WO2018061388A1 - Rotary impact tool - Google Patents

Rotary impact tool Download PDF

Info

Publication number
WO2018061388A1
WO2018061388A1 PCT/JP2017/024811 JP2017024811W WO2018061388A1 WO 2018061388 A1 WO2018061388 A1 WO 2018061388A1 JP 2017024811 W JP2017024811 W JP 2017024811W WO 2018061388 A1 WO2018061388 A1 WO 2018061388A1
Authority
WO
WIPO (PCT)
Prior art keywords
hammer
spindle
main
rotation axis
main hammer
Prior art date
Application number
PCT/JP2017/024811
Other languages
French (fr)
Japanese (ja)
Inventor
雅理 村松
隆司 草川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018061388A1 publication Critical patent/WO2018061388A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit

Definitions

  • the present invention relates to a rotary impact tool.
  • the hammer In the rotary impact tool, the hammer is urged toward the anvil side by a spring so that the hammer claw and the anvil claw are engaged in the circumferential direction, and the rotation of the hammer is transmitted to the anvil.
  • a load torque exceeding a predetermined value is applied to the anvil, the hammer moves backward against the spring biasing force.
  • the hammer claw and the anvil claw are disengaged due to the retraction of the hammer, the hammer advances while rotating, and the hammer claw strikes the anvil claw in the rotation direction.
  • Patent Document 1 discloses an impact including a spindle rotated by a driving unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotary striking mechanism that converts the rotation of the spindle into a rotational striking and transmits it to the anvil.
  • the rotary striking mechanism includes a main hammer that can rotate about the rotation axis of the spindle and move in the axial direction, and a sub hammer that rotates integrally with the main hammer but does not move in the axial direction.
  • the magnitude of the impact in the direction of the rotation axis is proportional to the mass of the hammer hitting the anvil, and the magnitude of the impact in the direction of rotation is the moment of inertia of the rotating hammer Proportional to the sum of the product of the distance to the axis and the square.
  • the impact wrench of Patent Document 1 adopts a double hammer configuration, and the mass of the auxiliary hammer that contributes only to the impact in the rotational direction is made larger than the mass of the main hammer, thereby maintaining the magnitude of the impact in the rotational direction.
  • the impact of the hammer in the direction of the rotation axis is reduced.
  • the inventors of the present invention have come up with a technique for reducing the vibration in the rotation axis direction transmitted to the tool body by changing the double hammer configuration disclosed in Patent Document 1.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique for reducing vibration in the rotation axis direction transmitted to the tool body in a rotary impact tool having a main hammer and a sub hammer. is there.
  • a rotary impact tool includes a drive unit, a spindle that is rotated by the drive unit, a main unit that is rotatable about the rotation axis of the spindle and is movable in the direction of the rotation axis.
  • the rotary impact tool of this aspect is configured such that when the main hammer moves in the rotation axis direction, the sub hammer moves in the direction opposite to the movement direction of the main hammer.
  • the rotary impact tool of this aspect includes three or more second cam structures, and the auxiliary hammer is supported by second steel balls included in the three or more second cam structures.
  • FIG. 1 A) is a front side perspective view of a main hammer
  • (b) is a perspective view of a spindle and a carrier
  • (c) is a rear side perspective view of a sub hammer.
  • (A) And (b) is a figure which shows the operation state of a 1st cam structure.
  • (A)-(c) is a figure which shows the positional relationship which expanded the engagement surface of the main hammer and the anvil typically in the circumferential direction.
  • A) And (b) is a figure which shows the operation state of a 2nd cam structure.
  • (A)-(c) is a figure which shows the rotation impact mechanism which concerns on embodiment. It is a schematic sectional drawing of a rotation impact mechanism.
  • the rotary impact tool of the embodiment includes a spindle rotated by a drive unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotary impact mechanism that converts rotation of the spindle into rotational impact and transmits the rotational impact to the anvil.
  • the rotary hammering mechanism employs a double hammer configuration, and includes a main hammer that is rotatable about the rotation axis of the spindle and is movable in the axial direction, and a sub hammer that is rotatable integrally with the main hammer.
  • the rotary striking mechanism has a function of causing the main hammer to impactably engage the anvil and rotating the anvil about the axis.
  • FIG. 1 is a schematic cross-sectional view of a main part of a rotary impact tool according to an embodiment.
  • an alternate long and short dash line indicates a rotation axis of the rotary impact tool 1.
  • FIG. 2 is an exploded perspective view of components of the rotary impact mechanism according to the embodiment
  • FIG. 3 is an assembled perspective view of the rotary impact mechanism according to the embodiment.
  • the illustration of a later-described stopper member 27 is omitted for ease of viewing.
  • 4A is a front perspective view of the main hammer
  • FIG. 4B is a perspective view of the spindle and the carrier
  • FIG. 4C is a rear perspective view of the auxiliary hammer.
  • the rotary impact tool 1 includes a housing 2 that constitutes a tool body.
  • the upper part of the housing 2 forms an accommodation space for accommodating various components, and the lower part of the housing 2 constitutes a grip portion 3 that is gripped by the user.
  • An operation switch 4 that is operated by a user's finger is provided on the front side of the grip 3, and a battery (not shown) that supplies power to the drive unit 10 is provided at the lower end of the grip 3.
  • the drive unit 10 is an electric motor, and the drive shaft 10 a of the drive unit 10 is connected to the carrier 16 and the spindle 11 via the power transmission mechanism 12.
  • the carrier 16 is located on the rear end side of the spindle 11 and accommodates a power transmission gear.
  • the carrier 16 is configured as a large-diameter portion having an outer diameter larger than that of the spindle 11.
  • the carrier 16 has a front member 16b having a diameter larger than that of the spindle 11, and a rear member 16c positioned rearward of the front member 16b, and accommodates a gear between the front member 16b and the rear member 16c.
  • the space 16d is formed.
  • the power transmission mechanism 12 includes a sun gear 13 that is press-fitted and fixed to the tip of the drive shaft 10 a, two planetary gears 14 that mesh with the sun gear 13, and an internal gear 15 that meshes with the planetary gear 14.
  • the planetary gear 14 is rotatably supported in a space 16d of the carrier 16 by a support shaft 14a fixed to the front member 16b and the rear member 16c.
  • the internal gear 15 is fixed to the inner peripheral surface of the housing 2.
  • the rotation of the drive shaft 10a is decelerated based on the ratio between the number of teeth of the sun gear 13 and the number of teeth of the internal gear 15, and the rotational torque is increased. .
  • the carrier 16 and the spindle 11 can be driven at low speed and high torque.
  • Rotating impact mechanism of the rotating impact tool 1 includes a spindle 11, a carrier 16, a main hammer 20, a secondary hammer 21 and a spring member 23.
  • the spindle 11 is formed in a columnar shape, and a small-diameter protrusion 11 a is formed at the tip thereof coaxially with the axis of the spindle 11.
  • the protrusion 11a is inserted in a rotatable state into a hole having a cylindrical inner space formed in the rear part of the anvil 22.
  • a steel main hammer 20 having a substantially disc shape and having a through hole in the center is mounted on the outer periphery of the spindle 11.
  • a pair of hammer claws 20 a projecting toward the anvil 22 are formed on the front surface of the main hammer 20.
  • the main hammer 20 is attached to the spindle 11 so as to be rotatable about the rotation axis of the spindle 11 and to be movable in the direction of the rotation axis of the spindle 11, that is, in the front-rear direction.
  • the main hammer 20 can apply a rotational striking force to the anvil 22.
  • the auxiliary hammer 21 is formed as a steel cylindrical member, and is divided into a front part 21a and a rear part 21b by an annular partition part 21e.
  • the sub hammer 21 accommodates the main hammer 20 in the internal space of the front portion 21a.
  • the auxiliary hammer 21 and the main hammer 20 are provided with an integral rotation mechanism that rotates together.
  • the main hammer 20 includes four first pin grooves 20 d on its outer peripheral surface and having a semicircular cross section and parallel to the rotation axis of the spindle 11.
  • the auxiliary hammer 21 includes four second pin grooves 21 c on the inner peripheral surface of the front portion 21 a and having a semicircular cross section and parallel to the rotation axis of the spindle 11.
  • the four second pin grooves 21 c of the sub hammer 21 are formed at positions corresponding to the four first pin grooves 20 d of the main hammer 20.
  • the first pin grooves 20 d may be formed at an interval of 90 degrees on the outer peripheral surface of the main hammer 20.
  • the second pin grooves 21 c are formed at an interval of 90 degrees on the inner peripheral surface of the sub hammer 21.
  • an engagement pin 26 that is a cylindrical member is disposed in the second pin groove 21c.
  • the engagement pin 26 may be a needle roller.
  • the engaging pin 26 is inserted into the second pin groove 21c from the front end side of the sub hammer 21 and inserted to the groove bottom.
  • a stop member 27 having a function of preventing the engagement pin 26 from being detached is fitted into the annular groove 21d formed on the inner peripheral surface of the sub hammer 21.
  • the four first pin grooves 20d of the main hammer 20 and the four engagement pins 26 are aligned with the four engagement pins 26 attached to the four second pin grooves 21c of the sub hammer 21. Then, the main hammer 20 is inserted into the sub hammer 21. As a result, the main hammer 20 and the sub hammer 21 can be rotated together around the rotation axis of the spindle 11.
  • the main hammer 20 has an annular recess 20c on the rear side.
  • the spring member 23 is interposed between the concave portion 20 c of the main hammer 20 and the annular partition portion 21 e of the sub hammer 21.
  • the main hammer 20 can move in the front-rear direction using the engaging pin 26 as a guide, and can apply a rotational striking force to the anvil 22 by the biasing force of the spring member 23.
  • the spindle 11 includes two first guide grooves 11b on the outer peripheral surface thereof, and the main hammer 20 includes two first engagement grooves 20b on the inner peripheral surface of the through hole.
  • the two first guide grooves 11b have the same shape and are arranged in the circumferential direction, and the two first engagement grooves 20b have the same shape and are arranged in the circumferential direction.
  • a steel ball 19 is disposed between the first guide groove 11b and the first engagement groove 20b.
  • the first guide groove 11b on the spindle 11 side, the first engagement groove 20b on the main hammer 20 side, and the steel ball 19 disposed therebetween constitute a “first cam structure”.
  • the two steel balls 19 support the main hammer 20 in the radial direction so that the main hammer 20 can rotate around the rotation axis of the spindle 11 and move in the direction of the rotation axis.
  • the carrier 16 having a diameter larger than that of the spindle 11 includes three second guide grooves 16a on the outer periphery of the front surface of the front member 16b, and the auxiliary hammer 21 includes three second engagement grooves 21f on the rear surface of the annular partition portion 21e. .
  • the three second guide grooves 16a have the same shape and are arranged in the circumferential direction
  • the three second engagement grooves 21f have the same shape and are arranged in the circumferential direction.
  • a steel ball 17 is disposed between the second guide groove 16a and the second engagement groove 21f.
  • the steel ball 17 is preferably the same steel ball as the steel ball 19 from the viewpoint of manufacturing cost.
  • the steel ball 17 is preferably formed of the same material as the steel ball 19 and has the same size.
  • the second guide groove 16a on the carrier 16 side, the second engagement groove 21f on the sub hammer 21 side, and the steel ball 17 disposed between them constitute a “second cam structure”.
  • the three steel balls 17 support the auxiliary hammer 21 in the direction of the rotation axis so that the auxiliary hammer 21 can rotate around the rotation axis of the spindle 11 and move in the direction of the rotation axis.
  • the first guide groove 11b is formed in a V-shape or a U-shape when viewed from the tip side of the tool. That is, the 1st guide groove 11b has two inclination grooves which incline in the back diagonal direction symmetrically from the foremost part.
  • the first engagement groove 20b is formed in a V-shape or U-shape that is opposite to the tool tip side.
  • the second guide groove 16a is formed in a V shape or a U shape as viewed from the rear end side of the tool. That is, the second guide groove 16a has two inclined grooves that are symmetrically inclined in the front oblique direction from the rearmost part.
  • the second engagement groove 21f is formed in a V-shape or U-shape in the reverse direction when viewed from the tool rear end side.
  • the first guide groove 11b and the second guide groove 16a are formed with inclined grooves extending in different directions in the rotation axis direction.
  • the stopper member 30 is provided between the main hammer 20 and the carrier 16 so that the steel ball 19 in the first cam structure and the steel ball 17 in the second cam structure do not collide with the end portions of the respective inclined grooves.
  • the movement range in the direction of the 20 rotation axis is regulated.
  • the stopper member 30 may be formed of a resin material, for example.
  • the anvil 22 that engages with the main hammer 20 is made of steel, and is rotatably supported by the housing 2 via a steel or brass sliding bearing.
  • the tip of the anvil 22 is provided with a tool mounting portion 22a having a square cross section for mounting a socket body to be mounted on the head of a hexagon bolt or a hexagon nut.
  • a pair of anvil claws that engage with the pair of hammer claws 20a of the main hammer 20 are provided at the rear of the anvil 22.
  • Each of the pair of anvil claws is formed as a columnar member having a sectional fan shape.
  • the anvil claw of the anvil 22 and the hammer claw 20a of the main hammer 20 do not necessarily have to be two, and if the number of the respective claws is equal, three or more at equal intervals in the circumferential direction of the anvil 22 and the main hammer 20 It may be provided.
  • FIG. 5A shows the state of the first cam structure immediately after the start of tightening of the bolts and nuts
  • FIG. 5B shows the state of the first cam structure after a lapse of time from the start of tightening.
  • FIG. 5B is a comparative view for comparison with the initial state of the first cam structure shown in FIG. 5A, and the steel ball 19 moves from the foremost part of the first guide groove 11b toward the groove end. It shows how it moves.
  • the steel ball 19 is shown moving to the vicinity of the groove end portion.
  • the circumferential movable range of the second cam structure is narrower than the first cam structure. For this reason, the steel ball 19 moves with the limit in front of the groove end.
  • FIG. 6A shows an engaged state between the hammer claw 20a of the main hammer 20 and the anvil claw 22b of the anvil 22 immediately after the start of tightening the bolts and nuts.
  • a rotational force A due to the rotation of the driving unit 10 is applied to the main hammer 20 in the direction indicated by the arrow. Further, a forward biasing force B by the spring member 23 is applied to the main hammer 20 in the direction indicated by the arrow.
  • the rotational force of the main hammer 20 is transmitted to the anvil 22 by the circumferential engagement of the hammer claws 20a and the anvil claws 22b.
  • a socket body (not shown) attached to the tool mounting portion 22a rotates, and initial tightening is performed by applying a rotational force to the bolts and nuts. Since the spring member 23 applies the urging force B to the main hammer 20, the steel ball 19 is positioned at the foremost part in the first guide groove 11b as shown in FIG. At this time, the hammer claw 20a and the anvil claw 22b are in an engaged state with the maximum engagement length.
  • the hammer claw 20 a moves along the locus indicated by the arrow G, collides with the anvil claw 22 b, and applies a striking force in the rotation direction to the anvil 22. Thereafter, the hammer claw 20a is moved in the direction opposite to the locus G by the reaction, but finally returns to the state shown in FIG. 6A by the rotational force A and the urging force B. The above operation is repeated at a high speed, and the rotational hammering force by the main hammer 20 is repeatedly applied to the anvil 22.
  • the magnitude of the impact in the rotational direction is proportional to the total moment of inertia of the main hammer 20 and the secondary hammer 21, while the magnitude of the impact in the rotational axis direction.
  • the length is proportional to the mass of the main hammer 20.
  • the rotary impact tool 1 of the embodiment Compared with the rotary impact tool 1 using one hammer having the total mass of the main hammer 20 and the secondary hammer 21, the rotary impact tool 1 of the embodiment has the same impact magnitude in the rotational direction as it is in the rotational axis direction. Reduce the magnitude of impact. By making the mass of the main hammer 20 as small as possible compared with the mass of the sub hammer 21, the impact force generated in the direction of the rotation axis can be further reduced.
  • the moment of inertia is increased by utilizing the fact that the magnitude of the moment of inertia is proportional to the square of the turning radius. That is, by providing the auxiliary hammer 21 having a large mass on the outer peripheral side of the main hammer 20, the moment of inertia of the auxiliary hammer 21 is increased and the impact force in the rotational direction by the double hammer is increased.
  • the sub hammer 21 is moved in the direction opposite to the movement of the main hammer 20 in the rotation axis direction, so that the impact generated in the rotation axis direction by the main hammer 20 is canceled and vibration transmitted to the housing 2 is transmitted. It has a role to further reduce.
  • FIG. 7A shows the state of the second cam structure immediately after the start of tightening of the bolts and nuts
  • FIG. 7B shows the state of the second cam structure after a lapse of time from the start of tightening.
  • FIG.7 (b) shows a mode that the steel ball 17 is moving the 2nd guide groove 16a.
  • the secondary hammer 21 moves in the direction opposite to the moving direction (X direction) of the main hammer 20. That is, when the main hammer 20 moves backward, the auxiliary hammer 21 moves forward.
  • the rotary hammer 1 is moved by the first cam structure and the second cam structure so that when the main hammer 20 moves in the rotation axis direction, the sub hammer 21 moves in the direction opposite to the movement direction of the main hammer 20. It is configured.
  • the sub hammer 21 moves in the direction opposite to the movement direction of the main hammer 20 in synchronization with the movement of the main hammer 20, so that vibration generated by the movement of the main hammer 20 in the axial direction can be absorbed and vibration transmitted to the user's hand. Can be reduced.
  • FIG. 8A shows a front view of the rotary striking mechanism.
  • FIG. 8A shows a state where the two steel balls 19 are positioned at the forefront of the first guide groove 11b.
  • the first engagement groove 20b having a shape opposite to that of the first guide groove 11b has two inclined grooves inclined forward from the rearmost part where the steel ball 19 is disposed.
  • FIG. 8B shows a CC cross-sectional view of the rotary impact mechanism. In FIG. 8B, illustration of the spring member 23, the planetary gear 14 and the like is omitted. In this state, the three steel balls 17 are respectively located at the rearmost part of the second guide groove 16a.
  • FIG. 8C shows a DD sectional view of the rotary striking mechanism.
  • the second guide groove 16a has two inclined grooves inclined forward from the rearmost part where the steel ball 17 is disposed.
  • the secondary hammer 21 and the main hammer 20 are restricted from relative rotation about the axis while allowing the relative movement in the axis direction by the engagement pin 26.
  • the auxiliary hammer 21 is pressed against the carrier 16 by the spring member 23, and the rear surface of the annular partition 21 e is supported by three steel balls 17 disposed on the outer periphery of the front member 16 b of the carrier 16.
  • the steel ball 17 must stably support the rear surface of the annular partition 21e in the direction of the rotation axis so that the secondary hammer 21 and the spindle 11 remain coaxial.
  • the rotary impact tool 1 of the embodiment includes three second cam structures in which the steel balls 17 are arranged between the second guide groove 16a and the second engagement groove 21f, and the three steel balls 17 are sub-hammers.
  • the rear surface of the 21 annular partitioning portions 21e is supported at three points in the rotational axis direction.
  • the auxiliary hammer 21 is supported by the three steel balls 17, thereby effectively suppressing the inclination of the auxiliary hammer 21 with respect to the rotation axis direction. It becomes possible to maintain the coaxiality of the auxiliary hammer 21 and the spindle 11.
  • the steel ball 17 is disposed on the outer periphery of the front surface of the front member 16b having a diameter larger than that of the spindle 11. Since the peripheral speed of the outer periphery of the front member 16b is larger than the outer periphery of the spindle 11, if the auxiliary hammer 21 is supported by the same number (two) of steel balls 17 as the steel balls 19 in the first cam structure, It is conceivable that the wear of the steel ball 17 is more advanced than 19. Therefore, the tool reliability can be improved by increasing the number of steel balls 17 in the second cam structure than the number of steel balls 19 in the first cam structure.
  • the three second cam structures are provided at equal intervals in the circumferential direction.
  • the three steel balls 17 are positioned at an interval of 120 degrees from each other, and can support the auxiliary hammer 21 stably.
  • the number of steel balls 17 may be three or more.
  • the rotary impact tool 1 can suppress wear of the steel balls 17 while ensuring the coaxiality between the auxiliary hammer 21 and the spindle 11. Even when four or more second cam structures are provided, it is preferable that the sub hammer 21 is stably supported by the plurality of steel balls 17 being positioned at equal intervals in the circumferential direction.
  • the circumferential range of motion is narrower in the second cam structure.
  • the second cam structure reaches the movable limit earlier than the first cam structure. Therefore, in the rotary impact tool 1, the first cam structure and the second cam are arranged so that the engagement between the hammer claw 20a and the anvil claw 22b is released before the steel ball 17 moves to the movable limit in the second guide groove 16a. A structure is formed.
  • the rotary impact tool 1 is an electric tool that is used by a user by hand, there is a great demand for reduction in size and weight. If the structure in which three second guide grooves 16a are formed on the outer peripheral surface of the spindle 11 and the three steel balls 17 support the auxiliary hammer 21 in the radial direction is adopted, the strength of the spindle 11 is insufficient. It is necessary to thicken itself. However, increasing the diameter of the spindle 11 is not preferable because it does not meet the demand for reduction in size and weight.
  • the steel ball 17 is made smaller than the steel ball 19 to reduce the amount of lightening by forming the three second guide grooves 16a, thereby preventing the strength of the spindle 11 from being insufficient.
  • the strength of the steel ball 17 becomes a problem this time, and the manufacturing cost increases because two types of steel balls are required.
  • the second guide groove 16 a is formed in the carrier 16 having a diameter larger than that of the spindle 11 to solve the above problem.
  • a large-diameter portion having an outer diameter larger than that portion may be provided on the rear side of the portion where the first guide groove 11b of the spindle 11 is formed, and the second guide groove 16a may be formed in the large-diameter portion.
  • the spindle 11 has a small diameter portion in which the first guide groove 11b is formed and a large diameter portion in which the second guide groove 16a is formed.
  • the weight of the spindle 11 is slightly increased, but at the same time, the strength of the carrier 16 is increased. Therefore, when sufficient durability can be expected, the carrier 16 is thinned (lightened). Thus, the tool weight may not be increased.
  • FIG. 9 is a schematic cross-sectional view of the rotary impact mechanism when the steel ball moves in the first cam structure and the second cam structure.
  • the main hammer 20 moves backward by the movement amount M with respect to the spindle 11, and the auxiliary hammer 21 moves forward by the movement amount N with respect to the carrier 16.
  • the movement amount M of the main hammer 20 reaches a distance corresponding to the maximum engagement length between the hammer claws 20a and the anvil claws 22b, the engagement between the hammer claws 20a and the anvil claws 22b. The match is released.
  • the movement amount M of the main hammer 20 reaches a distance corresponding to the maximum engagement length between the hammer claw 20a and the anvil claw 22b.
  • the first cam structure and the second cam structure are formed.
  • the movement amount M of the main hammer 20 in the rotation axis direction and the movement amount N of the sub hammer 21 in the rotation axis direction are respectively defined by the shapes of the first cam structure and the second cam structure. Since the ratio of the amount of movement for canceling the vibration in the axial direction preferably depends on the mass ratio of the main hammer 20 and the secondary hammer 21, the shapes of the first cam structure and the second cam structure are the main hammer. It is designed according to the mass ratio between 20 and the secondary hammer 21.
  • the mass of the main hammer 20 is P
  • the mass of the auxiliary hammer 21 is Q.
  • the mass P is smaller than the mass Q.
  • the first cam structure and the second cam groove 16a so that the movable range in the rotation axis direction of the steel ball 17 is smaller than the movable range in the rotation axis direction of the steel ball 19 in the first guide groove 11b.
  • a second cam structure is formed. This is because the mass Q of the secondary hammer 21 is larger than the mass P of the primary hammer 20, and vibrations caused by the movement of the primary hammer 20 in the rotational axis direction are opposite to the secondary hammer 21 having a large mass and have a small stroke. The purpose is to cancel the vibration caused by the movement.
  • the ratio of the movable range in the rotation axis direction of the steel ball 17 and the movable range in the rotation axis direction of the steel ball 19 is substantially equal to the ratio of the mass P of the main hammer 20 and the mass Q of the auxiliary hammer 21. May be set.
  • the length of the inclined groove of the second guide groove 16a in the rotational axis direction is made longer than the length of the inclined groove of the first guide groove 11b in the rotational axis direction. Can also be shortened. This realizes a shorter axis of the tool body and contributes to reducing the size and weight of the rotary impact tool 1.
  • the shape of the inclined groove in the movable range in the first cam structure and the second cam structure is determined by the design concept. That is, the ratio of the movement amount N of the secondary hammer 21 relative to the carrier 16 to the movement amount M of the primary hammer 20 relative to the spindle 11 is substantially equal to the ratio of the mass P of the primary hammer 20 and the mass Q of the secondary hammer 21.
  • the first cam structure and the second cam structure are formed. Thereby, it acts so that the vibration of the rotation axis direction by the main hammer 20 and the sub hammer 21 may mutually cancel, and it becomes possible to improve a user's workability
  • a rotary impact tool (1) includes a drive unit (10), a spindle (11) rotated by the drive unit, and a rotation axis of the spindle that is rotatable about the rotation axis.
  • a first hammer structure in which a first steel ball (19) is disposed between a main hammer (20), a first guide groove (11b) on the spindle side, and a first engagement groove (20b) on the main hammer side;
  • a second cam structure including a second steel ball (17) for supporting the auxiliary hammer.
  • the rotary impact tool of this aspect is configured such that when the main hammer moves in the rotation axis direction, the sub hammer moves in the direction opposite to the movement direction of the main hammer.
  • three or more second cam structures are provided, and the auxiliary hammer is supported by the second steel balls included in the three or more second cam structures.
  • the three or more second cam structures may be provided side by side in the circumferential direction. At this time, it is preferable that three or more second cam structures are provided side by side at equal intervals.
  • the secondary hammer may be supported in the rotation axis direction by three or more second steel balls.
  • the present invention can be used for a tool such as a rotary impact tool.

