WO2018040636A1 - 一种容器内分层界面测量装置及方法 - Google Patents

一种容器内分层界面测量装置及方法 Download PDF

Info

Publication number
WO2018040636A1
WO2018040636A1 PCT/CN2017/086239 CN2017086239W WO2018040636A1 WO 2018040636 A1 WO2018040636 A1 WO 2018040636A1 CN 2017086239 W CN2017086239 W CN 2017086239W WO 2018040636 A1 WO2018040636 A1 WO 2018040636A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
temperature
conduit
layered
thermostatic
Prior art date
Application number
PCT/CN2017/086239
Other languages
English (en)
French (fr)
Inventor
冯正民
Original Assignee
冯正民
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 冯正民 filed Critical 冯正民
Publication of WO2018040636A1 publication Critical patent/WO2018040636A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture

Definitions

  • the present invention relates to the field of solid-liquid stratification or liquid-liquid layered interface measurement technology, and more particularly to an apparatus and method for measuring a layered interface in a container.
  • a solid liquid or a stratified liquid contained in a container may be delaminated after standing for a long time.
  • Measurement of different density solid-liquid, liquid-liquid layer thickness and interface has been a problem.
  • the existing measuring methods generally measure the buoyancy according to the different density of the liquid in the vertical process by manually hanging the probe from the upper mouth of the container, but this method cannot perform the actual measurement.
  • the probe touches the solid helium it cannot be measured. This method is also limited by the measurement medium and is not suitable for the measurement of solids.
  • An in-container layered interface measuring device comprising:
  • a container for holding a solid liquid or a layered liquid for holding a solid liquid or a layered liquid
  • a thermostatic conduit located in or outside the container, the thermostatic conduit is arranged in a height direction of the container, and the thermostatic conduit has a height at least with a solid liquid contained in the container Or the height of the stratified liquid is the same, the thermostatic conduit is used to release heat to the solid or stratified liquid contained in the container
  • a temperature detecting module located on an outer wall of the container, the temperature detecting module includes a plurality of temperature detecting points arranged in a height direction of the container, configured to detect a temperature signal and transmit the signal to the control module, The temperature detection point is at the same distance from the thermostatic conduit; [0009] a control module, configured to receive a temperature of the thermostat conduit and a temperature signal of the temperature detecting module, output a density corresponding to all temperature detecting point positions, and obtain a layered interface according to the density.
  • the arrangement direction of the constant temperature conduit and the temperature detecting module is parallel and perpendicular to a cross section of the container.
  • the in-container layered interface measuring device as described above, the constant temperature conduit and the temperature detecting module each have a power supply circuit, and the control module outputs a control signal to control on and off of the constant temperature conduit power supply circuit, the temperature The detection module is turned on and off with the power supply circuit.
  • the temperature detecting module comprising a temperature sensor array or a chain temperature sensor or a plurality of independent temperature sensors.
  • the present invention also provides a method for measuring a layered interface in a container, the method comprising the following steps:
  • Step 1 The constant temperature conduit releases heat to a solid liquid or a layered liquid contained in the container;
  • Step 2 The temperature detecting module detects a temperature signal of each temperature detecting point and transmits the temperature signal to the control module.
  • control module controls the operation of the constant temperature conduit t, and then proceeds to the step 2.
  • the in-container layered interface measuring device of the present invention comprises a thermostatic conduit for providing heat to a solid or layered liquid in the container, either inside or outside the container and
