WO2018040688A1 - 一种改性聚酯及其制备方法 - Google Patents

一种改性聚酯及其制备方法 Download PDF

Info

Publication number
WO2018040688A1
WO2018040688A1 PCT/CN2017/089943 CN2017089943W WO2018040688A1 WO 2018040688 A1 WO2018040688 A1 WO 2018040688A1 CN 2017089943 W CN2017089943 W CN 2017089943W WO 2018040688 A1 WO2018040688 A1 WO 2018040688A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
modified polyester
terephthalic acid
mercapto
esterification reaction
Prior art date
Application number
PCT/CN2017/089943
Other languages
English (en)
French (fr)
Inventor
范红卫
刘志立
李文刚
汤方明
王丽丽
尹立新
Original Assignee
江苏恒力化纤股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒力化纤股份有限公司 filed Critical 江苏恒力化纤股份有限公司
Priority to US16/322,948 priority Critical patent/US10465041B2/en
Priority to JP2018556815A priority patent/JP6705601B2/ja
Priority to EP17844994.8A priority patent/EP3508511B1/en
Priority to ES17844994T priority patent/ES2870637T3/es
Publication of WO2018040688A1 publication Critical patent/WO2018040688A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/81Preparation processes using solvents
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/52Polyesters
    • D06P3/54Polyesters using dispersed dyestuffs

