to smooth the rotation of the anvil 18. The anvil 18 rotates about the axis A, and a tip tool 17 is detachably provided at a tip portion of the anvil 18 via an attaching / detaching mechanism 20.
ケーシング13の内部で、かつ軸線Aに沿う方向の電動モータ12とアンビル18との間には、減速機21が設けられている。この減速機21は、電動モータ12の回転力をアンビル18に伝達する動力伝達装置であり、減速機21は、所謂シングルピニオン型の遊星歯車機構により構成されている。減速機21は、回転軸14と同軸に配置されたサンギヤ22と、サンギヤ22の周囲を取り囲むように配置されたリングギヤ23と、サンギヤ22およびリングギヤ23の双方に噛み合わされた複数のプラネタリギヤ24と、各プラネタリギヤ24を自転可能、かつ公転可能に支持するキャリヤ25とを有している。そして、リングギヤ23はケーシング13に固定され、回転不能となっている。 A reduction gear 21 is provided inside the casing 13 and between the electric motor 12 and the anvil 18 in the direction along the axis A. The speed reducer 21 is a power transmission device that transmits the rotational force of the electric motor 12 to the anvil 18, and the speed reducer 21 is configured by a so-called single pinion type planetary gear mechanism. The speed reducer 21 includes a sun gear 22 disposed coaxially with the rotary shaft 14, a ring gear 23 disposed so as to surround the sun gear 22, and a plurality of planetary gears 24 meshed with both the sun gear 22 and the ring gear 23, It has a carrier 25 that supports each planetary gear 24 so that it can rotate and revolve. The ring gear 23 is fixed to the casing 13 and cannot rotate.
キャリヤ25には、当該キャリヤ25とともに軸線Aを中心に回転するスピンドル(回転部材)26が一体に設けられている。つまり、電動モータ12の回転軸14,減速機21,スピンドル26,アンビル18は、軸線Aを中心としてそれぞれ配置されている。スピンドル26は、軸線Aに沿う方向のアンビル18と減速機21との間に設けられており、スピンドル26におけるアンビル18側の先端部分には、軸線Aに沿う方向に突出された軸部26aが形成されている。 The carrier 25 is integrally provided with a spindle (rotating member) 26 that rotates about the axis A together with the carrier 25. That is, the rotating shaft 14, the speed reducer 21, the spindle 26, and the anvil 18 of the electric motor 12 are respectively arranged around the axis A. The spindle 26 is provided between the anvil 18 in the direction along the axis A and the speed reducer 21, and a shaft portion 26 a protruding in the direction along the axis A is formed at the tip portion of the spindle 26 on the anvil 18 side. Is formed.
ケーシング13の内部で、かつ軸線Aに沿う方向の電動モータ12と減速機21との間には、略椀状に形成されたホルダ部材27が設けられている。ホルダ部材27の中心部分には軸受28が装着され、この軸受28は、スピンドル26における電動モータ12側の基端部分を回転自在に支持している。また、スピンドル26におけるアンビル18側の周囲には、一対の(2つの)溝状のスピンドルカム26bが設けられている。これらのスピンドルカム26bの内部には、スチールボール(鋼球)29の一部がそれぞれ入り込んでいる。 Inside the casing 13 and between the electric motor 12 and the speed reducer 21 in the direction along the axis A, a holder member 27 formed in a substantially bowl shape is provided. A bearing 28 is attached to the center portion of the holder member 27, and this bearing 28 rotatably supports a proximal end portion of the spindle 26 on the electric motor 12 side. A pair of (two) groove-like spindle cams 26b are provided around the spindle 26 on the anvil 18 side. A part of a steel ball (steel ball) 29 enters each of the spindle cams 26b.
アンビル18におけるスピンドル26側の基端部分には、軸線Aと同軸の保持孔18aが設けられている。保持孔18aには、スピンドル26の軸部26aが回転自在に挿入されている。つまり、アンビル18とスピンドル26とは、軸線Aを中心に相対回転可能となっている。なお、軸部26aと保持孔18aとの間にも、両者の相対回転をスムーズにするグリス(図示せず)が塗布されている。また、アンビル18には軸線Aと同軸に取付孔18bが設けられている。この取付孔18bは、ケーシング13の外部に向けて開口され、先端工具17の基端部分を着脱するために設けられている。 A holding hole 18a coaxial with the axis A is provided at the base end portion of the anvil 18 on the spindle 26 side. A shaft portion 26a of the spindle 26 is rotatably inserted into the holding hole 18a. That is, the anvil 18 and the spindle 26 are relatively rotatable about the axis A. Note that grease (not shown) is also applied between the shaft portion 26a and the holding hole 18a so as to make the relative rotation of both of them smooth. The anvil 18 is provided with a mounting hole 18b coaxially with the axis A. The mounting hole 18 b is opened toward the outside of the casing 13 and is provided for attaching and detaching the proximal end portion of the tip tool 17.
スピンドル26の周囲には、略環状に形成されたハンマ(打撃部材)30が設けられている。ハンマ30は、軸線Aに沿う方向の減速機21とアンビル18との間に配置されている。ハンマ30は、スピンドル26に対して相対回転可能であり、かつ軸線Aに沿う方向に相対移動可能となっている。ハンマ30の径方向内側には、軸線Aに沿う方向に延ばされた一対の(2つの)溝状のハンマカム30aが形成されている。これらのハンマカム30aの内部には、スチールボール29の一部がそれぞれ入り込んでいる。 A hammer (striking member) 30 formed in a substantially annular shape is provided around the spindle 26. The hammer 30 is disposed between the speed reducer 21 and the anvil 18 in the direction along the axis A. The hammer 30 is rotatable relative to the spindle 26 and is relatively movable in the direction along the axis A. A pair of (two) groove-shaped hammer cams 30 a extending in the direction along the axis A are formed on the inner side in the radial direction of the hammer 30. A part of each steel ball 29 enters each of the hammer cams 30a.
このようにして、2つあるうちの一方のスピンドルカム26bと一方のハンマカム30aとを1組として、2つあるうちの一方のスチールボール29が保持されている。また、2つあるうちの他方のスピンドルカム26bと他方のハンマカム30aとを1組として、2つあるうちの他方のスチールボール29が保持されている。ここで、スチールボール29は金属製の転動体で構成されている。そのため、ハンマ30は、スピンドル26に対して、スチールボール29が転動可能な範囲で軸線Aに沿う方向に移動可能となっている。また、ハンマ30は、スピンドル26に対して、スチールボール29が転動可能な範囲で軸線Aを中心として円周方向に移動可能となっている。 In this way, one of the two spindle cams 26b and one hammer cam 30a are used as one set, and one of the two steel balls 29 is held. In addition, the other one of the two spindle cams 26b and the other hammer cam 30a is set as one set, and the other two steel balls 29 are held. Here, the steel ball 29 is formed of a metal rolling element. Therefore, the hammer 30 can move in the direction along the axis A within a range in which the steel ball 29 can roll with respect to the spindle 26. Further, the hammer 30 is movable in the circumferential direction about the axis A within a range in which the steel ball 29 can roll with respect to the spindle 26.
スピンドル26の周囲であって、かつ軸線Aに沿う方向の減速機21とハンマ30との間には、鋼板よりなる環状プレート31が設けられている。また、軸線Aに沿う方向の環状プレート31とハンマ30との間には、コイルばね32が圧縮された状態で設けられている。キャリヤ25は、軸受28およびホルダ部材27に接触することで、軸線Aに沿う方向への移動が規制されており、コイルばね32の押圧力はハンマ30に加えられている。これによりハンマ30は、コイルばね32の押圧力により、軸線Aに沿う方向でアンビル18に向けて押されている。 An annular plate 31 made of a steel plate is provided around the spindle 26 and between the reducer 21 and the hammer 30 in the direction along the axis A. A coil spring 32 is provided in a compressed state between the annular plate 31 and the hammer 30 in the direction along the axis A. The carrier 25 is restricted from moving in the direction along the axis A by contacting the bearing 28 and the holder member 27, and the pressing force of the coil spring 32 is applied to the hammer 30. Thereby, the hammer 30 is pushed toward the anvil 18 in the direction along the axis A by the pressing force of the coil spring 32.