Abstract

This rotary impact tool (1) is provided with: a main hammer (20) which is capable of rotating around a rotational axis of a spindle (11), and which is capable of moving in the direction of the rotational axis; a first cam structure in which steel spheres (19) are provided between a first guidance groove (11b) at the spindle side and a first engagement groove (20b) at the main hammer side; an anvil (22) on which rotary impact force is exerted by the main hammer (20); a secondary hammer (21) which is capable of rotating integrally with the main hammer (20); and a second cam structure including steel spheres (17) which support the secondary hammer (21) such that the secondary hammer (21) is capable of rotating around the rotational axis of the spindle (11), and capable of moving in the direction of the rotational axis. The rotary impact tool (1) is formed such that the secondary hammer (21) moves in the opposite direction to the movement direction of the main hammer (20), when the main hammer (20) moves in the direction of the rotational axis. At least three second cam structures are provided. The secondary hammer (21) is supported by the steel spheres (17) included in the at least three second cam structures.

Description

回転打撃工具Rotating hammer tool
 本発明は、回転打撃工具に関する。 The present invention relates to a rotary impact tool.
 回転打撃工具では、ハンマがばねによりアンビル側に付勢されることでハンマ爪とアンビル爪とが周方向に係合し、ハンマの回転がアンビルに伝達される。アンビルに所定値を超える負荷トルクが加わると、ハンマはばね付勢力に抗して後退する。ハンマの後退によりハンマ爪とアンビル爪の係合が外れると、ハンマは回転しながら前進して、ハンマ爪がアンビル爪に回転方向の打撃を加える。このときの回転打撃により回転軸線方向に衝撃が発生するが、回転軸線方向に生じる衝撃はボルトやナットの締め付けに寄与せず、工具本体に振動として伝達されるため、可能な限り低減させることが好ましい。 In the rotary impact tool, the hammer is urged toward the anvil side by a spring so that the hammer claw and the anvil claw are engaged in the circumferential direction, and the rotation of the hammer is transmitted to the anvil. When a load torque exceeding a predetermined value is applied to the anvil, the hammer moves backward against the spring biasing force. When the hammer claw and the anvil claw are disengaged due to the retraction of the hammer, the hammer advances while rotating, and the hammer claw strikes the anvil claw in the rotation direction. At this time, impact is generated in the direction of the rotation axis due to the rotation impact, but the impact generated in the direction of the rotation axis does not contribute to tightening the bolts and nuts and is transmitted as vibration to the tool body, so it can be reduced as much as possible. preferable.
 特許文献1は、駆動部によって回転されるスピンドルと、スピンドルの回転軸線方向の前方に配置されたアンビルと、スピンドルの回転を回転打撃に変換してアンビルに伝達する回転打撃機構とを備えたインパクトレンチを開示する。回転打撃機構は、スピンドルの回転軸線を中心に回転可能かつ軸線方向に移動可能な主ハンマと、主ハンマと一体となって回転する一方で軸線方向には移動しない副ハンマとを備える。特許文献1に開示されるインパクトレンチでは、スピンドル側の案内溝と主ハンマ側の係合溝との間に鋼球を配置したカム構造が設けられ、主ハンマがカム構造により後退と前進を高速で繰り返すことでアンビルに回転打撃力を付与する。 Patent Document 1 discloses an impact including a spindle rotated by a driving unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotary striking mechanism that converts the rotation of the spindle into a rotational striking and transmits it to the anvil. Disclose wrench. The rotary striking mechanism includes a main hammer that can rotate about the rotation axis of the spindle and move in the axial direction, and a sub hammer that rotates integrally with the main hammer but does not move in the axial direction. In the impact wrench disclosed in Patent Document 1, a cam structure in which a steel ball is arranged between a guide groove on the spindle side and an engagement groove on the main hammer side is provided, and the main hammer can move backward and forward at high speed. Repeat with to give the anvil a rotational impact.
特開2014-240108号公報JP 2014-240108 A
 回転軸線方向の衝撃の大きさは、アンビルを打撃するハンマの質量に比例し、回転方向の衝撃の大きさは、回転するハンマの慣性モーメント(物体内の各部分の質量と、その部分から回転軸線までの距離の2乗との積の総和)に比例する。特許文献1のインパクトレンチはダブルハンマ構成を採用し、回転方向の衝撃にのみ寄与する副ハンマの質量を主ハンマの質量より大きくすることで、回転方向の衝撃の大きさを維持しつつ、主ハンマによる回転軸線方向の衝撃を小さくしている。
 本発明者らは、特許文献1に開示されるダブルハンマ構成に変更を加えることで、工具本体に伝達される回転軸線方向の振動を低減させる技術を想到するに至った。
The magnitude of the impact in the direction of the rotation axis is proportional to the mass of the hammer hitting the anvil, and the magnitude of the impact in the direction of rotation is the moment of inertia of the rotating hammer Proportional to the sum of the product of the distance to the axis and the square. The impact wrench of Patent Document 1 adopts a double hammer configuration, and the mass of the auxiliary hammer that contributes only to the impact in the rotational direction is made larger than the mass of the main hammer, thereby maintaining the magnitude of the impact in the rotational direction. The impact of the hammer in the direction of the rotation axis is reduced.
The inventors of the present invention have come up with a technique for reducing the vibration in the rotation axis direction transmitted to the tool body by changing the double hammer configuration disclosed in Patent Document 1.
 本発明はこうした状況に鑑みなされたものであり、その目的は、主ハンマと副ハンマとを有する回転打撃工具において、工具本体に伝達される回転軸線方向の振動を低減させる技術を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to provide a technique for reducing vibration in the rotation axis direction transmitted to the tool body in a rotary impact tool having a main hammer and a sub hammer. is there.
 上記課題を解決するために、本発明のある態様の回転打撃工具は、駆動部と、駆動部により回転されるスピンドルと、スピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能な主ハンマと、スピンドル側の第1案内溝と主ハンマ側の第1係合溝との間に第1鋼球を配置した第1カム構造と、主ハンマにより回転打撃力が加えられるアンビルと、主ハンマと一体に回転可能な副ハンマと、副ハンマがスピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能となるように副ハンマを支持する第2鋼球を含む第2カム構造とを備える。この態様の回転打撃工具は、主ハンマが回転軸線方向に移動すると、副ハンマが主ハンマの移動方向とは逆方向に移動するように構成される。この態様の回転打撃工具は3つ以上の第2カム構造を備え、副ハンマが、3つ以上の第2カム構造に含まれる第2鋼球により支持される。 In order to solve the above-described problems, a rotary impact tool according to an aspect of the present invention includes a drive unit, a spindle that is rotated by the drive unit, a main unit that is rotatable about the rotation axis of the spindle and is movable in the direction of the rotation axis. A first cam structure in which a first steel ball is disposed between a hammer, a first guide groove on the spindle side, and a first engagement groove on the main hammer side; an anvil to which a rotational striking force is applied by the main hammer; A secondary hammer that can rotate integrally with the hammer, and a second cam structure that includes a second steel ball that supports the secondary hammer so that the secondary hammer can rotate about the rotation axis of the spindle and move in the direction of the rotation axis. Is provided. The rotary impact tool of this aspect is configured such that when the main hammer moves in the rotation axis direction, the sub hammer moves in the direction opposite to the movement direction of the main hammer. The rotary impact tool of this aspect includes three or more second cam structures, and the auxiliary hammer is supported by second steel balls included in the three or more second cam structures.
実施形態に係る回転打撃工具の主要部の断面概略図である。It is a section schematic diagram of the principal part of the rotary impact tool concerning an embodiment. 実施形態に係る回転打撃機構の構成部品の分解斜視図である。It is a disassembled perspective view of the component of the rotation impact mechanism which concerns on embodiment. 実施形態に係る回転打撃機構の組立斜視図である。It is an assembly perspective view of the rotation impact mechanism concerning an embodiment. (a)は主ハンマの前面側斜視図であり、(b)はスピンドルおよびキャリアの斜視図であり、(c)は副ハンマの後面側斜視図である。(A) is a front side perspective view of a main hammer, (b) is a perspective view of a spindle and a carrier, and (c) is a rear side perspective view of a sub hammer. (a)および(b)は第1カム構造の動作状態を示す図である。(A) And (b) is a figure which shows the operation state of a 1st cam structure. (a)~(c)は主ハンマとアンビルの係合面を周方向に模式的に展開した位置関係を示す図である。(A)-(c) is a figure which shows the positional relationship which expanded the engagement surface of the main hammer and the anvil typically in the circumferential direction. (a)および(b)は第2カム構造の動作状態を示す図である。(A) And (b) is a figure which shows the operation state of a 2nd cam structure. (a)~(c)は、実施形態に係る回転打撃機構を示す図である。(A)-(c) is a figure which shows the rotation impact mechanism which concerns on embodiment. 回転打撃機構の概略断面図である。It is a schematic sectional drawing of a rotation impact mechanism.
 実施形態の回転打撃工具は、駆動部により回転されるスピンドルと、スピンドルの回転軸線方向の前方に配置されたアンビルと、スピンドルの回転を回転打撃に変換してアンビルに伝達する回転打撃機構とを備える。回転打撃機構はダブルハンマ構成を採用し、スピンドルの回転軸線を中心に回転可能かつ軸線方向に移動可能な主ハンマと、主ハンマと一体に回転可能な副ハンマを備える。回転打撃機構は、主ハンマをアンビルに衝撃的に係合させて、アンビルを軸線回りに回転させる機能をもつ。 The rotary impact tool of the embodiment includes a spindle rotated by a drive unit, an anvil disposed in front of the spindle in the rotation axis direction, and a rotary impact mechanism that converts rotation of the spindle into rotational impact and transmits the rotational impact to the anvil. Prepare. The rotary hammering mechanism employs a double hammer configuration, and includes a main hammer that is rotatable about the rotation axis of the spindle and is movable in the axial direction, and a sub hammer that is rotatable integrally with the main hammer. The rotary striking mechanism has a function of causing the main hammer to impactably engage the anvil and rotating the anvil about the axis.
 図1は、実施形態に係る回転打撃工具の主要部の断面概略図を示す。図1において一点鎖線は、回転打撃工具1における回転軸線を示している。図2は、実施形態に係る回転打撃機構の構成部品の分解斜視図を示し、図3は、実施形態に係る回転打撃機構の組立斜視図を示す。なお図3では見やすさのために、後述する止め部材27の図示を省略している。図4(a)は主ハンマの前面側斜視図を示し、図4(b)はスピンドルおよびキャリアの斜視図を示し、図4(c)は副ハンマの後面側斜視図を示す。以下、図1~図4を用いて、回転打撃工具1の構造について説明する。 FIG. 1 is a schematic cross-sectional view of a main part of a rotary impact tool according to an embodiment. In FIG. 1, an alternate long and short dash line indicates a rotation axis of the rotary impact tool 1. FIG. 2 is an exploded perspective view of components of the rotary impact mechanism according to the embodiment, and FIG. 3 is an assembled perspective view of the rotary impact mechanism according to the embodiment. In FIG. 3, the illustration of a later-described stopper member 27 is omitted for ease of viewing. 4A is a front perspective view of the main hammer, FIG. 4B is a perspective view of the spindle and the carrier, and FIG. 4C is a rear perspective view of the auxiliary hammer. Hereinafter, the structure of the rotary impact tool 1 will be described with reference to FIGS.
 回転打撃工具1は、工具本体を構成するハウジング2を備える。ハウジング2の上部は、各種構成部品を収容するための収容空間を形成し、ハウジング2の下部は、ユーザにより把持される把持部3を構成する。把持部3の前側には、ユーザの手指により操作される操作スイッチ4が設けられ、把持部3の下端部には、駆動部10に電力を供給するバッテリ(図示せず)が設けられる。 The rotary impact tool 1 includes a housing 2 that constitutes a tool body. The upper part of the housing 2 forms an accommodation space for accommodating various components, and the lower part of the housing 2 constitutes a grip portion 3 that is gripped by the user. An operation switch 4 that is operated by a user's finger is provided on the front side of the grip 3, and a battery (not shown) that supplies power to the drive unit 10 is provided at the lower end of the grip 3.
