WO2018042475A1 - 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池 - Google Patents

固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池 Download PDF

Info

Publication number
WO2018042475A1
WO2018042475A1 PCT/JP2016/075123 JP2016075123W WO2018042475A1 WO 2018042475 A1 WO2018042475 A1 WO 2018042475A1 JP 2016075123 W JP2016075123 W JP 2016075123W WO 2018042475 A1 WO2018042475 A1 WO 2018042475A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fuel electrode
solid oxide
fuel cell
oxide fuel
Prior art date
Application number
PCT/JP2016/075123
Other languages
English (en)
French (fr)
Inventor
周 島田
充也 橋本
Original Assignee
FCO Power株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FCO Power株式会社 filed Critical FCO Power株式会社
Priority to JP2017525430A priority Critical patent/JP6378435B2/ja
Priority to PCT/JP2016/075123 priority patent/WO2018042475A1/ja
Publication of WO2018042475A1 publication Critical patent/WO2018042475A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present specification discloses a solid oxide fuel cell, a solid oxide fuel cell stack, and a solid oxide fuel cell.
  • Patent Document 2 a technique of introducing a support member for preventing flow path deformation in the gas flow path is disclosed.
  • the present specification provides a technique that can relieve internal stress generated during integral sintering by uniformizing the thermal shrinkage rate and suppress cell cracking and peeling.
  • the present inventors have found that a solid oxide fuel cell can be constructed that can make the thermal contraction rate of the layer including the gas flow path uniform. According to the present specification, the following means are provided based on the above findings.
  • a cell for a solid oxide fuel cell comprising a fuel electrode, an air electrode, and a solid electrolyte disposed between the fuel electrode and the air electrode, A first area that contributes to gas distribution; A second region adjacent to the first region and not contributing to gas flow, At least one layer of the first region is provided with a reducing gas channel or an oxidizing gas channel, A cell for a solid oxide fuel cell, comprising at least one cavity in the at least one layer of the second region.
  • the solid oxide according to (1) or (2), wherein the at least one cavity has a shape substantially the same as or substantially similar to an opening shape of the reducing gas channel or the oxidizing gas channel.
  • the first region is defined in a central portion of the cell
  • the thickness of the at least one cavity is 20% or more and 100% or less with respect to the thickness of the reducing gas channel and the oxidizing gas channel, and any one of (1) to (7)
  • the total volume of the at least one cavity is 50% or more and 150% or less with respect to the total volume of the reducing gas channel and the oxidizing gas channel.
  • (10) The solid oxide fuel cell according to any one of (1) to (9), wherein the thickness of the cell is 100 ⁇ m or more and 1000 ⁇ m or less.
  • (11) A solid oxide fuel cell stack in which at least one of the solid oxide fuel cell cells according to any one of (1) to (10) is stacked via an interconnector.
  • (12) A solid oxide fuel cell using the solid oxide fuel cell stack of (11).
  • the SOFC disclosed in the present specification includes a first region that contributes to gas circulation and a second region that is adjacent to the first region and does not contribute to gas circulation, and at least one of the first regions.
  • One layer is provided with a reducing gas channel or an oxidizing gas channel.
  • At least one cavity is provided in the at least one layer of the second region. That is, in the second region adjacent to the first region, a cavity (in other words, a space or a void) is provided in the same layer as the layer in which the cavity structure serving as the gas flow path is provided.
  • a cavity in other words, a space or a void
  • the reducing atmosphere refers to a gas having a composition containing one or more reducing gases.
  • the reducing atmosphere is also a gas characterized by a reducing gas, and preferably contains a reducing gas as a main component.
  • a reducing atmosphere substantially consists of 1 type, or 2 or more types of reducing gas, or is a gas of the composition containing inert gas other than reducing gas.
  • the reducing gas include hydrogen, carbon monoxide, and hydrogen sulfide.
  • the reducing gas includes a gas that includes a reducing gas by reforming a gas that is not a reducing gas (for example, a hydrocarbon gas such as methane and water vapor) in a cell.
  • the oxidizing atmosphere refers to a gas having a composition containing one or more oxidizing gases.
  • the oxidizing atmosphere is a gas characterized by an oxidizing gas, and preferably contains an oxidizing gas as a main component.
  • the oxidizing atmosphere is preferably composed of one or more oxidizing gases or a gas having a composition containing an inert gas in addition to the oxidizing gas. Examples of the oxidizing gas include oxygen, ozone, nitrous oxide, nitric oxide, and nitrogen dioxide.
  • the interconnector is an interconnector used for SOFC, which includes a fuel electrode, a solid electrolyte, and an air electrode.
  • SOFC SOFC
  • FIGS. 1 and 2 the reducing gas channel 22 and the oxidizing gas channel 24 are explicitly shown so as to be parallel to each other.
  • the interconnector 10 includes at least a first layer 12.
  • the first layer 12 is located on the fuel electrode 2 side in the interconnector 10.
  • the first layer 12 may be on the side of the interconnector 10 that is scheduled to be the fuel electrode 2 side or the fuel electrode 2 side (hereinafter simply referred to as the fuel electrode side). It is not limited to be positioned on the fuel electrode 2 side. Moreover, what is necessary is just to join to the fuel electrode 2 directly or indirectly.
  • the first layer 12 preferably has a high electrical conductivity and a reducing gas barrier property in a reducing atmosphere. More specifically, the first layer 12 can have higher electrical conductivity and gas barrier properties than the second layer 14 described later in a reducing atmosphere.
  • the fuel electrode 2 can be connected with high conductivity, and reducing gas such as hydrogen can be reliably shut off.
  • the first layer 12 may have low electrical conductivity or substantially no electrical conductivity in an oxidizing atmosphere such as oxygen, and may not have resistance to the oxidizing atmosphere.
  • the gas barrier property in the oxidizing atmosphere may be low or substantially absent.
  • the first layer 12 in the interconnector 10 only needs to exhibit integral sintering with the air electrode 4, electrical connectivity with the air electrode 4, and resistance to oxidizing gas in the second layer 14 described later. Therefore, a conventionally known interconnector material can be easily applied.
  • a conductive ceramic material used as a conventionally known ceramic interconnector material used for SOFC can be appropriately selected and used.
  • the conductive ceramic material include various known ABO 3 perovskite oxides.
  • Ln is a rare earth element, and examples thereof include elements having atomic numbers of 57 to 71.
  • M 1 represents an alkaline earth metal, and examples thereof include calcium (Ca), strontium (Sr), and barium (Ba), and one or more of them can be used.
  • M 2 is one or two selected from transition elements such as titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), and nickel (Ni). More than species. Preferably, it is 1 type, or 2 or more types selected from Ti, Cr, Mn, Fe, and Co.
  • Examples of such conductive ceramic materials include LaCoO 3 oxides, LaMnO 3 oxides, La (CoFe) O 3 oxides, LaCrO 3 oxides in which La and Sr or Ca coexist at the A site, Examples include LaTiO 3 oxides.
  • LaSr MnO 3
  • LaSr CoO 3
  • LaSr CoFe
  • LaSr CoFe
  • LaTiO 3 oxides LaTiO 3 oxides.
  • other elements such as Cr, Fe, and Mg may exist at the B sites of various oxides. More specifically, (LaSr) MnO 3 , (LaSr) CoO 3 , (LaSr) (CoFe) O 3 , (LaSr) TiO 3 , LaCrMgO 3 and the like can be mentioned.
  • the first layer 12 can contain one or more conductive ceramic materials.
  • the first layer 12 includes such a ceramic material in part so that it can exhibit the characteristics as an interconnector, and may be substantially composed of the material, or only composed of the material. There may be.
  • the first layer 12 does not include a metal conductive material such as a metal or a metal alloy.
  • substantially composed of a certain material means that the material to be used does not include other materials that may greatly affect the characteristics imparted to the interconnector. ing.
  • the material used for the first layer 12 is appropriately selected in consideration of, for example, the material of the fuel electrode 2 of the SOFC to which the interconnector is applied, the material of the air electrode 4, the operating temperature, the sintering temperature of the stack 30, and the like.
  • the first layer 12 is preferably made of a LaTiO 3 oxide that exhibits high conductivity in a reducing atmosphere, and in particular, a (LaSr) TiO 3 oxide such as La 0.3 Sr 0.7 TiO 3 .
  • the first layer 12 may be configured by laminating two or more first layers having different compositions.
  • the two or more first layers 12 may contain a similar ceramic material, or may contain different ceramic materials. Moreover, you may have a continuous or intermittent gradient composition.
  • the first layer 12 has the denseness that is generally provided in an interconnector.
  • the first layer 12 preferably has a relative density (according to Archimedes method) of 93% or more, and more preferably 95% or more.
  • the thickness of the first layer 12 is not particularly limited, but can be set to 1 ⁇ m or more and 50 ⁇ m or less in consideration of the size and conductivity of the entire stack, for example. Moreover, Preferably it is also 1 micrometer or more and 30 micrometers or less. Furthermore, it can also be 1 ⁇ m or more and 20 ⁇ m or less.
  • the interconnector 10 includes at least a second layer 14.
  • the second layer 14 is located on the air electrode 4 side in the interconnector 10.
  • the second layer 14 may be on the side of the interconnector 10 that is scheduled to be the air electrode 4 side or the air electrode 4 side (hereinafter simply referred to as the air electrode side). It is not limited to be positioned on the air electrode 4 side. Moreover, what is necessary is just to join to the air electrode 4 directly or indirectly.
  • the second layer 14 can have higher electrical conductivity and gas barrier properties than the first layer 12 in an oxidizing atmosphere.
  • the air electrode 4 can be connected with high conductivity, and an oxidizing gas such as air can be reliably blocked.
  • the second layer 14 may have low or substantially no electrical conductivity in a reducing atmosphere containing hydrogen gas or the like, and does not have resistance to the reducing atmosphere.
  • the gas barrier property in a reducing atmosphere may be low or substantially absent.
  • the second layer 14 preferably contains a conductive ceramic material and an oxide material of an element contained in the solid electrolyte.
  • the second layer 14 includes an oxide material of an element contained in the solid electrolyte 6 by using a conductive ceramic material, exhibiting high conductivity and resistance in an oxidizing atmosphere, and integrity with the air electrode 4.
  • the thermal expansion coefficient with the solid electrolyte 6 can be adapted. According to such a configuration, it is possible to ensure the integrity with the air electrode 4, the compatibility of the thermal expansion coefficient, the resistance against the oxidizing gas, and the blocking property.
  • the second layer 14 can include a conductive ceramic material and an oxide material of an element included in the solid electrolyte.
  • the second layer 14 includes these ceramic materials in part so that the characteristics as an interconnector can be exhibited, and may be substantially composed of the material, or only composed of the material. It may be.
  • the second layer 14 does not include a metal conductive material such as a metal or a metal alloy.
  • the conductive ceramic material used for the second layer 14 can be appropriately selected from known air electrode materials used as SOFC air electrode materials.
  • an ABO 3 type perovskite oxide containing La or La and Sr can be mentioned.
  • perovskite oxides include transition metal perovskite oxides such as LaCoO 3 oxides, LaMnO 3 oxides, LaFeO 3 oxides in which La or La and Sr or Ca coexist at the A site. Can be mentioned.
  • LaTiO 3 based oxide or the like to coexist with La or La and Sr or Ca in the A site and the like.
  • Co, Mn, Ti, and other elements such as Cr, Fe, and Mg may be present at the B sites of various oxides.
  • the air electrode material used in the second layer 14 may be the same as or common to the material of the air electrode 4 in the single cell in which the interconnector is interposed, but may be different.
  • the oxide material of the element contained in the solid electrolyte is not particularly limited, and a known material can be appropriately selected and used.
  • CeO doped with rare earth elements such as ZrO 2 (zirconia), gadolinium (Gd), and Sm at least partially stabilized with rare earth elements such as yttrium (Y), scandium (Sc), and ytterbium (Yb).
  • the ionic conductivity of the oxide material of the element contained in the solid electrolyte used for the second layer 14 is reduced as compared with the oxygen ion conductive material used for the solid electrolyte. This is because, in the interconnector, the ion conductivity may be restrained from limiting the performance of the interconnector.
  • the rare earth element oxide as the stabilizing material used for the second layer 14 is preferably added in an amount of about 1.5 mol% to 5 mol% with respect to an oxide material such as zirconia. More preferably, it is about 2 mol% or more and 4 mol% or less.
  • the oxide materials of the elements contained in the conductive ceramic material and the solid electrolyte are, for example, the material of the fuel electrode 2 of the SOFC to which the interconnector 10 is applied, the material of the air electrode 4, the operating temperature, and the sintering temperature of the stack, respectively. Etc. are selected as appropriate.
  • the mixing ratio of the conductive ceramic material and the air electrode material is not particularly limited.
  • the conductive ceramic material and the oxide material of the element contained in the solid electrolyte are 30:70 to 30% by mass. 70:30 or the like, or 40:60 to 60:40.
  • the second layer 14 may be configured by stacking two or more second layers having different compositions.
  • the two or more second layers may contain a similar ceramic material, or may contain different ceramic materials. Moreover, you may have a continuous or stepwise gradient composition.
  • the first layer 12 and the second layer 14 may be directly integrated with each other, and one or more other third layers are interposed between these layers. May be.
  • the first layer 12 and the second layer 14 are preferably integrated by sintering. More preferably, they are integrated by direct sintering without a special intervening layer.
  • the second layer 14 has the denseness that is generally included in an interconnector.
  • the second layer 14 preferably has a relative density (according to Archimedes method) of 93% or more, and more preferably 95% or more.
  • the thickness of the second layer 14 is not particularly limited.
  • the thinnest portion of the second layer 14 is 1 ⁇ m or more and 50 ⁇ m or less. It can be.
  • Preferably it is also 1 micrometer or more and 30 micrometers or less.
  • it can also be 1 ⁇ m or more and 20 ⁇ m or less.
  • the lamination form of the first layer 12 and the second layer 14 in the interconnector 10 is not particularly limited, and is appropriately determined depending on the single cell structure in the SOFC to which the interconnector 10 is applied. Various forms of the interconnector will be described in detail later.
  • the interconnector 10 is preferably manufactured at the same time as the single cell stack is manufactured by interposing between the single cells in the manufacturing process of the SOFC stack 30.
  • an unsintered laminated body appropriately including the material layer of the first layer 12 and the material layer of the second layer 14 may be prepared as an interconnector precursor and used for the manufacturing process of the SOFC stack 30.
  • the material layer of the first layer 12 and the material layer of the second layer 14 may be laminated in a necessary order and used for the manufacturing process of the SOFC stack 30.
  • the SOFC and its manufacturing method will be described in detail later.
  • the form of the interconnector 10 as a whole is not particularly limited, but can adopt a form corresponding to the SOFC stack 30 to be applied. For example, when applied to a flat plate type SOFC, a flat plate or the like is obtained.
  • the whole thickness of the interconnector 10 is not specifically limited, For example, it can be 1 micrometer or more and 100 micrometers or less in the thinnest part. Preferably, it can be 2 ⁇ m or more and 60 ⁇ m or less, and more preferably 2 ⁇ m or more and 40 ⁇ m or less.
  • the thermal expansion coefficient (20 ° C. to 1000 ° C.) of each of the first layer 12 and the second layer 14 of the interconnector 10 is 8 ⁇ 10 ⁇ 6 K ⁇ 1 or more and 12 ⁇ 10 ⁇ 6 K ⁇ 1 or less. It is preferable. It is because peeling with the air electrode layer or the fuel electrode layer can be suppressed within this range. Considering the residual stress of the stack structure, it is more preferably 9.5 ⁇ 10 ⁇ 6 K ⁇ 1 or more and 11.5 ⁇ 10 ⁇ 6 K ⁇ 1 or less.
  • the interconnector 10 described above has interconnect characteristics suitable for the fuel electrode 2 of one single cell to be connected and the air electrode 4 of the other single cell, that is, conductivity, gas resistance, and shut-off property, Therefore, it is possible to provide a thin layer and sufficient interconnector characteristics as a whole.
  • the material layer of the ceramic first layer 12 corresponding to the fuel electrode and the ceramic material corresponding to the air electrode By applying each material layer of the second layer 14, the first layer 12 and the second layer 14 are integrally sintered to the fuel electrode 2 and the air electrode 4, respectively.
  • the layer 12 and the second layer 14 are also integrally sintered with each other. Therefore, excellent conductivity and gas barrier properties can be reliably realized, the stacking process of the stack 30 can be simplified and made efficient, and the integral sinterability of the stack 30 can be improved.
  • the SOFC stack disclosed herein can include an interconnector between at least two single cells. According to such an SOFC stack, these single cells can be connected and separated with high electrical conductivity and gas barrier properties, and when they are integrally sintered to the cells, the electrical conductivity and In addition to improved gas barrier properties, the SOFC stack manufacturing process is simplified.
  • SOFC stack in which SOFC single cells are stacked with an interconnector will be described with reference to FIGS.
  • a cell (power generation element) C in the SOFC includes a fuel electrode 2, a solid electrolyte 6, and an air electrode 4. More specifically, it has a structure in which the fuel electrode 2 and the air electrode 4 are laminated via a solid electrolyte 6.
  • the fuel electrode 2 is not particularly limited, and can be a porous body made of one or more conductive ceramic materials applied to the SOFC fuel electrode.
  • the fuel electrode material can include zirconia or ceria in which a rare earth element is dissolved, and Ni / NiO.
  • the rare earth element for example, Y, Sc, Sm, Gd or the like can be used.
  • Ni cermet containing yttria partially stabilized or stabilized zirconia (YSZ), scandia partially stabilized or stabilized zirconia (ScSZ), gadolinia solid solution ceria (GdC) and Ni / NiO can be mentioned.
  • the fuel electrode 2 is porous, and its porosity is appropriately set, but is preferably 15% or more, more preferably about 20% or more and 40% or less.
  • the porosity can be measured from the area ratio of the pore portion and the dense portion of a cross-sectional image obtained by scanning a plurality of cross-sections created by mechanical cutting and polishing with a scanning electron beam microscope. .
  • the pores and dense portions of the layer are binarized by image processing in a field of view of 500 ⁇ m ⁇ 500 ⁇ m including the layer, and the area ratio is obtained, and the average of all cut surfaces is taken. Can determine the porosity.
  • the pore shape in the fuel electrode 2 can be any shape such as an indefinite shape, a fiber shape, or a spherical shape.
  • the average pore diameter in the case of a spherical shape is preferably 1 ⁇ m or more and 10 ⁇ m or less. More preferably, it is 2 ⁇ m or more and 5 ⁇ m or less.
  • the average pore diameter is assumed to be obtained by connecting a plurality of spherical pores to a pore portion of a cross-sectional image photographed by a scanning electron microscope with a plurality of cross sections created by mechanical cutting and polishing. It can be measured from the average diameter.
  • the pores and dense portions of the layer are binarized by image processing in a 500 ⁇ m ⁇ 500 ⁇ m visual field including the layer, and circular approximation is performed for all pores included in the visual field
  • the average pore diameter can be obtained by obtaining the diameter of the cut and taking the average of all the cut surfaces.
  • the anode 2 may have a substantially single porosity and / or average pore diameter, but may have a different distribution with respect to these.
  • the porosity and / or the average pore diameter is set as the solid electrolyte. 6 can be provided with an anode buffer layer 2a that is smaller than the portion proximal to the first layer 12 of the interconnector 10 or distal to the interconnector 10.
  • the adhesion between the fuel electrode 2 and the interconnector (first layer) 10 can be enhanced, and the integrity can be improved and peeling can be suppressed.
  • a reducing gas flow path 22 (described later) is provided in the fuel electrode 2 and the fuel electrode 2 itself is provided with a convex portion 26 that follows the reducing gas flow path 22, the fuel electrode buffer layer 2a.
  • the reducing gas flow path (disappearing member for forming the reducing gas flow path in the SOFC manufacturing process) 22 is disposed in the fuel electrode 2. It can be surely included. As a result, it is possible to avoid the direct contact of the top surface of the reducing gas flow path 22 with the first layer 12 of the interconnector 10 and to reduce the resistance of the conductive path of the fuel electrode 2.
  • the thickness of the fuel electrode 2 itself can be reduced, and occurs when the SOFC stack 30 is started and stopped.
  • the deposition fluctuation of the fuel electrode 2 due to oxidation and reduction of Ni contained in the fuel electrode 2 can be suppressed, and the separation, deformation and destruction in the SOFC stack 30 can be suppressed.
  • the fuel electrode buffer layer 2a is also, for example, 40% of the average pore diameter of the solid electrolyte 6 side of the fuel electrode 2 (a layer in contact with the solid electrolyte 6 side of the fuel electrode 2, hereinafter also referred to as the fuel electrode main layer 2b). It is preferably 90% or less. By such a small average pore diameter, the followability to the curved surface / deformed surface such as the convex portion 26 of the fuel electrode buffer layer 2a is improved. More preferably, it is about 50% or more and 80% or less.
  • the average pore diameter is smaller than that of the fuel electrode main layer 2b and can be about 1 ⁇ m or more and 5 ⁇ m or less.
  • the pore size distribution (pore size distribution) when the pores of the fuel electrode buffer layer 2a are spherical is preferably more polydisperse than the fuel electrode main layer 2b.
  • the pore size distribution of the fuel electrode buffer layer 2a is preferably a distribution in which 50% or less of the pores exist in the average value ⁇ 0.2 ⁇ .
  • the pore size distribution is based on the assumption that a plurality of spherical pores are connected to the pores of a cross-sectional image taken with a scanning electron microscope for a plurality of cross sections created by mechanical cutting and polishing. It can be measured from the average diameter.
  • the porosity of the fuel electrode buffer layer 2a can be made smaller than the porosity of the fuel electrode main layer 2b. In addition to improving the followability to a deformed surface such as a curve, the adhesion of the interconnector 10 to the first layer 12 can be improved.
  • the porosity of the fuel electrode buffer layer 2a is preferably 40% or more and 80% or less, more preferably 60% or more and 80% or less of the porosity of the fuel electrode main layer 2b.
  • the fuel electrode buffer layer 2a can have one or more of the above three characteristics related to the pores, that is, the average pore diameter, the pore diameter distribution, and the porosity. Preferably, three can be provided.