Definitions

  • the invention belongs to the technical field of polyester, and relates to a modified polyester and a preparation method thereof.
  • PET fiber or polyester fiber Since the advent of polyethylene terephthalate (PET fiber or polyester fiber) fiber, it has high breaking strength and elastic modulus, moderate resilience, excellent heat setting, good heat and light resistance, and acid and alkali resistance. A series of excellent properties such as sex, and the fabric has the advantages of anti-wrinkle and capital-free, good rigidity, and is widely used in clothing, home textile and other fields.
  • the structure is dense, and there is no functional group bonded to the dye on the molecular chain, so that it is difficult for the dye molecules to enter the fiber interior, and dyeing is difficult. Can not meet the demand for bright, beautiful fabrics.
  • PET is a symmetric linear macromolecule.
  • the molecular chain does not contain side chain groups.
  • the regularity is very good. Its main chain contains a rigid benzene ring and a flexible hydrocarbon group, and directly with the benzene ring.
  • the linked ester group and the benzene ring form a rigid conjugated system, which restricts the free rotation of the flexible segment.
  • This structure increases the wall ridge of the movement of the molecular segment, resulting in a higher glass transition temperature of PET, which needs to promote the diffusion of dye molecules into the fiber inside under high temperature conditions, and complete the dyeing step.
  • PET has a regular molecular chain, good crystallinity, tight molecular chain arrangement, and no polar groups on the molecular chain that interact with dye molecules, making PET fiber coloring more difficult.
  • the dyeing of the usual PET fiber is generally selected under the high temperature and high pressure, and the disperse dye is selected.
  • the temperature reaches the glass transition temperature of the PET fiber, the degree of free volume increase is small, the dyeing rate is not high, and the dyeing property is poor. Therefore, the energy consumption and low dye uptake caused by the high temperature and high pressure method are the main problems now facing.
  • PET fibers have a high melt viscosity, which is not conducive to processing.
  • the technical problem to be solved by the present invention is to provide a modified polyester and a preparation method thereof according to the deficiencies of the prior art.
  • the present invention introduces a branched diol segment into a molecular chain of a modified polyester, which is certain Under the temperature condition, the increase of the spatial gap between the molecular chains of the modified polyester is far greater than that of the unbranched polyester at the same temperature, which is beneficial to the extent that the fine particles such as the dye enter the modified polyester and improve the modification.
  • the branched diol segment does not cause much damage to the structural regularity of the modified polyester, maintaining the excellent properties of the polyester.
  • a modified polyester comprising a terephthalic acid segment, an ethylene glycol segment, and a branched diol segment, the branched diol segment being The branched chain is located on a non-terminal carbon in the diol segment and branched as a diol segment having a linear carbon chain of 5 to 10 carbon atoms.
  • the increase of the spatial gap between the molecular chains refers to a comparison of the spatial gap between the modified polyester and the conventional polyester at the same temperature
  • the decrease in melt viscosity refers to the comparison of the melt viscosity of the modified polyester at the same temperature as the conventional polyester.
  • the terephthalic acid and the branched diol are slurried into a reactor, and the esterification reaction is carried out under the catalysis of concentrated sulfuric acid to obtain a terephthalic acid glycol ester;
  • the branched diol segment is introduced into the long chain of the modified polyester macromolecule, and the length and the amount of the branch have a great influence on the crystallization property and flow behavior of the modified polyester.
  • the length of the branch is too short to achieve the purpose of polyester modification. If the length is too long, it will cause new entanglement and affect its flow behavior.
  • the branch is located on a non-terminal carbon in the diol segment and the branch is branched.
  • it is a linear carbon chain containing 5-10 carbon atoms
  • the degree of dyeing agent enters the interior of the modified polyester to increase the dyeing rate. At the same time, the viscosity of the modified polyester melt is reduced, which facilitates further processing.
  • the terephthalic acid and the ethylene glycol are slurried and added to the reactor to carry out an esterification reaction to obtain ethylene terephthalate;
  • the terephthalic acid glycol ester prepared in the step (1) is added, stirred and mixed, under the action of the catalyst and the stabilizer, under the condition of the negative pressure, The polycondensation reaction in a low vacuum stage and the polycondensation reaction in a high vacuum stage are carried out to obtain a modified polyester.
  • the preparation method of the modified polyester as described above specifically includes the following steps:
  • the terephthalic acid and the branched diol are slurried into a reactor, and the esterification reaction is carried out under the catalysis of concentrated sulfuric acid.
  • the esterification reaction is pressurized under a nitrogen atmosphere, and the pressure is At normal pressure ⁇ 0.3MPa, the temperature is 180-240 ° C, when the water distillation amount in the esterification reaction reaches 90% of the theoretical value is the end of the esterification reaction; obtaining terephthalic acid glycol ester;
  • the terephthalic acid and ethylene glycol are slurried and added to the reactor to carry out an esterification reaction.
  • the esterification reaction is carried out under a nitrogen atmosphere, and the pressure is from normal pressure to 0.3 MPa, and the temperature is from 250 to 260. °C, when the water distillation amount in the esterification reaction reaches 90% or more of the theoretical value, it is the end point of the esterification reaction, and ethylene terephthalate is obtained;
  • the terephthalic acid glycol ester prepared in the step (1) is added, stirred and mixed for 15-20 minutes, under the action of the catalyst and the stabilizer, under a negative pressure.
  • the pressure is smoothly pumped from normal pressure to absolute pressure below 500Pa, the temperature is controlled at 260 ⁇ 270 ° C, the reaction time is 30 ⁇ 50 minutes; then continue to vacuum, high vacuum stage
  • the polycondensation reaction reduces the reaction pressure to an absolute pressure of less than 100 Pa, the reaction temperature is controlled at 275 to 280 ° C, and the reaction time is 50 to 90 minutes to obtain a modified polyester.
  • the molar ratio of terephthalic acid to the branched diol is 1:1.3-1.5; the concentrated sulfuric acid is added to the benzene.
  • the weight of the dicarboxylic acid is 0.3-0.5%; the concentration of the concentrated sulfuric acid is 50-60% by weight.
  • the molar ratio of terephthalic acid to ethylene glycol is 1:1.2 to 2.0.
  • the molar percentage of the terephthalic acid glycol ester to ethylene terephthalate is 2 to 5%;
  • the catalyst is antimony trioxide, ethylene glycol or barium acetate, and the catalyst is added in an amount of 0.01% to 0.05% by weight of the total terephthalic acid;
  • the stabilizer is triphenyl phosphate, trimethyl phosphate or sub Trimethyl phosphate, the stabilizer is added in an amount of 0.01% to 0.05% by weight based on the total weight of the terephthalic acid.
  • the method for preparing a modified polyester as described above, wherein the branched diol is 2-pentyl-1,3 propanediol, 2-hexyl-1,3 propanediol, 2-heptyl-1, 3 Propylene glycol, 2-octyl-1,3 propanediol, 2-mercapto-1,3 propanediol, 2-mercapto-1,3 propanediol, 2-pentyl-1,4 butanediol, 2-hexyl-1 , 4 butanediol, 2-heptyl-1,4 butanediol, 2-octyl-1,4 butanediol, 2-mercapto-1,4 butanediol, 2-mercapto-1,4 Butanediol, 2-pentyl-1,5pentanediol, 2-hexyl-1,5pentanediol, 2-heptyl-1,5pentanediol, 2-
  • the molecular chain structure is a linear macromolecule containing a benzene ring structure
  • the functional groups on the molecular chain are arranged neatly, the regularity is good, the flexibility is poor, and the free volume increase is small when the temperature is raised.
  • the branched-chain diol segment contained in the modified polyester macromolecule of the present invention when the temperature is higher than the glass transition temperature, the branch moves before the main chain, so that the increase of the free volume is far greater than that without the support.
  • the characteristics of the polyester chain of the chain the increase of the free volume increases the degree of entry of the fine particles into the interior of the polyester.