スピンドル26の周囲であって、かつ環状プレート31の径方向内側には、環状のストッパ33が設けられている。このストッパ33は、ゴム等の弾性体により形成され、スピンドル26に取り付けられている。そして、ストッパ33は、ハンマ30の軸線Aに沿う減速機21側への移動量を規制するようになっている。 An annular stopper 33 is provided around the spindle 26 and inside the annular plate 31 in the radial direction. The stopper 33 is formed of an elastic body such as rubber and is attached to the spindle 26. The stopper 33 regulates the amount of movement of the hammer 30 toward the reduction gear 21 along the axis A.
ここで、先端工具17に打撃力を与える打撃機構SMは、スピンドル26,ハンマ30,アンビル18,スチールボール29およびコイルばね32により形成されている。そして、アンビル18の回転方向への負荷が大きくなると、ハンマ30の第1係合爪30eとアンビル18の第2係合爪18d(何れも図3および図4参照)とが、開放および係合を高速で繰り返して、これにより先端工具17に打撃力が発生する。ここで、ハンマ30の重量はアンビル18の重量よりも大きく設定されており、ハンマ30は、スピンドル26の回転力をアンビル18の回転方向の打撃力に変換する。 Here, the striking mechanism SM for imparting striking force to the tip tool 17 is formed by the spindle 26, the hammer 30, the anvil 18, the steel ball 29 and the coil spring 32. When the load in the rotational direction of the anvil 18 increases, the first engagement claw 30e of the hammer 30 and the second engagement claw 18d of the anvil 18 (both see FIGS. 3 and 4) are released and engaged. Are repeated at a high speed, thereby generating a striking force on the tip tool 17. Here, the weight of the hammer 30 is set to be larger than the weight of the anvil 18, and the hammer 30 converts the rotational force of the spindle 26 into a striking force in the rotational direction of the anvil 18.
次に、ハンマ30とアンビル18との係合構造について、図3および図4を用いて詳細に説明する。 Next, the engagement structure between the hammer 30 and the anvil 18 will be described in detail with reference to FIGS. 3 and 4.
ハンマ30は、略円筒形状に形成された本体部30bを備えており、この本体部30bの径方向内側には、軸線Aに沿う方向に延び、スピンドル26が回動自在に装着される装着孔30cが設けられている。本体部30bのアンビル18側は先細り形状となっている。つまり、本体部30bのスピンドル26側は大径とされ、本体部30bのアンビル18側は小径とされている。ここで、本体部30bのスピンドル26側(大径側)の直径寸法は、約40mmに設定されている。 The hammer 30 includes a main body 30b formed in a substantially cylindrical shape. A mounting hole that extends in a direction along the axis A and is rotatably mounted on the spindle 26 is radially inward of the main body 30b. 30c is provided. The anvil 18 side of the main body 30b is tapered. That is, the spindle 26 side of the main body 30b has a large diameter, and the anvil 18 side of the main body 30b has a small diameter. Here, the diameter dimension of the main body 30b on the spindle 26 side (large diameter side) is set to about 40 mm.
本体部30bのアンビル18側にはアンビル18と対向する対向平面30dが設けられ、この対向平面30dには、軸線Aに沿う方向でアンビル18側に突出された3つの第1係合爪30eが一体に設けられている。これらの第1係合爪30eは、対向平面30dの周方向に沿って等間隔(120度間隔)で並んで配置され、軸線Aと交差する方向に沿う断面形状が略扇形となっている。そして、第1係合爪30eの先細りとなった先端側、つまり扇形の径方向内側は、ハンマ30の径方向内側、つまり装着孔30cに向けられている。 An opposing plane 30d that faces the anvil 18 is provided on the anvil 18 side of the main body 30b, and three first engaging claws 30e that protrude toward the anvil 18 in the direction along the axis A are provided on the opposing plane 30d. It is provided integrally. These first engaging claws 30e are arranged side by side at equal intervals (120 degree intervals) along the circumferential direction of the opposing flat surface 30d, and the cross-sectional shape along the direction intersecting the axis A is substantially fan-shaped. The distal end side of the first engaging claw 30e that is tapered, that is, the radially inner side of the sector, is directed to the radially inner side of the hammer 30, that is, the mounting hole 30c.
第1係合爪30eのハンマ30の周方向に沿う一方側には、第1接触平面SF1が設けられている。また、第1係合爪30eのハンマ30の周方向に沿う他方側には、第2接触平面SF2が設けられている。そして、各第1接触平面SF1には、後述するアンビル18の第2係合爪18dの各第4接触平面SF4が全面で接触し、各第2接触平面SF2には、アンビル18の第2係合爪18dの各第3接触平面SF3が全面で接触するようになっている。 A first contact plane SF1 is provided on one side of the first engagement claw 30e along the circumferential direction of the hammer 30. A second contact plane SF2 is provided on the other side of the first engagement claw 30e along the circumferential direction of the hammer 30. And each 4th contact plane SF4 of the 2nd engaging claw 18d of the anvil 18 mentioned later contacts each 1st contact plane SF1, and the 2nd engagement of the anvil 18 touches each 2nd contact plane SF2. Each third contact plane SF3 of the joint claw 18d comes into contact with the entire surface.
また、ハンマ30の径方向外側でかつ周方向に沿う方向の第1係合爪30eの幅寸法は、図4(c)に示すように10.0mmに設定されている。これにより、ハンマ30の周方向に沿って隣り合う第1係合爪30eの間には、アンビル18の第2係合爪18dが余裕を持って入り込めるようになっている。 Moreover, the width dimension of the 1st engaging claw 30e of the direction outside the diameter direction of the hammer 30 and the circumferential direction is set to 10.0 mm as shown in FIG.4 (c). As a result, the second engaging claws 18d of the anvil 18 can enter between the first engaging claws 30e adjacent in the circumferential direction of the hammer 30 with a margin.
図5に示すように、ハンマ30の周方向に沿って隣り合う第1係合爪30eの、それぞれの第1接触平面SF1および第2接触平面SF2を結ぶ線分は、ハンマ30の軸線Aと交差する方向に真っ直ぐに延びる直線Lを形成している。つまり、ハンマ30には3つの第1係合爪30eが設けられるため、3本の直線Lが形成されることになる。 As shown in FIG. 5, the line segment connecting the first contact plane SF <b> 1 and the second contact plane SF <b> 2 of the first engaging claws 30 e adjacent along the circumferential direction of the hammer 30 is the axis line A of the hammer 30. A straight line L extending straight in the intersecting direction is formed. That is, since the three first engaging claws 30e are provided on the hammer 30, three straight lines L are formed.
このように、3つの第1係合爪30eの第1,第2接触平面SF1,SF2は、それぞれ3本の直線L上に配置される。そのため、本実施の形態においては、図6に示すように、ハンマ30の加工を容易に行うことができる。具体的には、図6に示すように、ツイストドリルDを備えた切削工具Tを用い、当該切削工具Tをハンマ30の軸線Aと交差する方向から破線矢印M1に沿って移動させ、ツイストドリルDを直線Lに倣って移動させる。そして、この動作を直線Lの本数分(3回)繰り返すことで、3つの第1係合爪30eのそれぞれの第1,第2接触平面SF1,SF2(合計6面)が形成される。このように、第1係合爪30eの1つ1つを個別に形成しなくて済むため、ハンマ30の加工時間を大幅に短縮して、その加工性を向上させることができる。 Thus, the first and second contact planes SF1 and SF2 of the three first engaging claws 30e are arranged on the three straight lines L, respectively. Therefore, in the present embodiment, as shown in FIG. 6, the hammer 30 can be easily processed. Specifically, as shown in FIG. 6, a cutting tool T provided with a twist drill D is used, and the cutting tool T is moved along a broken line arrow M <b> 1 from a direction intersecting the axis A of the hammer 30. D is moved along the straight line L. Then, by repeating this operation for the number of straight lines L (three times), the first and second contact planes SF1 and SF2 (total of six surfaces) of the three first engagement claws 30e are formed. Thus, since it is not necessary to form each of the first engaging claws 30e individually, the processing time of the hammer 30 can be greatly shortened and its workability can be improved.