  • the gradient composition related to the pores may be continuous or stepwise.
  • the pores can be formed by using a pore-forming agent that forms pores reflecting the shape of carbon or a high-molecular material such as starch or acrylic after being burned down.
  • a pore-forming agent that forms pores reflecting the shape of carbon or a high-molecular material such as starch or acrylic after being burned down.
  • spherical pore formers having different particle sizes and / or particle size distributions can be used.
  • the usage-amount of arbitrary pore forming agents can be changed.
  • the fuel electrode main layer 2b is formed from a fuel electrode material containing a spherical pore former having a larger average particle size and / or smaller particle size distribution, and the fuel electrode buffer layer 2a has a smaller average particle size. And / or an anode material containing a spherical pore former having a larger particle size distribution.
  • a method for controlling pores in ceramics is a method well known to those skilled in the art.
  • the thickness of the fuel electrode 2 is not particularly limited, and may be, for example, 15 ⁇ m or more and 500 ⁇ m or less, although it varies depending on the presence or absence of the reducing gas channel 22 and the channel configuration. More preferably, it can be 20 ⁇ m or more and 500 ⁇ m or less. More preferably, it can be 50 micrometers or more and 400 micrometers or less, More preferably, it can be 50 micrometers or more and 300 micrometers or less. As will be described later, the thicknesses of the fuel electrode 2 and the air electrode 4 are not necessarily constant in one layer. Therefore, the description regarding the thickness of the fuel electrode 2 and the air electrode 4 means that one layer exists in the range of such thickness unless it mentions especially.
  • the thickness of the fuel electrode buffer layer is not particularly limited, but may be, for example, 5 ⁇ m or more and 50 ⁇ m or less, and may be, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the air electrode 4 is not particularly limited, and may be a porous body made of one or more conductive ceramic materials applied to the SOFC air electrode 4.
  • examples of the air electrode material include the conductive ceramic materials already exemplified as the material of the second layer 14 of the interconnector 10.
  • the air electrode 4 is porous, and its porosity is appropriately set, but is preferably 15% or more, more preferably about 20% or more and 40% or less.
  • the average pore diameter is preferably 1 ⁇ m or more and 10 ⁇ m or less. More preferably, it is 2 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the air electrode 4 is not particularly limited, and may vary depending on the presence or absence of the oxidizing gas flow path 24 (described later) and the flow path form, but may be, for example, 15 ⁇ m or more and 500 ⁇ m or less. It can be set to 20 ⁇ m or more and 500 ⁇ m or less. Further, for example, the thickness may be 50 ⁇ m or more and 400 ⁇ m or less.
  • the solid electrolyte 6 is not particularly limited, and can be a dense body made of one or more oxygen ion conductive materials applied to the SOFC solid electrolyte.
  • the solid electrolyte material include the oxygen ion conductive materials already exemplified.
  • the solid electrolyte 6 is dense and preferably has the same relative density as the interconnector 10 from the viewpoint of blocking gas permeation. Further, the thickness of the solid electrolyte 6 is not particularly limited, but can be set to, for example, 1 ⁇ m or more and 100 ⁇ m or less. More preferably, it can be 3 ⁇ m or more and 40 ⁇ m or less, and further preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the single cell C of the SOFC has a reducing gas flow path 22 for a reducing gas containing hydrogen supplied to the fuel electrode 2 and an oxidizing gas containing oxygen supplied to the air electrode 4.
  • An oxidizing gas channel 24 is provided.
  • gas flow paths 22 and 24 can be formed over one or two layers constituting a single cell. That is, the gas flow paths 22 and 24 may be provided in the fuel electrode 2 and the air electrode 4, respectively, or may be provided in the interconnector 10.
  • the reducing gas flow path 22 may be provided across the fuel electrode 2 and the interconnector 10, and the oxidizing gas flow path 24 may be provided across the air electrode 4 and the interconnector 10.
  • these gas flow paths 22 and 24 can be included so as to be completely embedded in the thickness range of the fuel electrode 2 and the air electrode 4.
  • the increase in the volume of an interconnector with high resistance can be controlled, and the fall of power generation performance can be controlled.
  • connects the fuel electrode 2 and the air electrode 4 it can also provide so that it may open to the fuel electrode 2 side and the air electrode 4 side.
  • the reducing gas flow path 22 only needs to be defined by the fuel electrode 2 at least a part of the outer periphery thereof.
  • at least part of the outer periphery of the oxidizing gas channel 24 only needs to be defined by the air electrode 4.
  • At least the reducing gas flow path 22 can be provided in the fuel electrode 2. That is, the fuel electrode 2 is included so as to cover the reducing gas passage 22, but only a part of the thickness of the reducing gas passage 22 is provided.
  • the fuel electrode 2 has one or more convex shapes convex toward the outside of the single cell C based on the outer shape, arrangement pattern, etc. of the reducing gas flow path 22.
  • a portion 26 can be provided.
  • the layer thickness of the fuel electrode 2 can be reduced, and the volume fluctuation of the fuel electrode 2 due to the oxidation / reduction of Ni (according to the start and stop of SOFC) due to the increase in the volume of the fuel electrode 2 can be suppressed. it can.
  • the fuel electrode 2 having the convex portion 26 based on the internal reducing gas flow path 22 has a thickness of the reducing gas flow path 22 in an area not including the reducing gas flow path 22 in the flow path forming area (described later). It is formed by providing the fuel electrode 2 with a thickness that does not satisfy (thickness or height in the stacking direction). That is, the fuel electrode 2 is provided with a thickness of less than 100% of the thickness of the reducing gas channel 22. By carrying out like this, the thickness of the fuel electrode 2 can be reduced effectively and oxidation-reduction tolerance can be improved. In addition, the thickness of the first layer 12 of the interconnector 10 can be appropriately reduced, and the electrical resistance can be reduced.
  • the fuel electrode 2 can be 90% or less of the thickness of the reducing gas flow path 22, for example, 80% or less, further, for example, 70% or less, and further, for example, 60% or less. Further, in this region, the fuel electrode 2 is 1% or more of the thickness of the reducing gas channel 22, for example, 10% or more, for example, 20% or more, and further, for example, 30% or more. It is. Typically, the thickness of the fuel electrode 2 is 30% or more and 70% or less of the thickness of the reducing gas channel 22 in a region that does not include the reducing gas channel 22 in the channel forming region. it can.
  • the fuel electrode 2 is 90% or less of the maximum height of the reducing gas flow path 22 in the fuel electrode 2, for example, 80% or less, further, for example, 70% or less, further, for example, 60% or less, It can be 50% or less, further 40%, for example 30%, or 20% or less.
  • the fuel electrode 2 is 1% or more of the thickness of the reducing gas flow path 22, for example, 5% or more, for example, 10% or more.
  • the thickness of the fuel electrode 2 is 5% or more and 50% or less of the maximum height of the reducing gas channel 22 in a region that does not include the reducing gas channel 22 in the channel forming region. be able to.
  • the fuel electrode 2 is formed of the fuel electrode main layer 2 b and the fuel electrode buffer layer 2 a, so that a convex shape based on the reducing gas channel 22 is formed.
  • the fuel electrode 2 that is in close contact with the portion 26 and encloses or covers the reducing gas flow path 22 can be easily formed.
  • the first layer 12 of the interconnector 10 having suitable characteristics with respect to the fuel electrode 2 having the surface form including the convex portion 26 corresponding to one or more reducing gas flow paths 22.
  • the electric conductivity and gas in the oxidizing atmosphere derived from the air electrode 4 of the adjacent single cell C are ensured by ensuring the electric conductivity and gas barrier property in the reducing atmosphere and further including the second layer 14. Interceptability can be secured.
  • the ceramic two-layer containing structure of the interconnector 10 in accordance with not only the characteristics of the adjacent electrodes but also the surface form having changes, the surface that has changed in this way exhibits excellent followability and adhesion.
  • the SOFC stack 30 having good integrity, moldability, and shape can be constructed by buffering the form.
  • FIG. 3 is a diagram showing the power generation region 31 and the non-power generation region 32 when the single cell C is viewed in plan
  • FIG. 4 is a plan view of the fuel electrode 2 at a position including the reducing gas flow path 22
  • FIG. 5 is a plan view of the air electrode 4 at a position including the oxidizing gas flow path 24.
  • the single cell C includes a power generation region 31 that mainly contributes to the overall electrode reaction caused by the fuel electrode 2, the solid electrolyte, and the air electrode 4.
  • the planar form of the power generation region 31 is not particularly limited, but generally the first region 33 (FIG. 4) that contributes to the flow of the reducing gas to the fuel electrode 2 of the single cell C and the flow of the oxidizing gas.
  • the contributing first region 33 corresponds to a region overlapping in the stacking direction of each element in the single cell C.
  • both the reducing gas channel 22 and the oxidizing gas channel 24 are drawn, but in actuality, both are provided in different layers.
  • the unit cell C disclosed in the present specification has a power generation region 31 located in the center portion and a non-position located in the outer peripheral portion so as to surround the power generation region 31 when viewed in plan.
  • a power generation region 32 can be provided.
  • the non-power generation region 32 is a region that does not mainly contribute to the electrode reaction of the entire single cell C. That is, the non-power generation region 32 is a region in which at least one of supply of reducing gas to the fuel electrode 2 and supply of oxidizing gas to the air electrode 4 is not performed.
  • the single cell C includes a first region (gas flow path forming region) 33 for allowing a reducing gas to flow through the power generation region 31 in the fuel electrode 2.
  • a reducing gas flow path 22 is formed.
  • a first region (gas flow path forming region) 33 is provided in order to distribute the oxidizing gas to the power generation region 31. Is formed with an oxidizing gas flow path 24.
  • the thickness of the gas passages 22 and 24 (that is, the thickness or the height of the passage along the stacking direction of the elements in the single cell C) is the part (interconnector and / or electrode) or gas provided with the gas passages 22 and 24. Although it varies depending on the flow path pattern and the like and is not particularly limited, it may be, for example, from 50 ⁇ m to 400 ⁇ m.
  • the thickness of the gas flow path 22 in the fuel electrode 2 is preferably 100 ⁇ m or more and 200 ⁇ m or less, and the thickness of the gas flow path 24 in the air electrode 4 is preferably 150 ⁇ m or more and 300 ⁇ m or less.
  • each gas flow path 22 and 24 of reducing gas and oxidizing gas is not particularly limited, and various patterns can be adopted. Although it depends on the form of the SOFC, for example, in the case of a flat plate type SOFC, in a plan view, a pattern in which a plurality of linear flow paths are arranged at regular intervals, and a plurality of U-shaped flow paths having different sizes are provided. Patterns that are arranged on the inside in order of decreasing size, patterns in which one or more spiral flow paths are arranged, patterns that are arranged so that the flow paths extend radially from the center, and in a grid pattern Examples include a pattern in which a flow path is arranged.
  • the opening shape of the gas flow paths 22 and 24 is not particularly limited.
  • various shapes such as a rectangular shape and a circular shape can be applied.
  • the unit cell C is outside the first region 33 in the fuel electrode 2 and does not need to form the reducing gas channel 22 (that is, does not contribute to gas flow).
  • cavities 23 having the same structure as the reducing gas flow path 22 can be provided in the same pattern (see FIG. 4).
  • the air electrode 4 outside the first region 33 and in the second region (gas channel non-formation region) 34 that does not need to form the oxidizing gas channel 24, the same as the oxidizing gas channel 24.
  • the cavity 25 having the structure can be provided in a similar pattern.
  • each of the cavities 23 and 25 is not particularly limited, but preferably has the same thickness as each of the gas flow paths 22 and 24. Further, the patterns of the cavities 23 and 25 are not particularly limited. As described above, the same pattern as the gas flow paths 22 and 24 can be applied, or a pattern different from the gas flow paths 22 and 24 may be adopted.
  • the cavities 23 and 25 may be open pores, part or all of which communicate with the outside air, or may be closed pores that are spaces that are isolated from the inside of the cell without communicating with the outside air.
  • the closed pores for example, it is a continuous hole form such as the gas flow paths 22 and 24, and both ends thereof are closed, or as shown in FIG. Examples include a form including a plurality of holes that are partially communicated.
  • the shape of each cavity is not particularly limited, and may have various shapes such as a spherical shape and a cubic shape.
  • the cavities 23 and 25 have the same shape as or similar to the opening shape of the gas flow paths 22 and 24, and extend in the same direction as the extending direction of the gas flow paths 22 and 24.
  • the layer in which the cavities 23 and 25 are formed is not particularly limited.
  • the cavities 23, 25 are formed in accordance with the mode of the gas flow paths 22, 24 by 1 (fuel electrode 2, air electrode 4 or interconnector 10) or two layers (for example, interconnects) in which the gas flow paths 22, 24 are formed.
  • the connector 10 and the fuel electrode 2, the interconnector 10 and the air electrode 4) may be formed so as to at least partially coincide with each other, or formed in a layer other than one or two layers in which the gas flow paths 22 and 24 are formed. May be.
  • the cavities 23, 25 are formed to partially or completely coincide with one or two layers in which the gas flow paths 22, 24 are formed. With such a configuration, it is possible to adapt the thermal contraction and linear thermal expansion coefficient between the flow path forming region and the non-flow path forming region.
  • the reducing gas channel 22 and the oxidizing gas channel 24 are provided so as to be orthogonal to each other, but the present invention is not limited to this.
  • both may be provided so as to extend in the same direction, or may be provided so as to intersect at an angle that is not orthogonal.
  • the thickness of the cavities 23 and 25 (that is, the thickness or height along the stacking direction of the elements in the single cell C) is not particularly limited, but is, for example, 20% or more with respect to the thickness of the gas flow paths 22 and 24 It is preferable that it is 100% or less. More preferably, it is 60% or more and 100% or less.
  • the ratio of the volume of the cavity to the total volume of the flow path non-forming region (hereinafter referred to as the cavity volume ratio) is not particularly limited, but for example, the same single cell corresponding to the flow non-flow forming region 50% or more and 120% or less with respect to the ratio of the volume of the gas flow path to the total volume of the flow path forming region in C (specifically, in the same layer) (hereinafter referred to as flow path volume ratio).
  • Can do For example, it can be 80% or more and 100% or less.
  • the cavity volume ratio is calculated with respect to the reducing gas channel 22 or the oxidizing gas channel 24 to which the target cavity relates.
  • the non-flow channel formation region is a region outside the gas flow channel located on the outermost side of the power generation region, and the total volume is 1 in which the target cavity exists. Or it is set as the total volume of the flow path non-formation area
  • the flow path forming area is an area inside the gas flow path at the outermost side of the power generation area, and the total volume is the flow path formation for one or two layers in which the target gas flow path exists. The total volume of the area.
  • the cavity volume ratio can be calculated not only from the single cell C but also from the sum of the cavity volume ratios for each cell for a stack including a plurality of cells.
  • the total volume of the cavities 23 in the single cell C is preferably 50% or more and 150% or less with respect to the total volume of the reducing gas flow path 22.
  • the total volume of the cavity 25 is preferably 50% or more and 150% or less with respect to the total volume of the oxidizing gas channel 24.
  • the thermal contraction rate in the same layer can be made uniform.
  • the reducing gas flow path 22 and the cavity 23 may be blocked by a porous layer (the fuel electrode 2 in this single cell C) as in the above-described configuration, or an open pore structure is formed in the layer. It may be connected by doing. The same applies to the relationship between the oxidizing gas flow path 24 and the cavity 25.
  • the thickness of the single cell (fuel electrode, air electrode, solid electrolyte) C configured in this way is not particularly limited, and can be, for example, 100 ⁇ m or more and 1000 ⁇ m or less. Moreover, it is preferably 150 ⁇ m or more and 1000 ⁇ m or less. Furthermore, it can be preferably 200 ⁇ m or more and 1000 ⁇ m or less. Further, it can be preferably 300 ⁇ m or more and 600 ⁇ m or less.
  • the surface of the fuel electrode 2 and / or the air electrode 4 of the single cell C can also be provided with a convex portion 26 or the like based on the gas flow path and the external form and arrangement pattern of the cavities 22 to 25.
  • the SOFC single cell C and the SOFC stack 30 can appropriately include a seal portion 20 for sealing each gas supplied to the fuel electrode 2 and the air electrode 4.
  • a seal portion 20 for sealing each gas supplied to the fuel electrode 2 and the air electrode 4.
  • the form of the seal part 20 is not specifically limited,
  • a well-known seal structure can be suitably employ
  • a noble metal material such as silver or platinum or a metal material such as stainless steel is connected to the upper part of the power generation area of the single cell C as a current collecting material.
  • a gas manifold made of a ceramic material is connected to the outermost part of the single cell C in the non-power generation region as a part for supplying gas.
  • a ceramic material such as alumina or zirconia, a glass material, or a mixed material thereof can be used for connecting the gas manifold and the cell. With this configuration, the single cell C can function as an SOFC system.
  • the SOFC disclosed in this specification may include the interconnector 10 or a part thereof with respect to the single cell C, and the SOFC stack 30 includes at least two single cells C connected via the interconnector 10.
  • the unit cell C in which the fuel electrode 2, the air electrode 4 and the solid electrolyte 6 are stacked is connected to another unit cell C through an interconnector 10 to form a SOFC stack 30.
  • the first layer 12 and the second layer 14 of the interconnector 10 can take various laminated forms depending on the mode of each power generation element in the SOFC.
  • FIG. 7A shows a mode in which the first layer 12 and the second layer 14 are flat layers, respectively.
  • each gas flow path 22, 24 may be in the interconnector or in the electrode.
  • the gas flow path is included in the layer thickness of the electrode. In this state, the convex portion due to the gas flow path does not appear on the electrode surface.
  • FIG. 7B is a layer in which the first layer 12 has one or two or more curved portions 12a corresponding to one or two or more convex portions 26 based on the gas flow path 22 inherent in the fuel electrode 2.
  • the second layer 14 is a layer having a filling portion 14b that fills the portion of the first layer 12 that is not the curved portion 12a, that is, the bottom portion 12b and has a substantially uniform thickness as the entire interconnector 10.
  • the form is shown.
  • the first layer 12 is a wavy or corrugated layer having a substantially uniform thickness.
  • the second layer 14 includes a covering portion 14a having a relatively thin layer thickness in the curved portion 12a corresponding to or around the reducing gas flow path 22, and corresponds to the space between the reducing gas flow paths 22.
  • the bottom portion 12b is provided with a relatively thick filling portion 14b.
  • the first layer 12 can be applied to the fuel electrode 2 in a necessary and sufficient form while ensuring a uniform thickness as a whole.
  • the second layer 14 allows the interconnector 10 to have a substantially flat and uniform thickness as a whole.
  • FIG. 7C is different from FIG. 7B in that the second layer 14 for the air electrode 4 has a curved portion 14c and a bottom portion following a surface form having a convex portion 28 based on the oxidizing gas flow path 24 of the air electrode 4.
  • 14d which is a wavy or corrugated layer having a substantially uniform thickness.
  • the first layer 12 has a filling portion 12d that fills the bottom portion 14d of the second layer 14, and the curved portion 14c is thinly covered. The form provided with the coating
  • the first layer 12 is relatively thin in the curved portion 14 c corresponding to or around the oxidizing gas flow channel 24, and the first layer is formed in the bottom portion 14 d between the oxidizing gas flow channels 24. 12 is relatively thick.
  • the second layer 14 can be applied to the air electrode 4 in a necessary and sufficient form. Further, the second layer 14 allows the interconnector 10 to have a substantially flat and uniform thickness as a whole.
  • a single cell C or SOFC stack 30 of SOFC can include at least one constraining layer 40 in the stack.
  • the constraining layer 40 can include a non-porous layer 42 including at least a conductive ceramic material and an oxide material of an element included in the solid electrolyte.
  • the conductive ceramic material used for the constraining layer 40 the conductive ceramic material suitable for the air electrode 4 described above can be used.
  • an oxide material of the element contained in the solid electrolyte an oxygen ion conductive material suitable for the solid electrolyte 6 described above can be used.
  • the thermal expansion coefficient (20 ° C. to 1000 ° C.) of the constraining layer 40 is preferably 10 ⁇ 10 ⁇ 6 K ⁇ 1 or more and 15 ⁇ 10 ⁇ 6 K ⁇ 1 or less. This is because peeling is less likely to occur at the interface with the interconnector 10 or the air electrode 4 within this range.
  • the residual stress of the SOFC stack 30 it is more preferably 10 ⁇ 10 ⁇ 6 K ⁇ 1 or more and 12 ⁇ 10 ⁇ 6 K ⁇ 1 or less.
  • the constraining layer 40 includes at least a non-porous layer 42.
  • the non-porous layer 42 can have the same denseness as the solid electrolyte 6 and the interconnector 10. Moreover, as a porosity, it is preferable that it is 10% or less, More preferably, it is 5% or less.
  • the thickness of the non-porous layer 42 is not particularly limited, but may be, for example, 10 ⁇ m to 200 ⁇ m, preferably 50 ⁇ m to 100 ⁇ m.
  • the constraining layer 40 can further include a porous layer 44 that is porous including the conductive ceramic material and the oxide material of the element contained in the solid electrolyte, like the non-porous layer 42.
  • the provision of the non-porous layer 42 and the porous layer 44 makes it easier to adjust the firing behavior.
  • the porosity of the porous layer 44 is not particularly limited as long as it is larger than that of the non-porous layer 42.
  • the porosity can be 10% or more and 50% or less. This is because within this range, it is easy to adjust the firing behavior by the combination with the non-porous layer 42.
  • the thickness of the porous layer 44 is not particularly limited, but may be, for example, 10 ⁇ m or more and 200 ⁇ m or less, preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • non-porous layer 42 can also function as the interconnector 10 with respect to the air electrode 4 when disposed at the terminal end of the SOFC single cell C and the SOFC stack 30 on the air electrode 4 side. Therefore, for example, in that case, the second layer 14 of the interconnector 10 can be omitted.