  • the temperature detecting module located outside the container, the constant temperature conduit and the temperature detecting module are arranged in the height direction of the container.
  • the temperature detecting module detects the temperature of each temperature detecting point, and obtains each temperature detecting point. Attenuation temperature, using different properties of different heat transfer coefficients of the object density, the density of each temperature detection point is obtained, thereby obtaining a layered interface.
  • the invention is based on the principle that the heat transfer coefficient of the solid liquid of different densities is different, the degree of attenuation of the heat from the constant temperature conduit to the detection sensor is proportional to the density of the solid liquid, and the solid liquid or the layered liquid in the container can be physically and non-contactly Measurement, measurement results are accurate.
  • the invention has wide application range and can be applied to the measurement of solid liquid or stratified liquid.
  • FIG. 1 is a schematic view of a specific embodiment of the present invention.
  • FIG. 2 is a schematic view of another embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a specific embodiment of the present invention.
  • this embodiment proposes a layered interface measuring device in a container, the device comprising: a container 1 for holding a solid liquid or a layered liquid, or located in the container 1 or the container 1
  • the thermostat conduit 2 for generating a constant heat source is externally located outside the vessel 1 for detecting the temperature and the control module.
  • the control module outputs the density corresponding to the position of all the temperature detection points according to the temperature signal, and obtains a layered interface according to the density.
  • the container 1 is used to hold a solid liquid or a layered liquid.
  • the container 1 of the present embodiment is a cylindrical container.
  • the container 1 contains a solid liquid or a layered liquid. After standing for a period of time, the solid layer is separated due to the density, and a layered interface is formed between the solid and the liquid. Different layers of liquid may also form a layered interface.
  • the in-container layered interface measuring device of this embodiment is capable of measuring both a layered interface and a liquid-liquid layered interface.
  • the thermostatic conduit 2 is located inside the container 1 or outside the container 1. This embodiment will be described by taking the thermostatic conduit 2 on the outer wall of the container 1 as an example.
  • the arrangement direction of the thermostatic duct 2 is in the height direction of the container 1, and the thermostatic duct 2 is perpendicular to the volume
  • the cross section of the device 1, that is, the thermostatic duct 2 is parallel to the axial direction of the container 1.
  • the thermostatic conduit 2 is for releasing heat to the solid liquid or stratified liquid contained in the container 1; in order to uniformly release the heat of the thermostatic conduit 2 into the container 1, the height of the thermostatic conduit 2 is at least the solid contained in the container 1.
  • the height of the liquid or layered liquid is the same.
  • the temperature detecting module is located on the outer wall of the container 1.
  • the temperature detecting module includes a plurality of temperature detecting points S1, S2, S3, S4, ..., Sn arranged in the height direction of the container 1, and is used for detecting temperature signals of the temperature detecting points S1, S2, S3, S4, ..., Sn. And transferred to the control module.
  • the temperature detection points S1, S2, S3, S4, ..., Sn have the same distance from the constant temperature conduit 2, and are greater than the preset value, so as to avoid the interference of the heat of the constant temperature conduit 2 to the temperature detection module. .
  • the straight line formed by the temperature detecting points S1, S2, S3, S4, ..., Sn is parallel to the line where the constant temperature duct 2 is located, and the straight line where the temperature detecting points S1, S2, S3, S4, ..., Sn are perpendicular to The cross section of the container 1, that is, the line where the temperature detecting points S1, S2, S3, S4, ..., Sn are located, is parallel to the axial direction of the container 1.