図5に示すように、ハンマ30の対向平面30dには、ハンマ30の径方向内側に形成された一対のハンマカム30aの端部が開口されている。これらのハンマカム30aの開口側の形状は、断面が略円弧形状に形成されている。一対のハンマカム30aは、装着孔30cを中心に対向配置されており、各ハンマカム30aの頂部には、スチールボール29を組み込むための窪み部30fがそれぞれ設けられている。また、各ハンマカム30aの間には、ハンマ30の径方向内側に向けて突出した一対の突部30gが設けられ、これらの突部30gの先端側は装着孔30cに臨み、各ハンマカム30aの境界部分を形成する。 As shown in FIG. 5, end portions of a pair of hammer cams 30 a formed on the radially inner side of the hammer 30 are opened on the opposing plane 30 d of the hammer 30. The shape of the opening side of these hammer cams 30a is formed in a substantially arc shape in cross section. The pair of hammer cams 30a are opposed to each other with the mounting hole 30c as a center, and a recess 30f for incorporating the steel ball 29 is provided at the top of each hammer cam 30a. Between each hammer cam 30a, a pair of projections 30g projecting inward in the radial direction of the hammer 30 is provided, and the tip side of these projections 30g faces the mounting hole 30c, and the boundary of each hammer cam 30a. Forming part.
このように、ハンマ30の対向平面30dに、3つの第1係合爪30eを設けるとともに、一対の(2つの)ハンマカム30aの端部を開口させたので、ハンマ30の周方向に沿って隣り合う第1係合爪30e間に、一対の窪み部30fを配置することができる。この場合、隣り合う第1係合爪30e間の距離を従前に比して長くできるので、各ハンマカム30aに対する各スチールボール29の組み込み作業を、容易に行うことができる。 As described above, since the three first engaging claws 30e are provided on the opposing plane 30d of the hammer 30 and the ends of the pair of (two) hammer cams 30a are opened, it is adjacent along the circumferential direction of the hammer 30. A pair of recessed portions 30f can be disposed between the matching first engaging claws 30e. In this case, since the distance between the adjacent first engaging claws 30e can be made longer than before, the work of assembling each steel ball 29 into each hammer cam 30a can be easily performed.
アンビル18は、略円筒形状に形成された本体部18cを備えており、この本体部18cの軸方向に沿うハンマ30側には、径方向外側に突出された3つの第2係合爪18dが一体に設けられている。これらの第2係合爪18dは、本体部18cの周方向に沿って等間隔(120度間隔)で並んで配置され、軸線Aと交差する方向に沿う断面形状が略長方形となっている。 The anvil 18 includes a main body portion 18c formed in a substantially cylindrical shape. On the hammer 30 side along the axial direction of the main body portion 18c, three second engaging claws 18d protruding outward in the radial direction are provided. It is provided integrally. These second engagement claws 18d are arranged at equal intervals (120 degree intervals) along the circumferential direction of the main body portion 18c, and the cross-sectional shape along the direction intersecting the axis A is substantially rectangular.
第2係合爪18dのアンビル18の周方向に沿う一方側には、第3接触平面SF3が設けられている。また、第2係合爪18dのアンビル18の周方向に沿う他方側には、第4接触平面SF4が設けられている。そして、各第3接触平面SF3には、ハンマ30の第1係合爪30eの各第2接触平面SF2が全面で接触し、各第4接触平面SF4には、ハンマ30の第1係合爪30eの各第1接触平面SF1が全面で接触するようになっている。 A third contact plane SF3 is provided on one side along the circumferential direction of the anvil 18 of the second engagement claw 18d. A fourth contact plane SF4 is provided on the other side of the second engagement claw 18d along the circumferential direction of the anvil 18. The second contact planes SF2 of the first engagement claws 30e of the hammer 30 are in contact with the entire third contact planes SF3, and the first engagement claws of the hammer 30 are in contact with the fourth contact planes SF4. Each first contact plane SF1 of 30e comes into contact with the entire surface.
また、アンビル18の径方向外側でかつ周方向に沿う方向の第2係合爪18dの幅寸法は、図4(c)に示すように8.5mmに設定されている。つまり、第1係合爪30eよりも若干短い幅寸法に設定されている。これにより、アンビル18の周方向に沿って隣り合う第2係合爪18dの間の距離が比較的長い距離S1となり、ハンマ30の第1係合爪30eが余裕を持って入り込めるようになっている。 Moreover, the width dimension of the 2nd engaging claw 18d of the direction along the radial direction outer side of the anvil 18 is set to 8.5 mm as shown in FIG.4 (c). That is, the width dimension is set slightly shorter than that of the first engagement claw 30e. Accordingly, the distance between the second engaging claws 18d adjacent to each other along the circumferential direction of the anvil 18 becomes a relatively long distance S1, and the first engaging claws 30e of the hammer 30 can enter with a margin. Yes.
次に、ハンマ30の第1係合爪30eと、アンビル18の第2係合爪18dとが係合した状態について、図4に基づいて詳細に説明する。なお、図4に示す状態は、第1係合爪30eの第1接触平面SF1と、第2係合爪18dの第4接触平面SF4とが、互いに全面で接触した状態を示している。ここで、3つずつ設けた第1係合爪30eおよび第2係合爪18dは、それぞれ同時に係合しかつ開放されるようになっている。 Next, the state in which the first engagement claw 30e of the hammer 30 and the second engagement claw 18d of the anvil 18 are engaged will be described in detail with reference to FIG. 4 shows a state where the first contact plane SF1 of the first engagement claw 30e and the fourth contact plane SF4 of the second engagement claw 18d are in contact with each other over the entire surface. Here, the first engaging claws 30e and the second engaging claws 18d provided in three are respectively engaged and released simultaneously.
図4(b)に示すように、ハンマ30の周方向に沿って隣り合う第1係合爪30eの間には、アンビル18の第2係合爪18dが移動可能となっている。具体的には、ハンマ30が正転されて、第1係合爪30eの第1接触平面SF1と第2係合爪18dの第4接触平面SF4とが接触された図中実線で示す状態(第1状態)から、ハンマ30が逆転されて、第1係合爪30eの第2接触平面SF2と第2係合爪18dの第3接触平面SF3とが接触された図中破線で示す状態(第2状態)に、第2係合爪18dは移動可能となっている。ここで、隣り合う第1係合爪30eの間において、第2係合爪18dが第1状態および第2状態となったときのなす角度が、本発明における打撃部材(ハンマ30)と出力部材(アンビル18)との相対的な遊び角を構成している。 As shown in FIG. 4B, the second engagement claw 18 d of the anvil 18 is movable between the first engagement claws 30 e adjacent along the circumferential direction of the hammer 30. Specifically, the hammer 30 is rotated forward so that the first contact plane SF1 of the first engagement claw 30e and the fourth contact plane SF4 of the second engagement claw 18d are in contact with each other (shown by a solid line in the figure). From the first state, the hammer 30 is reversed so that the second contact plane SF2 of the first engagement claw 30e and the third contact plane SF3 of the second engagement claw 18d are in contact with each other (shown by a broken line in the figure) In the second state, the second engagement claw 18d is movable. Here, between the adjacent first engaging claws 30e, the angle formed when the second engaging claws 18d are in the first state and the second state is the striking member (hammer 30) and the output member in the present invention. A relative play angle with (anvil 18) is formed.
実施の形態1に係るハンマ30およびアンビル18よりなる打撃機構SMにおいては、ハンマ30とアンビル18との相対的な遊び角度が、90度以下でかつ30度以上の60度に設定されている。これは、ハンマ30およびアンビル18の双方に、その周方向に沿うよう120度間隔で第1係合爪30eと第2係合爪18dとをそれぞれ3つずつ設けたことと、第1係合爪30eの幅寸法を10.0mmに設定し、第2係合爪18dの幅寸法を8.5mmに設定したことに依るものである。 In the striking mechanism SM including the hammer 30 and the anvil 18 according to Embodiment 1, the relative play angle between the hammer 30 and the anvil 18 is set to 60 degrees or less and 60 degrees or more and 30 degrees or more. This is because both the hammer 30 and the anvil 18 are provided with three first engagement claws 30e and three second engagement claws 18d at intervals of 120 degrees along the circumferential direction, and the first engagement. This is because the width dimension of the claw 30e is set to 10.0 mm and the width dimension of the second engagement claw 18d is set to 8.5 mm.