  • the stacked form is not particularly limited, but the non-porous layer 42 and the porous layer 44 can be alternately provided. .
  • the number and thickness of each layer may be different or the same, but from the viewpoint of adjusting the firing behavior, the number of layers of the non-porous layer 42 and the porous layer 44 is the same. Are the same number and / or the total thickness of each layer is preferably the same.
  • the non-porous layer 42 and the porous layer 44 as the constraining layer 40 can each include a conductive ceramic material and an oxide material of an element contained in the solid electrolyte.
  • the same type of conductive ceramic material and the oxide material of the element contained in the solid electrolyte may be used, or at least one of them may be different.
  • these two types of layers 42 and 44 may be the same, which may be different in composition (formulation), but use the same type of material.
  • a plurality of non-porous layers 42 are provided, the same aspect as described above is applied to the non-porous layers 42 with respect to the oxide material of the element contained in the conductive ceramic material and the solid electrolyte.
  • the same aspects as described above are applied to the porous layers 44 with respect to the conductive ceramic material and the oxide material of the element contained in the solid electrolyte.
  • the mixing ratio of the conductive ceramic material and the oxide material of the element contained in the solid electrolyte in these two types of layers 42 and 44 is not particularly limited.
  • it is included in the conductive ceramic material and the solid electrolyte.
  • the oxide material of the element can be 30:70 to 70:30 or the like, or 40:60 to 60:40 by mass ratio.
  • each of the layers 42 and 44 can appropriately contain an additive in order to enhance the sinterability or improve the heat resistance during high-temperature firing.
  • an additive in addition to the various additives described above, ceria and the like can be added from the viewpoint of heat resistance.
  • a high-temperature heat-resistant additive such as ceria is not particularly limited, but is preferably added to the porous layer 44.
  • the content of these additives is not particularly limited, and can be, for example, 0.5% by mass or more and 10% by mass or less based on the total ceramic materials (including additives) in each layer 42 and 44. Preferably, it can be 2 mass% or more and 8 mass% or less.
  • the pore shape in the porous layer 44 is not particularly limited, but spherical pores can be formed.
  • the average pore diameter is not particularly limited, but can be, for example, 0.5 ⁇ m or more and 5 ⁇ m or less. This is because if the thickness is less than 0.5 ⁇ m and more than 5 ⁇ m, it is difficult to sufficiently adjust the firing behavior.
  • Adjustment of the porosity and average pore diameter in ceramic materials is well known to those skilled in the art, and a person skilled in the art can appropriately produce a ceramic layer having an intended porosity and average pore diameter.
  • the constraining layer 40 can be provided at any site in the SOFC. That is, the constraining layer 40 can be provided on either one or both of the fuel electrode 2 side and the air electrode 4 side in the single cell C, and at least a part of the plurality of single cells C included in the stack 30. A constraining layer 40 may be provided. It can also be provided on one or both of the outermost sides of the stack 30.
  • the first layer 12 of the interconnector 10 applied to the single cell C that is, the first layer
  • the constraining layer 40 can be provided so as to be located outside the cell C rather than 12.
  • the air electrode 4 is provided with a constraining layer 40 so as to be located on the outside of the cell C with respect to the air electrode 4. be able to.
  • the lamination form of the non-porous layer 42 and the porous layer 44 as the constraining layer 40 is not particularly limited.
  • the non-porous layer 42 is provided with respect to the first layer 12 and the air electrode 4.
  • the porous layer 44 can be further provided on the outer side as required.
  • the outermost layer includes a porous layer 44.
  • the non-porous layer 42 and the porous layer 44 are arranged symmetrically with the solid electrolyte 6 in between from the viewpoint of controlling the firing behavior.
  • the end portion on the fuel electrode 2 side (one end portion along the stacking direction of the stack 30) and / or the end portion on the air electrode 4 side (of the stack 30 The other end along the stacking direction) can be provided.
  • the interconnector 10 exhibits conductivity and resistance to reducing gas and oxidizing gas applied to the SOFC, and is suitable for integral sintering with the cell C. It has become. As a result, according to the interconnector 10, it is possible to obtain a SOFC and SOFC stack excellent in power generation characteristics and integrity without complicating the manufacturing process.
  • the anode of the first single cell is used.
  • the interconnector material layer includes a first layer located on the fuel electrode material layer side, and a second layer located on the air electrode material layer side.
  • the second layer has higher electrical conductivity and gas barrier properties than the second layer in a reducing atmosphere, and the second layer has higher electrical conductivity and gas barrier properties than the first layer in an oxidizing atmosphere. be able to.
  • a layer having suitable interconnector characteristics can be applied to each of the fuel electrode and the air electrode, and excellent conductivity and integrity can be exhibited. it can.
  • the first layer and the second layer are suitable for integral sintering with the cell elements, the stack can be integrally sintered without complicating the manufacturing process.
  • the first layer and the second layer can exhibit independent characteristics, the thickness and pattern can be appropriately set according to various aspects of the fuel electrode and the air electrode.
  • the SOFC stack manufacturing method disclosed in the present specification includes a step of forming a reducing gas channel or an oxidizing gas channel in at least one layer of the first region that contributes to gas circulation, Forming at least one cavity in the at least one layer of the second region adjacent to the region.
  • the cavity is formed in the same layer as the layer in which the gas flow path is formed.
  • the manufacturing method of the SOFC stack in the present specification can generally conform to a known manufacturing method of an integrally sintered SOFC stack.
  • a person skilled in the art can implement this production method by appropriately referring to, for example, the method disclosed in International Publication WO2009 / 119971.
  • the manufacturing method of the SOFC stack is not particularly limited, but generally, a green sheet containing a material of a single cell and one or more elements constituting the stack is prepared in advance and laminated, or such a material is appropriately selected. While directly laminating the layers as a slurry, they are laminated in the required order and fired integrally. A person skilled in the art can appropriately determine and implement what kind of elements the green sheet is prepared or supplied as a slurry, and further the order of lamination and the like within a range where an SOFC stack can be obtained.
  • the firing method of the laminate (stack precursor) of the material layers of each element of the SOFC stack can generally conform to the manufacturing method of a known integrally sintered SOFC stack. That is, the stack precursor is fired so that a ceramic material constituting the precursor is at least partially sintered to obtain a dense or porous desired fired body. Preferably, all elements are co-sintered.
  • the heat treatment can be performed at a temperature of 1250 ° C. to 1550 ° C., and preferably 1250 ° C. to 1500 ° C. More preferably, it is 1250 degreeC or more and 1400 degrees C or less. It can be fired in air.
  • the firing time at the above firing temperature is not particularly limited, and can be, for example, about 1 to several hours.
  • the stack precursor Prior to firing, the stack precursor was pressed by cold isostatic pressing (CIP) as necessary at a temperature of about 60 ° C. to 120 ° C.
  • CIP cold isostatic pressing
  • This pressure-bonded body can be degreased at a temperature in the range of 300 ° C to 500 ° C.
  • the slurry for each layer can be prepared by adding appropriate amounts of a binder resin, an organic solvent, etc., with the material of each element as the main component.
  • the green sheet is a green sheet precursor obtained by casting the prepared slurry using a casting method such as a tape casting method using a coating apparatus such as a knife coater or a doctor blade, or using a screen printing method or a spray method. Can be obtained.
  • a green sheet unfired ceramic green sheet
  • a fuel electrode, an air electrode, and a porous layer of a constraining layer are well known to those skilled in the art.
  • a person skilled in the art can include a desired average pore diameter, porosity, pore size distribution, etc. and appropriate porosity by including a particulate disappearance material in the formulation of the slurry according to a known method or by including a pore-forming agent. It is possible to produce a green sheet that can express the quality by firing.
  • the disappearing material itself is well known, and various materials are commercially available.
  • a method for forming the gas flow paths 22 and 24 in the fuel electrode, the air electrode or the interconnector is also well known to those skilled in the art. If it is a person skilled in the art, according to a known method, disposing a disappearing material capable of forming a desired gas flow path pattern on a green sheet of a fuel electrode material, and further laminating a green sheet of a fuel electrode material, etc. can do. Specifically, a flow path pattern is formed by using a screen printing method, a cutting method, or the like on a polymer material such as acrylic, polyethylene, or polystyrene, or carbon black, which is the disappearing material, and disappears when the cells are integrally fired. A gas flow path can be formed by burning out the material.
  • the cavities 23 and 25 can also be formed simultaneously with the gas flow paths 22 and 24 with a desired opening shape, size and pattern by a known method.
  • an electrode green sheet including a sealing material layer that becomes a seal portion adjacent to the fuel electrode material layer and the air electrode material layer can be manufactured as appropriate.
  • a solid electrolyte green sheet was prepared from a slurry containing a solid electrolyte material.
  • a fuel electrode green sheet is prepared from a fuel electrode slurry containing a fuel electrode material and a pore former and a seal slurry containing a seal material, and a flow path forming material made of a disappearing material is formed on the green sheet.
  • the slurry for the fuel electrode and the slurry for sealing are, for example, the flow channel It is applied in a predetermined pattern until the height of the forming material is in the range of about 30% to 70%.
  • the slurry for the first layer of the interconnector is applied with a substantially uniform thickness along the surface form including the convex portion of the fuel electrode material layer.
  • the slurry for the second layer of the interconnector is applied to the surface of the first layer slurry so as to cover the convex portion of the fuel electrode material layer and become a substantially flat layer surface.
  • the fuel electrode buffer slurry containing the fuel electrode buffer material can be further added as a separate fuel electrode slurry.
  • a green sheet for an air electrode is produced from an air electrode slurry containing an air electrode material and a pore former and a sealing slurry containing a seal material, and a flow path forming material made of a disappearing material is screen printed thereon.
  • the same disappearance material is applied to the region to be the non-flow-path forming region by the same method, and the air electrode slurry and the sealing slurry are applied in a predetermined pattern to obtain the air electrode material.
  • a green sheet including a layer was produced.
  • a non-porous constraining layer material slurry and a sealing slurry are applied to the green sheet including the air electrode material layer to prepare an air electrode side termination green sheet.
  • a non-porous constrained layer green sheet and a fuel electrode side end green sheet are prepared using a non-porous constrained layer slurry and a sealing slurry. Further, a porous constraining layer green sheet is prepared using the porous constraining layer slurry and the sealing material.
  • SOFC stack precursors can be prepared by laminating these green sheets so as to include an appropriate number, for example, 2 to 30 or less, for example, 5 to 20 or less. This precursor is fired at a predetermined temperature after pressure bonding and degreasing treatment.
  • an SOFC stack including an interconnector can be obtained by the manufacturing process as described above. It is also possible to manufacture an SOFC stack having an interconnector structure corresponding to a specially shaped fuel electrode. Furthermore, an SOFC stack that also includes an anode buffer layer can be manufactured. Furthermore, an SOFC stack with a constraining layer can also be provided.
  • the SOFC stack described above is further connected to a current collector or the like as necessary, to which a reducing gas and an oxidizing gas supply source are appropriately connected, and further provided with a heating device, so that a SOFC is provided. You can build a system.
  • SOFC stack manufacturing method described above is merely an example of the SOFC stack manufacturing method disclosed in this specification. Therefore, according to a conventionally known SOFC manufacturing method, an appropriate combination of a stack of green sheets including at least one layer constituting a SOFC single cell or a SOFC stack, or a laminate by directly applying a slurry to a constituent layer, etc. SOFCs and SOFC stacks can be manufactured.
  • This example is an example of manufacturing an SOFC stack.
  • the ceramic material of each element in the SOFC stack will be shown, and then the manufacturing process of the stack shown in FIGS. 9A to 9D will be described.
  • Green sheet for fuel electrode 20 parts by mass of acrylic particles in which 50% or more of the particles are distributed in an average particle diameter of 10 ⁇ m and an average particle diameter of ⁇ 0.1 ⁇ with respect to 100 parts by mass of the fuel electrode raw material, and this mixed powder and polyvinyl butyral binder And a solvent were mixed to obtain a slurry for a fuel electrode. Also, 20 parts by mass of acrylic particles having an average particle diameter of 5 ⁇ m smaller than the previous acrylic particles and 50% or less of particles distributed within ⁇ 0.1 ⁇ of the average particle diameter are added to 100 parts by mass of the fuel electrode raw material. The mixed powder, polyvinyl butyral binder, and solvent were mixed to obtain a first slurry for the fuel electrode buffer. A second fuel electrode buffer slurry was prepared in the same manner except that 12 parts by mass of acrylic particles used in the fuel electrode slurry (equivalent to 60% of the fuel electrode slurry) were used.
  • a seal portion slurry, a polyvinyl butyral binder, and a solvent were mixed to obtain a seal portion slurry.
  • the fuel electrode slurry and the seal portion slurry are sealed at the center of the green sheet with the fuel electrode material layer 102a and the both ends using a doctor blade having a plurality of coating ports.
  • the fuel electrode green sheet 102 was prepared so as to include the portion 102b.
  • FIG. 9B (b) a line-and-line in which a plurality of linear flow path forming materials 103 are arranged at regular intervals using an acrylic resin composition on the fuel electrode green sheet 102.
  • a pattern of space-like flow path forming materials 103a and 103b was produced by a screen printing method.
  • the flow path forming material 103a is a member that becomes a reducing gas flow path by subsequent integral sintering
  • the flow path forming material 103b is a member that becomes a cavity by subsequent integrated sintering.
  • the fuel electrode slurry is flowed by the doctor blade method until it reaches about 60% of the height of the flow path forming material.
  • the fuel electrode material layer 104a was formed by directly laminating between the path forming materials 103.
  • the seal part 104b was simultaneously formed in the both ends of the fuel electrode material layer 104a using the slurry for seal parts.
  • the layer including the fuel electrode material layer 104 a is also referred to as a fuel electrode material layer 104.
  • the first fuel electrode buffer slurry is laminated with a constant thickness so as to cover the whole including the flow path forming material 103 by the doctor blade method.
  • 1 fuel electrode buffer material layer 105a was formed.
  • seal portions 105b were formed at both ends at the same time.
  • the corrugated layer including the first fuel electrode buffer material layer 105 a is also referred to as a first fuel electrode buffer material layer 105.
  • the fuel electrode side interconnector material layer 106 is formed by applying a slurry for the fuel electrode side interconnector in a corrugated shape following the first fuel electrode buffer material layer 105 by the doctor blade method. Formed.
  • the slurry for the air electrode side interconnector is filled between the convex portions due to the fuel electrode flow path forming material 103 so as to cover the fuel electrode side interconnector material layer 106.
  • the green sheet 110 including the air electrode side interconnector material layer 107 was produced by laminating.
  • Green sheet for air electrode 20 parts by mass of acrylic particles in which 50% or more of the particles are distributed in an average particle diameter of 10 ⁇ m and an average particle diameter of ⁇ 0.1 ⁇ with respect to 100 parts by mass of the air electrode raw material, and this mixed powder, a polyvinyl butyral binder, Then, a solvent was mixed to prepare an air electrode slurry. Thereafter, as shown in FIG. 9D (a), the air electrode slurry and the seal portion slurry are sealed at the center of the green sheet with the air electrode material layer 112a and at both ends, using a doctor blade having a plurality of application ports. The air electrode green sheet 112 was prepared so as to include the portion 112b.
  • FIG. 9D (b) a line and space in which a plurality of linear flow path forming materials are arranged at regular intervals using an acrylic resin composition on the green sheet 112 for the air electrode.
  • a pattern of the flow path forming materials 113a and 113b was formed by screen printing.
  • the flow path forming material 113a is a member that becomes an oxidizing gas flow path by subsequent integrated sintering
  • the flow path forming material 113b is a member that becomes a cavity by subsequent integrated sintering.
  • the slurry for the air electrode is formed by the doctor blade method, and the entire height of the flow path forming material 113 and the flow path shape material 113 are formed.
  • the air electrode material layer 114a was formed by directly stacking so as to cover the top surface. Also at this time, the seal portion 114b was formed at both ends at the same time to produce the green sheet 115 for the air electrode.
  • Green sheet for constraining layer As shown in FIG. 9A (b), a constrained layer raw material, a polyvinyl butyral binder, and a solvent are mixed to form a slurry for a non-porous constrained layer, and a non-porous constrained layer green sheet 120 is obtained by a doctor blade method. Was made.
  • a mixture of 10 parts by mass of acrylic particles added to 100 parts by mass of the raw material of the constraining layer, a polyvinyl butyral binder, and a solvent are mixed to obtain a slurry for the porous constraining layer.
  • a green sheet 121 for a porous constrained layer was produced by a doctor blade method.
  • the air electrode green sheet 115, the solid electrolyte green sheet 101, and the fuel electrode green sheet are formed with respect to the air electrode side interconnector material layer 107 of the fuel electrode green sheet 110.
  • 110 was stacked to form a second cell precursor 202.
  • a green sheet is laminated to form the third cell precursor 203, and the non-porous constraining layer is formed on the air electrode side interconnector material layer 107.
  • a green sheet 120 for a stack was laminated, and a green sheet 121 for a porous constrained layer was further laminated to obtain a stack precursor 130 of this example.
  • the stack precursor 130 was subjected to pressure bonding by cold isostatic pressing (CIP) for 42 minutes at a temperature of 100 MPa and 80 ° C.
  • CIP cold isostatic pressing
  • the pressure-bonded body was degreased at a temperature of 400 ° C., and then held at a temperature of 1400 ° C. for 2 hours to be fired to obtain a stack of examples.
  • a stack of another example was obtained in the same manner as described above, except that the second fuel electrode buffer layer slurry was used instead of the first fuel electrode buffer layer slurry.
  • the outline of the stack of the example obtained by firing is shown in FIG. 10C.
  • the thickness of the solid electrolyte 6 is about 20 ⁇ m
  • the thickness of the fuel electrode 2 between the reducing gas flow paths 22 is about 50 ⁇ m
  • the reducing gas flow The thickness of the passage 22 and the cavity 23 is about 100 ⁇ m
  • the thickness of the air electrode 4 between the oxidizing gas flow paths 24 is about 50 ⁇ m
  • the thickness of the oxidizing gas flow path 24 and the cavity 25 is about 200 ⁇ m
  • the thickness of the side interconnector (first layer) 12 was about 10 ⁇ m
  • the thickness of the air electrode side interconnector 14 was about 10 to 100 ⁇ m (minimum portion to maximum portion).
  • an SOFC stack of the following mode was also produced at the same time. That is, the second layer material of the interconnector is replaced with a mixture of La 0.8 Sr 0.2 MnO 3 50 mass%, “3YSZ” 45 mass%, and ceria 5 mass%, La 0.8 Sr 0 .2
  • a SOFC stack of Comparative Example 1 was manufactured by the same manufacturing process as the SOFC stack described above except that a mixture of 50% by mass of MnO 3, 45% by mass of “8YSZ” and 5% by mass of ceria was used. .
  • the first fuel electrode buffer slurry is applied in such a thickness as to cover the entire height of the flow path forming member 103 to flatten the surface of the fuel electrode material layer as described above.
  • a SOFC stack of Comparative Example 2 was produced in the same manufacturing process as the SOFC stack.
  • a SOFC stack of Comparative Example 3 was manufactured by the same manufacturing process as the SOFC stack described above except that the first fuel electrode buffer layer was not provided.
  • the stack of this example was provided with a stack having excellent integrity and electrical conductivity by including the first layer and the second layer as interconnectors.
  • the air electrode / air electrode side interconnector / fuel electrode side interconnector / fuel electrode The electric resistance value was 0.13 ⁇ ⁇ cm 2 , whereas in Comparative Example 1 using 8YSZ instead of 3YSZ, it was 0.54 ⁇ ⁇ cm 2 .
  • the stack of the present embodiment has a corrugated fuel electrode side interconnect by causing the fuel electrode side interconnector (first layer) to follow an electrode (fuel electrode) having a convex portion based on the gas flow path.
  • the volume of the fuel electrode could be suppressed by providing the air electrode side interconnector (second layer) so as to fill the non-convex portion of the fuel electrode interconnector as a connector.
  • the fuel electrode and hence the stack volume fluctuation due to the oxidation and reduction accompanying the start and stop of the SOFC For example, assuming that the total amount of Ni used in the stack of Comparative Example 2 is 100, the amount of Ni used in the stack of this example was 40%.
  • the stack of this embodiment includes the fuel electrode buffer layer, so that the adhesion and integrity between the fuel electrode and the fuel electrode side interconnector (first layer) are improved, and the fuel electrode has a convex shape.
  • the top surface of the reducing gas channel was well covered.
  • the fuel electrode side interconnector No. 1
  • the stack of another embodiment including the second fuel electrode buffer layer having a porosity lower than that of the fuel electrode is also the adhesion and integrity between the fuel electrode and the fuel electrode side interconnector (first layer).
  • the cell without the constraining layer was greatly deformed, the cell with the constraining layer could be sintered flat.
  • the thermal shrinkage rate at the time of integral sintering is made uniform, the internal stress is relaxed, Cracking and peeling could be suppressed. Further, as shown in FIG. 11, it was confirmed that the durability when the SOFC was integrally sintered was improved by having the cavity in the non-flow channel forming region.