  • the temperature detecting points Sl, S2, S3, S4, ..., Sn are uniformly distributed on the outer wall of the container 1.
  • the arrangement density of the temperature detection points Sl, S2, S3, S4, ..., Sn can be set according to the detection accuracy requirement.
  • the arrangement density is smaller.
  • a control module configured to receive a temperature signal of the temperature and temperature detecting module of the thermostat conduit 2, output a density corresponding to all temperature detecting points Sl, S2, S3, S4, ..., Sn, and obtain a layered interface according to the density
  • both the thermostatic catheter 2 and the temperature detection module have a power supply circuit, and the control module outputs a control signal to control the on/off of the thermostat catheter 2 power supply circuit, the temperature detection module, and the power supply circuit.
  • the control module After detecting ⁇ , the control module first outputs a control signal to control the constant temperature conduit 2 to be electrically connected to the power supply circuit, and the power supply circuit supplies power to the constant temperature conduit 2, and the constant temperature conduit 2 emits constant heat to the solid liquid or stratified liquid in the container 1.
  • the control module After a period of time t, the control module outputs a control signal to control the temperature detecting module to be electrically connected to the power supply circuit, the power supply circuit supplies power to the temperature detecting module, the temperature detecting module detects the temperature signal and transmits it to the control module, and the control module acquires the constant temperature conduit 2
  • the temperature according to the temperature of the constant temperature conduit 2 and the temperature of the temperature detection module, outputs the density corresponding to the position of all the temperature detection points, and obtains a layered interface according to the density.
  • the temperature detecting module comprises a temperature sensor array or a chain temperature sensor or a plurality of independent A temperature sensor arranged on the wall of the container.
  • the thermostatic conduit 2 and the temperature detecting module are preferably symmetrically disposed on the outer wall of the container.
  • the thermostatic catheter 2 can also be disposed in the container 1.
  • a thermostatic catheter is preferably used.
  • the constant temperature conduit 2 may be disposed at the center of the container 1, and a plurality of sets of temperature detecting modules are disposed on the outer wall of the container, and each set of temperature detecting modules and the constant temperature conduit 2 parallel. In this way, the shape of the layered interface can be accurately depicted based on the density obtained.
  • the embodiment further provides a method for measuring the layered interface in the container. As shown in FIG. 4, the method includes the following steps:
  • control module outputs a control signal to control the constant temperature conduit to be electrically connected to the power supply circuit, and the thermostatic conduit generates heat
  • control module controls the constant temperature conduit working time t
  • control module outputs a control signal to control the temperature detecting module to be electrically connected to the power supply circuit, and the temperature detecting module operates
  • the temperature detection module detects the temperature signal of each temperature detection point and transmits to the control module
  • ⁇ - ⁇
  • Corresponding density pi a hierarchical interface is obtained according to the density pi, where k is a proportional coefficient.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种容器内分层界面测量装置,装置包括:容器(1),用于盛放固液体或分层液体;恒温导管(2),位于容器(1)内或容器(1)外,恒温导管(2)的排布方向在容器(1)的高度方向上,且恒温导管(2)的高度至少与容器(1)中盛放的固液体或分层液体的高度相同,恒温导管(2)用于释放热量至容器(1)中盛放的固液体或分层液体;温度检测模块,位于容器(1)的外壁上,温度检测模块包括若干排布在容器(1)的高度方向上的温度检测点,用于检测温度信号并传输至控制模块,温度检测点与恒温导管(2)的距离相同;控制模块,用于接收恒温导管(2)的温度和温度检测模块的温度信号,输出所有温度检测点位置对应的密度,根据密度得到分层界面。该测量装置可进行实时非接触式测量,测量结果精确。还提供一种容器内分层界面测量方法。