 駆動部10は電動モータであって、駆動部10の駆動軸10aは、動力伝達機構12を介してキャリア16およびスピンドル11に連結される。キャリア16はスピンドル11の後端側に位置して、動力伝達用の歯車を収容する。図4(b)を参照してキャリア16は、スピンドル11より大きい外径を有する大径部として構成される。キャリア16は、スピンドル11より大径の前側部材16bと、前側部材16bよりも後方に位置する後側部材16cとを有し、前側部材16bと後側部材16cとの間に歯車を収容するための空間16dを形成する。 The drive unit 10 is an electric motor, and the drive shaft 10 a of the drive unit 10 is connected to the carrier 16 and the spindle 11 via the power transmission mechanism 12. The carrier 16 is located on the rear end side of the spindle 11 and accommodates a power transmission gear. With reference to FIG. 4B, the carrier 16 is configured as a large-diameter portion having an outer diameter larger than that of the spindle 11. The carrier 16 has a front member 16b having a diameter larger than that of the spindle 11, and a rear member 16c positioned rearward of the front member 16b, and accommodates a gear between the front member 16b and the rear member 16c. The space 16d is formed.
 動力伝達機構12は、駆動軸10aの先端に圧入固定される太陽歯車13と、太陽歯車13に噛合する2個の遊星歯車14と、遊星歯車14に噛合する内歯車15とを有する。遊星歯車14はキャリア16の空間16dにおいて、前側部材16bおよび後側部材16cに固定される支軸14aにより回転可能に支持される。内歯車15は、ハウジング2の内周面に固定されている。 The power transmission mechanism 12 includes a sun gear 13 that is press-fitted and fixed to the tip of the drive shaft 10 a, two planetary gears 14 that mesh with the sun gear 13, and an internal gear 15 that meshes with the planetary gear 14. The planetary gear 14 is rotatably supported in a space 16d of the carrier 16 by a support shaft 14a fixed to the front member 16b and the rear member 16c. The internal gear 15 is fixed to the inner peripheral surface of the housing 2.
 以上のように構成した動力伝達機構12により、駆動軸10aの回転が、太陽歯車13の歯数と内歯車15の歯数との比に基づいて減速されるとともに、その回転トルクが増大される。これによりキャリア16およびスピンドル11を低速高トルクで駆動できるようになる。 With the power transmission mechanism 12 configured as described above, the rotation of the drive shaft 10a is decelerated based on the ratio between the number of teeth of the sun gear 13 and the number of teeth of the internal gear 15, and the rotational torque is increased. . As a result, the carrier 16 and the spindle 11 can be driven at low speed and high torque.
 回転打撃工具1の回転打撃機構は、スピンドル11、キャリア16、主ハンマ20、副ハンマ21およびばね部材23によって構成される。スピンドル11は円柱状に形成され、その先端には、小径の突起部11aがスピンドル11の軸線と同軸に形成される。突起部11aは、アンビル22の後部に形成した円柱状の内部空間を有する孔に回転可能な状態で挿入される。 Rotating impact mechanism of the rotating impact tool 1 includes a spindle 11, a carrier 16, a main hammer 20, a secondary hammer 21 and a spring member 23. The spindle 11 is formed in a columnar shape, and a small-diameter protrusion 11 a is formed at the tip thereof coaxially with the axis of the spindle 11. The protrusion 11a is inserted in a rotatable state into a hole having a cylindrical inner space formed in the rear part of the anvil 22.
 スピンドル11の外周には、略円盤状であって中心部に貫通孔を形成した鋼製の主ハンマ20が装着される。主ハンマ20の前面には、アンビル22に向けて突出する一対のハンマ爪20aが形成される。主ハンマ20は、スピンドル11の回転軸線を中心に回転可能であり、且つスピンドル11の回転軸線方向すなわち前後方向に移動可能となるように、スピンドル11に取り付けられる。これにより主ハンマ20は、アンビル22に対して回転打撃力を加えられるようになる。副ハンマ21は鋼製の円筒部材として形成され、環状仕切部21eにより前部21aと後部21bに仕切られる。副ハンマ21は、前部21aの内部空間に主ハンマ20を収容する。 A steel main hammer 20 having a substantially disc shape and having a through hole in the center is mounted on the outer periphery of the spindle 11. A pair of hammer claws 20 a projecting toward the anvil 22 are formed on the front surface of the main hammer 20. The main hammer 20 is attached to the spindle 11 so as to be rotatable about the rotation axis of the spindle 11 and to be movable in the direction of the rotation axis of the spindle 11, that is, in the front-rear direction. As a result, the main hammer 20 can apply a rotational striking force to the anvil 22. The auxiliary hammer 21 is formed as a steel cylindrical member, and is divided into a front part 21a and a rear part 21b by an annular partition part 21e. The sub hammer 21 accommodates the main hammer 20 in the internal space of the front portion 21a.
 副ハンマ21と主ハンマ20は、一体となって回転する一体回転機構を備える。図2を参照して、主ハンマ20は、その外周面に、断面が半円形でスピンドル11の回転軸線と平行な4つの第1ピン溝20dを備える。また副ハンマ21は、前部21aの内周面に、断面が半円形でスピンドル11の回転軸線と平行な4つの第2ピン溝21cを備える。ここで副ハンマ21の4つの第2ピン溝21cは、主ハンマ20の4つの第1ピン溝20dに対応する位置に形成される。第1ピン溝20dは、主ハンマ20の外周面において90度の間隔で形成されてよく、このとき第2ピン溝21cは、副ハンマ21の内周面において90度の間隔で形成される。 The auxiliary hammer 21 and the main hammer 20 are provided with an integral rotation mechanism that rotates together. Referring to FIG. 2, the main hammer 20 includes four first pin grooves 20 d on its outer peripheral surface and having a semicircular cross section and parallel to the rotation axis of the spindle 11. The auxiliary hammer 21 includes four second pin grooves 21 c on the inner peripheral surface of the front portion 21 a and having a semicircular cross section and parallel to the rotation axis of the spindle 11. Here, the four second pin grooves 21 c of the sub hammer 21 are formed at positions corresponding to the four first pin grooves 20 d of the main hammer 20. The first pin grooves 20 d may be formed at an interval of 90 degrees on the outer peripheral surface of the main hammer 20. At this time, the second pin grooves 21 c are formed at an interval of 90 degrees on the inner peripheral surface of the sub hammer 21.
 第2ピン溝21cには、円柱部材である係合ピン26が配設される。係合ピン26は、針状コロであってよい。係合ピン26は、副ハンマ21の前端側から第2ピン溝21cに挿入され、溝底部まで差し込まれる。係合ピン26を溝底部まで差し込んだ状態で、副ハンマ21の内周面に形成された環状溝21dに、係合ピン26の抜け止め機能をもつ止め部材27が嵌め込まれる。止め部材27が環状溝21dに配設されることで、第2ピン溝21cにおける係合ピン26の移動が制限される。 In the second pin groove 21c, an engagement pin 26 that is a cylindrical member is disposed. The engagement pin 26 may be a needle roller. The engaging pin 26 is inserted into the second pin groove 21c from the front end side of the sub hammer 21 and inserted to the groove bottom. With the engagement pin 26 inserted to the bottom of the groove, a stop member 27 having a function of preventing the engagement pin 26 from being detached is fitted into the annular groove 21d formed on the inner peripheral surface of the sub hammer 21. By disposing the stop member 27 in the annular groove 21d, the movement of the engagement pin 26 in the second pin groove 21c is limited.
 組付時、副ハンマ21の4つの第2ピン溝21cに4つの係合ピン26を取り付けた状態で、主ハンマ20の4つの第1ピン溝20dと4つの係合ピン26の位置を合わせて、主ハンマ20を副ハンマ21に挿入する。これにより主ハンマ20と副ハンマ21とは、スピンドル11の回転軸線を中心として一体となって回転可能となる。 At the time of assembly, the four first pin grooves 20d of the main hammer 20 and the four engagement pins 26 are aligned with the four engagement pins 26 attached to the four second pin grooves 21c of the sub hammer 21. Then, the main hammer 20 is inserted into the sub hammer 21. As a result, the main hammer 20 and the sub hammer 21 can be rotated together around the rotation axis of the spindle 11.
 主ハンマ20は後部側に、環状の凹部20cを有する。ばね部材23は、主ハンマ20の凹部20cと、副ハンマ21の環状仕切部21eとの間に介装される。主ハンマ20は係合ピン26をガイドとして前後方向に移動可能であり、ばね部材23の付勢力によりアンビル22に回転打撃力を加えることができる。 The main hammer 20 has an annular recess 20c on the rear side. The spring member 23 is interposed between the concave portion 20 c of the main hammer 20 and the annular partition portion 21 e of the sub hammer 21. The main hammer 20 can move in the front-rear direction using the engaging pin 26 as a guide, and can apply a rotational striking force to the anvil 22 by the biasing force of the spring member 23.
 スピンドル11は、その外周面に2つの第1案内溝11bを備え、主ハンマ20は、貫通孔の内周面に2つの第1係合溝20bを備える。2つの第1案内溝11bは同一形状を有して周方向に並べて設けられ、また2つの第1係合溝20bは同一形状を有して周方向に並べて設けられる。スピンドル11の外周に主ハンマ20を装着した状態で、第1案内溝11bおよび第1係合溝20bの間には鋼球19が配置される。スピンドル11側の第1案内溝11bと、主ハンマ20側の第1係合溝20bと、両者の間に配置された鋼球19は「第1カム構造」を構成する。2つの鋼球19は、主ハンマ20がスピンドル11の回転軸線を中心に回転可能且つ回転軸線方向に移動可能となるように主ハンマ20を径方向に支持する。 The spindle 11 includes two first guide grooves 11b on the outer peripheral surface thereof, and the main hammer 20 includes two first engagement grooves 20b on the inner peripheral surface of the through hole. The two first guide grooves 11b have the same shape and are arranged in the circumferential direction, and the two first engagement grooves 20b have the same shape and are arranged in the circumferential direction. With the main hammer 20 mounted on the outer periphery of the spindle 11, a steel ball 19 is disposed between the first guide groove 11b and the first engagement groove 20b. The first guide groove 11b on the spindle 11 side, the first engagement groove 20b on the main hammer 20 side, and the steel ball 19 disposed therebetween constitute a “first cam structure”. The two steel balls 19 support the main hammer 20 in the radial direction so that the main hammer 20 can rotate around the rotation axis of the spindle 11 and move in the direction of the rotation axis.
 スピンドル11よりも大径のキャリア16は、前側部材16bの前面外周に3つの第2案内溝16aを備え、副ハンマ21は、環状仕切部21eの後面に3つの第2係合溝21fを備える。3つの第2案内溝16aは同一形状を有して周方向に並べて設けられ、また3つの第2係合溝21fは同一形状を有して周方向に並べて設けられる。副ハンマ21にスピンドル11を挿入した状態で、第2案内溝16aおよび第2係合溝21fの間には鋼球17が配置される。鋼球17は製造コストの観点から、鋼球19と同一の鋼球であることが好ましい。つまり鋼球17は鋼球19と同じ材料で形成されて、同じ大きさを有すること好ましい。キャリア16側の第2案内溝16aと、副ハンマ21側の第2係合溝21fと、両者の間に配置された鋼球17は「第2カム構造」を構成する。3つの鋼球17は、副ハンマ21がスピンドル11の回転軸線を中心に回転可能且つ回転軸線方向に移動可能となるように副ハンマ21を回転軸線方向に支持する。 The carrier 16 having a diameter larger than that of the spindle 11 includes three second guide grooves 16a on the outer periphery of the front surface of the front member 16b, and the auxiliary hammer 21 includes three second engagement grooves 21f on the rear surface of the annular partition portion 21e. . The three second guide grooves 16a have the same shape and are arranged in the circumferential direction, and the three second engagement grooves 21f have the same shape and are arranged in the circumferential direction. In a state where the spindle 11 is inserted into the auxiliary hammer 21, a steel ball 17 is disposed between the second guide groove 16a and the second engagement groove 21f. The steel ball 17 is preferably the same steel ball as the steel ball 19 from the viewpoint of manufacturing cost. That is, the steel ball 17 is preferably formed of the same material as the steel ball 19 and has the same size. The second guide groove 16a on the carrier 16 side, the second engagement groove 21f on the sub hammer 21 side, and the steel ball 17 disposed between them constitute a “second cam structure”. The three steel balls 17 support the auxiliary hammer 21 in the direction of the rotation axis so that the auxiliary hammer 21 can rotate around the rotation axis of the spindle 11 and move in the direction of the rotation axis.
 第1カム構造において、第1案内溝11bは、工具先端側からみてV字ないしはU字形状に形成されている。つまり第1案内溝11bは、最前部から対称に後斜め方向に傾斜する2つの傾斜溝をもつ。第1係合溝20bは、工具先端側からみて逆向きのV字ないしはU字形状に形成されている。鋼球19が第1案内溝11bの最前部から傾斜溝に沿って移動すると、主ハンマ20はスピンドル11に対して相対的に後退することになる。 In the first cam structure, the first guide groove 11b is formed in a V-shape or a U-shape when viewed from the tip side of the tool. That is, the 1st guide groove 11b has two inclination grooves which incline in the back diagonal direction symmetrically from the foremost part. The first engagement groove 20b is formed in a V-shape or U-shape that is opposite to the tool tip side. When the steel ball 19 moves along the inclined groove from the foremost part of the first guide groove 11 b, the main hammer 20 moves backward relative to the spindle 11.
 第2カム構造において、第2案内溝16aは、工具後端側からみてV字ないしはU字形状に形成されている。つまり第2案内溝16aは、最後部から対称に前斜め方向に傾斜する2つの傾斜溝をもつ。第2係合溝21fは、工具後端側からみて逆向きのV字ないしはU字形状に形成されている。鋼球17が第2案内溝16aの最後部から傾斜溝に沿って移動すると、副ハンマ21はキャリア16に対して相対的に前進することになる。 In the second cam structure, the second guide groove 16a is formed in a V shape or a U shape as viewed from the rear end side of the tool. That is, the second guide groove 16a has two inclined grooves that are symmetrically inclined in the front oblique direction from the rearmost part. The second engagement groove 21f is formed in a V-shape or U-shape in the reverse direction when viewed from the tool rear end side. When the steel ball 17 moves along the inclined groove from the rearmost part of the second guide groove 16 a, the auxiliary hammer 21 moves forward relative to the carrier 16.
