WO2018040408A1 - 一种磁控元件和磁控溅射装置 - Google Patents
一种磁控元件和磁控溅射装置 Download PDFInfo
- Publication number
- WO2018040408A1 WO2018040408A1 PCT/CN2016/111745 CN2016111745W WO2018040408A1 WO 2018040408 A1 WO2018040408 A1 WO 2018040408A1 CN 2016111745 W CN2016111745 W CN 2016111745W WO 2018040408 A1 WO2018040408 A1 WO 2018040408A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic pole
- magnetron
- closed
- target
- open
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J25/00—Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
- H01J25/50—Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2225/00—Transit-time tubes, e.g. Klystrons, travelling-wave tubes, magnetrons
- H01J2225/50—Magnetrons, i.e. tubes with a magnet system producing an H-field crossing the E-field
Definitions
- the present invention relates to the field of semiconductor device fabrication, and in particular to a magnetron component and a magnetron sputtering device.
- Magnetron sputtering or sputtering (Sputtering) deposition technology is a kind of physical vapor deposition (PVD). It is the most widely used film manufacturing technology in the semiconductor industry. It refers to the physical preparation of thin films. Film preparation process. Physical vapor deposition technology can be applied to many process areas, such as copper interconnect technology, through silicon via (TSV) technology in the field of packaging, and the like.
- PVD physical vapor deposition
- a typical PVD device includes a high vacuum process chamber, a sputtered target, and a magnetron.
- a magnetron is placed on the back side of the target.
- the magnetron includes magnets of opposite polarity, opposite in polarity.
- the magnet generates a magnetic field on the surface of the target adjacent to it.
- the magnetron is driven by the motor to uniformly scan the surface of the target.
- FIG. 1 shows a magnetron composed of a first open magnetic pole 122, a second open magnetic pole 120, a third open magnetic pole 132, and a fourth open magnetic pole 134 in the prior art. Although it can improve target life and film uniformity to some extent, in use, the following problems are found:
- the magnetron is composed only of open magnetic poles, and there is no closed plasma path between the open magnetic poles, only when the target power source is a radio frequency (RF) power source, that is, the target is loaded with radio frequency power, Sputtering is possible.
- the target power source is a direct current (DC) power source, that is, when the target is loaded with DC power, the non-closed plasma path causes electrons to escape, making it impossible to ionize the plasma and fail to maintain sputtering.
- DC direct current
- the RF PVD technology ie, the target loading RF power
- the plasma The distribution of density in the central region of the target is relatively high relative to its distribution in the edge region of the target. Also, this difference increases as the process pressure increases.
- the shape of the magnetron determines that the magnetic field distribution in the edge region of the target is large, and the plasma density at the location can be improved. Therefore, at a higher process pressure (such as a gas pressure of more than 5 mTorr into the process chamber), the difference in plasma density distribution between the target central region and the target edge region is reduced, and the plasma density is increased. Uniformity of distribution to improve film uniformity.
- the difference in plasma density distribution between the target center region and the target edge region is not significant.
- Increasing the plasma density in the edge region of the target increases the difference in plasma density distribution between the central region of the target and the edge region of the target, which in turn reduces the uniformity of plasma density distribution and film uniformity.
- the target power supply is a radio frequency (RF) power source and a direct current (DC) power source
- the target is simultaneously loaded with RF power and DC power
- RF radio frequency
- DC direct current
- Coverage has made it more and more widely used. Therefore, there is an urgent need to design a magnetron that can be applied to a full process pressure range under RF/DC PVD technology and that can uniformly deposit a thin film.
- the present invention provides at least one of the above problems in the prior art, and provides a magnetron element and a magnetron sputtering apparatus.
- the magnetron element can be applied to the RF/DC PVD technology by providing a closed magnetic pole and an open magnetic pole to make the plasma path integrally closed in the closed magnetic pole.
- the distribution difference of the plasma density in the central region of the target and the edge region of the target can be reduced under the full process pressure range, and the splash can be made.
- the deposited film satisfies the set uniformity requirement, thereby greatly improving the uniformity of the deposited film; at the same time, the magnetron sputtering system and the suitable thin film deposition material suitable for the magnetron component are widely used.
- the present invention provides a magnetron element including a closed magnetic pole and an open magnetic pole, the closed magnetic pole surrounding the open magnetic pole, and a magnetic field formed between the closed magnetic pole and the open magnetic pole enables uniformity of a sputter deposited film Less than 5%.
- the open magnetic pole comprises a first magnetic pole
- the first magnetic pole is curved
- the closed magnetic pole and the first magnetic pole are spaced apart from each other by a set distance and opposite in polarity
- a center of rotation of the magnetron element is located at In the area surrounded by the first magnetic pole.
- the shape of the closed magnetic pole is a closed curve of the same radius of curvature or a closed curve of different radius of curvature.
- the shape of the first magnetic pole is an arc having the same radius of curvature or an arc having a different radius of curvature.
- each dot on the first magnetic pole is fixed in a distance from its respective radial direction to the closed magnetic pole; or each point on the first magnetic pole is in its respective radial direction
- the spacing between the closed poles is not fixed.