Description

说明书 发明名称:一种容器内分层界面测量装置及方法 技术领域
[0001] 本发明涉及固液分层或液液分层界面测量技术领域, 具体地说, 是涉及一种容 器内分层界面测量装置及方法。
背景技术
[0002] 盛放于容器中的固液体或能分层的液体, 长吋间静置后会出现分层的情况。 对 于不同密度固液、 液液分层厚度及界面的测量一直是一个难题。 现有的测量方 法, 一般都是通过人工从容器上部幵口处垂吊探头, 根据垂放过程中液体不同 的密度所受的浮力不同的方式进行测量, 但此方法不能够进行实吋测量。 另外 , 当探头触及固体吋, 则无法测量, 此方法还受限于测量介质, 不适应于固体 的测量。
技术问题
[0003] 本发明的目的在于提供一种容器内分层界面测量装置, 解决了现有测量装置不 能实吋测量且受制于测量介质的技术问题。
问题的解决方案
技术解决方案
[0004] 为解决上述技术问题, 本发明采用以下技术方案予以实现:
[0005] 一种容器内分层界面测量装置, 所述装置包括:
[0006] 容器, 用于盛放固液体或分层液体;
[0007] 恒温导管, 位于所述容器内或容器外, 所述恒温导管的排布方向在所述容器的 高度方向上, 且所述恒温导管的高度至少与所述容器中盛放的固液体或分层液 体的高度相同, 所述恒温导管用于释放热量至容器中盛放的固液体或分层液体
[0008] 温度检测模块, 位于所述容器的外壁上, 所述温度检测模块包括若干排布在所 述容器的高度方向上的温度检测点, 用于检测温度信号并传输至控制模块, 所 述温度检测点与所述恒温导管的距离相同; [0009] 控制模块, 用于接收所述恒温导管的温度和所述温度检测模块的温度信号, 输 出所有温度检测点位置对应的密度, 根据密度得到分层界面。
[0010] 如上所述的容器内分层界面测量装置, 所述温度检测点均匀地分布在所述容器 的外壁上。
[0011] 如上所述的容器内分层界面测量装置, 所述恒温导管、 温度检测模块的排布方 向平行且垂直于所述容器的横切面。
[0012] 如上所述的容器内分层界面测量装置, 所述恒温导管和温度检测模块均具有供 电电路, 所述控制模块输出控制信号以控制所述恒温导管供电电路的通断、 所 述温度检测模块与所述供电电路的通断。
[0013] 如上所述的容器内分层界面测量装置, 所述温度检测模块包括温度传感器阵列 或者链式温度传感器或者若干独立的温度传感器。
[0014] 基于上述的容器内分层界面测量装置的设计, 本发明还提出了一种容器内分层 界面测量方法, 所述方法包括如下步骤:
[0015] 步骤 1、 所述恒温导管释放热量至容器中盛放的固液体或分层液体;
[0016] 步骤 2、 所述温度检测模块检测各个温度检测点的温度信号并传输至控制模块
[0017] 步骤 3、 所述控制模块接收所述恒温导管的温度 T和所述温度检测模块的温度信 号 Ti, 计算出每个温度检测点的衰减温度 ΔΉ=Τ-Ή, pi=k*ATi, 输出所有温度 检测点位置对应的密度 pi, 根据密度 pi得到分层界面, 其中, k为比例系数。
[0018] 如上所述的容器内分层界面测量方法, 所述步骤 1和步骤 2之间间隔吋间 t。
[0019] 如上所述的容器内分层界面测量方法, 所述步骤 1中, 所述控制模块控制所述 恒温导管工作吋间 t后, 进入所述步骤 2。
发明的有益效果
有益效果
[0020] 与现有技术相比, 本发明的优点和积极效果是: 本发明容器内分层界面测量装 置包括位于容器内或外的给容器内固液体或分层液体提供热量的恒温导管以及 位于容器外的温度检测模块, 恒温导管和温度检测模块均在容器的高度方向上 排布。 利用温度检测模块检测各个温度检测点的温度, 得到各个温度检测点的 衰减温度, 利用物体密度不同热传导系数不同的性质, 得到各个温度检测点的 密度, 从而得到分层界面。 本发明依据不同密度固液体热传导系数不同, 热量 从恒温导管处传播到检测传感器后的衰减程度与固液体密度成比例的原理, 可 对容器内的固液体或分层液体进行实吋非接触式测量, 测量结果精确。 同吋, 本发明适用范围广, 可适用于固液体或分层液体的测量。
[0021] 结合附图阅读本发明实施方式的详细描述后, 本发明的其他特点和优点将变得 更加清楚。
对附图的简要说明
附图说明
[0022] 图 1为本发明一种具体实施例的示意图。
[0023] 图 2为本发明另一种具体实施例的示意图。
[0024] 图 3为本发明具体实施例的原理框图。