  • the free volume of the polyester fiber prepared by the modified polyester is much larger than that of the unbranched polyester at the same temperature. Fiber, which increases the degree of diffusion of the dye and improves the dyeing properties of the polyester fiber.
  • the polyester fiber prepared by the modified polyester is advantageous for lowering the melt viscosity and improving the processability.
  • the introduction of the branched diol segment does not cause much damage to the structural regularity of the polyester fiber, and maintains the excellent properties of the polyester fiber.
  • the branched-chain diol segment contained in the modified polyester macromolecule obtained by the invention when the temperature is higher than the glass transition temperature, the branch moves before the main chain, so that the increase of the free volume is far greater than that of no
  • the increase in free volume increases the extent to which the fine particles enter the interior of the polyester, and is increased by branching.
  • the free volume of the polyester fiber increases the degree of diffusion of the dye and improves the dyeing properties of the polyester fiber.
  • the modified polyester obtained by the invention effectively reduces the melt viscosity and improves the processability.
  • the branched-chain diol segment of the modified polyester obtained by the present invention does not greatly damage the structural regularity of the modified polyester, and maintains the excellent properties of the polyester.
  • a preparation method of a modified polyester comprising the following steps:
  • the terephthalic acid with a molar ratio of A and B is slurried into the reactor, and the esterification reaction is carried out under the catalysis of a concentration of Cwt% and a concentration of D% concentrated sulfuric acid of the weight of terephthalic acid.
  • the esterification reaction is pressurized under a nitrogen atmosphere at a pressure of E MPa and a temperature of F ° C. When the water distillation amount in the esterification reaction reaches G% of the theoretical value, it is the end point of the esterification reaction, and the benzene is obtained.
  • the molar ratio of H terephthalic acid and ethylene glycol is slurried and added to the reactor for esterification reaction.
  • the esterification reaction is pressurized under a nitrogen atmosphere at a pressure of I MPa and a temperature of J ° C.
  • the amount of water distilled in the esterification reaction reaches K% of the theoretical value, the end point of the esterification reaction is obtained, and ethylene terephthalate is obtained;
  • the terephthalic acid glycol ester prepared in the step (1) After the end of the esterification reaction in the step (2), the terephthalic acid glycol ester prepared in the step (1), the molar percentage of the terephthalic acid glycol ester and the ethylene terephthalate are added.
  • the value is L%, stirred and mixed for M minutes, under the action of the catalyst O added in an amount of N% by weight of terephthalic acid and the stabilizer Q added in an amount of P% by weight of the terephthalic acid, under the condition of negative pressure
  • the pressure is smoothly pumped from normal pressure to absolute pressure R Pa, the temperature is controlled at S ° C, and the reaction time is T minutes.
  • vacuum is continued to carry out the polycondensation reaction in the high vacuum stage.
  • the reaction pressure was reduced to an absolute pressure of U Pa , the reaction temperature was controlled at V ° C, and the reaction time was W minutes to obtain a modified
  • the modified polyester obtained has a number average molecular weight of X and consists of a terephthalic acid segment, an ethylene glycol segment and a B segment, and the molar percentage of the B segment to the ethylene glycol segment is Y%.
  • the space gap between the molecular chains of the modified polyester increases by ⁇ v/v%; Lower melt viscosity
  • the modified polyester prepared in Example 1 is used as a modified polyester fiber raw material, and the modified polyester is metered, extruded, cooled, oiled, drawn, heat-set and wound to obtain a modified polyester fiber. ;
  • the modified polyester fiber prepared above is dyed in a high temperature and high pressure machine under the following conditions: before dyeing, the modified polyester fiber is treated with a nonionic surfactant at 60 ° C for 30 minutes, and then added to the dyeing solution, the dyeing solution.
  • the amount of disperse dye used is 2.0% (owf); the dispersant NNO, the concentration of dispersant NNO is 1.2g/L; the pH is 5, the bath ratio is 1:50, the dye is dyed at 60 ° C, and then the temperature is raised to 90 ° C. At 100 ° C, 110 ° C, 120 ° C and 130 ° C, each temperature was dyed for 1 h.
  • the percentage of dyeing of the modified polyester fiber after dyeing is obtained by the following method:
  • the percentage of dyeing was determined by residual liquid colorimetry. The appropriate amount of dyeing solution and dyeing residue were taken, and N, N-2 methylformamide (DMF) and distilled water were added. The ratio of DMF to water in the dye solution was 70. /30 (v/v), the absorbance of the dye solution was measured by an ultraviolet-visible spectrophotometer, and the percentage of dyeing was calculated by the following formula.
  • A0 and A1 are the absorbances of the dyeing stock solution and the dye residue, respectively.
  • the percentage of dyeing percentage of modified polyester fiber is as follows:
  • the modified polyester prepared in Example 13 is used as a modified polyester fiber raw material, and the modified polyester is metered, extruded, cooled, oiled, drawn, heat-set and wound to obtain a modified polyester fiber. ;
  • the modified polyester fiber prepared above is dyed in a high temperature and high pressure machine under the following conditions: before dyeing, the modified polyester fiber is treated with a nonionic surfactant at 60 ° C for 30 minutes, and then added to the dyeing solution, the dyeing solution.
  • the amount of disperse dye used is 2.0% (owf); the dispersant NNO, the concentration of dispersant NNO is 1.2g/L; the pH is 5, the bath ratio is 1:50, the dye is dyed at 60 ° C, and then the temperature is raised to 90 ° C. At 100 ° C, 110 ° C, 120 ° C and 130 ° C, each temperature was dyed for 1 h.
  • the percentage of dyeing of the modified polyester fiber after dyeing is obtained by the following method:
  • the percentage of dyeing was determined by residual liquid colorimetry. The appropriate amount of dyeing solution and dyeing residue were taken, and N, N-2 methylformamide (DMF) and distilled water were added. The ratio of DMF to water in the dye solution was 70. /30 (v/v), the absorbance of the dye solution was measured by an ultraviolet-visible spectrophotometer, and the percentage of dyeing was calculated by the following formula.
  • A0 and A1 are the absorbances of the dyeing stock solution and the dye residue, respectively.
  • the percentage of dyeing percentage of modified polyester fiber and ordinary PET fiber is as follows:
  • the modified polyester prepared in Example 20 is used as a modified polyester fiber raw material, and the modified polyester is metered, extruded, cooled, oiled, drawn, heat-set and wound to obtain a modified polyester fiber. ;
  • the modified polyester fiber prepared above is dyed in a high temperature and high pressure machine under the following conditions: before dyeing, the modified polyester fiber is treated with a nonionic surfactant at 60 ° C for 30 minutes, and then added to the dyeing solution, the dyeing solution.
  • the amount of disperse dye used is 2.0% (owf); the dispersant NNO, the concentration of dispersant NNO is 1.2g/L; the pH is 5, the bath ratio is 1:50, the dye is dyed at 60 ° C, and then the temperature is raised to 90 ° C. At 100 ° C, 110 ° C, 120 ° C and 130 ° C, each temperature was dyed for 1 h.
  • the percentage of dyeing of the modified polyester fiber after dyeing is obtained by the following method:
  • the percentage of dyeing was determined by residual liquid colorimetry. The appropriate amount of dyeing solution and dyeing residue were taken, and N, N-2 methylformamide (DMF) and distilled water were added. The ratio of DMF to water in the dye solution was 70. /30 (v/v), the absorbance of the dye solution was measured by an ultraviolet-visible spectrophotometer, and the percentage of dyeing was calculated by the following formula.
  • A0 and A1 are the absorbances of the dyeing stock solution and the dye residue, respectively.
  • the percentage of dyeing percentage of modified polyester fiber is as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明涉及一种改性聚酯及其制备方法,改性聚酯由对苯二甲酸链段、乙二醇链段和含支链的二元醇链段组成,含支链的二元醇链段是指支链位于二元醇链段中的一个非端基碳上且支链为含有5-10个碳原子的直链碳链的二元醇链段。改性聚酯的制备方法为将对苯二甲酸与含支链的二元醇,在浓硫酸的催化,进行酯化反应得到对苯二甲酸二元醇酯;然后将对苯二甲酸和乙二醇配成进行酯化反应,得到对苯二甲酸乙二醇酯;最后将两者搅拌混合,在催化剂和稳定剂的作用下,进行低真空阶段和高真空阶段的缩聚反应,制得改性聚酯。改性聚酯内部分子链间的空间间隙的增加幅度远远大于同等温度下无支链的聚酯,有利于染色剂等微小颗粒进入改性聚酯内部的程度,染色速率提高。