- the open magnetic pole further includes a second magnetic pole and a third magnetic pole, the second magnetic pole is disposed in a region surrounded by the first magnetic pole, and the third magnetic pole is disposed in an open region of the first magnetic pole;
- the second magnetic pole and the third magnetic pole are spaced apart from each other by a set distance and opposite in polarity.
- the shape of the second magnetic pole is an arc or a straight line
- the shape of the third magnetic pole is an arc or a straight line
- the third magnetic pole extends in a direction from the rotation center to the closed magnetic pole, The extending direction of the second magnetic pole is different from the extending direction of the third magnetic pole.
- the present invention also provides a magnetron sputtering device comprising the magnetron element of any of the above aspects of the invention.
- the magnetron sputtering device further comprises a target, the RF power source is separately applied to the target, or a radio frequency power source and a DC power source are simultaneously applied, or a DC power source is separately applied; a rotation center of the magnetron element and the target The centers correspond to coincidences.
- the magnetron sputtering device is used for sputter deposition of a metal film, a non-metal film, and a magnetic Film or non-magnetic film.
- the magnetic control element provided by the present invention can be applied to the RF/DC PVD technology by providing a closed magnetic pole and an open magnetic pole to make the plasma path integrally closed in the closed magnetic pole.
- the difference in plasma density between the central region of the target and the edge region of the target can be reduced under the full process pressure range, so that sputter deposition
- the film satisfies the set uniformity requirement, thereby greatly improving the uniformity of the deposited film; at the same time, the magnetron sputtering system applicable to the magnetron component and the applicable thin film deposition material are relatively wide; and the magnetron component is further Can improve the utilization rate of the target.
- the magnetron sputtering device provided by the present invention improves the uniformity of the sputter deposited film of the magnetron sputtering device by using the above magnetron element, and also improves the utilization ratio of the target.
- FIG. 1 is a top plan view showing a structure of a magnetron in the prior art
- Embodiment 2 is a plan view showing the structure of a magnetron element in Embodiment 1 of the present invention
- Figure 3 is a plan view showing the structure of a magnetron element in Embodiment 2 of the present invention.
- Figure 4 is a plan view showing the structure of a magnetron element in Embodiment 3 of the present invention.
- Figure 5 is a schematic view showing the structure of a magnetron sputtering apparatus in Embodiment 4 of the present invention.
- the present embodiment provides a magnetic control element, as shown in FIG. 2, comprising a closed magnetic pole 1 and an open magnetic pole.
- the closed magnetic pole 1 surrounds the open magnetic pole, and the magnetic field formed between the closed magnetic pole 1 and the open magnetic pole can make the sputter deposition film uniform. Sex is less than 5%.
- the plasma path 3 formed between the closed magnetic pole 1 and the open magnetic pole of the magnetron element is completely closed in the closed magnetic pole 1 and can be applied to the RF/DC PVD technology
- the target power source is a radio frequency (RF) power source and a direct current. (DC) power supply
- the target is loaded with both RF power and DC power.
- the RF power source is loaded with RF energy to cause the electrons to vibrate and ionize to form a plasma to maintain plasma sputtering; the DC power source is used to increase the energy of the plasma colliding with the target.
- the magnetron element is composed of the closed magnetic pole 1 and the open magnetic pole, it can also be applied to RF PVD technology or DC PVD technology.
- the target power supply is a radio frequency (RF) power supply
- the target only loads RF power the closed magnetic pole 1 and the open magnetic pole work together
- the target power supply is direct current (DC)
- the magnetic pole 1 is closed.
- the sputter deposited film meets the set uniformity requirement, thereby greatly improving the uniformity of the deposited film.
- the uniformity of the sputter deposited film is calculated as: (Lmax - Lmin) / 2, wherein Lmax is the maximum thickness of the sputter deposited film, Lmin is the minimum thickness of the sputter deposited film; and, the more uniform Well, the smaller the value of (Lmax-Lmin)/2, and vice versa.
- the closed magnetic pole 1 can be made to correspond to the edge region of the target, and the closed magnetic pole 1
- the diameter of the wafer is larger than the diameter of the wafer on which the film layer is formed by sputtering (a commonly used wafer has a diameter of 200 mm or 300 mm).
- the distance between the closed magnetic pole 1 and the open magnetic pole is in the range of 20-60 mm, that is, the open magnetic pole corresponds to the central region of the target.
- the closed magnetic pole 1 can appropriately increase the plasma density of the edge region of the target, and reduce the central region of the target and the target.
- the difference in plasma density increases the uniformity of the plasma density distribution, thereby improving film uniformity.
- the open magnetic pole can appropriately increase the plasma density in the central region of the target and reduce the plasma density of the target region.
- the difference is to improve the uniformity of the plasma density distribution, thereby improving the film uniformity. It has been verified by sufficient experiments that the magnetron element can make the sputter deposited film meet the set uniformity requirement, that is, the uniformity is less than 5%.
- the open magnetic pole includes a first magnetic pole 21, the first magnetic pole 21 has an arc shape, and the closed magnetic pole 1 is spaced apart from the first magnetic pole 21 by a set distance and opposite in polarity, and the rotation center P of the magnetron element is located at the first magnetic pole 21 In the enclosed area.