 このように第1案内溝11bと第2案内溝16aは、回転軸線方向において互いに異なる向きに延びる傾斜溝を備えて形成される。第1カム構造および第2カム構造により、主ハンマ20が回転軸線方向に移動すると、主ハンマ20と一体回転する副ハンマ21が主ハンマ20の移動方向とは逆方向に移動する構成が実現される。つまり回転軸線方向において主ハンマ20が後退するときには副ハンマ21が前進し、主ハンマ20が前進するときには副ハンマ21が後退する。 Thus, the first guide groove 11b and the second guide groove 16a are formed with inclined grooves extending in different directions in the rotation axis direction. With the first cam structure and the second cam structure, when the main hammer 20 moves in the rotation axis direction, a configuration in which the auxiliary hammer 21 that rotates integrally with the main hammer 20 moves in the direction opposite to the movement direction of the main hammer 20 is realized. The That is, when the main hammer 20 moves backward in the rotation axis direction, the sub hammer 21 moves forward, and when the main hammer 20 moves forward, the sub hammer 21 moves backward.
 ストッパ部材30は主ハンマ20とキャリア16の間に設けられて、第1カム構造における鋼球19および第2カム構造における鋼球17がそれぞれの傾斜溝の端部に衝突しないように、主ハンマ20の回転軸線方向の移動範囲を規制する。ストッパ部材30は、たとえば樹脂材料で形成されてよい。 The stopper member 30 is provided between the main hammer 20 and the carrier 16 so that the steel ball 19 in the first cam structure and the steel ball 17 in the second cam structure do not collide with the end portions of the respective inclined grooves. The movement range in the direction of the 20 rotation axis is regulated. The stopper member 30 may be formed of a resin material, for example.
 主ハンマ20に係合するアンビル22は鋼製であり、鋼製もしくは黄銅製の滑り軸受を介してハウジング2に回転自在に支持されている。アンビル22の先端には、6角ボルトの頭部や6角ナットに装着するソケット体を取り付けるための、断面が四角形状の工具装着部22aが設けられる。 The anvil 22 that engages with the main hammer 20 is made of steel, and is rotatably supported by the housing 2 via a steel or brass sliding bearing. The tip of the anvil 22 is provided with a tool mounting portion 22a having a square cross section for mounting a socket body to be mounted on the head of a hexagon bolt or a hexagon nut.
 アンビル22の後部には、主ハンマ20の一対のハンマ爪20aに係合する一対のアンビル爪が設けられる。一対のアンビル爪は、それぞれ断面扇形の柱状部材として形成される。なおアンビル22のアンビル爪および主ハンマ20のハンマ爪20aは、必ずしも2個である必要はなく、それぞれの爪の数が等しければ、アンビル22および主ハンマ20の周方向に等間隔に3個以上設けてもよい。 A pair of anvil claws that engage with the pair of hammer claws 20a of the main hammer 20 are provided at the rear of the anvil 22. Each of the pair of anvil claws is formed as a columnar member having a sectional fan shape. The anvil claw of the anvil 22 and the hammer claw 20a of the main hammer 20 do not necessarily have to be two, and if the number of the respective claws is equal, three or more at equal intervals in the circumferential direction of the anvil 22 and the main hammer 20 It may be provided.
 次に、実施形態の回転打撃工具1における第1カム構造の動作を説明する。
 ユーザによる操作スイッチ4の引き操作により駆動部10が回転駆動すると、動力伝達機構12を介してキャリア16およびスピンドル11が回転する。スピンドル11の回転力は、スピンドル11の第1案内溝11bと主ハンマ20の第1係合溝20bの間に嵌め込まれた鋼球19を介して主ハンマ20に伝達され、主ハンマ20および副ハンマ21が一体となって回転する。
Next, operation | movement of the 1st cam structure in the rotary impact tool 1 of embodiment is demonstrated.
When the drive unit 10 is rotationally driven by the pulling operation of the operation switch 4 by the user, the carrier 16 and the spindle 11 are rotated via the power transmission mechanism 12. The rotational force of the spindle 11 is transmitted to the main hammer 20 via a steel ball 19 fitted between the first guide groove 11b of the spindle 11 and the first engagement groove 20b of the main hammer 20, and the main hammer 20 and the auxiliary hammer 20 The hammer 21 rotates as a unit.
 図5(a)は、ボルトやナットの締め付け開始直後の第1カム構造の状態を示し、図5(b)は、締め付け開始から時間経過後の第1カム構造の状態を示す。なお図5(b)は、図5(a)に示す第1カム構造の初期状態と比較するための比較図であり、鋼球19が第1案内溝11bの最前部から溝端部に向かって移動する様子を示している。この比較図では、鋼球19が溝端部近傍まで移動している様子が示されているが、実施形態では後述するように、第1カム構造よりも第2カム構造の周方向可動域が狭いために、鋼球19は溝端部手前を可動限界として移動する。 FIG. 5A shows the state of the first cam structure immediately after the start of tightening of the bolts and nuts, and FIG. 5B shows the state of the first cam structure after a lapse of time from the start of tightening. FIG. 5B is a comparative view for comparison with the initial state of the first cam structure shown in FIG. 5A, and the steel ball 19 moves from the foremost part of the first guide groove 11b toward the groove end. It shows how it moves. In this comparative view, the steel ball 19 is shown moving to the vicinity of the groove end portion. However, in the embodiment, as described later, the circumferential movable range of the second cam structure is narrower than the first cam structure. For this reason, the steel ball 19 moves with the limit in front of the groove end.
 図6(a)~図6(c)は、主ハンマ20とアンビル22の係合面を周方向に模式的に展開した位置関係を示す。ここで図6(a)は、ボルトやナットの締め付け開始直後の主ハンマ20のハンマ爪20aとアンビル22のアンビル爪22bとの係合状態を示している。 6 (a) to 6 (c) show a positional relationship in which the engagement surfaces of the main hammer 20 and the anvil 22 are schematically developed in the circumferential direction. Here, FIG. 6A shows an engaged state between the hammer claw 20a of the main hammer 20 and the anvil claw 22b of the anvil 22 immediately after the start of tightening the bolts and nuts.
 図6(a)~図6(c)に示すように、主ハンマ20には、駆動部10の回転による回転力Aが矢印で示す方向に加わる。また主ハンマ20には、ばね部材23による前進方向の付勢力Bが矢印で示す方向に加わる。 As shown in FIGS. 6A to 6C, a rotational force A due to the rotation of the driving unit 10 is applied to the main hammer 20 in the direction indicated by the arrow. Further, a forward biasing force B by the spring member 23 is applied to the main hammer 20 in the direction indicated by the arrow.
 主ハンマ20が回転すると、ハンマ爪20aとアンビル爪22bとの周方向の係合により、主ハンマ20の回転力がアンビル22に伝達される。そしてアンビル22の回転によって、工具装着部22aに取付けられたソケット体(図示せず)が回転し、ボルトやナットに回転力を与えて初期の締め付けが行われる。ばね部材23が主ハンマ20に対して付勢力Bを加えているため、鋼球19は、図5(a)に示すように、第1案内溝11bにおける最前部に位置する。このときハンマ爪20aとアンビル爪22bとは、最大係合長で係合した状態にある。 When the main hammer 20 rotates, the rotational force of the main hammer 20 is transmitted to the anvil 22 by the circumferential engagement of the hammer claws 20a and the anvil claws 22b. As the anvil 22 rotates, a socket body (not shown) attached to the tool mounting portion 22a rotates, and initial tightening is performed by applying a rotational force to the bolts and nuts. Since the spring member 23 applies the urging force B to the main hammer 20, the steel ball 19 is positioned at the foremost part in the first guide groove 11b as shown in FIG. At this time, the hammer claw 20a and the anvil claw 22b are in an engaged state with the maximum engagement length.
 ボルトやナットの締め付けが進むに伴ってアンビル22に加わる負荷トルクが大きくなると、主ハンマ20にY方向の回転力が生じる。そして負荷トルクが所定値を超えると、ばね部材23の付勢力Bに抗して、鋼球19が第1案内溝11bおよび第1係合溝20bの斜面に沿って矢印Fで示す方向に移動し、主ハンマ20が後退する方向(X方向)に移動する。 When the load torque applied to the anvil 22 increases as the tightening of the bolts and nuts proceeds, a rotational force in the Y direction is generated in the main hammer 20. When the load torque exceeds a predetermined value, the steel ball 19 moves in the direction indicated by the arrow F along the slopes of the first guide groove 11b and the first engagement groove 20b against the biasing force B of the spring member 23. Then, the main hammer 20 moves in the backward direction (X direction).
 そして鋼球19が傾斜溝内を移動して、主ハンマ20がX方向に、ハンマ爪20aとアンビル爪22bとの最大係合長分の距離を移動すると、図6(b)に示すように、ハンマ爪20aとアンビル爪22bとの係合が解除される。 When the steel ball 19 moves in the inclined groove and the main hammer 20 moves in the X direction by a distance corresponding to the maximum engagement length between the hammer claw 20a and the anvil claw 22b, as shown in FIG. The engagement between the hammer claw 20a and the anvil claw 22b is released.
 ハンマ爪20aがアンビル爪22bから外れると、押し縮められたばね部材23の付勢力Bが開放されることによって、主ハンマ20は高速で、回転力Aが加えられている方向に回転しながら、付勢力Bにより前進する。 When the hammer claw 20a is detached from the anvil claw 22b, the biasing force B of the compressed spring member 23 is released, so that the main hammer 20 rotates at a high speed in the direction in which the rotational force A is applied. Move forward by force B.
 そして図6(c)に示すように、ハンマ爪20aが、矢印Gで示す軌跡で移動してアンビル爪22bに衝突し、アンビル22に回転方向の打撃力を付与する。その後、反動によりハンマ爪20aは、軌跡Gとは逆方向に移動するが、最終的には、回転力Aおよび付勢力Bにより図6(a)に示す状態に戻る。以上の動作が高速で繰り返され、主ハンマ20による回転打撃力がアンビル22に対して繰り返し付与される。 Then, as shown in FIG. 6C, the hammer claw 20 a moves along the locus indicated by the arrow G, collides with the anvil claw 22 b, and applies a striking force in the rotation direction to the anvil 22. Thereafter, the hammer claw 20a is moved in the direction opposite to the locus G by the reaction, but finally returns to the state shown in FIG. 6A by the rotational force A and the urging force B. The above operation is repeated at a high speed, and the rotational hammering force by the main hammer 20 is repeatedly applied to the anvil 22.
 以上はボルトやナットを締め付ける際の動作についての説明であるが、締め付けられたボルトやナットを緩める際にも、回転打撃機構により締め付け時と同様の動作が行われる。この場合、駆動部10を締め付け時とは逆方向に回転させることにより、鋼球19が図5(a)に示す第1案内溝11bに沿って右上方に移動し、ハンマ爪20aがアンビル爪22bを、締め付け時とは逆方向に打撃する。 The above is the description of the operation when tightening the bolt or nut, but when the tightened bolt or nut is loosened, the same operation as when tightening is performed by the rotary impact mechanism. In this case, by rotating the drive unit 10 in the direction opposite to that at the time of tightening, the steel ball 19 moves to the upper right along the first guide groove 11b shown in FIG. 5A, and the hammer claw 20a is moved to the anvil claw. Strike 22b in the opposite direction to that during tightening.
 実施形態の回転打撃工具1はダブルハンマ構成を採用するため、回転方向の衝撃の大きさは、主ハンマ20および副ハンマ21の合計の慣性モーメントに比例する一方で、回転軸線方向の衝撃の大きさは、主ハンマ20の質量に比例する。回転打撃工具1によれば、副ハンマ21の質量を主ハンマ20の質量よりも大きくすることで、主ハンマ20がアンビル22に回転打撃力を付与した際に回転軸線方向に生じる衝撃力を低減できる。 Since the rotary impact tool 1 of the embodiment employs a double hammer configuration, the magnitude of the impact in the rotational direction is proportional to the total moment of inertia of the main hammer 20 and the secondary hammer 21, while the magnitude of the impact in the rotational axis direction. The length is proportional to the mass of the main hammer 20. According to the rotary impact tool 1, by making the mass of the sub hammer 21 larger than the mass of the main hammer 20, the impact force generated in the direction of the rotation axis when the main hammer 20 applies the rotary impact force to the anvil 22 is reduced. it can.
 主ハンマ20および副ハンマ21の合計の質量をもつ1つのハンマを用いた回転打撃工具と比較すると、実施形態の回転打撃工具1は、回転方向の衝撃の大きさをそのままに、回転軸線方向の衝撃の大きさを低減する。主ハンマ20の質量を副ハンマ21の質量と比較してできるだけ小さくすることで、回転軸線方向に生じる衝撃力をより小さくすることが可能となる。 Compared with the rotary impact tool 1 using one hammer having the total mass of the main hammer 20 and the secondary hammer 21, the rotary impact tool 1 of the embodiment has the same impact magnitude in the rotational direction as it is in the rotational axis direction. Reduce the magnitude of impact. By making the mass of the main hammer 20 as small as possible compared with the mass of the sub hammer 21, the impact force generated in the direction of the rotation axis can be further reduced.