ここで、打撃機構SMを組み立てるには、まず、図3に示すように、スピンドル26,ハンマ30,アンビル18を軸線Aに沿うよう同軸に配置する。その後、当該状態のもとで、スピンドル26をハンマ30の装着孔30cに装着する。なお、スピンドル26をハンマ30に装着する際に、両者間には環状プレート31およびコイルばね32(図2参照)が組み込まれる。 Here, in order to assemble the striking mechanism SM, first, the spindle 26, the hammer 30, and the anvil 18 are arranged coaxially along the axis A as shown in FIG. Thereafter, the spindle 26 is mounted in the mounting hole 30c of the hammer 30 under this state. When the spindle 26 is mounted on the hammer 30, an annular plate 31 and a coil spring 32 (see FIG. 2) are incorporated between the two.
次いで、図5の破線矢印M2に示すように、一対のスチールボール29を一対の窪み部30fに臨ませて、ハンマ30とスピンドル26との間に装着する。これにより、各ハンマカム30aと各スピンドルカム26bとの間に、スチールボール29がそれぞれ組み込まれる。その後、ハンマ30の対向平面30d側に突出されたスピンドル26の軸部26aを、アンビル18の保持孔18a(図2参照)に装着する。これにより、打撃機構SMが完成する。 Next, as shown by a broken line arrow M <b> 2 in FIG. 5, the pair of steel balls 29 are mounted between the hammer 30 and the spindle 26 so as to face the pair of depressions 30 f. Thereby, the steel balls 29 are respectively incorporated between the hammer cams 30a and the spindle cams 26b. Thereafter, the shaft portion 26a of the spindle 26 protruding toward the opposing flat surface 30d of the hammer 30 is mounted in the holding hole 18a (see FIG. 2) of the anvil 18. Thereby, the striking mechanism SM is completed.
次に、インパクトドライバ10の動作について、図面を用いて詳細に説明する。 Next, the operation of the impact driver 10 will be described in detail with reference to the drawings.
電動モータ12が停止している場合には、コイルばね32に押圧されているハンマ30は、アンビル18に接触して停止する。電動モータ12に電力が供給されて回転軸14が回転すると、回転軸14のトルク(回転力)は減速機21のサンギヤ22に伝達される。サンギヤ22にトルクが伝達されると、リングギヤ23が反力要素となり、キャリヤ25が出力要素となる。すなわち、サンギヤ22のトルクがキャリヤ25に伝達され、サンギヤ22の回転速度に対してキャリヤ25の回転速度が低速となって、トルクが増幅される。 When the electric motor 12 is stopped, the hammer 30 pressed by the coil spring 32 contacts the anvil 18 and stops. When electric power is supplied to the electric motor 12 and the rotating shaft 14 rotates, the torque (rotational force) of the rotating shaft 14 is transmitted to the sun gear 22 of the speed reducer 21. When torque is transmitted to the sun gear 22, the ring gear 23 becomes a reaction force element, and the carrier 25 becomes an output element. That is, the torque of the sun gear 22 is transmitted to the carrier 25, the rotational speed of the carrier 25 becomes lower than the rotational speed of the sun gear 22, and the torque is amplified.
キャリヤ25にトルクが伝達されると、スピンドル26がキャリヤ25とともに一体回転する。スピンドル26のトルクは、スチールボール29を介してハンマ30に伝達される。ハンマ30のトルクは、3つの第1係合爪30eと3つの第2係合爪18dとの係合によりアンビル18に伝達され、これによりアンビル18が回転される。アンビル18に伝達されたトルクは、先端工具17を介してボルト(図示せず)に伝達され、当該ボルトが、例えば木材等の対象物にねじ込まれる。 When torque is transmitted to the carrier 25, the spindle 26 rotates together with the carrier 25. The torque of the spindle 26 is transmitted to the hammer 30 via the steel ball 29. The torque of the hammer 30 is transmitted to the anvil 18 by the engagement of the three first engaging claws 30e and the three second engaging claws 18d, whereby the anvil 18 is rotated. The torque transmitted to the anvil 18 is transmitted to a bolt (not shown) via the tip tool 17, and the bolt is screwed into an object such as wood.
先端工具17を回転させるのに必要となるトルクが低い状態、すなわち、低負荷状態においては、図4に示すように、第1係合爪30eの第1接触平面SF1と第2係合爪18dの第4接触平面SF4とが接触された状態となっている。その後、ボルトが木材にねじ込まれて、木材とボルトとの摩擦抵抗が増加する等して、先端工具17を回転させるのに必要となるトルクが高くなると、アンビル18は停止する。これにより、各スチールボール29が、各ハンマカム30aおよび各スピンドルカム26bの内部を転動し、ひいてはハンマ30がアンビル18から離れるよう軸線Aに沿って移動する。 In a state where the torque required to rotate the tip tool 17 is low, that is, in a low load state, as shown in FIG. 4, the first contact plane SF1 of the first engagement claw 30e and the second engagement claw 18d. The fourth contact plane SF4 is in contact with the fourth contact plane SF4. Thereafter, when the bolt is screwed into the wood and the frictional resistance between the wood and the bolt increases, for example, the torque required to rotate the tip tool 17 increases, the anvil 18 stops. Thereby, each steel ball 29 rolls inside each hammer cam 30 a and each spindle cam 26 b, and as a result, the hammer 30 moves along the axis A so as to be separated from the anvil 18.
これにより、図4(c)の破線矢印M3に示すように、第1係合爪30eと第2係合爪18dとの係合が外れて互いに解放され、ハンマ30のトルクがアンビル18に伝達されなくなる。その後、ハンマ30の電動モータ12側の端部がストッパ33に衝突し、ストッパ33はハンマ30の運動エネルギを吸収する。 As a result, as shown by a broken line arrow M3 in FIG. 4C, the first engagement claw 30e and the second engagement claw 18d are disengaged and released from each other, and the torque of the hammer 30 is transmitted to the anvil 18. It will not be done. Thereafter, the end of the hammer 30 on the electric motor 12 side collides with the stopper 33, and the stopper 33 absorbs the kinetic energy of the hammer 30.
その後さらに、ハンマ30の回転が継続されて、図4(c)の破線矢印M3に示すように、第1係合爪30eが第2係合爪18dを乗り越えると、コイルばね32のハンマ30を押圧する力が大きくなる。これにより、各スチールボール29が、各ハンマカム30aおよび各スピンドルカム26bの内部を転動して、ハンマ30はアンビル18に対して相対回転しつつ、近接するように移動される。 Thereafter, the rotation of the hammer 30 is continued, and when the first engagement claw 30e gets over the second engagement claw 18d as shown by the broken line arrow M3 in FIG. 4C, the hammer 30 of the coil spring 32 is moved. The pressing force increases. Thereby, each steel ball 29 rolls inside each hammer cam 30a and each spindle cam 26b, and the hammer 30 is moved so as to be close to each other while rotating relative to the anvil 18.
その後、回転しているハンマ30の各第1係合爪30eが、停止しているアンビル18の各第2係合爪18dに同時に衝突して、アンビル18および先端工具17の回転方向に打撃力が加えられる。ここで、切替スイッチ16(図2参照)を操作することで、電動モータ12の回転方向を逆転させると、上述した動作とは逆方向に打撃力を加えることができる。これにより、締め付けられたボルトを緩めることができる。 Thereafter, the respective first engaging claws 30e of the rotating hammer 30 collide simultaneously with the respective second engaging claws 18d of the stopped anvil 18, and the striking force is exerted in the rotational direction of the anvil 18 and the tip tool 17. Is added. Here, when the rotation direction of the electric motor 12 is reversed by operating the changeover switch 16 (see FIG. 2), a striking force can be applied in a direction opposite to the above-described operation. Thereby, the tightened bolt can be loosened.
以上詳述したように、本実施の形態に係るインパクトドライバ10によれば、打撃力を発生させる第1係合爪30eおよび第2係合爪18dをそれぞれ3つずつ設け、スピンドル26の回転方向に沿うハンマ30とアンビル18との相対的な遊び角度が90度以下となるようにした。 As described above in detail, according to the impact driver 10 according to the present embodiment, three first engagement claws 30e and three second engagement claws 18d that generate a striking force are provided, and the rotation direction of the spindle 26 is determined. The relative play angle between the hammer 30 and the anvil 18 is set to 90 degrees or less.
これにより、インパクトドライバ10が発生する振動を十分に軽減しつつ、従前に比してインパクトドライバ10の軽量化を図ることができる。 Thereby, weight reduction of the impact driver 10 can be achieved compared with the past, fully reducing the vibration which the impact driver 10 generate | occur | produces.