- the spacing between the first magnetic pole 21 and the closed magnetic pole 1 is equidistant, that is, each point on the first magnetic pole 21 is fixed along the respective radial direction to the distance between the closed magnetic poles 1. It should be noted that the spacing between the first magnetic pole 21 and the closed magnetic pole 1 may also be a variable pitch, that is, the spacing between each point on the first magnetic pole 21 along its respective radial direction to the closed magnetic pole 1 is not fixed.
- the shape of the closed magnetic pole 1 is a closed curve of the same radius of curvature.
- the shape of the first magnetic pole 21 is an open curve of the same radius of curvature. It can be understood that the line widths of the curves and the arcs in the present application are not limited.
- the magnetron element of the present embodiment is suitable for a wider range of process pressures, it can be used for depositing metal, non-metal, magnetic, and non-magnetic films, and has a wide range of applications.
- the present embodiment provides a magnetic control element. Unlike the first embodiment, as shown in FIG. 3, the shape of the closed magnetic pole 1 is a closed curve with different radii of curvature, and the shape of the first magnetic pole 21 is also a different radius of curvature. Open circuit arc.
- the shape of the closed magnetic pole 1 and/or the first magnetic pole 21 is a closed curve with different radii of curvature
- the magnetic field generated by the magnetic field in the central region and the edge of the target can be adjusted by adjusting the change of the radius of curvature thereof.
- the distribution of the region makes it possible to reduce the distribution difference of the plasma density in the central region of the target and the edge region of the target under the pressure range of the whole process, so that the sputter deposited film meets the set uniformity requirement, thereby greatly improving the deposited film. Uniformity.
- the portions of the closed magnetic pole 1 and the first magnetic pole 21 having a smaller radius of curvature are more biased toward the central region of the target, so that the magnetic fields of the closed magnetic pole 1 and the first magnetic pole 21 in the central region of the target can be appropriately increased.
- Distribution in this way, under low process pressure, the plasma density can be appropriately increased, thereby solving the prior art, because only increasing the plasma density of the edge region of the target, the plasma density is increased at the center of the target.
- the difference in distribution between the region and the edge region of the target reduces the uniformity of the plasma density distribution and the uniformity of the film.
- the portion of the closed magnetic pole 1 and the first magnetic pole 21 having a larger radius of curvature is still biased toward the edge region of the target, so that the magnetic field distribution and the plasma density can be improved, thereby improving the film uniformity under the process pressure.
- the present embodiment provides a magnetic control element.
- the magnetic control element in this embodiment is modified on the basis of Embodiment 1 or Embodiment 2, specifically, the open circuit in this embodiment.
- the magnetic pole 2 includes a first magnetic pole 21, a second magnetic pole 22 and a third magnetic pole 23, the second magnetic pole 22 is disposed in a region surrounded by the first magnetic pole 21, and the third magnetic pole 23 is disposed in an open region of the first magnetic pole 21; the second magnetic pole 22 and the third magnetic pole 23 are spaced apart from each other by a set distance and have opposite polarities.
- the polarities of the second magnetic pole 22 and the first magnetic pole 21 are also opposite.
- the shape of the second magnetic pole 22 is an arc or a straight line
- the shape of the third magnetic pole 23 is an arc or a straight line
- the third magnetic pole 23 extends in a direction from the rotation center P to the closed magnetic pole 1, and the extending direction of the second magnetic pole 22 It is different from the extending direction of the third magnetic pole 23.
- the shape, position and polarity of the closed magnetic pole 1, the first magnetic pole 21, the second magnetic pole 22 and the third magnetic pole 23 can be adjusted to adjust the distribution of the magnetic field generated in the central region and the edge region of the target. It can reduce the distribution difference of plasma density in the central area of the target and the edge area of the target under the whole process pressure range, so that the sputter deposited film meets the set uniformity requirement, thereby greatly improving the uniformity of the deposited film. .
- the second magnetic pole 22 and the third magnetic pole 23 have a large magnetic field distribution in the central region of the target, and under a low process pressure, the plasma density at the locality can be appropriately increased, thereby solving the existing
- the technique only increases the plasma density of the edge region of the target, but increases the distribution of the plasma density in the central region of the target and the edge region of the target, and reduces the uniformity of the plasma density distribution and the uniformity of the film.
- the closed magnetic pole 1 and the first magnetic pole 21 can improve the magnetic field distribution and the plasma density in the edge region of the target, thereby reducing the distribution difference of the plasma density in the central region of the target and the edge region of the target, and improving The role of film uniformity.
- Embodiments 1-3 The magnetron element provided in Embodiments 1-3 can be applied to the RF/DC PVD by setting the closed magnetic pole and the open magnetic pole to make the plasma path as a whole in the closed magnetic pole. technology.
- the magnetic control element can be applied to a wide range of applications, and can be applied to a wide variety of magnetron sputtering systems and thin film deposition materials; Magnetron components also increase the utilization of the target.
- the present embodiment provides a magnetron sputtering apparatus comprising the magnetron element 4 provided in any of the embodiments 1-3.