 さらに実施形態では、慣性モーメントの大きさが回転半径の2乗に比例することを利用して、慣性モーメントの増大を図っている。すなわち質量の大きい副ハンマ21を主ハンマ20の外周側に設けることで、副ハンマ21の慣性モーメントを大きくし、ダブルハンマによる回転方向の衝撃力を増大させている。 Further, in the embodiment, the moment of inertia is increased by utilizing the fact that the magnitude of the moment of inertia is proportional to the square of the turning radius. That is, by providing the auxiliary hammer 21 having a large mass on the outer peripheral side of the main hammer 20, the moment of inertia of the auxiliary hammer 21 is increased and the impact force in the rotational direction by the double hammer is increased.
 次に、第2カム構造の動作について説明する。第2カム構造は、主ハンマ20の回転軸線方向の動きとは逆向きに副ハンマ21を動かすことで、主ハンマ20により回転軸線方向に生じる衝撃を相殺して、ハウジング2に伝達される振動をさらに低減する役割をもつ。 Next, the operation of the second cam structure will be described. In the second cam structure, the sub hammer 21 is moved in the direction opposite to the movement of the main hammer 20 in the rotation axis direction, so that the impact generated in the rotation axis direction by the main hammer 20 is canceled and vibration transmitted to the housing 2 is transmitted. It has a role to further reduce.
 副ハンマ21は主ハンマ20と一体となって回転するため、副ハンマ21と主ハンマ20の周方向における相対位置は変化しない。そのため第1カム構造において鋼球19が第1案内溝11bの溝端部に向けて移動すると、第2カム構造においても鋼球17が第2案内溝16aの溝端部に向けて移動する。 Since the auxiliary hammer 21 rotates integrally with the main hammer 20, the relative position of the auxiliary hammer 21 and the main hammer 20 in the circumferential direction does not change. Therefore, when the steel ball 19 moves toward the groove end portion of the first guide groove 11b in the first cam structure, the steel ball 17 moves toward the groove end portion of the second guide groove 16a also in the second cam structure.
 図7(a)は、ボルトやナットの締め付け開始直後の第2カム構造の状態を示し、図7(b)は、締め付け開始から時間経過後の第2カム構造の状態を示す。第1カム構造において鋼球19が第1案内溝11bの最前部に位置するとき(図5(a)参照)、第2カム構造において鋼球17は、第2案内溝16aの最後部に位置する(図7(a)参照)。 FIG. 7A shows the state of the second cam structure immediately after the start of tightening of the bolts and nuts, and FIG. 7B shows the state of the second cam structure after a lapse of time from the start of tightening. When the steel ball 19 is positioned at the foremost portion of the first guide groove 11b in the first cam structure (see FIG. 5A), the steel ball 17 is positioned at the rearmost portion of the second guide groove 16a in the second cam structure. (See FIG. 7A).
 それから第1カム構造において鋼球19が第1案内溝11bの最前部から傾斜面に沿って移動すると、第2カム構造においても、鋼球17が第2案内溝16aの最後部から傾斜面に沿って移動する。図7(b)は、鋼球17が第2案内溝16aを移動している様子を示す。このとき副ハンマ21は、主ハンマ20の移動方向(X方向)とは逆方向に移動する。つまり主ハンマ20が後退すると、副ハンマ21は前進する。 Then, when the steel ball 19 moves along the inclined surface from the foremost portion of the first guide groove 11b in the first cam structure, the steel ball 17 moves from the rearmost portion of the second guide groove 16a to the inclined surface also in the second cam structure. Move along. FIG.7 (b) shows a mode that the steel ball 17 is moving the 2nd guide groove 16a. At this time, the secondary hammer 21 moves in the direction opposite to the moving direction (X direction) of the main hammer 20. That is, when the main hammer 20 moves backward, the auxiliary hammer 21 moves forward.
 このように回転打撃工具1は、第1カム構造および第2カム構造により、主ハンマ20が回転軸線方向に移動すると、副ハンマ21が主ハンマ20の移動方向とは逆方向に移動するように構成されている。副ハンマ21が主ハンマ20の移動に同期して、主ハンマ20の移動方向とは逆方向に動くことで、主ハンマ20の軸線方向の動きにより生じる振動を吸収でき、ユーザの手に伝わる振動を低減できる。 As described above, the rotary hammer 1 is moved by the first cam structure and the second cam structure so that when the main hammer 20 moves in the rotation axis direction, the sub hammer 21 moves in the direction opposite to the movement direction of the main hammer 20. It is configured. The sub hammer 21 moves in the direction opposite to the movement direction of the main hammer 20 in synchronization with the movement of the main hammer 20, so that vibration generated by the movement of the main hammer 20 in the axial direction can be absorbed and vibration transmitted to the user's hand. Can be reduced.
 図8(a)は回転打撃機構の前面図を示す。図8(a)には、2つの鋼球19がそれぞれ第1案内溝11bの最前部に位置している様子が示される。第1案内溝11bと逆向きの形状をもつ第1係合溝20bは、鋼球19が配置されている最後部から、前方に傾斜する2つの傾斜溝を有している。
 図8(b)は、回転打撃機構のC-C断面図を示す。図8(b)では、ばね部材23や遊星歯車14などの図示を省略している。この状態で3つの鋼球17がそれぞれ第2案内溝16aの最後部に位置している。
 図8(c)は、回転打撃機構のD-D断面図を示す。第2案内溝16aは、鋼球17が配置されている最後部から、前方に傾斜する2つの傾斜溝を有している。
FIG. 8A shows a front view of the rotary striking mechanism. FIG. 8A shows a state where the two steel balls 19 are positioned at the forefront of the first guide groove 11b. The first engagement groove 20b having a shape opposite to that of the first guide groove 11b has two inclined grooves inclined forward from the rearmost part where the steel ball 19 is disposed.
FIG. 8B shows a CC cross-sectional view of the rotary impact mechanism. In FIG. 8B, illustration of the spring member 23, the planetary gear 14 and the like is omitted. In this state, the three steel balls 17 are respectively located at the rearmost part of the second guide groove 16a.
FIG. 8C shows a DD sectional view of the rotary striking mechanism. The second guide groove 16a has two inclined grooves inclined forward from the rearmost part where the steel ball 17 is disposed.
 上記したように副ハンマ21と主ハンマ20は、係合ピン26により軸線方向の相対移動を可能としつつ、軸線回りの相対回転を規制されている。副ハンマ21はばね部材23によってキャリア16側に押し付けられ、環状仕切部21eの後面が、キャリア16の前側部材16bの外周に配置された3つの鋼球17によって支持されている。 As described above, the secondary hammer 21 and the main hammer 20 are restricted from relative rotation about the axis while allowing the relative movement in the axis direction by the engagement pin 26. The auxiliary hammer 21 is pressed against the carrier 16 by the spring member 23, and the rear surface of the annular partition 21 e is supported by three steel balls 17 disposed on the outer periphery of the front member 16 b of the carrier 16.
 副ハンマ21と主ハンマ20とは高速で一体回転するため、副ハンマ21と主ハンマ20の回転軸線は、スピンドル11の回転軸線に一致、つまり同軸となる必要がある。そのため副ハンマ21に関して言えば、鋼球17が、副ハンマ21とスピンドル11との同軸を維持するように、環状仕切部21eの後面を回転軸線方向に安定して支持しなければならない。 Since the auxiliary hammer 21 and the main hammer 20 rotate integrally at high speed, the rotation axes of the auxiliary hammer 21 and the main hammer 20 need to coincide with the rotation axis of the spindle 11, that is, be coaxial. Therefore, as far as the secondary hammer 21 is concerned, the steel ball 17 must stably support the rear surface of the annular partition 21e in the direction of the rotation axis so that the secondary hammer 21 and the spindle 11 remain coaxial.
 そこで実施形態の回転打撃工具1は、第2案内溝16aと第2係合溝21fとの間に鋼球17を配置した第2カム構造を3つ備え、3つの鋼球17が、副ハンマ21の環状仕切部21eの後面を回転軸線方向に3点支持している。1つ又は2つの鋼球17で副ハンマ21を支持する場合と比べると、3つの鋼球17で副ハンマ21を支持することで、副ハンマ21の回転軸線方向に対する傾きを効果的に抑制し、副ハンマ21とスピンドル11との同軸を維持することが可能となる。 Therefore, the rotary impact tool 1 of the embodiment includes three second cam structures in which the steel balls 17 are arranged between the second guide groove 16a and the second engagement groove 21f, and the three steel balls 17 are sub-hammers. The rear surface of the 21 annular partitioning portions 21e is supported at three points in the rotational axis direction. Compared to the case where the auxiliary hammer 21 is supported by one or two steel balls 17, the auxiliary hammer 21 is supported by the three steel balls 17, thereby effectively suppressing the inclination of the auxiliary hammer 21 with respect to the rotation axis direction. It becomes possible to maintain the coaxiality of the auxiliary hammer 21 and the spindle 11.
 なお鋼球17は、スピンドル11よりも大径の前側部材16bの前面外周に配置されている。スピンドル11の外周よりも前側部材16bの外周の周速度の方が大きいため、仮に第1カム構造における鋼球19と同じ数(2つ)の鋼球17で副ハンマ21を支持すると、鋼球19よりも鋼球17の摩耗が進むことが考えられる。そこで第1カム構造における鋼球19の数よりも第2カム構造における鋼球17の数を多くすることで、工具信頼性を高めることができる。 The steel ball 17 is disposed on the outer periphery of the front surface of the front member 16b having a diameter larger than that of the spindle 11. Since the peripheral speed of the outer periphery of the front member 16b is larger than the outer periphery of the spindle 11, if the auxiliary hammer 21 is supported by the same number (two) of steel balls 17 as the steel balls 19 in the first cam structure, It is conceivable that the wear of the steel ball 17 is more advanced than 19. Therefore, the tool reliability can be improved by increasing the number of steel balls 17 in the second cam structure than the number of steel balls 19 in the first cam structure.
 3つの第2カム構造は、周方向に並べて等間隔に設けられることが好ましい。これにより3つの鋼球17は、互いに120度の間隔をあけて位置することになり、副ハンマ21を安定して支持できる。 It is preferable that the three second cam structures are provided at equal intervals in the circumferential direction. As a result, the three steel balls 17 are positioned at an interval of 120 degrees from each other, and can support the auxiliary hammer 21 stably.
 なお回転打撃工具1において、鋼球17の数は3つ以上であればよい。回転打撃工具1は、第2カム構造を3つ以上備えることで、副ハンマ21とスピンドル11との同軸を確保しつつ、鋼球17の摩耗を抑制することが可能となる。4つ以上の第2カム構造が設けられる場合においても、複数の鋼球17が周方向に等間隔に位置することで、副ハンマ21を安定して支持することが好ましい。 In the rotary impact tool 1, the number of steel balls 17 may be three or more. By providing three or more second cam structures, the rotary impact tool 1 can suppress wear of the steel balls 17 while ensuring the coaxiality between the auxiliary hammer 21 and the spindle 11. Even when four or more second cam structures are provided, it is preferable that the sub hammer 21 is stably supported by the plurality of steel balls 17 being positioned at equal intervals in the circumferential direction.
 実施形態の第1カム構造と第2カム構造の周方向の可動域を比較する。実施形態では、第1カム構造が、キャリア16よりも小径のスピンドル11の外周面に、周方向に2つ並べて設けられている。そのため2つの第1案内溝11bを、スピンドル11の外周面のほぼ全周にわたって形成すると、第1案内溝11bの1つの傾斜溝の周方向可動域は略90度となる。一方、第2カム構造は、スピンドル11よりも大径のキャリア16の前面外周に周方向に3つ並べて設けられている。そのため3つの第2案内溝16aを、キャリア16の前面外周のほぼ全周にわたって形成すると、第2案内溝16aの1つの傾斜溝の周方向可動域は略60度となる。 <Comparison of the movable range in the circumferential direction of the first cam structure and the second cam structure of the embodiment. In the embodiment, two first cam structures are provided side by side in the circumferential direction on the outer peripheral surface of the spindle 11 having a smaller diameter than the carrier 16. Therefore, when the two first guide grooves 11b are formed over substantially the entire circumference of the outer peripheral surface of the spindle 11, the circumferential movable range of one inclined groove of the first guide groove 11b is approximately 90 degrees. On the other hand, three second cam structures are provided side by side in the circumferential direction on the outer periphery of the front surface of the carrier 16 having a diameter larger than that of the spindle 11. Therefore, if the three second guide grooves 16a are formed over substantially the entire circumference of the front surface of the carrier 16, the circumferential movable range of one inclined groove of the second guide groove 16a is approximately 60 degrees.
 以上のように周方向可動域は、第2カム構造の方が狭い。このことは、第2カム構造の方が第1カム構造よりも先に可動限界に達することを意味する。そのため回転打撃工具1では、第2案内溝16aにおいて鋼球17が可動限界まで移動する前にハンマ爪20aとアンビル爪22bとの係合が解除されるように、第1カム構造および第2カム構造が形成されている。 As described above, the circumferential range of motion is narrower in the second cam structure. This means that the second cam structure reaches the movable limit earlier than the first cam structure. Therefore, in the rotary impact tool 1, the first cam structure and the second cam are arranged so that the engagement between the hammer claw 20a and the anvil claw 22b is released before the steel ball 17 moves to the movable limit in the second guide groove 16a. A structure is formed.