Abstract

本明細書は、熱収縮率を均一化することで一体焼結の際に生じる内部応力を緩和し、セルの割れや剥離を抑制することができる固体酸化物形燃料電池を提供する。本明細書に開示される固体酸化物形燃料電池は、燃料極と、空気極と、前記燃料極と前記空気極の間に配置される固体電解質と、を備えている。また、ガス流通に貢献する第1領域と、前記第1領域に隣接しており、ガス流通に貢献しない第2領域と、を備えている。前記第1領域の少なくとも1つの層に、還元性ガス流路又は酸化性ガス流路を備え、前記第2領域の前記少なくとも1つの層に、少なくとも1つのキャビティを備える。

Description

固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池
 本明細書は、固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池を開示する。
 積層型固体酸化物形燃料電池(以下、単に、SOFCともいう。)に用いるスタック構造体として、燃料極と、固体電解質と、空気極とを備えるセル(固体酸化物形燃料電池用セル)の2以上がインターコネクタを介して積層されたスタック構造体が開示されている(特許文献1)。
 一般に、SOFCにおいて、高い電流密度を実現するには、十分量の還元性ガス及び酸化性ガスを燃料極及び空気極にそれぞれ供給する必要がある。このため、別途、ガス流路(還元性ガス流路及び酸化性ガス流路)を形成することが行われている。
 SOFCを異なる材料を積層して焼成を行って製造する場合、焼成による収縮が発生する。上記したガス流路を高分子材料等の消失材を用いて、セラミック材料内に形成する場合、消失材を充填した領域とその周囲との間の収縮率の違いによって、流路の変形が生じることがある。このような変形を抑制するために、ガス流路内に流路変形を防止するための支持部材を導入する技術が開示されている(特許文献2)。
国際公開第WO2009/119771号 国際公開第WO2010/077874号
 しかしながら、特許文献2の技術では、熱収縮による変形を抑制するため、SOFCの特性に関与しない支持部材を別途必要としてしまう。さらに、かかる支持部材を使用したとしても、流路を形成するために消失材を含む流路形成領域とそのような消失材を含まない流路非形成領域との熱収縮率の相違を解消するものではない。本発明者らによれば、SOFCセルを一体的に焼結する場合、流路を形成するための消失材の存在する流路形成領域とその近傍の流路を要しない流路非形成領域とを同一層に有すると、流路形成領域と流路非形成領域との間で収縮率が異なるために、セルの良好な一体焼結が困難である場合があることがわかった。本明細書は、熱収縮率を均一化することで一体焼結の際に生じる内部応力を緩和し、セルの割れや剥離を抑制することができる技術を提供する。
 本発明者らは、ガス流路を含む層の熱収縮率を均一化することができる固体酸化物形燃料電池用セルを構築できることを見出した。本明細書によれば、上記の知見に基づき以下の手段が提供される。
(1)燃料極と、空気極と、前記燃料極と前記空気極の間に配置される固体電解質と、を備える固体酸化物形燃料電池用セルであって、
 ガス流通に貢献する第1領域と、
 前記第1領域に隣接しており、ガス流通に貢献しない第2領域と、を備えており、
 前記第1領域の少なくとも1つの層に、還元性ガス流路又は酸化性ガス流路を備え、
 前記第2領域の前記少なくとも1つの層に、少なくとも1つのキャビティを備える、固体酸化物形燃料電池用セル。
(2)前記少なくとも1つのキャビティは、開気孔又は閉気孔である、(1)に記載の固体酸化物形燃料電池用セル。
(3)前記少なくとも1つのキャビティは、前記還元性ガス流路又は前記酸化性ガス流路の開口形状と略同一形状又は略相似形状を有する、(1)又は(2)に記載の固体酸化物形燃料電池用セル。
(4)前記少なくとも1つのキャビティは、前記還元性ガス流路又は前記酸化性ガス流路におけるガスの流通方向に沿って延在する、(1)~(3)のいずれかに記載の固体酸化物形燃料電池用セル。
(5)前記少なくとも1つのキャビティは、前記少なくとも1つの層内における熱収縮を均一化するように構成される、(1)~(4)のいずれかに記載の固体酸化物形燃料電池用セル。
(6)前記燃料極に前記還元性ガス流路と前記少なくとも1つのキャビティとを備え、
 前記空気極に前記酸化性ガス流路と前記少なくとも1つのキャビティとを備える、(1)~(5)のいずれかに記載の固体酸化物形燃料電池用セル。
(7)前記第1領域は、前記セルの中央部に規定され、
 前記第2領域は、前記第1領域の少なくとも一部を囲む外周部に規定されている、(1)~(6)のいずれかに記載の固体酸化物形燃料電池用セル。
(8)前記少なくとも1つのキャビティの厚みは、前記還元性ガス流路及び前記酸化性ガス流路の厚みに対して、20%以上100%以下である、(1)~(7)のいずれかに記載の固体酸化物形燃料電池用セル。
(9)前記少なくとも1つのキャビティの総体積は、前記還元性ガス流路及び前記酸化性ガス流路の総体積に対して、50%以上150%以下である、(1)~(8)のいずれかに記載の固体酸化物形燃料電池用セル。
(10)前記セルの厚みは、100μm以上1000μm以下である、(1)~(9)のいずれかに記載の固体酸化物形燃料電池用セル。
(11)少なくとも1つの(1)~(10)のいずれかに記載の固体酸化物形燃料電池用セルを、インターコネクタを介して複数積層した固体酸化物形燃料電池スタック。
(12)(11)の固体酸化物形燃料電池スタックを用いた固体酸化物形燃料電池。
インターコネクタを含むSOFCスタックの一部(単セルC)を示す図である。 インターコネクタを含むSOFCスタックの一部(単セルC)を示す図である。 SOFCスタックの発電領域と非発電領域を示す平面図である。 SOFCスタックの還元性ガス流路を含む燃料極の平面図である。 SOFCスタックの酸化性ガス流路を含む空気極の平面図である。 SOFCスタックのキャビティの構造の一例を示す平面図である。 インターコネクタの積層構造の一例を示す図である。 インターコネクタの積層構造の他の一例を示す図である。 インターコネクタの積層構造の他の一例を示す図である。 SOFCスタックの一例を示す図である。 実施例のSOFCスタックの製造工程で用いるグリーンシートの一部を示す図である。 実施例のSOFCスタックの製造工程で用いるグリーンシートの他の一部を示す図である。 実施例のSOFCスタックの製造工程で用いるグリーンシートの他の一部を示す図である。 実施例のSOFCスタックの製造工程で用いるグリーンシートの他の一部を示す図である。 実施例におけるSOFCスタックの製造工程の一部を示す図である。 実施例におけるSOFCスタックの製造工程の他の一部を示す図である。 実施例において得られるSOFCスタックを示す図である。 非発電領域における流路の有無によるSOFC焼成時の耐久性を比較した図である。
 本明細書は、SOFC用セル、SOFCスタック及びSOFCに関する。本明細書に開示されるSOFCは、ガス流通に貢献する第1領域と、前記第1領域に隣接しており、ガス流通に貢献しない第2領域とを備えており、第1領域の少なくとも1つの層に、還元性ガス流路又は酸化性ガス流路を備えている。第2領域の前記少なくとも1つの層に、少なくとも1つのキャビティを備える。すなわち、第1領域に隣接する第2領域において、ガス流路となる空洞構造が設けられる層と同一の層にキャビティ(別言すると、空間、空隙)が設けられている。これにより、ガス流路が設けられる層内における熱収縮率の差を低減することができる。したがって、一体焼結の際に生じる内部応力を緩和し、セルの割れや剥離を抑制することができる。
 以下、本開示の代表的かつ非限定的な具体例について、適宜図面を参照して詳細に説明する。この詳細な説明は、本発明の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本開示の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに開示は、さらに改善された固体酸化物形燃料電池、固体酸化物形燃料電池スタック構造体及びこれらの製造方法等を提供するために、他の特徴や開示とは別に、又は共に用いることができる。
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本開示を実施する際に必須のものではなく、特に本開示の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本開示の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組み合わせなければならないものではない。
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。
 なお、本明細書において、還元性雰囲気とは、1種又は2種以上の還元性のガスを含む組成のガスをいう。還元性雰囲気としては、また、還元性ガスにより特徴付けられるガスであり、還元性ガスを主成分として含むことが好ましい。また、還元性雰囲気は、実質的に1種又は2種以上の還元性ガスからなるか、還元性ガス以外に不活性ガスを含む組成のガスであることが好ましい。還元性ガスとしては、水素、一酸化炭素、硫化水素等が挙げられる。なお、還元性ガスとしては、還元性ガスでないガス(例えば、メタンなどの炭化水素ガスと水蒸気)をセル内で改質して還元性のガスを含むようになったガスを含む。
 本明細書において、酸化性雰囲気とは、1種又は2種以上の酸化性ガスを含む組成のガスをいう。酸化性雰囲気としては、また、酸化性ガスにより特徴付けられるガスであり、酸化性ガスを主成分として含むことが好ましい。また、酸化性雰囲気は、実質的に1種又は2種以上の酸化性ガスからなるか、酸化性ガス以外に不活性ガスを含む組成のガスであることが好ましい。酸化性ガスとしては、酸素、オゾン、亜酸化窒素、一酸化窒素、二酸化窒素等が挙げられる。
(インターコネクタ)
 インターコネクタは、燃料極と、固体電解質と、空気極とを備える、SOFCに用いるインターコネクタである。以下、適宜、図1等の図面を参照しながら、インターコネクタについて説明し、その後、インターコネクタが適用されるSOFCについて説明する。なお、図1及び2では、還元性ガス流路22と酸化性ガス流路24とを明示的に示すため、これらが平行するように記載している。
(第1の層)
 インターコネクタ10は、少なくとも、第1の層12を備えている。第1の層12は、インターコネクタ10において燃料極2側に位置されている。第1の層12は、インターコネクタ10において、燃料極2側又は燃料極2側となることが予定される側(以下、単に、燃料極側という。)にあればよく、インターコネクタ10において最も燃料極2側に位置されることを限定するものではない。また、直接的又は間接的に燃料極2に接合していればよい。
 第1の層12は、還元性雰囲気において高い電気伝導性と還元性ガス遮断性を備えることが好ましい。より具体的には、第1の層12は、還元性雰囲気において、後述する第2の層14よりも高い電気伝導性とガス遮断性とを備えることができる。かかる第1の層12を備えることで、燃料極2と高い導電性で接続できるとともに、水素などの還元性ガスを確実に遮断することができる。一方、第1の層12は、酸素などの酸化性雰囲気において電気伝導性が低いか又は実質的に電気伝導性を有していなくてもよく、また、酸化性雰囲気に対する耐性を有しておらず、結果として酸化性雰囲気におけるガス遮断性が低いか又は実質的にそれを有していなくてもよい。インターコネクタ10における第1の層12は、後述する第2の層14で空気極4との一体焼結性、空気極4との電気的接続性、酸化性ガスに対する耐性を発揮させればよいため、従来公知のインターコネクタの材料を容易に適用することができる。
 第1の層12は、SOFCに用いられる従来公知のセラミックス系インターコネクタ材料として用いられる導電性セラミックス材料を適宜選択して用いることができる。導電性セラミックス材料としては、各種公知のABOのペロブスカイト型酸化物が挙げられる。例えば、かかる酸化物は、希土類元素がドープされたペロブスカイト型酸化物であり、(Ln )M(ただし、a+b=1等ペロブスカイト構造に整合する数値である。)として表される。Lnは希土類元素であり、原子番号57~71までの元素が挙げられる。希土類元素としては、例えば、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)等の比較的イオン半径の大きな元素を用いることができ、Laを好ましく用いることができる。Mは、アルカリ土類金属を示し、例えば、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)が挙げられ、1種又は2種以上を用いることができる。Mは、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)等の遷移元素から選択される1種又は2種以上が挙げられる。好ましくは、Ti、Cr、Mn、Fe及びCoから選択される1種又は2種以上である。
 こうした導電性セラミックス材料としては、例えば、AサイトにLaとSr若しくはCaとが共存するLaCoO系酸化物、LaMnO系酸化物、La(CoFe)O系酸化物、LaCrO系酸化物、LaTiO系酸化物等が挙げられる。各種酸化物のBサイトには、Co、Mn、Tiと共に、別の元素として、Cr、Fe、Mg等が存在していてもよい。より具体的には、(LaSr)MnO、(LaSr)CoO、(LaSr)(CoFe)O、(LaSr)TiO、LaCrMgO等が挙げられる。
 第1の層12は、導電性セラミックス材料を、1種又は2種以上含むことができる。第1の層12は、かかるセラミックス材料をインターコネクタとしての特性を発揮可能に一部に含むほか、実質的に当該材料から構成されるものであってもよいし、当該材料のみからなるものであってもよい。好ましくは、第1の層12は、金属又は金属合金等の金属製導電性材料を含まない。なお、本明細書において、「実質的にある材料から構成される」とは、用いる材料がインターコネクタに付与する特性に大きな影響を与える可能性のある他の材料を含んでいないことを意味している。
 第1の層12に用いる材料は、例えば、インターコネクタが適用されるSOFCの燃料極2の材料、空気極4の材料、作動温度、スタック30の焼結温度等を考慮して、適宜選択される。第1の層12は、還元性雰囲気で高い導電性を示すLaTiO系酸化物、中でも、La0.3Sr0.7TiO等の(LaSr)TiO系酸化物を用いることが好ましい。
 第1の層12は、2以上の異なる組成の第1の層を積層して構成されてもよい。2以上の第1の層12は、同系のセラミックス材料を含んでいてもよいし、異なる系のセラミックス材料を含んでいてもよい。また、連続的又は断続的な傾斜組成を有していてもよい。
 第1の層12は、一般的にインターコネクタが備える緻密性を備えている。例えば、第1の層12は、相対密度(アルキメデス法による)が93%以上であることが好ましく、より好ましくは95%以上である。また、第1の層12の厚みは、特に限定するものではないが、例えば、スタック全体の大きさや導電性を考慮すると、1μm以上50μm以下とすることができる。また、好ましくは1μm以上30μm以下とすることもできる。さらに、1μm以上20μm以下とすることもできる。
(第2の層)
 インターコネクタ10は、少なくとも、第2の層14を備えている。第2の層14は、インターコネクタ10において空気極4側に位置されている。第2の層14は、インターコネクタ10において、空気極4側又は空気極4側となることが予定される側(以下、単に、空気極側という。)にあればよく、インターコネクタ10において最も空気極4側に位置されることを限定するものではない。また、直接的又は間接的に空気極4に接合していればよい。
 第2の層14は、酸化性雰囲気において、第1の層12よりも高い電気伝導性とガス遮断性とを備えることができる。かかる第2の層14を備えることで、空気極4と高い導電性で接続できると共に、空気等の酸化性ガスを確実に遮断することができる。一方、第2の層14は、水素ガス等を含む還元性雰囲気において電気伝導性が低いか又は実質的に有していなくてもよく、また、還元性雰囲気に対する耐性を有しておらず、還元性雰囲気におけるガス遮断性が低いか又は実質的に有していなくてもよい。
 第2の層14は、導電性セラミックス材料と固体電解質に含まれる元素の酸化物材料とを含むことが好ましい。第2の層14は、導電性セラミックス材料を用いることで、酸化性雰囲気で高い導電性と耐性と空気極4に対する一体性を発揮し、固体電解質6に含まれる元素の酸化物材料を含むことにより、固体電解質6との熱膨張係数を適合させることができる。こうした構成によれば、空気極4との一体性、熱膨張係数の適合性及び酸化性ガスに対する耐性及び遮断性を確保することができる。
 第2の層14は、導電性セラミックス材料と固体電解質に含まれる元素の酸化物材料とを含むことができる。第2の層14は、これらのセラミックス材料をインターコネクタとしての特性を発揮可能に一部に含むほか、実質的に当該材料から構成されるものであってもよいし、当該材料のみからなるものであってもよい。好ましくは、第2の層14は、金属又は金属合金等の金属製導電性材料を含まない。
 第2の層14に用いる導電性セラミックス材料としては、SOFCの空気極材料として用いられている公知の空気極材料から適宜選択して用いることができる。例えば、La又はLa及びSrを含有するABO型のペロブスカイト型酸化物が挙げられる。かかるペロブスカイト型酸化物としては、遷移金属ペロブスカイト型酸化物、例えば、AサイトにLa又はLaとSr若しくはCaとが共存するLaCoO系酸化物、LaMnO系酸化物、LaFeO系酸化物等が挙げられる。また、AサイトにLa又はLaとSr若しくはCaとが共存するLaTiO系酸化物等が挙げられる。なお、各種酸化物のBサイトには、Co、Mn、Tiとともに、別の元素として、Cr、Fe、Mg等が存在していてもよい。より具体的には、(LaSr)MnO、(LaCa)MnO、LaCoO、(LaSr)CoO、(LaSr)(CoFe)O、(LaSr)(TiFe)O等が挙げられる。なお、第2の層14において用いる空気極材料は、インターコネクタが介在される単セルにおける空気極4の材料と同一又は共通であってもよいが、異なっていてもよい。
 固体電解質に含まれる元素の酸化物材料としては、特に限定するものではなく、公知の材料を適宜選択して用いることができる。例えば、イットリウム(Y)、スカンジウム(Sc)、イッテルビウム(Yb)等の希土類元素で少なくとも部分的に安定化されたZrO(ジルコニア)、ガドリニウム(Gd)、Sm等の希土類元素がドープされたCeO(セリア)、SrやMg等のアルカリ土類金属で、La及びGaの一部を置換したLaGaO(ランタンガレート)等が挙げられる。
 第2の層14に用いる固体電解質に含まれる元素の酸化物材料のイオン伝導性は、固体電解質に用いる酸素イオン伝導性材料に比較して低減されていることが好ましい。インターコネクタにおいて、イオン伝導性により、インターコネクタの性能を制限するのを抑制される場合があるからである。酸素イオン伝導性材料のイオン伝導性を調整するには、酸素イオン伝導性材料における希土類元素の酸化物の添加量を抑制することが好ましい。例えば、インターコネクタ10が適用される固体電解質に用いられる部分安定化酸化物における希土類元素の酸化物の添加率の20%以上60%以下程度とすることが好適である。固体電解質にジルコニアが用いられるとき、概して6モル%~10モル%程度のイットリア等が添加される。例えば、第2の層14に用いる安定化材としての希土類元素の酸化物は、ジルコニア等の酸化物材料に対して、1.5モル%以上5モル%以下程度添加されていることが好ましい。より好ましくは2モル%以上4モル%以下程度である。
 導電性セラミックス材料及び固体電解質に含まれる元素の酸化物材料は、それぞれ、例えば、インターコネクタ10が適用されるSOFCの燃料極2の材料、空気極4の材料、作動温度、スタックの焼結温度等を考慮して、適宜選択される。導電性セラミックス材料と空気極材料との配合比率は、特に限定するものではないが、例えば、導電性セラミックス材料と固体電解質に含まれる元素の酸化物材料とを、質量比で、30:70~70:30等とすることができ、40:60~60:40とすることもできる。