また、隣り合う第1係合爪30e間の距離を、従前に比して長くすることができるので、スチールボール29の組み込み等、インパクトドライバ10の組立作業性を向上させることができる。 Further, since the distance between the adjacent first engaging claws 30e can be made longer than before, the assembly workability of the impact driver 10 such as the incorporation of the steel ball 29 can be improved.
さらに、本実施の形態においては、(1)本体部30bの直径寸法を「約40mm」,(2)ハンマ30とアンビル18との相対的な遊び角度を「60度」,(3)第1係合爪30eの幅寸法を「10.0mm」,(4)第2係合爪18dの幅寸法を「8.5mm」にそれぞれ設定している。 Further, in the present embodiment, (1) the diameter of the main body 30b is "about 40 mm", (2) the relative play angle between the hammer 30 and the anvil 18 is "60 degrees", and (3) the first The width dimension of the engaging claw 30e is set to “10.0 mm”, and (4) the width dimension of the second engaging claw 18d is set to “8.5 mm”.
したがって、第1係合爪30eおよび第2係合爪18dの強度を十分なものにしつつ、3つの第1係合爪30eの第1,第2接触平面SF1,SF2を、図5に示すように、それぞれ3本の直線L上に配置することができる。そのため、図6に示すように、ハンマ30を容易に加工することができる。 Therefore, the first and second contact planes SF1 and SF2 of the three first engagement claws 30e are shown in FIG. 5 while the strength of the first engagement claws 30e and the second engagement claws 18d is sufficient. In addition, each can be arranged on three straight lines L. Therefore, the hammer 30 can be easily processed as shown in FIG.
次に、本発明の実施の形態2について、図面を用いて詳細に説明する。なお、上述した実施の形態1と同様の機能を有する部分については同一の記号を付し、その詳細な説明を省略する。 Next, Embodiment 2 of the present invention will be described in detail with reference to the drawings. Note that portions having the same functions as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
図7(a),(b),(c)は実施の形態2の打撃機構を示す図4に対応した図を示している。 7A, 7B, and 7C show views corresponding to FIG. 4 showing the striking mechanism of the second embodiment.
図7に示すように、実施の形態2の打撃機構SMは、実施の形態1の打撃機構SM(図4参照)に比して、ハンマ(打撃部材)130の第1係合爪30eの形状、およびアンビル(出力部材)118の第2係合爪18dの形状のみが異なっている。 As shown in FIG. 7, the striking mechanism SM of the second embodiment has a shape of the first engaging claw 30e of the hammer (striking member) 130 as compared with the striking mechanism SM (see FIG. 4) of the first embodiment. And only the shape of the second engagement claw 18d of the anvil (output member) 118 is different.
具体的には、実施の形態2においては、(1)本体部30bの直径寸法を「約40mm」,(2)ハンマ130とアンビル118との相対的な遊び角度を「90度」,(3)第1係合爪30eの幅寸法を「5.5mm」,(4)第2係合爪18dの幅寸法を「4.0mm」にそれぞれ設定している。 Specifically, in the second embodiment, (1) the diameter of the main body 30b is “about 40 mm”, (2) the relative play angle between the hammer 130 and the anvil 118 is “90 degrees”, (3 ) The width dimension of the first engagement claw 30e is set to “5.5 mm”, and (4) the width dimension of the second engagement claw 18d is set to “4.0 mm”.
ここで、ハンマ130とアンビル118との相対的な遊び角度を「90度」としているが、これは、第1係合爪30eの幅寸法を5.5mmに設定し、第2係合爪18dの幅寸法を4.0mmに設定したことに依るものである。 Here, the relative play angle between the hammer 130 and the anvil 118 is set to “90 degrees”. This is because the width dimension of the first engagement claw 30e is set to 5.5 mm, and the second engagement claw 18d. This is due to the fact that the width dimension of is set to 4.0 mm.
第1係合爪30eの幅寸法、および第2係合爪18dの幅寸法は、実施の形態1に比して大分幅狭となっている。これは、第1係合爪30eおよび第2係合爪18dをばらつくこと無く安定して製造し得る最も幅狭の寸法である。つまり、ハンマ130およびアンビル118は、それぞれ鋳造加工や鍛造加工、さらには切削加工等を加えることで形成されるが、これ以上幅狭とすると、第1係合爪30eおよび第2係合爪18dの加工過程において爪の「欠け」等の不具合が生じ得る寸法である。 The width dimension of the first engagement claw 30e and the width dimension of the second engagement claw 18d are significantly narrower than those of the first embodiment. This is the narrowest dimension in which the first engagement claw 30e and the second engagement claw 18d can be stably manufactured without variation. In other words, the hammer 130 and the anvil 118 are formed by casting, forging, cutting, etc., respectively. If the width is further narrowed, the first engaging claw 30e and the second engaging claw 18d are formed. This is a dimension that can cause defects such as “chips” of the nails in the machining process.
ここで、第1係合爪30eおよび第2係合爪18dの強度を高めるために、実施の形態2におけるハンマ130の第1係合爪30eおよびアンビル118の第2係合爪18dに浸炭焼き入れや電解ニッケルめっき等の表面硬化処理を施すのが望ましい。 Here, in order to increase the strength of the first engagement claw 30e and the second engagement claw 18d, the first engagement claw 30e of the hammer 130 and the second engagement claw 18d of the anvil 118 in the second embodiment are carburized. It is desirable to perform surface hardening treatment such as pouring and electrolytic nickel plating.
以上のように形成した実施の形態2においても、上述した実施の形態1と同様の作用効果を奏することができる。これに加えて、実施の形態2においては、第1係合爪30eおよび第2係合爪18dがそれぞれ幅狭に設定されるので、実施の形態1に比して、製品の軽量化を図ることが可能となる。また、アンビル118の周方向に沿って隣り合う第2係合爪18dの間の距離S2を、実施の形態1の距離S1(図4参照)よりも長くすることができる(S2>S1)。これにより、ハンマ130の第1係合爪30eを破線矢印M4に沿うよう移動させて、アンビル118の回転方向に確実に打撃力を与えることができる。 In the second embodiment formed as described above, the same operational effects as those of the first embodiment described above can be obtained. In addition, in the second embodiment, the first engaging claw 30e and the second engaging claw 18d are set to be narrower, so that the product can be made lighter than the first embodiment. It becomes possible. Further, the distance S2 between the second engaging claws 18d adjacent to each other along the circumferential direction of the anvil 118 can be made longer than the distance S1 (see FIG. 4) of the first embodiment (S2> S1). Thereby, the 1st engagement nail | claw 30e of the hammer 130 can be moved along the broken-line arrow M4, and a striking force can be reliably given to the rotation direction of the anvil 118.
次に、本発明の実施の形態3について、図面を用いて詳細に説明する。なお、上述した実施の形態1と同様の機能を有する部分については同一の記号を付し、その詳細な説明を省略する。 Next, Embodiment 3 of the present invention will be described in detail with reference to the drawings. Note that portions having the same functions as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
図8(a),(b),(c)は実施の形態3の打撃機構を示す図4に対応した図を示している。 FIGS. 8A, 8B, and 8C are views corresponding to FIG. 4 showing the striking mechanism of the third embodiment.
図8に示すように、実施の形態3の打撃機構SMは、実施の形態1の打撃機構SM(図4参照)に比して、ハンマ(打撃部材)230の第1係合爪30eの形状、およびアンビル(出力部材)218の第2係合爪18dの形状のみが異なっている。 As shown in FIG. 8, the striking mechanism SM of the third embodiment has a shape of the first engaging claw 30e of the hammer (striking member) 230 as compared with the striking mechanism SM (see FIG. 4) of the first embodiment. And only the shape of the second engaging claw 18d of the anvil (output member) 218 is different.
具体的には、実施の形態3においては、(1)本体部30bの直径寸法を「約40mm」,(2)ハンマ230とアンビル218との相対的な遊び角度を「30度」,(3)第1係合爪30eの幅寸法を「15.5mm」,(4)第2係合爪18dの幅寸法を「14.0mm」にそれぞれ設定している。 Specifically, in the third embodiment, (1) the diameter of the main body 30b is “about 40 mm”, (2) the relative play angle between the hammer 230 and the anvil 218 is “30 degrees”, (3 ) The width dimension of the first engagement claw 30e is set to “15.5 mm”, and (4) the width dimension of the second engagement claw 18d is set to “14.0 mm”.