- the magnetron sputtering device further includes a target 5, which can separately apply the RF power source 6, or simultaneously apply the RF power source 6 and the DC power source 7, or separately apply the DC power source 7; the magnetron component 4 The center of rotation coincides with the center of the target 5.
- the uniformity of the sputter deposited film of the magnetron sputtering device can be improved over the entire process pressure range. .
- the RF power source 6 causes the electron vibration to ionize to form a plasma
- the RF energy can maintain the plasma sputtering
- the DC power source 7 is in the magnetron sputtering system.
- the energy of the plasma colliding with the target can be increased; at this time, by using the magnetron 4 in Embodiment 1, the magnetron sputtering device can be applied to a wide range of processes by adjusting the magnetic field formed between the closed magnetic pole and the open magnetic pole. Magnetron sputtering treatment under pressure; thus, the magnetron sputtering device can be used for sputter deposition of a metal film, a non-metal film, a magnetic film or a non-magnetic film.
- the magnetron element 4 is composed of a closed magnetic pole and an open magnetic pole, it can also be applied to RF PVD or DC PVD technology.
- RF PVD RF PVD
- the closed magnetic pole and the open magnetic pole work together; in the case of DC PVD technology, the closed magnetic pole acts.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Abstract
一种磁控元件(4)和磁控溅射装置。该磁控元件(4)包括闭合磁极(1)和开路磁极(2),闭合磁极(1)包围开路磁极(2),闭合磁极(1)和开路磁极(2)之间形成的磁场能使溅射沉积薄膜的均匀性小于5%。该磁控元件(4)通过设置闭合磁极(1)和开路磁极(2),能适用于RF/DC PVD技术,通过调节闭合磁极(1)和开路磁极(2)之间形成的等离子体路径(3)的形状与分布,能在全工艺压力范围下使溅射沉积薄膜满足设定的均匀性要求,从而大大提高了沉积薄膜的均匀性;该磁控元件(4)适用的磁控溅射系统以及适用的薄膜沉积材料都比较广泛,并且,该磁控元件(4)还能提高靶材(5)的利用率。
Description
本发明涉及半导体器件制备技术领域,具体地,涉及一种磁控元件和磁控溅射装置。
磁控溅射或溅射(Sputtering)沉积技术是物理气相沉积(Physical Vapor Deposition,PVD)的一种,是半导体工业中最广为使用的一类薄膜制造技术,泛指采用物理方法制备薄膜的薄膜制备工艺。物理气相沉积技术可应用于很多工艺领域,如铜互连线技术、封装领域中的硅通孔(Through Silicon Via,TSV)技术等等。
典型的PVD装置包括高真空工艺腔、被溅射的靶材和磁控管,为了提高溅射效率,磁控管放置在靶材背面,磁控管包括极性相反的磁铁,极性相反的磁铁在临近其的靶材表面产生磁场。为了达到均匀溅射的目的,磁控管通过电机带动,在靶材表面均匀扫描。
如图1所示是现有技术中的一种由第一开路磁极122、第二开路磁极120、第三开路磁极132、第四开路磁极134组成的磁控管。虽然其可以在一定程度上提高靶材寿命和薄膜均匀性,但是在使用中,发现以下问题:
其一,因为该磁控管仅由开路磁极组成,各个开路磁极之间没有构成闭合的等离子体路径,所以只有在靶材电源为射频(RF)电源,即靶材加载射频功率的情况下,才可以进行溅射。而在靶材电源为直流(DC)电源,即靶材加载直流功率时,非闭合的等离子体路径会导致电子的逃逸现象,使其无法电离出等离子体,不能维持溅射。
其二,RF PVD技术(即靶材加载射频功率)的情况下,等离子体