 第2の層14は、2以上の異なる組成の第2の層を積層して構成されてもよい。2以上の第2の層は、同系のセラミックス材料を含んでいてもよいし、異なる系のセラミックス材料を含んでいてもよい。また、連続的又は段階的な傾斜組成を有していてもよい。
 インターコネクタ10は、その第1の層12と第2の層14とが、互いに直接一体化されていてもよいし、これらの層の間に1又は2以上の他の第3の層が介在されていてもよい。第1の層12と第2の層14とは、好ましくは焼結により一体化されている。より好ましくは、特別な介在層を備えることなく、直接焼結により一体化されている。
 第2の層14は、一般的にインターコネクタが備える緻密性を備えている。例えば、第2の層14は、相対密度(アルキメデス法による)が93%以上であることが好ましく、より好ましくは95%以上である。また、第2の層14の厚みは、特に限定するものではないが、例えば、スタック30全体の大きさや導電性を考慮すると、例えば、第2の層14として最も薄い部分において、1μm以上50μm以下とすることができる。また、好ましくは1μm以上30μm以下とすることもできる。さらに、1μm以上20μm以下とすることもできる。
 インターコネクタ10における第1の層12及び第2の層14の積層形態は、特に限定するものではなく、インターコネクタ10が適用されるSOFCにおける単セル構造等によって適宜決定される。インターコネクタの各種形態については、後段にて詳述する。
 インターコネクタ10は、後述するように、SOFCスタック30の製造工程において単セルと単セルとの間に介在させて単セルの積層体を製造するのと同時に製造されることが好ましい。例えば、第1の層12の材料層と第2の層14の材料層を適切に含む未焼結積層体をインターコネクタ前駆体として準備し、SOFCスタック30の製造工程に供してもよい。また、例えば、第1の層12の材料層と第2の層14の材料層を必要な順序で積層するようにして、SOFCスタック30の製造工程に供してもよい。SOFC及びその製造方法については後段で詳述する。
 インターコネクタ10全体の形態は、特に限定するものではないが、適用されるSOFCスタック30に応じた形態を採ることができる。例えば、平板型SOFCに適用される場合には、平板状体等となる。また、インターコネクタ10の全体の厚みは、特に限定するものではないが、例えば、最も薄い部分において1μm以上100μm以下とすることができる。好ましくは2μm以上60μm以下とすることができ、より好ましくは2μm以上40μm以下である。
 インターコネクタ10の第1の層12及び第2の層14のそれぞれの熱膨張係数(20℃~1000℃)は、8×10-6-1以上12×10-6-1以下であることが好ましい。この範囲であると、空気極層あるいは燃料極層との剥離を抑えることができるからである。スタック構造体の残留応力を考慮すると、より好ましくは、9.5×10-6-1以上11.5×10-6-1以下である。
 以上説明したインターコネクタ10は、接続すべき一方の単セルの燃料極2と他方の単セルの空気極4とに対してそれぞれ適したインターコネクタ特性、すなわち、導電性とガス耐性及び遮断性、を有しているため、全体として薄層でかつ十分なインターコネクタ特性を備えたものとすることができる。また、一体焼結型の金属材料非含有(換言すると全セラミックス製)SOFCスタック30の製造にあたり、燃料極に応じたセラミックス系の第1の層12の材料層と、空気極に応じたセラミックス系の第2の層14の材料層の各材料層をそれぞれ適用することで、第1の層12及び第2の層14がそれぞれ燃料極2及び空気極4に一体焼結されると共に、第1の層12及び第2の層14も相互に一体焼結される。このため、優れた導電性とガス遮断性とを確実に実現することができると共に、スタック30の積層工程を簡易かつ効率化でき、スタック30の一体焼結性を向上させることができる。
(固体酸化形燃料電池(SOFC)スタック)
 本明細書に開示されるSOFCスタックは、少なくとも2つの単セル間に、インターコネクタを備えることができる。こうしたSOFCスタックによれば、これら単セル間を高い電気伝導性とガス遮断性で接続及び分離でき、また、セルに対して一体焼結される場合には、高い一体性により、電気伝導性及びガス遮断性も向上されるほか、SOFCスタックの製造工程も簡略化される。以下、図1、2等を参照しながら、SOFC単セルをインターコネクタで積層したSOFCスタックについて説明する。
(単セル)
 SOFCにおけるセル(発電要素)Cは、燃料極2、固体電解質6及び空気極4を含んでいる。より具体的には、燃料極2及び空気極4が固体電解質6を介して積層された構造を有している。
(燃料極)
 燃料極2は、特に限定することなく、SOFCの燃料極に適用される導電性セラミックス材料の1種又は2種以上からなる多孔質体とすることができる。例えば、燃料極材料としては、希土類元素が固溶したジルコニア又はセリアと、Ni/NiOと、を含むことができる。希土類元素としては、例えば、Y、Sc、Sm、Gd等を用いることができる。具体的には、イットリア部分安定化又は安定化ジルコニア(YSZ)、スカンジア部分安定化又は安定化ジルコニア(ScSZ)、ガドリニア固溶セリア(GdC)とNi/NiOとを含むNiサーメットが挙げられる。
 燃料極2は多孔質であり、その気孔率は、適宜設定されるが、好ましくは、15%以上であることが好ましく、より好ましくは20%以上40%以下程度である。なお、本明細書において、気孔率は、機械的に切断研磨して作成した複数の断面を、走査型電子線顕微鏡で撮影した断面画像の気孔部と緻密部の面積比から測定することができる。例えば、5つの切断面のそれぞれについて当該層を含む500μm×500μmの視野で当該層の気孔部と緻密部を画像処理によって二値化して面積比を求めて、全ての切断面の平均をとることで気孔率を求めることができる。
 燃料極2における気孔形状は不定形状、繊維状、球状など任意の形状をとることができる。球状の場合の平均気孔径は、1μm以上10μm以下であることが好ましい。より好ましくは2μm以上5μm以下である。なお、本明細書において、平均気孔径は、機械的に切断研磨して作成した複数の断面を、走査型電子線顕微鏡で撮影した断面画像の気孔部を複数の球状の気孔が接続したと仮定した場合の平均径から測定することができる。例えば、5つの切断面のそれぞれについて当該層を含む500μm×500μmの視野で当該層の気孔部と緻密部を画像処理によって二値化し、視野に含まれる全ての気孔部に対して円近似した場合の直径を求めて、全ての切断面の平均をとることで平均気孔径を求めることができる。
(燃料極バッファ層)
 燃料極2は、略単一の気孔率及び/又は平均気孔径を備えていてもよいが、これらに関して異なる分布を有していてもよい。例えば、図2に示すように、燃料極2において固体電解質6から遠位あるいはインターコネクタ10の第1の層12に近位な部分においては、その気孔率及び/又は平均気孔径を、固体電解質6に近位又はインターコネクタ10の第1の層12から遠位な部分に比べて小さくした燃料極バッファ層2aを備えることができる。こうすることで、燃料極2とインターコネクタ(第1の層)10との密着性を高めることができ、一体性を向上させ剥離を抑制できる。一方、燃料極2内に還元性ガス流路22(後述)を設けて、燃料極2自体に還元性ガス流路22に倣った凸状部26を備えさせる場合には、燃料極バッファ層2aはこうした凸状部26によく追従して、薄い層であっても、還元性ガス流路(SOFCの製造工程においては、還元性ガス流路形成用の消失部材)22を燃料極2内に確実に内在させることができる。これにより、還元性ガス流路22の天面を直接インターコネクタ10の第1の層12に接することを回避して、燃料極2の導電経路の抵抗を下げることができる。
 なお、燃料極2が還元性ガス流路22に倣った凸状部26を有する形態を備えるようにすることで、燃料極2自体の厚みを薄くでき、SOFCスタック30の起動及び停止時に生じる、燃料極2に含まれるNiの酸化還元に伴う燃料極2の堆積変動を抑制でき、SOFCスタック30における剥離、変形及び破壊を抑制できる。
(燃料極バッファ層の平均気孔径)
 燃料極バッファ層2aは、また、例えば、燃料極2の固体電解質6側(燃料極2の固体電解質6側に接する層、以下、燃料極主層2bともいう。)の平均気孔径の40%以上90%以下であることが好ましい。この程度平均気孔径が小さいことで、燃料極バッファ層2aの凸状部26などの曲面・変形面に対する追従性が向上する。より好ましくは50%以上80%以下程度である。また、例えば、燃料極バッファ層2aの気孔が燃料極主層2bとともに球状の場合、平均気孔径は、燃料極主層2bのそれよりも小さく、かつ、1μm以上5μm以下程度とすることができる。
(燃料極バッファ層の気孔径分布)
 また、燃料極バッファ層2aの気孔が球状の場合の気孔径分布(細孔径分布)は、燃料極主層2bと比べて多分散であることが好ましい。多分散性であることにより、多様な曲面・変形面に対する追従性を付与することができる。例えば、燃料極バッファ層2aの気孔径分布は、平均値±0.2σに50%以下の気孔が存在する分布であることが好ましい。なお、本明細書において、気孔径分布は、機械的に切断研磨して作成した複数の断面を、走査型電子線顕微鏡で撮影した断面画像の気孔部を複数の球状の気孔が接続したと仮定した場合の平均径から測定することができる。
(燃料極バッファ層の気孔率)
 燃料極バッファ層2aの気孔率を、燃料極主層2bの気孔率よりも小さくすることができる。湾曲するなど変形する表面に対する追従性を高めると共に、インターコネクタ10の第1の層12との密着性を高めることができる。燃料極バッファ層2aの気孔率は、燃料極主層2bの気孔率の40%以上80%以下とすることが好ましく、より好ましくは60%以上80%以下である。
 燃料極バッファ層2aは、気孔に関する上記の3つの特性、すなわち、平均気孔径、気孔径分布及び気孔率のうち1又は2以上を備えることができる。好ましくは、3つを備えることができる。
 また、燃料極2が、燃料極主層2bと燃料極バッファ層2aとを備える場合、こうした気孔に関する傾斜組成は、連続的であってもよく、段階的であってもよい。気孔は、カーボン、またはでんぷん、アクリル等の高分子材料で焼失後にその形状を反映した気孔を形成する造孔剤を用いて形成することができる。例えば、燃料極2において、球状の気孔の平均気孔径及び/又は気孔径分布を調節するには、異なる粒径及び/又は粒径分布を持つ球状の造孔剤を用いることができる。また、気孔率を調節するには、任意の造孔剤の使用量を変更することができる。例えば、燃料極主層2bを、平均粒径がより大きい及び/又は粒径分布がより小さい球状造孔剤を含む燃料極材料から形成し、燃料極バッファ層2aを、平均粒径がより小さい及び/又は粒径分布がより大きい球状造孔剤を含む燃料極材料から形成することができる。なお、セラミックスにおける気孔の制御方法は当業者において周知の手法である。
 燃料極2の厚みは、特に限定するものではなく、還元性ガス流路22の有無や流路形態によっても異なるが、例えば、15μm以上500μm以下とすることができる。より好ましくは、20μm以上500μm以下とすることができる。さらに好ましくは50μm以上400μm以下とすることができ、なお好ましくは50μm以上300μm以下とすることができる。なお、後述するように、燃料極2及び空気極4の厚みは、1つの層において必ずしも一定ではない。したがって、燃料極2及び空気極4の厚みに関する記載は、特に言及されない限り、1つの層がこうした厚みの範囲にあることを意味している。
 また、燃料極バッファ層の厚みも、特に限定するものではないが、例えば、5μm以上50μm以下とすることができ、さらに例えば、5μm以上20μm以下とすることもできる。
(空気極)
 空気極4は、特に限定することなく、SOFCの空気極4に適用される導電性セラミックス材料の1種又は2種以上からなる多孔質体とすることができる。例えば、空気極材料としては、既に、インターコネクタ10の第2の層14の材料として例示した導電性セラミックス材料が挙げられる。
 空気極4は多孔質であり、その気孔率は、適宜設定されるが、好ましくは、15%以上であることが好ましく、より好ましくは20%以上40%以下程度である。空気極4における気孔が球状である場合の平均気孔径は、1μm以上10μm以下であることが好ましい。より好ましくは2μm以上5μm以下である。
 空気極4の厚みは、特に限定するものではなく、酸化性ガス流路24(後述)の有無や流路形態によっても異なるが、例えば、15μm以上500μm以下とすることができ、また、例えば、20μm以上500μm以下とすることができる。さらに例えば、50μm以上400μm以下とすることができる。
(固体電解質)
 固体電解質6は、特に限定することなく、SOFCの固体電解質に適用される酸素イオン伝導性材料の1種又は2種以上からなる緻密質体とすることができる。例えば、固体電解質材料としては、既に例示した酸素イオン伝導性材料が挙げられる。
 固体電解質6は緻密質であり、ガスの透過を遮断する観点から、インターコネクタ10と同様の相対密度を有していることが好ましい。また、固体電解質6の厚みは、特に限定するものではないが、例えば、1μm以上100μm以下とすることができる。より好ましくは、3μm以上40μm以下とすることができ、さらに好ましくは5μm以上30μm以下とすることができる。
(還元性ガス流路及び酸化性ガス流路)
 SOFCの単セルCは、燃料極2に供給される水素を含有する還元性ガスのための還元性ガス流路22、及び、空気極4に供給される酸素を含有する酸化性ガスのための酸化性ガス流路24を備えている。以下では、説明の便宜のため、両者を合わせて、単に「ガス流路22、24」ともいう。ガス流路22、24は、単セルを構成する1又は2つの層に亘って形成することができる。すなわち、ガス流路22、24は、それぞれ燃料極2、空気極4内に備えられていてもよいし、インターコネクタ10内に備えられていてもよい。還元性ガス流路22は燃料極2とインターコネクタ10にわたって備えられていてもよいし、酸化性ガス流路24は空気極4とインターコネクタ10にわたって備えられていてもよい。
 例えば、図1に示すように、これらのガス流路22、24は、燃料極2及び空気極4の厚み範囲に完全に埋設されたように内在させることもできる。こうすることで、抵抗の高いインターコネクタの体積の増大を抑制して発電性能の低下を抑制できる。あるいは、図示はしないが、燃料極2及び空気極4に接するインターコネクタにおいて燃料極2側及び空気極4側に開口するように設けることもできる。こうすることで、燃料極2の体積を抑制して、Niの酸化還元に伴う体積変動を抑制することができる。すなわち、還元性ガス流路22は、その外周の少なくとも一部が燃料極2によって規定されていればよい。酸化性ガス流路24についても同様に、その外周の少なくとも一部が空気極4によって規定されていればよい。
 また、例えば、図2に示すような形態で、少なくとも、燃料極2内に還元性ガス流路22を備える形態とすることができる。すなわち、燃料極2で還元性ガス流路22を被覆するように内包するが、還元性ガス流路22の厚みのうちの一部分の厚みしか備えない形態である。
 例えば、図2に示すように、燃料極2を、還元性ガス流路22の外形形態、配置パターン等に基づいて、単セルCの外方に向かって凸となる1又は2以上の凸状部26を備えるようにすることができる。こうすることで、燃料極2の層厚を薄くすることができ、燃料極2の体積増大によるNiの酸化還元(SOFCの起動及び停止に伴う)による燃料極2の体積変動を抑制することができる。
 こうした内在させる還元性ガス流路22に基づく凸状部26を有する燃料極2は、流路形成領域(後述)内における還元性ガス流路22含まない領域において、還元性ガス流路22の厚み(積層方向における厚み又は高さ)を充足しない厚みで燃料極2を備えるようにすることで形成される。すなわち、還元性ガス流路22の厚みの100%未満の厚みで燃料極2を備えるようにする。こうすることで、燃料極2の厚みを有効に低減して酸化還元耐性を向上させることができる。また、インターコネクタ10の第1の層12の厚みを適度に薄膜化することができ、電気抵抗を低下させることができる。例えば、当該領域において燃料極2は還元性ガス流路22の厚みの90%以下、また例えば、80%以下、さらに例えば、70%以下、さらにまた例えば、60%以下等とすることができる。また、当該領域において、燃料極2は、還元性ガス流路22の厚みの1%以上であり、例えば、同10%以上であり、また例えば、20%以上であり、さらに例えば、30%以上である。典型的には、燃料極2の厚みは、流路形成領域内の還元性ガス流路22を含まない領域において、還元性ガス流路22の厚みの30%以上70%以下等とすることができる。
 例えば、当該領域において燃料極2は燃料極2内における還元性ガス流路22の最大高さの90%以下、また例えば80%以下、さらに例えば70%以下、さらにまた例えば60%以下、さらに例えば50%以下、さらにまた例えば40%、さらに例えば30%、また例えば20%以下等とすることができる。また、当該領域において、燃料極2は、還元性ガス流路22の厚みの1%以上であり、例えば同5%以上であり、また例えば10%以上等とすることができる。典型的には、燃料極2の厚みは、流路形成領域内の還元性ガス流路22を含まない領域において、還元性ガス流路22の最大高さの5%以上50%以下等とすることができる。
 さらに、こうした燃料極2を形成するには、既述のように燃料極2を、燃料極主層2bと燃料極バッファ層2aとで形成することで、還元性ガス流路22に基づく凸状部26に密着し、還元性ガス流路22を内包又は被覆する燃料極2を容易に形成することができる。特に限定するものではないが、還元性ガス流路22の上部には、燃料極バッファ層2aを主として備えることが好ましい。
 さらに、1又は2以上の還元性ガス流路22に応じた凸状部26を備える表面形態を有する燃料極2に対して好適な特性を備えるインターコネクタ10の第1の層12を備えることで、還元性雰囲気での電気伝導性、ガス遮断性を確保し、さらに第2の層14を備えることで、隣接する単セルCの空気極4に由来する酸化性雰囲気での電気伝導性及びガス遮断性を確保できる。このように、インターコネクタ10のセラミックス2層含有構造によれば、隣接する電極の特性のみならず変化を有する表面形態に応じて、優れた追従性及び密着性を発揮して、こうして変化した表面形態を緩衝して良好な一体性、成型性、形状のSOFCスタック30を構築することができる。また、インターコネクタ10のセラミックス2層含有構造によれば、こうした変化を有する電極表面に応じて2層の存在形態、すなわち、各層の厚みや配置パターンも変化させて、インターコネクタ及びスタック30としての性能を最適化することができる。
 なお、燃料極2に還元性ガス流路22を配設する形態について種々説明したが、上記形態は空気極4における酸化性ガス流路24についても適用することができる。以下に、SOFCセルに好適なガス流路形態及びその関連構造について説明する。
 図3は、単セルCを平面視したときの発電領域31及び非発電領域32を示す図であり、図4は、還元性ガス流路22を含む位置における燃料極2の平面図であり、図5は、酸化性ガス流路24を含む位置における空気極4の平面図である。図3に示すように、単セルCは、燃料極2、固体電解質及び空気極4によって生じる全体の電極反応に主として寄与する発電領域31を備えている。発電領域31の平面形態は特に限定するものではないが、概して、単セルCの燃料極2に対して還元性ガスの流通に貢献する第1領域33(図4)と酸化性ガスの流通に貢献する第1領域33(図5)とが、単セルCにおける各要素の積層方向で重複している領域に一致する。なお、図3は、図の分かり易さのため、還元性ガス流路22及び酸化性ガス流路24を共に描いているが、実際には両者は別の層に設けられている。