Description

一种改性聚酯及其制备方法 技术领域
本发明属聚酯技术领域,涉及一种改性聚酯及其制备方法。
背景技术
聚对苯二甲酸乙二醇酯(PET纤维或聚酯纤维)纤维自问世以来,具有断裂强度和弹性模量高,回弹性适中,热定型优异,耐热耐光性好以及耐酸耐碱耐腐蚀性等一系列优良性能,且织物具有抗皱免资,挺括性好等优点,广泛应用于服装、家纺等领域。
但由于PET的结晶度高,结构致密,且分子链上没有与染料相结合的官能团,致使染料分子很难进入纤维内部,染色困难。无法满足人们对鲜艳靓丽、风格独特的织物需求。
造成PET染色困难的原因为PET属于对称性的直链大分子,分子链不含有侧链基团,规整性非常好,它的主链含有刚性的苯环和柔性的烃基,而直接与苯环相连接的酯基与苯环又构成了刚性的共轭体系,从而制约了其柔性链段的自由旋转。这种结构增加了分子链段运动的壁垄,导致PET的玻璃化转变温度较高,需要在很高的温度条件下促进染料分子向纤维内部的扩散,完成染色步骤。另外,PET的分子链规整,结晶性好,分子链排列紧密,并且分子链上没有与染料分子发生作用的极性基团,使PET纤维的上色更加困难。
因此,通常的PET纤维的染色一般高温高压下,选择分散染料染色,当温度达到PET纤维得玻璃化温度以上时其自由体积增加的程度小,染色速率不高,染色性能差。因此,高温高压法所带来的能耗以及上染率低是现在面临的主要问题。另外,PET纤维熔体粘度较高,不利于加工。
发明内容
本发明要解决的技术问题是针对现有技术的不足,提供一种改性聚酯及其制备方法,本发明在改性聚酯的分子链中引入含支链的二元醇链段,一定温度条件下,改性聚酯内部分子链间的空间间隙的增加幅度远远大于同等温度下无支链的聚酯,有利于染色剂等微小颗粒进入改性聚酯内部的程度,提高改性聚酯制备的改性聚酯纤维改性的染色速率;改性聚酯相对于无支链的聚酯的熔体粘度也会降低,有利于降低加工温度,减少降解速率,方便加工;另外含支链的二元醇链段对改性聚酯的结构规整性没有大的破坏,保持了聚酯的优良性能。
一种改性聚酯,所述改性聚酯由对苯二甲酸链段、乙二醇链段和含支链的二元醇链段组成,所述含支链的二元醇链段是指支链位于二元醇链段中的一个非端基碳上且支链为含有5-10个碳原子的直链碳链的二元醇链段。
作为优选的技术方案:
如上所述的一种改性聚酯,所述改性聚酯在温度为80~130℃下,内部分子链间的空间间隙增大10~30v/v%;在260~290℃下,熔体粘度下降10-20%;
所述的分子链间的空间间隙增大是指改性聚酯与常规聚酯在相同温度的分子链间的空间间隙的对比;
所述熔体粘度下降是指改性聚酯与常规聚酯在相同温度的熔体粘度的对比。
如上所述的一种改性聚酯,所述含支链的二元醇链段为2-戊基-1,3丙二醇链段、2-己基-1,3丙二醇链段、2-庚基-1,3丙二醇链段、2-辛基-1,3丙二醇链段、2-壬基-1,3丙二醇链段、2-癸基-1,3丙二醇链段、2-戊基-1,4丁二醇链段、2-己基-1,4丁二醇链段、2-庚基-1,4丁二醇链段、2-辛基-1,4丁二醇链段、2-壬基-1,4丁二醇链段、2-癸基-1,4丁二醇链段、2-戊基-1,5戊二醇链段、2-己基-1,5戊二醇链段、2-庚基-1,5戊二醇链段、2-辛基-1,5戊二醇链段、2-壬基-1,5戊二醇链段、2-癸基-1,5戊二醇链段、2-戊基-1,6己二醇链段、2-己基-1,6己二醇链段、2-庚基-1,6己二醇链段、2-辛基-1,6己二醇链段、2-壬基-1,6己二醇链段或2-癸基-1,6己二醇链段中的一种以上;所述含支链的二元醇链段与乙二醇链段的摩尔百分比值为2~5%。
如上所述的一种改性聚酯,所述改性聚酯的数均分子量为15000~30000。
如上所述的一种改性聚酯,包括以下步骤:
(1)对苯二甲酸二元醇酯的制备:
将对苯二甲酸与含支链的二元醇配成浆料加入反应器中,在浓硫酸的催化作用下,进行酯化反应得到对苯二甲酸二元醇酯;
在改性聚酯大分子长链上引入含支链的二元醇链段,而支链的长短和数量对改性聚酯的结晶性能和流动行为的影响较大, 支链长度太短达不到聚酯改性的目的,长度太长会引起新的缠结,影响其流动行为,当支链位于二元醇链段中的一个非端基碳上且支链为含有5-10个碳原子的直链碳链时,在一定温度条件下,改性聚酯内部分子链间的空间间隙的增加幅度远远大于同等温度下无支链的聚酯,有利于染色剂等微小颗粒进入改性聚酯内部的程度,提高染色速率,同时,改性聚酯熔体粘度降低,便于进一步的加工。
(2)对苯二甲酸乙二醇酯的制备:
将对苯二甲酸和乙二醇配成浆料后加入反应器中,进行酯化反应,得到对苯二甲酸乙二醇酯;
(3)改性聚酯的制备:
在步骤(2)中的酯化反应结束后,加入步骤(1)中制备的对苯二甲酸二元醇酯,搅拌混合,在催化剂和稳定剂的作用下,在负压的条件下,依次进行低真空阶段的缩聚反应和高真空阶段的缩聚反应,制得改性聚酯。
如上所述的改性聚酯的制备方法,具体包括以下步骤:
(1)对苯二甲酸二元醇酯的制备:
将对苯二甲酸与含支链的二元醇配成浆料加入反应器中,在浓硫酸的催化作用下,进行酯化反应,酯化反应在氮气氛围中加压反应,加压压力为常压~0.3MPa,温度为180~240℃,当酯化反应中的水馏出量达到理论值的90%以上时为酯化反应终点;得到对苯二甲酸二元醇酯;
(2)对苯二甲酸乙二醇酯的制备:
将对苯二甲酸和乙二醇配成浆料后加入反应器中,进行酯化反应,酯化反应在氮气氛围中加压反应,加压压力为常压~0.3MPa,温度为250~260℃,当酯化反应中的水馏出量达到理论值的90%以上时为酯化反应终点,得到对苯二甲酸乙二醇酯;
(3)改性聚酯的制备:
在步骤(2)中的酯化反应结束后,加入步骤(1)中制备的对苯二甲酸二元醇酯,搅拌混合15-20分钟后,在催化剂和稳定剂的作用下,在负压的条件下开始低真空阶段的缩聚反应,该阶段压力由常压平稳抽至绝对压力500Pa以下,温度控制在260~270℃,反应时间为30~50分钟;然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力降至绝对压力小于100Pa,反应温度控制在275~280℃,反应时间50~90分钟,制得改性聚酯。