密度在靶材中心区域的分布相对其在靶材边缘区域的分布要高。并且,这种差异会随着工艺压力的升高而增大。而该磁控管的形状决定了其在靶材边缘区域的磁场分布较多,可以提高该处的等离子体密度。从而在较高的工艺压力(如通入工艺腔室内的气体压力大于5毫托)的情况下,缩小了等离子体密度在靶材中心区域和靶材边缘区域的分布差异,提高了等离子体密度分布的均匀性,从而提高薄膜均匀性。但是,在较低的工艺压力(如通入工艺腔室内的气体压力小于5毫托)的情况下,等离子体密度在靶材中心区域和靶材边缘区域的分布差异并不明显,此时再提高靶材边缘区域的等离子体密度,则会加大等离子体密度在靶材中心区域和靶材边缘区域的分布差异,反而降低了等离子体密度分布的均匀性和薄膜均匀性。
目前,因为RF/DC PVD技术(即靶材电源为射频(RF)电源和直流(DC)电源,靶材同时加载射频功率和直流功率)可以实现高离子离化率工艺以得到更好的台阶覆盖率,使其得到了越来越广泛的应用。因此,急需设计一种能够在RF/DC PVD技术下,适用于全工艺压力范围,且可以均匀沉积薄膜的磁控管。
发明内容
本发明至少为解决现有技术中的上述问题之一,提供一种磁控元件和磁控溅射装置。该磁控元件通过设置闭合磁极和开路磁极,使等离子体路径在闭合磁极内整体呈闭合状态,可以适用于RF/DC PVD技术。同时,通过调节闭合磁极和开路磁极之间形成的等离子体路径的形状与分布,可以在全工艺压力范围下,缩小等离子体密度在靶材中心区域和靶材边缘区域的分布差异,能使溅射沉积薄膜满足设定的均匀性要求,从而大大提高沉积薄膜的均匀性;同时可以使得该磁控元件适用的磁控溅射系统以及适用的薄膜沉积材料都比较广泛。
本发明提供一种磁控元件,其包括闭合磁极和开路磁极,所述闭合磁极包围所述开路磁极,所述闭合磁极和所述开路磁极之间形成的磁场能使溅射沉积薄膜的均匀性小于5%。
其中,所述开路磁极包括第一磁极,所述第一磁极呈弧形,所述闭合磁极与所述第一磁极彼此间隔设定距离且极性相反,所述磁控元件的旋转中心位于所述第一磁极包围的区域中。
其中,所述闭合磁极的形状为相同曲率半径的闭合曲线或不同曲率半径的闭合曲线。
其中,所述第一磁极的形状为具有相同曲率半径的弧形或具有不同曲率半径的弧形。
其中,所述第一磁极上的每一个点沿其各自的径向方向到所述闭合磁极之间的间距固定;或者所述第一磁极上的每一个点沿其各自的径向方向到所述闭合磁极之间的间距不固定。
其中,所述开路磁极还包括第二磁极和第三磁极,所述第二磁极设置在所述第一磁极包围的区域中,所述第三磁极设置在所述第一磁极的开口区域;所述第二磁极和所述第三磁极彼此间隔设定距离且极性相反。
其中,所述第二磁极的形状为弧线或直线,所述第三磁极的形状为弧线或直线;所述第三磁极沿从所述旋转中心到所述闭合磁极的方向延伸,所述第二磁极的延伸方向与所述第三磁极的延伸方向不同。
作为另一个技术方案,本发明还提供一种磁控溅射装置,其包括本发明上述任一方案所述的磁控元件。
其中,磁控溅射装置还包括靶材,所述靶材上单独施加射频电源,或者同时施加射频电源和直流电源,或者单独施加直流电源;所述磁控元件的旋转中心与所述靶材的中心对应重合。
其中,所述磁控溅射装置用于溅射沉积金属薄膜、非金属薄膜、磁
性薄膜或非磁性薄膜。
本发明的有益效果:本发明所提供的磁控元件,通过设置闭合磁极和开路磁极,使等离子体路径在闭合磁极内整体呈闭合状态,可以适用于RF/DC PVD技术。同时,通过调节闭合磁极和开路磁极之间形成的等离子体路径的形状与分布,可以在全工艺压力范围下,缩小等离子体密度在靶材中心区域和靶材边缘区域的差异,使溅射沉积薄膜满足设定的均匀性要求,从而大大提高了沉积薄膜的均匀性;同时可以使该磁控元件适用的磁控溅射系统以及适用的薄膜沉积材料都比较广泛;并且,该磁控元件还能提高靶材的利用率。
本发明所提供的磁控溅射装置,通过采用上述磁控元件,提高了该磁控溅射装置溅射沉积薄膜的均匀性,同时还提高了靶材的利用率。
图1为现有技术中磁控管的结构俯视图;
图2为本发明实施例1中磁控元件的结构俯视图;
图3为本发明实施例2中磁控元件的结构俯视图;
图4为本发明实施例3中磁控元件的结构俯视图;
图5为本发明实施例4中磁控溅射装置的结构示意图。
其中的附图标记说明:
1.闭合磁极;2.开路磁极;3.等离子体路径;P.旋转中心;21.第一磁极;22.第二磁极;23.第三磁极;4.磁控元件;5.靶材;6.射频电源;7.直流电源;122.第一开路磁极;120.第二开路磁极;132.第三开路磁极;134.第四开路磁极。
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明所提供的一种磁控元件和磁控溅射装置作进一步详细描述。
实施例1:
本实施例提供一种磁控元件,如图2所示,包括闭合磁极1和开路磁极,闭合磁极1包围开路磁极,闭合磁极1和开路磁极之间形成的磁场能使溅射沉积薄膜的均匀性小于5%。
该磁控元件的闭合磁极1与开路磁极之间形成的等离子体路径3在闭合磁极1内整体呈闭合状态,可以适用于RF/DC PVD技术(即靶材电源为射频(RF)电源和直流(DC)电源,靶材同时加载射频功率和直流功率)。其中,射频电源加载射频能量,使电子振动电离形成等离子体,以维持等离子体溅射;直流电源用以增加等离子体碰撞靶材的能量。当然,因为该磁控元件由闭合磁极1与开路磁极组合而成,因而也可以适用于RF PVD技术或者DC PVD技术。在RF PVD技术(即靶材电源为射频(RF)电源,靶材仅加载射频功率)的情况下,闭合磁极1和开路磁极共同作用;在DC PVD技术(即靶材电源为直流(DC)电源,靶仅材加载直流功率)的情况下,闭合磁极1作用。
同时,通过调节闭合磁极1和开路磁极之间形成的等离子体路径3的形状与分布,可以在工艺腔室的全工艺压力的范围内,缩小靶材中心区域和靶材边缘区域的等离子体密度的差异,使溅射沉积薄膜满足设定的均匀性要求,从而大大提高了沉积薄膜的均匀性。本申请中,溅射沉积薄膜的均匀性计算公式为:(Lmax-Lmin)/2,其中,Lmax为溅射沉积薄膜的最大厚度,Lmin为溅射沉积薄膜的最小厚度;并且,均匀性越好,则(Lmax-Lmin)/2的数值越小;反之,亦然。