 例えば、図3に示すように、本明細書に開示される単セルCは、平面視すると、その中央部に位置する発電領域31と、発電領域31を囲むようにその外周部に位置する非発電領域32とを備えることができる。非発電領域32は、単セルC全体の電極反応には主に寄与しない領域である。すなわち、非発電領域32は、燃料極2に対する還元性ガスの供給と空気極4に対する酸化性ガスの供給の少なくとも一方がなされない領域である。
 図4に示すように、本単セルCは、燃料極2において、発電領域31に還元性ガスを流通させるための第1領域(ガス流路形成領域)33を備えており、第1領域33には、還元性ガス流路22が形成されている。また、同様に、図5に示すように、空気極4において、発電領域31に酸化性ガスを流通させるために、第1領域(ガス流路形成領域)33を備えており、第1領域33には、酸化性ガス流路24が形成されている。
 ガス流路22、24の厚み(すなわち、単セルCにおける要素の積層方向に沿う厚み又は流路高さ)は、ガス流路22、24が備えられる部位(インターコネクタ及び/又は電極)やガス流路パターン等によっても異なり、特に限定するものではないが、例えば、50μm以上400μm以下とすることができる。また、例えば、燃料極2内におけるガス流路22の厚みは、100μm以上200μm以下であることが好ましく、空気極4におけるガス流路24の厚みは、150μm以上300μm以下であることが好ましい。
 還元性ガス及び酸化性ガスの各ガス流路22、24のパターンは特に限定するものでなく、種々のパターンを採ることができる。SOFCの形態にもよるが、例えば、平板型SOFCの場合には、平面視で、複数の直線状の流路が一定間隔で整列するパターン、複数のサイズの異なるコの字状の流路がよりサイズが小さくなる順に内側に配置されるパターン、渦巻き状の一続きの1又は2以上の流路が配置されるパターン、中心から放射状に流路が伸びるように配置されるパターン、格子状に流路が配置されるパターン等が挙げられる。
 ガス流路22、24の開口形状は、特に限定するものではない。例えば、図1に示す台形状、図2に示す半円状のほか、矩形状、円状等、様々な形状を適用することができる。
 同時に、単セルCは、燃料極2において第1領域33の外側であって、還元性ガス流路22を形成する必要のない(すなわち、ガス流通に貢献しない)第2領域(ガス流路非形成領域)34に、還元性ガス流路22と同様の構造を有するキャビティ23を同様のパターンで備えることができる(図4参照)。また、空気極4において第1領域33の外側であって、酸化性ガス流路24を形成する必要のない第2領域(ガス流路非形成領域)34に、酸化性ガス流路24と同様の構造を有するキャビティ25を同様のパターンで備えることができる。
 キャビティ23、25それぞれの厚みも、特に限定するものではないが、ガス流路22、24それぞれと同様の厚みを有することが好ましい。また、キャビティ23、25それぞれのパターンも特に限定されない。上記のようにガス流路22、24と同様のパターンを適用することもできるし、ガス流路22、24とは異なるパターンを採ってもよい。
 また、キャビティ23、25は、その一部又は全部が外気と連通する開気孔であってもよいし、外気と連通せずセル内部に孤立する空間である閉気孔であってもよい。閉気孔としては、例えば、ガス流路22、24のような連続した孔部形態であって、その両端が閉じた構造や、図6に示すように、断続的に形成されたそれぞれ独立する又は一部連通する複数の孔部を含む形態等が挙げられる。個々のキャビティの形状も特に限定するものではなく、例えば、球状、立方体状等、様々な形状を有することができる。好ましくは、キャビティ23、25は、ガス流路22、24の開口形状と同一形状又は相似形状を有し、ガス流路22、24の延在方向と同一方向に延在する。
 キャビティ23、25が形成される層は、特に限定されない。キャビティ23、25は、ガス流路22、24の態様に準じて、ガス流路22、24が形成される1(燃料極2、空気極4又はインターコネクタ10)又は2つの層(例えば、インターコネクタ10と燃料極2、インターコネクタ10と空気極4)と少なくとも部分的に一致するように形成されてもよいし、ガス流路22、24の形成される1又は2つの層でない層に形成されていてもよい。好ましくは、キャビティ23、25は、ガス流路22、24が形成される1又は2つの層に一部一致して又は完全に一致して形成される。こうした構成により、流路形成領域と流路非形成領域との熱収縮及び線熱膨張係数を適合させることができる。
 また、本単セルCでは、図3~5に示すように、還元性ガス流路22と酸化性ガス流路24とが直交するように設けられているが、これに限られない。例えば、両者を同一方向に延在するように設けてもよいし、直交しないような角度で交差させるように設けてもよい。
 キャビティ23、25の厚み(すなわち、単セルCにおける要素の積層方向に沿う厚み又は高さ)は、特に限定するものではないが、例えば、ガス流路22、24の厚みに対して20%以上100%以下であることが好ましい。より好ましくは60%以上100%以下である。
 単セルCにおいて、流路非形成領域の総体積に対するキャビティの体積の占める比率(以下、キャビティ体積比率という。)は、特に限定されないが、例えば、前記流路非形成領域に対応する同一単セルC内(詳細には、同一層内)の流路形成領域の総体積に占めるガス流路の体積の比率(以下、流路体積比率という。)に対して50%以上120%以下とすることができる。また、例えば、80%以上100%以下とすることができる。
 なお、キャビティ体積比率は、対象となるキャビティが関連する還元性ガス流路22又は酸化性ガス流路24に対して算出される。また、キャビティ体積比率を算出するのにあたり、流路非形成領域は、発電領域の最も外側にあるガス流路よりも外側の領域とし、また、その総体積は、対象となるキャビティが存在する1又は2つの層についての流路非形成領域の総体積とする。また、流路形成領域は、発電領域の最も外側にあるガス流路から内側の領域とし、また、その総体積は、対象となるガス流路が存在する1又は2つの層についての流路形成領域の総体積とする。なお、キャビティ体積比率は、単セルCのみならず、セルを複数備えるスタックについて、各セルについてのキャビティ体積比率の総和により算出することもできる。
 また、単セルCにおけるキャビティ23の総体積は、還元性ガス流路22の総体積に対して、50%以上150%以下であることが好ましい。同様に、キャビティ25の総体積は、酸化性ガス流路24の総体積に対して、50%以上150%以下であることが好ましい。
 上記のような断面積及び総体積を有するガス流路及びキャビティをそれぞれ形成することで、同一層内(燃料極2又は空気極4)における熱収縮率を均一化することができる。
 なお、還元性ガス流路22とキャビティ23は、上述した構成のように多孔質層(本単セルCでは燃料極2)によって遮断されていてもよいし、当該層内に開気孔構造を形成することによって接続されていてもよい。酸化性ガス流路24とキャビティ25の関係についても同様である。
 このようにして構成される単セル(燃料極、空気極、固体電解質)Cの厚みは、特に限定するものではないが、例えば、100μm以上1000μm以下とすることができる。また、好ましくは150μm以上1000μm以下とすることができる。さらに、好ましくは200μm以上1000μm以下とすることができる。また、好ましくは300μm以上600μm以下とすることができる。
 また、単セルCの燃料極2及び/又は空気極4の表面は、内在させたガス流路及びキャビティ22~25の外形形態及び配置パターンに基づく凸状部26等を備えることもできる。
 SOFCの単セルC及びSOFCスタック30は、燃料極2及び空気極4に供給される各ガスを封止するためのシール部20を適宜備えることができる。シール部20の形態は特に限定するものではないが、例えば、国際公開第WO2009/119771号に開示されるシール部のほか、適宜公知のシール構造を採用することができる。
 単セルCの発電領域上部には、集電材料として、銀、白金等の貴金属材料、またはステンレス等の金属材料が接続される。非発電領域における単セルCの最外部には、ガスを供給するための部品として、セラミック材料で構成されるガスマニフォールドが接続される。ガスマニフォールドとセルの接続には、アルミナ、ジルコニア等のセラミック材料またはガラス材料及びその混合材料を用いることができる。こうした構成により、単セルCはSOFCシステムとして機能することができる。
(SOFC及びSOFCスタックに対するインターコネクタの構造)
 本明細書に開示されるSOFCは、単セルCに対してインターコネクタ10又はその一部を備えることができ、また、SOFCスタック30は、少なくとも2つの単セルCがインターコネクタ10を介して接続された構造を有している。図1、2に示すように、燃料極2、空気極4及び固体電解質6が積層された単セルCは、他の単セルCとインターコネクタ10を介して接続されてSOFCスタック30を構成している。インターコネクタ10の第1の層12及び第2の層14は、SOFCにおける各発電要素の態様に応じて様々な積層形態を採ることができる。
 例えば、平板型SOFCの場合には、図7に示すような形態が挙げられる。なお、図7に示す形態では、適宜ガス流路を省略している。図7Aは、第1の層12及び第2の層14が、それぞれ平坦な層である形態を示す。この形態においては、各ガス流路22、24は、インターコネクタにあっても電極内にあってもよいが、電極内にある場合においては、ガス流路は電極の層厚に内包されており、電極表面にガス流路に起因する凸状部が現れていない状態となっている。
 また、図7Bは、第1の層12が燃料極2に内在するガス流路22に基づく1又は2以上の凸状部26に対応する1又は2以上の湾曲部12aを有する層であり、第2の層14が、第1の層12の湾曲部12aでない部分、すなわち、底部12bを充填してインターコネクタ10全体として略均一な厚みの層となるような充填部14bを有する層である形態を示す。ここで、第1の層12は、おおよそ均一な厚みの波状又はコルゲート状の層である。また、第2の層14は、還元性ガス流路22上又はその周囲に対応する湾曲部12aにおいては、相対的に層厚の薄い被覆部14aを備え、還元性ガス流路22間に相当する底部12bにおいては、相対的に層厚の厚い充填部14bを備えている。このインターコネクタ形態によれば、全体として均一な厚みを確保するとともに、燃料極2に対して必要十分な形態で第1の層12を適用できる。また、第2の層14で、インターコネクタ10を全体として略平坦で均一な厚みにすることができる。
 さらに、図7Cは、図7Bとは異なり、空気極4に対する第2の層14が空気極4の酸化性ガス流路24に基づく凸状部28を有する表面形態に倣った湾曲部14cと底部14dを有して波状又はコルゲート状で略均一な厚みの層であり、第1の層12が、第2の層14の底部14dを充填する充填部12dを有し、湾曲部14cを薄く被覆する被覆部12cを備える形態を示す。すなわち、酸化性ガス流路24上又はその周囲に対応する湾曲部14cにおいては、第1の層12は相対的に薄く、酸化性ガス流路24間である底部14dにおいては、第1の層12は相対的に厚くなっている。この形態においても、空気極4に対して必要十分な形態で第2の層14を適用できる。また、第2の層14で、インターコネクタ10を全体として略平坦で均一な厚みにすることができる。
(拘束層)
 図8に示すように、SOFCの単セルC又はSOFCスタック30は、その積層体において少なくとも1つの拘束層40を備えることができる。拘束層40は、少なくとも、導電性セラミックス材料と固体電解質に含まれる元素の酸化物材料とを含む非多孔質層42を含むことができる。かかる拘束層40を備えることで、積層体の平面(x-y平面)内における収縮率偏差を抑制するとともに、積層方向(z方向)における反りや曲げを抑制するように焼成挙動を調整することができる。これにより、ガス流路22、24の変形や歪み、燃料極2、空気極4及び固体電解質6等におけるクラックや剥がれ、セル等の割れを抑制して、発電特性及び一体性に優れるSOFC単セルC及びSOFCスタック30を得ることができる。
 拘束層40に使用する導電性セラミックス材料は、既述した空気極4に好適である導電性セラミックス材料を用いることができる。また、固体電解質に含まれる元素の酸化物材料としては、既述した固体電解質6に好適である酸素イオン伝導性材料から用いることができる。かかる組成とすることで、拘束層40の熱膨張係数を容易に調整して、拘束層40による焼成挙動の調整を可能とすることができる。拘束層40の熱膨張係数(20℃~1000℃)は、10×10-6-1以上15×10-6-1以下であることが好ましい。この範囲であると、インターコネクタ10あるいは空気極4との界面で剥離が起きにくいからである。SOFCスタック30の残留応力を考慮すると、より好ましくは、10×10-6-1以上12×10-6-1以下である。
 拘束層40は、少なくとも非多孔質層42を備えている。非多孔質層42は、固体電解質6やインターコネクタ10と同様の緻密性を備えることができる。また、気孔率としては、10%以下であることが好ましく、より好ましくは5%以下である。非多孔質層42の厚みは特に限定するものではないが、例えば、10μm以上200μm以下、好ましくは50μm以上100μm以下とすることができる。
 拘束層40は、さらに、非多孔質層42と同様、導電性セラミックス材料と固体電解質に含まれる元素の酸化物材料を含んで多孔質である多孔質層44を備えることができる。非多孔質層42と多孔質層44とを備えることで、焼成挙動の調整がより容易になる。多孔質層44における気孔率は、非多孔質層42よりも大きければ特に限定するものではないが、例えば、10%以上50%以下とすることができる。この範囲であると、非多孔質層42との組合せによる焼成挙動の調整が容易であるからである。多孔質層44の厚みは、特に限定するものではないが、例えば、10μm以上200μm以下、好ましくは50μm以上100μm以下とすることができる。
 なお、非多孔質層42は、SOFC単セルC及びSOFCスタック30の空気極4側の終端部に配置されるとき、空気極4に対してインターコネクタ10としても機能することができる。したがって、例えば、その場合には、インターコネクタ10の第2の層14を省略することができる。
 拘束層40が非多孔質層42と多孔質層44とを備えるとき、これらの積層形態は特に限定するものではないが、非多孔質層42と多孔質層44とを交互に備えることができる。これらの層の双方を備えるとき、各層の積層数や厚みは異なっていても同一であってもよいが、焼成挙動の調節の観点からは、非多孔質層42と多孔質層44の積層数を同数とするか及び/又は各層の厚みの合計を同一とすることが好ましい。
 拘束層40としての非多孔質層42及び多孔質層44は、それぞれ、導電性セラミックス材料と固体電解質に含まれる元素の酸化物材料とを含むことができる。これら2種類の層42、44において同一種類の導電性セラミックス材料及び固体電解質に含まれる元素の酸化物材料を用いてもよいし、少なくとも一方が異なっていてもよい。好ましくは、これら2種類の層42、44は、組成(配合)は異なっていてもよい同一であってもよいが、同一種類の材料を用いる。なお、複数の非多孔質層42を備えるとき、これらの非多孔質層42同士においても、導電性セラミックス材料と固体電解質に含まれる元素の酸化物材料に関し、上記と同様の態様が適用される。また、複数の多孔質層44を備えるとき、これらの多孔質層44同士においても、導電性セラミックス材料と固体電解質に含まれる元素の酸化物材料に関し、上記と同様の態様が適用される。
 これら2種類の層42、44における、導電性セラミックス材料と固体電解質に含まれる元素の酸化物材料との配合比率は、特に限定するものではないが、例えば、導電性セラミックス材料と固体電解質に含まれる元素の酸化物材料とは、質量比で、30:70~70:30などとすることができ、40:60~60:40とすることもできる。
 また、各層42、44は、それぞれ焼結性を高めたり、高温焼成時の耐熱性を向上させるために適宜添加剤を含むことができる。例えば、既述の各種添加剤のほか、耐熱性の観点からは、セリア等を添加することができる。セリア等の高温耐熱性添加剤は、特に限定するものではないが、多孔質層44に添加することが好ましい。これら添加剤の含有量は、特に限定するものではないが、例えば、各層42、44における全セラミックス材料(添加剤を含む)に対して0.5質量%以上10質量%以下とすることができ、好ましくは2質量%以上8質量%以下とすることができる。
 多孔質層44における気孔形状は特に限定するものではないが、球状気孔を形成することができる。球状の場合には平均気孔径は特に限定するものではないが、例えば、0.5μm以上5μm以下とすることができる。0.5μm未満及び5μm超では、いずれも十分な焼成挙動の調整が困難であるからである。
 セラミックス材料における気孔率及び平均気孔径の調節は、当業者において周知であり、当業者であれば、適宜意図した気孔率及び平均気孔径のセラミックス層を作製できる。
 拘束層40は、SOFCにおいて、任意の部位に備えることができる。すなわち、拘束層40は、単セルCにおける燃料極2側及び空気極4側のいずれか一方又は双方に備えることができるほか、スタック30に含まれる複数の単セルCの少なくとも一部に対して拘束層40を備えていてもよい。また、スタック30の最も外側の一方又は双方に備えることができる。
 例えば、図8に示すように、SOFCの単セルCの燃料極2側においては、単セルCに対して付与されたインターコネクタ10の第1の層12に対して、すなわち、第1の層12よりもセルCの外側に位置するように拘束層40を備えることができる。また、空気極4側においては、空気極4が流路を内包する場合には、空気極4に対して、すなわち、空気極4よりもセルCの外側に位置するように拘束層40を備えることができる。
 これらの場合において、拘束層40としての非多孔質層42及び多孔質層44の積層形態は特に限定しないが、例えば、非多孔質層42を第1の層12及び空気極4に対して備え、さらに、必要に応じて、より外側に多孔質層44を備えることができる。好ましくは、最外層に多孔質層44を備える。また、こうした積層形態は、焼成挙動の制御の観点からは、非多孔質層42及び多孔質層44は、固体電解質6を挟んで対称的に配置されていることが好ましい。
 また、例えば、図8に示すように、SOFCスタック30において、燃料極2側の終端部(スタック30の積層方向に沿う一方の端部)及び/又は空気極4側の終端部(スタック30の積層方向に沿う他方の端部)に備えることができる。
 以上説明したように、インターコネクタ10は、導電性と、SOFCに適用される還元性ガスと酸化性ガスとに対する耐性と、をそれぞれ発揮し、さらにセルCとの一体焼結に好適なものとなっている。この結果、インターコネクタ10によれば、製造工程を複雑化することなく、発電特性及び一体性に優れたSOFC及びSOFCスタックを得ることができる。
(SOFCスタックの製造方法)
 本明細書に開示されるSOFCスタックの製造方法は、少なくとも第1の単セルと第2の単セルとをインターコネクタを介して積層されたスタックを得るのにあたって、第1の単セルの燃料極の材料を含む燃料極材料層と、インターコネクタの材料を含むインターコネクタ材料層と、第2の単セルの空気極の材料を含む空気極材料層と、を少なくとも含むスタックの前駆体を、焼成により一体化する工程、を備えることができる。この製造方法において、インターコネクタ材料層は、燃料極材料層側に位置される第1の層と、空気極材料層側に位置される第2の層と、備えており、第1の層は、還元性雰囲気において第2の層よりも高い電気伝導性とガス遮断性とを備え、第2の層は、酸化性雰囲気において第1の層よりも高い電気伝導性とガス遮断性とを備えることができる。
 この製造方法によれば、燃料極及び空気極のそれぞれに対して好適なインターコネクタ特性(導電性及びガス遮断性)を有する層をそれぞれ適用でき、優れた導電性と一体性を発揮させることができる。しかも、第1の層と第2の層とは、セルの要素との一体焼結性に好適であるため、製造工程を複雑化することなく、スタックの一体焼結が可能である。さらに、第1の層及び第2の層は、それぞれ独立した特性を発揮できることから、燃料極や空気極の種々の態様に応じて厚みやパターンを適宜することができる。