[0025] 图 4为本发明具体实施例的流程图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0026] 下面结合附图对本发明的具体实施方式进行详细地描述。
[0027] 如图 1、 3所示, 本实施例提出了一种容器内分层界面测量装置, 装置包括: 用 于盛放固液体或分层液体的容器 1、 位于容器 1内或容器 1外用于产生恒定热源的 恒温导管 2、 位于容器 1外用于检测温度的温度检测模块和控制模块, 控制模块 根据温度信号输出所有温度检测点位置对应的密度, 根据密度得到分层界面。
[0028] 下面对容器内分层界面测量装置进行具体说明
[0029] 容器 1, 用于盛放固液体或分层液体。 本实施例的容器 1为柱形容器, 容器 1内 盛放固液体或分层液体, 静置一段吋间之后由于密度不同, 导致固液体分层, 固体与液体之间形成分层界面, 当然, 不同密度的液体之间也可能形成分层界 面。 本实施例的容器内分层界面测量装置既能够测量分层界面, 也能够测量液 液分层界面。
[0030] 恒温导管 2, 位于容器 1内或容器 1外。 本实施例以恒温导管 2位于容器 1外壁为 例进行说明。 恒温导管 2的排布方向在容器 1的高度方向上, 恒温导管 2垂直于容 器 1的横切面, 也就是恒温导管 2平行于容器 1的轴线方向。 恒温导管 2用于释放 热量至容器 1中盛放的固液体或分层液体; 为了使恒温导管 2的热量均匀地释放 至容器 1中, 恒温导管 2的高度至少与容器 1中盛放的固液体或分层液体的高度相 同。
[0031] 温度检测模块, 位于容器 1的外壁上。 温度检测模块包括若干排布在容器 1的高 度方向上的温度检测点 Sl、 S2、 S3、 S4、 …、 Sn, 用于检测温度检测点 Sl、 S2 、 S3、 S4、 …、 Sn的温度信号并传输至控制模块。 为了避免距离对温度衰减产 生影响, 温度检测点 Sl、 S2、 S3、 S4、 …、 Sn与恒温导管 2的距离相同, 均大于 预设值, 可避免恒温导管 2的热量对温度检测模块的干扰。 本实施例中, 温度检 测点 Sl、 S2、 S3、 S4、 …、 Sn形成的直线与恒温导管 2所在的直线平行, 温度检 测点 Sl、 S2、 S3、 S4、 …、 Sn所在的直线垂直于容器 1的横切面, 也就是温度检 测点 Sl、 S2、 S3、 S4、 …、 Sn所在的直线平行于容器 1的轴线方向。
[0032] 优选的, 温度检测点 Sl、 S2、 S3、 S4、 …、 Sn均匀地分布在容器 1的外壁上。
可以根据检测精度需求设置温度检测点 Sl、 S2、 S3、 S4、 …、 Sn的排布密度。 检测精度需求越高吋, 温度检测点 Sl、 S2、 S3、 S4、 …、 Sn的排布密度越大; 检测精度需求越低吋, 温度检测点 Sl、 S2、 S3、 S4、 …、 Sn的排布密度越小。
[0033] 控制模块, 用于接收恒温导管 2的温度和温度检测模块的温度信号, 输出所有 温度检测点 Sl、 S2、 S3、 S4、 …、 Sn位置对应的密度, 根据密度得到分层界面
[0034] 为了实现检测的自动化, 恒温导管 2和温度检测模块均具有供电电路, 控制模 块输出控制信号以控制恒温导管 2供电电路的通断、 温度检测模块与供电电路的 通断。 检测吋, 控制模块首先输出控制信号控制恒温导管 2与供电电路导通, 供 电电路给恒温导管 2供电, 恒温导管 2发出恒定的热量至容器 1内的固液体或分层 液体。 过一段吋间 t后, 控制模块再输出控制信号控制温度检测模块与供电电路 导通, 供电电路给温度检测模块供电, 温度检测模块检测温度信号并传输至控 制模块, 控制模块获取恒温导管 2的温度, 根据恒温导管 2的温度和温度检测模 块的温度, 输出所有温度检测点位置对应的密度, 根据密度得到分层界面。
[0035] 其中, 温度检测模块包括温度传感器阵列或者链式温度传感器或者若干独立的 排布在容器壁上的温度传感器。
[0036] 为了提高测量精度, 恒温导管 2和温度检测模块优选对称的设置在容器的外壁 上。
[0037] 当然, 也可将恒温导管 2设置在容器 1内, 为了提高测量精度, 优选将恒温导管
2设置在容器 1的中心位置。 如图 2所示。
[0038] 对于分层界面测量精度要求较高的情形, 可将恒温导管 2设置在容器 1的中心, 在容器的外壁上设置有多组温度检测模块, 每组温度检测模块均与恒温导管 2平 行。 这样, 可以根据得到的密度, 精确地描绘出分层界面的形状。