优选的,可以使闭合磁极1对应靶材边缘区域,且该闭合磁极1
的直径大于用于在其上溅射形成膜层的晶片的直径(常用的晶片的直径为200mm或300mm)。同时使闭合磁极1与开路磁极之间的间距在20-60mm的范围内,即开路磁极对应靶材中心区域。如此设置,在较高的工艺压力(如通入工艺腔室内的气体压力大于5毫托)的情况下,闭合磁极1可以适当提高靶材边缘区域的等离子体密度,缩小其与靶材中心区域等离子体密度的差异,提高等离子体密度分布的均匀性,从而提高薄膜均匀性。在较低的工艺压力(如通入工艺腔室内的气体压力小于5毫托)的情况下,开路磁极可以适当提高靶材中心区域的等离子体密度,缩小其与靶材边缘区域等离子体密度的差异,提高等离子体密度分布的均匀性,从而提高薄膜均匀性。经充分实验验证,该磁控元件能使溅射沉积薄膜满足设定的均匀性要求,即均匀性小于5%。
本实施例中,开路磁极包括第一磁极21,第一磁极21呈弧形,闭合磁极1与第一磁极21间隔设定距离且极性相反,磁控元件的旋转中心P位于第一磁极21包围的区域中。
本实施例中,第一磁极21与闭合磁极1之间的间距为等间距,即,第一磁极21上的每一个点沿其各自的径向方向到闭合磁极1之间的间距固定。需要说明的是,第一磁极21与闭合磁极1之间的间距也可以为变间距,即,第一磁极21上的每一个点沿其各自的径向方向到闭合磁极1之间的间距不固定。
本实施例中,闭合磁极1的形状为相同曲率半径的闭合曲线。第一磁极21的形状为相同曲率半径的开路弧线。可以理解,本申请中曲线和弧线的线宽并不受限制。
因为本实施例中的磁控元件适用于更广泛的工艺压力,所以可以用于沉积金属、非金属、磁性以及非磁性薄膜,应用范围比较广泛。
实施例2:
本实施例提供一种磁控元件,与实施例1中不同的是,如图3所示,闭合磁极1的形状为不同曲率半径的闭合曲线,第一磁极21的形状也为不同曲率半径的开路弧线。
需要说明的是,当闭合磁极1和/或第一磁极21各自的形状为不同曲率半径的闭合曲线时,可以通过调节其曲率半径的变化,调节其所产生的磁场在靶材中心区域和边缘区域的分布,使其可以在全工艺压力范围下,缩小等离子体密度在靶材中心区域和靶材边缘区域的分布差异,使溅射沉积薄膜满足设定的均匀性要求,从而大大提高沉积薄膜的均匀性。
优选的,如图3所示,闭合磁极1和第一磁极21的曲率半径较小的部分更偏向靶材中心区域,从而可以适当提高闭合磁极1和第一磁极21在靶材中心区域的磁场分布,这样,在低工艺压力下,可以适当的提高该处的等离子体密度,从而解决现有技术中因只提高靶材边缘区域的等离子体密度,反而会加大等离子体密度在靶材中心区域和靶材边缘区域的分布差异,降低等离子体密度分布的均匀性和薄膜均匀性的问题。当然,闭合磁极1和第一磁极21的曲率半径较大的部分依然偏向靶材边缘区域,从而可以提高该处磁场分布和等离子体密度,进而提高工艺压力下的薄膜均匀性。
实施例3:
本实施例提供一种磁控元件,如图4所示,本实施例中的磁控元件在实施例1或实施例2的基础上对开路磁极进行变型,具体地,本实施例中的开路磁极2包括第一磁极21、第二磁极22和第三磁极23,第二磁极22设置在第一磁极21包围的区域中,第三磁极23设置在第一磁极21的开口区域;第二磁极22和第三磁极23相互间隔设定距离且极性相反。优选的,第二磁极22和第一磁极21的极性也相反。
其中,第二磁极22的形状为弧线或直线,第三磁极23的形状为弧线或直线;第三磁极23沿从旋转中心P到闭合磁极1的方向延伸,第二磁极22的延伸方向与第三磁极23的延伸方向不同。
需要说明的是,可以通过调节闭合磁极1、第一磁极21、第二磁极22和第三磁极23的形状、位置和极性,调节其所产生的磁场在靶材中心区域和边缘区域的分布,使其可以在全工艺压力范围下,缩小等离子体密度在靶材中心区域和靶材边缘区域的分布差异,使溅射沉积薄膜满足设定的均匀性要求,从而大大提高沉积薄膜的均匀性。
优选的,如图4所示,第二磁极22和第三磁极23在靶材中心区域的磁场分布较多,在低工艺压力下,可以适当的提高该处的等离子体密度,从而解决现有技术只提高靶材边缘区域的等离子体密度,反而会加大等离子体密度在靶材中心区域和靶材边缘区域的分布差异,降低等离子体密度分布的均匀性和薄膜均匀性的问题。在高工艺压力下,闭合磁极1和第一磁极21可以起到提高靶材边缘区域的磁场分布和等离子体密度,进而缩小等离子体密度在靶材中心区域和靶材边缘区域的分布差异,提高的薄膜均匀性的作用。
本实施例中磁控元件的其他结构及其设置方式与实施例1或实施例2中相同,此处不再赘述。
实施例1-3的有益效果:实施例1-3中所提供的磁控元件,通过设置闭合磁极和开路磁极,使等离子体路径在闭合磁极内整体呈闭合状态,可以适用于RF/DC PVD技术。同时,通过调节闭合磁极和开路磁极之间形成的等离子体路径的形状与分布,可以在全工艺压力范围下,缩小等离子体密度在靶材中心区域及在靶材边缘区域的分布差异,使溅射沉积薄膜满足设定的均匀性要求,从而大大提高沉积薄膜的均匀性;同时可以使该磁控元件的适用范围较广,能够适用很多种磁控溅射系统以及薄膜沉积材料;并且,该磁控元件还能提高靶材的利用率。
实施例4:
如图5所示,本实施例提供一种磁控溅射装置,其包括实施例1-3任意一个实施例所提供的磁控元件4。
本实施例中,磁控溅射装置还包括靶材5,该靶材5可单独施加射频电源6,或者同时施加射频电源6和直流电源7,或者单独施加直流电源7;磁控元件4的旋转中心与靶材5的中心对应重合。
采用实施例1-3任意一个所提供的磁控元件4,通过调节闭合磁极和开路磁极之间形成的磁场,可以在全工艺压力范围下提高该磁控溅射装置溅射沉积薄膜的均匀性。