 また、本明細書に開示されるSOFCスタックの製造方法は、ガス流通に貢献する第1領域の少なくとも1つの層に、還元性ガス流路又は酸化性ガス流路を形成する工程と、第1領域に隣接する第2領域の前記少なくとも1つの層に、少なくとも1つのキャビティを形成する工程、を備えることができる。
 この製造方法によれば、ガス流路が形成される層と同一層にキャビティが形成される。これにより、その層内の熱収縮率を均一化し、SOFCスタックを一体焼結する際に生じる内部応力を緩和することができ、スタックの割れや剥離を抑制することができる。このため、SOFCスタックの製造の歩留まりを向上させることができる。
 本明細書におけるSOFCスタックの製造方法は、概して公知の一体焼結型のSOFCスタックの製造方法に準じることができる。当業者であれば、例えば、国際公開WO2009/119771号公報に開示される方法を適宜参照して本製造方法を実施することができる。
 SOFCスタックの製造方法は、特に限定するものではないが、概して、単セル及びスタックを構成する1又は2以上の要素の材料を含むグリーンシートを予め準備した上で積層したり、適宜、こうした材料層をスラリーとして直接積層したりしつつ、これらを必要な順序で積層し、一体焼成する。どのような要素を含むグリーンシートを準備するか、あるいはスラリーとして供給するか、さらには、積層順序等は、SOFCスタックを得られる範囲で当業者であれば適宜決定して実施することができる。
 また、SOFCスタックの各要素の材料層の積層体(スタック前駆体)の焼成方法も、概して、公知の一体焼結型のSOFCスタックの製造方法に準じることができる。すなわち、スタック前駆体の焼成は、前駆体を構成するセラミックス材料が少なくとも一部が焼結されて緻密質又は多孔質の所望の焼成体を得られるように実施する。好ましくは、全ての要素を共焼結させる。例えば、1250℃以上1550℃以下の温度で加熱処理することができ、好ましくは1250℃以上1500℃以下である。より好ましくは1250℃以上1400℃以下である。なお、空気中で焼成することができる。上記焼成温度での焼成時間は、特に限定するものではないが、例えば、1~数時間程度などとすることができる。
 焼成に先立って、スタック前駆体を、60℃~120℃程度の温度で、必要に応じて冷間等方圧プレス(CIP)することにより圧着した。この圧着体を温度300℃~500℃の範囲内で脱脂処理を施すことができる。
 なお、スラリーやグリーンシート自体の作製方法は、当業者に周知である。例えば、各層のためのスラリーは、各要素の材料を主成分等として、さらにバインダー樹脂、有機溶媒などが適量加えることで調製することができる。また、グリーンシートは、調製したスラリーを、ナイフコート、ドクターブレードなどの塗工装置を用いたテープキャスト法などのキャスティングによるシート成形法、あるいはスクリーン印刷法やスプレー法などを用いてグリーンシート前駆体を得ることができる。なお、得られたシート前駆体を、常法に従い、乾燥後、必要に応じて加熱処理することでグリーンシート(未焼成のセラミックスグリーンシート)を得ることができる。
 また、燃料極、空気極、拘束層の多孔質層の作製方法も、当業者に周知である。例えば、当業者は、公知の方法に従って粒子状の消失材料をスラリーの配合に含めるか、あるいは造孔剤等を含めることで、所望の平均気孔径、気孔率、気孔径分布等や適度な多孔質性を焼成により発現できるグリーンシートを作製することができる。なお、消失材料自体も周知であるとともに、各種材料を商業的に入手可能である。
 燃料極、空気極またはインターコネクタにガス流路22、24を形成する方法も、当業者に周知である。当業者であれば、公知の方法に従い、燃料極材料のグリーンシート等に所望のガス流路パターンを形成可能な消失材料を配置して、さらに燃料極材料のグリーンシート等を積層するなど適宜実施することができる。具体的には、消失材料となるアクリル、ポリエチレン、ポリスチレン等の高分子材料やカーボンブラック等をスクリーン印刷法、切削法等を用いることで流路パターンを形成し、セルを一体焼成するときに消失材料を焼失させることで、ガス流路を形成することができる。キャビティ23、25も、同様に公知の方法で所望の開口形状、大きさ、パターンでガス流路22、24と同時に形成することができる。
 また、適宜、燃料極材料層や空気極材料層に隣接してシール部となるシール材料層を備える電極グリーンシートも製造できる。
 本製造方法において、インターコネクタほか、燃料極バッファ層、拘束層を適宜採用することにより、それぞれの要素に応じた利点を製造方法においても発揮させることができ、発電特性、一体性等に優れるSOFCスタックを得ることができる。
 以下に、本製造方法の一例の概要を説明する。固体電解質の材料を含むスラリーから固体電解質用グリーンシートを準備した。燃料極の材料と造孔剤とを含む燃料極用スラリーとシール材料を含むシール用スラリーから燃料極用グリーンシートを作製し、その上に、消失材料からなる流路形成材を流路形成領域となる領域にスクリーン印刷等により付与すると共に、同様の消失材料を流路非形成領域となる領域に同様の方法で付与し、さらに、燃料極用スラリーとシール用スラリーとを、例えば、流路形成材の高さの30%以上70%以下程度の範囲となるまで所定のパターンで付与する。さらに、インターコネクタの第1の層用スラリーを、燃料極材料層の凸部を含む表面形態に沿っておおよそ均一の厚みで付与する。さらに、その後、第1の層用スラリー表面に、燃料極材料層の凸部を覆って略平坦な層表面となるように、インターコネクタの第2の層用のスラリーを付与して燃料極材料層を含むグリーンシートを準備する。なお、別個の燃料極用スラリーとして、燃料極バッファ用材料を含む燃料極バッファ用スラリーをさらに付与することもできる。
 また、空気極の材料と造孔剤とを含む空気極用スラリーとシール材料を含むシール用スラリーから空気極用グリーンシートを作製し、その上に、消失材料からなる流路形成材をスクリーン印刷等により付与すると共に、同様の消失材料を流路非形成領域となる領域に同様の方法で付与し、さらに、空気極用スラリーとシール用スラリーとを所定のパターンで付与して、空気極材料層を含むグリーンシートを作製した。また、空気極材料層を含むグリーンシートに、非多孔質拘束層材料用スラリーとシール用スラリーとを付与して、空気極側終端用グリーンシートを準備する。
 別途、非多孔質拘束層用スラリーとシール用スラリーとを用いて非多孔質拘束層用グリーンシートを燃料極側終端用グリーンシートを準備する。また、多孔質拘束層用スラリーとシール材料とを用いて、多孔質拘束層用グリーンシートを準備する。
 これらのグリーンシートを、適数個、例えば、2個以上30個以下、また例えば、5個以上20個以下程度含むように積層して、SOFCスタック前駆体を作製することができる。この前駆体を圧着、脱脂処理後に、所定の温度で焼成する。
 例えば、以上のような製造工程により、インターコネクタを備えるSOFCスタックを得ることができる。また、特殊形態の燃料極に対応するインターコネクタ構造を備えるSOFCスタックを製造することもできる。さらに、燃料極バッファ層も備えるSOFCスタックを製造することができる。さらにまた、拘束層を備えるSOFCスタックを備えることもできる。
 以上説明したSOFCスタックは、さらに、必要に応じて集電体等を接続し、還元性ガス及び酸化性ガスの供給源などを適宜接続し、さらに、加熱装置を備えるようにすることで、SOFCシステムを構築できる。
 なお、以上説明したSOFCスタックの製造方法は、本明細書に開示されるSOFCスタックの製造方法の一例に過ぎない。したがって、従来公知のSOFCの製造方法に従い、SOFCの単セルやSOFCスタックを構成する層の少なくとも1層を含むグリーンシートの積層や構成層を直接スラリーを塗布等することによる積層を適宜組み合わせて、SOFC及びSOFCスタックを製造することができる。
 以下、本明細書の開示を具現化した実施例を説明するが、本明細書の開示は以下の実施例に限定されるものではない。
 本実施例では、SOFCスタックの製造例である。以下、SOFCスタックにおける各要素のセラミックス材料を示し、次いで、図9A~9Dに示すスタックの製造工程について説明する。
(SOFCスタックの原料)
(1)固体電解質
 添加量8モル%のイットリア(Y)で安定化されたジルコニア(ZrO)(8モル%イットリア安定化ジルコニア:8YSZ)
(2)燃料極
 酸化ニッケル(NiO) 60質量%と8YSZ40質量%の混合物
(3)空気極
 La0.8Sr0.2MnO 50質量%と8YSZ45質量%とセリア(CeO)5質量%との混合物
(4)燃料側インターコネクタ(インターコネクタの第1の層)
 La0.3Sr0.7TiO
(5)空気側インターコネクタ(インターコネクタの第2の層)
 La0.8Sr0.2MnO 50質量%と3YSZ45質量%とセリア5質量%との混合物
(6)シール部
 8YSZ
(7)拘束層
 La0.8Sr0.2MnO 50質量%と8YSZ45質量%とセリア(CeO)5質量%の混合物
(2)製造工程
(2-1)グリーンシートの製造
(固体電解質用グリーンシート)
 固体電解質原料と、ポリビニルブチラール系バインダーと、有機溶媒としてのエタノール(以下、単に溶媒という。)とを混合して固体電解質用スラリーとした。その後、図9Aに示すように、ドクターブレード法により、固体電解質用グリーンシート101を作成した。
(燃料極用グリーンシート)
 燃料極原料100質量部に対しての平均粒子径10μm及び平均粒径の±0.1σに50%以上の粒子が分布するアクリル粒子を20質量部添加し、この混合粉末と、ポリビニルブチラール系バインダーと、溶媒とを混合して燃料極用スラリーとした。また、燃料極原料100質量部に対して、先のアクリル粒子よりも小径の平均粒子径5μm及び平均粒径の±0.1σに50%以下の粒子が分布するアクリル粒子を20質量部添加し、この混合粉末と、ポリビニルブチラール系バインダーと、溶媒とを混合して第1の燃料極バッファ用スラリーとした。また、燃料極用スラリーに用いたアクリル粒子を12質量部(燃料極用スラリーの60%相当)用いる以外は同様にして第2の燃料極バッファ用スラリーとした。
 次いで、シール部原料と、ポリビニルブチラール系バインダーと、溶媒とを混合してシール部用スラリーとした。その後、図9B(a)に示すように、燃料極用スラリーとシール部用スラリーとを、複数の塗布口を有するドクターブレードを用いて、グリーンシートの中央に燃料極材料層102a、両端にシール部102bを備えるように燃料極用グリーンシート102を作製した。
 次いで、図9B(b)に示すように、燃料極用グリーンシート102に、アクリル樹脂組成物を用いて、複数の直線状の流路形成材103が一定間隔を置いて整列したライン・アンド・スペース状の流路形成材103a及び103bのパターンをスクリーン印刷法により作製した。なお、流路形成材103aは、後の一体焼結により還元性ガス流路となる部材であり、流路形成材103bは、後の一体焼結によりキャビティとなる部材である。その後、図9B(c)に示すように、かかるパターン印刷した燃料極グリーンシート102上に、ドクターブレード法で燃料極用スラリーを、流路形成材の高さの60%程度となるまで、流路形成材103間に直接積層して燃料極材料層104aを形成した。なお、燃料極材料層104aの両端には、シール部用スラリーを用いてシール部104bを同時に形成した。この燃料極材料層104aを含む層を燃料極材料層104ともいう。
 さらに、図9C(d)に示すように、ドクターブレード法で、第1の燃料極バッファ用スラリーを、流路形成材103を含む全体を覆うように一定の厚みで積層してコルゲート状の第1の燃料極バッファ材料層105aを形成した。このときも両端にシール部105bを同時に形成した。この第1の燃料極バッファ材料層105aを含むコルゲート状の層を第1の燃料極バッファ材料層105ともいう。
 次いで、図9C(e)に示すように、ドクターブレード法で燃料極側インターコネクタ用スラリーを第1の燃料極バッファ材料層105に倣うコルゲート状に付与して燃料極側インターコネクタ材料層106を形成した。
 その後、図9C(f)に示すように、空気極側インターコネクタ用スラリーを、燃料極流路形成材103に起因する凸部間を充填し、燃料極側インターコネクタ材料層106を覆うように積層して、空気極側インターコネクタ材料層107を含むグリーンシート110を作製した。
(空気極用グリーンシート)
 空気極原料100質量部に対して平均粒子径10μm及び平均粒径の±0.1σに50%以上の粒子が分布するアクリル粒子を20質量部添加し、この混合粉末と、ポリビニルブチラール系バインダーと、溶媒とを混合して空気極用スラリーとした。その後、図9D(a)に示すように、空気極用スラリーとシール部用スラリーとを、複数の塗布口を有するドクターブレードを用いて、グリーンシートの中央に空気極材料層112a、両端にシール部112bを備えるように空気極用グリーンシート112を作製した。
 次いで、図9D(b)に示すように、空気極用グリーンシート112に、アクリル樹脂組成物を用いて、複数の直線状の流路形成材が一定間隔を置いて整列したライン・アンド・スペース状の流路形成材113a及び113bのパターンをスクリーン印刷法により作成した。なお、流路形成材113aは、後の一体焼結により酸化性ガス流路となる部材であり、流路形成材113bは、後の一体焼結によりキャビティとなる部材である。その後、図9D(c)に示すように、かかるパターン印刷した空気極グリーンシート112上に、ドクターブレード法で空気極用スラリーを、流路形成材113の高さの全体及び流路形材113の天面を覆うように、直接積層して空気極材料層114aを形成した。このときも両端にシール部114bを同時に形成して、空気極用グリーンシート115を作製した。
(拘束層用グリーンシート)
 図9A(b)に示すように、拘束層原料と、ポリビニルブチラール系バインダーと、溶媒と、を混合して非多孔質拘束層用スラリーとし、ドクターブレード法で非多孔質拘束層用グリーンシート120を作製した。
 図9A(b)に示すように、拘束層の原料100質量部に対してアクリル粒子を10質量部添加した混合物と、ポリビニルブチラール系バインダーと、溶媒と、を混合して多孔質拘束層用スラリーとし、ドクターブレード法により、多孔質拘束層用グリーンシート121を作製した。
(2-2)グリーンシートの積層及びSOFCスタックの作製
 ついで、作製した各種グリーンシートを、以下の順序で積層した。すなわち、図10A(a)~(b)に示すように、多孔質拘束層用グリーンシート121を積層し、非多孔質拘束層用グリーンシート120を積層し、さらに空気極用グリーンシート115を積層した。さらに固体電解質用グリーンシート101を積層し、ついで、図10A(c)に示すように、燃料極用グリーンシート110の燃料極層102bが接するように積層して、最下層のセル前駆体201を形成した。セル前駆体201の表面に空気極側インターコネクタ材料層107を形成した。さらに、図10B(d)に示すように、燃料極用グリーンシート110の空気極側インターコネクタ材料層107に対して、空気極用グリーンシート115、固体電解質用グリーンシート101及び燃料極用グリーンシート110を積層して、第2のセル前駆体202を形成した。さらに、図10B(e)に示すように、同様に、グリーンシートを積層して第3のセル前駆体203を形成し、この空気極側インターコネクタ材料層107に対して、非多孔質拘束層用グリーンシート120を積層し、さらに、多孔質拘束層用グリーンシート121を積層して、本実施例のスタック前駆体130を得た。
(2-3)焼成
 このスタック前駆体130を、100MPa、80℃の温度で42分間、冷間等方圧プレス(CIP)することにより圧着した。この圧着体を温度400℃で脱脂処理を施した後、温度1400℃で2時間保持することにより、焼成して実施例のスタックを得た。
 なお、第1の燃料極バッファ層用スラリーに替えて第2の燃料極バッファ層用スラリーを用いる以外は、上記と同様にして別の実施例のスタックを得た。
 焼成によって得られた実施例のスタックの概要を図10Cに示す。図10Cに示すように、本実施例のスタック30は、固体電解質6の厚みが約20μmであり、還元性ガス流路22の間の燃料極2の厚みが約50μmであり、還元性ガス流路22及びキャビティ23の厚みが約100μmであり、酸化性ガス流路24の間の空気極4の厚みが約50μm、酸化性ガス流路24及びキャビティ25の厚みが約200μmであり、燃料極側インターコネクタ(第1の層)12の厚みが約10μmであり、空気極側インターコネクタ14の厚みが約10~100μm(最少部分~最大部分)であった。
 なお、比較例として、以下の態様のSOFCスタックも同時に作製した。すなわち、インターコネクタの第2の層材料を、La0.8Sr0.2MnO50質量%と「3YSZ」45質量%とセリア5質量%との混合物に替えて、La0.8Sr0.2MnO50質量%と「8YSZ」45質量%とセリア5質量%との混合物を用いた以外は、上記したSOFCスタックと同一の製造工程で作製して比較例1のSOFCスタックを作製した。また、グリーンシート110において、第1の燃料極バッファ用スラリーを、流路形成材103の高さ全体を覆うような厚みで付与して燃料極材料層の表面を平坦にする以外は、上記したSOFCスタックと同一の製造工程で比較例2のSOFCスタックを作製した。さらに、第1の燃料極バッファ層を備えないようにする以外は、上記したSOFCスタックと同一の製造工程で比較例3のSOFCスタックを作製した。
 本実施例のスタックは、インターコネクタとして第1の層及び第2の層を備えることにより、優れた一体性と電気伝導性を備えるスタックが得られたことを確認した。例えば、空気極側インターコネクタ(第2の層)において固体電解質に含まれる元素の酸化物材料として3YSZを用いたときの、空気極/空気極側インターコネクタ/燃料極側インターコネクタ/燃料極の電気抵抗値は0.13Ω・cmであったのに対し、3YSZに替えて8YSZを用いた比較例1では、0.54Ω・cmであった。
 また、本実施例のスタックは、ガス流路に基づく凸状部を備える電極(燃料極)に対して、燃料極側インターコネクタ(第1の層)を追従させてコルゲート状の燃料極側インターコネクタとするとともに、燃料極インターコネクタの凸部でない部分を充填するように空気極側インターコネクタ(第2の層)を備えるようにしたことで、燃料極の体積を抑制することができた。これにより、SOFCの起動及び停止に伴う酸化還元による燃料極ひいてはスタックの体積変動を抑制することができる。例えば、比較例2のスタックにおけるNiの全使用量を100とすると、本実施例のスタックのNi使用量は40%であった。
 また、本実施例のスタックは、燃料極バッファ層を備えることにより、燃料極と燃料極側インターコネクタ(第1の層)との密着性及び一体性が良好となり、また、燃料極の凸状部によく倣うことができ、還元性ガス流路の天面を良く覆うことができた。本実施例のスタックと比較例3(燃料極バッファ層なし)のスタックとの還元性ガス流路周辺の断面構造を顕微鏡観察により観察したところ、燃料極バッファ層により、燃料極側インターコネクタ(第1の層)によく密着していることがわかった。なお、燃料極よりも気孔率を低下させた第2の燃料極バッファ層を備える別の実施例のスタックも、燃料極と燃料極側インターコネクタ(第1の層)との密着性及び一体性が良好となり、燃料極の凸状部によく倣うことができ、還元性ガス流路の天面を良く覆うことができた。
 また、拘束層を備えないセルは大きく変形した一方で、拘束層を備えたセルは平坦に焼結できた。
 また、本実施例のスタックでは、流路非形成領域において、ガス流路と同一層にキャビティを形成することにより、一体焼結の際の熱収縮率を均一化し、内部応力を緩和して、割れや剥離を抑制することができた。また、図11に示すように、流路非形成領域においてキャビティを有することによりSOFCを一体焼結した際の耐久性が向上したことが確認された。
 