本发明的一种改性聚酯的制备方法,所述步骤(1)中,对苯二甲酸与含支链的二元醇的摩尔比为1:1.3-1.5;浓硫酸加入量为对苯二甲酸重量的0.3-0.5%;所述浓硫酸的浓度为50-60wt%。
如上所述的一种聚酯纤维的制备方法,所述步骤(2)中,对苯二甲酸与乙二醇的摩尔比为1:1.2~2.0。
如上所述的一种聚酯纤维的制备方法,所述步骤(3)中,所述对苯二甲酸二元醇酯与对苯二甲酸乙二醇酯的摩尔百分比值为2~5%;所述催化剂为三氧化二锑、乙二醇锑或醋酸锑,催化剂加入量为对苯二甲酸总重量的0.01%~0.05%;所述稳定剂为磷酸三苯酯、磷酸三甲酯或亚磷酸三甲酯,稳定剂加入量为所述对苯二甲酸总重量的0.01%~0.05%。
如上所述的一种改性聚酯的制备方法,所述含支链的二元醇为2-戊基-1,3丙二醇、2-己基-1,3丙二醇、2-庚基-1,3丙二醇、2-辛基-1,3丙二醇、2-壬基-1,3丙二醇、2-癸基-1,3丙二醇、2-戊基-1,4丁二醇、2-己基-1,4丁二醇、2-庚基-1,4丁二醇、2-辛基-1,4丁二醇、2-壬基-1,4丁二醇、2-癸基-1,4丁二醇、2-戊基-1,5戊二醇、2-己基-1,5戊二醇、2-庚基-1,5戊二醇、2-辛基-1,5戊二醇、2-壬基-1,5戊二醇、2-癸基-1,5戊二醇、2-戊基-1,6己二醇、2-己基-1,6己二醇、2-庚基-1,6己二醇、2-辛基-1,6己二醇、2-壬基-1,6己二醇或2-癸基-1,6己二醇中的一种以上。
本发明的原理为:
对于无支链的聚酯,其分子链结构是含有苯环结构的线性大分子,分子链上的官能团排列整齐,规整性好,柔性较差;在温度升高时其自由体积增加量小,这些特性阻碍了染料进入聚酯内部,因而染色性能较差。
本发明的改性聚酯大分子中含有的含支链的二元醇链段,当温度高于玻璃化温度时,支链先于主链运动,使自由体积的增加幅度远远大于无支链的聚酯大分子链的特性,自由体积的增加提高了微小颗粒进入聚酯内部的程度,经改性聚酯制备的聚酯纤维的自由体积远远大于同等温度下无支链的聚酯纤维,增加染料的扩散程度,提高聚酯纤维的染色性能。同时,改性聚酯制备的聚酯纤维有利于降低熔体粘度,有利于改善其加工性能。含支链的二元醇链段的引入对聚酯纤维结构规整性没有大的破坏,保持了聚酯纤维的优良性能。
有益效果:
本发明所得的改性聚酯大分子中含有的含支链的二元醇链段,当温度高于玻璃化温度时,支链先于主链运动,使自由体积的增加幅度远远大于无支链的聚酯大分子链的特性,自由体积的增加提高了微小颗粒进入聚酯内部的程度,通过支链增加 了聚酯纤维的自由体积以增加染料的扩散程度,提高聚酯纤维的染色性能。
本发明所得的改性聚酯有效降低熔体粘度,改善其加工性能。
本发明所得的改性聚酯中含支链的二元醇链段对改性聚酯的结构规整性没有大的破坏,保持了聚酯的优良性能。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1~28
一种改性聚酯的制备方法,具体包括以下步骤:
(1)对苯二甲酸二元醇酯的制备:
将摩尔比为A的对苯二甲酸与B配成浆料加入反应器中,在浓度为Cwt%,加入量为对苯二甲酸重量的D%的浓硫酸的催化作用下,进行酯化反应,酯化反应在氮气氛围中加压反应,加压压力为E MPa,温度为F℃,当酯化反应中的水馏出量达到理论值的G%时为酯化反应终点,得到对苯二甲酸二元醇酯;
(2)对苯二甲酸乙二醇酯的制备:
将摩尔比为H对苯二甲酸和乙二醇配成浆料后加入反应器中,进行酯化反应,酯化反应在氮气氛围中加压反应,加压压力为I MPa,温度为J℃,当酯化反应中的水馏出量达到理论值的K%时为酯化反应终点,得到对苯二甲酸乙二醇酯;
(3)改性聚酯的制备:
在步骤(2)中的酯化反应结束后,加入步骤(1)中制备的对苯二甲酸二元醇酯,对苯二甲酸二元醇酯与对苯二甲酸乙二醇酯的摩尔百分比值为L%,搅拌混合M分钟,在加入量为对苯二甲酸重量的N%的催化剂O和加入量为对苯二甲酸重量的P%的稳定剂Q的作用下,在负压的条件下开始低真空阶段的缩聚反应,该阶段压力由常压平稳抽至绝对压力为R Pa,温度控制在S℃,反应时间为T分钟;然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力降至绝对压力为U Pa,反应温度控制在V℃,反应时间W分钟,制得改性聚酯。
制得的改性聚酯的数均分子量为X,由对苯二甲酸链段、乙二醇链段和B链段组成,B链段与乙二醇链段的摩尔百分比值为Y%。在温度为Z℃下,改性聚酯内部分子链间的空间间隙增大εv/v%;在
Figure PCTCN2017089943-appb-000001
下,熔体粘度下降
Figure PCTCN2017089943-appb-000002
不同实施例中变化的参数如下表所示,表中“戊丙”代表2-戊基-1,3丙二醇,“己丙”代表2-己基-1,3丙二醇,“庚丙”
代表2-庚基-1,3丙二醇,“辛丙”代表2-辛基-1,3丙二醇,“壬丙”代表2-壬基-1,3丙二醇,“癸丙”代表2-癸基-1,3丙二醇,“戊丁”代表2-戊基-1,4丁二醇,“己丁”代表2-己基-1,4丁二醇,“庚丁”代表2-庚基-1,4丁二醇,“辛丁”代表2-辛基-1,4丁二醇,“壬丁”代表2-壬基-1,4丁二醇,“癸丁”代表2-癸基-1,4丁二醇,“戊戊”代表2-戊基-1,5戊二醇,“己戊”代表2-己基-1,5戊二醇,“庚戊”代表2-庚基-1,5戊二醇,“辛戊”代表2-辛基-1,5戊二醇,“壬戊”代表2-壬基-1,5戊二醇,“癸戊”代表2-癸基-1,5戊二醇,“戊己”代表2-戊基-1,6己二醇,“己己”代表2-己基-1,6己二醇,“庚己”代表2-庚基-1,6己二醇,“辛己”代表2-辛基-1,6己二醇,“壬己”代表2-壬基-1,6己二醇,“癸己”代表2-癸基-1,6己二醇,“三”代表三氧化二锑,“乙”代表乙二醇锑,“醋”代表醋酸锑,“苯”代表磷酸三苯酯,“甲”代表磷酸三甲酯,“亚”代表亚磷酸三甲酯,比例关系为摩尔比。