优选的,在射频电源6与直流电源7共同加载的磁控溅射系统中,射频电源6使得电子振动电离形成等离子体,射频能量能够维持等离子体溅射,直流电源7在磁控溅射系统中能够增加等离子体碰撞靶材的能量;此时,采用实施例1中的磁控元件4,通过调节闭合磁极和开路磁极之间形成的磁场,该磁控溅射装置能够适用于广泛的工艺压力下的磁控溅射处理;从而使得磁控溅射装置可以用于溅射沉积金属薄膜、非金属薄膜、磁性薄膜或非磁性薄膜。
当然,因为磁控元件4由闭合磁极与开路磁极组合而成,从而也可以适用于RF PVD或者DC PVD技术。RF PVD技术的情况下,闭合磁极和开路磁极共同作用;DC PVD技术的情况下,闭合磁极作用。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
Claims (10)
- 一种磁控元件,其特征在于,包括闭合磁极和开路磁极,所述闭合磁极包围所述开路磁极,所述闭合磁极和所述开路磁极之间形成的磁场能使溅射沉积薄膜的均匀性小于5%。
- 根据权利要求1所述的磁控元件,其特征在于,所述开路磁极包括第一磁极,所述第一磁极呈弧形,所述闭合磁极与所述第一磁极彼此间隔设定距离且极性相反,所述磁控元件的旋转中心位于所述第一磁极包围的区域中。
- 根据权利要求1所述的磁控元件,其特征在于,所述闭合磁极的形状为相同曲率半径的闭合曲线或不同曲率半径的闭合曲线。
- 根据权利要求2所述的磁控元件,其特征在于,所述第一磁极的形状为具有相同曲率半径的弧线或具有不同曲率半径的弧线。
- 根据权利要求2所述的磁控元件,其特征在于,所述第一磁极上的每一个点沿其各自的径向方向到所述闭合磁极之间的间距固定;或者所述第一磁极上的每一个点沿其各自的径向方向到所述闭合磁极之间的间距不固定。
- 根据权利要求2所述的磁控元件,其特征在于,所述开路磁极还包括第二磁极和第三磁极,所述第二磁极设置在所述第一磁极包围的区域中,所述第三磁极设置在所述第一磁极的开口区域;所述第二磁极和所述第三磁极彼此间隔设定距离且极性相反。
- 根据权利要求6所述的磁控元件,其特征在于,所述第二磁极的形状为弧线或直线,所述第三磁极的形状为弧线或直线;所述第三磁极沿从所述旋转中心到所述闭合磁极的方向延伸,所述第二磁极的延伸方向与所述第三磁极的延伸方向不同。
- 一种磁控溅射装置,其特征在于,包括权利要求1-7任意一项所述的磁控元件。
- 根据权利要求8所述的磁控溅射装置,其特征在于,还包括靶材,所述靶材上单独施加射频电源,或者同时施加射频电源和直流电源,或者单独施加直流电源;所述磁控元件的旋转中心与所述靶材的中心对应重合。
- 根据权利要求8所述的磁控溅射装置,其特征在于,所述磁控溅射装置用于溅射沉积金属薄膜、非金属薄膜、磁性薄膜或非磁性薄膜。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610789989.8 | 2016-08-30 | ||
CN201610789989.8A CN107785219B (zh) | 2016-08-30 | 2016-08-30 | 一种磁控元件和磁控溅射装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018040408A1 true WO2018040408A1 (zh) | 2018-03-08 |
Family
ID=61299840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/111745 WO2018040408A1 (zh) | 2016-08-30 | 2016-12-23 | 一种磁控元件和磁控溅射装置 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN107785219B (zh) |
TW (1) | TWI616551B (zh) |
WO (1) | WO2018040408A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117467958A (zh) * | 2023-12-28 | 2024-01-30 | 中国科学院长春光学精密机械与物理研究所 | 一种用于大口径光学元件的磁控溅射技术的辅助装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117431512A (zh) * | 2022-07-14 | 2024-01-23 | 长鑫存储技术有限公司 | 磁控组件、物理气相沉积装置及方法、控制装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87106947A (zh) * | 1987-10-12 | 1988-05-18 | 浙江大学 | 分离磁体式平面磁控溅射源 |
CN1516888A (zh) * | 2001-06-12 | 2004-07-28 | ���ɿ�������˾ | 磁控管溅射源 |
CN102789941A (zh) * | 2011-05-18 | 2012-11-21 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 一种磁控管、磁控管的制造方法及物理沉积室 |
US20160104607A1 (en) * | 2014-10-10 | 2016-04-14 | The Board Of Trustees Of The University Of Illinois | Method of and magnet assembly for high power pulsed magnetron sputtering |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202705456U (zh) * | 2012-05-14 | 2013-01-30 | 深圳市创益科技发展有限公司 | 在线制备太阳能电池导电膜层的磁控溅射装置 |