Claims (12)

  1.  燃料極と、空気極と、前記燃料極と前記空気極の間に配置される固体電解質と、を備える固体酸化物形燃料電池用セルであって、
     ガス流通に貢献する第1領域と、
     前記第1領域に隣接しており、ガス流通に貢献しない第2領域と、を備えており、
     前記第1領域の少なくとも1つの層に、還元性ガス流路又は酸化性ガス流路を備え、
     前記第2領域の前記少なくとも1つの層に、少なくとも1つのキャビティを備える、固体酸化物形燃料電池用セル。
  2.  前記少なくとも1つのキャビティは、開気孔又は閉気孔である、請求項1に記載の固体酸化物形燃料電池用セル。
  3.  前記少なくとも1つのキャビティは、前記還元性ガス流路又は前記酸化性ガス流路の開口形状と略同一形状又は略相似形状を有する、請求項1又は2に記載の固体酸化物形燃料電池用セル。
  4.  前記少なくとも1つのキャビティは、前記還元性ガス流路又は前記酸化性ガス流路におけるガスの流通方向に沿って延在する、請求項1~3のいずれかに記載の固体酸化物形燃料電池用セル。
  5.  前記少なくとも1つのキャビティは、前記少なくとも1つの層内における熱収縮を均一化するように構成される、請求項1~4のいずれかに記載の固体酸化物形燃料電池用セル。
  6.  前記燃料極に前記還元性ガス流路と前記少なくとも1つのキャビティとを備え、
     前記空気極に前記酸化性ガス流路と前記少なくとも1つのキャビティとを備える、請求項1~5のいずれかに記載の固体酸化物形燃料電池用セル。
  7.  前記第1領域は、前記セルの中央部に規定され、
     前記第2領域は、前記第1領域の少なくとも一部を囲む外周部に規定されている、請求項1~6のいずれかに記載の固体酸化物形燃料電池用セル。
  8.  前記少なくとも1つのキャビティの厚みは、前記還元性ガス流路及び前記酸化性ガス流路の厚みに対して、20%以上100%以下である、請求項1~7のいずれかに記載の固体酸化物形燃料電池用セル。
  9.  前記少なくとも1つのキャビティの総体積は、前記還元性ガス流路及び前記酸化性ガス流路の総体積に対して、50%以上150%以下である、請求項1~8のいずれかに記載の固体酸化物形燃料電池用セル。
  10.  前記セルの厚みは、100μm以上1000μm以下である、請求項1~9のいずれかに記載の固体酸化物形燃料電池用セル。
  11.  少なくとも1つの請求項1~10のいずれかに記載の固体酸化物形燃料電池用セルを、インターコネクタを介して複数積層した固体酸化物形燃料電池スタック。
  12.  請求項11の固体酸化物形燃料電池スタックを用いた固体酸化物形燃料電池。
PCT/JP2016/075123 2016-08-29 2016-08-29 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池 WO2018042475A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017525430A JP6378435B2 (ja) 2016-08-29 2016-08-29 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池
PCT/JP2016/075123 WO2018042475A1 (ja) 2016-08-29 2016-08-29 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075123 WO2018042475A1 (ja) 2016-08-29 2016-08-29 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池

Publications (1)

Publication Number Publication Date
WO2018042475A1 true WO2018042475A1 (ja) 2018-03-08

Family

ID=61300517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075123 WO2018042475A1 (ja) 2016-08-29 2016-08-29 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池

Country Status (2)

Country Link
JP (1) JP6378435B2 (ja)
WO (1) WO2018042475A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119771A1 (ja) * 2008-03-26 2009-10-01 財団法人ファインセラミックスセンター 積層型固体酸化物形燃料電池用スタック構造体、積層型固体酸化物形燃料電池及びその製造方法
WO2009122768A1 (ja) * 2008-04-04 2009-10-08 株式会社 村田製作所 固体電解質形燃料電池とその製造方法
JP2012252963A (ja) * 2011-06-06 2012-12-20 Japan Fine Ceramics Center 固体酸化物形燃料電池用スタック構造体及びその製造方法
WO2014122807A1 (ja) * 2013-02-07 2014-08-14 FCO Power株式会社 固体酸化物形燃料電池及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119771A1 (ja) * 2008-03-26 2009-10-01 財団法人ファインセラミックスセンター 積層型固体酸化物形燃料電池用スタック構造体、積層型固体酸化物形燃料電池及びその製造方法
WO2009122768A1 (ja) * 2008-04-04 2009-10-08 株式会社 村田製作所 固体電解質形燃料電池とその製造方法
JP2012252963A (ja) * 2011-06-06 2012-12-20 Japan Fine Ceramics Center 固体酸化物形燃料電池用スタック構造体及びその製造方法
WO2014122807A1 (ja) * 2013-02-07 2014-08-14 FCO Power株式会社 固体酸化物形燃料電池及びその製造方法

Also Published As

Publication number Publication date
JPWO2018042475A1 (ja) 2018-08-30
JP6378435B2 (ja) 2018-08-22

Similar Documents

Publication Publication Date Title
JP4850980B1 (ja) 燃料電池の構造体
JP4950334B2 (ja) 積層型固体酸化物形燃料電池用スタック構造体、積層型固体酸化物形燃料電池及びその製造方法
JP2013101924A (ja) 燃料電池のスタック構造体
JP5116184B1 (ja) 燃料電池の構造体
JP5361143B2 (ja) 固体酸化物型燃料電池およびその製造方法
JP5117627B1 (ja) 燃料電池の構造体
WO2014208730A1 (ja) セル、セルスタック装置、モジュールおよびモジュール収納装置
JP5566405B2 (ja) 燃料電池セル、燃料電池セル装置および燃料電池モジュールならびに燃料電池装置
JP5108987B1 (ja) 燃料電池の構造体
JP5117610B1 (ja) 燃料電池の構造体
JP6174608B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP6311953B1 (ja) インターコネクタ、固体酸化物形燃料電池スタック、及び固体酸化物形燃料電池スタックの製造方法
JP5485444B1 (ja) 燃料電池
JP5116182B1 (ja) 燃料電池の構造体
JP6311952B1 (ja) インターコネクタ、固体酸化物形燃料電池スタック、及び固体酸化物形燃料電池スタックの製造方法
JP6378435B2 (ja) 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池
JP6378436B2 (ja) 固体酸化物形燃料電池スタック及びその製造方法
JP6507337B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP5455267B1 (ja) 燃料電池
WO2018042474A1 (ja) 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池
WO2018042479A1 (ja) 固体酸化物形燃料電池用セル、固体酸化物形燃料電池スタック及び固体酸化物形燃料電池
WO2015056320A1 (ja) 固体酸化物形燃料電池スタックアレイ
JP6434182B2 (ja) 燃料電池セル
JP5455266B1 (ja) 燃料電池
JP5703355B2 (ja) 燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017525430

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915036

Country of ref document: EP

Kind code of ref document: A1