Figure PCTCN2017089943-appb-000003
Figure PCTCN2017089943-appb-000004
Figure PCTCN2017089943-appb-000005
Figure PCTCN2017089943-appb-000006
实施例29
一种改性聚酯纤维的制备方法及染色工艺:
采用实施例1制备的改性聚酯为改性聚酯纤维原料,将改性聚酯经计量、挤出、冷却、上油、拉伸、热定型和卷绕,制得改性聚酯纤维;
对上述制备的改性聚酯纤维在高温高压机中进行染色,具体条件为:染色前,改性聚酯纤维用非离子表面活性剂在60℃处理30分钟,然后加入染色液中,染色液中的分散染料用量为2.0%(o.w.f);分散剂NNO,分散剂NNO的浓度1.2g/L;pH值为5,浴比为1:50,在60℃下入染,然后升温至90℃、100℃、110℃、120℃和130℃各恒温染色1h。
普通PET纤维采用与改性聚酯纤维相同的染色工艺。
经染色后的改性聚酯纤维的上染百分率通过以下方法得到:
上染百分率采用残液比色法确定,吸取适量的染色原液和染色残液,加入N,N-2甲基甲酰胺(DMF)和蒸馏水,待测染液中的DMF和水的比例为70/30(v/v),染液吸光度采用紫外-可见分光光度计测定,用下式计算上染百分率。
Figure PCTCN2017089943-appb-000007
上式中,A0和A1分别为染色原液和染色残液的吸光度。
当分散染料为分散红3B,分散蓝SE-2R或分散翠蓝S-GL时,改性聚酯纤维的上染百分率结果如下表:
Figure PCTCN2017089943-appb-000008
通过改性聚酯纤维与普通纤维的染色效果对比,可以看出改性聚酯纤维的染色效果明显优于普通纤维,也从侧面说明了本发明制备的改性聚酯大分子中含有的含支链的二元醇链段,使自由体积的增加幅度远远大于无支链的普通聚酯大分子链的特性,自由体积的增加提高了微小颗粒进入聚酯内部的程度,经改性聚酯制备的聚酯纤维的自由体积远远大于同等温度下无支链的普通聚酯纤维,增加染料的扩散程度,提高聚酯纤维的染色性能。
实施例30
一种改性聚酯纤维的制备方法及染色工艺:
采用实施例13制备的改性聚酯为改性聚酯纤维原料,将改性聚酯经计量、挤出、冷却、上油、拉伸、热定型和卷绕,制得改性聚酯纤维;
对上述制备的改性聚酯纤维在高温高压机中进行染色,具体条件为:染色前,改性聚酯纤维用非离子表面活性剂在60℃处理30分钟,然后加入染色液中,染色液中的分散染料用量为2.0%(o.w.f);分散剂NNO,分散剂NNO的浓度1.2g/L;pH值为5,浴比为1:50,在60℃下入染,然后升温至90℃、100℃、110℃、120℃和130℃各恒温染色1h。
普通PET纤维采用与改性聚酯纤维相同的染色工艺。
经染色后的改性聚酯纤维的上染百分率通过以下方法得到:
上染百分率采用残液比色法确定,吸取适量的染色原液和染色残液,加入N,N-2甲基甲酰胺(DMF)和蒸馏水,待测染液中的DMF和水的比例为70/30(v/v),染液吸光度采用紫外-可见分光光度计测定,用下式计算上染百分率。
Figure PCTCN2017089943-appb-000009
上式中,A0和A1分别为染色原液和染色残液的吸光度。
当分散染料为分散红3B,分散蓝SE-2R或分散翠蓝S-GL时,改性聚酯纤维和普通PET纤维的上染百分率结果如下表:
Figure PCTCN2017089943-appb-000010
Figure PCTCN2017089943-appb-000011
通过改性聚酯纤维与普通纤维的染色效果对比,可以看出改性聚酯纤维的染色效果明显优于普通纤维,也从侧面说明了本发明制备的改性聚酯大分子中含有的含支链的二元醇链段,使自由体积的增加幅度远远大于无支链的普通聚酯大分子链的特性,自由体积的增加提高了微小颗粒进入聚酯内部的程度,经改性聚酯制备的聚酯纤维的自由体积远远大于同等温度下无支链的普通聚酯纤维,增加染料的扩散程度,提高聚酯纤维的染色性能。
实施例31
一种改性聚酯纤维的制备方法及染色工艺:
采用实施例20制备的改性聚酯为改性聚酯纤维原料,将改性聚酯经计量、挤出、冷却、上油、拉伸、热定型和卷绕,制得改性聚酯纤维;
对上述制备的改性聚酯纤维在高温高压机中进行染色,具体条件为:染色前,改性聚酯纤维用非离子表面活性剂在60℃处理30分钟,然后加入染色液中,染色液中的分散染料用量为2.0%(o.w.f);分散剂NNO,分散剂NNO的浓度1.2g/L;pH值为5,浴比为1:50,在60℃下入染,然后升温至90℃、100℃、110℃、120℃和130℃各恒温染色1h。
普通PET纤维采用与改性聚酯纤维相同的染色工艺。
经染色后的改性聚酯纤维的上染百分率通过以下方法得到:
上染百分率采用残液比色法确定,吸取适量的染色原液和染色残液,加入N,N-2甲基甲酰胺(DMF)和蒸馏水,待测染液中的DMF和水的比例为70/30(v/v),染液吸光度采用紫外-可见分光光度计测定,用下式计算上染百分率。
Figure PCTCN2017089943-appb-000012
上式中,A0和A1分别为染色原液和染色残液的吸光度。
当分散染料为分散红3B,分散蓝SE-2R或分散翠蓝S-GL时,改性聚酯纤维的上染百分率结果如下表:
Figure PCTCN2017089943-appb-000013
通过改性聚酯纤维与普通纤维的染色效果对比,可以看出改性聚酯纤维的染色效果明显优于普通纤维,也从侧面说明了本发明制备的改性聚酯大分子中含有的含支链的二元醇链段,使自由体积的增加幅度远远大于无支链的普通聚酯大分子链的特性,自由体积的增加提高了微小颗粒进入聚酯内部的程度,经改性聚酯制备的聚酯纤维的自由体积远远大于同等温度下无支链的普通聚酯纤维,增加染料的扩散程度,提高聚酯纤维的染色性能。