[0039] 基于上述的容器内分层界面测量装置的设计, 本实施例还提出了一种容器内分 层界面测量方法, 如图 4所示, 方法包括如下步骤:
[0040] Sl、 控制模块输出控制信号控制恒温导管与供电电路导通, 恒温导管产生热量
, 并将产生的热量释放至容器中盛放的固液体或分层液体;
[0041] S2、 控制模块控制恒温导管工作吋间 t后, 控制模块输出控制信号控制温度检 测模块与供电电路导通, 温度检测模块工作;
[0042] S3、 温度检测模块检测各个温度检测点的温度信号并传输至控制模块;
[0043] S4、 控制模块获取恒温导管的温度 T和温度检测模块的温度信号 Ti, 计算出每 个温度检测点的衰减温度 ΔΉ=Τ-Ή, pi=k*ATi, 输出所有温度检测点位置对应 的密度 pi, 根据密度 pi得到分层界面, 其中, k为比例系数。
[0044] 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当 理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部 分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质 脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求书
[权利要求 1] 一种容器内分层界面测量装置, 其特征在于, 所述装置包括:
容器, 用于盛放固液体或分层液体;
恒温导管, 位于所述容器内或容器外, 所述恒温导管的排布方向在所 述容器的高度方向上, 且所述恒温导管的高度至少与所述容器中盛放 的固液体或分层液体的高度相同, 所述恒温导管用于释放热量至容器 中盛放的固液体或分层液体;
温度检测模块, 位于所述容器的外壁上, 所述温度检测模块包括若干 排布在所述容器的高度方向上的温度检测点, 用于检测温度信号并传 输至控制模块, 所述温度检测点与所述恒温导管的距离相同; 控制模块, 用于接收所述恒温导管的温度和所述温度检测模块的温度 信号, 输出所有温度检测点位置对应的密度, 根据密度得到分层界面
[权利要求 2] 根据权利要求 1所述的容器内分层界面测量装置, 其特征在于, 所述 温度检测点均匀地分布在所述容器的外壁上。
[权利要求 3] 根据权利要求 1所述的容器内分层界面测量装置, 其特征在于, 所述 恒温导管、 温度检测模块的排布方向平行且垂直于所述容器的横切面
[权利要求 4] 根据权利要求 1所述的容器内分层界面测量装置, 其特征在于, 所述 恒温导管和温度检测模块均具有供电电路, 所述控制模块输出控制信 号以控制所述恒温导管供电电路的通断、 所述温度检测模块与所述供 电电路的通断。
[权利要求 5] 根据权利要求 1所述的容器内分层界面测量装置, 其特征在于, 所述 温度检测模块包括温度传感器阵列或者链式温度传感器或者若干独立 的温度传感器。
[权利要求 6] —种基于权利要求 1-5任意一项所述的容器内分层界面测量方法, 其 特征在于, 所述方法包括如下步骤:
步骤 1、 所述恒温导管释放热量至容器中盛放的固液体或分层液体; 步骤 2、 所述温度检测模块检测各个温度检测点的温度信号并传输至 控制模块;
步骤 3、 所述控制模块接收所述恒温导管的温度 T和所述温度检测模 块的温度信号 Ti, 计算出每个温度检测点的衰减温度 ΔΉ=Τ-Ή, pi=k
*ΔΉ, 输出所有温度检测点位置对应的密度 pi, 根据密度 pi得到分层 界面, 其中, k为比例系数。
[权利要求 7] 根据权利要求 6所述的容器内分层界面测量方法, 其特征在于, 所述 步骤 1和步骤 2之间间隔吋间 t。
[权利要求 8] 根据权利要求 7所述的容器内分层界面测量方法, 其特征在于, 所述 步骤 1中, 所述控制模块控制所述恒温导管工作吋间 t后, 进入所述步 骤 2。
PCT/CN2017/086239 2016-09-05 2017-05-27 一种容器内分层界面测量装置及方法 WO2018040636A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610801764.X 2016-09-05
CN201610801764.XA CN106197606A (zh) 2016-09-05 2016-09-05 一种容器内分层界面测量装置及方法