ここで、ハンマ230とアンビル218との相対的な遊び角度を「30度」としているが、これは、第1係合爪30eの幅寸法を15.5mmに設定し、第2係合爪18dの幅寸法を14.0mmに設定したことに依るものである。 Here, the relative play angle between the hammer 230 and the anvil 218 is set to “30 degrees”. This is because the width dimension of the first engagement claw 30e is set to 15.5 mm, and the second engagement claw 18d. This is because the width dimension of is set to 14.0 mm.
第1係合爪30eの幅寸法、および第2係合爪18dの幅寸法は、実施の形態1に比して大分幅広となっている。これは、打撃機構SMの作動時において、ハンマ230の打撃力をアンビル218に伝達し得る最も幅広の寸法である。つまり、これ以上幅広とすると、第1係合爪30eが、隣り合う第2係合爪18dの間に余裕を持って入り込めなくなり、例えば、第1係合爪30eの角部C1と第2係合爪18dの角部C2とが衝突して、これに起因して爪に「欠け」等の不具合が生じ得る寸法である。 The width dimension of the first engagement claw 30e and the width dimension of the second engagement claw 18d are much wider than those of the first embodiment. This is the widest dimension that can transmit the striking force of the hammer 230 to the anvil 218 when the striking mechanism SM is in operation. That is, if the width is further increased, the first engagement claw 30e cannot enter between the adjacent second engagement claws 18d with a margin. For example, the corner C1 of the first engagement claw 30e and the second This is a dimension that may cause a defect such as “chip” due to the collision with the corner C2 of the engaging claw 18d.
以上のように形成した実施の形態3においても、上述した実施の形態1と同様の作用効果を奏することができる。これに加えて、実施の形態3においては、第1係合爪30eおよび第2係合爪18dがそれぞれ幅広に設定されるので、実施の形態1に比して、第1係合爪30eおよび第2係合爪18dのイナーシャ(慣性モーメント)をそれぞれ大きくすることができる。よって、アンビル218の回転方向への打撃力をより強力にすることができる。 Also in the third embodiment formed as described above, the same operational effects as those of the first embodiment described above can be obtained. In addition, in the third embodiment, the first engagement claw 30e and the second engagement claw 18d are set wider, respectively, so that the first engagement claw 30e and The inertia (moment of inertia) of the second engaging claws 18d can be increased. Therefore, the striking force in the rotation direction of the anvil 218 can be made stronger.
なお、アンビル218の周方向に沿って隣り合う第2係合爪18dの間の距離S3は、実施の形態1の距離S1(図4参照)よりも短い(S3<S1)が、第1係合爪30eの幅寸法よりも十分に長くなっている。そのため、ハンマ230の第1係合爪30eを破線矢印M5に沿うように移動させて、アンビル218の回転方向に確実に打撃力が与えられるようになっている。 The distance S3 between the second engaging claws 18d adjacent to each other along the circumferential direction of the anvil 218 is shorter than the distance S1 (see FIG. 4) of the first embodiment (S3 <S1). It is sufficiently longer than the width dimension of the joint claw 30e. Therefore, the first engaging claw 30e of the hammer 230 is moved along the broken line arrow M5 so that a striking force is reliably applied in the rotation direction of the anvil 218.
次に、本発明の実施の形態4について、図面を用いて詳細に説明する。なお、上述した実施の形態1と同様の機能を有する部分については同一の記号を付し、その詳細な説明を省略する。 Next, a fourth embodiment of the present invention will be described in detail with reference to the drawings. Note that portions having the same functions as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
図9(a),(b),(c)は実施の形態4の打撃機構を示す図4に対応した図を示している。 FIGS. 9A, 9B and 9C show views corresponding to FIG. 4 showing the striking mechanism of the fourth embodiment.
図9に示すように、実施の形態4の打撃機構SMは、実施の形態1の打撃機構SM(図4参照)に比して、ハンマ(打撃部材)330の第1係合爪30eの形状、およびアンビル(出力部材)318の第2係合爪18dの形状のみが異なっている。 As shown in FIG. 9, the striking mechanism SM of the fourth embodiment has a shape of the first engaging claw 30 e of the hammer (striking member) 330 as compared with the striking mechanism SM (see FIG. 4) of the first embodiment. And only the shape of the second engaging claw 18d of the anvil (output member) 318 is different.
具体的には、実施の形態4においては、(1)本体部30bの直径寸法を「約40mm」,(2)ハンマ330とアンビル318との相対的な遊び角度を「75度」,(3)第1係合爪30eの幅寸法を「7.0mm」,(4)第2係合爪18dの幅寸法を「6.5mm」にそれぞれ設定している。 Specifically, in the fourth embodiment, (1) the diameter of the main body 30b is “about 40 mm”, (2) the relative play angle between the hammer 330 and the anvil 318 is “75 degrees”, (3 ) The width dimension of the first engagement claw 30e is set to “7.0 mm”, and (4) the width dimension of the second engagement claw 18d is set to “6.5 mm”.
ここで、ハンマ330とアンビル318との相対的な遊び角度を「75度」としているが、これは、第1係合爪30eの幅寸法を7.0mmに設定し、第2係合爪18dの幅寸法を6.5mmに設定したことに依るものである。 Here, the relative play angle between the hammer 330 and the anvil 318 is set to “75 degrees”. This is because the width dimension of the first engagement claw 30e is set to 7.0 mm, and the second engagement claw 18d. This is because the width dimension is set to 6.5 mm.
第1係合爪30eの幅寸法、および第2係合爪18dの幅寸法は、実施の形態1に比して若干幅狭となっている。この実施の形態4における寸法等の数値は、打撃機構SMに、実用上の十分な強度を確保しつつ軽量化を実現し、かつ加工過程での不具合(爪の「欠け」等)の発生を確実に防止できる点で有利な数値となっている。ただし、本実施の形態においても、ハンマ330の第1係合爪30eおよびアンビル318の第2係合爪18dに浸炭焼き入れや電解ニッケルめっき等の表面硬化処理を施すのが望ましい。 The width dimension of the first engagement claw 30e and the width dimension of the second engagement claw 18d are slightly narrower than those in the first embodiment. In the fourth embodiment, the numerical values such as the dimensions realize a light weight while ensuring sufficient practical strength for the striking mechanism SM, and cause defects in the processing process (such as “chips” of the nails). The value is advantageous in that it can be reliably prevented. However, also in the present embodiment, it is desirable to subject the first engaging claws 30e of the hammer 330 and the second engaging claws 18d of the anvil 318 to surface hardening treatment such as carburizing and quenching or electrolytic nickel plating.
以上のように形成した実施の形態4においても、上述した実施の形態1と同様の作用効果を奏することができる。これに加えて、実施の形態4においては、第1係合爪30eおよび第2係合爪18dがそれぞれ若干幅狭に設定されるので、実施の形態1よりも製品の軽量化を図ることができる。また、アンビル318の周方向に沿って隣り合う第2係合爪18dの間の距離S4を、実施の形態1の距離S1(図4参照)よりも若干長くすることができる(S4>S1)。これにより、ハンマ330の第1係合爪30eを破線矢印M6に沿うよう移動させて、アンビル318の回転方向に確実に打撃力を与えることができる。 In the fourth embodiment formed as described above, the same operational effects as those of the first embodiment can be obtained. In addition, in the fourth embodiment, the first engaging claw 30e and the second engaging claw 18d are set slightly narrower, so that the product can be made lighter than in the first embodiment. it can. Further, the distance S4 between the second engaging claws 18d adjacent to each other along the circumferential direction of the anvil 318 can be made slightly longer than the distance S1 (see FIG. 4) of the first embodiment (S4> S1). . Thereby, the 1st engagement nail | claw 30e of the hammer 330 can be moved along the broken-line arrow M6, and a striking force can be reliably given to the rotation direction of the anvil 318.
次に、本発明の実施の形態5について、図面を用いて詳細に説明する。なお、上述した実施の形態1と同様の機能を有する部分については同一の記号を付し、その詳細な説明を省略する。 Next, a fifth embodiment of the present invention will be described in detail with reference to the drawings. Note that portions having the same functions as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
図10(a),(b),(c)は実施の形態5の打撃機構を示す図4に対応した図を示している。 FIGS. 10A, 10B and 10C show views corresponding to FIG. 4 showing the striking mechanism of the fifth embodiment.