Claims (10)

  1. 一种改性聚酯,其特征是:所述改性聚酯由对苯二甲酸链段、乙二醇链段和含支链的二元醇链段组成,所述含支链的二元醇链段是指支链位于二元醇链段中的一个非端基碳上且支链为含有5-10个碳原子的直链碳链的二元醇链段。
  2. 根据权利要求1所述的一种改性聚酯,其特征在于,所述改性聚酯在温度为80~130℃下,内部分子链间的空间间隙增大10~30v/v%;在260~290℃下,熔体粘度下降10-20%。
  3. 根据权利要求1所述的一种改性聚酯,其特征在于,所述含支链的二元醇链段为2-戊基-1,3丙二醇链段、2-己基-1,3丙二醇链段、2-庚基-1,3丙二醇链段、2-辛基-1,3丙二醇链段、2-壬基-1,3丙二醇链段、2-癸基-1,3丙二醇链段、2-戊基-1,4丁二醇链段、2-己基-1,4丁二醇链段、2-庚基-1,4丁二醇链段、2-辛基-1,4丁二醇链段、2-壬基-1,4丁二醇链段、2-癸基-1,4丁二醇链段、2-戊基-1,5戊二醇链段、2-己基-1,5戊二醇链段、2-庚基-1,5戊二醇链段、2-辛基-1,5戊二醇链段、2-壬基-1,5戊二醇链段、2-癸基-1,5戊二醇链段、2-戊基-1,6己二醇链段、2-己基-1,6己二醇链段、2-庚基-1,6己二醇链段、2-辛基-1,6己二醇链段、2-壬基-1,6己二醇链段或2-癸基-1,6己二醇链段中的一种以上;所述含支链的二元醇链段与乙二醇链段的摩尔百分比值为2~5%。
  4. 根据权利要求1所述的一种改性聚酯,其特征在于,所述改性聚酯的数均分子量为15000~30000。
  5. 如权利要求1-4中任一项所述的改性聚酯的制备方法,其特征是包括以下步骤:
    (1)对苯二甲酸二元醇酯的制备:
    将对苯二甲酸与含支链的二元醇配成浆料后,在浓硫酸的催化作用下,进行酯化反应得到对苯二甲酸二元醇酯;
    (2)对苯二甲酸乙二醇酯的制备:
    将对苯二甲酸和乙二醇配成浆料后,进行酯化反应,得到对苯二甲酸乙二醇酯;
    (3)改性聚酯的制备:
    在步骤(2)中的酯化反应结束后,加入步骤(1)中制备的对苯二甲酸二元醇酯,搅拌混合,在催化剂和稳定剂的作用下,在负压的条件下,依次进行低真空阶段的缩聚反应和高真空阶段的缩聚反应,制得改性聚酯。
  6. 根据权利要求5所述的一种改性聚酯的制备方法,其特征是:具体包括以下步骤:
    (1)对苯二甲酸二元醇酯的制备:
    将对苯二甲酸与含支链的二元醇配成浆料后加入反应器中,在浓硫酸的催化作用下,进行酯化反应,酯化反应在氮气氛围中加压反应,加压压力为常压~0.3MPa,温度为180~240℃,当酯化反应中的水馏出量达到理论值的90%以上时为酯化反应终点;得到对苯二甲酸二元醇酯;
    (2)对苯二甲酸乙二醇酯的制备:
    将对苯二甲酸和乙二醇配成浆料后加入反应器中,进行酯化反应,酯化反应在氮气氛围中加压反应,加压压力为常压~0.3MPa,温度为250~260℃,当酯化反应中的水馏出量达到理论值的90%以上时为酯化反应终点,得到对苯二甲酸乙二醇酯;
    (3)改性聚酯的制备:
    在步骤(2)中的酯化反应结束后,加入步骤(1)中制备的对苯二甲酸二元醇酯,搅拌混合15-20分钟后,在催化剂和稳定剂的作用下,在负压的条件下开始低真空阶段的缩聚反应,该阶段压力由常压平稳抽至绝对压力500Pa以下,温度控制在260~270℃,反应时间为30~50分钟;然后继续抽真空,进行高真空阶段的缩聚反应,使反应压力降至绝对压力小于100Pa,反应温度控制在275~280℃,反应时间50~90分钟,制得改性聚酯。
  7. 根据权利要求5或6所述的一种改性聚酯的制备方法,其特征在于,所述步骤(1)中,对苯二甲酸与含支链的二元醇的摩尔比为1:1.3-1.5;浓硫酸加入量为对苯二甲酸重量的0.3-0.5%;所述浓硫酸的浓度为50-60wt%。
  8. 根据权利要求5或6所述的一种聚酯纤维的制备方法,其特征在于,所述步骤(2)中,对苯二甲酸与乙二醇的摩尔比为1:1.2~2.0。
  9. 根据权利要求5或6所述的一种聚酯纤维的制备方法,其特征在于,所述步骤(3)中,所述对苯二甲酸二元醇酯与对苯二甲酸乙二醇酯的摩尔百分比值为2~5%;所述催化剂为三氧化二锑、乙二醇锑或醋酸锑,催化剂加入量为对苯二甲酸总重量的0.01%~0.05%;所述稳定剂为磷酸三苯酯、磷酸三甲酯或亚磷酸三甲酯,稳定剂加入量为所述对苯二甲酸总重量的0.01%~0.05%。
  10. 根据权利要求5或6所述的一种改性聚酯的制备方法,其特征在于,所述含支链的二元醇为2-戊基-1,3丙二醇、2-己基-1,3丙二醇、2-庚基-1,3丙二醇、2-辛基-1,3丙二醇、2-壬基-1,3丙二醇、2-癸基-1,3丙二醇、2-戊基-1,4丁二醇、2-己基-1,4丁二醇、2-庚基-1,4丁二醇、2-辛基-1,4丁二醇、2-壬基-1,4丁二醇、2-癸基-1,4丁二醇、2-戊基-1,5戊二醇、2-己基-1,5戊二醇、2-庚基-1,5戊二醇、2-辛基-1,5戊二醇、2-壬基-1,5戊二醇、2-癸基-1,5戊二醇、2-戊基-1,6己二醇、2-己基-1,6己二醇、2-庚基-1,6己二醇、2-辛基-1,6己二醇、2-壬基-1,6己二醇或2-癸基-1,6己二醇中的一种以上。
PCT/CN2017/089943 2016-08-31 2017-06-26 一种改性聚酯及其制备方法 WO2018040688A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/322,948 US10465041B2 (en) 2016-08-31 2017-06-26 Modified polyester and its preparation method
JP2018556815A JP6705601B2 (ja) 2016-08-31 2017-06-26 改質ポリエステルの製造方法
EP17844994.8A EP3508511B1 (en) 2016-08-31 2017-06-26 Modified polyester and preparation method therefor
ES17844994T ES2870637T3 (es) 2016-08-31 2017-06-26 Polister modificado y su método de preparación.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610770150.X 2016-08-31
CN201610770150.XA CN106380580B (zh) 2016-08-31 2016-08-31 一种改性聚酯及其制备方法