Publications (1)

Publication Number Publication Date
WO2018040636A1 true WO2018040636A1 (zh) 2018-03-08

Family

ID=58066559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086239 WO2018040636A1 (zh) 2016-09-05 2017-05-27 一种容器内分层界面测量装置及方法

Country Status (2)

Country Link
CN (1) CN106197606A (zh)
WO (1) WO2018040636A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300472B (zh) * 2015-11-25 2019-05-21 中国矿业大学(北京) 储油罐内油水界面检测方法及系统
CN106197606A (zh) * 2016-09-05 2016-12-07 冯正民 一种容器内分层界面测量装置及方法
CN108344465A (zh) * 2018-02-13 2018-07-31 广东吉米有品智能科技有限公司 基于液温测量液体液位的方法及装置
CN113413634A (zh) * 2021-07-27 2021-09-21 赛飞工业互联网研究院(江苏)有限公司 一种有机物去除方法及系统
CN113820353B (zh) * 2021-08-02 2023-11-07 北京锐达仪表有限公司 介质分层界面测量装置及热交换场界面测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1156821A (zh) * 1996-04-24 1997-08-13 刘志超 热导式液位测量控制器
CN101460815A (zh) * 2006-05-29 2009-06-17 阿雷瓦核能有限责任公司 液位测量装置
DE102008012900A1 (de) * 2008-03-06 2009-09-10 Robert Bosch Gmbh Verfahren zur Füllstandsmessung
CN103411649A (zh) * 2013-08-24 2013-11-27 丁勇 传热桥式冲淤传感器及其制作安装方法
WO2015064618A1 (ja) * 2013-10-30 2015-05-07 株式会社デンソー 液面高さ検出計
CN106197606A (zh) * 2016-09-05 2016-12-07 冯正民 一种容器内分层界面测量装置及方法
CN206095358U (zh) * 2016-09-05 2017-04-12 冯正民 一种容器内分层界面测量装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952718A (ja) * 1982-09-21 1984-03-27 Santemu:Kk 液面検出法および装置
DE3603539A1 (de) * 1986-02-05 1987-08-06 Merckens J G Gmbh & Co Kg Vorrichtung zur erfassung eines fluessigkeits-pegelstandes
US4796471A (en) * 1986-11-12 1989-01-10 Thermonetics Corporation Techniques useful in determining liquid levels
US9995615B2 (en) * 2013-02-12 2018-06-12 Intelligent Energy Inc. Hydrogen generator with fuel gauge
CN105865574A (zh) * 2016-04-11 2016-08-17 北京吉泰凯士仪表科技有限公司 热式液位计

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1156821A (zh) * 1996-04-24 1997-08-13 刘志超 热导式液位测量控制器
CN101460815A (zh) * 2006-05-29 2009-06-17 阿雷瓦核能有限责任公司 液位测量装置
DE102008012900A1 (de) * 2008-03-06 2009-09-10 Robert Bosch Gmbh Verfahren zur Füllstandsmessung
CN103411649A (zh) * 2013-08-24 2013-11-27 丁勇 传热桥式冲淤传感器及其制作安装方法
WO2015064618A1 (ja) * 2013-10-30 2015-05-07 株式会社デンソー 液面高さ検出計
CN106197606A (zh) * 2016-09-05 2016-12-07 冯正民 一种容器内分层界面测量装置及方法
CN206095358U (zh) * 2016-09-05 2017-04-12 冯正民 一种容器内分层界面测量装置

Also Published As

Publication number Publication date
CN106197606A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2018040636A1 (zh) 一种容器内分层界面测量装置及方法
CN103940847B (zh) 一种基于热流传感器各向异性薄膜热导率测试方法及装置
CN105223232B (zh) 一种热导率测量仪和测量方法
US20200166417A1 (en) Adiabatic Concrete Calorimeter and Method
CN104535612B (zh) 用于固体比热容计量标准装置的样品容器
CN104535611B (zh) 固体比热容计量标准装置和测量方法
CN207675681U (zh) 一种墙体材料导热系数测定仪
CN111413371A (zh) 一种海水电导率传感器自校准装置及方法
JP2009222596A (ja) 液面位置検出及び液体体積計測装置
CN107884778A (zh) 一种检测材料伸缩率的装置、方法以及薄膜热缩测试仪
CN207528369U (zh) 一种电子体温计校准装置
JPH03503674A (ja) 地下貯蔵タンク等の容積漏れ検出システム
CN104792821B (zh) 微型量热仪
CN105372288B (zh) 一种热流率测量仪和测量方法
CN211205265U (zh) 恒温静力水准系统
JPH10508382A (ja) 実時間測定方法
US9766103B2 (en) Measuring device, measuring arrangement and method for determining a measured quantity
CN108518972A (zh) 一种基于积温计算的烘干房物料干燥过程控制方法
CN205537768U (zh) 用于地震前兆观测的二氧化碳气体观测装置及系统
US10775211B2 (en) Real-time vessel monitoring system
CN206095358U (zh) 一种容器内分层界面测量装置
CN203464979U (zh) 一种液位传感器
CN102116750B (zh) 一种测定制品比热容的装置
CN206756630U (zh) 一种测定水泥密度的试验装置
JP2010101841A (ja) 付着物検出ユニット及び検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844943

Country of ref document: EP

Kind code of ref document: A1