-
2016
- 2016-08-30 CN CN201610789989.8A patent/CN107785219B/zh active Active
- 2016-12-23 TW TW105142920A patent/TWI616551B/zh active
- 2016-12-23 WO PCT/CN2016/111745 patent/WO2018040408A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN87106947A (zh) * | 1987-10-12 | 1988-05-18 | 浙江大学 | 分离磁体式平面磁控溅射源 |
CN1516888A (zh) * | 2001-06-12 | 2004-07-28 | ���ɿ�������˾ | 磁控管溅射源 |
CN102789941A (zh) * | 2011-05-18 | 2012-11-21 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 一种磁控管、磁控管的制造方法及物理沉积室 |
US20160104607A1 (en) * | 2014-10-10 | 2016-04-14 | The Board Of Trustees Of The University Of Illinois | Method of and magnet assembly for high power pulsed magnetron sputtering |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117467958A (zh) * | 2023-12-28 | 2024-01-30 | 中国科学院长春光学精密机械与物理研究所 | 一种用于大口径光学元件的磁控溅射技术的辅助装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107785219B (zh) | 2019-10-11 |
TW201807233A (zh) | 2018-03-01 |
TWI616551B (zh) | 2018-03-01 |
CN107785219A (zh) | 2018-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100776861B1 (ko) | 큰 영역 기판의 마그네트론 스퍼터링 시스템 | |
US20090308732A1 (en) | Apparatus and method for uniform deposition | |
US6497796B1 (en) | Apparatus and method for controlling plasma uniformity across a substrate | |
JPH10259480A (ja) | イオン化スパッタリング装置 | |
JPH10289887A (ja) | イオン化スパッタリング装置 | |
KR20130035924A (ko) | 마그네트론 스퍼터 장치 및 방법 | |
JP2001279436A (ja) | 変調電源を用いる物理的気相成長方法及び装置 | |
US20170004995A1 (en) | Film Forming Apparatus and Film Forming Method | |
JP2012197463A (ja) | 薄膜の成膜方法 | |
US20060225998A1 (en) | Direct ion beam deposition method and system | |
JP2002521567A (ja) | 不均一性補償を伴う表面の物理的気相処理 | |
WO2013179548A1 (ja) | マグネトロンスパッタ装置、マグネトロンスパッタ方法及び記憶媒体 | |
WO2009157439A1 (ja) | スパッタリング装置及びスパッタリング方法 | |
TW201702414A (zh) | 用來沉積材料之方法及設備 | |
US20140346037A1 (en) | Sputter device | |
WO2018040408A1 (zh) | 一种磁控元件和磁控溅射装置 | |
US7935393B2 (en) | Method and system for improving sidewall coverage in a deposition system | |
JP2010248576A (ja) | マグネトロンスパッタリング装置 | |
US20220341029A1 (en) | Em source for enhanced plasma control | |
JP6509553B2 (ja) | スパッタリング装置 | |
JPS61204371A (ja) | 陰極スパツタリング用磁気回路装置 | |
CN113667949A (zh) | 磁控溅射设备 | |
KR20200051947A (ko) | 스퍼터링 장치 | |
JP2004124171A (ja) | プラズマ処理装置及び方法 | |
KR102617710B1 (ko) | 기판 처리장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16914969 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16914969 Country of ref document: EP Kind code of ref document: A1 |