Publications (1)

Publication Number Publication Date
WO2018040688A1 true WO2018040688A1 (zh) 2018-03-08

Family

ID=57939641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089943 WO2018040688A1 (zh) 2016-08-31 2017-06-26 一种改性聚酯及其制备方法

Country Status (6)

Country Link
US (1) US10465041B2 (zh)
EP (1) EP3508511B1 (zh)
JP (1) JP6705601B2 (zh)
CN (1) CN106380580B (zh)
ES (1) ES2870637T3 (zh)
WO (1) WO2018040688A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106380580B (zh) * 2016-08-31 2019-03-29 江苏恒力化纤股份有限公司 一种改性聚酯及其制备方法
CN107987260B (zh) * 2017-12-14 2020-01-14 江苏恒力化纤股份有限公司 改性聚酯及其制备方法
CN109680353B (zh) * 2018-12-27 2020-07-03 江苏恒力化纤股份有限公司 一种阳离子可染聚酯纤维及其制备方法
CN111592642B (zh) * 2020-05-18 2022-09-23 浙江恒逸石化研究院有限公司 一种高韧性生物基聚酯的制备方法
CN112708117B (zh) * 2020-12-29 2022-03-18 江苏恒力化纤股份有限公司 一种高阻隔瓶级聚酯及其制备方法
CN112759750B (zh) * 2020-12-29 2022-05-10 江苏恒力化纤股份有限公司 一种耐老化聚酯薄膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817917A (zh) * 2010-04-22 2010-09-01 江苏中鲈科技发展股份有限公司 一种缓释结晶的ptt聚酯的制备方法
CN102020761A (zh) * 2009-09-11 2011-04-20 东丽纤维研究所(中国)有限公司 一种共聚酯及其用途
CN102030893A (zh) * 2009-09-29 2011-04-27 东丽纤维研究所(中国)有限公司 一种共聚酯及其制备方法和用途
WO2012027885A1 (zh) * 2010-08-31 2012-03-08 东华大学 由带侧链的脂肪族二元醇和间苯二元酸二元酯-5-磺酸钠或钾改性的共聚酯及其纤维的制备方法
JP2014189933A (ja) * 2013-03-28 2014-10-06 Toray Ind Inc 常圧分散可染性ポリエステル極細繊維
CN106380580A (zh) * 2016-08-31 2017-02-08 江苏恒力化纤股份有限公司 一种改性聚酯及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492530B (zh) * 2009-03-05 2011-06-08 绍兴文理学院 离子型共聚酯及其制备方法
CN103665350B (zh) * 2012-09-26 2016-03-09 中国石油化工股份有限公司 一种改性共聚酯切片及纤维的制备工艺
JP6259700B2 (ja) * 2014-03-31 2018-01-10 三井化学株式会社 ポリエステル樹脂、フィルム及び成形体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020761A (zh) * 2009-09-11 2011-04-20 东丽纤维研究所(中国)有限公司 一种共聚酯及其用途
CN102030893A (zh) * 2009-09-29 2011-04-27 东丽纤维研究所(中国)有限公司 一种共聚酯及其制备方法和用途
CN101817917A (zh) * 2010-04-22 2010-09-01 江苏中鲈科技发展股份有限公司 一种缓释结晶的ptt聚酯的制备方法
WO2012027885A1 (zh) * 2010-08-31 2012-03-08 东华大学 由带侧链的脂肪族二元醇和间苯二元酸二元酯-5-磺酸钠或钾改性的共聚酯及其纤维的制备方法
JP2014189933A (ja) * 2013-03-28 2014-10-06 Toray Ind Inc 常圧分散可染性ポリエステル極細繊維
CN106380580A (zh) * 2016-08-31 2017-02-08 江苏恒力化纤股份有限公司 一种改性聚酯及其制备方法

Also Published As

Publication number Publication date
EP3508511A4 (en) 2019-09-04
US10465041B2 (en) 2019-11-05
EP3508511A1 (en) 2019-07-10
ES2870637T3 (es) 2021-10-27
US20190169361A1 (en) 2019-06-06
CN106380580A (zh) 2017-02-08
CN106380580B (zh) 2019-03-29
JP6705601B2 (ja) 2020-06-03
EP3508511B1 (en) 2021-02-24
JP2019515095A (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2018040688A1 (zh) 一种改性聚酯及其制备方法
CN106367835B (zh) 一种聚酯纤维及其制备方法
EP3508625B1 (en) Different-shrinkage composite yarn and preparation method therefor
CN104480568B (zh) 一种仿麻型异收缩复合丝及其制备方法
CN104878487B (zh) 一种异收缩复合丝及其制备方法
CN104562340B (zh) 一种仿棉型异收缩复合丝及其制备方法
CN104480567B (zh) 一种仿毛型异收缩复合丝及其制备方法
US11053387B2 (en) One-step spun composite DTY and preparation method thereof
CN104499082B (zh) 一种高上染率聚酯纤维dty丝及其制备方法
CN104499083B (zh) 一种聚氨酯涂层织物及其制备方法
US10604621B2 (en) Porous ultra-soft ultra-fine denier polyester fiber and its preparation method
CN104532392B (zh) 一种多孔超亮光聚酯纤维及其制备方法
CN104031251B (zh) 一种阳离子染料易染、抗静电的ptt共聚物的连续聚合制备方法
CN104532391B (zh) 一种高上染率聚酯纤维及其制备方法
CN108385187B (zh) 高强飞机安全带及其制备方法
CN102321980A (zh) 涤纶织物低温染色方法
CN104480562A (zh) 一种高上染率聚酯纤维poy丝及其制备方法
CN104480754B (zh) 一种特黑织物及其制备方法
CN104499292B (zh) 一种大口径输送带
CN104499084B (zh) 一种高上染率聚酯纤维fdy丝及其制备方法
CN109735946B (zh) 有色涤纶吊装带及其制备方法
CN109735937A (zh) 用于工业缝纫线的涤纶工业丝及其制备方法
CN109402762A (zh) 一种新型复合异收缩丝的制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018556815

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017844994

Country of ref document: EP

Effective date: 20190401