 以下、第2カム構造の第2案内溝16aを、第1カム構造の第1案内溝11bが形成されたスピンドル11よりも大径のキャリア16に形成した理由について説明する。回転打撃工具1は、ユーザが手で持って使用する電動工具であるため、小型化および軽量化に対する要請は大きい。仮に3つの第2案内溝16aをスピンドル11の外周面に形成して3つの鋼球17が副ハンマ21を径方向に支持する構造を採用した場合、スピンドル11の強度が不足することから、スピンドル自体を太くする必要がある。しかしながらスピンドル11の太径化は、小型化および軽量化の要請に沿わず好ましくない。また、この構造において、鋼球17を鋼球19よりも小さくして、3つの第2案内溝16aを形成することによる肉抜き量を減らし、スピンドル11の強度不足を防ぐことも考えられる。しかしながら鋼球17を小さくすることで今度は鋼球17の強度が問題になり、また2種類の鋼球が必要となるために製造コストが上がるという問題がある。 Hereinafter, the reason why the second guide groove 16a of the second cam structure is formed in the carrier 16 having a larger diameter than the spindle 11 in which the first guide groove 11b of the first cam structure is formed will be described. Since the rotary impact tool 1 is an electric tool that is used by a user by hand, there is a great demand for reduction in size and weight. If the structure in which three second guide grooves 16a are formed on the outer peripheral surface of the spindle 11 and the three steel balls 17 support the auxiliary hammer 21 in the radial direction is adopted, the strength of the spindle 11 is insufficient. It is necessary to thicken itself. However, increasing the diameter of the spindle 11 is not preferable because it does not meet the demand for reduction in size and weight. In this structure, it is also conceivable that the steel ball 17 is made smaller than the steel ball 19 to reduce the amount of lightening by forming the three second guide grooves 16a, thereby preventing the strength of the spindle 11 from being insufficient. However, by reducing the size of the steel ball 17, there is a problem that the strength of the steel ball 17 becomes a problem this time, and the manufacturing cost increases because two types of steel balls are required.
 そこで回転打撃工具1では、スピンドル11よりも大径のキャリア16に第2案内溝16aを形成して、上記の問題を解決している。なおスピンドル11の第1案内溝11bが形成された部分の後方側に、当該部分より大きい外径を有する大径部を設けて、大径部に第2案内溝16aを形成してもよい。この場合、スピンドル11は、第1案内溝11bが形成された小径部と、第2案内溝16aが形成された大径部とを有することになる。このときスピンドル11が大径部を有することで、スピンドル11の重量は若干増えるが、同時にキャリア16の強度は上がるため、十分な耐久力が見込める場合にはキャリア16を薄肉化(軽量化)して、工具重量が大きくならないようにしてもよい。 Therefore, in the rotary impact tool 1, the second guide groove 16 a is formed in the carrier 16 having a diameter larger than that of the spindle 11 to solve the above problem. A large-diameter portion having an outer diameter larger than that portion may be provided on the rear side of the portion where the first guide groove 11b of the spindle 11 is formed, and the second guide groove 16a may be formed in the large-diameter portion. In this case, the spindle 11 has a small diameter portion in which the first guide groove 11b is formed and a large diameter portion in which the second guide groove 16a is formed. At this time, since the spindle 11 has a large diameter portion, the weight of the spindle 11 is slightly increased, but at the same time, the strength of the carrier 16 is increased. Therefore, when sufficient durability can be expected, the carrier 16 is thinned (lightened). Thus, the tool weight may not be increased.
 図9は、第1カム構造および第2カム構造において鋼球が移動したときの回転打撃機構の概略断面図を示す。この例では、主ハンマ20がスピンドル11に対して移動量Mだけ後退し、副ハンマ21がキャリア16に対して移動量Nだけ前進している。図6(b)に関して説明したように、主ハンマ20の移動量Mが、ハンマ爪20aとアンビル爪22bとの最大係合長分の距離に達すると、ハンマ爪20aとアンビル爪22bとの係合が解除される。上記したように、副ハンマ21の移動量Nが可動限界に達する前に、主ハンマ20の移動量Mが、ハンマ爪20aとアンビル爪22bとの最大係合長分の距離に達するように、第1カム構造および第2カム構造は形成されている。 FIG. 9 is a schematic cross-sectional view of the rotary impact mechanism when the steel ball moves in the first cam structure and the second cam structure. In this example, the main hammer 20 moves backward by the movement amount M with respect to the spindle 11, and the auxiliary hammer 21 moves forward by the movement amount N with respect to the carrier 16. As described with reference to FIG. 6B, when the movement amount M of the main hammer 20 reaches a distance corresponding to the maximum engagement length between the hammer claws 20a and the anvil claws 22b, the engagement between the hammer claws 20a and the anvil claws 22b. The match is released. As described above, before the movement amount N of the secondary hammer 21 reaches the movable limit, the movement amount M of the main hammer 20 reaches a distance corresponding to the maximum engagement length between the hammer claw 20a and the anvil claw 22b. The first cam structure and the second cam structure are formed.
 主ハンマ20の回転軸線方向の移動量Mと副ハンマ21の回転軸線方向の移動量Nは、それぞれ第1カム構造および第2カム構造の形状によって規定される。軸線方向の振動を好適に打ち消し合うための両者の移動量の比は、主ハンマ20と副ハンマ21との質量比に依存するため、第1カム構造および第2カム構造の形状は、主ハンマ20と副ハンマ21との質量比に応じて設計される。以下、主ハンマ20の質量をP、副ハンマ21の質量をQとする。質量Pは質量Qより小さい。 The movement amount M of the main hammer 20 in the rotation axis direction and the movement amount N of the sub hammer 21 in the rotation axis direction are respectively defined by the shapes of the first cam structure and the second cam structure. Since the ratio of the amount of movement for canceling the vibration in the axial direction preferably depends on the mass ratio of the main hammer 20 and the secondary hammer 21, the shapes of the first cam structure and the second cam structure are the main hammer. It is designed according to the mass ratio between 20 and the secondary hammer 21. Hereinafter, the mass of the main hammer 20 is P, and the mass of the auxiliary hammer 21 is Q. The mass P is smaller than the mass Q.
 実施形態では、第2案内溝16aにおける鋼球17の回転軸線方向の可動域が、第1案内溝11bにおける鋼球19の回転軸線方向の可動域よりも小さくなるように、第1カム構造および第2カム構造が形成されている。これは副ハンマ21の質量Qが主ハンマ20の質量Pよりも大きいためであり、主ハンマ20の回転軸線方向の動きにより生じる振動を、質量の大きい副ハンマ21の逆向きで且つ小さいストロークの動きにより生じる振動で相殺することを目的とする。具体的に鋼球17の回転軸線方向の可動域と鋼球19の回転軸線方向の可動域との比は、主ハンマ20の質量Pと副ハンマ21の質量Qとの比に実質的に等しく設定されてよい。 In the embodiment, the first cam structure and the second cam groove 16a so that the movable range in the rotation axis direction of the steel ball 17 is smaller than the movable range in the rotation axis direction of the steel ball 19 in the first guide groove 11b. A second cam structure is formed. This is because the mass Q of the secondary hammer 21 is larger than the mass P of the primary hammer 20, and vibrations caused by the movement of the primary hammer 20 in the rotational axis direction are opposite to the secondary hammer 21 having a large mass and have a small stroke. The purpose is to cancel the vibration caused by the movement. Specifically, the ratio of the movable range in the rotation axis direction of the steel ball 17 and the movable range in the rotation axis direction of the steel ball 19 is substantially equal to the ratio of the mass P of the main hammer 20 and the mass Q of the auxiliary hammer 21. May be set.
 このように第1カム構造および第2カム構造を形成することで、第2案内溝16aの傾斜溝の回転軸線方向の長さを、第1案内溝11bの傾斜溝の回転軸線方向の長さよりも短くできる。このことは工具本体の短軸化を実現し、回転打撃工具1の小型化および軽量化に寄与する。 By forming the first cam structure and the second cam structure in this way, the length of the inclined groove of the second guide groove 16a in the rotational axis direction is made longer than the length of the inclined groove of the first guide groove 11b in the rotational axis direction. Can also be shortened. This realizes a shorter axis of the tool body and contributes to reducing the size and weight of the rotary impact tool 1.
 なお上記は回転軸線方向の可動域についての説明であるが、第1カム構造および第2カム構造における可動域内での傾斜溝の形状は上記設計思想により定められる。つまり副ハンマ21のキャリア16に対する移動量Nと主ハンマ20のスピンドル11に対する移動量Mとの比が、主ハンマ20の質量Pと副ハンマ21の質量Qとの比に実質的に等しくなるように、第1カム構造および第2カム構造が形成される。これにより主ハンマ20および副ハンマ21による回転軸線方向の振動が互いに打ち消し合うように作用し、ユーザの作業性を高めることが可能となる。 Although the above description is about the movable range in the rotation axis direction, the shape of the inclined groove in the movable range in the first cam structure and the second cam structure is determined by the design concept. That is, the ratio of the movement amount N of the secondary hammer 21 relative to the carrier 16 to the movement amount M of the primary hammer 20 relative to the spindle 11 is substantially equal to the ratio of the mass P of the primary hammer 20 and the mass Q of the secondary hammer 21. First, the first cam structure and the second cam structure are formed. Thereby, it acts so that the vibration of the rotation axis direction by the main hammer 20 and the sub hammer 21 may mutually cancel, and it becomes possible to improve a user's workability | operativity.
 本発明の一態様の概要は、次の通りである。
 本発明のある態様の回転打撃工具(1)は、駆動部(10)と、駆動部により回転されるスピンドル(11)と、スピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能な主ハンマ(20)と、スピンドル側の第1案内溝(11b)と主ハンマ側の第1係合溝(20b)との間に第1鋼球(19)を配置した第1カム構造と、主ハンマにより回転打撃力が加えられるアンビル(22)と、主ハンマと一体に回転可能な副ハンマ(21)と、副ハンマがスピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能となるように副ハンマを支持する第2鋼球(17)を含む第2カム構造とを備える。この態様の回転打撃工具は、主ハンマが回転軸線方向に移動すると、副ハンマが主ハンマの移動方向とは逆方向に移動するように構成される。この態様の回転打撃工具では、3つ以上の第2カム構造が設けられて、副ハンマが、3つ以上の第2カム構造に含まれる第2鋼球により支持される。
The outline of one embodiment of the present invention is as follows.
A rotary impact tool (1) according to an aspect of the present invention includes a drive unit (10), a spindle (11) rotated by the drive unit, and a rotation axis of the spindle that is rotatable about the rotation axis. A first hammer structure in which a first steel ball (19) is disposed between a main hammer (20), a first guide groove (11b) on the spindle side, and a first engagement groove (20b) on the main hammer side; An anvil (22) to which rotational impact force is applied by the main hammer, a secondary hammer (21) that can rotate integrally with the primary hammer, and a secondary hammer that can rotate about the rotation axis of the spindle and move in the direction of the rotation axis And a second cam structure including a second steel ball (17) for supporting the auxiliary hammer. The rotary impact tool of this aspect is configured such that when the main hammer moves in the rotation axis direction, the sub hammer moves in the direction opposite to the movement direction of the main hammer. In the rotary impact tool of this aspect, three or more second cam structures are provided, and the auxiliary hammer is supported by the second steel balls included in the three or more second cam structures.
 3つ以上の第2カム構造は、周方向に並べて設けられてよい。このとき3つ以上の第2カム構造は、等間隔に並べて設けられることが好ましい。副ハンマは、3つ以上の第2鋼球により回転軸線方向に支持されてよい。 The three or more second cam structures may be provided side by side in the circumferential direction. At this time, it is preferable that three or more second cam structures are provided side by side at equal intervals. The secondary hammer may be supported in the rotation axis direction by three or more second steel balls.
 以上、本発明を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to each component or combination of each processing process, and such modifications are within the scope of the present invention. .
1・・・回転打撃工具、2・・・ハウジング、11・・・スピンドル、11b・・・第1案内溝、12・・・動力伝達機構、16・・・キャリア、16a・・・第2案内溝、16b・・・前側部材、17,19・・・鋼球、20・・・主ハンマ、20a・・・ハンマ爪、20b・・・第1係合溝、21・・・副ハンマ、21e・・・環状仕切部、21f・・・第2係合溝、22・・・アンビル、22b・・・アンビル爪、23・・・ばね部材。 DESCRIPTION OF SYMBOLS 1 ... Rotary impact tool, 2 ... Housing, 11 ... Spindle, 11b ... 1st guide groove, 12 ... Power transmission mechanism, 16 ... Carrier, 16a ... 2nd guide Groove, 16b ... front side member, 17, 19 ... steel ball, 20 ... main hammer, 20a ... hammer claw, 20b ... first engagement groove, 21 ... sub hammer, 21e ... Annular partition, 21f ... Second engagement groove, 22 ... Anvil, 22b ... Anvil claw, 23 ... Spring member.
 本発明は、回転打撃工具などの工具に利用できる。 The present invention can be used for a tool such as a rotary impact tool.