図10に示すように、実施の形態5の打撃機構SMは、実施の形態1の打撃機構SM(図4参照)に比して、ハンマ(打撃部材)430の第1係合爪30eの形状、およびアンビル(出力部材)418の第2係合爪18dの形状のみが異なっている。 As shown in FIG. 10, the striking mechanism SM of the fifth embodiment has a shape of the first engaging claw 30e of the hammer (striking member) 430 as compared with the striking mechanism SM (see FIG. 4) of the first embodiment. And only the shape of the second engagement claw 18d of the anvil (output member) 418 is different.
具体的には、実施の形態5においては、(1)本体部30bの直径寸法を「約40mm」,(2)ハンマ430とアンビル418との相対的な遊び角度を「65度」,(3)第1係合爪30eの幅寸法を「9.0mm」,(4)第2係合爪18dの幅寸法を「7.5mm」にそれぞれ設定している。 Specifically, in the fifth embodiment, (1) the diameter of the main body 30b is “about 40 mm”, (2) the relative play angle between the hammer 430 and the anvil 418 is “65 degrees”, (3 ) The width dimension of the first engagement claw 30e is set to “9.0 mm”, and (4) the width dimension of the second engagement claw 18d is set to “7.5 mm”.
ここで、ハンマ430とアンビル418との相対的な遊び角度を「65度」としているが、これは、第1係合爪30eの幅寸法を9.0mmに設定し、第2係合爪18dの幅寸法を7.5mmに設定したことに依るものである。 Here, the relative play angle between the hammer 430 and the anvil 418 is set to “65 degrees”. This is because the width dimension of the first engagement claw 30e is set to 9.0 mm, and the second engagement claw 18d. This is because the width dimension is set to 7.5 mm.
第1係合爪30eの幅寸法、および第2係合爪18dの幅寸法は、実施の形態1に比して若干幅狭となっている。この実施の形態5における寸法等の数値は、ハンマ430の第1係合爪30eおよびアンビル418の第2係合爪18dに浸炭焼き入れや電解ニッケルめっき等の表面硬化処理を施すこと無く、打撃機構SMに、実用上の十分な強度が得られる数値となっている。 The width dimension of the first engagement claw 30e and the width dimension of the second engagement claw 18d are slightly narrower than those in the first embodiment. The numerical values such as the dimensions in the fifth embodiment are obtained by hitting the first engaging claws 30e of the hammer 430 and the second engaging claws 18d of the anvil 418 without subjecting them to surface hardening treatment such as carburizing and quenching or electrolytic nickel plating. The mechanism SM is a numerical value that provides sufficient practical strength.
以上のように形成した実施の形態5においても、上述した実施の形態1と同様の作用効果を奏することができる。これに加えて、実施の形態5においては、第1係合爪30eおよび第2係合爪18dがそれぞれ若干幅狭に設定されるので、実施の形態1よりも製品の軽量化を図ることができる。また、アンビル418の周方向に沿って隣り合う第2係合爪18dの間の距離S5を、実施の形態1の距離S1(図4参照)よりも若干長くすることができる(S5>S1)。これにより、ハンマ430の第1係合爪30eを破線矢印M7に沿うよう移動させて、アンビル418の回転方向に確実に打撃力を与えることができる。 In the fifth embodiment formed as described above, the same operational effects as those of the first embodiment described above can be obtained. In addition, in the fifth embodiment, since the first engagement claw 30e and the second engagement claw 18d are set slightly narrower, the weight of the product can be reduced as compared with the first embodiment. it can. Further, the distance S5 between the second engaging claws 18d adjacent to each other along the circumferential direction of the anvil 418 can be made slightly longer than the distance S1 (see FIG. 4) of the first embodiment (S5> S1). . Thereby, the 1st engagement nail | claw 30e of the hammer 430 can be moved along the broken-line arrow M7, and a striking force can be reliably given to the rotation direction of the anvil 418.
本発明は上記各実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、本発明の打撃工具は、上述したインパクトドライバ10の他に、インパクトレンチ等を包含する。また、本発明の打撃工具は、交流電源の電力を、電池パック11を介さずに電動モータ12に供給し得る構造を包含する。さらに、本発明の打撃工具は、電池パック11の電力、交流電源の電力を切り替えて電動モータ12に供給可能な構造を包含する。 It goes without saying that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. For example, the impact tool of the present invention includes an impact wrench and the like in addition to the impact driver 10 described above. Further, the impact tool of the present invention includes a structure that can supply electric power from an AC power source to the electric motor 12 without using the battery pack 11. Furthermore, the impact tool of the present invention includes a structure capable of switching the power of the battery pack 11 and the power of the AC power source and supplying the power to the electric motor 12.
さらに、本発明の駆動源は、上述した電動モータ12の他に、エンジン,空気圧モータ,油圧モータ等を包含する。エンジンは、燃料を燃焼させて発生した熱エネルギを運動エネルギに変換する動力源であって、例えば、ガソリンエンジンやディーゼルエンジン,さらには液化石油ガスエンジンを包含する。電動モータ12は、ブラシ付きモータやブラシレスモータ等を包含する。さらに、本発明の打撃工具は、アンビル18,118,218,318,418に先端工具17が直接取り付けられる構造に加えて、アンビルにソケットやアダプタ等を介して先端工具が取り付けられる構造も包含する。 Furthermore, the drive source of the present invention includes an engine, a pneumatic motor, a hydraulic motor, and the like in addition to the electric motor 12 described above. The engine is a power source that converts thermal energy generated by burning fuel into kinetic energy, and includes, for example, a gasoline engine, a diesel engine, and a liquefied petroleum gas engine. The electric motor 12 includes a brushed motor, a brushless motor, and the like. Further, the impact tool of the present invention includes not only a structure in which the tip tool 17 is directly attached to the anvils 18, 118, 218, 318, 418 but also a structure in which the tip tool is attached to the anvil via a socket, an adapter, or the like. .
10…インパクトドライバ(打撃工具)、11…電池パック、12…電動モータ、13…ケーシング、14…回転軸、15…トリガスイッチ、16…切替スイッチ、17…先端工具、18…アンビル(出力部材)、18a…保持孔、18b…取付孔、18c…本体部、18d…第2係合爪、19…スリーブ、20…着脱機構、21…減速機、22…サンギヤ、23…リングギヤ、24…プラネタリギヤ、25…キャリヤ、26…スピンドル(回転部材)、26a…軸部、26b…スピンドルカム、27…ホルダ部材、28…軸受、29…スチールボール、30…ハンマ(打撃部材)、30a…ハンマカム、30b…本体部、30c…装着孔、30d…対向平面、30e…第1係合爪、30f…窪み部、30g…突部、31…環状プレート、32…コイルばね、33…ストッパ、118…アンビル(出力部材)、130…ハンマ(打撃部材)、218…アンビル(出力部材)、230…ハンマ(打撃部材)、318…アンビル(出力部材)、330…ハンマ(打撃部材)、418…アンビル(出力部材)、430…ハンマ(打撃部材)、C1,C2…角部、D…ツイストドリル、SF1…第1接触平面、SF2…第2接触平面、SF3…第3接触平面、SF4…第4接触平面、SM…打撃機構、T…切削工具 DESCRIPTION OF SYMBOLS 10 ... Impact driver (blow tool), 11 ... Battery pack, 12 ... Electric motor, 13 ... Casing, 14 ... Rotating shaft, 15 ... Trigger switch, 16 ... Changeover switch, 17 ... Tip tool, 18 ... Anvil (output member) , 18a ... holding hole, 18b ... mounting hole, 18c ... main body part, 18d ... second engaging claw, 19 ... sleeve, 20 ... detaching mechanism, 21 ... reduction gear, 22 ... sun gear, 23 ... ring gear, 24 ... planetary gear, 25 ... carrier, 26 ... spindle (rotating member), 26a ... shaft, 26b ... spindle cam, 27 ... holder member, 28 ... bearing, 29 ... steel ball, 30 ... hammer (striking member), 30a ... hammer cam, 30b ... Body part, 30c ... mounting hole, 30d ... opposing plane, 30e ... first engaging claw, 30f ... hollow part, 30g ... projection, 31 ... annular plate, 3 ... coil spring, 33 ... stopper, 118 ... anvil (output member), 130 ... hammer (blow member), 218 ... anvil (output member), 230 ... hammer (batter member), 318 ... anvil (output member), 330 ... Hammer (striking member), 418 ... anvil (output member), 430 ... hammer (striking member), C1, C2 ... corner, D ... twist drill, SF1 ... first contact plane, SF2 ... second contact plane, SF3 ... Third contact plane, SF4 ... fourth contact plane, SM ... striking mechanism, T ... cutting tool

Claims (6)

  1. 回転部材により回転される出力部材と、前記回転部材と前記出力部材との間に設けられ、前記回転部材の回転力を前記出力部材の回転方向の打撃力に変換する打撃部材と、を有する打撃工具であって、前記打撃部材の前記出力部材側に周方向に3つ並んで設けられた第1係合爪と、前記出力部材の前記打撃部材側に周方向に3つ並んで設けられ、前記第1係合爪にそれぞれ係合して前記打撃部材の回転力を前記出力部材に伝達する第2係合爪と、を備え、前記回転部材の回転方向に沿う前記打撃部材と前記出力部材との相対的な遊び角度が90度以下である、打撃工具。 A striking member having an output member rotated by a rotating member, and a striking member that is provided between the rotating member and the output member and converts a rotational force of the rotating member into a striking force in a rotation direction of the output member. A first engaging claw provided in a row in the circumferential direction on the output member side of the striking member, and three in the circumferential direction on the striking member side of the output member, A second engaging claw that engages with each of the first engaging claws and transmits a rotational force of the striking member to the output member, and the striking member and the output member along a rotation direction of the rotating member. The impact tool whose relative play angle is 90 degrees or less.