Claims (4)

  1.  駆動部と、前記駆動部により回転されるスピンドルと、前記スピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能な主ハンマと、前記スピンドル側の第1案内溝と前記主ハンマ側の第1係合溝との間に第1鋼球を配置した第1カム構造と、前記主ハンマにより回転打撃力が加えられるアンビルと、前記主ハンマと一体に回転可能な副ハンマと、前記副ハンマが前記スピンドルの回転軸線を中心に回転可能且つ回転軸線方向に移動可能となるように前記副ハンマを支持する第2鋼球を含む第2カム構造と、を備え、前記主ハンマが回転軸線方向に移動すると、前記副ハンマが前記主ハンマの移動方向とは逆方向に移動するように構成されており、
     3つ以上の前記第2カム構造が設けられて、前記副ハンマが、3つ以上の前記第2カム構造に含まれる前記第2鋼球により支持される、
     ことを特徴とする回転打撃工具。
    A drive unit; a spindle rotated by the drive unit; a main hammer rotatable about a rotation axis of the spindle and movable in the direction of the rotation axis; a first guide groove on the spindle side; and a main hammer side A first cam structure in which a first steel ball is disposed between the first engagement groove, an anvil to which a rotational striking force is applied by the main hammer, a sub-hammer rotatable integrally with the main hammer, and the sub-hammer; A second cam structure including a second steel ball for supporting the auxiliary hammer so that the hammer can rotate about the rotation axis of the spindle and move in the direction of the rotation axis, and the main hammer has a rotation axis When moving in the direction, the secondary hammer is configured to move in a direction opposite to the moving direction of the main hammer,
    Three or more second cam structures are provided, and the auxiliary hammer is supported by the second steel balls included in three or more second cam structures.
    Rotating impact tool characterized by that.
  2.  3つ以上の前記第2カム構造は、周方向に並べて設けられる、
     ことを特徴とする請求項1に記載の回転打撃工具。
    Three or more of the second cam structures are provided side by side in the circumferential direction.
    The rotary impact tool according to claim 1.
  3.  3つ以上の前記第2カム構造は、等間隔に並べて設けられる、
     ことを特徴とする請求項2に記載の回転打撃工具。
    Three or more second cam structures are provided side by side at equal intervals.
    The rotary impact tool according to claim 2.
  4.  前記副ハンマは、3つ以上の前記第2鋼球により回転軸線方向に支持される、
     ことを特徴とする請求項1から3のいずれかに記載の回転打撃工具。
    The secondary hammer is supported in the rotational axis direction by three or more second steel balls.
    The rotary impact tool according to any one of claims 1 to 3.
PCT/JP2017/024811 2016-09-27 2017-07-06 Rotary impact tool WO2018061388A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016188780A JP2018051660A (en) 2016-09-27 2016-09-27 Rotary striking tool
JP2016-188780 2016-09-27

Publications (1)

Publication Number Publication Date
WO2018061388A1 true WO2018061388A1 (en) 2018-04-05

Family

ID=61759392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024811 WO2018061388A1 (en) 2016-09-27 2017-07-06 Rotary impact tool

Country Status (2)

Country Link
JP (1) JP2018051660A (en)
WO (1) WO2018061388A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6979605B2 (en) * 2018-05-11 2021-12-15 パナソニックIpマネジメント株式会社 Impact rotary tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140268A1 (en) * 2009-06-03 2010-12-09 株式会社空研 Impact wrench
JP2014240108A (en) * 2013-06-12 2014-12-25 パナソニック株式会社 Impact wrench
JP2016117140A (en) * 2014-12-22 2016-06-30 株式会社Tjmデザイン Rotary tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140268A1 (en) * 2009-06-03 2010-12-09 株式会社空研 Impact wrench
JP2014240108A (en) * 2013-06-12 2014-12-25 パナソニック株式会社 Impact wrench
JP2016117140A (en) * 2014-12-22 2016-06-30 株式会社Tjmデザイン Rotary tool

Also Published As

Publication number Publication date
JP2018051660A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6832509B2 (en) Rotary striking tool
US8490714B2 (en) Impact wrench
JP6027946B2 (en) Impact wrench
US7048075B2 (en) Power tool
JP2017159418A (en) Impact rotary tool
JP5583500B2 (en) Impact tool
JP6397325B2 (en) Rotating tool
JP6341283B2 (en) Impact tool
EP2883657A2 (en) Rotary impact tool
WO2018061389A1 (en) Rotary impact tool
WO2018061388A1 (en) Rotary impact tool
WO2018142742A1 (en) Rotary impact tool
WO2018061387A1 (en) Rotary impact tool
JP2009172732A (en) Impact rotary tool
JP6607502B2 (en) Impact rotary tool
JP2013022691A (en) Impact rotary tool
JP4283166B2 (en) Noise prevention device for rotary impact tool
JP2018051713A (en) Power tool
JP2010036282A (en) Power tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855347

Country of ref document: EP

Kind code of ref document: A1