  2. 前記遊び角度が30度以上である、請求項1に記載の打撃工具。 The impact tool according to claim 1, wherein the play angle is 30 degrees or more.
  3. 回転部材により回転される出力部材と、前記回転部材と前記出力部材との間に設けられ、前記回転部材の回転力を前記出力部材の回転方向の打撃力に変換する打撃部材と、を有する打撃工具であって、前記打撃部材の前記出力部材側に周方向に3つ並んで設けられた第1係合爪と、前記出力部材の前記打撃部材側に周方向に3つ並んで設けられ、前記第1係合爪にそれぞれ係合して前記打撃部材の回転力を前記出力部材に伝達する第2係合爪と、を備え、前記回転部材の回転方向に沿う前記打撃部材と前記出力部材との相対的な遊び角度が略60度である、打撃工具。 A striking member having an output member rotated by a rotating member, and a striking member that is provided between the rotating member and the output member and converts a rotational force of the rotating member into a striking force in a rotation direction of the output member. A first engaging claw provided in a row in the circumferential direction on the output member side of the striking member, and three in the circumferential direction on the striking member side of the output member, A second engaging claw that engages with each of the first engaging claws and transmits a rotational force of the striking member to the output member, and the striking member and the output member along a rotation direction of the rotating member. The impact tool whose relative play angle is approximately 60 degrees.
  4. 回転部材により回転される出力部材と、前記回転部材と前記出力部材との間に設けられ、前記回転部材の回転力を前記出力部材の回転方向の打撃力に変換する打撃部材と、を有する打撃工具であって、前記打撃部材の前記出力部材側に周方向に3つ並んで設けられた第1係合爪と、前記出力部材の前記打撃部材側に周方向に3つ並んで設けられ、前記第1係合爪にそれぞれ係合して前記打撃部材の回転力を前記出力部材に伝達する第2係合爪と、を備え、前記打撃部材の径方向外側で周方向に沿う方向の前記第1係合爪の幅寸法が5.5mm以上で、かつ前記出力部材の径方向外側で周方向に沿う方向の前記第2係合爪の幅寸法が4.0mm以上である、打撃工具。 A striking member having an output member rotated by a rotating member, and a striking member that is provided between the rotating member and the output member and converts a rotational force of the rotating member into a striking force in a rotation direction of the output member. A first engaging claw provided in a row in the circumferential direction on the output member side of the striking member, and three in the circumferential direction on the striking member side of the output member, A second engaging claw that engages with each of the first engaging claws to transmit the rotational force of the striking member to the output member, and is arranged in the direction along the circumferential direction on the radially outer side of the striking member. A striking tool in which the width dimension of the first engagement claw is 5.5 mm or more, and the width dimension of the second engagement claw in the direction along the circumferential direction on the radially outer side of the output member is 4.0 mm or more.
  5. 前記第1係合爪の幅寸法が15.5mm以下で、かつ前記第2係合爪の幅寸法が14.0mm以下である、請求項4に記載の打撃工具。 The impact tool according to claim 4, wherein a width dimension of the first engagement claw is 15.5 mm or less and a width dimension of the second engagement claw is 14.0 mm or less.
  6. 回転部材により回転される出力部材と、前記回転部材と前記出力部材との間に設けられ、前記回転部材の回転力を前記出力部材の回転方向の打撃力に変換する打撃部材と、を有する打撃工具であって、前記打撃部材の前記出力部材側に周方向に3つ並んで設けられた第1係合爪と、前記出力部材の前記打撃部材側に周方向に3つ並んで設けられ、前記第1係合爪にそれぞれ係合して前記打撃部材の回転力を前記出力部材に伝達する第2係合爪と、を備え、前記打撃部材の径方向外側で周方向に沿う方向の前記第1係合爪の幅寸法が略10.0mmで、かつ前記出力部材の径方向外側で周方向に沿う方向の前記第2係合爪の幅寸法が略8.5mmである、打撃工具。 A striking member having an output member rotated by a rotating member, and a striking member that is provided between the rotating member and the output member and converts a rotational force of the rotating member into a striking force in a rotation direction of the output member. A first engaging claw provided in a row in the circumferential direction on the output member side of the striking member, and three in the circumferential direction on the striking member side of the output member, A second engaging claw that engages with each of the first engaging claws to transmit the rotational force of the striking member to the output member, and is arranged in the direction along the circumferential direction on the radially outer side of the striking member. A striking tool in which the width dimension of the first engagement claw is approximately 10.0 mm, and the width dimension of the second engagement claw in the direction along the circumferential direction on the radially outer side of the output member is approximately 8.5 mm.
PCT/JP2015/064757 2014-05-30 2015-05-22 Impact tool WO2015182512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-113384 2014-05-30
JP2014113384 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015182512A1 true WO2015182512A1 (en) 2015-12-03

Family

ID=54698844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064757 WO2015182512A1 (en) 2014-05-30 2015-05-22 Impact tool

Country Status (1)

Country Link
WO (1) WO2015182512A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442902B1 (en) 2023-09-14 2024-03-05 株式会社ベッセル工業 impact tools

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119200B1 (en) * 1970-05-25 1976-06-15
JPH01170570U (en) * 1988-05-20 1989-12-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119200B1 (en) * 1970-05-25 1976-06-15
JPH01170570U (en) * 1988-05-20 1989-12-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7442902B1 (en) 2023-09-14 2024-03-05 株式会社ベッセル工業 impact tools

Similar Documents

Publication Publication Date Title
TWI354612B (en) Impact wrench
JP6397325B2 (en) Rotating tool
JP6341283B2 (en) Impact tool
JP5583500B2 (en) Impact tool
US20120118596A1 (en) Impact tool
WO2012091172A1 (en) Driving tool
US11235444B2 (en) Rotary impact tool
JP2017159418A (en) Impact rotary tool
JPH02139182A (en) Rotating impact tool
WO2015182512A1 (en) Impact tool
WO2018061389A1 (en) Rotary impact tool
JP2009172732A (en) Impact rotary tool
WO2014208058A1 (en) Striking tool
JP6217849B2 (en) Impact tool
WO2018142742A1 (en) Rotary impact tool
JP5403309B2 (en) Rotating hammer tool
WO2018061388A1 (en) Rotary impact tool
WO2018042872A1 (en) Impact rotary tool
JP6638856B2 (en) Screw tightening tool
WO2018061387A1 (en) Rotary impact tool
CN103707253A (en) Impact rotation tool
CN115674106A (en) Impact tool and impact mechanism thereof
JP2018051713A (en) Power tool
JP2015128820A (en) Impact rotary tool
JP2005349528A (en) Rotary impact tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15799446

Country of ref document: EP

Kind code of ref document: A1